
Advances in Intelligent Systems and Computing 1123

M. Hadi Amini   Editor

Optimization, 
Learning, 
and Control 
for Interdependent 
Complex Networks



Advances in Intelligent Systems and Computing

Volume 1123

Series Editor
Janusz Kacprzyk, Systems Research Institute, Polish Academy of Sciences,
Warsaw, Poland

Advisory Editors
Nikhil R. Pal, Indian Statistical Institute, Kolkata, India
Rafael Bello Perez, Faculty of Mathematics, Physics and Computing,
Universidad Central de Las Villas, Santa Clara, Cuba
Emilio S. Corchado, University of Salamanca, Salamanca, Spain
Hani Hagras, School of Computer Science and Electronic Engineering,
University of Essex, Colchester, UK
László T. Kóczy, Department of Automation, Széchenyi István University,
Gyor, Hungary
Vladik Kreinovich, Department of Computer Science, University of Texas
at El Paso, El Paso, TX, USA
Chin-Teng Lin, Department of Electrical Engineering, National Chiao
Tung University, Hsinchu, Taiwan
Jie Lu, Faculty of Engineering and Information Technology,
University of Technology Sydney, Sydney, NSW, Australia
Patricia Melin, Graduate Program of Computer Science, Tijuana Institute
of Technology, Tijuana, Mexico
Nadia Nedjah, Department of Electronics Engineering, University of Rio de Janeiro,
Rio de Janeiro, Brazil
Ngoc Thanh Nguyen , Faculty of Computer Science and Management,
Wrocław University of Technology, Wrocław, Poland
Jun Wang, Department of Mechanical and Automation Engineering,
The Chinese University of Hong Kong, Shatin, Hong Kong

https://orcid.org/0000-0002-3247-2948


The series “Advances in Intelligent Systems and Computing” contains publications
on theory, applications, and design methods of Intelligent Systems and Intelligent
Computing. Virtually all disciplines such as engineering, natural sciences, computer
and information science, ICT, economics, business, e-commerce, environment,
healthcare, life science are covered. The list of topics spans all the areas of
modern intelligent systems and computing such as: computational intelligence,
soft computing including neural networks, fuzzy systems, evolutionary comput-
ing and the fusion of these paradigms, social intelligence, ambient intelligence,
computational neuroscience, artificial life, virtual worlds and society, cognitive
science and systems, Perception and Vision, DNA and immune based systems,
self-organizing and adaptive systems, e-Learning and teaching, human-centered
and human-centric computing, recommender systems, intelligent control, robotics
and mechatronics including human-machine teaming, knowledge-based paradigms,
learning paradigms, machine ethics, intelligent data analysis, knowledge man-
agement, intelligent agents, intelligent decision making and support, intelligent
network security, trust management, interactive entertainment, Web intelligence and
multimedia.

The publications within “Advances in Intelligent Systems and Computing”
are primarily proceedings of important conferences, symposia and congresses.
They cover significant recent developments in the field, both of a foundational
and applicable character. An important characteristic feature of the series is the
short publication time and world-wide distribution. This permits a rapid and broad
dissemination of research results.

** Indexing: The books of this series are submitted to ISI Proceedings,
EI-Compendex, DBLP, SCOPUS, Google Scholar and Springerlink **

More information about this series at http://www.springer.com/series/11156

http://www.springer.com/series/11156


M. Hadi Amini
Editor

Optimization, Learning, and
Control for Interdependent
Complex Networks



Editor
M. Hadi Amini
School of Computing and Information
Sciences
Florida International University
Miami, FL, USA

Sustainability, Optimization, and Learning
for InterDependent Networks Laboratory
(solid lab)
Florida International University
Miami, FL, USA

ISSN 2194-5357 ISSN 2194-5365 (electronic)
Advances in Intelligent Systems and Computing
ISBN 978-3-030-34093-3 ISBN 978-3-030-34094-0 (eBook)
https://doi.org/10.1007/978-3-030-34094-0

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG.
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-34094-0


Preface

This book focuses on a wide range of optimization, learning, and control algorithms
for interdependent complex networks and their application in smart cities infras-
tructures, intelligent transportation networks, and smart energy systems. This book
paves the way for researchers working on optimization, learning, and control spread
over the fields of computer science, operations research, electrical engineering, civil
engineering, and system engineering. It covers optimization algorithms for large-
scale problems from theoretical foundations to real-world applications; learning-
based methods to enable intelligence in future smart cities, and control techniques to
deal with the optimal and robust operation of complex system. It further introduces
novel algorithms for data analytics in large-scale interdependent networks.

Miami, FL, USA M. Hadi Amini, Ph.D., D.Eng.

v



Contents

1 Panorama of Optimization, Control, and Learning Algorithms
for Interdependent SWEET (Societal, Water, Energy,
Economic, and Transportation) Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
M. Hadi Amini

Part I Theoretical Algorithms for Optimization, Learning,
and Data Analytics in Interdependent Complex Networks

2 Promises of Fully Distributed Optimization for IoT-Based
Smart City Infrastructures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
M. Hadi Amini, Javad Mohammadi, and Soummya Kar

3 Evolutionary Computation, Optimization, and Learning
Algorithms for Data Science . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Farid Ghareh Mohammadi, M. Hadi Amini, and Hamid R. Arabnia

4 Applications of Nature-Inspired Algorithms for Dimension
Reduction: Enabling Efficient Data Analytics . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Farid Ghareh Mohammadi, M. Hadi Amini, and Hamid R. Arabnia

5 Feature Selection in High-Dimensional Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Amirreza Rouhi and Hossein Nezamabadi-Pour

6 An Introduction to Advanced Machine Learning:
Meta-Learning Algorithms, Applications, and Promises . . . . . . . . . . . . . . 129
Farid Ghareh Mohammadi, M. Hadi Amini, and Hamid R. Arabnia

Part II Application of Optimization, Learning and Control
in Interdependent Complex Networks

7 Predictive Analytics in Future Power Systems: A Panorama
and State-Of-The-Art of Deep Learning Applications . . . . . . . . . . . . . . . . . 147
Sakshi Mishra, Andrew Glaws, and Praveen Palanisamy

vii



viii Contents

8 Bi-level Adversary-Operator Cyberattack Framework
and Algorithms for Transmission Networks in Smart Grids . . . . . . . . . 183
M. Hadi Amini, Javad Khazaei, Darius Khezrimotlagh,
and Arash Asrari

9 Toward Operational Resilience of Smart Energy Networks
in Complex Infrastructures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
Babak Taheri, Ali Jalilian, Amir Safdarian, Moein Moeini-Aghtaie,
and Matti Lehtonen

10 Control of Cooperative Unmanned Aerial Vehicles: Review
of Applications, Challenges, and Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
Arman Sargolzaei, Alireza Abbaspour, Kang K. Yen,
and Carl D. Crane

11 An Optimal Approach for Load-Frequency Control of Islanded
Microgrids Based on Nonlinear Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
Fatemeh Jamshidi, Mohammad Reza Salehizadeh, Fatemeh Gholami,
and Miadreza Shafie-khah

12 Photovoltaic Design for Smart Cities and Demand Forecasting
Using a Truncated Conjugate Gradient Algorithm . . . . . . . . . . . . . . . . . . . . . 277
Isa S. Qamber and Mohamed Y. Al-Hamad

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297



About the Editor

M. Hadi Amini is an Assistant Professor at the School
of Computing and Information Sciences at Florida
International University (FIU). He is also the founding
director of Sustainability, Optimization, and Learning
for InterDependent networks laboratory (solid lab). He
received his Ph.D. and M.Sc. from Carnegie Mellon
University in 2019 and 2015 respectively. He also holds
a doctoral degree in Computer Science and Technol-
ogy. Prior to that, he received M.Sc. from Tarbiat
Modares University in 2013, and B.Sc. from Sharif
University of Technology in 2011. His research interests
include distributed machine learning and optimization
algorithms, distributed intelligence, sensor networks,
interdependent networks, and cyberphysical resilience.
Application domains include energy systems, health-
care, device-free human sensing, and transportation
networks.

Prof. Amini is a life member of IEEE-Eta Kappa
Nu (IEEE-HKN), the honor society of IEEE. He orga-
nized a panel on distributed learning and novel arti-
ficial intelligence algorithms, and their application to
healthcare, robotics, energy cybersecurity, distributed
sensing, and policy issues in 2019 workshop on arti-
ficial intelligence at FIU. He also served as President
of Carnegie Mellon University Energy Science and
Innovation Club; as technical program committee of
several IEEE and ACM conferences; and as the lead
editor for a book series on “Sustainable Interdependent
Networks” since 2017. He has published more than
80 refereed journal and conference papers, and book

ix



x About the Editor

chapters. He has coauthored two books and edited three
books on various aspects of optimization and machine
learning for interdependent networks. He is the recip-
ient of the best paper award of “IEEE Conference on
Computational Science & Computational Intelligence”
in 2019, best reviewer award from four IEEE Trans-
actions, the best journal paper award in “Journal of
Modern Power Systems and Clean Energy,” and the
dean’s honorary award from the President of Sharif
University of Technology. He is dedicated to educating
next generation of computer scientists and engineers by
developing and teaching a new interdisciplinary course
entitled “Optimization Methods for Computing: Theory
and Applications” that engages students from Com-
puter Science, Electrical and Computer Engineering,
Civil Engineering, Transportation Engineering, as well
as Construction, Infrastructure & Sustainability Engi-
neering (homepage: www.hadiamini.com; lab website:
www.solidlab.network).

http://www.hadiamini.com
http://www.solidlab.network


Chapter 1
Panorama of Optimization, Control,
and Learning Algorithms for
Interdependent SWEET (Societal, Water,
Energy, Economic, and Transportation)
Networks

M. Hadi Amini

Abstract In this chapter, I first introduce a high level overview of Interdependent
SWEET Networks, including societal networks as a pivot in smart cities, water
network, energy networks (e.g., power systems and gas network), economic net-
works that facilitate financial transactions among entities in other networks, and
transportation networks. I then explain how optimization, learning, and data analytic
can improve the interdependent operation of these networks. This chapter also
provides an overview of this book and its two main parts: theoretical algorithms
and real-world applications.

Keywords Interdependent networks · Smart city · Complex networks ·
Optimization · Machine learning · Control · Data analytic

1.1 Introduction

Integration of novel technologies enables the transition from current urban environ-
ments towards smart cities [1–3]. In order to deal with the increasing complexity
of the underlying infrastructures in future smart cities, there is a need to develop
efficient optimization, learning, and control algorithms. This chapter first provides
a brief introduction of Interdependent SWEET Networks as subsets of the networks
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2 M. H. Amini

in smart cities. It then provides the abstracts of all chapters in the first volume of this
book. The key idea is studying smart cities as human-centered network of networks,
i.e., societal networks are the main coupling point among all infrastructures that are
designed to serve society, e.g., water or energy networks. Figure 1.1 represents a
general overview of interdependent SWEET networks, their mutual couplings, and
their interaction with societal networks.

One example of the interdependence among smart city infrastructures is inter-
dependent power system and electrified transportation networks [4–10]. I have
explored different aspects of the interdependence among power and transportation
networks, including physics-based models for electric vehicle energy demand [5],
a visionary perspective and algorithms for optimal operation of these two networks
[6, 9], and simultaneous integration of electric vehicle parking lots and renewable
energy resources [7, 8]. While Fig. 1.1 represents the interdependence among these
networks, there is another emerging issue in terms of decision making paradigm
change. As each of these networks has a specific objective, there might be conflict

Fig. 1.1 Societal networks as the main coupling network in interdependent SWEET networks
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Fig. 1.2 Interdependent decision making in interdependent SWEET networks

while they are formulating their decision making in terms of optimization problems.
Figure 1.2 represents an overview of interdependent decision making, where two
or more networks need to reach a consensus while finding their locally optimum
operating point. This is another area that required attention of researchers from net-
work science, data science, operation research, engineering, and computer science
to develop efficient algorithms that are capable of integrating the interdependence
among multiple networks.

This book includes two main parts:

Part I: Theoretical Algorithms for Optimization, Learning, and Data Analytics
in Interdependent Complex Networks This part covers Chaps. 2–6 of the book.

Part II: Application of Optimization, Learning, and Control in Interdependent
Complex Networks This part includes Chaps. 7–12 of the book.
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1.2 Part I: Theoretical Algorithms for Optimization,
Learning, and Data Analytics in Interdependent
Complex Networks

1.2.1 Chapter 2: Promises of Fully Distributed Optimization
for IoT-Based Smart City Infrastructures: Theory and
Applications

Modern wireless communication and sensor technologies enable ubiquitous sensing
through distributed agents in various networks. In the context, collaborative inter-
action of Internet of Things (IoT) connected end-user devices enables achieving
certain goals. In this chapter, authors aim at introducing a holistic distributed
framework that enhances operational performance of smart cities infrastructures.
To this end, they first introduce a holistic framework that enables distributed
coordination of heterogeneous agents such as PEVs. Then, they explain a fully
distributed consensus + innovations approach for coordinating among agents. Our
proposed consensus + innovations sits at the core of the proposed framework. In
a nutshell, the proposed distributed algorithm achieves a distributed solution for a
collaborative decision making problem through iterative agent-based computations
and limited inter-agent communications. This algorithm enables fully distributed
coordination of agents, plug-and-play capability, and scalability of the solution
algorithm for future network expansion.

1.2.2 Chapter 3: Evolutionary Computation, Optimization,
and Learning Algorithms for Data Science

A large number of engineering, science, and computational problems have yet to be
solved in a computationally efficient way. One of the emerging challenges is how
evolving technologies grow towards autonomy and intelligent decision making. This
leads to collection of large amounts of data from various sensing and measurement
technologies, e.g., cameras, smart phones, health sensors, smart electricity meters,
and environment sensors. Hence, it is imperative to develop efficient algorithms
for generation, analysis, classification, and illustration of data. Meanwhile, data
is structured purposefully through different representations, such as large-scale
networks and graphs. Therefore, data plays a pivotal role in technologies by
introducing several challenges: how to present, what to present, why to present.
Researchers explored various approaches to implement a comprehensive solution to
express their results in every particular domain, such that the solution enhances the
performance and minimizes cost, especially time complexity. In this chapter, authors
focus on data science as a crucial area, specifically focusing on a curse of dimen-
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sionality (CoD) which is due to the large amount of generated/sensed/collected data,
especially large sets of extracted features for a particular purpose. This motivates
researchers to think about optimization and apply nature-inspired algorithms, such
as meta-heuristic and evolutionary algorithms (EAs) to solve large-scale optimiza-
tion problems. Building on the strategies of these algorithms, researchers solve
large-scale engineering and computational problems with innovative solutions.
Although these algorithms look un-deterministic, they are robust enough to reach
an optimal solution. To that end, researchers try to run their algorithms more than
usually suggested, around 20 or 30 times, then they compute the mean of result and
report only the average of 20/30 runs’ result. This high number of runs becomes
necessary because EAs, based on their randomness initialization, converge the best
result, which would not be correct if only relying on one specific run. Certainly,
researchers do not adopt evolutionary algorithms unless they face a problem which
is suffering from placement in local optimal solution, rather than global optimal
solution. In this chapter, authors first develop a clear and formal definition of the
CoD problem, next they focus on feature extraction techniques and categories, then
they provide a general overview of meta-heuristic algorithms, its terminology, and
desirable properties of evolutionary algorithms.

1.2.3 Chapter 4: Applications of Nature-Inspired Algorithms
for Dimension Reduction: Enabling Efficient Data
Analytics

In Chap. 3, authors have explored the theoretical aspects of feature selection and
evolutionary algorithms. In this chapter, they focus on an optimization approach
for enhancing data analytic process, i.e., they propose to introduce the applications
of the nature-inspired algorithms in data science. Feature selection optimization
is hybrid approach leveraging pure feature selection techniques and evolutionary
algorithms process to optimize the selected features. Researchers try to iterate this
process until to converge to optimal feature subsets. Feature selection optimization
is non-specific domain approach which enable scientists to apply this to their data
technically.

Data scientists always attempt to find an advanced way to work with data that
are successfully conducted in a short time with high computational efficiency
and low time complexity, leading to efficient data analytics. Thus, by increasing
generated/measured/sensed data from various sources, analysis, manipulation, and
illustration of data grow exponentially. Due to the large-scale datasets, curse of
dimensionality (CoD) is one of the NP-hard problems in data science. Hence,
several efforts have been focused on leveraging evolutionary algorithms (EAs) to
address the complexity issues in large-scale data analytics problems. Dimension
reduction, together with EAs, lends itself to solve CoD and solve complex problems,
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in terms of time complexity, efficiently. In this chapter, authors first provide a brief
overview of previous studies that focused on solving CoD using feature extraction
optimization process. They also discuss practical examples of research studies
are successfully tackled some application domains, such as image processing,
sentiment analysis, network traffics/anomalies analysis, credit score analysis, and
other benchmark functions/datasets analysis.

1.2.4 Chapter 5: Feature Selection in High-Dimensional Data

Today, with the increase of data dimensions, many challenges are faced in many
contexts including machine learning, informatics, and medicine. However, reduc-
ing data dimension can be considered as a basic method in handling high-
dimensional data, because by reducing dimensions, applying many of the existing
operations on data is facilitated. Microarray data are derived from tissues and cells
considering differences in the gene, which can be useful for diagnosing disease and
tumors. Due to the large number of features (genes) and small number of samples in
microarray datasets, selecting the most salient genes is a difficult task. Among the
many techniques of machine learning, feature selection and data classification play
a very important and widespread role in enhancing human life, from detecting voice
emotion to detecting illness in the body. In medicine, an effective gene selection can
greatly enhance the process of prediction and diagnosis of cancer. After selecting
effective genes, the duty of a specific classifier is usually to discriminate healthy
people form patients that are suffering from cancer based on their expression of the
selected genes. A vast body of feature selection methods has been proposed for high-
dimensional microarray data. Traditionally, these methods fall into three categories
including filter, wrapper, and hybrid approaches. Furthermore, new techniques such
as ensemble methods have recently been developed to improve the process of feature
selection and classification. This chapter presents an overview of the most popular
feature selection methods to deal with high-dimensional data and analyze their
performance under different conditions. The chapter starts with a global overview
of the high-dimensional data and feature selection. It then reviews the state-of-the-
art methods on filter algorithms. In the next three it further describes the wrapper,
hybrid, and embedded methods and the ensemble techniques recently considered
by the researchers. It finally presents experimental results of the most significant
methods on high-dimensional data.
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1.2.5 Chapter 6: An Introduction to Advanced Machine
Learning: Meta-Learning Algorithms, Applications,
and Promises

In Chaps. 3 and 4, authors have explored the theoretical aspects of feature extraction
optimization processes for solving large-scale problems and overcoming machine
learning limitations. Majority of optimization algorithms that have been introduced
in these chapters guarantee the optimal performance of supervised learning, given
offline and discrete data, to deal with curse of dimensionality (CoD) problem. These
algorithms, however, are not tailored for solving emerging learning problems. One
of the important issues caused by online data is lack of sufficient samples per class.
Further, traditional machine learning algorithms cannot achieve accurate training
based on limited distributed data, as data has proliferated and dispersed significantly.
Machine learning employs a strict model or embedded engine to train and predict
which still fails to learn unseen classes and sufficiently use online data. In this
chapter, authors introduce these challenges elaborately. They further investigate
meta-learning (MTL) algorithm, and their application and promises to solve the
emerging problems by answering how autonomous agents can learn to learn?.

1.3 Part II: Application of Optimization, Learning,
and Control in Interdependent Complex Networks

1.3.1 Chapter 7: Predictive Analytics in Future Power Systems:
A Panorama and State-of-the-Art of Deep Learning
Applications

The challenges surrounding the optimal operation of power systems are growing
in various dimensions, due in part to increasingly distributed energy resources
and a progression towards large-scale transportation electrification. Currently, the
increasing uncertainties associated with both renewable energy generation and
demand are largely being managed by increasing operational reserves—potentially
at the cost of suboptimal economic conditions—in order to maintain the reliability
of the system. This chapter looks at the big picture role of forecasting in power
systems from generation to consumption and provides a comprehensive review of
traditional approaches for forecasting generation and load in various contexts. This
chapter then takes a deep dive into the state-of-the-art machine learning and deep
learning approaches for power systems forecasting. Furthermore, a case study of
multi-time-horizon solar irradiance forecasting using deep learning is discussed in
detail. Smart grids form the backbone of the future interdependent networks. For
addressing the challenges associated with the operations of smart grid, development
and wide adoption of machine learning and deep learning algorithms capable of
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producing better forecasting accuracies are urgently needed. Along with exploring
the implementation and benefits of these approaches, this chapter also considers the
strengths and limitations of deep learning algorithms for power systems forecasting
applications. This chapter, thus, provides a panoramic view of state-of-the-art of
predictive analytics in power systems in the context of future smart grid operations.

1.3.2 Chapter 8: Bilevel Adversary-Operator Cyberattack
Framework and Algorithms for Transmission Networks
in Smart Grids

Transmission system is one of the most important assets in secure power delivery.
Recent advancements toward automation of smart grids and application of super-
visory control and data acquisition (SCADA) systems have increased vulnerability
of power grids to cyberattacks. Cyberattacks on transmission network, specifically
the power transmission lines, are among crucial emerging challenges for the
operators. If not identified properly and in a timely fashion, they can cause cascading
failures leading to blackouts. This chapter tackles false data injection modeling
from the attacker’s perspective. It further develops an algorithm for detection
of false data injections in transmission lines. To this end, first, a bilevel mixed
integer programming problem is introduced to model the attack scenario, where
the attacker can target a transmission line in the system and inject false data in load
measurements on targeted buses in the system to overflow the targeted line. Second,
the problem is analyzed from the operator’s viewpoint and a detection algorithm
is proposed using l1 norm minimization approach to identify the bad measurement
vector in data readings. In order to evaluate the effectiveness of the proposed attack
model, case studies have been conducted on IEEE standard test system.

1.3.3 Chapter 9: Toward Operational Resilience of Smart
Energy Networks in Complex Infrastructures

Smart energy systems can mitigate electric interruption costs provoked by manifold
disruptive events via making efforts toward proper pre-disturbance preparation
and optimal post-disturbance restoration. In this context, effective contingency
management in power distribution networks calls for contemplating disparate
parameters from interconnected electric and transportation systems. This chapter,
while considering transportation issues in power networks’ field operations, presents
a navigation system for pre-positioning resources such as field crews and recon-
figuring the network to acquire a more robust configuration in advance of the
imminent catastrophe. Also, after the occurrence of the calamity, this navigator
optimally allocates the resources to recover the devastating system. So, providing
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a coordination framework for manual field operation and automation system, this
navigator takes a step from traditionally operated systems accommodation toward
smart networks. During the contingency management process, there might be
modifications in initial data due to the dynamic and time-varying condition of
electric and transportation systems. Therefore, the mentioned navigator copes with
a real-time problem of data-driven decision making in which, the decisions need
to track online changes to the input data. Decision making by the navigation
system in this environment is based on a mixed integer linear programming (MILP)
optimization which is described in this chapter in details.

1.3.4 Chapter 10: Control of Cooperative Unmanned Aerial
Vehicles: Review of Applications, Challenges, and
Algorithms

A system of cooperative unmanned aerial vehicles (UAVs) is a group of agents
interacting with each other and the surrounding environment to achieve a specific
task. In contrast with a single UAV, UAV swarms are expected to benefit efficiency,
flexibility, accuracy, robustness, and reliability. However, the provision of external
communications potentially exposes them to an additional layer of faults, failures,
uncertainties, and cyberattacks and can contribute to the propagation of error from
one component to other components in a network. Also, other challenges such as
complex nonlinear dynamic of UAVs, collision avoidance, velocity matching, and
cohesion should be addressed adequately. Main applications of cooperative UAVs
are border patrol; search and rescue; surveillance; mapping; military. Challenges
to be addressed in decision and control in cooperative systems may include the
complex nonlinear dynamic of UAVs, collision avoidance, velocity matching, and
cohesion. In this chapter, emerging topics in the field of cooperative UAVs control
and their associated practical approaches are reviewed.

1.3.5 Chapter 11: An Optimal Approach for Load-Frequency
Control of Islanded Microgrids Based on Non-linear
Model

Due to the increased environmental and economic challenges, in recent years,
renewable based distribution generation has been developed. More penetrations
from the side of consumers caused a new concept called microgrids which are
able to stand with or without connection to the bulk power system. Control
of microgrids in islanded mode is very crucial for decreasing the amplitude of
frequency deviations as well as damping speed. This chapter aims to propose an
optimal combination of FOPD and fuzzy pre-compensated FOPI approach for load-



10 M. H. Amini

frequency control of microgrids in islanded mode. The optimization parameter of
the control scheme is designed by the differential evolution (DE) algorithm which
has been improved by a fuzzy approach. In the optimization, control effort is con-
sidered as a constraint. Due to the robustness and flexibility of the proposed method,
the simulation results have been improved substantially. Robust performance of the
proposed control method is examined through sensitivity analysis.

1.3.6 Chapter 12: PV Design for Smart Cities and Demand
Forecasting Using Truncated Conjugate Gradient
Algorithm

Concerns over the world the global warming is very important issue. This means
that the climate change caused by human activities which affect the environment.
The climate change presents a serious threat to nature of the world. This might
affect in the future, unless the action taken to avoid such phenomena. In addition,
without ambitious mitigation efforts, global temperature rises this century. In the
recent years, the countries over the world have their own vision to direct it towards
the renewable energy, which is the clean one. Since it is a clean energy, it will help
to avoid the results of the global warming. One of these energies is the solar energy.
The idea of the solar energy has been raised to improve the sustainability levels
of the countries and energy sectors. The decision came to develop the countries
with the task of the renewable energy projects. The solar energy plans become
important in the recent years. In addition, the integrating variable energy resource
(VER) into electric network grid can play main resource from solar photovoltaic
(PV). The VER as new resources currently envisioned to be either wind or solar
photovoltaic (PV). These types of resources output can be highly variable and
depend on weather fluctuations such as wind speed and cloud cover. Since PV
generation is highly dependent on weather conditions. This means that the PV
generation behavior differs in different regions. In particular, the solar irradiance
is affecting the PV generation behavior. This means that the solar power forecasting
becomes an important tool for optimal economic dispatch of the electric power
network. In this chapter, the artificial intelligence technique is deployed to estimate
the calculation of the number of solar power panels required to satisfy given
estimated daily electric load for five countries. The artificial intelligence techniques
play an important role in modeling and prediction of renewable energy engineering.
The main purpose of the present chapter is the design of PV panel which helps to
reduce the emission of CO2 emission, where these panels have a connection to the
national electricity grid. This grid feed by the extra generated electricity through the
solar power plant. In this case, the power plant becomes more efficient compared
with the combined cycle plant. At the same time, the modeling and prediction in
renewable energy engineering help the engineers to predict the future estimation of
the required estimated load.
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Chapter 2
Promises of Fully Distributed
Optimization for IoT-Based Smart City
Infrastructures

M. Hadi Amini, Javad Mohammadi, and Soummya Kar

Abstract Modern wireless communication and sensor technologies enable ubiq-
uitous sensing through distributed agents in various networks. In the context,
collaborative interaction of Internet of Things (IoT) connected end-user devices
enables achieving certain goals. In this study, we aim at introducing a holistic
distributed framework that enhances operational performance of smart cities infras-
tructures. Then, we explain a fully distributed consensus + innovations approach
for coordinating among agents. Our proposed consensus + innovations sits at the
core of the proposed framework. In a nutshell, our distributed algorithm achieves
a distributed solution for a collaborative decision making problem through iterative
agent-based computations and limited inter-agent communications. This algorithm
enables fully distributed coordination of agents, plug-and-play capability, and
scalability of the solution algorithm for future network expansion.

Keywords Distributed consensus + innovations · Smart cities · Interdependent
infrastructures · Plug-and-play capability
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2.1 Introduction

2.1.1 Motivation1

In recent years, the Internet of Things (IoT) has been shaping the interaction of
heterogeneous agents, including large number of sensing devices, communication
technologies, and required services [2, 3]. Internet of Things (IoT) connected
sensing and actuation is the key enabler in transitioning urban spaces towards smart
sustainable urban environments. Smart city concept lends itself well to address
upcoming challenges of conventional cities by providing integrative management
and coordination of intelligent infrastructures [4].

A fast increase in the number of urban vehicles originates from the growing size
of smart cities, from a network-of-networks perspective, and transportation network
expansion, from an independent network-wise viewpoint. This growth imposes
several challenges on the traffic management, such as traffic congestion and air
pollution [5]. One of the pivotal players and promising solutions in the transition
towards smart mobility as a part of smart cities is electric vehicle (EV) [6]. EVs
not only can contribute to reducing the air pollution, but also can help managing
the traffic congestion more effectively as they can potentially recharge their battery
at a wider range of locations as compared with fuel-based vehicles. Further, EVs
are acting as coupling agents due to their role in various networks in a smart city
[7–9]. First, there are a subset of vehicles in transportation networks. Hence, their
mobility pattern and routing decisions affect traffic management. According to [10],
improving the quality of urban mobility (e.g., reducing the traffic congestion) is
one of the most important goals of smart cities. According to 2018 Global EV
Outlook of International Energy Agency (IEA) the total number of EVs on the
road exceeded 3 million, which is 50% expansion as compared with 2016. Under
two scenarios, referred to as IEA’s New Policies Scenario and EV30@30 Scenario,
the expected number of EVs on the road reaches 125 million and 220 million by
2030, respectively [11]. We have used the available data regarding the total number
of vehicles on the road from 1960 to 2014 to estimate the expected number of
vehicles worldwide by 2030 (for more information on the vehicles’ historical data
please refer to [12–15]). The output of our investigation shows the projected number
of vehicles on the road is 3.73 billion by 2030. Consequently, depending on the
introduced scenarios by IEA [11] and the projected values based on historical data,
3.34–5.89% of the total vehicles worldwide will consist of EVs. This considerable
penetration of EVs not only is worth investigating from the transportation network
point of view, but also has a substantial impact on the operation of power distribution
networks. Specifically, there is an increasing transition towards deploying more
fast charging stations. According to the report by National Renewable Energy
Laboratory, 2017, during the past 5 years, Tesla has installed 357 fast charging

1Some parts of this chapter are inspired by our open access article in [1].
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stations with an average of seven charging spots at each station (each fast charging
station has capacity of supporting 1–12 electric vehicles). This translates into
providing 2478 fast charging spots with a maximum charging rate of 120 kW
[16]. As of August 2018, this number has expanded to 1342 T supercharger
(fast charging) stations worldwide that translates into 11,013 charging spots [17].
From the transportation perspective, optimal management of EVs and exploiting
their flexibility to charge their batteries at different locations can contribute to
transportation network congestion management [18, 19]. From the power system
perspective, EVs can play a pivotal role in balancing the load and generation
by serving as mobile and flexible loads [20–23]. They also can lead to reducing
gasoline consumption and air pollution since they consume electricity. Required
energy to charge the EVs’ batteries can be supplied by distributed, renewable, and
less carbon-intensive energy resources [24, 25]. The spatiotemporal nature of EV
charge scheduling and EV routing problems can be exploited as an existing platform
for enabling fully distributed algorithms. This can not only facilitate peer-to-peer
(P2P) energy trading but also allow for local computations instead of centralized
extensive computing requirements [26]. Although the interdependent representation
of plug-in EV (PEV) charge scheduling problem seems straightforward and clear,
it constitutes several layers of complexity and involves multiple networks. The
ultimate goal of this paper is to provide a thorough vision towards leveraging the
interdependencies of power and transportation networks while taking advantage
of PEVs as coupling agents. We outline our motivation for developing distributed
solutions and enabling plug-and-play capability for PEV charge scheduling from
the IoT lens in three major stages as shown in [1]:

1. From independently operating the networks to fully distributed holistic coordi-
nation of interdependent networks.

2. From the interdependent networks towards the Internet-of-Things framework
with heterogeneous agents.

3. From the Internet-of-Things framework to smart power grids and electrified
transportation networks.

2.1.2 Related Works

In the literature, power systems and electrified transportation networks referred to
as coupled, interdependent, joint, and interconnected networks alternatively. We
review the literature in a top-down manner. We start from providing a big picture
of a notable example of interdependent networks, smart cities.We then review
the literature on decentralized/distributed/hierarchical approaches for coordination
of plug-in electric vehicles and optimal power flow problem as key players in
interdependent power systems and transportation networks.

Transportation electrification has been investigated in the literature mostly
from the viewpoint of integrating EVs into smart power grids. EVs can facilitate
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integration of renewable resources by serving as spatiotemporally flexible demands
[20, 27–29]. In [27], simultaneous integration of EV charging stations and renewable
resources is leveraged to reduce the loss in power distribution systems. According
to [28], coordinated operation of EV charging stations and vehicle-to-grid (V2G)
technology facilitate the high penetration of renewable resources. Further, in [29] a
decentralized method is proposed for joint planning of EV charging stations and PV
generation units.

EVs are not only capable of increasing demand flexibility, but also can
inject power in terms of V2G technologies [30, 31]. The required infrastructure
(e.g., charging stations) is the key to enabling transportation electrification. In [32]
smart charging algorithms for EV charge scheduling have been reviewed. In [33], a
smart EV charging framework is introduced to optimize load demand from the view
point of power grid as well as meeting the requirements of EV drivers. Further in
[34], the required infrastructure of smart charging is introduced, that consists of a
mobile application, an optimal charge scheduling method, V2G operation algorithm,
and a remote information exchange hardware (e.g., radio-frequency identification).
One of the major advantages of our proposed framework as compared with the
literature is to upgrade the current assets to enhance their operation by taking
their interdependent nature into account; i.e., we do not enforce any network to
add new entities for the sake of implementing our distributed approach. Alizadeh
et al. [35] introduced charging network operator to address the coordination of
multiple charging stations. From the traffic management perspective, some of the
previous works developed frameworks that take into account traffic constraints
while determining the optimal charge schedule of EVs [19, 36–48]. Traffic flow
information is used to develop a supervised predictive energy management approach
for plug-in hybrid EVs in [36]. Mobile charging vehicles are introduced in [37] to
provide spatially flexible charging stations to EVs. In order to determine the optimal
location of multiple types of charging stations (parking lots and mobile charging
vehicles), Cui et al. [37] proposed to solve optimal charging station location and
EV routing simultaneously; i.e., the proposed formulation minimizes the total
traveled distance while satisfying the charging stations’ constraints, traffic flow
constraints, time constraints, and electricity constraints. Interdependent nature of
electric power grids and electrified transportation networks have been modeled in
terms of a novel routing strategy in [19], referred to as Charging Station Strategy-
Vehicle Powertrain Connected Routing Optimization (CSS-VPCRO). In order to
capture the coupling between these two networks, optimal power flow problem and
CSS-VPCRO are conducted iteratively. At each iteration, EVs find their optimal
route based on their desired charge demand, traffic conditions, and electricity price.
They broadcast their expected charging demand as well as optimal charging station
location with power system operator. Power system operator updates price signals
based on the updated electricity demand and share these signals with EV routing
database. EVs update their routing decision accordingly and this closes the loop in
CSS-VPCRO [19]. A hybrid dynamic system assessment framework is introduced
in [38] for multi-modal transportation electrification. This framework considered
EVs as the coupling point of transportation system, electric power grid, and their
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corresponding information infrastructures which formed a transportation-electricity
nexus. Vehicular energy networks (VEN) concept is recently introduced by Lam
et al. [39, 40]. VEN covers a wide range of systems and decision parameters
from both power and transportation networks, including EVs, renewable energy,
road network, vehicular traffic, energy path, charging cycles, vehicular ad hoc
networks, and wireless power transfer [39]. A hybrid dynamic model is proposed
in [49] for transportation electrification that also includes next generation traffic
simulation. A hierarchical control architecture is developed in [42] that utilized
traffic light status, received through vehicle to infrastructure (V2I) communication
platform, and neighboring vehicles’ status broadcast via vehicle-to-vehicle (V2V)
communication platform for optimal energy management of hybrid EVs. In [50],
a thorough investigation is conducted to study open source simulation tools for
transportation electrification. Alizadeh et al. tackled these coupled networks from a
market design perspective [46]. To this end, two non-profit entities, the independent
power system operator and independent transportation system operator collaborate
to determine jointly optimal price signals, charging station strategies, and road
tolls [46]. Alizadeh et al. further investigate the routing problem of an EV driver
considering its charging station choices, dynamic traffic conditions, and locational
electricity price values [47].

2.1.3 Contribution

We provide the list of contributions of our proposed framework, as well as advan-
tages of using fully distributed algorithm for enabling plug-and-play capability
in two major categories: application-wise and theoretical contributions. Note that
this study has two major contributions as compared with [51]: (1) we introduce a
holistic framework to identify interdependence among power systems and electrified
transportation networks, and the required information exchange to improve the
optimal operation of these networks, (2) we investigate plug-and-play capability
of our distributed solution, evaluate the effect of mobility on the feasibility of
the proposed cooperative charging algorithm, and improve the proposed model by
taking into account the power constraint enforced by power system, i.e., we model
both mobility patterns from transportation network and power constraint from power
system perspective.

Application-Wise Advantages: Making the Case for Distributed Solution Based on
Real-World Scenarios and Requirements

1. Our proposed distributed framework allows for optimizing the internal goals of
each network operator while taking into account the exogenous information from
other influential networks.

2. In the proposed framework, PEV charging demand can be used as mobile
dispatchable load to reduce the congestion in power distribution networks.
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3. Previous studies on coupled power and transportation networks [19, 38, 52–54]
have mainly developed centralized approaches which allow them to solve the
entire problem in a synchronized fashion. Although this reduces the complexity
of their frameworks and corresponding solutions, there is a missing piece in this
puzzle: different agents at each network have their operational specifications;
i.e., it is more realistic to solve the problem in distributed fashion. This allows
for local decision making of heterogeneous agents from various networks.

Algorithm-Wise Advantages

1. Distributed algorithms enable plug-and-play feature in the expanding networks
with emerging elements.

2. Computational complexity and run-time are reduced by decomposing a large-
scale problem into several small problems. Further, we use a projection operator
to enforce the power constraint at each iteration. This also reduces the complexity
of our proposed update rule at each iteration.

3. The robustness to communication failure between the agents is enhanced by
ensuring a feasible solution at each iteration.

2.1.4 Organization

The rest of this chapter is structured as follows: Sect. 2.2 provides more details
of the proposed framework by elaborately explaining different interdependent
layers and their interaction. Section 2.4 presents a general formulation and the
corresponding optimally conditions. Section 2.5 is devoted to the proposed con-
sensus + innovations distributed algorithm for the general optimization problem.
Conclusions are provided in Sect. 2.6. Detailed convergence analysis of the
distributed algorithm for general optimization problem is provided in Appendix 1.

2.2 A Novel Holistic Framework for Interdependent
Operation of Power Systems and Electrified
Transportation networks

The proposed holistic distributed framework covers three networks with four major
layers. Note that these networks are considered for the sake of representation the
growing interdependencies.

• Power distribution network operated by distribution network operator (DNO).
• Charging coordination network operated by PEV aggregators who are managing

charging stations.
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• Transportation network operated by transportation network operator (TNO) that
includes two sub-networks:

– Traffic management systems. [5]
– Parking management systems.

In the rest of this article, we elaborately define the objectives and constraints of PEV
charge scheduling problem. Then, we formulate the general optimization problem,
to be justified based on objective and constraints of each agent at any arbitrary
network. We further provide a consensus + innovations-based distributed algorithm
with performance guarantees to solve the optimization problem of various agents in
a fully distributed fashion.

Consensus + innovations methods have been widely applied to emerging appli-
cations, providing a smorgasbord of distributed solutions for networks, such as
distributed energy management in smart power grids [55–61], secured distributed
inference for the Internet-of-Things (IoT) [62], cooperation and sensing in net-
worked systems [63], cooperative charging of electric vehicles [64], robust eco-
nomic dispatch in power systems [65], and multi-agent coordination of microgrids
[66].

Although we have listed motivations for distributed optimization in inter-
dependent networks, we argue that most of the previous works on distributed
optimization for a subset of layers/agents in the interdependent networks could be
efficiently conducted using available centralized solutions. In fact, in some cases
centralized solution is providing acceptable computational efficiency. To this end,
we have categorized the agents/elements of interdependent power and transportation
networks into four groups. Our ultimate goal is to motivate application of centralized
solutions for some subsets, and distributed solutions to the other subsets. Ultimately,
we conclude that a holistic framework, that covers all these four aspects, needs to
be operated in a distributed fashion.

Previous works focused on deploying cooperative and non-cooperative solutions
to solve charge coordination of PEVs. To this end, several approaches have
been proposed, including [67], fully distributed consensus + innovations algorithm
[51, 68], consensus-based distributed charging control [69], distributed consensus-
based charge scheduling [70], hierarchical charge scheduling using Danzig–Wolfe
decomposition [71], the alternating direction method of multipliers [72, 73], mean
field game theory [74, 75].

Some studies considered the coupling among these networks, such as [1,
15, 34, 45, 49, 51]. This class, however, deployed centralized solutions which
increases the complexity of the model from optimization and computational burden
perspectives, as well as policy making perspective. Such models have to take the
decision variables and constraints of all stakeholders from both networks in a single
model. This raises two major challenges: (1) increasing the number of decision
variables and constraint directly enlarges the size of optimization problems which
makes it hard-to-solve as compared with the independent optimization problems
of each network; (2) complicating the operators’ roles at each network due to
combining various objectives from different stakeholders and various networks, i.e.,
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the questions of Who is solving this large-scale optimization problem? and Who is
gaining benefit from solving this problem? will be more crucial after merging the
optimization problems of multiple stakeholders from multiple networks, including
but not limited to power system operator, transportation network operator, and EV
drivers.

Our Solution: Holistic Agent-Based Distributed Optimization of Interdependent
Networks Through the IoT Lens

Our framework provides a solution that takes into account the increasing
intelligence and emerging widespread M2M communications enabled by 5G tech-
nology. We model each element at any network as a heterogeneous agent with
communication capabilities. Depending on their goals and decision making criteria,
a cluster of agents may choose to cooperate with each other to reach a consensus
towards a common goal. This is the pivotal contribution of our framework that
enables spatiotemporal plug-and-play capability, i.e., at any time and at any location,
an agent can decide which other agents and entities to communicate/cooperate with.
In our knowledge, this study is the first of its kind that provides a holistic model
for interdependent power and electrified transportation networks while enabling
distributed decision making. For instance, a PEV driver plans to find the optimal
route from current location, loc1 to the destination loc2. This trip lasts from time
t1 to t2 and the battery state-of-charge of PEV reduces from SOC1 to SOC2. The
PEV driver may decide to charge at different location and different time to optimize
her/his objective leveraging the spatiotemporal flexibility.

2.3 Definition of Agents and Their Corresponding Features

In this section we identify various agents in the proposed framework, their objectives
and constraints, and the time-scale at which each agent is operating. To this
end we investigate the agents in three major categories: power system-specific
agents, transportation network-specific agents, and coupling agents. These agents
can count as one of the following categories: passive such as traffic lights, active
decision maker such as EV charging station aggregators, and active sensor such as
EV charging stations, based on their functionality. A passive agent only receives
commands, which can be basically the output decisions of active agents based on
the local optimization at each iteration, and change their state based on the received
command, e.g., traffic lights are basically passive agents that are responsible to
switch between two status (red and green) to control the traffic. Another set of
passive agents are the ones who are responsible for recording data and commu-
nicating raw data to the intelligent agents, such as conventional traffic cameras, here
referred to as passive traffic cameras. Active decision maker agents are the ones
who not only receive or fetch the data from other sources and agents, but also use
the received data to solve an optimization problem and send the proper command
signals to other agents. Sensor agents are the agents that are collecting/receiving
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Table 2.1 Agents and their features

Feature

Agent Active/passive Physical/virtual Power/transportation/coupling

Electric vehicle (EV) Active Physical Coupling

EV charging station Active Physical Coupling

Demand response aggregator Active Virtual Power

Distributed energy resources Active Physical Power

Transformer agents Active Physical Power

Distribution system operator agent Active Physical Power

Intelligent traffic cameras Active Physical Transportation

Passive traffic cameras Passive Physical Transportation

Road side units Passive Physical Transportation

Traffic lights Passive Physical Transportation

Toll road pricing agent Active Virtual Transportation

data at one layer, and communicate it to other agents at another layer. These agents
help us using the current infrastructures with minimum hardware requirements and
communication platform. EV charging stations are consummate examples of sensor
agents that indirectly enable communication between power distribution network
layer and charge coordination layer. Table 2.1 summarized agents from various
networks and their features.

2.3.1 Power System-Specific Agents

1. Distribution System Operator: This agent is responsible for maintaining reliable
operation of power distribution networks by optimizing the available resources
and satisfying the physical constraints of the grid. It mainly manages the power
delivery from transmission networks to the customers.

2. Demand Response Aggregator: This agent offers demand response services with
two main objectives: reducing the electric load demand of the customers and
maximizing its benefit by saving energy. As a commercial entity, it offers the load
reductions to the wholesale energy market. The interaction of demand response
aggregator and utilities can be modeled as a non-cooperative game (see for
example [92]).

3. Distributed Energy Resources (DERs) Agent: This agent potentially covers a
wide range of technologies and resources, including energy storage units and
renewable energy resources (e.g., PV panels). Its main task is to optimize the
internal operation of the corresponding resource and to maximize the benefit of
the DER owner.

4. Transformer Agents: This agent is responsible for communicating the trans-
former’s situation to other entities. In the intelligent distribution system, a smart
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transformer agent at the main substation of each feeder is capable of conducting
optimal power flow with respect to the transformer loading constraint as well as
the expected load demand.

2.3.2 Transportation Network-Specific Agents

1. Intelligent Traffic Cameras: These cameras are capable of monitoring the
vehicles, local decision making, sharing traffic situation with other agents, and
broadcasting command signals to traffic lights to manage congestion.

2. Passive Traffic Cameras: These cameras are only capable of monitoring the
traffic situation and sharing it with decision making entities. The main difference
of these cameras and intelligent traffic cameras is lack of decision making
capability.

3. Road Side Units: Road side units (RSUs) are equipped with communication
capability. They communicate with on-board units (installed on the vehicles) to
monitor traffic situation, such as location and speed of the vehicles.

4. Traffic Lights: Traffic lights are mainly scheduled to follow a certain schedule.
They are equipped with a remotely controllable device which can be managed
through the control signals from active/decision maker agents, such as intelligent
traffic cameras.

5. Toll Road Pricing Agents.

2.3.3 Coupling Agents

These agents interact with both power system-specific and transportation network-
specific agents.

1. Electric vehicle (EV): EVs are one of the major coupling agents. The coupling
is caused by their optimal routing decisions that affect the congestion in trans-
portation networks, as well as their spatiotemporal charging decisions that affect
both the load demand in power systems and traffic condition of transportation
networks. Potential objectives, internal constraints, and external limitation of
EVs are explained in the following paragraph.

Electric vehicles goals may include: (1) finding optimal route, (2) reducing
charging cost, and (3) leveraging the flexibility of their load demand in terms of
time and location (spatiotemporal flexibility) to reduce energy cost. Constraints
of the EVs can be categorized into: (1) internal constraints which are enforced
by the driver or technical specifications of the EV, such as charging rate limit,
minimum state-of-charge, time limits to arrive destination, and duration of stay at
charging station; (2) external constraints which are mainly caused by exogenous
inputs from other agents, such as limits enforced by power network agents
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(e.g., hourly demand limit and locational marginal price variations due to line
congestion), and limits enforced by transportation network agents (e.g., traffic
conditions and traffic congestion pricing).

Goals

• Finding their optimal route
• Reducing their charging cost
• Leverage the flexibility of their load demand in terms of time and location

(spatiotemporal flexibility) to reduce energy cost
Constraints

Internal Constraints

• Charging rate
• Minimum state-of-charge
• Time limits to arrive destination
• Duration of stay at charging station

External Constraints

• Limits enforced by power network agents (e.g., hourly demand limit and
locational marginal price variations due to line congestion)

• Limits enforced by transportation network agents (e.g., traffic conditions and
traffic congestion pricing)

2. Charging station agent2 : Charging stations play a pivotal role in modeling
the interdependency among power systems and transportation networks. First,

2There are various types of charging stations that can enable communication. For instance, Eaton
offers the following four models with different functionality:

A series: Single phase, no communication, proper for residential uncontrolled applications, up
to 7.4 kW charging capacity.

X series: Single/three phase, communication and building management system integration
capability, proper for controlled charging at the residential level, up to 7.4 kW charging capacity

S series: Single/three phase, intelligent load management and communication capability; offers
the features of X series as well as enabling UDP (the standard protocol for integrating a device into
other operating systems, such as a smart home system) and OCPP (the standard protocol that is
used if several charging stations are networked together), two options for the charging capacity:
7.4 kW or 22 kW.

xChargeIn M series: integrator (master) for networking a number of S series equipped with
online communication

The M series serves as a master device in online or offline charging systems and manages the
connected vehicles via individual charging stations of the S series. A charging system can consist
of one M series master station and up to 15 S series charging stations.

Source: http://www.eaton.eu/Europe/Electrical/ProductsServices/Residential/xChargeIn/
index.htm.

http://www.eaton.eu/Europe/Electrical/ProductsServices/Residential/xChargeIn/index.htm
http://www.eaton.eu/Europe/Electrical/ProductsServices/Residential/xChargeIn/index.htm
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they communicate with power distribution system operator, demand response
aggregator, and other entities to optimize their cost of energy. Second, they
try to find the optimal strategy to attract more EVs. After the EVs plugged in
their batteries, the charging station agent needs to make sure to satisfy all EVs
energy needs while maximizing its own benefit. Note that the charging station
agent can also participate in demand side management programs leveraging its
flexibility based on the plugged in EVs, i.e., the optimal decision to charge
or not to charge EVs at each timestep can vary based on the market signals,
load demand, and availability of other distributed energy resources. Potential
objectives, internal constraints, and external limitation of charging station agents
are explained below.

EV charging station goals may include: (1) maximizing their profit by offering
optimal price signals to EV agents, (2) meeting all EVs’ charging demand
expectations, (3) leveraging the flexibility of EV load demand to increase their
profit, and (4) providing ancillary services/demand side management to power
systems. Similar to EV agent, charging station agent may also enforce internal
constraints caused by the decision making parameters of the aggregator or
technical specification, such as maximum capacity in terms of charging spots
and maximum capacity in terms of total hourly power demand. There are also
externally constraints that are enforced by exogenous agents, such as limits
enforced by power network agents (e.g., line congestion limits) as well as limits
of transportation network agents (e.g., traffic conditions that affect the time for
EVs to arrive charging stations).

Goals

• Maximizing their profit by offering optimal price signals to EV agents
• Meeting all EVs’ charging demand expectations
• Leveraging the flexibility of EV load demand to increase their profit
• Providing ancillary services/demand side management to power systems

Constraints

Internal Constraints

• Maximum capacity in terms of charging spots
• Maximum capacity in terms of total hourly power demand

External Constraints

• Limits enforced by power network agents (e.g., line congestion limits)
• Limits of transportation network agents (e.g., traffic conditions that affect the

time for EVs to arrive charging stations)
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2.4 General Optimization Problem

2.4.1 Problem Formulation

Formulate the centralized optimization problem, shown in (2.1). Let �agents, �ineq ,
and �eq denote sets of all agents, inequality constraints, and equality constraint,
respectively.

minimize
xk

∑

k∈�agents

fk(xk) (2.1a)

s.t. gj (x) ≤ 0; (: μj ) j ∈ �ineq (2.1b)

hj (x) = 0; (: λj ) j ∈ �eq (2.1c)

where fk(·) and xk denote the objective function and variable(s) of agent k in the
network, respectively. Depending on the problem definition, agent can represent a
wide range of physical or virtual entities, including power distribution network bus,
microgrid operator, demand response aggregator, and charging station aggregator.
Functions gj (·) and hj (·) denote corresponding functions of inequality and equality
constraints, respectively.

2.4.2 Optimality Conditions

Formulate the Lagrangian for the optimization problem in (2.1), as shown in (2.2).

L =
∑

k∈�agents

fk(xk) +
∑

j∈�ineq

μjgj (x) +
∑

j∈�eq

λjhj (x).

Derive the first-order optimality conditions, as provided in (2.2).

⎧
⎪⎪⎨

⎪⎪⎩

∂L
∂xk

= 0, ∀k ∈ �agents

∂L
∂μj

≤ 0, ∀j ∈ �ineq

∂L
∂λj

= 0, ∀j ∈ �eq.

(2.2)
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2.5 Consensus + Innovations Based Distributed Algorithm

2.5.1 Distributed Decision Making: General Distributed
Update Rule

Distributed iterative approach for a generic optimization problem is followed to
solve the first-order optimality conditions in (2.2). The iterative model only needs
information exchange between physically connected agents at each iteration. Let
�i denote the neighboring set of agent i. Let yi(k) = [xi(k), μj (k), λj (k)], j ∈ �i

denote the variable associated with agent i at iteration k. The general format of the
local updates which is performed by all agents at each iteration is shown in (2.3).

yi(k + 1) = P[yi(k) + ρi si(yj (k))]F , j ∈ �i (2.3)

where si(·) reflects the first order optimality constraints related to agent i, and ρi

denotes the vector of tuning parameters. Further, P is the projection operator to
project xi onto its determined feasible space, denoted by F .

Note that, si(yj (k)) only depends on the iterates yj (k) of neighboring nodes j

in the physical neighborhood of i. Hence, a distributed implementation of (2.3) is
possible.

The projection operator settings, tuning parameters, and corresponding con-
straints vary based on the network objectives, constraints, and decision making
variables. We later elaborate on each network’s optimization problem as well as
network-oriented distributed algorithm that is tailored for each network.

2.5.2 Agent-Based Distributed Algorithm

Here we present a more detailed formulation of consensus + innovation based
distributed algorithm at the intra-network layer. Let inter-agent communication
graph to be connected.

Agent i updates its local variables, i.e., variables that are directly corresponding
to this agent, i.e., yi . Let k represent the iteration counter. The corresponding
variables of agent i are updated using (2.4).

yi(k + 1) = P[yi(k) + ρC
i

neighborhood consensus︷ ︸︸ ︷
si(yj (k)) (2.4)

+ρI
i si(yi(k))︸ ︷︷ ︸

local innovation

]F , j ∈ �i

where ρC
i denotes positive tuning parameters corresponding to consensus among

agent i and its neighboring agents j ∈ ωi . Further, ρI
i is the tuning parameter for the
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local innovation term. In (2.4), the first and second terms represent the neighborhood
consensus and local innovation, respectively.

Consequently, the update rules for all the variables at the intra-network optimiza-
tion of network N in a dense form are provided by (2.5)

XN (k + 1) = X̃N (k) − AN X̃N (k) + CN

X̃N (k + 1) = P [XN (k + 1)]F (2.5)

where XN is the vector of the stacked variables, i.e., yi , for all agents, and P is the
projection operator which ensures that the Lagrange multipliers for the inequality
constraints stay positive and the box constrained variables stay within the given
bound. Further, F represents the feasible space spanned by positiveness and box
constraints. Hence, X̃ is the vector of the stacked projected variables.

The detailed convergence analysis of the proposed distributed algorithm is
provided in Appendix 1.

2.6 Conclusions

We develop a holistic agent-based distributed algorithm and framework for the
IoT-based interdependent networks, with a major focus on interdependent power
systems and electrified transportation networks. Our solution enables distributed
coordination of agents in the network-of-networks, such as smart city infrastruc-
tures. To this end, we propose a fully distributed consensus + innovations approach.
Our distributed iterative algorithm achieves a distributed solution of the decision
making for each agent through local computations and limited communication
with other neighboring agents that are influential in that specific decision. For
instance, the optimal routing decision of a PEV involves a different set of agents
as compared with the optimal charging strategy of the same PEV. The exogenous
information from an external network/agent can affect internal operation of the
other agents. For instance, having some information about traffic congestion at
the transportation networks changes the decision of electric vehicles (EVs) to
charge their battery at another location. Our approach constitutes solving an iterative
problem, which utilizes communication at the smart city layer, as a network of
different infrastructures that enables fully distributed coordination of agents, plug-
and-play capability, and scalability of the solution algorithm for future expansion of
each network.
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Appendix 1: Convergence Analysis3

This section presents a formal proof that any limit point of the proposed algorithm
in (2.5) is the optimal solution of the optimization problem in (2.1). Moreover, it
introduces a sufficient condition for the convergence of the proposed algorithm.

In the following Theorem 2.1, we first show that a fixed point of the proposed
iterative scheme necessarily satisfies the optimality conditions (2.2) of the original
optimization problem.

Theorem 2.1 Let X∗ be a fixed point of the proposed algorithm defined by (2.5).
Then, X� satisfies all of the optimality conditions of the original problem (2.2).

Proof To prove this theorem, we verify the claim that X� fulfills all of the first order
optimality conditions. Note that X� is the vector of stacked variables.

Claim 1 X� fulfills the optimality conditions which enforce the positivity of the
Lagrangian multipliers associated with the inequality constraints, i.e., μ�

j ≥ 0.

Verification by contradiction: Let us assume on the contrary that in X� one of
the multiplier variables, say μ�

j , is negative. Now, note that, evaluating (2.4) at X�

results in a non-negative value for μj due to the projection of μj into the set of
positive reals. This contradicts the fact that X∗ is a fixed point of (2.2).

Claim 2 X� satisfies the optimality conditions associated with the inequality
constraints, ∂L

∂μj
≤ 0.

Verification by contradiction: Let us assume that X� does not fulfill ∂L
∂μj

≤ 0 for

all j , i.e., there exists j such that ∂L
∂μj

(X�) > 0. This implies that the value of the

innovation term in (2.4) is negative when evaluated at X�. Also, note that, based on
the claim 1, μ�

j ≥ 0. Therefore, evaluating (2.4) for the inequality constraints at X�

results in a value greater than μ�
j which contradicts the fact that X∗ is a fixed point

of (2.4). Similar arguments can be used to prove that X� fulfills the KKT conditions
corresponding to the equality constraints, ∂L

∂λj
= 0, ∀j ∈ �eq .

Claim 3 X� satisfies the optimality conditions associated with the complementary
slackness condition, i.e., for all j ∈ �ineq , we have μ�

j · (gj (x
�)
) = 0.

Verification by contradiction: Let us assume on the contrary that X∗ does not
satisfy the above complementary slackness condition, i.e., there exists a value for j

such that both μ�
j and gj (x

�) are non-zero. Hence, according to the claims 1 and 2,
we must have, μ�

j > 0 and gj (x
�) < 0, respectively. Now, note that evaluating (2.4)

at X�, results in a value less than μ�
j , which clearly contradicts the fact that X∗ is a

fixed point of (2.4).

3This appendix is inspired by our work in [1].
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We now discuss the consequences of Theorem 2.1. To this end, note that, since
the proposed iterative scheme (2.5) involves continuous transformations of the
updates, it follows that, if (2.5) converges, the limit point is necessarily a fixed point
of the iterative mapping. Since, by Theorem 2.1, any fixed point of (2.5) solves the
first order optimality conditions (2.2), we may conclude that, if (2.5) converges,
it necessarily converges to a solution of the first order optimality conditions (2.2).
This immediately leads to the following optimality of limit points of the proposed
scheme.

Theorem 2.2 Assume that the original optimization problem (2.1) has a feasible
solution that lies in the interior of the corresponding constraint set. Further, suppose
the proposed algorithm introduced by (2.5) converges to a point X�. Then X∗
constitutes an optimal solution of the original problem (2.1).

Proof By Theorem 2.1 and the above remarks, X� satisfies the optimality con-
ditions (2.2). Since the original optimization problem is a convex problem and,
by assumption, is strictly feasible, it follows that the primal variables (x�

i ) in X∗
constitute an optimal solution to the original problem (2.1).

Consequently, we note that Theorems 2.1 and 2.2 guarantee that any fixed point
of the proposed distributed algorithm constitutes an optimal solution to the original
problem, and, if the scheme achieves convergence, the limit point is necessarily
an optimal solution of the original problem. Finally, we note, that whether the
scheme converges or not depends on several design factors, in particular, the tuning
parameters ρC

i and ρI
i .
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Chapter 3
Evolutionary Computation,
Optimization, and Learning Algorithms
for Data Science

Farid Ghareh Mohammadi, M. Hadi Amini, and Hamid R. Arabnia

Abstract A large number of engineering, science, and computational problems
have yet to be solved in a computationally efficient way. One of the emerging
challenges is how evolving technologies grow towards autonomy and intelligent
decision making. This leads to collection of large amounts of data from various
sensing and measurement technologies, e.g., cameras, smart phones, health sensors,
smart electricity meters, and environment sensors. Hence, it is imperative to
develop efficient algorithms for generation, analysis, classification, and illustration
of data. Meanwhile, data is structured purposefully through different representa-
tions, such as large-scale networks and graphs. Therefore, data plays a pivotal
role in technologies by introducing several challenges: how to present, what to
present, why to present. Researchers explored various approaches to implement a
comprehensive solution to express their results in every particular domain, such
that the solution enhances the performance and minimizes cost, especially time
complexity. In this chapter, we focus on data science as a crucial area, specifically
focusing on a curse of dimensionality (CoD) which is due to the large amount
of generated/sensed/collected data, especially large sets of extracted features for a
particular purpose. This motivates researchers to think about optimization and apply
nature-inspired algorithms, such as meta-heuristic and evolutionary algorithms
(EAs) to solve large-scale optimization problems. Building on the strategies of these
algorithms, researchers solve large-scale engineering and computational problems
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with innovative solutions. Although these algorithms look un-deterministic, they
are robust enough to reach an optimal solution. To that end, researchers try to run
their algorithms more than usually suggested, around 20 or 30 times, then they
compute the mean of result and report only the average of 20/30 runs’ result. This
high number of runs becomes necessary because EAs, based on their randomness
initialization, converge the best result, which would not be correct if only relying
on one specific run. Certainly, researchers do not adopt evolutionary algorithms
unless they face a problem which is suffering from placement in local optimal
solution, rather than global optimal solution. In this chapter, we first develop a
clear and formal definition of the CoD problem, next we focus on feature extraction
techniques and categories, then we provide a general overview of meta-heuristic
algorithms, its terminology, and desirable properties of evolutionary algorithms.

Keywords Evolutionary algorithms · Dimension reduction (auto-encoder) · Data
science · Heuristic optimization · Curse of dimensionality (CoD) · Supervised
learning · Data analytic · Feature extraction · Optimal feature selection · Big
data

3.1 Introduction

3.1.1 Overview

A large number of engineering, science, and computational problems have yet
to be solved in a more computationally efficient way. One of the emerging
challenges is the evolving technologies and how they enhance towards auton-
omy. This leads to collection of large amount of data from various sensing and
measurement technologies, such as cameras, smart phones, health sensors, and
environment sensors. Hence, generation, manipulation, and illustration of data
grow significantly. Meanwhile, data is structured purposefully through different
representations, such as large-scale networks and graphs. Therefore, data plays a
pivotal role in technologies by introducing several challenges: how to present, what
to present, why to present. Researchers explored various approaches to implement
a comprehensive solution to express their results in every particular domain, such
that the solution enhances the performance and minimizes cost, especially time
complexity. In this chapter, we focus on data science as a crucial area; specifically
focusing on curse of dimensionality (CoD) which is due to the large amount of
generated/sensed/collected data, especially large sets of extracted features for a
particular purpose. This motivates researchers to think about optimization and apply
nature-inspired algorithms, such as meta-heuristic and evolutionary algorithms
(EAs) to solve large-scale optimization problems. Building on the strategies of these
algorithms, researchers solve large-scale engineering and computational problems
with innovative solutions. Although these algorithms look un-deterministic, they
are robust enough to reach an optimal solution. To that end, researchers try to run
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their algorithms more than usually suggested, around 20 or 30 times, then they
compute the mean of result and report only the average of 20/30 runs’ result. This
high number of runs becomes necessary because EAs, based on their randomness
initialization, converge the best result, which would not be correct if only relying
on one specific run. Certainly, researchers do not adopt evolutionary algorithms
unless they face a problem which is suffering from placement in local optimal
solution, rather than global optimal solution. In this chapter, we first develop a
clear and formal definition of the CoD problem, next we focus on feature extraction
techniques and categories, then we provide a general overview of meta-heuristic
algorithms, its terminology, and desirable properties of evolutionary algorithms.

3.1.2 Motivation

In the last twenty years, computer usage has proliferated significantly, and it is
most likely that you could find technologies and computers almost anywhere you
want to work and live. A large amount of data is being generated, extracted, and
presented through a wide variety of domains, such as business, finance, medicine,
social medias, multimedia, all kinds of networks, and many other sources due to
this spectacular growth. This increasingly large amount of data is often referred
to as big data. In addition, distributed systems and networks are not performing
as well as they did as in the past [1]. Hence, it is imperative to leverage new
approaches which optimize and learn to use these devices. Further, distributed
optimization and learning algorithms lend themselves as promising solutions to deal
with information privacy, scalability, as well as (near) real-time decision making
capability; applications of such algorithms include optimal operation of smart city
infrastructures, interdependent power and transportation networks [2–4], artificial
intelligence for energy system resilience [5], energy management and optimal power
flow problem [6, 7], and learning at the IoT device level [8]. Moreover, big data
also requires that scientists propose new methods to analyze the data. Obtaining
a proper result, thus, requires an unmanageable amount of time and resources.
This problem is known as the curse of dimensionality (CoD) which is discussed
in the next sub-section in detail. Ghareh Mohammadi and Arabnia have discussed
application of evolutionary algorithms on images, specifically focused on image
steganalysis [9]. But, in this study we expanded our investigation and consider large-
scale engineering and science problems carefully.

In machine learning, the majority of problems require a fitness function which
optimizes a gradient value to lead a global optimum accurately [10]. This function
is also known as an objective function and may have different structures for
different problems. In machine learning, we work with three categories of data:
one supervised, one semi-supervised, and one unsupervised. These categories also
have different learning processes based on their types. Supervised datasets are the
most common dataset and are characterized by having a ground truth with which to
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compare results. Supervised learning algorithms normally take a supervised dataset
and then divide them into two parts: train and test. After that, one of the supervised
learning algorithms learns from train data, predicts test data, and compares the
result with the ground truth to ascertain the accuracy of the algorithm performance.
The most common types of supervised learning algorithms are classification and
regression. It is noteworthy that regression has different algorithms which mainly
focus on time series problems. The only exception is that regression algorithms have
a particular algorithm, logistic regression, which is considered as a classification,
rather than regression, algorithm [11]. In this chapter, we focus on supervised
datasets and supervised learning algorithms.

On the other hand, unsupervised learning algorithms follow the process of
using unsupervised datasets which do not have any ground truth to compare their
result, which makes classifying and evaluating the performance of the algorithm
problematic. The absence of a ground truth is increasingly common through all
domains such as web-based, engineering, etc. data and it is necessary to address
this problem. Unsupervised learning takes more steps to analyze features and
find the most relevant features with the best possible positive relation. Clustering
and representation learning (RL) algorithms are the most common algorithms in
unsupervised learning category. K-means is an important clustering algorithm that
attempts to find k clusters located close to each other. The main problem of k-means
is its bias-k towards the problem. In other words, k-means needs to have k number
set in advance before running the algorithms. RL also works for supervised datasets,
although its nature behaves in an independent way per task [12].

Semi-supervised datasets fall somewhere between supervised and unsupervised
datasets in terms of characteristics. This means that semi-supervised learning
algorithms take a dataset which provides ground truth value for some instances but
not for others. Expectation maximization (EM) is the most important and robust
technique for working with these datasets [13]. Moreover, EM is also able to handle
missing values of a given dataset properly. Real data always involves missing values,
and researchers struggle with this problem.

Feature extractor (FE) which is discussed in details in the next section is almost
a universal technique which is capable of applying on these three types of problems
to aim for dimension reduction. Meanwhile, the majority of problems and dataset
have been so far used are supervised datasets. But it does not mean that FE does not
apply on unsupervised or semi-supervised datasets. For instance, for unsupervised
dataset, it is normal to use dimension reduction or auto-encoder techniques for that.

There has been numerous challenges in the literature regarding the deployment of
evolutionary algorithms for computation, optimization, and learning. These studies
can be reviewed in the following major aspects: curse of dimensionality [14, 15],
nature-inspired computation [1, 16], nature-inspired meta-heuristic computation
[17–19], and nature-inspired evolutionary computation [20–24]. These studies are
elaborately reviewed in the following.
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3.1.3 Curse of Dimensionality

Curse of dimensionality is related to the fact that the input data is too huge that
no human being can analyze it. In machine learning, recently, researchers work
with high-dimensional data. For instances, if we are analyzing three channel images,
such as RGB, HSV images, sized 512 × 512, we are working in a space with 512 ×
512 × 3 dimensions. Altman and Krzywinski [14] believe that having more data is
much better than having few or nothing. This overabundance of data is called the
curse of dimensionality (CoD) which causes problems in big data era such as data
sparsity, multiple testing, which researchers [15] proposed a new approach to solve
the problem, and most importantly over-fitting which is opposite of under-fitting.
Beside these problems, CoD also brings high time complexity problem which makes
scientists suffering from waiting too much time to get a result.

The world of information technology CoD not only causes a wide range of
problems to scientists, but also has a wide adversely affect other majors, such as
engineering [25], medicine [26, 27], cognitive science [28, 29], bioinformatics [30],
and even optimization problems [10, 31, 32].

Classification in big data suffers from plenty of problems and issues, one of
which is considered very challenging named CoD. Traditional feature extraction
techniques also are not able to solve this problem technically any more due
to some limitation [32]. According to the research studies have accomplished,
scientist proposed a new approach to solve this problem. Researchers introduce
nature-inspired computation which enable to simulate traditional feature extraction
techniques in a way that improve the performance of classification.

3.1.4 Nature-Inspired Computation

Pure and basic machine learning algorithms are not capable of solving emerging
challenging issues in the world of technologies any more. It is needed to adopt a new
approach to face these problems and leverage decent machine learning algorithms.
Finally, scientists discovered that combining machine learning algorithms in a
technical way may solve the problems. This mixture of machine learning techniques
is called nature-inspired computation, but it still is considered an advanced machine
learning algorithm.

Majority of scientific and technological developments leverage inspiring from
the nature towards their goal, especially robotics simulate how the nature works. In
world of computer science, each tool or software development process is needed to
have strong synchronization, robustness, manageability, parallelization, scalability,
distributedness, redundancy, adaptability, cooperation. Indeed, the nature provides
the same properties. Therefore, the nature-inspired techniques play an important role
in computing environments. Concretely, the nature-inspired techniques are adopted
to develop practical algorithms to solve data-driven optimization problems [16].
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Researchers in [1, 16] categorized nature-inspired computation. In [16] the
authors classified them into six different categories such as swarm intelligence,
natural evolution, molecular biology, immune system, and biological cells. But
here, we provide another applicable way to express the nature-inspired computation
towards solving problems: one meta-heuristic and one evolutionary computation.

3.1.5 Nature-Inspired Meta-Heuristic Computation

A meta-heuristic is an advanced procedure developed to seek and generate a
sufficiently tuned solution to data-driven optimization problems [17]. It involves,
high level view, two types of computations. The first and foremost one is population
based computation which is well-known as evolutionary algorithms, second one is
non-population computation such as tabu search (TS), stochastic local search (SLS),
iterated local search (ILS), guided local search (GLS). For more information about
this classification, please refer to [18]. Further, Razavi and Sajedi [19] proposed a
single-based meta-heuristic algorithm, vortex search algorithm (VSA) is inspired
by the vortices. In this chapter, we mainly focus on the former classification,
evolutionary algorithms which is discussed next sub-section properly.

3.1.6 Nature-Inspired Evolutionary Computation

Evolutionary algorithms (EAs) are invented not more than 28 years and are not
pretty old computational algorithm [21]. Research studies have been accomplished
new evolutionary algorithms in engineering and computational science [22–24].
EAs are known as population-based algorithm. Their learning process comes
from interactions between multiple candidate solutions called food source or
population. EAs are particular optimization type of meta-heuristics designed to
solve optimization problems [22]. This chapter discusses classical EAs and other
popular methods including memetic algorithms (MAs), particle swarm optimization
(PSO), and artificial bee colony (ABC), ant colony optimization (ACO), grey wolf
optimizer (GWO), and coyote optimization algorithm (COA).

3.1.6.1 Evolutionary-Based Memetic Algorithms

Memetic algorithms (MAs) are one of the particular growing research studies within
EA. Based on a population based search and local search, MAs have practically
succeeded in a variety of engineering and science problem domains, in particular for
NP-hard optimization problems [20, 22]. Memetic algorithms intrinsically exploit
all available sources, however, traditional EAs fail to do that. Population based
search MAs leverage recombination (or crossover operator) which is an important
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process within MAs. For the search process, it is essential to have three parameters
ready: one neighborhood relation, one guiding function, and a search space which
provides borders of the problem.

The search space is also important to provide comprehensive knowledge for
guiding function works. The implication of search space is to influence the
dynamics of the search algorithm. These dynamics stand for the relationships,
which are accessible, among the configurations. Thus, these relationships depend on
neighborhood function. For more information about this topic, please refer to [20].

3.1.7 Organization

The rest of this study is organized as follows. In Sect. 3.2, we have discussed
the feature extraction techniques and their categories. First, feature extraction
from a sample object like image against feature extraction from given datasets is
mentioned. Next, the feature extraction from dataset has selected to discover it.
It has three types including feature selection, dimension reduction (auto-encoder),
and feature generation. Then, we introduce nature-inspired algorithms and their
application, together with related pseudocode in solving large-scale engineering
and science problems, particularly CoD problem. The summary of evolutionary
algorithms discussed in this chapter is as follows: genetic algorithm (GA), artificial
bee colony (ABC), ant colony optimization (ACO), grey wolf optimizer (GWO),
coyote optimization algorithm (COA), and particle swarm optimization. In general,
Fig. 3.1 represents the overall structure of this study.

Fig. 3.1 Overall structure of this study
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3.2 Feature Extraction Techniques

It is worth mentioning, in the world of science, “feature extraction” is used to refer
to two completely separate applications. There are two different processes, one
occurring before raw data generation and one taking place after data has generated.
The process of feature extraction before having raw data works to extract features
using some advancing techniques, to export information from the objects. For
example, if we want to extract features from images, we need to adopt advanced
image processing techniques, like a feature extractor, for that end. Therefore, based
on the generated data, we will have a set of raw data. Then, in pre-processing
techniques, a second type of feature extraction is used for dimension reduction.
Three major differences separate these two types of feature extraction. The first
difference is their input value; the input value of the first algorithm is not particular
features, but the second feature extraction accepts only features of any dataset.
Second, the first type of feature extraction is domain specific, while the second
type is not domain specific. Third, the former does not adopt machine learning
algorithms, but the latter type does. Basically, both of them work with data, take
values, and generate outputs. The scope of the first algorithm is dynamic and would
be any multimedia or social networks, etc. On the other hand, the second one has an
almost stationary scope of input data.

General overview of testing and evaluating given dataset is shown in Fig. 3.2. On
the top of the figure, it clearly presents that three separate steps are required to be
done in advance before generating a proper result. Pre-processing plays a main role
in each problem of engineering and optimization problems. Then, a classification
algorithm is selected to make a model based on the train data. Finally, the classifier
attempts to predict the test data based on the learned data.

Once data is generated and dataset is ready to be evaluated, we call the
dataset, raw dataset. This dataset is needed to be converted into a standard dataset

Fig. 3.2 General process of evolutionary algorithms
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which enables classifiers to examine in a professional way and obtain a higher
performance. The most common problems of raw dataset consist of curse of
dimensionality (CoD), heterogeneous features in case of values and type, missing
values, outliers. In this chapter, we discuss in detail how evolutionary algorithms
(EAs) are adopted to solve the CoD problems, the bottom of the Fig. 3.2 depicts
the idea where EAs are explicitly embedded into pre-processing and enhances the
classifier’s performance. Concretely, EAs attempt to optimize the process of feature
extraction in an innovative way.

Feature extraction (FE), which is one of the most popular pre-processing
techniques, is the process of shrinking the number of dimension (features) and the
capability of having adapted diversity while considering strong mapping between
features and target values. FE aims to decrease the feature dimension as minimum
possible as it keeps the same performance. A feature extractor is considered as
the best one which is capable of decreasing the feature dimension and meanwhile
improving the performance. The better result is obtained by the better FE. FE
techniques are intrinsically classified into three broad groups: one auto-encoder, one
feature selection (FS), and feature generation. The first two are the most common
techniques in the scope of dimension reduction. Meanwhile researcher can leverage
feature generation (such as [33, 34]) to improve a classifier performance. The former
technique is also known as dimension reduction (DR) which attempts to transform
given dimension to a new dimension with strong linear connectivity of original
dimension. The most popular auto-encoder algorithm is principal component
analysis (PCA).

PCA completely is used to generate a new dimension using a certain formula
and convert the given data into new dimension. The idea behind PCA is that it
leverages singular value decomposition (SVD) theorem to seek for the most relevant
and correlated features and the relationship between each other. Although PCA
is used to emphasize variation and bring out strong patterns in a dataset, it may
not guarantee to reach an optimal solution in some datasets. PCA fails once your
special visualization of instances leads to loss of information. It tries to convert input
data into new dimension using a linear function. Circle-based and sine- or cosine-
based distribution of instances are the most popular situations that PCA fails. PCA
failure means that the FE did not obtain a better performance while decreasing the
dimension, not only that, but also it did not yield the same performance. If PCA does
not yield a better result, it means that features are not correlated or have non-linear
relationships. However, researchers often used to enable data easy to explore and
visualize, in case for representation learning (RL) [35].

Feature selection (FS), the latter one, which is the process of choosing proper
sets of relevant features rather than converting to a new dimension. FS covers the
lack of auto-encoders properly by keeping the original values of features during the
process; meanwhile, it is most likely to decrease the number of features/dimension.
Feature selection mainly provides three kinds of categories: filter-based, wrapper-
based, and embedded FS. Filter-based FS is the easy technique to implement and
can be adapted to each engineering problem independently. It tries to examine
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given dataset features separately non-dependently with respect to their target. It
attempts to calculate the goodness of each feature separately. However, the wrapper-
based feature selection relies on a set of selected features and calculated their
goodness using classifiers. Wrapper-based FS is a special kind of filter-based FS
such that wrapper-based FS has capability of using some hyper-parameter function
for evaluation. Therefore, the pace of running filter-based is high in comparison
with wrapper-based. So, it is recommended for real-time systems because of low
time complexity. Furthermore, filter-based is cheaper than wrapper-based. But
the wrapper-based feature selection [23, 36, 37] yields a better result than filter-
based feature selection. By advancing technologies, wrapper-based FS also can be
adopted in every system, even real-time decision making system [36]. The third one,
embedded feature selection which is similar to the wrapper-based feature selection
to select the best subsets of features. However, it has an important drawback, which
is time complexity in comparison with earlier feature selection, when it tries to train
the model. One of the popular embedded feature selections is regularization which
provides both training and making model section, together with automatic feature
selection at the same time. Furthermore, researchers [38, 39], proposed another
type of feature selection, combined (hybrid) methods, which mixes evolutionary
algorithms together with filter-based or wrapper-based algorithms.

Feature generation is considered the third type of feature extractor techniques.
Feature generation is a technique between feature selection and dimension reduc-
tion. It starts to examine the features and generates new features using the original
given features. In this case, you first increase the feature dimension then remove
irrelevant features. Unlike dimension reduction, no new dimension is generated.
Feature generation keeps the original features for generating new features. Then,
feature generation can do feature selection based on the generated features [33].

3.3 Bio-Inspired Evolutionary Computation

Engineering problems and other sensitive optimization need to reach the global
optimum. However, machine learning algorithms are not useful anymore. So, it is
required scientists adopt new kind of algorithms have been proved completely in
nature for years. In this section, we provide general overview of nature-inspired
algorithms and their terminology. Table 3.1 provides complete definitions for
abbreviation which are used in this chapter.

3.3.1 Overview of Evolutionary Algorithms

Everything in EA starts to explain the problem and proper solutions. The first
important step in evolutionary algorithm is representation. After that, in each step,
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Table 3.1 List of abbreviations

Abb Definition

ABC Artificial bee colony

ACOAR Ant colony optimization attribute reduction

BA Bee algorithm

BCO Bee colony optimization

BOA Butterfly optimization algorithm

CNN Convolutional neural network

COA Coyote optimization algorithm

CoD Curse of dimensionality

CSO Chicken swarm optimization

CCSO chaotic chicken swarm optimization

CRO Coral reefs optimization

DA Dragonfly algorithm

DR Dimension reduction

EAs Evolutionary algorithms

FE Feature extraction

EM Expectation maximization

EP Evolutionary programming

FS Feature selection

FSA Fish swarm algorithm

GA Genetic algorithm

GANs Generative adversarial networks

GGA Generational genetic algorithm

GLS Guided local search

GP Genetic programming

GWO Grey wolf optimizer

HBMO Honey bee mating optimization

IFAB Image steganalysis using FS based on ABC

IoT Internet of things

ILS Iterated local search

IWOA Improved whale optimization algorithm

MAs Memetic algorithms

ML Machine learning

PCA Principal component analysis

PEAs Parallel evolutionary algorithms

RFPSO RelieF and PSO algorithms

RL Representation learning

RNN Recurrent neural network

SLS Stochastic local search

SSGA Steady state genetic algorithm

SVD Singular value dimension

(continued)
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Table 3.1 (continued)

Abb Definition

SVM Support vector machine

TMABC-FS Two-archive multi-objective ABC algorithm for FS

TS Tabu search

VSA Vortex search algorithm

WOA Whale optimization algorithm

WANFIS Whale adaptive neuro-fuzzy inference system

EA works based on this representation. Figure 3.2 depicts a general overview of
each evolutionary algorithm’s procedure. It is extremely necessary how to present
your sample solutions. Two approaches are given: a one-hot representation and an
integer representation. The former one is also known as binary representation. The
number of “1” in the solution shows the number of parameters have to be involved
to yield a result. “1” represents that which specific features are selected and “0”
stands for the features which are not considered in a specific solution. In this case,
your solution’s length would be as same as the input feature dimension. If feature
dimension become too big, handling the food source are going to be a challenging
issues which waste resources and yields high time complexity. However, the integer
representation works good even with high feature dimension. But it still has a big
disadvantage which you need to set the reduced length of your feature vector in
initialization step.

Second important step is generating a population based on the descriptive model
of representation. This population mostly is generated randomly with considering
the representation limitation. Third step is fitness function and evaluation process.
It is important to provide a tuned fitness function (objective function) towards their
application of the evolutionary algorithms.

The next step is to select two possible solutions as parents of new generations.
Selection strategy has two broad categories: one uniform parent selection and one
ununiform parent selection. In the former one, each solution has the same chance
to be selected. However, the latter one has different structures and criteria, and
parents are selected based on those. The ununiform parent selection has different
strategies, the most important strategies are proportional selection which is also
known as roulette wheel, ranked based selection, and tournament selection.

Roulette wheel and tournament are the most widely used selection methods in
GA. Roulette considers the fitness value for each chromosomes with respect to their
probabilities, using the Eq. (3.1) where p[i] stands for the probability of selecting
a specific chromosome i, f [i] goes for the fitness value of each chromosome of
index i.

p[i] = f [i]∑
f [i] (3.1)



3 Evolutionary Computation, Optimization, and Learning Algorithms for. . . 49

Moreover, the tournament selection is pretty simpler than Roulette wheel. The
idea is that it takes k chromosomes and selects based on the fitness value of
each chromosome. The best fitness value goes for the lucky chromosome to be
selected.

After that, EA tries to reproduce new generation and update the population.
EA takes two parents and regenerates new offspring based on crossover operator.
The crossover or recombination, which is one of the genetic operators used to
recombine two chromosomes to generate new offspring. The crossover operator
includes uniform crossover, arithmetic crossover, and k-point crossover which is a
classical one. Once crossover step is done, mutation should be done with a specific
rate. The mutation may change one or more components.

Finally, the stall condition is set to check once new generation is produced. If the
new generation met the condition, EA stops running and returns the best solution
which satisfied the condition.

3.3.2 Genetic Algorithm vs. Genetic Programming

It is a common mistake that to think genetic algorithm (GA) is the same genetic
programming (GP). Generally speaking, researchers have used these two algorithms
interchangeably. But, from a technical point of view they are completely different
techniques. In this sub-section, we provide a clear definition of each of them.

3.3.2.1 Genetic Algorithm

Genetic algorithm is one of the basic but important evolutionary algorithm. It has
been applied on majority of problems such as engineering, medicine, finance, etc.
GA provides two kinds of approaches towards solving problems [40]: one steady
state genetic algorithm (SSGA) and one generational genetic algorithm (GGA).
They are different based on their procedure and updating mechanism function of
whole process, but they do the same process of parent selection, reproduction,
and population update. In the literature, some studies deployed GA as an effective
tool for solving large-scale optimization problems, including optimal allocation
of electric vehicle charging station and distributed renewable resource in power
distribution networks [41], resource optimization in construction projects [42], and
allocation of electric vehicle parking lots in smart grids [43]. Algorithm 1 illustrates
a pseudocode of basic GA in detail.
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Fig. 3.3 SSGA (steady state genetic algorithm): process of updating the population

Algorithm 1 Implementation of GA algorithm for feature selection
Input: S = {x0, x1, x2, . . . , xn}, maxiteration ≥ 0, t=0, αM ∈ [0, 1], randomnumber ∈ [0, 1],

Bestsolution = ∅.
Output: Bestsolution : Anoptimalsubsetoff eatures(F) , F = {x0, x1, x2, . . . , xm} , m≤ n ,

(∀fi ∈ F) ∈ S , Flength ≤ Slength.
1: for t=0 · · · maxiteration do
2: Call parent selection function
3: Call crossover method to generate offspring
4: if randomnumber ≤ αM then
5: Call mutation function
6: Return offspring
7: end if
8: Call fitness function to evaluate the chromosome
9: if any chromosome obtained the best score then

10: Update the Bestsolution

11: end if
12: end for

In SSGA, GA works with a stationary population which the size of that will be
the same and just it’s solutions get updated each iteration. Moreover, SSGA is an
in-place algorithm, in which their population does not need another space to update.
Like normal process, SSGA also starts with a problem representation and fitness
function, then initialize the selection strategy, crossover and mutation operators.
After that, SSGA takes another step to update the population with replacement
strategy. Figure 3.3 depicts that how two solutions are selected, crossover and
mutation operators are applied, and then new solution is replaced with the worse
solution.
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Fig. 3.4 GGA (generational genetic algorithm): the process of generating a new population
(generation t + 1)

Further, GGA produces a new population each iteration. So, GGA is not an in-
place algorithm since it generates a new population each iteration. GGA follows the
same structure of EA except the last step which is replacement. GGA skips this step
since it generates a new population in each iteration. Therefore, the replacement step
is not required. Figure 3.4 shows complete process of generating a new population
(generation t + 1) from current population (generation t).

From technical point of view, scientists can apply either GGA or SSGA based
on the problem model and strategies. However, SSGA converges faster than GGA
since parents always are selected through the same population and then replaced the
worse solution with the another best solution. Hence, most of the research studies
are accomplished using SSA. Moreover, most evolutionary algorithms are discussed
here also use the same strategies to converge faster towards global optimum. But,
SSGA still has a disadvantage that may stuck in a local optimum.

3.3.2.2 Genetic Programming

Genetic programming (GP) is proposed by Koza in 1992 [44]. It is noteworthy that
this idea is introduced date back to 50s. GP evolves computer programs which are
represented as trees. Each tree consists of two sections: a function set and second is
terminal set. Both of them provide constant sets of symbols. The former one always
plays non-leaf nodes role and the latter one plays leaf nodes role. Figure 3.5 shows
an example of presenting a problem 4 × tan(x) + y2.

Similar to GA that crossover is conducted on vectors, in GP crossover is done
through a tree and only needs to choose two sub-trees. Figure 3.6 expresses that
the first two trees have two subsets which are selected as a parent. Second tree the
below are the new offsprings which are generated based on parents. GP is mostly
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Fig. 3.5 Tree presentation of a problem

Fig. 3.6 Crossover operator in genetic programming

generational genetic algorithm. Thus, GP is not an in-place algorithm. GP is useful
for solving engineering and computational problems (e.g., [45]).

Genetic programming has specific advantages over genetic algorithms. Here,
we address the most important characteristics of GP. Genetic programming has a
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wide variety of representation models which make it pretty flexible against genetic
algorithm. This flexibility of GP comes from its tree-based properties. Another
important feature of GP is its application over GA. GP has greater applications
in comparison with GA. In spite of considering positive features of GP, it also
has disadvantages which should bear in mind. The most disadvantages of GP are
its speed which is extraordinary slow. Another point is its lack of handling a large
number of input data which makes also hard to handle required related population.

There is still another algorithm that attracts researcher’s attention called evo-
lutionary programming (EP). Fogel et al. [46] originally introduced evolutionary
programming. It is classified as one of the major evolutionary algorithms. It
resembles genetic programming, but it does have a non-variable structure of the
program to be optimized. Classical EP develops gradually finite state machine
or every structure similar to it. EO always works with mutation only and does
not consider crossover at all. It worth mentioning that EP uses a fitness function
based on the training sequences. This feature enables EP yields a better result for
prediction in time series problem and sequence problems like DNA and RNA.

3.3.3 Artificial Bee Colony Algorithm

In the bees population, the process of mating and generating new offspring, finding
new food sources and gathering the nectar, sharing information in hive, allocating
tasks, onlooker and scout bees, all of these have been inspired properly and
nature-based evolutionary algorithms have been presented. To be specific about
the algorithms, honey bee mating optimization (HBMO), bee colony optimization,
bee algorithm (BA), and artificial bee colony (ABC) are the most popular research
studies accomplished based on these algorithms [47]. Karaboga et al. [47] present
statistical overview of using these algorithms in scientific papers. It is worth
mentioning that ABC has received the highest amount of usage with respect to
its application in engineering and science problems. Among all research studies
had been done, according to the [47] ABC, BA, BCO, and HBMO are found the
most useful application, from the highest number to the lowest number, in large-
scale engineering problems. ABC has been considered as the most useful algorithm
in several different fields and majority of research studies leverage ABC in their
problems, such as training neural network (NN), solving electrical, mechanical,
software, control, and civil engineering problems, facing wireless sensor networks
issues, optimizing protein structure, and most importantly solving image processing
problems. In this chapter, we address emerging challenges like CoD problem in
big data and provide practical engineering solutions using ABC and other related
algorithms.

Here, we will discuss artificial bee colony (ABC) which is inspired by a set of
sequential processes such as the process of seeking for a bunch of flowers, sharing
information in the hive regarding that, and allocating employed, onlooker and scout
bees. Karaboga introduced ABC [48] which is compatible with continuous problems
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Algorithm 2 Implementation of ABC algorithm for feature selection
Input: S = {x0, x1, x2, . . . , xn}, Psize=2 ∗ n, limit ≥ 0, 0 ≤ lowerBound ≤ n/2, lowerBound ≤

upperBound ≤ n, maxiteration ≥ 0, t=0 , v= randomnumber ∈ [0, 1] , v′= randomnumber ∈ [0,
1], Bestsolution = ∅.

Output: Bestsolution : An optimal subset of f eatures (F) , F = {x0, x1, x2, . . . , xm} , m≤ n ,
(∀fi ∈ F) ∈ S , Flength ≤ Slength.

1: Call fitness function to evaluate the whole food source (S) (primary evaluation of each food)
2: for { dot=0 · · · maxiteration}
3: Call Employed bees to update the food source regarding their evaluation
4: Call Onlooker bees to exploit the local foods to generate new food (solution)
5: Choose parents and generate a new food (solution) based on Vi= fi+v ∗ (fi − fj )

6: if limit is met then :
7: { Call scout bee to explore new (unseen) food source to prevent from local optimum

using
8: Xi= XupperBound

+v′ * { (XupperBound
-XlowerBound

)} }
return NewSolution

9: end if
10: Call fitness function to evaluate the Solution
11: if any Solution obtained the best score then
12: {Update the Bestsolution}
13: end if
14: end for

in 2005. Algorithm 2 presents a general procedure of given ABC. A large number of
research studies have accomplished using this algorithm [49, 50] and even convert
that into a way that it also works with discrete problems [23, 27, 37]. Not only those,
but also ABC is applied on optimization problems as an optimizer [50–53].

Artificial bee colony interacts with three groups of bees to have work done.
The first group is employed bees, second is onlooker, and last one is scout. In
initialization step the number of these groups is set. The employed bees together
with onlooker bees create a population which has an equal amount of two groups.
ABC starts with initialization step which has positive impact on converging in
ABC. Among initialization variables, limit is important criteria and provides a
condition when an employed bee converts into scout bee; at a time, we only have
one scout bee.

3.3.4 Particle Swarm Optimization Algorithm

The particle swarm optimization (PSO) is one of the population-based meta-
heuristic algorithms and optimization techniques. PSO is inspired from social-
psychological principles [54]. In 1995 particle swarm optimization first introduced
by Kennedy and Eberhart [55]. The PSO is based on the simulation of common
animal social behaviors, for instances: fish schooling, bird flocking. PSO like other
evolutionary algorithms searches for the global optimum rather than local optimum.
However, the particle swarm trapped into local optimum easily when feature
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Algorithm 3 Implementation of PSO algorithm for feature selection [48]
Input: S = {x0, x1, x2, . . . , xn} , particlesnumber ≥ 1, accelerationcoeff icient (c1, c2) ∈ [0, 1],

maxvelocity , t=0, minweight,maxweight = randomnumber ∈ [0, 1] , Bestsolution = ∅ .
Output: Bestsolution : Anoptimalsubsetoff eatures(F) , F = {x0, x1, x2, . . . , xm} , m≤ n ,

(∀fi ∈ F) ∈ S , Flength ≤ Slength.
1: for t=0 · · · maxiteration do
2: for i=0 · · · particlesnumber do
3: Call fitness (= objective) function to for the current particle
4: Save the best personal location
5: Save the best global location
6: end for
7: Update the inertiaweight

8: for i=0 · · · particlesnumber do
9: Update the velocity

10: Update the position
11: end for
12: if condition met then
13: Return the best global location as the global optimum
14: end if
15: end for

dimension grows significantly. Algorithm 3 presents a pseudocode for a standard
PSO for solving high dimensionality problem. The whole process of PSO usually
initializes groups of random particles and computes fitness for each particle within
iterations in order to converge into global optimum. Each particle is considered as a
single solution to our problem.

PSO follows two simple yet essential steps to have completed optimization
process to find the minimum optimum or maximum optimum. The first step is
communication among particles. Each particle shares their information with other
particles after moving in their direction. This process makes them find a proper
way toward the goal. Each time, based on the problem (maximum/minimum
optimization), particles follows the particle and consider the particle that match the
problem goal. For instance, each iteration particles call fitness function to get fitness
of their location. Then, among the particles, one has the best value which is set
to best personal location. The best value is examined based on the problem, if it is
minimum optimization then the best value goes for the particle that has the minimum
value. Moreover, if the problem is maximum optimization the best value goes for the
particle that has the maximum value. When this value is set, each particle updates
their direction and moves toward this values. It is obvious that the one has the best
value does not move unless other particles find the best value. The second step which
each particle does is to learn. They can learn how to update their direction after each
iteration and tune the parameters.
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The PSO does not have parent selection, recombination, and mutation steps
[56]; thus, this enables PSO to behave in a particular way in comparison with
other evolutionary algorithms. Concretely, each member within the population do
not get updated nor removed. Hao et al. [57] introduced a new PSO with added
crossover operator. Zhang et al. [58] proposed a binary PSO with mutation operator
to address CoD problem using feature selection techniques to solve it. The crossover
enables the particles do not stop in the local optimum by sharing the other particles’
information. In [32] PSO is classified into three different versions: classical PSO,
scale-free PSO, and binary PSO.

Few parameters are required to adjust, and enable PSO easy to implement,
make popular stochastic and yet powerful swarm-based algorithm. Inertia weight
becomes more important than other due to its ability of having a trade-off between
the exploration and exploitation process within a search space. In addition, inertia
weight has positive affect convergence rate in PSO [59].

In the literature, some studies deployed PSO as an effective tool for solving
large-scale optimization problems, including optimal allocation of electric vehicle
charging station and distributed renewable resource in power distribution networks
[41], designing power system stabilizers [60], distribution state estimation [61], and
reactive power control [62].

3.3.5 Ant Colony Optimization (ACO)

Ant colony optimization is another popular evolutionary algorithm which is pre-
sented in 1999 by Dorigo, Marco, and Di Caro [63], and Socha and Dorigo
introduced continuous domain of it [64]. Basically, ACO is one of the stochastic
search processes. Once ants explore a new food source, they try to lay some
pheromone to mark the way which leads to the food. The pheromone is a chemical
odorous material which is produced and used by ants to communicate with other
ants in an indirect way. Each ant tries to produce it and lays it on their way. So others
can follow the odor to seek for the food; meanwhile, they also produce the same
amount of pheromone. On the other hand, further, as we inspired natural behavior,
this chemical material is susceptible to evaporate. Thus, the amount of pheromone
on specific path will increase by keeping ants on the same path, However, each
iteration we have a pheromone reduction process which has negative affect the total
amount of pheromone on a particular path. In other words, if any ants do not select
the path used to be chosen, then the path would disappear. Algorithm 4 presents an
overall procedure of ACO for feature selection.
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Algorithm 4 Implementation of ACO algorithm for feature selection [65]
Input: S={x0, x1, x2, . . . , xn} , K} ≥ 1, η and τ , t = 0, bestsolution =Ø.
Output: Bestsolution : An optimal subset of f eatures (F) , F = {x0, x1, x2, . . . , xm} , m≤ n ,

(∀fi ∈ F) ∈ S , Flength ≤ Slength.
1: Call fitness function to calculate the fitness of each feature
2: for t=0 · · · maxIteration do
3: Generate K ants
4: for each ant ∈ Ants(K) do
5: Generate a subset of features
6: call fitness function to evaluate the generated subset
7: Update the best local and global optimum
8: if condition met then
9: Return the best global location as the global optimum

10: else
11: Update the η and τ

12: end if
13: end for
14: end for

3.3.6 Grey Wolf Optimizer (GWO)

Grey wolf optimizer (GWO), which is a new evolutionary algorithm primary works
based on the concept of grey wolf society, is presented in 2014 [59]. Mirjalili et al.
claimed that [66] GWO outperforms other evolutionary algorithms for solving large-
scale engineering and science problems. Algorithm 5 is a sample process of solving

Algorithm 5 Implementation of GWO algorithm for feature selection [66]
Input: S = {x0, x1, x2, . . . , xn}, Xi = (i = 1, 2, . . . n), A, t=0 , α, C, maxiteration ≥ 0,

Bestsolution ≤ Slength.
Output: Bestsolution : An optimal subset off eatures (F) , F = {x0, x1, x2, . . . , xm} , m≤ n ,

(∀fi ∈ F) ∈ S , Flength ≤ Slength.
1: Call fitness function for each search agent to evaluate the whole food source (S) (primary

evaluation of each food)
2: Xα = the best search agent
3: Xβ= the second best search agent
4: Xδ= the third best search agent
5: for t=0 · · · maxiteration do
6: for each search agent do

7: Update the best position of current search agent using
−−→
Xt+1 =

−→
X1+−→

X2+−→
X3

3 .
8: end for
9: Update α , A and C.

10: Call fitness function to calculate the fitness of each search agent
11: Update Xω, Xβ , Xδ

12: if any solution obtained the best score then
13: Update the Bestsolution

14: end if
15: end for
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large-scale engineering problems and one of the evolutionary feature selection
algorithm. The GWO algorithm inspired by the natural mechanism of animals.
The most common behavior which almost wild animal inherited normally is their
attitude to have a kingdom, rule others and having the same hunting mechanism. It
solves the science problems through the following steps:

– First of all, it searches for some animal as prey. In other words, it tries to explore
the area (food source);

– Then, it surrounds the possible prey(s) by exploitation, doing local search to find
the border of sample space;

– Finally, it attacks the prey, doing local search to find the best value within a
new area. “A” stands for the most important parameter in GWO and adjusts
the step size towards the prey. Thus, “A” has positive impact on convergence of
this algorithm to the global optimum by tuning step size which influences both
exploitation and exploration. However, GWO still suffers from stalling in local
minimum, so initializing the parameter “A” with a proper value helps it to prevent
from stopping in local minimum.

3.3.7 Coyote Optimization Algorithm (COA)

Coyote optimization algorithm (COA) is another yet important population-based
meta-heuristic algorithms which have been inspired from the Canis latrans species
and natural coyotes’ behavior. COA has a very certain procedure that works based
on the way how these animals approaching other animals (preys) for catching them.
Thus, COA seems to be one particular type of grey wolf optimizer (GWO) as COA
just does the third step of GWO. COA is presented recently in [22] by Pierezan and
Coelho in 2018 to solve large-scale optimization problems. Algorithm 6 presents a
general overview of COA for feature selection.

3.3.8 Other Optimization Algorithms

Meng et al. [67] proposed chicken swarm optimization algorithm (CSO) in 2014.
Algorithm 7 presents well-structured pseudocode of CSO for optimized feature
selection. Based on performance of CSO, researchers have successfully solved and
optimized engineering and science problems, directional reader antennas optimiza-
tion [68], community detection in social networks [69], parameter optimization of a
fuzzy logic system [70].
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Algorithm 6 Implementation of COA algorithm for feature selection [22]
Input: S = {x0, x1, x2, . . . , xn} which consists of Np ∈ N∗andNc ∈

N∗are initialized using soc
p,t
c,j = lowerBoundj + vj · (upperBoundj − lowerBoundj ),

t=0 , maxiteration ≥ 0, Bestcayotes = ∅.
Output: Bestcayotes : An optimal subset of f eatures (F) , F = {x0, x1, x2, . . . , xm} , m≤ n ,

(∀fi ∈ F) ∈ S , Flength ≤ Slength.
1: Call fitness function to calculate the coyote’s fitness using:
2: f it

p,t
c = f (soc

p,t
c )

3: for t=0 · · · maxiteration do
4: alphap,t = {soc

p,t
c |argc={1,2,...,Nc}minf (soc

p,t
c )}

5: Calculate the social tendency of the pack based on Nc as follows:
6: if Nc is odd then
7: cult

p,t
j = O

p,t
(Nc+1)

2 ,j

8: else :

9: cult
p,t
j =

O
p,t
Nc
2 ,j

+O
p,t

(
Nc
2 +1),j

2
10: end if
11: for each c coyotes in the p pack do
12: Update the social condition using:
13: _soc

p,t
c = soc

p,t
c + r1 · δ1 + r2 · δ2

14: Examine the new social condition using:
15: new_f it

p,t
c = f (new_soc

p,t
c )

16: update food source with respect to better fitness using:
17: soc

p,t+1
c = new_soc

p,t
c

18: end for
19: Birth and death using:

20: pup
p,t
j =

⎧
⎪⎪⎨

⎪⎪⎩

soc
p,t
r1,j , rndj < Ps or j = j1

soc
p,t
r2,j , rndj ≥ Ps + Pa or j = j2

Rj , otherwise

21: T ransition betweenNcandNp packs using Pe = 0.005 · N2
c

22: Update the coyotes’ information with respect to the age
23: if stop condition met then
24: Return the Bestcoyotes

25: end if
26: end for

Li et al. introduced fish swarm algorithm (FSA) which is another population-
based (or swarm-based) evolutionary algorithm [71]. FSA inspired from the behav-
iors of fish school. Algorithm 8 shows the process of feature selection using FSA.
Research studies have applied FSA to optimize their solution such as neighborhood
feature selection [72], multi-modal benchmark functions solver [73]. Learning to
sense is referred to as meta-sensing [74].
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Algorithm 7 Implementation of CSO algorithm for feature selection [67]

Input: S = {x0, x1, x2, . . . , xn}, Np ∈ N∗ , Nc ∈ N∗are done using soc
p,t
c,j = lowerBoundj +

vj · (upperBoundj − lowerBoundj ) , t=0 , roosterratio, chicksratio, hensratio, f oodposition C,
Randomvalue, miniteration, maxiteration, chickenSwarmsize .

Output: Bestsolution : Anoptimalsubsetoff eatures(F) , F = {x0, x1, x2, . . . , xm} , m≤ n ,
(∀fi ∈ F) ∈ S , Flength ≤ Slength.

1: for t=0 · · · maxiteration do
2: call fitness function to compute the fitness using chicken
3: if fitness of chicken ==bestf itness then
4: Update the Randomvalue

5: Update the rooster position

6: end if
7: if fitness of chicken ==worstf itness then
8: Update the chicks position
9: end if

10: if fitness of chicken != worstf itness and fitness of chicken != bestf itness then
11: Update the Randomvalue

12: Update the hens position

13: end if
14: Update chicken position

15: if t==chickenSwarmsize then
16: Return the best position as the global optimum
17: end if
18: end for

3.4 Conclusion

Both dimension reduction by generating new dimension of features and feature
selection by eliminating irrelevant and redundant features take care of missing
values and classify supervised/unsupervised datasets; all of these operations come
together to solve emerging challenging Np-hard problems in engineering and
sciences. A large number of datasets, particularly big data, are available to work
on. The main problem, here, concerns their features and dimensionality, the curse of
dimensionality (CoD), which causes yet another important problem, high time com-
plexity. In this chapter, we addressed these problems and professional approaches
using advanced machine learning algorithms. The studies prove that applying
nature-inspired algorithms, together with machine learning techniques, enabled
researchers’ attempts to solve the CoD problem, which yields a proper running
time with a lowest time complexity. It is noteworthy that evolutionary algorithms
are non-dependent domain specific, which provides an optimized environment for
researchers who want to solve their problems or optimize their approaches. In this
chapter, we have explored evolutionary algorithms and their applications in solving
large-scale optimization problems, especially the feature extraction process for data
analytics. This chapter provides insightful information for researchers who are
seeking for the application of evolutionary algorithms for engineering, optimization,
and data science. Having said this, in [75], we address the emerging problem,
CoD, and an evolutionary-based solution is presented to solve it. We discuss
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Algorithm 8 Implementation of FSA algorithm for feature selection [22]

Input: S = {x0, x1, x2, . . . , xn}, t=0 , maxiteration ≥ 0, Rmin, Lmin, γB
(D) = |POSB(D)γ |

|U | ,
Bestcayotes = ∅.

Output: bestcayotes : An optimal subset of features (F) , Rmin = F = {x0, x1, x2, . . . , xm} , m≤
n , (∀fi ∈ F) ∈ S , Flength ≤ Slength.

1: Rmin=C , Lmin=C
2: for t=0 · · · maxiteration do
3: generate total fish (Fish)
4: for each fish K ∈ Fish do
5: RK=Ø, LK=0
6: Choose a f eature αk ∈ C(randomly)

7: UpdateRK,LKbyRK

⋃
αKand|RK |, respectively

8: end for
9: for each fishK ∈ Fish do

10: Rs = Search(Rk)

11: Rω = Swarm(Rk)

12: Rf = Follow(Rk)

13: UpdateRK , LK by seeking for the maxf itness through (Rk , Rω, Rf )
14: if γRk

(D)δ ==γC (D)δ then
15: T he f ishK obtained a local reduction and break

16: end if
17: if γRk

(D)δ ==γC (D)δandLK ≤ Lmin then
18: updateRmin, LminbyRKandLK, respectively

19: end if
20: end for
21: if stop condition met then
22: Return the Rmin, Lmin

23: end if
24: end for

the feature extraction optimization process in detail, leveraging feature extraction
and evolutionary algorithms. Then, we provide detailed and practical examples of
applying evolutionary algorithms with a wide variety of domains. We also classify
all research studies based on the most common challenging issues such as stego
image classification, network anomalies detection, network traffic classification,
sentiment analysis, and supervised benchmark classification.
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Chapter 4
Applications of Nature-Inspired
Algorithms for Dimension Reduction:
Enabling Efficient Data Analytics

Farid Ghareh Mohammadi, M. Hadi Amini, and Hamid R. Arabnia

Abstract In Mohammadi et al. (Evolutionary computation, optimization and learn-
ing algorithms for data science. arXiv preprint, arXiv: 1908.08006, 2019), we have
explored the theoretical aspects of feature selection and evolutionary algorithms.
In this chapter, we focus on optimization algorithms for enhancing data analytic
process, i.e., we propose to explore applications of nature-inspired algorithms in
data science. Feature selection optimization is a hybrid approach leveraging feature
selection techniques and evolutionary algorithms process to optimize the selected
features. Prior works solve this problem iteratively to converge to an optimal feature
subset. Feature selection optimization is a non-specific domain approach.

Data scientists mainly attempt to find an advanced way to analyse data n

with high computational efficiency and low time complexity, leading to efficient
data analytics. Thus, by increasing generated/measured/sensed data from various
sources, analysis, manipulation and illustration of data grow exponentially. Due
to the large scale datasets, curse of dimensionality (CoD) is one of the NP-hard
problems in data science. Hence, several efforts have been focused on leveraging
evolutionary algorithms (EAs) to address the complex issues in large scale data
analytics problems. Dimension reduction, together with EAs, lends itself to solve
CoD and solve complex problems, in terms of time complexity, efficiently. In
this chapter, we first provide a brief overview of previous studies that focused
on solving CoD using feature extraction optimization process. We then discuss
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practical examples of research studies that successfully tackled some application
domains, such as image processing, sentiment analysis, network traffics/anomalies
analysis, credit score analysis and other benchmark functions/datasets analysis.

Keywords Dimension reduction · Data science · Hybrid optimization · Curse of
dimensionality (CoD) · Supervised learning · Unsupervised learning · Wrapper
feature selection · Classification · Evolutionary computation · Swarm
intelligence · Filter feature selection

4.1 Introduction

4.1.1 Overview

Feature selection and evolutionary algorithms have been explored in [1]. In this
chapter, we aim to focus on an optimization approach for enhancing data analytic
process. Feature selection optimization is hybrid approach leveraging pure feature
selection techniques and evolutionary algorithms process to optimize the selected
features. Researchers try to iterate this process until to converge to an optimal
feature subsets. Feature selection optimization is a non-specific domain approach
which enables scientists to apply this to their data technically.

Data scientists always attempt to find an advanced way to work with data that
are successfully conducted in a short time with high computational efficiency
and low time complexity, leading to efficient data analytics. Thus, by increasing
generated/measured/sensed data from various sources, analysis, manipulation and
illustration of data grow exponentially. Due to the large scale datasets, curse of
dimensionality (CoD) is one of NP-hard problems in data science. Hence, several
efforts have been focused on leveraging evolutionary algorithms (EAs) to address
the complexity issues in large scale data analytics problems. Dimension reduction,
together with EAs, lends itself to solve CoD and solve complex problems, in terms
of time complexity, efficiently. In this chapter, we first provide a brief overview of
previous studies that focused on solving CoD using feature extraction optimization
process. We then discuss practical examples of research studies that successfully
tackled some application domains, such as image processing, sentiment analysis,
network traffics/anomalies analysis, credit score analysis and other benchmark
functions/datasets analysis.

In [1], we have comprehensively explored various evolutionary algorithms
for data science, including artificial bee colony (ABC), ant colony optimization
(ACO), Coyote Optimization Algorithm (COA), genetic algorithm (GA), grey wolf
optimizer (GWO) and particle swarm optimization. These algorithms have real-
world applications in the context of dimension reduction [2–10], interdependent
smart city infrastructures [11, 12], optimization [13–15]. This chapter focuses on
application of aforementioned evolutionary algorithms in dimension reductions
[16–25]. As mentioned in [1], some studies deployed GA, PSO or their combination
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as effective tools for solving large scale optimization problems, including optimal
allocation of electric vehicle charging station and distributed renewable resource in
power distribution networks [26, 27], resource optimization in construction projects
[15] and allocation of electric vehicle parking lots in smart grids [28]. Moreover, we
discuss some decent optimization using evolutionary algorithms including butterfly
optimization algorithm (BOA), chicken swarm optimization (CSO), coral reefs
optimization (CRO) and whale optimization algorithm (WOA).

Table 4.1 presents a representative information about the feature selection
techniques using evolutionary algorithms.

4.1.2 Organization

The rest of this study is organized as follows. In Sect. 4.2, we have discussed the
applied evolutionary algorithms and their application. Then, we introduce hybrid
feature selection methods using evolutionary algorithms and their application in
solving engineering and science problems. In general, Fig. 4.1 represents the overall
structure of this study.

4.2 Application of Evolutionary Algorithms

Engineering, industries, scientists consider EA at the very final plan. They try to
solve their problems easily in low time complexity run time. They used plenty of
algorithms to find an optimal solution for their problems. For instance, distributed
optimization and learning algorithms have been deployed as promising solutions
to deal with information privacy, scalability, as well as (near) real-time decision
making capability; applications of such algorithms include optimal operation of
smart city infrastructures, interdependent power and transportation networks [42–
44], artificial intelligence for energy system resilience [45], energy management
and optimal power flow problem [46, 47], and learning at the IoT device level
[48]. Some problems they are struggling with are NP-hard problems which are
required to ponder the problems deeply. Therefore, final plan for researchers which
is left is adopting evolutionary algorithms. Therefore, research scientists do not
use EAs for solving simple problems and only consider them for challenging
issues and NP-hard problems. It means that EAs have wide variety of applications
and are not limited to a specific problems. In this section we will review some
applications of them in image processing [2, 31, 49], optimization problems [9].
Thus, evolutionary algorithms are impactful methods to address different NP-
hard problems [50]. Table 4.1 presents a representative information about the
hybrid (combined) feature selection techniques using evolutionary algorithms on
supervised/unsupervised datasets. Based on [5, 22], hybrid (combined) methods are
newly introduced, which mixes evolutionary algorithms together with filter-based or
wrapper-based algorithms. So, all proposed methods you see in the table are hybrid
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Fig. 4.1 Overall structure of this study

methods. Table 4.2 provides complete definitions for abbreviation which are used in
this chapter.

4.2.1 Feature Extraction Optimization

Finding a proper subset of features or generating a new set of features while
decreasing the dimension of datasets and improving the performance is still a
NP-hard [51, 52] problem and scientists try to solve this problem. FE has been
successfully done in several domains [19, 53, 54] and it is not domain specific.
Here, we dig into some specific important feature selection algorithms like IFAB
[2]. IFAB is a feature selection method applied on digital images. Figure 4.2 depicts
a procedure of FE approach using EAs in an abstract way. It shows that EAs are
adopted in pre-processing section to help scientists to reduce the number of feature
properly. In general, we try to use a classification method to learn from train data and
make a model. Then, leverage the generated model to predict unlabeled test data and
calculate the performance of the classifier. As we discussed, classifiers fail to learn
a large amount of data due to the CoD problem. So we discuss feature extraction
optimization and how it helps classifier to learn the train data without struggling
with over-fitting or under-fitting problems.

4.2.1.1 Feature Selection for Image Classification

Due to growth of generating images in different areas and networks, transfer-
ring, distributing images, image labeling and classification raised the majority of
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Table 4.2 Abbreviation of words

Abb Definition

ABC Artificial bee colony

ACOAR Ant colony optimization attribute reduction

BSO Bat swarm algorithm

BCO Bee colony optimization

BOA Butterfly optimization algorithm

COA Coyote optimization algorithm

CoD Curse of dimensionality

CSO Chicken swarm optimization

CCSO Chaotic chicken swarm optimization

CRO Coral reefs optimization

DA Dragonfly algorithm

EAs Evolutionary algorithms

FS Feature selection

FSA Fish swarm algorithm

GA Genetic algorithm

GWO Grey wolf optimizer

IFAB Image steganalysis using FS based on ABC

IoT Internet of things

ILS Iterated local search

IWOA Improved whale optimization algorithm

PCA Principal component analysis

PEAs Parallel evolutionary algorithms

RFPSO RelieF and PSO algorithms

RL Representation learning

RISAB Region based image steganalysis using artificial bee colony

SLS Stochastic local search

SSGA Steady state genetic algorithm

SVD Singular value dimension

SVM Support vector machine

TMABC-FS Two-archive multi-objective artificial bee colony algorithm for FS

WOA Whale optimization algorithm

WANFIS Whale adaptive neuro-fuzzy inference system

researchers’ attention. To do that, scientists have implemented plenty of tools
and packages and libraries, such as deep learning [55], generative adversarial
networks (GANs) [56], convolutional neural network (CNN) [57], recurrent neural
network (RNN) [58]. These provided algorithms have been successfully applied
and determined very low loss in their accuracy. However, they still suffer from
handling dig data, CoD problem and time complexity. Thus, researchers attempted
to take advantage of leveraging evolutionary algorithms to address these problems
properly. Image steganalysis is an image classification problem and has been quite
an emerging challenge in large scale engineering and science. The importance
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Fig. 4.2 Evolutionary algorithms process for feature extraction

of issue has proliferated significantly last 20 years after the tragedy happened in
2001. One of the promising methods to solve the problem using zero-shot learning,
Mohammadi and Amini [59] presented a meta-sense algorithm to address the
problem carefully.

• Application of artificial bee colony in feature selection:

Image steganalysis using feature selection based on artificial bee colony (IFAB)
is presented by Mohammadi and Abadeh in [2]. IFAB has an optimized feature
extraction process and is categorized into wrapper-based feature selection methods.
This method works properly for examining input digital images and distinguishing
cover images from stego images. A stego image is a cover image with an embedded
message. The goal of IFAB is to decrease time complexity of training model while
improving the classifier’s performance.

Figure 4.3 presents IFAB’s process in detail stating that how IFAB technically
combines three types of bees to optimize the feature extraction process. First of all,
employed bees are applied to generate food sources and a goodness of each food
source is generated using support vector machine (SVM). Fitness function leverages
SVM to compute the goodness of each food source. According to the (4.1) fitness
function is calculated. (fi) goes for each food source and Pi stands for the accuracy
of SVM per each food source. Each food source stands for a solution to the problem.
A solution would present the number of features selected to reduce the dimension
of given dataset. This step is done for each employed bee population. The employed
bees and onlooker bees have the same population and are equal to the dimension
of input data. For instance, SPAM dataset has 686 features which is equal to the
population of them.
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Fig. 4.3 An overview of image steganalysis using Feature selection based on Artificial Bee colony
(IFAB) [29]

Fitness(fi) =
{

1
1+Pi

if Pi > 0

1 + abs(Pi) if Pi < 0
(4.1)

Second step is choosing a food source based on (using Eq. (4.2)) the goodness
of the food source to exploit it by onlooker bees. Once offspring (new solution) is
generated, it is time for checking the condition, limit.

Vi = fi + v ∗ (fi − fj )., v = [−1, 1] (4.2)

Where j is a random number between 1 and N . i, j stands for features index
in an input dataset. N is the upper bound of number of features. If the solution’s
performance stopped improving within the pre-defined iteration equal to the limit,
then, in third step, scout bee is selected to explore using Eq. (4.3) the area of the food
source, and tries to update the solution by a pre-adjusted rate. Xmax, Xmin shows the
upper bound and lover bound of population, respectively.

Xi = Xmax + v′ ∗ (Xmax − Xmin), v
′ = [0, 1] (4.3)

In each iteration the best food source with respect to the goodness value
is reserved and ABC updates food sources by replacing the minimum food
source(minimum value of goodness) with new food source if its goodness outper-
forms minimum food source. ABC process is complete the condition is met or when
iteration reaches max iteration. Finally, ABC returns the best food source during
whole iterations. This food source involves a number of relevant and important
features and yields a better result.
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IFAB-KNN is an advanced ABC for image steganalysis to enhance IFAB per-
formance proposed by Mohammadi and Abadeh in [29]. IFAB-KNN stands for one
of the wrapper-based feature selection algorithm. Fitness function takes advantage
of a lazy algorithm, k-nearest neighbour (KNN), within ABC and enables ABC
to examine each subset of features deeply. Keeping the same number of selected
features, IFAB-KNN outperforms IFAB with the tuned hyper-parameters. Xie et al.
[31] produced another unsupervised feature selection algorithm using ABC to
classify hyperspectral images, ISD–ABC.

Mohammadi and Sajedi [30] presented another hybrid approach to feature selec-
tion, combination of data and images. They proposed RISAB, region based image
steganalysis using artificial bee colony by leveraging the IFAB characteristics. The
goal of RISAB is to find the location of image that does not follow the harmony
of the whole images. By finding special pixel or sets of pixels, RISAB could
distinguish stego images from cover images. In RISAB, the researchers first applied
ABC to find the most probable sub-image that carries the embedded data, which
would be messages, images, etc. ABC was tailored to focus on image spatial domain
which was one of the important challenging issues. After that, there are one given
input data and one sub-image of input data. Then, researchers tried to apply IFAB
on both of them. They were able to improve the performance of feature extractors
like SPAM and CC-PEV, even IFAB. Figure 4.4 presents overall steps of RISAB,
for more information you may read this paper [30].

Fig. 4.4 The process of feature selection using RISAB
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• Application of particle swarm optimization in feature selection:

Chhikara et al. [20] proposed HYBRID, a new approach using PSO for solving
CoD problem in image steganalysis. They proposed a combined filter and wrapper
based feature selection approach to deal with high dimensionality problem in image
steganalysis. Authors tested HYBRID on data which had been extracted using
feature extraction methods, using images which were attacked by steganography
algorithms. The HYBRID enhanced the classification accuracy image steganalysis.
Chikara and Kumari in [60] presented a new wrapper-based feature selection
for image steganalysis, named global local PSO (GLBPSO) which leverages
backpropagation neural networks to evaluate the selected feature subsets.

Adeli and Broumandnia in [21] introduced another filter-based feature selection
algorithm for steganalysis named, an adaptive inertia weight-based PSO (APSO)
where the inertia weight of PSO is adaptively adjusted leverage of three components,
such as average distance of particles, the swarm diameter, and average velocity of
particles. Rostami and Khiavi [22] take advantage of a novel fitness function which
uses area under curve (AUC) to evaluate feature subset. The final accuracy of APSO
yields a better result in comparison with IFAB; however, their time complexity
problem still remains for CoD problems.

• Application of grey wolf optimizer in feature selection:

Pathak et al. [16] proposed a new feature selection algorithm, LFGWO which has
been used to classify stego images from cover images. GWO has been widely used
to solve large scale optimization, engineering, science problems, such as global
optimization tasks [13, 17] optimized feature selection algorithm using combining
GWO and PSO called PSOGWO.

4.2.2 Feature Selection for Network Traffic Classification

Internet traffics growth has increased unexpectedly due to expanding new technolo-
gies and data comes from everywhere using internet of things (IoT). However, as
lack of traditional traffic classification approaches, researchers have been applying
traffic classification using ML techniques. Current and simple ML techniques may
not turn into an optimum solution because of very high dimensionality.

Having multi-class imbalance datasets becomes another emerging challenging
issues for scientists. ML algorithms struggles with the data and do not yield high
recall for the minority classes. Researchers in their studies have proposed different
hybrid approaches to address these problems. Scientists worked on data in pre-
processing phase by using re-sampling approaches, cost-sensitive approaches and
feature extraction approaches which has very high impact on the classification
process. Dong et al. [23] proposed a new hybrid method using PSO to address
the aforementioned problems. Researchers in this paper presented a new hybrid
feature selection algorithm combining RelieF and PSO algorithms called RFPSO.
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Fig. 4.5 The process of feature selection using RelieF and PSO algorithms (RFPSO)

According to the figure, RFPSO has two main steps to follow. First step goes for
initialization of RFPSO, and second step is fitness function selection (Fig. 4.5).

Relief is an feature selection algorithm proposed by Kira and Rendell in
1992 [61]. It is one of the filter-based feature selection that works deeply on rela-
tionship among features. It was firstly presented to address binary classification
problems including discrete or numerical features. RFPSO calls the fitness function
which stands for the inconsistency rate defined in Eq. (4.4) [61]. T stands for the
total number of instances and the number of inconsistencies goes for N . They
considered three popular criteria to evaluate their work: one recall, one precision
and one Fmeasure.

fitness = N

T
. (4.4)

Shi et al. [18, 19] aimed to classify traffic data by proposing a robust fea-
ture extraction and feature selection algorithms which leverage customized PCA.
Hamamoto et al. [62] used GA to detect network anomaly detection. GA is applied
to create a digital signature of network segment by leveraging flow analysis.
The information are provided and extracted from network flows which have been
used to predict networks traffic action within short time period. They combined
GA with fuzzy logic to improve their result. Actually, fuzzy logic enables the ML
algorithm to decide whether a sample represents an anomaly or not.
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4.2.3 Feature Selection Benchmarks

Ahmed et al. [3] presented an advanced feature selection algorithm using chaotic
chicken swarm optimization (CCSO). They used CCSO to cover the problem of
stalling in local minimum which is one of the important and common problems of
traditional evolutionary and swarm algorithm. Unlike other evolutionary algorithms,
it remembers both minimum and maximum value of each solution to optimize
the search step. They used five different datasets, such as spambase, WBDC,
ionosphere, lung and sonar. They compared their result with other evolutionary
algorithms like PSO, binary CSO, bat swarm algorithm (BSO) and dragonfly
algorithm (DA).

Ant colony optimization attribute reduction (ACOAR) is another feature selec-
tion algorithm which reduces the number features using filtering based algorithm.
ACOAR is introduced in [35] and leverages the ACO process to improve the per-
formance of algorithm in rough set theory. Moreover, Tabakhi et al. [36] proposed
another yet novel approach for feature selection algorithm for unsupervised data,
called UFSACO. UFSACO looks for the optimal and the most relevant feature
subset; however, it does not take advantage of learning algorithms to that end.
Furthermore, its goodness of features relation is computed with respect to the
similarity among features. UFSACO aims to minimize the redundancy of features.
Moreover, ACOFS, a hybrid ant colony optimization algorithm presented in [38],
graph-based feature selection using ACO [37].

• Recent advances in feature selection optimization:

We have included and classified the most popular and important research studies
with respect to the evolutionary algorithms. In this section, we would like to add
last, but not the least, yet cutting-edge studies attempted to solve the NP-hard
problems. Rao et al. [32] presented another hybrid feature selection method using
bee colony and leveraging gradient boosting decision tree to address the NP-hard
problems like curse of dimensionality. Bui et al. [24] proposed a hybrid feature
selection for land pattern classification, using whale optimization algorithm (WOA)
and adaptive neuro-fuzzy inference concepts. Another improved WOA is presented
in [25] to Arabic sentiment analysis by feature selection. Kozodoi et al. [6] leveraged
profit measures to propose a wrapper feature selection algorithm using NSGA-II
genetic algorithm. Yan et al. [40] improved yet another evolutionary algorithm,
coral reefs optimization (CRO), to select the best matched feature subsets, called
BCROSAT to apply on biomedical data. Arora and Anand [39] introduced a binary
variants of a new evolutionary algorithm, the butterfly optimization algorithm
(BOA), to select the most important features. Zhang et al. [33] proposed new cost-
sensitive multi-objective ABC-based feature selection, TMABC-FS. Pierezan and
Coelho [63] proposed new optimization algorithm based on COA, for solving global
optimization problems.
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4.3 Discussion

NP-hard problems always become the most challenging issues, most frequently seen
in engineering and science. In this chapter, we address one of the emerging NP-
hard problems in data science, the curse of dimensionality (CoD). A large number
of research studies have attempted to solve this problematic issue. Researchers
continue to publish new papers on this problem since they have not found an
algorithm that performs in an accurate and robust way. Researchers did not
obtain a better result by only using basic machine learning algorithms, such as
support vector machine (SVM) or K-nearest neighbour (KNN). During the last
two decades, scientists started to apply evolutionary algorithms to this issue and
will continue publishing unlimited papers on this topic. Furthermore, data scientists
have significantly increased the number of domains to which they could apply
evolutionary algorithms. So, lately, the number of data has proliferated and lead
scientist to find a new type of data called big data. Thus, working with data including
manipulating data and finding the pattern governing whole data becomes harder.
Not only do we have different kinds of supervised dataset with ground truth, but
also this new type of data introduced a new concept, the unsupervised dataset.
Scientists proposed a technical way to deal with different groups of data, meanwhile
their approaches should be able to learn unsupervised datasets, too. The future
work would be trying to propose a solution to apply evolutionary algorithms to
help representation learning which enables scientists to find patterns and important
features independent of the ground truth and enables classifiers to learn supervised
and unsupervised data properly to avoid over-fitting.

4.4 Conclusion

Data science has some defects because of some data problems due to unexpected
growing amount of it. The main problem of data is the curse of dimensionality
(CoD), which causes yet another important problem, high time complexity. To
solve CoD problem, researchers have been proposed different feature selection
optimization techniques by selecting the most relevant and optimal features, tries to
evaluate supervised/unsupervised datasets. In this chapter, we provided the practical
examples of applied evolutionary algorithm for feature selection optimization and
reviewed emerging optimization application. Furthermore, scientists have adopted
evolutionary algorithms like IFAB and tailored them towards their goals. Moreover,
having applied evolutionary algorithms to select the most important features,
researchers improved the performance of classification algorithms. For instance,
IFAB decreased the dimension of a given dataset intensely, while also enhancing the
performance of the support vector machine (SVM) significantly. In addition, IFAB
decreased the time to learn a model, and improved time complexity. In this chapter,
we categorized optimization method according to the evolutionary algorithms and
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their applications. It is noteworthy that evolutionary algorithms have been applied
successfully on most of engineering, science and even biology and medical domains
which make them powerful and robust enough. This study provides the required
information for the researchers who plan to pursue research on dimension reduction
and large scale optimization problems.
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Chapter 5
Feature Selection in High-Dimensional
Data

Amirreza Rouhi and Hossein Nezamabadi-Pour

Abstract Today, with the increase of data dimensions, many challenges are faced
in many contexts including machine learning, informatics, and medicine. However,
reducing data dimension can be considered as a basic method in handling high-
dimensional data, because by reducing dimensions, applying many of the existing
operations on data is facilitated.

Microarray data are derived from tissues and cells considering differences in
the gene, which can be useful for diagnosing disease and tumors. Due to the large
number of features (genes) and small number of samples in microarray datasets,
selecting the most salient genes is a difficult task. Among the many techniques of
machine learning, feature selection and data classification play a very important and
widespread role in enhancing human life, from detecting voice emotion to detecting
illness in the body. In medicine, an effective gene selection can greatly enhance the
process of prediction and diagnosis of cancer. After selecting effective genes, the
duty of a specific classifier is usually to discriminate healthy people from patients
that are suffering from cancer based on their expression of the selected genes.

A vast body of feature selection methods has been proposed for high-dimensional
microarray data. Traditionally, these methods fall into three categories including
filter, wrapper, and hybrid approaches. Furthermore, new techniques such as
ensemble methods have recently been developed to improve the process of feature
selection and classification.
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This chapter presents an overview of the most popular feature selection methods
to deal with high-dimensional data and analyze their performance under different
conditions. The chapter starts with a global overview of the high-dimensional data
and feature selection (Sects. 5.2 and 5.3). Then, in Sect. 5.4 we review the state-
of-the-art methods on filter algorithms. In the next three Sects. (5.5, 5.6 and 5.7)
we describe the wrapper, hybrid, and embedded methods and in each section,
an overview of several works performed on these methods is discussed. Sect.
5.8 describes the ensemble techniques recently considered by the researchers and
summarizes the works done based on these techniques. In Sect. 5.9, we present
the experimental results of the most significant methods on high-dimensional data.
Finally, Sect. 5.10 summarizes this chapter.

Keywords Data science · Dimension reduction · Classification · Feature
selection · High-dimensional data

5.1 Overview

Today, with the increase of data dimensions, many challenges are faced in many
contexts including machine learning, informatics, and medicine. However, reducing
data dimension can be considered as a basic method in handling high-dimensional
data, because by reducing dimensions, applying many of the existing operations on
data is facilitated.

Microarray data are derived from tissues and cells considering differences in
the gene, which can be useful for diagnosing disease and tumors. Due to the large
number of features (genes) and small number of samples in microarray datasets,
selecting the most salient genes is a difficult task. Among the many techniques of
machine learning, feature selection and data classification play a very important and
widespread role in enhancing human life, from detecting voice emotion [1, 2] to
detecting illness in the body [3]. In medicine, an effective gene selection can greatly
enhance the process of prediction and diagnosis of cancer. After selecting effective
genes, the duty of a specific classifier is usually to discriminate healthy people from
patients that are suffering from cancer based on their expression of the selected
genes.

A vast body of feature selection methods has been proposed for high-dimensional
microarray data. Traditionally, these methods fall into three categories including
filter, wrapper, and hybrid approaches. Furthermore, new techniques such as
ensemble methods have recently been developed to improve the process of feature
selection and classification.

This chapter presents an overview of the most popular feature selection methods
to deal with high-dimensional data and analyze their performance under different
conditions. The chapter starts with a global overview of the high-dimensional data
and feature selection (Sects. 5.2 and 5.3). Then, in Sect. 5.4 we review the state-
of-the-art methods on filter algorithms. In the next three Sects. (5.5, 5.6 and 5.7)
we describe the wrapper, hybrid, and embedded methods and in each section,
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an overview of several works performed on these methods is discussed. Sect.
5.8 describes the ensemble techniques recently considered by the researchers and
summarizes the works done based on these techniques. In Sect. 5.9, we present
the experimental results of the most significant methods on high-dimensional data.
Finally, Sect. 5.10 summarizes this chapter.

5.2 Intrinsic Characteristics of High-Dimensional Data

Today, data is crucial resources in scientific research and industrial production. Data
is obtained through different ways at various costs. Indeed, finding the proper and
optimal data extraction method is a key step to work. Each method has its benefits
and disadvantages. High costs and the addition of noise are two important examples
of the negative points that these techniques may have.

Moreover, since the quality and characteristics of data may affect the results
of the classification, the most important prerequisite is to fully understand the
investigated data. The purpose of this introductory section is to briefly present some
characteristics that high-dimensional data may present.

5.2.1 Large Number of Features

In pattern recognition, a set of quantitative attributes is measured and extracted from
real-world patterns as a set of features describing the pattern in the digital world.
Various attributes can be generally measured from the real-world patterns, among
which only some quantities are measured and recorded depending on their necessity,
and accessibility to their extraction resources and storage devices.

As mentioned, various attributes and features can be measured and recorded
from each pattern. Evidently, recording all the extracted features is not a cost-
effective approach. The objective of feature selection is to select a small subset
from these features, in such a way that the considered patterns can be ideally
described and optimally classified the patterns. From a theoretical perspective,
higher discriminating power can be achieved by increasing the number of features
[4]. In practice, however, given the limited number of training data, a large number
of features can considerably lengthen the learning process, and also increases the
computational complexity of the problem. That is due to the fact that the irrelevant
or redundant features confuse the learning algorithm [4].

Today, the number of features in data has considerably grown. As an example, the
prostate dataset, as a two-class microarray data structure, includes 10,509 features.
Additionally, the 11_Tumor dataset contains 11 classes including 12,533 features (or
genes). Studies have shown that despite the large number of features, a large portion
of these features contain no useful information since they are either redundant or
irrelevant to the class. In other words, the effectiveness of the learning process can
only be increased by considering relevant and non-redundant features.
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On the other hand, given an excessively complex model, for example, when
the number of features is considerably greater than that of the observations, the
overfitting phenomenon may occur. In cases where increasing the number of training
samples is not practical, reducing the number of samples is needed for the training
dataset and, consequently this improves the overall performance of the classification
algorithm.

Hence, feature selection can be defined as the problem of reducing the data
dimensions through identifying the subset of features most required for the clas-
sification process from among numerous features [5]. Feature selection should be
conducted such that the reduced data contains as much information from the main
dataset as possible [6]. In other words, only features containing redundant, noisy,
and unnecessary information should be eliminated.

In general, the number of possible feature subsets increases exponentially (2D,
where D is the number of features) as the dimension increases [7]. Hence, finding an
optimal subset is mostly a difficult task, which is why the feature selection problems
are categorized as NP-hard type.

5.2.2 Small Number of Samples

According to [8], for a classification problem with D dimensions (the number of
features) and C classes, at least 10 × D × C training samples are required. For
instance, at least 40,000 training samples are required for the colon microarray
as a two-class dataset containing a total of 2000 features, while only 62 samples
are available. Therefore, the scarcity of samples is the most important challenge
regarding high-dimensional data.

As explained in [9], the problem of small sample size occurs when only m
samples are available in an D-dimensional vector space, such that m < D. When
facing scarcity of samples in a high-dimensional data, the data is referred to
as high dimension, low sample size (HDLSS) data, which is common in many
different fields such as microarray data, medical imaging, text recognition, and
face recognition. As mentioned in the previous section, the scarcity of samples can
increase the risk of overfitting.

5.2.3 Class Imbalance

Class imbalance occurs when in a dataset, the number of samples in a class is
significantly greater or smaller than the other classes. In such data, the class with
the lowest number of samples is referred to as minority classes. It is noteworthy
that, for the two-class cases, the positive class and the negative class are assumed to
be the minority class and the majority class, respectively.
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Table 5.1 Imbalance ratio of
the 11 most useful
high-dimensional datasets

Dataset Data type Imbalance ratio

Brain_Tumors1 Microarray 15.00
Breast_Cancer Microarray 1.10
CNS Microarray 1.857
Colon Microarray 1.818
Leukemia Microarray 1.780
Prostate_Cancer Microarray 1.04
SRBCT Microarray 2.64
Gli Microarray 2.27
Lung_Cancer Microarray 23.17
Ovarian Microarray 1.78
RELATHE Text data 1.2

In most classification algorithms, the classifiers presume an equal number of
training samples in each class. Hence, when these algorithms are applied to
imbalanced data, the classifier is mostly trained based on the samples in the majority
class, which consequently leads to a very poor prediction of the samples in the
minority class given its improper training.

The ratio of the cardinality of the majority class, Nmaj, to the cardinality of the
minority class, Nmin, is called the ratio of imbalance and is expressed as [8]:

IR = Nmaj

Nmin
(5.1)

The main challenge in imbalanced data is to correctly identify the samples in
the minority classes and the minority class is of greater significance and misclassi-
fication of minority samples leads to elevated risk [8]. For instance, the number of
positive samples in the diagnosis of diseases such as cancer is considerably smaller
than the negative ones, while identifying the samples in the positive class is greatly
important.

Table 5.1 reported the imbalance ratio of the 11 most useful high-dimensional
datasets.

Hence, numerous methods have been proposed to improve the performance of
classifiers facing this problem [9–13]. These methods are generally classified into
three categories [8]:

1. Classifier-independent preprocessing methods:

Two different approaches are employed in these methods to rebalance the
distribution of classes in the training data. In the first approach, referred to as over-
sampling, samples are added to the minority class. In the second approach, referred
to as under-sampling, some of the samples are removed from the majority class.
Evidently, both approaches attempt to somehow balance the classes. Authors of [8]
proposed an under-sampling method called HTSS to select the best training set in
imbalanced datasets.
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2. Modifications of algorithms

Employing specific solutions, these methods attempt to modify and improve the
considered classifier, matching it with the imbalanced data. The proposed method
in [14] is one of these methods which uses the ensemble technique to improve the
performance of the classifier when dealing with imbalance data.

3. Ensemble learning methods

These methods are based on the use and incorporation of multiple classifier
results. For instance, in [15] an ensemble-based method is proposed which, in the
first step imbalanced data is converted into some balanced ones and then by applying
multiple classifiers, the results are combined.

5.2.4 Label Noise

Today, the presence of noise in the data obtained from practical real-world appli-
cations using common methods is a well-known fact. Noises can be caused due to
different reasons, ranging from faults in the measurement devices to transmission
irregularities. Noisy data can significantly reduce the performance of the classifier.
In other words, the quality of the training data can highly influence the classifier’s
accuracy.

Labeling noises or mislabeling can happen for different reasons. As the first
reason, the available data may not be sufficient for reliable labeling [14, 16, 17],
an example of which includes a significantly low data quality [18, 19]. As another
reason, since the data is collected and labeled by an expert, the labeling phase is
prone to human errors. Moreover, the labeling process is dependent on the expert’s
opinion, and two different experts may label the same data differently.

As previously mentioned, the performance of the classifier is negatively affected
by noise. Besides, the label noise may cause the number of observations in the
class to change, which is a frequently occurring problem in medical fields. The
importance of this lies in the fact that in medical researches, measuring the number
of occurrences of a disease in a population is an important objective, while the
population size is generally not that large, consequently leading to a bias in the
measurements due to the label noise.

Feature selection, specifically when a ranking method is used, is among the most
important cases negatively affected by label noise, in which case the feature selec-
tion algorithm may overlook an important feature or select an irrelevant feature as
an appropriate feature.

Various methods have been proposed to cope with label noise. These methods
are generally classified into three categories [20]:

1. Label-noise robust methods: By reducing overfitting, these methods attempt
to deal with the label noise. Examples include the bagging and boosting
methods [21].
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2. Data cleansing methods: This method eliminates those samples which seem to be
mislabeled. Various methods are used to identify and filter the mislabeled sam-
ples. For example, the outlier detection method and the removal of misclassified
data points can be pointed out.

3. Label noise-tolerant learning algorithms: In these methods, the noise is coped
within the modeling step. For instance, in Reference [22], the loss function was
modified to deal with noise.

5.2.5 Intrinsic Characteristics of Microarray Data

In genetics, gene expression is one of the most fundamental issues. Genes are the
atomic units of genetic inheritance within the genome, holding info concerning all
the corporal traits of an individual. The expression of a gene in DNA can transfer
or reject a property to a person. In bioinformatics, the study of gene expression is
very important because it helps to diagnose and predict a variety of diseases, such
as cancer.

Microarray data is one of the most important data in bioinformatics, which is
used in many areas, including cancer detection. Such data are extracted from tissues
and cells considering variations within the gene which may be helpful for disease
and tumors diagnosis. The challenges of these data include a large number of genes,
as well as a very small number of samples, which makes it difficult to select effective
genes in this data. Moreover, they have the risk of overfitting due to the small sample
size of microarray data.

For example, breast data consists of 24,481 genes and only 60 samples of people
with this cancer and healthy people and shows the amount of expression of various
genes in them.

“Dimensionality curse” is one of the other difficulties in this data. This challenge
arises when a feature vector’s length is so large that the classifier is confused, and
its efficiency and extensibility are reduced.

Like most other high-dimensional data, microarray data is also affected by the
class imbalance problem. As mentioned, the classes are assumed to be balanced
in the standard data classification algorithms, which is why their application to
imbalanced data will not yield acceptable results, since the classifier tends to the
training samples in the majority class, consequently increasing the number of errors
in identifying positive samples.

Among the many techniques of machine learning, feature selection plays an
important role, especially in data classification issues. In medicine, an effective gene
selection can greatly enhance the process of prediction and diagnosis of cancer.
After the selection of effective genes, the duty of a specific classifier is usually
to discriminate healthy people from patients suffering from cancer based on their
expression of the selected genes.

The advantages of gene selection come with the extra effort of trying to get an
optimal subset of genes that will be a true representation of the original dataset.
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One of the researchers’ goals in bioinformatics is to achieve an optimal gene
selection method that has minimal computational complexity. Today, many studies
have been conducted to select important genes in medical data.

An optimal gene selection method is a method that selects an effective set of
genes that does not reduce the performance of the classifier, but also improves the
results of its classification.

5.3 Feature Selection

Today, feature selection has become one of the most important and fundamental
contexts in high-dimensional data. In the past, there were several feature selection
methods for classic data, but as the data dimension increases, many challenges
emerge in the context of feature selection. Traditional data whose features are
limited to a few tens of features have been replaced with high-dimensional data
which have thousands of features. High-dimensional data are usually found in text
processing, combinational chemistry, or bioinformatics.

Among thousands of features in these data, many of them are irrelevant to the
class labels or involve redundant information. Thus, data preprocessing is one of
the most essential steps for achieving an accurate and reliable classifier in high-
dimensional data [23]. Amidst, selecting suitable features by eliminating irrelevant
and redundant ones can be one of the most difficult and important steps for obtaining
a suitable classifier.

In bioinformatics, different researches have shown that most measured features
in a microarray experiment are not associated with classification validity of output
groups of the problem [20], thus, in order to prevent the curse of dimensionality,
eliminating irrelevant and excess features is one of the most important preprocessing
steps [18]. Therefore, feature selection is a vital preprocessing step in bioinformatics
and medicine. For example, diagnosing risk factor of deaths caused by cancer
and selecting effective features in cancer diagnosis is one of the most important
applications of feature selection in medicine [21]. Thus, finding a desirable feature
selection method for choosing suitable genes among thousands of existing ones is
very valuable in such a way that the best classification accuracy is obtained. An
appropriate attribute set is highly correlated with class labels and has very little
correlation with other features.

Recent studies indicate the importance of feature selection methods for selecting
informative genes before classifying microarray data for predicting and diagnosing
cancer [22].

Several feature selection methods have been proposed for high-dimensional
data. In general, the relation between evaluation function and the classifier can
be categorized into four main groups: filter methods, wrapper methods, embedded
methods, and hybrid methods. In the following, we will outline these four methods
and the proposed algorithms based on them.
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5.4 Filter Methods

Filter methods select a subset of features from the main dataset through employing
specific evaluation metrics which are mainly based on statistical and independent
methods. These methods select suitable features based on inherent characteristics of
data without involving data-mining algorithms. In other words, no feedback from
the learning algorithm is used. Figure 5.1 shows the flowchart of feature selection
using filter methods.

Filter approaches are fast; thus, they are suitable for high-dimensional data [24],
but the classification accuracy of the feature set provided by these methods is
low [25].

Filter methods can be divided into univariate and multivariate classes. In
univariate methods, the relation of a feature is measured using one evaluation metric,
then a subset of features with highest ranking values are selected as the final subset,
while in the multivariate method, the relation among features affects the selection
of genes [23]. In general, multivariate filter methods have lower speed compared to
univariate filter methods. Information gain (IG) [26] and F-score [27] are of famous
univariate filter methods [28] and ReliefF [29], FCBF [30], mRMR [31], and CFS
[32] are of prominent multivariate filter methods.

Filter methods can also be divided into three main groups: similarity based,
statistical based, information theoretical based.

5.4.1 Similarity-Based Methods

Each feature selection method uses a distinct benchmark to specify the relevance
of features. Similarity-based methods evaluate the importance of features by their
ability to preserve data similarity [33]. Most of the similarity-based methods cannot
handle feature redundancy due to the fact that these methods often evaluate the
importance of features individually.

For supervised feature selection, data similarity can be extracted from label infor-
mation; whereas for unsupervised feature selection techniques, most techniques use
different distance metrics to achieve data similarity [33].

ClassifierFilter methodMain Dataset

Fig. 5.1 The flowchart of the filter methods
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5.4.1.1 Relief and ReliefF

Relief [29] is one of the most well-known filter methods which can be applied
to nominal and numerical features. Relief searches for the features which are
statistically associated to a group; according to this algorithm, a feature is more
desirable which has more difference among samples of different groups and the
same values for samples of similar groups [29].

This method first selects a random sample and finds the “near Hit” and “near
Miss” based on Euclidean distance. It should be mentioned that near Hit is referred
to samples which have minimum Euclidean distance among samples of the same
class and near Miss is referred to samples which have minimum Euclidean distance
among samples of different classes [34]. Weight of all weights are zero at first which
are updated at each execution of the algorithm using Eq. (5.1) [35]:

Wi = Wi−1 − (xi − nearHiti )
2 + (xi − nearMissi )

2 (5.2)

Weight of each feature increases if its difference from near samples of the same
class is less than near samples in another class and vice versa. m relevance vectors
are constructed by m times execution of the method on m different random samples
and dividing each component of weight W on m, which is a metric for selecting
superior features. In other words, features whose relevance vector is greater than
the predetermined threshold are selected as the final feature [35]. One of the
shortcomings of Relief is that it cannot handle incomplete and noisy data; moreover,
this algorithm is only defined for two-group problems and cannot handle multiple-
group problems. Thus, in the ReliefF algorithm [29] which is an extension of Relief,
these problems are resolved and ReliefF is able to handle multiple-group problems,
noisy and incomplete data.

5.4.1.2 Fisher Score

The idea of Fisher score selection algorithm is to find subsets of features in which
distance between data points in different groups is as high as possible and distance
between data points in a group is as low as possible [28].

Consider feature Xi of an m-group dataset. If the sample set of features i is in

kth group Xk
i and

∣∣ Xk
i

∣∣ = nk where k = 1,2, . . . , m and X
k

i and Xi are mean of
features in Xk

i and Xi, then F-score of a feature is defined as follows [28]:

F (Xi ) =
∑m

k=1 nk

(
X

k

i − Xi

)2

∑m
k=1

∑
x∈Xk

i

(
x − X

k

i

)2
(5.3)

where the numerator indicates discrimination between two groups and the denom-
inator shows scattering in each group. The higher is F-score of a feature, discrimi-
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nation of that feature would be higher. After calculating F-score of each feature, a
number of features with a higher score are selected as the final feature subset based
on a predetermined threshold.

5.4.1.3 Laplacian Score

Laplacian score [36] is one of the most common similarity-based methods of
evaluation features which selects features that can best preserve the data manifold
structure. Applying the algorithm requires three steps. On the first step, the affinity
matrix is constructed as follows:

S (i, j) =
⎧
⎨

⎩
e−‖xi−xj‖2

t if xi is among of p − nearest nighbor of xj

0 Otherwise

(5.4)

where t is a suitable constant. Then the diagonal matrix D is defined as follows:

D (i, i) =
∑n

j=1
S (i, j) (5.5)

Then the matrix L is expressed as follows:

L = D − S (5.6)

Finally, the Laplacian score for each feature fi is calculated as follows:

Laplacian_Score (fi) = f̃ ′
i Lf̃i

f̃ ′
i

Df̃i

(5.7)

where

f̃i = fi − f ′
i D1

1′D1
1 (5.8)

Since this algorithm is a ranking algorithm, the top k features with the smallest
Laplacian scores will be selected as the best features.

5.4.2 Statistical-Based Methods

Statistical-based methods select the appropriate features based on different sta-
tistical criteria. Most of these methods are based on predefined straightforward
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statistical criteria to remove undesirable features. These methods are very useful
in high-dimensional data even as a preprocessing step because their computational
cost is very low.

Also, as similarity-based methods, these methods are often not able to consider
the feature redundancy.

5.4.2.1 Correlation-Based Feature Selection (CFS)

This method is a multivariate filter feature selection method proposed in [37]. This
method evaluates features according to correlation measure based on a heuristic
evaluation metric which is biased towards subsets which include uncorrelated
features with high correlation with the group.

The heuristic “merit” of the feature subset S with k features is expressed as
follows:

CFS_Score(S) = krcf√
k + k (k − 1)rff

(5.9)

where rcf is the mean feature class correlation and rff is the average feature-feature
correlation. To calculate rff and rcf ,CFS uses symmetrical uncertainty [38].

5.4.2.2 Low Variance

Low variance filter is a useful dimensionality reduction algorithm. Low variance
eliminates features whose variance is below a predefined threshold.

As noted earlier, if a feature is not able to differentiate between samples of
different classes, it is irrelevant and cannot be a proper feature alone. Consequently,
in this method, if a feature has a constant value for all samples, then the attribute is
irrelevant, and the variance associated with that attribute will be zero.

5.4.2.3 T-Score

T-score [39] is one of the most widely used methods of feature selection. T-score is
calculated by using the sample, mean and standard deviation values of the features
for each class.

t_score(f i) = | μ+
i − μ−

i |
√

n+
i

(
σ+

i

)2+n−
i

(
σ−

i

)2

n+
i +n−

i

(5.10)
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which + and – are class labels, μ+
i and μ−

i are means of class labels, μ+
i and μ−

i are
sample size of classes, σ+

i and σ−
i are sample size of classes. It should be noted

that this method is only used for classification in data with two classes (binary
classification).

This method is also a ranking method. As a result, the higher the T-score value,
the more important the corresponding feature is.

5.4.2.4 Information Theoretical-Based Methods

This method evaluates the importance of features by using different heuristic filter
criteria. The basic characteristics of information theoretical-based methods are to
maximize feature relevance and minimize feature redundancy [40]. It should be
noted that most of the proposed algorithms in this method is only applied to discrete
data. Consequently, if the properties values are continuous, the discretization
process is a necessary preprocessing step.

Unlike similarity-based methods and statistical-based methods, which were
mostly unable to address redundancy between features, these methods have the
ability to handle the features redundancy.

5.4.2.5 FCBF

Fast correlation-based filter method (FCBF) [33] is one of the multivariate filter
methods which is designed based on mutual information for handling high-
dimensional data. This method is employed symmetrical uncertainty (SU) measure
(Eq. (5.11)) to detect relevant and redundant features and evaluate the correlation
between feature-class and feature-feature [30].

SU (X, Y ) = 2

[
IG (X, Y )

H(X) + H(Y)

]
(5.11)

where in Eq. (5.11), H(X) and H(Y) are entropies of two features and IG(X, Y) is
information gain. FCBF first selects a set of features which have a high correlation
with the group based on SU measure and after eliminating redundant features, it
keeps the features relevant to the group.

5.4.2.6 Minimum-Redundancy-Maximum-Relevance (mRMR)

mRMR [31] is also a multivariate feature selection method which is based on mutual
information and measures correlation among features and correlation between
features and group using this measure. This method selects features which have
maximum relevance with class and minimum redundancy (maximum dissimilarity
among features). The feature score for a new unselected feature Xk is
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JmRMR (Xk) = I (Xk;Y ) − 1

|S|
∑

Xj ∈S

I
(
Xk;Xj

)
(5.12)

where in Eq. (5.12) the feature relevance is evaluated by I(Xk; Y) and I(Xk; Xj) is
information gain or mutual information between feature Xk and feature Xj.

5.4.2.7 Information Gain

IG method is one of the most applicable filter feature selection methods among
existing methods. This method which is a univariate method evaluates features based
on information gain. Information gain is based on entropy concept in information
theory. In other words, IG of feature xi in Sx is written as Eq. (5.13):

IG (Sx, xi) = H −
|Sxi=0|

|Sx|∑

v=values(xi)

H (Sxi = v) (5.13)

In Eq. (5.13), values(xi) is the set of values which xi can take. Entropy H(Sxi = v)
is also defined as follows:

H(S) = − (p+) log2 (p+) − (p−) log 2 (p−) (5.14)

which p+ is the ratio of positive samples to total samples and p− is the ratio
of negative samples to total samples. After calculating information gain of each
feature, features are sorted based on their rank; desired features are selected using a
threshold.

5.5 Wrapper Methods

Wrapper methods select desired features through employing results and perfor-
mance of the classifier for evaluating the importance of the feature subsets. In these
methods, a search mechanism is used to find the best subset of features among all
possible subsets. Two main search mechanisms which are used are greedy search
and random (stochastic) search. Each subset, which is proposed by an employed
search algorithm, is evaluated by a classifier and the correct classification rate of
the classifier is used as the fitness value for the corresponding feature subset [41].
Greedy search methods are single-track search methods which are easily trapped
into local optima. Sequential forward selection and sequential backward elimination
are among greedy search methods. Stochastic search methods select the subset of
features randomly. Figure 5.2 shows the flowchart of feature selection using wrapper
methods.
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ClassifierWrapper
method

Main
Dataset

Fig. 5.2 The flowchart of the wrapper methods

The main random search algorithms are metaheuristics including particle swarm
optimization (PSO), ant colony optimization (ACO), genetic algorithm (GA), and
gravitational search algorithm (GSA). Since wrapper methods use the accuracy of
the classifier as an evaluation metric, their accuracy is higher and their speed is lower
than filter methods [42]. Moreover, wrapper methods cannot be employed alone due
to the high computational complexity and low speed in high-dimensional data [43,
44].

We subsequently discuss some representative metaheuristics algorithms that have
recently been used in high-dimensional data.

5.5.1 ABACOH and ACO

Ants colony optimization algorithm was first introduced in 1991 inspired by the
behavior of ants searching for food [45]. Despite being blind and dumb, ants are
able to find the shortest path from nest to food by tracking remained pheromone
through communicating with each other and transferring path information. In other
words, pheromone intensity and its evaporation in paths which are rarely used allow
the ants to choose the shortest path.

Using this algorithm for feature selection, the problem should be defined as a
graph in which features are used as nodes of the graph. Location of ants is selected
on the graph randomly, then each ant selects its subsequent node using the following
equation:

P k
ij (t) =

⎧
⎨

⎩

τα
ij η

β
ij∑

l τ α
il η

β
il

if i and j are addmissible node

0 otherwise
(5.15)

If kth ant is at position i at time t, it would be at location j at time t + 1 with
probability P k

ij . nij is cost of moving from node i to node j. α and β are parameters
of the problem which control importance of trace against vision. τα

ij is pheromone

intensity of the edge between node i and node j. The trace which kth ant adds to edge
(ij) is obtained using the following equation [46]:
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�τk
ij =

{
Q
Fk

if the kth ant traverse arc (i, j) in Tk

0 otherwise
(5.16)

Fk is the cost of passing the path which kth ant has passed and branch (i, j) is in
that path. Tk is tour of the kth ant or movement path of this ant. Therefore, the trace
which all ants add to edge (ij) is equal to

�τk
ij =

m∑

1

�τk
ij (5.17)

In Eq. (5.17), m is the number of ants. Considering the above relations, new
pheromone intensity created on the edge between nodes i and j is calculated using
Eq. (5.18):

τij(new) = (1 − ρ) τij(old) + �τk
ij (5.18)

In Eq. (5.18), ρ is the evaporation coefficient of pheromone intensity which
prevents excess accumulation of trace. If a lot of ants pass a path, trace of that
path is increased and trace of paths which few ants have passed through evaporates
gradually [46].

In recent years, several methods have been proposed for feature selection based
on ants colony algorithm. Binary ants colony optimization algorithm which has
been proposed based on ants algorithm has advantages including more desirable
classification rate and higher speed compared to ACO. This method was first
introduced to solve binary space as TACO; later it was used for optimization.

Main problem of BACO in feature selection is that each ant at node i is only able
to decide about the next feature and if it ignores this feature, it cannot investigate
presence of this feature in subsequent nodes. Moreover, this method is able to offer
a comprehensive solution for machine vision [46].

In 2013, a version of BACO called ABACOH was proposed in [46], in which
BACO and discrete ACO are used in combination. In this algorithm, P k

ij is defined
as follows:

P k
i_x,j_y

{ τix ,jy ηix ,jy∑
j τix ,j0ηix ,j0+τix ,j1ηix ,j1

j ∈ addmissible node

0 otherwise
(5.19)

This equation specifies the probability of selecting bit of value y∈{0, 1} in the
next node for kth ant at time t at location x ∈ {0,1}of node i. In addition, τ i0,j0,
τ i1,j0, τ i0, j1, τ i0,j0 indicate pheromone intensity between paths which connect
nodes i and j on (0 to 0), (1 to 0), (0 to 1), and (1 to 1) edges [38]. This algorithm
has resolved the shortcomings of ACO. ABACOH allows the ant to search among
all existing features, which is an important characteristic of ACO. In this method,
unlike previous ACO methods, where the observed feature was the selected feature,
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the ant can select or reject the observed features. Moreover, in this method, ants
can see all the features which have not been observed previously which gives better
results in the process of selecting features.

5.5.2 PSO

Particle swarm optimization (PSO) [47] algorithm is based on population technique
inspired by the social behavior of birds. Suitable computational complexity, few
parameters, and global search ability are among advantages of this algorithm which
make PSO one of the most successful existing algorithms.

In this algorithm, each solution is a particle in the swarm which has a location in
the search space which is represented with vector xi:

xi =
(
x1
i , x2

i , . . . , xd
i

)
(5.20)

where d is the dimension of the search space. Particles move in the search space to
find the optimal solution and their velocity is shown with vector vi:

vi =
(
v1
i , v

2
i , . . . , v

d
i

)
(5.21)

Then the location and velocity of each particle are updated considering the
experience of the particle itself and its neighbors according to the following
equations:

xd
i (t + 1) = xd

i (t) + vd
i (t + 1) (5.22)

vd
i (t + 1) = w ∗ vd

i (t) + c1 ∗ r1
(
pbestdi − xd

i (t)
)

+ c2 ∗ r2
(
gbestd − xd

i (t)
)

(5.23)

In Eq. (5.22) and Eq. (5.23), t indicates tth iteration and d indicates dth dimension
of the search space. w is the weight of inertia which controls the effect of previous
velocity on new velocity. C1 and C2 are speedup constants, r1 and r2 are random
numbers with uniform distribution in [0, 1]. pbestdi shows best location achieved
by particle i in the dth dimension (best solution achieved by the particle i) and
gbestd is the best location achieved by the whole swarm at dth dimension (best
solution obtained by the whole swarm). The algorithm is stopped when the desired
solution is obtained, or the number of iterations reaches the predetermined value
(maximum iteration).
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5.5.3 IBGSA

The gravitational search algorithm is an example of metaheuristic methods proposed
in 2009 which are inspired by mass and gravity [48]. According to Newton’s
law, each particle in the universe applies force to other particles which is directly
proportional to multiplication of their masses and inversely proportional to the
square root of their distance [49].

In recent years, this algorithm has attracted attentions due to its high efficiency
in solving different optimization problems. In 2010, the binary version of this
algorithm called BGSA was proposed in [50]. Then, in 2014, an improved version of
this algorithm called IBGSA was proposed in [51] to prevent being trapped in local
optimums in solving feature selection problems. In the following, metaheuristic
IBGSA algorithm is described.

In a system which has s agents, the position of ith agent in the mentioned
algorithm is described as in Eq. (5.24):

Xi =
(
x1
i , . . . , xd

i , . . . , xn
i

)
i = 1, 2, . . . ., s (5.24)

where xd
i shows the position of the dimension d of mass i. n indicated dimension of

search space. Mass of each agent is also calculated after calculating the fitness of
current population using Eq. (5.25):

Mi(t) = fiti (t) − worst(t)
∑S

j=1 fiti (t) − worst(t)
(5.25)

where Mi(t) and fiti(t) are mass and fitness of ith agent at time t and worst(t) is
described as Eq. (5.26):

worst(t) = max fitj (t) j ∈ {1, 2, . . . , s} (5.26)

Resultant forces applied to ith agent from heavier agents are calculated according
to gravity law as in Eq. (5.27):

Fd
i (t) =

∑

j∈kbest,j �=i

rand jG(t)
Mi(t)Mj (t)

Rij (t) + ε

(
xd
j (t) − xd

i (t)
)

(5.27)

kbest includes k superior agents with more fitness which is a function of time
which starts with k0 and reduces with time.

Resultant forces applied to an agent are calculated according to accelerating
movement law of the agent using Eq. (5.28):
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ad
i (t) = Fd

i (t)

Mi(t)
=

∑

j∈kbest,j �=i

randjG(t)
Mj (t)

Rij (t) + ε

(
xd
j (t) − xd

i (t)
)

(5.28)

Finally, speed of each agent is updated using Eq. (5.29):

vd
i (t + 1) = randi × vd

i (t) + ad
i (t) (5.29)

In the above equations, randi and randj are two random numbers with uniform
distribution on [0, 1] and ε is a small value. Rij(t) is hamming distance of agents
i and j which is calculated using Eq. (5.30):

Rij (t) = 1

n

n∑

d=1

∣∣∣xd
j (t) − xd

i (t)

∣∣∣ (5.30)

Gravitational constant G is also a function of time which is initialized with G0
and reduces with time. Location of agents changes with a probability according to
Eq. (5.31) which is known as transfer function:

Tf
(
vd
i (t)

)
= A + (1 − A) ×

∣∣∣tanh vd
i (t)

∣∣∣ (5.31)

In the above equation, A is calculated using Eq. (5.32):

A = k1

(
1 − exp

Fc

k2

)
(5.32)

where k1 is a constant parameter and k2 is time constant defined based on the
algorithm. Fc is the failure counter. Failure occurs when the best-observed solution
does not change after an iteration. Finally, agents move according to Eq. (5.33):

xd
i (t + 1) =

{
complement xd

i (t), if rand < Tf
(
vd
i (t + 1)

)

xd
i (t), else

(5.33)

One of the most important differences of IBGSA compared to BGSA is its elitism
property. In this version, the location of the agent changes only when the new
location has better, less than or equal fitness to previous fitness. Mathematically,
this characteristic is defined as follows:

Xi (t + 1) =
{

Xi (t + 1) , if fit (Xi (t + 1)) < fit (Xi (t))
Xi (t) , otherwise

(5.34)

To stop the algorithm, different criteria are considered.
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5.6 Hybrid Method

Hybrid methods combine filter and wrapper methods; at the first step, the dimension
of the main feature set is reduced using filter methods and then wrapper methods
are implemented on the reduced feature set. Accuracy of these methods is usually
higher than filter methods [52]. Moreover, these methods have lower computational
complexity and higher speed compared to wrapper methods, thus they can be a
proper option for feature selection in high dimensions [53]. Figure 5.3 displays the
flowchart of feature selection using hybrid methods.

Authors of [54] proposed a hybrid method combining SVM-RFE and mRMR.
Results of this method have given better results compared to SVM-RFE, mRMR,
and some other methods. In 2011, authors of [55] have proposed a hybrid method
for text categorization in which information gain filter method is applied to data
and then genetic algorithm is applied to selected data of the first step to select the
final features. Chuang et al. [56] proposed a hybrid method called CFS-TGA which
combines correlation-based feature selection (CFS) and Taguchi-genetic algorithm
and then results are applied to 11 microarray datasets.

Authors of [57] have proposed a type of hybrid method for gene selection
in microarray data in which a genetic algorithm with dynamic parameter setting
(GADP) is applied to data to generate a number of subsets of genes and then χ2 is
applied to selected features of the first step to select the final features. Shreem et al.
[58] proposed a hybrid method called R-m-GA which combines ReliefF, mRMR,
and GA.

In 2015, authors of [59] proposed a hybrid method which in the first step, the
number of features is reduced by a filter algorithm based on information gain
values and then by applying binary DE-based wrapper method, the final features
are selected.

In 2019, authors of [60] proposed a hybrid method by combination of mutual
information (MI) and recursive feature elimination (RFE) for reducing the dimen-
sions of the three benchmark datasets from the UCI repository.

FSCBAS, which is a hybrid method, was proposed by [61]. This method is
obtained by combination of clustering and modified binary ant system (BAS).

In [62] the authors developed another hybrid-based feature selection algorithm.
It first uses a V-WSP based filter method to select the top features. Then, a particle
swarm optimization (PSO) based method is used to select the final features.

In [63] the authors introduced a new hybrid method using the heuristic search.
Five filter algorithms including CFS, mRMR, oneRFeatureEval, corrFeatureEval,
and IG are used along with the genetic algorithm for dimensionality reduction in
three biomedical data.

ClassifierFilter method Wrapper methodMain
Dataset

Fig. 5.3 The flowchart of the hybrid methods
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Table 5.2 Hybrid methods used on high-dimensional data

Method Data category Data type Year Ref

SVM-RFE + mRMR Microarray data Binary 2009 [54]
IG-PCA/GA Text data Multiclass 2011 [55]
CFS-TGA Microarray data Multiclass 2011 [56]
GADP Microarray data Multiclass 2011 [57]
R-m-GA Microarray data Binary 2012 [58]
BDE-XRank Microarray data Binary 2015 [59]
MI-RFE Physical data Binary 2019 [60]
FSCBAS Physical/life/computer/microarray data Multiclass 2019 [61]
V-WSP-PSO Spectra data Multiclass 2019 [62]
5Filter + ga Biomedical data Multiclass 2019 [63]
RFACO-GS Microarray data Multiclass 2019 [64]

Authors of [64] have proposed a hybrid method using Relief algorithm and
ant colony optimization algorithm to reduce dimensionality in microarray data and
tumor data classification.

Table 5.2 presents a summary of the hybrid methods described, along with the
original reference, the data category, and the type of data.

5.7 Embedded Methods

Embedded methods perform feature selection as an inseparable part of the machine
learning algorithm [65]. In these methods, learning and feature selection are two
impartible components. Embedded methods have shorter execution time compared
to wrapper methods. The computational complexity of these methods is more than
filter methods and lower than wrapper methods [66].

Among methods which are applied on high-dimensional data based on embedded
methods, the method proposed in [67] which is proposed for cancer data classifica-
tion can be mentioned. This method performs feature selection through repeated
training of support vector machine with existing features set and eliminating the
least significant features.

In 2010, kernel-penalized SVM (KP-SVM) was proposed in [68]. This method
selects relevant features through penalizing use of the feature in the dual formula
of SVM. In 2012, authors of [69] proposed iterative feature perturbation (IFP)
method. This embedded method employs backward elimination and a metric for
determining the least significant features and investigates the effect of each feature
on the performance of classifier while being disturbed by noise.

In 2018, KP-CSSV was proposed in [70]. This method is inspired by the KP-
SVM method to solve the class imbalance problem in microarray data.

In 2019, authors of [71] proposed an embedded method based on the weighted
Gini index method to deal with the imbalanced classification problems.
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Table 5.3 Embedded methods used on high-dimensional data

Method Data Data type Year Ref

KP-SVM Microarray data Multiclass 2010 [68]
IFP Microarray data Binary 2012 [69]
KP-CSSV Microarray data Multiclass 2018 [70]
GI − FSρ Life/computer data Binary 2019 [71]
MGRFE Microarray data Multiclass 2019 [72]

Authors of [72] proposed an embedded method called MGRFE, based on an
embedded integer-coded genetic algorithm to select the top genes in microarray
data. Table 5.3 presents a summary of embedded methods described.

5.8 Ensemble Techniques

Today, many methods are proposed for feature selection in high-dimensional data.
High-dimensional data not only may be very large in terms of number of features
and data, but also they may face problems in terms of redundancy, noise, and
nonlinearity, thus it cannot be claimed that a method gives good results in all
data because many of the methods are not able to handle these problems alone.
Thus, researchers are attracted towards the ensemble feature selection/classification
techniques. Thus, the probability of selecting a wrong solution is decreased and
learning algorithms which are trapped in local optimums create better estimations
[73]. In ensemble techniques, instead of considering the results of a single method
as the final results, results of applying several methods on data are combined.

Among several frameworks which are based on ensemble on high-dimensional
data, ensemble methods shown in Figs. 5.4 and 5.5 can be mentioned. In Fig. 5.4,
as can be seen, the results of several filter methods on high-dimensional data are
combined in different ways, thus the final selected subset is obtained. This method
does require an integration method to combine the results obtained from each filter
method.

In Fig. 5.5, several filter methods are applied to high-dimensional data, indepen-
dently. Each filter method selects its selected subset, then results of each one are
given to the classifier; finally, after the classification stage, an integration method
combines the results of each classifier [74].

Yang et al. [75] have proposed a method called multi-criteria fusion-based
recursive feature elimination (MCF-RFE) based on ensemble concept which has
provided desirable results for microarray data; their motivation is announced to be
combining multiple criteria and recursive feature elimination (RFE) search strategy.
Bolon et al. [76] have proposed a filter ensemble framework and an ensemble of
classifiers in which several filter methods like CFS, INTERACT, and information
gain are utilized. Authors of [35] have proposed a hybrid-ensemble method for
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Fig. 5.4 Instance 1 of
ensemble techniques
(ensemble feature selection)

feature selection in microarray data in which results obtained from ReliefF, IG,
and F-score are combined; then, the improved binary gravitational search algorithm
(IBGSA) is applied to the results obtained from the mentioned methods.

In 2014, four ensemble methods called E1-cp, E1-nk, E1-ns, and E2 were
proposed in [74]. Advantages of this method include a variety of responses in filter
methods which makes the final response desirable. In [73], a method based on
ensemble is proposed which combines IG, CFS, and Relief. Comparing the results
obtained from applying the above methods to high-dimensional data with filter
methods and two other ensemble methods show that this algorithm outperforms
other methods in terms of classification. Authors of [34] have proposed a hybrid-
ensemble method called HM-ABACOH. They have combined the results of three
different filter methods: ReliefF, FCBF, IG and then the ABACOH metaheuristic
method is applied to results of the combination of filter methods. Finally, this
method is applied to seven microarray datasets. In [74], CFS, Cons, IG, and Relief
filter methods are combined with different classifiers using ensemble methods and
compared the results on several microarray datasets.

It can be said while working with high-dimensional data, the first step is to reduce
data dimension, because high dimension increases computational cost and causes
the curse of dimensionality. As mentioned, in order to reduce dimension in such
data, filter methods are the simplest and fastest methods, but these methods usually
do not have high classification accuracy. On the other hand, wrapper methods
typically have low speed but high classification accuracy. As mentioned above,
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Fig. 5.5 Instance 2 of ensemble techniques (ensemble classification)

hybrid methods using both filter and wrapper methods have reasonable speed and
relatively satisfactory classification accuracy. Hence, one of the new approaches
proposed for dimensionality reduction in high-dimensional data is the use of hybrid
methods in the form of ensemble techniques.

In 2017, [22] introduced a new type of hybrid-ensemble methods. In this method,
after applying the filter method to the data, the ensemble technique is used to
combine the results of the metaheuristic methods. In this method, the FCBF
algorithm was used as a filtering method and the ABACO and IBGSA methods
were used as wrapper methods.

Authors of [42] proposed a framework based on hybrid-ensemble methods. In
this framework, each filter technique generates its output. Then the outcomes of
each technique are provided in several wrapper techniques. Finally, the outcomes
of different wrapper methods are combined, and the final output of this phase is
provided. Figure 5.6 shows the flowchart of this method.

In 2018, authors of [77] proposed an ensemble feature selection technique based
on t-test and nested genetic algorithm for feature selection in high-dimensional data.
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Fig. 5.6 The flowchart of the hybrid-ensemble framework proposed in [42]

In 2019, authors of [78] by examining several different methods, including filter
methods, embedded methods, and univariate/multivariate techniques have shown
that ensemble techniques are more robust than other single methods.

Authors of [79] proposed an ensemble-based method using bits from k-mean
techniques called feature co-association ensemble (CFE) to select the best features
on several types of data in UCI repository. In [80], the authors present an ensemble
technique using the three feature selection methods of maximum information
coefficient, XGBoost, and chi-square for feature selection in high-dimensional two-
class data. Authors of [81] developed an ensemble feature selection method by
combining four state-of-the-art filter methods to identify robust diabetic kidney
disease (DKD) risk factors by balancing predictability and stability. Table 5.4
summarizes methods based on ensemble techniques.

In [82], the authors present an ensemble technique for feature selection in
microarray data. In this method, they have implemented a multistage neural network
ensemble to combine the outputs.
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5.9 Practical Evaluation

5.9.1 Dataset

In order to perform the experiments, ten microarray data whose general characteris-
tics are given in Table 5.5 are employed. This table indicates the variety of samples,
number of features, and number of classes. It should be noted that all datasets used
in this chapter are available for download in [83, 84].

As mentioned, microarray data have a large number of features and a few
numbers of samples which can be seen in Table 5.5. Among datasets of Table 5.5,
the minimum number of features is 2000 which corresponds to colon dataset which
has 62 samples and the maximum number of features is 24,481 which corresponds
to Breast_Cancer dataset with 97 samples. It should be mentioned that in these
experiments, multi-class datasets like Brain_Tumor1 and SRBCT are investigated.

5.9.2 Performance Evaluation Criteria

In this experiment, seven measurement criteria have been used to compare the
methods, including the correct classification rate, the number of selected features,
sensitivity (Se) and specificity (Sp), MCC (Matthews correlation coefficient), GM
(geometric mean), and GMEAN.

The correct classification rate is the number of test specimens properly classified
divided by the total number of test specimens, which can be obtained using the
following equation:

ACC = The number of correctly classifed test samples

The total number of test samples
(5.35)

Table 5.5 Microarray datasets used for benchmarking

No Dataset # of features # of samples # of classes

1 Brain_Tumors1 5920 90 5
2 Breast_Cancer 24,481 97 2
3 CNS 7129 60 2
4 Colon 2000 62 2
5 Leukemia 7129 72 2
6 Prostate 10,509 102 2
7 Prostate_Cancer 12,600 21 2
8 Lung_Cancer 12,533 181 2
9 SRBCT 2308 83 4
10 Ovarian 15,154 253 2
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The higher the correct classification rate, the more significant the role of the
subset of selected features in the correct classification rate; therefore, they will be
considered more appropriate features.

Sensitivity and specificity are also designed to evaluate the performance of binary
(binomial) classifications. In general, if we consider classes of two-class data as
positive and negative classes, assuming that:

TP: Number of test samples which are classified correctly.
FP: Number of test samples which are classified as positive incorrectly.
TN: Number of test samples which are classified correctly.
FN: Number of test samples which are classified as negative incorrectly.
In this case, the sensitivity, the specificity, the geometric mean of sensitivity and

specificity, and the Matthews correlation coefficient are expressed as follows:

Sensitivity(SN) = T P

T P + FN
(5.36)

Specificity(SP ) = T N

T N + FP
(5.37)

The feature reduction (Fr) parameter is the ratio of the number of selected
features by the algorithm to the total number of features and is given by the
following equation:

Fr = p − q

p
(5.38)

where p is the total number of features, and q is the number of selected features.
According to this equation, the closer the Fr value to 1, the greater the reduction
in the number of features and more preferred. Note that the lower the number of
selected features, the lower the computational complexity.

Gmean and MCC are expressed as:

Gmean = √
Sensitivity × Specificity (5.39)

MCC = T P × T N − FP × FN√
(T P + FP) (T P + FN) (T N + FP) (T N + FN)

(5.40)

The authors state that since the number of selected features and the Fr parameter
alone cannot measure the strength or weakness of a method, we need to use criteria
such as the classifier accuracy rate as well. Therefore, the geometric mean between
two criteria has been used to consider the effect of the classification accuracy and
the feature reduction parameter criteria, as follows:

GM = √
ACC × Fr (5.41)



5 Feature Selection in High-Dimensional Data 113

5.9.3 Data Normalization

Data normalization can be considered as one of the preprocessing stages in each
experiment. With normalization, the values of continuous features of each dataset
are placed in the interval [0, 1]. In the normalization process, all features are given
the same weight when calculating the distance between datasets.

5.9.4 Analysis of Filter Algorithms

As mentioned, filter methods are the most popular and applicable feature selection
methods. These methods operate independently of learning algorithm; thus, their
speed is higher than other feature selection methods. In the following, we compare
the results of applying the filter methods mentioned in Sect. 5.4 on several high-
dimensional datasets.

In this subsection, the results were evaluated by both SVM and KNN classifiers,
as well as by 10 CV evaluation method.

It is noteworthy that the results related to multi-class datasets are not addressed
in the results of the T-score filter method because the simple version of this method
is only applicable to two-class data.

Tables 5.6 and 5.7 show the results of applying nine filter-based methods on 8
well-known microarray datasets, in terms of average classification rates over ten
different runs, by applying the SVM and KNN classifiers, respectively.

All of the methods mentioned in in Tables 5.6 and 5.7 are ranker methods,
except the two methods, i.e., FCBF and CFS which return a set of selected features,
meaning that they assign a rank to each feature which is the importance of that
feature. Therefore, among the ranker methods mentioned, 100 top features have
been studied as selected features.

According to the results of Tables 5.6 and 5.7, it can be found that the
Prostate_Cancer data is the most challenging available data compared to other data
provided. One of the most important reasons why this data is the most challenging
is the enormous number of features of this data (i.e., 12,600) compared to the
negligible number of its samples (i.e., 21). Moreover, the other major reason why
applying classification on this dataset is difficult is that its test data have been
extracted from several different experiments and has the dataset shift problem.
However, the T-score and FCBF methods have been able to obtain acceptable results
on this data.

As can be seen, the SVM classifier yields better classification accuracy than the
KNN classifier. In addition, according to the results corresponding to this classifier,
we can say that the FCBF method, which is one of the information theoretical-
based methods, has been able to obtain better results than other methods. However,
it should be noted that in this experiment, only 100 features are considered as the
number of selected features for the ranker methods. These methods may be able



114 A. Rouhi and H. Nezamabadi-Pour

Ta
bl

e
5.

6
E

xp
er

im
en

ta
lr

es
ul

ts
fo

r
th

e
SV

M
cl

as
si

fie
r

af
te

r
pe

rf
or

m
in

g
re

gu
la

r
te

nf
ol

d
cr

os
s-

va
lid

at
io

n

M
et

ho
d

B
ra

in
_T

um
or

1
B

re
as

t_
C

an
ce

r
C

N
S

C
ol

on
L

eu
ke

m
ia

Pr
os

ta
te

_C
an

ce
r

SR
B

C
T

O
va

ri
an

Si
m

ila
ri

ty
-b

as
ed

m
et

ho
ds

R
el

ie
fF

0.
86

2
0.

70
2

0.
64

6
0.

79
8

0.
97

8
0.

56
11

0.
95

2
1

Fi
sh

er
sc

or
e

0.
88

4
0.

64
2

0.
55

4
0.

78
2

0.
96

7
0.

54
2

0.
98

1
1

L
ap

la
ci

an
sc

or
e

0.
86

0
0.

77
0

0.
66

2
0.

76
1

0.
85

0.
56

0
0.

95
8

0.
89

8
St

at
is

tic
al

-b
as

ed
m

et
ho

ds
C

FS
0.

90
2

0.
81

3
0.

87
3

0.
84

1
0.

94
0.

68
2

0.
96

2
0.

99
1

L
ow

va
ri

an
ce

0.
86

6
0.

66
3

0.
68

1
0.

81
0.

94
21

0.
54

3
0.

99
3

1
T-

sc
or

e
–

0.
56

2
0.

81
6

0.
76

2
0.

94
28

0.
81

1
–

1
In

fo
rm

at
io

n
th

eo
re

tic
al

-b
as

ed
m

et
ho

ds
FC

B
F

0.
96

1
0.

82
5

0.
91

2
0.

82
4

0.
98

2
0.

88
7

0.
99

2
1

m
R

M
R

0.
88

7
0.

80
2

0.
83

6
0.

78
6

0.
97

2
0.

71
0

0.
97

8
0.

99
8

In
fo

rm
at

io
n

ga
in

0.
91

1
0.

80
0

0.
79

5
0.

80
1

0.
98

19
0.

79
9

1
1



5 Feature Selection in High-Dimensional Data 115

Ta
bl

e
5.

7
E

xp
er

im
en

ta
lr

es
ul

ts
fo

r
th

e
K

N
N

cl
as

si
fie

r
af

te
r

pe
rf

or
m

in
g

re
gu

la
r

te
nf

ol
d

cr
os

s-
va

lid
at

io
n

M
et

ho
d

B
ra

in
_T

um
or

1
B

re
as

t_
C

an
ce

r
C

N
S

C
ol

on
L

eu
ke

m
ia

Pr
os

ta
te

_C
an

ce
r

SR
B

C
T

O
va

ri
an

Si
m

ila
ri

ty
-b

as
ed

m
et

ho
ds

R
el

ie
fF

0.
83

0
0.

65
4

0.
54

4
0.

77
8

0.
95

7
0.

53
22

0.
89

8
0.

99
2

Fi
sh

er
sc

or
e

0.
86

1
0.

65
13

0.
64

0.
79

2
0.

96
0

0.
54

2
1

0.
99

2
L

ap
la

ci
an

sc
or

e
0.

83
1

0.
60

2
0.

68
8

0.
65

0
0.

83
5

0.
51

1
0.

97
3

0.
87

8
St

at
is

tic
al

-b
as

ed
m

et
ho

ds
C

FS
0.

88
3

0.
78

1
0.

84
0.

81
2

0.
94

1
0.

59
0

0.
93

4
0.

97
0

L
ow

va
ri

an
ce

0.
84

4
0.

58
1

0.
61

0.
76

0
0.

84
9

0.
55

3
0.

85
8

0.
93

2
T-

sc
or

e
–

0.
52

5
0.

80
9

0.
78

1
0.

98
1

0.
85

5
–

0.
99

0
In

fo
rm

at
io

n
th

eo
re

tic
al

-b
as

ed
m

et
ho

ds
FC

B
F

0.
96

2
0.

79
8

0.
89

0.
81

1
0.

98
0

0.
84

1
0.

99
3

1
m

R
M

R
0.

85
3

0.
80

2
0.

81
2

0.
71

5
0.

97
2

0.
68

8
0.

94
2

0.
99

2
In

fo
rm

at
io

n
ga

in
0.

90
0

0.
80

0
0.

58
0.

80
0.

97
2

0.
73

0
0.

98
0

1



116 A. Rouhi and H. Nezamabadi-Pour

to obtain better results by changing this value. In general, one of the challenges
of ranker feature selection methods is to find the optimal threshold value for the
appropriate feature selection.

Hence, one can say that achieving an optimal filter-based feature selection and
then optimal classification on a particular dataset depends on factors such as the
feature selection algorithm, the threshold value considered for the ranker methods,
and the classifier used.

5.9.5 Analysis of Hybrid-Ensemble Methods

As mentioned earlier, hybrid feature selection methods can be highly efficient and
produce desirable results while dealing with high-dimensional data due to enjoying
the advantages of both filter and wrapper methods. In terms of time complexity,
these methods significantly outperform the wrapper methods because the data
dimension has declined dramatically before entering the wrapper phase. On the
other hand, the accuracy of these methods can be much better than the filter methods
because the high-accuracy wrapper methods have been utilized after applying the
filter method.

As mentioned previously, in ensemble techniques, the results of several different
approaches are mixed, and the response of each method affects the final results.
Consequently, these approaches can be highly effective in the selection of desirable
features as well as eliminating redundant and unrelated features.

Meanwhile, using ensemble techniques in the form of hybrid methods can also
be a useful approach to handle high-dimensional data. As a result, researchers have
been attracted to these two techniques.

In this section, we will investigate and analyze the results of applying hybrid-
ensemble methods on high-dimensional data.

5.9.5.1 Hybrid-Ensemble 1

The proposed method in [52] is based on hybrid-ensemble, which has produced
satisfactory results on high-dimensional data. In this method, as mentioned earlier,
data dimensionality reduction is carried out by a filter method; then, the data of two
metaheuristic algorithms are applied independently on the dimensionality reduced
data to choose effective features with high precision. Finally, the results of the
two metaheuristic methods are combined with an integration method. The authors’
proposed framework is shown in Fig. 5.7.

In this study, the ABACOH and IBGSA algorithms, which showed an acceptable
performance on the high-dimensional data in [34, 35], have been used for the two
metaheuristic algorithms. The results of several different filter methods have been
compared to select a suitable filter method. Furthermore, the results of the OR and
AND operators have been compared to choose the optimum integration approach.



5 Feature Selection in High-Dimensional Data 117

Fig. 5.7 Flowchart of the
hybrid-ensemble method
proposed in [39]

Main
Dataset

ReliefF FCBF

MH-Wrapper MH-Wrapper

Integration

Classifier

Output

5.9.5.1.1 Find the Optimal Filter Method and Integration Approach

In order to obtain the optimal filter method as well as the proper integration
method, the results of applying several different filter-based methods and two
integration methods (AND and OR) are investigated and compared. The results of
this comparison are shown in Table 5.8. In this experiment, the validation method
has been the data dividing with the ratios of 2/3 and 1/3 for the training and test
data, respectively.

All of the filter methods listed in Table 5.8, except the FCBF method, act as
ranker methods. As already mentioned, these methods assign a rank to each feature
and indeed rank all the available features in the data after they are applied on
the data. As a result, these methods require a threshold limit to select the desired
features. In the research mentioned, the threshold limit of 0.004 has been chosen for
all these methods. The results were evaluated by KNN (K = 1) classifier.

According to the results of Table 5.8, for colon data with 2000 features and 62
samples, the HEMO-FCBF method could achieve the highest values for the four
classification criteria, e.g., the classifier accuracy rate, the Matthews correlation
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Table 5.8 Experimental results for the KNN classifier after performing hybrid-ensemble methods to find the optimal
filter method

Integration
method Method name Measure Colon Leukemia Prostate Lung_Cancer Ovarian Average

AND HMEBA-ReliefF ACC 0.7714 0.9167 0.8824 0.8512 0.9959 0.88352

FS 2.8 7.2 15.4 15 13.6 10.8

SN 0.8645 0.9398 0.9017 0.862 0.9962 0.91284

SP 0.6248 0.9448 0.892 0.8217 0.9938 0.85542

GMEAN 0.734942 0.942297 0.896837 0.841609 0.994999 0.883664

MCC 0.6821 0.9028 0.8012 0.638 0.9899 0.8028

GM 0.878 0.957 0.939 0.922 0.997 0.938

HMEBA-IG) ACC 0.809 0.950 0.894 0.894 0.998 0.909

FS 3.600 7.600 11.400 16.200 4.600 8.680

SN 0.902 0.936 0.940 0.940 0.996 0.943

SP 0.781 0.910 0.915 0.902 0.999 0.901

GMEAN 0.840 0.923 0.928 0.921 0.997 0.922

MCC 0.761 0.909 0.821 0.820 0.990 0.860

GM 0.899 0.974 0.945 0.945 0.998 0.952

HMEBA-F-score ACC 0.752 0.983 0.859 0.866 0.986 0.889

FS 2.600 6.200 9.600 15.000 14.000 9.480

SN 0.802 0.973 0.912 0.919 1.000 0.921

SP 0.780 0.960 0.849 0.850 0.960 0.880

GMEAN 0.791 0.966 0.880 0.884 0.980 0.900

MCC 0.651 0.924 0.807 0.791 0.941 0.823

GM 0.867 0.991 0.926 0.930 0.992 0.941

HMEBA-FCBF ACC 0.712 0.959 0.853 0.861 0.993 0.876

FS 4.000 4.000 12.800 14.100 8.400 8.660

SN 0.708 0.971 0.898 0.851 1.000 0.886

SP 0.691 0.942 0.897 0.891 1.000 0.884

GMEAN 0.699 0.956 0.897 0.871 1.000 0.885

MCC 0.611 0.924 0.781 0.752 0.985 0.810

GM 0.843 0.979 0.923 0.927 0.996 0.933

OR HMEBO-ReliefF ACC 0.795 0.946 0.921 0.908 0.993 0.913

FS 4.400 20.200 32.800 34.100 43.800 27.060

SN 0.836 0.967 0.946 0.908 0.989 0.929

SP 0.792 0.920 0.912 0.821 0.998 0.889

GMEAN 0.813 0.943 0.929 0.864 0.994 0.909

MCC 0.601 0.915 0.893 0.798 0.984 0.838

GM 0.891 0.971 0.958 0.952 0.995 0.953

HMEBO-IG ACC 0.805 0.938 0.874 0.926 0.998 0.908

FS 4.000 20.600 30.000 32.800 13.200 20.120

SN 0.842 0.941 0.863 0.922 0.996 0.913

SP 0.749 0.928 0.872 0.842 1.000 0.878

GMEAN 0.794 0.934 0.867 0.881 0.998 0.895

MCC 0.669 0.921 0.832 0.782 0.995 0.840

GM 0.896 0.967 0.933 0.961 0.998 0.951

(continued)
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Table 5.8 (continued)

Integration
method Method name Measure Colon Leukemia Prostate Lung_Cancer Ovarian Average

HMEBO-F-score ACC 0.800 0.983 0.844 0.935 0.998 0.912

FS 3.400 23.100 29.600 32.200 45.000 26.660

SN 0.838 0.980 0.909 0.946 0.996 0.934

SP 0.783 0.935 0.812 0.901 1.000 0.874

GMEAN 0.810 0.957 0.859 0.923 0.998 0.903

MCC 0.651 0.931 0.758 0.892 0.995 0.845

GM 0.894 0.990 0.917 0.966 0.997 0.953

HMEBO-FCBF ACC 0.814 0.941 0.929 0.943 1.000 0.925

FS 7.000 5.000 26.400 18.750 17.200 14.870

SN 0.855 0.975 0.946 0.952 1.000 0.946

SP 0.785 0.965 0.931 0.904 1.000 0.915

GMEAN 0.820 0.970 0.938 0.928 1.000 0.930

MCC 0.772 0.912 0.902 0.891 1.000 0.895

GM 0.901 0.970 0.963 0.970 0.999 0.961

coefficient (MCC), specificity, and geometric mean (GM). The HMEBA-IG method
has achieved the highest value for the sensitivity (SN) and Gmean of this data.

For leukemia data with 7129 features and 72 samples, the HEMO-F-score
method could achieve the highest values for the classifier accuracy rate, geometric
mean (GM), and the Matthews correlation coefficient (MCC). The HEMO-FCBF
method has achieved the highest value for the specificity and Gmean.

The prostate data with 10,509 features and 102 samples is one of the hardest
microarray datasets because its test dataset has been extracted from several different
tests and has the dataset shift problem. In this data, the HEMO-FCBF method could
achieve the highest values for the classifier accuracy rate, the Matthews correlation
coefficient (MCC), specificity, geometric mean (Gmean), and geometric mean
(GM). The HEMO-Relief method has achieved the highest value for sensitivity.

In the Lung_Cancer data with 12,533 features and 181 samples, the HEMO-
FCBF method has managed to obtain the best results for the criteria of classifier
accuracy, sensitivity, specificity, geometric mean, and GM. The HEMO-F-score
method has achieved the highest value for the Matthews correlation coefficient.

For ovarian data with 15,154 features and 253 samples, which has the largest
number of features among the data investigated, the HEMO-FCBF method has
managed to obtain the score of 1.00 for the criteria of classifier accuracy, sensitivity,
specificity, geometric mean, and the Matthews correlation coefficient (MCC). For
the geometric mean, GM, the value of the method applied to this data is 0.999,
which is the best result compared to other methods applied to this data. The average
values obtained from the five criteria mentioned in Table 5.8 also indicate that the
HEMO-FCBF method has managed to gain optimum dominance in the five datasets.

According to the results, the FCBF filter method with OR integration method has
produced the best results.
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Fig. 5.8 Execution time of
different hybrid-ensemble
methods
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5.9.5.1.2 Analyze the Execution Time

Another important criterion which is very important when it comes to comparing
different methods is the running time of an algorithm. The lower the computational
complexity of an algorithm, the lower its running time.

Unlike normal data, the attention to the problem of the running time is more
critical in high-dimensional data. That is because if a method is highly complex,
it may take even months and years to run the algorithm on significantly high-
dimensional data. As a result, one of the criteria that should be considered when
selecting an appropriate method is the running time of the algorithm.

In Fig. 5.8, these methods have also been compared in terms of running time. As
it can be observed, the HEMO-FCBF and HEMA-FCBF have lower running times
compared to other methods.

Finally, the hybrid-ensemble methods have been employed to evaluate this
sample.

In the reference mentioned, this method has been compared with several hybrid-
ensemble, filter, and metaheuristic methods and obtained acceptable results. Further-
more, the method has achieved good results regarding the data like Lung_Cancer,
which suffers from high time complexity due to high dimensionality.

5.9.5.2 Hybrid-Ensemble 2

Reference [42] has discussed the issue of dimensionality reduction in high-
dimensional microarray data by offering a framework derived from hybrid-ensemble
methods. As mentioned previously, in this method, each line initially reduces the
dimensionality of the high-dimensional data. Each filter method gives its selected
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Fig. 5.9 Flowchart of the method proposed in [38]

features as the output, in which the data dimensionality is drastically reduced.
Then, the desirable features with optimal classification accuracy will be selected
using metaheuristic methods. In the next stage, the results of feature selection in
each line will be combined using different methods such as the AND and OR
logical operators. Finally, the accuracy of the proposed method is calculated by the
classifier. The authors’ proposed framework is shown in Fig. 5.6.

In [42] it is noted that after the investigation of several filter methods, the FCBF
and ReliefF methods have been selected as optimal filter methods and the IBGSA
algorithm has been used as the metaheuristic method. The final flowchart is shown
in Fig. 5.9.

The simple voting algorithm performance in feature selection is as follows:
Consider that the algorithm repeats for n times, if the number of times in which

the feature is selected as the desired feature is more than the times in which it is not
selected, the result of this feature will be selected as the selected feature; otherwise,
it will not be selected as the selected feature.
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5.9.5.2.1 Find the Optimal Threshold

As already mentioned, the ranking filter methods like the ReliefF method require
a threshold to select the number of features. In this work, different thresholds to
achieve the optimal threshold for the Relief algorithm have been investigated, whose
results are mentioned using decision-tree, SVM, and KNN classifiers in Table 5.9.
In this table, the Th1, Th2, and Th3values are considered 0.0066, 0.009, and 0.02,
respectively. The Thf is also equal to the number of features selected by the FCBF
algorithm.

Table 5.9 shows the error rate of the classifiers as well as the number of features
selected by each of the hybrid-ensemble methods. As can be seen, the investigated
method using the KNN classifier yields better results than two other classifiers.
By reviewing the four scenarios listed in the table, it can be found that scenario
1 and scenario 2 have the least selected features as well as the highest classification
accuracy compared to scenario 3 and scenario 4.

Based on the results, with the increase of the threshold, the accuracy of the
classifier is reduced, which indicates the existence of a large number of irrelevant
and redundant features in the high-dimension data.

In the mentioned reference, after selecting scenario 1 and scenario 2 as optimal
cases, these methods are compared with other ensemble methods such as E1-sv,
E1-cp, E1-ni, E1-ns, and E2. The hybrid-ensemble framework proposed in [42]
using the mentioned algorithms as well as the two thresholds mentioned, achieved
better classification accuracy than the other five methods. Besides, regarding the
comparison of the number of selected features, scenario1 and scenario 2 have
slightly much fewer features than the other five methods.

In short, we can say that the hybrid-ensemble method presented in reference [42],
with a lesser number of selected features, has managed to obtain a more desirable
classifier accuracy.

5.10 Summary

In an era in which the size of data is growing significantly, feature selection in high-
dimensional data is one of the most challenging subjects in the fields of medicine,
biology, and bioinformatics.

With the emergence of medicine data including microarray data, reducing data
dimension and selecting effective features have become necessary. Microarray data
are high-dimensional data with a few numbers of samples which has become one
of the challenges in informatics and machine vision. Thus, feature selection in such
data is one of the most difficult and most important processes which has attracted
many researchers.

In this chapter, we first looked at the challenges of high-dimensional data
including their large number of features, small number of samples, class imbalance,
and label noise.
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Then, filter methods were described and evaluated. These methods are of high
speed and do the process of selecting the feature, regardless of the learning
algorithm, and only with respect to the inherent characteristics of the data.

In the next three sections, wrapper, hybrid, and embedded methods are discussed.
Wrapper methods often have higher classification accuracy compared to filtering
methods, but due to their high computational complexity, they are usually not
directly applied to high-dimensional data. In the meantime, hybrid methods can be a
good solution for working with high-dimensional data. In these methods, if suitable
filter and wrapper techniques are used, optimal solutions can be found for choosing
features in high-dimensional data.

In the next section, after a review of ensemble and hybrid-ensemble techniques,
several hybrid-ensemble methods have been investigated.

In the next section, the results of applying several filter and hybrid-ensemble
methods on several high-dimensional data are discussed. First, by applying nine
effective filter methods to eight high-dimension data, the results were presented.
Also, two classifiers were selected to measure the effectiveness of the selected
features. Finally, the evaluation of the results of the two recently proposed hybrid-
ensemble methods has been presented on several microarray data.
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Chapter 6
An Introduction to Advanced Machine
Learning: Meta-Learning Algorithms,
Applications, and Promises

Farid Ghareh Mohammadi, M. Hadi Amini, and Hamid R. Arabnia

Abstract In Chaps. 3 and 4, we have explored the theoretical aspects of feature
extraction optimization processes for solving large-scale problems and overcoming
machine learning limitations. Majority of optimization algorithms that have been
introduced in Mohammadi et al. (Evolutionary computation, optimization and
learning algorithms for data science, 2019. arXiv preprint arXiv: 1908.08006;
Applications of nature-i nspired algorithms for dimension reduction: enabling
efficient data analytics, 2019. arXiv preprint arXiv: 1908.08563) guarantee the
optimal performance of supervised learning, given offline and discrete data, to deal
with curse of dimensionality (CoD) problem. These algorithms, however, are not
tailored for solving emerging learning problems. One of the important issues caused
by online data is lack of sufficient samples per class. Further, traditional machine
learning algorithms cannot achieve accurate training based on limited distributed
data, as data has proliferated and dispersed significantly. Machine learning employs
a strict model or embedded engine to train and predict which still fails to learn
unseen classes and sufficiently use online data. In this chapter, we introduce these
challenges elaborately. We further investigate meta-learning (MTL) algorithm, and
their application and promises to solve the emerging problems by answering how
autonomous agents can learn to learn?
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Keywords Meta-learning · Machine learning · Online learning · Online
optimization · Model-based learning · Metric-based learning · Gradient descent
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6.1 Introduction

Machine learning algorithms enable researchers to learn from supervised/unsupe-
rvised data. Collected data is mainly offline and it is not evolving over time. Hence,
behavior of the ever-increasing datasets introduces uncertainty to data analytic
solutions and methods. Conventionally, it is not possible to have the entire behavior
learned [1] using the traditional machine learning, evolutionary algorithms, and
optimization algorithms discussed earlier [2, 3].

Last decade, researchers have studied advanced research paradigms to solve
optimization and learning problems efficiently. In this context, distributed optimiza-
tion and learning algorithms lend themselves as promising solutions to deal with
large scale nature of data, information privacy, scalability, as well as (near) real-
time decision making capability; applications of such algorithms include optimal
operation of smart city infrastructures, interdependent power and transportation
networks [4–6], artificial intelligence for energy system resilience [7], energy
management and optimal power flow problem [8, 9], and learning at the IoT
device level [10]. They aim to learn using prior tasks or experiences and leverage
them for future learning. One of the promising paradigms is meta-learning (MTL).
Prior studies investigated MTL methods that learn to update a function or learning
rule [1, 11]. MTL differs from classic machine learning with respect to the level
of adaptation [12]. MTL is the process of learning to learn. It leverages past
experiences to ascertain a prior model’s parameters and learning process, i.e.,
algorithm. MTL investigates how to choose the right bias non-fixed, unlike base-
learning where the bias is fixed a priori [12]. Concretely, MTL studies a setting
where a set of tasks (Ti) are made available together upfront. However, it cannot
handle sequential and dynamic aspects of problems properly. To make it easy for
readers to understand this study, we provide Table 6.1, abbreviation of words have
been used during this study.

In contrast, online learning is the process of learning sequentially, however, it
does not leverage past experiences like MTL, i.e., it may not consider how past
experience can help to enhance the adaptation to a new task. The earliest research
studies introduced sequential learning [13, 14] where tasks are revealed one after
another repeatedly. The aim of learning is to learn as independent as possible to
attain zero-shot learning with non-task-specific adaptation. We argue that neither
setting is ideal for studying continual lifelong learning. MTL deals with learning
to learn, but neglects the sequential and non-stationary aspects of the problem.
Online learning offers an appealing theoretical framework, but does not generally
consider how past experience can accelerate adaptation to a new task. In this
work, we motivate and present the online MTL problem setting, where the agent
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Fig. 6.1 Overall structure of this study

simultaneously uses past experiences in a sequential setting to learn good priors,
and also adapt quickly to the current task at hand.

The rest of this chapter is organized as follows. In Sect. 6.2 emerging challenges
in machine learning are discussed . After that, applications of MTL using transfer
learning are covered. Finally we have promises of MTL. Figure 6.1 represents the
overall structure of this study.

6.2 Machine Learning: Challenges and Drawbacks

Prior works on learning process, regression, and optimization problems have
attempted to learn the behavior of input data, analyze and categorize it to attain
high performance algorithms. Machine learning (ML) has been strongly applied
to solve supervised and unsupervised problems. ML deploys different algorithms,
such as online learning, multi-task learning, and supervised algorithms, including
rule based [15, 16], function based [17, 18], lazy [19], and bootstrap [20]. Some of
them are used to transform data, special example would be dimension reduction
for optimization, some to build classifiers like supervised algorithms, others for
prediction like regression, etc. Machine learning still yields subtle drawbacks for
time-varying input data which restrict it to consider properly future and unseen
classes to provide general idea and knowledge from data.

Traditionally, machine learning is a structured process that learns from training
datasets and examine the learned model on test datasets. The learned model follows
the rule of the equation Pi ×D −→M, where Pi stands for the specific supervised
algorithm parameters, D represents the space of training data distribution, and M
defines the space of generated models which will be applied on test data to evaluate
the supervised algorithm performance.
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Fig. 6.2 The general overview of learning against emerging data

Figure 6.2 presents few machine learning approaches and algorithms which
provide different applications with respect to the wide variety of data such as
offline data vs. online data, labeled data vs. unlabeled data, multi-model data vs.
single model data, and multi-domain data vs. single domain data. As it shows,
machine learning has critical drawbacks which cannot handle whole data once.
Moreover, it just considers each data as a new model and each model is separate
from previous ones.

Furthermore, Fig. 6.2 depicts the relationship between traditional machine learn-
ing and advance machine learning. In traditional machine learning we have to deal
with offline and limited amount of data and the number ground-truth. However,
in the world of technology, where data growth has proliferated significantly and
is coming from wherever technology exists, it is very critical to get to know the
pattern and rules that govern whole data and learn the trend of the generated data
for a specific domain. For that end, we need to classify data into three big categories,
time series data, offline data, and online data. These all categories are shown in three
different aspects: supervised and unsupervised; multi-model data; and multi-domain
data.

Machine learning involves transfer learning and online learning, which is
compatible to learn tasks and classes, which are consequential. Transfer learning
is the theory of transferring knowledge from one task to another and learning
from non-randomness. Meta-learner also is one of the bootstrap algorithms which
learn data by sampling given dataset and generating different datasets. Meta-learner
leverages boosting techniques by using several algorithm to make votes, then Meta-
learning select the majority of the vote as final decision.
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6.3 Meta-Learning Algorithms

Meta-learning (MTL) is firstly presented in [1] and [21]. After a decade gap, lately
research studies have tried to deploy MTL again. MTL is a machine which learns
the variety of input data. ML methods need to learn new tasks faster by leveraging
previous experiences. MTL does not consider past experiences separately.MTL is
the process of learning how to learn. MTL is an emerging learning algorithm with
new challenges and research questions. It is an extension of transfer learning, which
is one of the multi-task learning algorithms. MTL covers three different aspects as
illustrated in Fig. 6.5: few-shot learning (FSL), one-shot learning (OSL), and zero-
shot learning (ZSL). FSL and OSL yield highly accurate results as compared with
traditional machine learning algorithms. However, they still have a critical challenge
which limits them from converging to optimal results. Limits of ZSL have been
addressed using domain semantic space, where includes all information system as
presented in Fig. 6.5.

6.3.1 Model-Based MTL

Model-based MTL depends on a model and no conditional probabilistic method
which enable it to be the best match for fast learning model where it updates its
hyper-parameters so fast by training just few examples. The process of updating
their hyper-parameters is done either internal architecture or external meta-learner.
The concept of model-based MTL is having one neural network interact with
sequential neural networks to accelerate the learning process. In other words, it tries
to learn a model per each label using pixel by pixel value, according to Fig. 6.3.
In other words, this model’s algorithms try to train a recurrent model like the

Fig. 6.3 Model-based MTL
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work presented [11], which proposed long short-term memory (LSTM). Hochreiter
and Schmidhuber [22] proposed for the first time in 1997 the theory of LSTM.
Model-based algorithms take the dataset sequentially and analyze instances one by
one. Since model-based algorithms leverage RNN for learning, they become the
most least efficient model in comparison with other models. Nagabandi et al. [23]
proposed online deep learning using MTL towards continual adaptation for model-
based reinforcement learning. Santoro et al. [24] proposed memory-augmented
neural network using MTL.

6.3.2 Metric-Based Learning

Metric-based learning leverages metric space learning, which leads to efficient data
processing and is suitable for few-shot learning. Let us consider that our goal is
image classification. As model-based learning tries to learn each image pixel by
pixel which takes long time and time consuming, metric-based learning overcomes
this limitation by leveraging comparing given two images to the network. The output
per each input yields a vector, comparing these two vector states that whether they
are similar or not (Fig. 6.4). One of the most common applications of metric-based
learning is Siamese network presented in [25]. Koch et al. presented Siamese neural
network (SNN) for one-shot learning which achieved strong and better results. The
idea behind SNN is that it tries to use twin or half-twin network to compare the input
images. Note that one of the input is already computed and we only need to take the
second image and try to go through the layers and compute the vector. Then, SNN
tries to compute the distance between them, if the result is small they are similar
otherwise they are different. Another application of metric-based learning is [26],
where Vinyals et al. proposed a matching network(MN) for one-shot learning.

Fig. 6.4 Metric-based MTL
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Fig. 6.5 The relation among machine learning, meta-learning, and information system

6.3.3 Gradient Decent-Based Learning

This model of MTL is also known as optimization-based model for tuning the
parameter (θ ). The idea here is to leverage stochastic gradient-decent (SGD) and
for new given sample, it updates the parameters to be a universal learner. It may not
converge to a local optimal since it does not rely on small number of samples.

Although gradient-based learning model works good, it still has some drawbacks.
Ravi and Larochelle [11] addressed these problems carefully and provided LSTM-
based MTL to overcome those problems. Finn [27] presented MAML to improve
the accuracy of LSTM-based MTL (Fig. 6.5, Tables 6.1 and 6.2).

6.4 Promises of Meta-Learning

Learning to learn is an advance process which provides three promises: one few-
shot learning (FSL), one one-shot learning (OSL), one zero-shot learning (ZSL).
Figure 6.6 presents a general view of each promises. we have three layers: input
data, meta-training, and meta-testing. Input data for FZL and OSL are the same
type, particularly images for particular image classification aims. Further, ZSL
becomes an independent learning MTL algorithm which evaluates input data based
on domain semantic space and visual information of that domain.

In second layer, FSL tries to learn k-shot tasks, which means MTL is training
by leveraging k different training dataset. K-shots had generated in advance before
learning process have started. Thus, MTL is known as a certain type of bootstrap
algorithms, however, in k-shot dataset we only have specific number of K instances
per class. However, the bootstrap algorithm tries to split given dataset with different
rate and would be keeping the ratio of number of classes. MTL attempts to calculate
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Table 6.1 Abbreviation of words

Abb Definition

CNN Convolutional neural network

EGNN Edge-labeling graph neural network

fSL Few-shot learning

GSP Goal-conditioned skill policy

LSL Low-shot learning

MAML Model-agnostic MTL

MANN Memory-augmented neural network

MIL Meta imitation learning

MTL Meta-learning

ML Machine learning

MN Matching network

OSL One-shot learning

PN Prototypical network

RN Relation network

RNN Recurrent neural network

SAE Semantic autoencoder

SNN Siamese neural network

TL Transfer learning

ZSL Zero-shot learning

ZSL-FGVD ZSL fine-grained visual descriptions

ZSL-H Zero-shot learning by mitigating the hubness problem

ZSL-KT Zero-shot learning and knowledge transfer

the loss of each shot using loss function. Furthermore, OSL also ties to learn the
task based on k = 1 shot learning which means that OSL only has one shot at a
moment. In other words, when it starts bootstrapping, it only selects one sample
per class as a training set. Note that OSL represents a special kind of K-shot or
few-shot learning. Both FSL and OSL use the equation below from [27]. Ti =∑k

i=1(L(xi, yi), q(xi), q(xt+1|xt , qt ))

Further, in second lay, ZSL unlike FSL and OSL algorithms ties to work with
domain semantic space rather than domain files like images. The goal here is to find
an optimal mapping from semantic space to vector space. ZSL tries to map given
extracted features to a new space called vector space.

Finally, last layer stands for the meta-testing which is responsible to predict the
given test data and analyze them. First two algorithms try to predict unseen data
using f(θ ), however, ZSL attempts to solve the problem by mapping the unseen data
to the new vector space.
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Fig. 6.6 Structure of meta-learning models

6.4.1 Few-Shot Learning

The first and one of the most common promises of MTL is few-shot learning (FSL).
Few-shot classification is a specific extension of MTL in supervised learning. Lake
et al. [43] challenged traditional machine learning algorithms by enabling them to
learn every concept from one or few shot of that dataset. The idea behind that, MTL
tries to re-sample the given input dataset for training using only K samples per each
class. In other words, meta-training process is accomplished by learning k shot meta
sets which are selected by replacement. Although few-shot learning outperforms
traditional machine learning algorithms, it has an explanatory challenge, called task
ambiguity. This problem happens when a small task is generated from large input
dataset, to learn via few-shot learning. After taking a new task, the learned model
based on that looks over fit which does not yield a promising result on test datasets.

The majority of MTL algorithms leverage few-shot learning. FSL has decent
important extension: Finn et al. proposed model-agnostic MTL (MAML) [27],
which adapts to new tasks via gradient descent-based MTL. In [29], Finn et
al. re-sampled models for a new task using a model distribution. This paper
extends MAML to conduct a parameter distribution that is trained through different
lower bound. In [29] Finn et al. addressed the ambiguity problem by proposing
probabilistic MAML.

Second important extension is online learning which is learning process of
training data sequentially and continuously. The next one is online MTL. Finn et al.
[44] proposed online MTL based on the regret-based meta-learner. Kim et al. [33]
proposed EGNN, which applied a deep neural network on a certain model, edge-
labeling graph. Furthermore, Sun et al. [45] proposed an advanced meta-transfer
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Fig. 6.7 Few-shot learning structure

learning for few-shot learning. Zou and Feng [31] introduced new type of MTL
which works based on hierarchy structure, called hierarchical MTL(HML). MTL
are limited to the tasks where training datasets where the tasks may different from
each other. HML improve MTL result by overcoming the limitation. HML enables
MTL to optimize adaptability of meta-model to tasks that are similar. Figure 6.7
provides a general view of few-shot learning, one-shot learning, 2-shot learning,
and generalized k-shot learning.

6.4.2 One-Shot Learning

One-shot learning (OSL) is a critical challenge in the applications of deep neural
networks. OSL is a special type of few-shot learning or k-shot learning in which it
choose k = 1 shot for training section. In other words, when the algorithm starts
training, they only leverage from one instance per class at a time with different
batches. The research studies done for one-shot learning are listed as following:
Matching networks [26] which is a metric-based MTL.

6.4.3 Zero-Shot Learning

Zero-shot learning (ZSL) is an emerging paradigm of machine learning which is
recently proposed [32, 36, 40] to yield a better result than supervised learning
algorithms by covering their critical limitations, which work only with a fixed
number of classes. Zero-shot learning is as a joint embedding problem of domain
specific and side information, which includes ontology, wikis, dictionary, and blogs.
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To be certain, ZSL overcomes few-shot learning and one-shot learning limitation
and promised to yield a result better than FSL and OSL. The goal is to classify
unseen samples of different classes without having a training dataset. This is
possible once you have proper information about the domain and classes, properties,
and most importantly the functionality of the problem. The ZSL process is a journey
from feature space to a vector space in which it leverages feature extraction and
dimension reduction algorithms technically. The feature vector describes shared
features among classes. Reed et al. [36] applied neural language model to overcome
supervised learning limitation. ZSL has been accomplished for visual recognition
[36], music classification [40], and image classification [32]. More recent methods
have been proposed by Kodirov et al. [38] using auto-encoders for ZSL, Nagabandi
et al. [23] to deploy MTL for online Learning and by Finn et al. [44] for online
MTL.

6.5 Discussion

Last 5 years researchers have worked on meta-learning with different promises. We
evaluate important research studies and examine them based on different criteria
like meta-learning promises, proposed method, meta-learning models, followed by
conferences or journal where the papers have been published and domain of the
study in Table 6.2. This table illustrates the importance of meta-learning and image
classification challenges. Choosing the appropriate type of data for machine learning

Fig. 6.8 Machine learning: ML, meta-learning: MTL, online machine learning: OML, transfer
learning: TL, few-shot learning: FSL, meta-learner: MLR, one-shot learning: OSL
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Fig. 6.9 A brief studies over promises of meta-learning

algorithms is an important yet challenging task. According to [46], it is crucial
to select an optimal algorithm to solve each specific problem to ensure optimal
decision making. They combined experimental result and interviewed with domain
experts. It is essential to know where we are, what are the challenges, and what kind
of data we have now. Further, what is the relationship among emerging data with
respect to traditional and modern machine learning algorithms. Figure 6.8 presents
the information to choose which algorithms are suitable, compatible, and applicable
given the specific type of data.

In Fig. 6.9, we have identified some of the publications in top venues. According
to our investigation, few-shot learning is one of the most promising areas.

6.6 Conclusion

Optimizing algorithms to work with offline data is almost ubiquitous in each
domain, such as engineering applications. The majority of studies have determined
an optimal way to deal with large-scale problems. Advancing technologies have
people provided data available wherever they have access to internet. Thus, it is
critical to process continues data which is online and introduce an advance learning
algorithm to help scientists to predict future properly. In this chapter, we addressed
this problems and investigated an advanced machine learning algorithm to solve
them optimally using MTL. Majority of research studies in few shot learning
have accomplished recently are categorized in MTL’s important promises. One
model based, one metric based, one gradient decent based, which also known
as optimization method. Further, MTL has three critical extension for emerging
data and large-scale problems. The first one, few-shot learning which is practically
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worked on k-shots of training classes. The second extension is special type of few-
shot learning which here we have only one-shot for each training classes. The last
one but not the least one is zero-shot learning. Although decent work has been done
using FSL and OSL, but ZSL is the promising extension of meta-learning where
researchers have no idea about the new classes and no enough data available.
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Abstract The challenges surrounding the optimal operation of power systems
are growing in various dimensions, due in part to increasingly distributed energy
resources and a progression towards large-scale transportation electrification. Cur-
rently, the increasing uncertainties associated with both renewable energy genera-
tion and demand are largely being managed by increasing operational reserves—
potentially at the cost of suboptimal economic conditions—in order to maintain the
reliability of the system. This chapter looks at the big picture role of forecasting
in power systems from generation to consumption and provides a comprehensive
review of traditional approaches for forecasting generation and load in various
contexts. This chapter then takes a deep dive into the state-of-the-art machine
learning and deep learning approaches for power systems forecasting. Furthermore,
a case study of multi-time-horizon solar irradiance forecasting using deep learning
is discussed in detail. Smart grids form the backbone of the future interdependent
networks. For addressing the challenges associated with the operations of smart grid,
development and wide adoption of machine learning and deep learning algorithms
capable of producing better forecasting accuracies is urgently needed. Along with
exploring the implementation and benefits of these approaches, this chapter also
considers the strengths and limitations of deep learning algorithms for power
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systems forecasting applications. This chapter, thus, provides a panoramic view
of state-of-the-art of predictive analytics in power systems in the context of future
smart grid operations.

Keywords Smart grid · Deep learning · Predictive analytic · Machine learning ·
Time series · Energy forecast · Power systems

7.1 Introduction

Overview The challenges surrounding the optimal operation of power systems
are growing in various dimensions, due in part to increasingly distributed energy
resources and a progression towards large-scale transportation electrification. Cur-
rently, the increasing uncertainties associated with both renewable energy genera-
tion and demand are largely being managed by increasing operational reserves—
potentially at the cost of suboptimal economic conditions—in order to maintain the
reliability of the system. This chapter looks at the big picture role of forecasting
in power systems from generation to consumption and provides a comprehensive
review of traditional approaches for forecasting generation and load in various
contexts. This chapter then takes a deep dive into the state-of-the-art machine
learning and deep learning approaches for power systems forecasting. Furthermore,
a case study of multi-time-horizon solar irradiance forecasting using deep learning
is discussed in detail. Smart grids form the backbone of the future interdependent
networks. For addressing the challenges associated with the operations of smart grid,
development and wide adoption of machine learning and deep learning algorithms
capable of producing better forecasting accuracies is urgently needed. Along with
exploring the implementation and benefits of these approaches, this chapter also
considers the strengths and limitations of deep learning algorithms for power
systems forecasting applications. This chapter, thus, provides a panoramic view
of state-of-the-art of predictive analytics in power systems in the context of future
smart grid operations.

Forecasting has long played an essential role in power systems planning and
operations. With the introduction of deregulated markets, forecasting has emerged
as a critical component of electricity markets as well. Reliable forecasting mod-
els allow electrical utilities and independent systems operations (ISOs) to make
optimal capacity building and dispatch decisions by understanding their economic
implications while still maintaining a reliable energy supply. Forecasting models
are also used by the market participants to place strategic bids. The significance of
forecasting has dramatically increased because of the rapidly changing landscape
of traditional power systems. Some of the main drivers of this change are (1)
increasing penetration of intermittent renewable energy resources on utility scale
as well as distributed energy resources (DERs), (2) deployment of various smart
grid technologies such as advanced metering infrastructure, (3) deregulation of
electricity markets, (4) demand response programs turning static loads into dynamic
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loads, (5) forthcoming electrification of the transportation fleet, (6) greenhouse gas
reduction targets, and (7) declining costs of energy storage technologies, among
others.

The forecasted data in power systems include meteorological variables such as
solar irradiance, wind speed, and wind direction; energy production from renewable
energy sources such as photovoltaic plants, wind farms, and hydroelectric dams;
load or demand; price of electricity or locational marginal prices; price of fossil
fuels such as coal, oil, and natural gas; electric vehicle (EV) charging loads,
and so on. These quantities are forecasted for different timescales as well as
different spatial resolutions. Long-term forecasts are useful for power systems
infrastructure building decisions while short-term forecasts are utilized to inform
optimal decision-making by system operators dispatching energy on the grid and
market participants trading energy in the markets.

7.1.1 Motivation

Traditionally, in the regulated electricity sector, mostly vertically integrated utilities
had a monopoly. The reliability of supply was primarily the utilities’ responsibility
and was maintained using short-term load forecasts. The fossil fuel-based genera-
tion sources were dispatchable so that variability associated with the demand was
the primary source of uncertainty in the system. Electricity users were passive con-
sumers; that is, there was neither a bidirectional flow of energy from the distribution
grid end nor any provision of demand response. Planning and investment in new
capacity were based on long-term demand forecasts and utilities were responsible
for building the transmission capacity to serve their customers. Traditional forecast-
ing methodologies served well in this regulated business scenario.

Competitive electricity markets have been introduced since the last decade of
the twentieth century as a part of the deregulation of the electricity sector [1].
Consequently, energy is now traded in competitive markets, making electricity
price and demand forecasts fundamental inputs to the day-to-day decision-making
process of the various energy-selling entities, including the utilities, independent
power producers, large industrial customers with significant amounts of distribution
generation production, and so on.

Moreover, building new transmission capacity is not a straightforward decision
made by a single utility anymore. FERC Order No. 1000 [2] established new rules
regarding the transmission planning and cost allocation requirement for public
utility transmission providers, which have made capacity expansion a competitive
process as well. As a result, accurate long-term load forecasting for different
geographic areas has become even more important for maintaining the reliability of
the system and economically expanding the network to accommodate future demand
growth as well as distributed generation penetration on the grid.

The shift toward a digital and electrified economy is causing increased research
and planning for networks of electrified transportation and a smart grid, operating
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interdependently. Forecasting will play an essential role in the transition to this
new system as well. These future interdependent networks require reliable long-
term EV growth forecasts for the planning of EV charging infrastructure as well
as distribution network enhancements to accommodate the high penetrations of
dynamic EV charging loads. In the operations domain, short-term forecasts of
EV charging or discharging are required to get accurate load forecasts. Additional
complexity is added when daily EV charging profiles are optimized using intelligent
controls. The operational schedule of EV charging responds to the market price
(even without the initiation of demand response events from the utility), making
it even more challenging for traditional forecasting approaches to predict the
dynamically changing demand.

The macrogrid in the USA (as well as many other industrialized countries) is
a century old. Various components of generation, transmission, and distribution
systems are reaching the end of their useful life and need to be refurbished.
Though there are significant capital costs necessary to renovate the thousands
of miles of distribution infrastructure, the reliability threats are even more dire.
Several recent wildfires in California can be attributed to the aging power systems
infrastructure of Pacific Gas and Electric [3]. The remaining useful life of the
assets can be assessed to strategically plan the renovation of aging power systems
infrastructure by leveraging advanced machine learning and deep learning-based
predictive analytics. Accurate remaining useful life predictions for distribution grid
components can inform economic investment such that the components with the
highest risk of failure are replaced first.

Growing uncertainty in energy consumption, increasing penetration of inter-
mittent renewable energy generation sources (at both utility scale and for small
DERs), the burgeoning share of microgrid deployment, smart grid technologies
enabling the internet of things (IoT), aging grid infrastructure, and the forthcoming
revolution of electrified transportation are rapidly changing the landscape of power
systems. Advanced and innovative predictive analytics approaches are urgently
needed to enable more accurate forecasts to improve decision-making and provide
the foundation for a smart, resilient, and sustainable grid of the future.

7.1.2 Classification of Power Systems Forecasting Models

Power systems forecasts may be done for various timescales based on the appli-
cation of the predicted data. These forecasts can also be classified based on their
application domain and their role in the power systems generation, transmission,
distribution, and consumption areas. When a quantity is forecasted for different
time horizons, the input variables used for producing the forecast also change.
For example, when forecasting load for a long-term horizon in a given geograph-
ical area, inputs such as macroeconomic uncertainty, population growth, climate
change patterns (for predicting the extreme loads), and distributed generation
penetration projections are considered. For short-term load forecasting like day-
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ahead forecasting, input variables such as day of week, time of day, and past load
consumption are relied upon instead. The effectiveness of machine learning and
deep learning algorithms varies based on the timescale and type of input variables.
The classification of forecasting models is discussed in detail in the following
sections.

7.1.2.1 Classification Based on the Domain of Application in Power
Systems

There are three functionally different parts of power systems studies and man-
agement, which make it possible to provide reliable and economical electricity to
consumers in the present and in the future. These three parts—planning, operations,
and market—are described in the following sections. Different types of predictive
models are used in these three parts for obtaining forecasts for different quantities,
such as load, resource, production, and so on, as shown in Fig. 7.1.

Forecasting Models

Planning

Load Forecast (peak demand, 
annual energy sales considering 
maroeconomic uncertainity and 

extreme weather load)

Resource Forecast (changes in 
wind patterns and solar 

irradiance based on climate 
change)

DER growth forecast (based on 
falling prices of renewable 

technologies and policy 
incentives)

Operations

Load Forecast (system-level for 
ISOs, building-level load 
forecasting for DER and 
microgrid optimization)

Resource Forecast (day-ahead 
solar and wind forecast for 

bidding in day-ahead markets, 
hourly and subhourly for 
economic dispatch and 

operational reserve 
management)

Markets

Electricity Price Forecast (for 
bidding in day-ahead and real-

time energy markets)

Fig. 7.1 Classification of forecasting models based on domain of applicability
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7.1.2.1.1 Planning

The process of power systems planning is ever evolving and has the largest strategic
impact on the future of power systems. Future power systems are planned using a set
of forecasts, including load forecasting (which in turn depends on macroeconomic
uncertainty, extreme weather, and climate changes for a given geographic location),
distributed generation technologies growth predictions (which depend on the rate
of decrease in the cost of these technologies and energy policy that provides incen-
tives), and resource forecasting (which includes short-term production forecasts
as well as long-term changes in solar irradiance and wind patterns for a given
geographic area).

Smart and clean energy technologies form the foundation of the future smart
grid. The key to enabling the adoption of clean energy technologies lies in how
well power systems enhancements are planned to accommodate new technologies,
enabling their smooth integration with the existing power systems. The goal of
planning is to build and modify the generation, transmission, and distribution
infrastructure that are needed to meet predicted future needs. Therefore, power sys-
tems planning has traditionally been divided into centralized generation planning,
transmission planning, and distribution planning. The outcome of planning studies
is to address what to build (more generation or transmission/distribution), how much
to build, and where to build.

Traditionally, generation planning begins with load forecasting. Reliability
evaluation is then conducted to determine if and when additional generation is
needed. The remaining useful life of existing base load plants, which are largely
powered by fossil fuels, is also accounted for in the next step. This is followed
by capacity expansion studies based on economic considerations [4]. Nowadays,
however, generation planning is not a solitary process. DER penetration forecasts,
including behind-the-meter distributed generation, need to be accounted for in
the process. Also, economical siting of utility-scale renewable generation plants
depends on availability of solar and wind resources, which may or may not coincide
with the demand pockets and existing transmission infrastructure. High penetration
of utility-scale renewable energy resources, given their intermittent and variable
nature, adds increased complexity to generation planning studies that depend on
renewable resource forecasts [5, 6].

Transmission planning is aimed at optimizing the use of a generation portfolio
by supplying loads from the most economical sources of power and improving
the reliability of overall systems by operating generation stations flexibly [7].
Generation and transmission planning are closely related because the powerflows
through the transmission system are a direct result of generation dispatch [8, 9].
Distribution system planning, on the other hand, is optimized for the lowest cost
operation that meets the desired reliability of the electricity service. However,
the introduction and increased adoption of DERs has changed the process of
distribution system planning drastically. This is because components of distribution
and transmission systems are not designed to handle the bidirectional flow of power
from the DERs, so additional measures must be taken to refurbish the distribution
grid with this capability [10, 11].
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For generation and transmission planning, load forecasting is done for a long time
horizon—often between 2 and 10 years. This is because system capacity expansion
projects require a long lead time. Peak annual demand/load (in kilowatts) and total
annual energy sales (in kilowatt-hours) are calculated for long-term load forecasts
[12]. Peak load is highly correlated with weather. Therefore, peak load forecast is
normalized based on extreme weather predictions. Projected EV and DER growth
in the future has led to researching and employing methodologies that explicitly
consider DERs as well as EV load along with its charging patterns [13, 14].
Load forecasting also needs to be specific to geographical locations, along with
maintaining reasonable accuracies of the predicted magnitude.

7.1.2.1.2 Operations

Power systems operations are associated with making decisions regarding the use of
existing equipment and infrastructure to generate, transmit, and deliver energy. It is
primarily aimed at doing so safely, reliably, and efficiently. The operations domain
deals with three different time horizons: (1) operations planning (a few weeks to
months), (2) near real time (a few hours to days), and (3) real time (typically 5–
10 min) [15].

Operations planning ensures that sufficient resources are available to meet
demand for the next few months. It takes load forecasts (and associated errors),
utility-scale renewable generation forecasts, and generation and transmission out-
ages into account. Operations planning also defines the reserve capacity require-
ments to mitigate the risk imbalances because of forecast errors and unplanned
outages of generation or transmission components [16]. The aim of near real-time
operations is to select the most economic generation portfolio for the next few days
using a process called unit commitment. Real-time operations are aimed at ensuring
system reliability and supply sufficiency by revising the near real-time schedule on
an as-needed basis.

Load forecasting is the first step of all three time horizons of power systems
operations, making it a critical component. For the operations planning and near
real-time applications, hourly load forecasts are used. For real-time applications,
however, subhourly (minute-level) resolution is typically required. Once the mag-
nitude and geographic location of demand are obtained using load forecasts,
least-cost generation is scheduled to meet that demand. The production forecasts
of utility-scale renewable generation plants are also considered while scheduling
the generation. In the regions with high DER penetration, their production is also
considered; behind-the-meter DERs are typically considered negative load.

7.1.2.1.3 Markets

The landscape of the power sector has substantially changed after the introduction
of competitive markets coupled with the deregulation of the industry. This has led
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to the trading of electricity under market rules using spot and derivative contracts.
But the price dynamics of this unique commodity is different from any other
commodity because of its unique properties, requirements, and dependencies. For
example, energy typically experiences a constant balance between production and
consumption because large quantities are not economically storable. Additionally,
power demand can depend on weather factors, such as temperature, precipitation,
and wind speeds, and on the magnitude of activity in different sectors (i.e., holidays
vs. workdays, weekdays vs. weekends, on-peak vs. off-peak hours).

Electricity prices in the wholesale market, therefore, exhibit seasonality at
various timescales (daily, weekly, annually) as well as abrupt and brief price spikes.
According to [17], “[t]he costs of over-/under-contracting and then selling/buying
power in the balancing (or real-time) market are typically so high that they can lead
to huge financial losses or even bankruptcy. Extreme price volatility, which can be
up to two orders of magnitude higher than that of any other commodity or financial
asset, has forced market participants to hedge not only against volume risk but also
against price movements.”

Short-term electricity price forecasting is done for the day-ahead market, where
the bids are submitted for the delivery of electricity during each load period,
which can be hourly or subhourly. Medium-term time horizons are used for risk
management and derivative pricing. These forecasts can either be point-forecasts or
probability distributions of the prices. Long-term electricity price forecasts are done
for planning and economic feasibility analysis of future power plants, establishing
long-term power purchase agreements, forward capacity markets, seasonal capacity
markets, financial transmission rights auctions, and so on. The time horizon can vary
from months to years for such applications.

Renewable generation forecasts in the short term are also required for owners
to bid in the market. ISOs need the production forecasts of intermittent energy
sources to schedule the generation with sufficient reserves to minimize the risk
of underproduction. To avoid financial losses associated with underbidding or
overbidding, renewable generation plant owners need reasonably accurate forecasts
of solar and wind resources [18].

For each time horizon, the choice of input variables plays a significant role in the
effectiveness of the model for both traditional forecasting approaches as well as deep
learning methods. For short-term forecasts, the daily and hourly variability must be
considered. On the other hand, medium-term forecasting favors annual variations
more than weekly ones. For long-term price forecasts, seasonality itself becomes
irrelevant. Instead, long-term trends such as load-growth in a certain geographic
area, large penetration of cheap renewable energy resources in close proximity, and
EV load demand play the major role.

7.1.2.2 Classification Based on Timescale

In the previous section, various power systems forecasting models were discussed
in the context of their applicability to planning, operation, and market domains.
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Table 7.1 Types of forecasting models based on timescale

Forecasting type Time horizon Applications Methods

Nowcasting 5 min–6 h Load frequency
control, battery-use
optimization, real-time
market participation,
economic dispatch

Satellite-based
physical models (use
cloud motion
vector-based method);
sky imagery-based
physical models;
statistical/machine
learning models based
on historical data (e.g.,
persistence, ARMA,
SVRs, deep learning)

Short-term forecasting 6 h–1 week Unit commitment,
switching source,
rescheduling means of
production, day-ahead
market participation

Hybrid
NWP/statistical/machine
learning models

Medium-term forecasting 1 week–2 year Scheduling
maintenance, capacity
markets bidding, and
pricing

Statistical models
based on predicted
growth/change (e.g.,
end-use, econometric
models)

Long-term forecasting 2 year–5 year Long-term purchase
agreements, forward
capacity market,
management of
multiyear reservoirs,
nuclear fuel
management

Statistical models
based on predicted
growth/change (e.g.,
end-use, econometric
models)

Very long-term forecasting 25+ year Capacity expansion,
infrastructure
retirement,
policymaking

Statistical models
based on predicted
growth/change (e.g.,
end-use, econometric
models); general
circulation models
(climate models)

Another way of classifying the forecasting models in power systems is based on the
timescale for which the quantities are being forecasted. These timescales can mainly
be classified into five types, as given in Table 7.1.

7.1.3 Organization of the Chapter

The introduction section first lays out the motivation behind exploring newer
approaches such as deep learning for power systems predictive analytics. The
power systems forecasting problems are then classified in broad categories based on
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timescale of forecasting as well as their application in power systems planning, oper-
ations, and market domains. The second section, forecasting power systems using
classical approaches, takes a deeper look at the widely used statistical times-series
forecasting methods as well as traditional machine learning-based approaches.
The third section then introduces state-of-the-art deep learning algorithms and
explores their recent applications in the power systems forecasting literature. A solar
irradiance forecasting case study is discussed in detail in the fourth section. The fifth
section identifies future work areas in this domain and concludes the chapter.

7.2 Forecasting in Power Systems Using Classical
Approaches

The power systems forecasting problems discussed in the previous section most
closely align with the mathematical framework of the time series forecasting
problem. This section introduces this general mathematical framework and provides
a broad overview of several statistical and machine learning approaches to time
series forecasting. Note that deep learning methods are left to Sect. 7.3 to be
explored in more detail.

7.2.1 Time Series Data

A general time series dataset can be written as

{x1, x2, x3, . . . } , (7.1)

where each xt for t = 1, 2, 3, . . . represents the realization of some random variable.
A common additive modeling approach to characterizing Eq. (7.1) is to partition the
time series into a trend, seasonality, and stochastic term,

xt = Tt + St + Zt . (7.2)

The trend term Tt represents the long-term, nonperiodic changes in the data,
the seasonality term St describes any periodic behavior of the time series, and the
stochastic term Zt is stationary process (defined later) that models the random noise
in the data.

Note that Eq. (7.1) frames the time series data in terms of scalar-valued
quantities. This is done to simplify the discussion in this section in order to provide
a clear and broad overview of traditional approaches to time series forecasting. The
extension of this perspective to the multivariate case is relatively straightforward.
One feature of multivariate time series data that is important to power systems mod-
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eling is the concept of exogenous variables. In time series forecasting, exogenous
variables are causally independent of other factors in the system. In the case of
solar irradiance forecasting, examples of exogenous variables may include factors
like wind speed and cloud cover. Including exogenous variables in the forecasting
process may improve performance.

Recall that each xt in Eq. (7.1) is a realization of some random variable. The
complete time series is then fully characterized by the joint distribution of these ran-
dom variables. However, such a perspective is typically impractical or impossible
for real-world applications. A more reasonable approach is to characterize the time
series in terms of secondary properties, such as the mean and covariance functions
of the series,

μt = E [xt ] and σt,s = Cov [xt , xs] = E [(xt − μt) (xs − μs)] . (7.3)

The dependence of the value of xt on previous terms is characterized by
the autocovariance function γ t(h) = σ t, t + h and the autocorrelation function
ρt(h) = γ t(h)/γ t(0), where h is the lag parameter.

A key property of time series data is the idea of stationarity. A given time series
is said to be strictly stationary if any two subseries,

{xt , xt+1, xt+2, . . . , xt+n} and {xs, xs+1, xs+2, . . . , xs+n} for t, s, n ∈ N,

(7.4)

have the same joint distribution. Notice that if each xt in a given time series
is independent and identically distributed (iid), then the time series is strictly
stationary. Such a sequence drawn from a distribution with mean 0 and variance
σ 2 is typically referred to as white noise.

As discussed earlier, characterizing the full joint distribution of a time series
is not realistic for most real-world applications, making the identification of a time
series as strictly stationary infeasible. Alternatively, a time series is said to be weakly
(or wide-sense) stationary if any two subseries have the same mean and covariance
functions, μt and σ t, s, respectively. Equivalently, a weakly stationary time series
has mean and covariance functions that are independent of t. That is, μt = μ and
σ t, s = σ . Notice that this also implies that the autocovariance and autocorrelation
functions only depend on the lag parameter, γ t(h) = γ (h) and ρt(h) = ρ(h). Because
this definition is of more practical use, it is common to use the term stationary to
refer to weakly stationary and specifically refer to a time series as strictly stationary
when the stricter definition is meant.

The next two sections explore various statistical and machine learning
approaches to time series forecasting. In general, the goal of forecasting is to
predict values of future datapoints

{
x̂n+1, x̂n+2, . . .

}
given a finite set of observed

data {x1, x2, x3, . . . , xn}. Generally, time series forecasting is classified according to
the horizon out to which the forecast is made, as illustrated in Table 7.1.

The differences between short-, medium-, and long-term forecasts are highly
dependent on the problem under consideration. However, short- and medium-
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Fig. 7.2 Total solar irradiance measured daily from 1980 to 2000. These data come from the
NOAA’s National Centers for Environment Information database [19]

term forecasts typically are more dependent on autocorrelation factors and shorter
seasonality behaviors. These prediction horizons tend to be more amenable to the
types of data-driven methods covered here. Long-term forecasting seeks to model
trends in the data and often depends on the additional models of the relevant systems
to help predict changes in these trends.

Power systems forecasting is a particularly difficult problem. Figure 7.2 shows
an example time series data of total solar irradiance over a 20-year range [19]. It is
immediately obvious that this dataset is nonstationary (as is the case of many time
series data arising from power systems). The data show seasonal cycles of increased
and decreased solar irradiance that have a period of approximately 11 years. In
addition to fluctuations in the mean of the data, the seasonality also changes the
variance of the data. The time series varies more significantly during periods of
high solar irradiance and less significantly during periods of low solar irradiance.
Lastly, the example data in Fig. 7.2 highlight the differences in short-, medium-, and
long-term forecasting. Short-term forecasts are focused on accurately capturing the
high-frequency fluctuations in the data. Medium- and long-term predictions cannot
hope to perfectly predict these behaviors and instead focus on the large-scale trends
and seasonal characteristics in the time series.

7.2.2 Statistical Forecasting Approaches

7.2.2.1 Naïve Model Approach

The naïve model approach to time series forecasting simply predicts that the next
value in the sequence is the same as the current value,

x̂t+1 = xt . (7.5)
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This approach produces the optimal prediction for random walk data and is
therefore also known as the random walk model for time series forecasting. The
main purpose of this model is to serve as a simple baseline to compare with
more sophisticated models. This naïve model approach is also called the persistence
model [20].

7.2.2.2 Exponential Smoothing

Exponential smoothing is a relatively simple approach to modeling time series that
predicts new values in time series using a weighted moving average that more
heavily favors recent datapoints [21]. Given time series data {x1, x2, x3, . . . , xn},
the simple exponential smoothing model computes the smoothed approximation of
x̂n+1 as

x̂n+1 = αxn + (1 − α) x̂n, (7.6)

where α ∈ (0, 1) is the smoothing factor. Notice that this method computes a
weighted average of the current true value and the current predicted (or smoothed)
value. The current smoothed value was computed similarly. Thus, previous terms
contribute to the current predict value with exponentially decreasing importance.
The rate of this decay is controlled by the smoothing factor α. Extensions to simple
exponential smoothing incorporate trends and seasonality [22, 23].

Simple exponential smoothing is among the earliest forecasting techniques
applied to load forecasting [24]. In particular, this work explores the application of
exponential smoothing to short-term forecasting at hourly intervals. More recently,
several studies have explored the application of double seasonality exponential
smoothing to short-term load forecasting and found this approach to be robust
despite its relative simplicity [25, 26].

7.2.2.3 Autoregressive Moving Average (ARMA) Models

The autoregressive moving average (ARMA) model and its variations are powerful
forecasting tools that are among the most popular statistical methods for power
systems analysis. The ARMA model has long been used for power-related problems,
such as solar irradiance and load forecasting [27, 28]. More recently, an ARMA
variant called ARIMA (covered in the next section) has been applied to short-
term solar forecasting [29, 30], next-day electricity pricing [31], and hourly load
predictions [32].

As the name suggests, the ARMA model makes two key assumptions on the
time series. The first is that the time series data can be modeled by an autoregressive
process. An autoregressive process of order p, denoted by AR(p), assumes a linear
dependence of the current timestep on the previous p timesteps,
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x̂t =
p∑

i=1

ωixt−i + zt , (7.7)

where ωi are constants and zt is a white noise term. The second assumption of the
ARMA model is that of a moving average model. The moving average model of
order q, denoted by MA(q), represents the sequence as a linear relationship of some
other white noise sequence,

x̂t =
q∑

i=1

θizt−i + zt , (7.8)

where θ i are constants and each zt is an iid white noise term. The ARMA model of
orders p and q, denoted by ARMA(p, q), combines Eqs. (7.7) and (7.8) to form

x̂t =
p∑

i=1

ωixt−i +
q∑

i=1

θizt−i + zt . (7.9)

The ARMA model is typically solved using the Box-Jenkins method [33]. This
is an iterative process of specifying the model, fitting the parameters, and verifying
the process. Specifying the model involves the order of the ARMA(p, q) model (i.e.,
selecting the appropriate values of p and q). Heuristically, this can be accomplished
by examining the autocorrelation function ρt(h) and the partial autocorrelation
function. Recall that the autocorrelation function explains the relationship between
two terms with lag h. However, because this relationship can have a recursive
structure, it may be difficult to distinguish between a time series that is dependent
on the previous n points and one that is highly dependent only on the previous one.
The partial autocorrelation addresses this concern by filtering out the influence of
the intermediate terms {xt − 1, xt − 2, . . . , xt − h + 1}. This is computed by solving the
linear system

�α = γ, (7.10)

where (�)i, j = γ t(i − j) and (γ)i = γ t(i) for i, j = 1, 2, . . . , h. The partial
autocorrelation with lag h is αt(h) = (α)h. Reasonable guesses of p and q for
ARMA can be made from examining plots of the autocorrelation and partial
autocorrelation functions. If the autocorrelation plot slowly decays to zero and the
partial autocorrelation plot abruptly decays to zero after a lag of h, then the model is
likely ARMA(h, 0), or equivalently AR(h). Alternatively, if the partial autocorrelation
plot slowly decays to zero and the autocorrelation plot abruptly decays to zero after
a lag of h, then the model is likely ARMA(0, h) or MA(h). If both values slowly decay
to zero, then the model is likely ARMA(p, q) where the orders are taken to be a lag
after which the plots have sufficiently decayed. Selecting the appropriate value of p
and q can be difficult and take some trial and error.
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Once the order of the ARMA model has been determined, the parameters ωi

and θ i must be fit. This is accomplished using any preferred numerical optimization
method to solve for the maximum likelihood estimate of these parameters. Once
ωi and θ i have been computed, the model is examined for errors and overfitting. If
necessary, the process is repeated with a new model selection.

7.2.2.4 Autoregressive Moving Integrated Average (ARIMA) Models

The success and popularity of the ARMA model have led to multiple variations and
extensions of the method. The autoregressive integrated moving average (ARIMA)
model was introduced to address the stationarity assumption on the time series
data. ARIMA has been used recently for predicting the EV charging demand
for stochastic power systems operation [34]. It incorporates differencing of the
time series data to attempt to remove any nonstationary behavior. The number of
differencing steps d is treated as another modeling parameter so that the model is
written ARIMA(p, d, q).

Notice that the discussion of the Box–Jenkins method discussed in the previous
section appears to assume that both the autocorrelation and the partial autocorrela-
tion functions will eventually decay to zero (whether slowly or rapidly). If this is not
the case, then differencing may be applied to the data to remove the nonstationarity.
Differencing is a common approach to producing a stationary time series. One
differencing iteration produces a new time series with

yt = xt+1 − xt . (7.11)

The Box–Jenkins method determines d by differencing on the time series until the
autocorrelation and partial autocorrelation plots decay appropriately.

7.2.3 Machine Learning Forecasting Approaches

Supervised machine learning seeks to construct a predictive model f�(x), based
on a given training set of data {xi , yi}Ni=1, where xi and yi represent the
feature vector and the target value [35]. For time series forecasting, the feature
vectors are typically constructed by a moving window over the given data,
xi = [xi, xi + 1, xi + 2, . . . , xi + n], and the target value is the first datapoint after
this window, yi = xi + n + 1. The subscript � in the model denotes the collection of
parameters that are tuned to best fit the data. Machine learning methods fit the model
parameters from the data through iterative updates to reduce some loss function,
such as the squared-error loss L = ∑N

i=1(yi − f� (xi ))
2 or the absolute-error loss

L = ∑N
i=1 |yi − f� (xi )|.
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This section introduces two popular machine learning methods for time series
forecasting: the support vector regression (SVR) and the Gaussian process regres-
sion (GPR). There are many more approaches that may be appropriate depending
on the specific problem at hand, such as k-nearest neighbor regression or regression
trees. A more comprehensive overview of these methods can be found in [20, 36,
37]. Deep learning (or neural network) methods tend to fall within the realm of
machine learning as well. However, their discussion is reserved for Sect. 7.3 so that
they may be explored more in depth.

7.2.3.1 Support Vector Regression

Support vector regression (SVR) is a form of the popular machine learning approach
known as support vector machine (SVM) [38]. The linear SVR attempts to fit the
model

y = θx + θ0 (7.12)

to the data while minimizing ‖θ‖. A linear model may be insufficient to describe
the complex relationships underlying real-world datasets. Nonlinear or kernel SVR
reformulates the model as

y =
N∑

i=1

θik (xi , x) + θ0, (7.13)

where k(·, ·) is a kernel function such as the radial basis function, or squared-
exponential kernel k(xi, xj) = exp (−γ (xi − xj)2), where γ is a hyperparameter
that can be tuned using a grid search with cross-validation. The use of the kernel
function implicitly defines a nonlinear mapping of the feature vector to some higher-
dimensional space where a linear model is applied. This nonlinear mapping provides
greater flexibility than simply applying the linear model directly to the features as in
Eq. (7.12). Such a mapping is guaranteed to exist, provided that the kernel satisfies
the so-called Mercer condition [39].

As mentioned previously, training any machine learning model requires the
formulation of some loss function that informs the optimal set of model parameters.
For SVR, it is common to use the ε-insensitive loss function. This loss ignores
any points within ±ε of the model prediction and is equal to the absolute error in
the model for datapoints outside this range. Using the ε-insensitive loss, the SVR
learning problem can be stated as

min
�

‖�‖ + c

N∑

i=1

ξi subject to

∣∣∣∣∣yi −
N∑

i=1

θik (xi , x) + θ0

∣∣∣∣∣ ≤ ε + ξi (7.14)
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where ξ i are slack variables that penalize deviation outside the ε-insensitive region
of the loss function.

SVR is a popular machine learning approach to load forecasting [40–42]. SVRs
have also been combined with other approaches to enhance performance on the
short-term load forecasting problem. For example, an SVR can be combined with a
locally weighted regression method that more heavily favors nearby points when
making predictions [43]. Another approach combines SVRs with the empirical
mode decomposition that separates out the high- and low-frequency components
of a time series [44]. Both of these hybrid approaches were found to outperform the
classical SVR method.

7.2.3.2 Gaussian Process Regression

Gaussian process regression (GPR) approaches time series forecasting from a
Bayesian perspective by assuming that the underlying model for the data is drawn
from prior distribution of functions [45]. For GPR, this prior is assumed to be a
mixture of multivariate Gaussian random variables, or a Gaussian process,

f (x) ∼ GP
(
m (x) , k

(
x, x′)) , (7.15)

where m(x) and k(x, x
′
) are the mean and variance function, respectively. Often, the

problem is formulated with mean zero and the kernel function equal to the squared-
exponential from SVR.

Conditioning on the given dataset generates the posterior distribution of f, which
is also a Gaussian process with mean and variance

E
[
f (x) |{xi , yi}Ni=1

]
= k(x)K−1y,

Var
[
f (x) |{xi , yi}Ni=1

]
= k (x, x) − k(x)K−1k (x) , (7.16)

where (y)i = yi, (K)i, j = k(xi, xj) and (k(x))i = k(xi, x) for any x. Using the decaying
exponential kernel, it can be shown that the model interpolates the data without any
variance. By assuming the data are corrupted by Gaussian noise with variance σ 2,
the posterior distribution then has mean and variance

E
[
f (x) |{xi , yi}Ni=1

]
= k(x)

(
K + σ 2I

)−1
y,

Var
[
f (x) |{xi , yi}Ni=1

]
= k (x, x) − k(x)

(
K + σ 2I

)−1
k (x) . (7.17)
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Gaussian processes have been applied to the load forecasting problem with
promising success [46]. Additionally, GPR has been used for renewable energy
forecasting relating to solar radiation [47] and wind power [48]. One study used
GPRs with time-based composite covariance to handle seasonality in solar radiation
data [49].

7.2.4 Shortcomings of Classical Approaches

Statistical and machine learning approaches to time series forecasting are powerful
tools for understanding and modeling power systems forecasts. These methods
have been performing reasonably well for short- and medium-term forecasting
with traditionally acceptable level of accuracies. However, these methods can
require significant data preprocessing that is not explored deeply here. For exam-
ple, most of the statistical approaches assume stationary time series data with
variable-independence and normality assumptions. Extensions to these methods that
effectively deal with nonstationary data require manual tuning of various meta-
parameters that essentially transform the data to be stationary.

Additionally, with the increasing dynamism in the future power systems, there
is a need to obtain forecasts with higher accuracy than what is being achieved
with traditional statistical and machine learning methods. The operations of power
systems are getting more dynamic in nature with bidirectional flow of power
through distributed energy resources, prosumer participation with demand-response,
and other smart grid technologies. Increasing renewable energy penetration and
decreasing synchronous generation resources are reducing the overall inertia of
the grid [50]. This requires a finer temporal resolution of the forecasts in order to
maintain reliable real-time operations of the grid. Furthermore, price forecasting for
electricity markets can benefit greatly from a small percentage gain in the prediction
accuracy, and better renewable energy forecasts are required by ISOs to lower the
amount of the costly operational reserves [51].

The next section examines the history and current state-of-the-art in deep learn-
ing methods for power systems forecasting. With their ability to represent complex
nonlinear behaviors in nonstationary, high-frequency, and high-dimensional time
series data, these methods have been shown to be more robust to some of the
abovementioned pitfalls of traditional approaches, but at the expense of some new
hurdles.

7.3 Forecasting in Power Systems Using Deep Learning

7.3.1 Deep Learning

Artificial neural networks (ANN) are universal function approximators [52]; that
is, it is possible to represent complex nonlinear behavior in a high-dimensional,
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high-frequency, and nonstationary time series using ANNs. A deep neural network
is an ANN with multiple hidden layers and nodes cascaded between input and
output layers. Deep neural networks are sophisticated neural networks that have
been successfully applied to analyze data in many disciplines in the past several
years such as computer vision, image recognition, automatic speech recognition,
bioinformatics, finance, and nature language processing [53].

In general, supervised machine learning algorithms are particularly task specific.
However, deep learning networks are capable of learning intricate structures in
large datasets, allowing them to generalize better to scenarios not present in the
training data. Because of their capability to learn nonlinear relationships between
input features, these networks can identify and ignore features that do not impact
the target variable by minimizing the appropriate weights. Consequently, deep
learning algorithms typically do not require the type of extensive data preprocessing
and feature engineering that is required of other traditional machine learning
methods. Additionally, deep learning algorithms are also capable of managing high-
dimensional datasets better than traditional machine learning algorithms.

Recurrent neural networks (RNN), long short-term memory networks (LSTM),
convolutional neural networks (CNN), autoencoders, restricted Boltzmann
machines, deep belief networks, and deep Boltzmann machines are all common
types of deep learning algorithms. The following sections introduce deep learning
algorithms that are often applied to power systems forecasting problems and
describe their mathematic framework briefly.

7.3.1.1 Recurrent Neural Network

Unlike traditional feedforward neural networks in which information flows from
each layer to the next, RNNs allow the output from a layer to flow back into itself.
This allows RNNs to process sequential data without assuming the independence
among the time series samples or the datapoints [54]. Feedforward networks lose
any knowledge of the system state after processing each time series sample, thereby
failing to account for the relationship between exogenous variables along the
temporal dimension. The recurrent edges in an RNN introduce temporal coupling
into the model. The internal memory, formed by the feedback connections of the
neurons in the hidden-layer nodes, updates the states of each neuron in the network
with the previous input. The addition of this temporal coupling, which unfolds over
time, allows RNNs to learn and exhibit complex system dynamics, making them
efficient at time series forecasting problems.

The input to an RNN is a sequence of real-valued datapoints {x1, x2, x3, . . . },
where xt represents the value of time series variables timestep t. Given a finite input
subsequence of length n, the target output for the RNN is the next value yn + 1.
Note that the target y values may contain the same variables as the input x values
but at future timesteps, or they may be different if the input includes exogenous
variables. The network output (i.e., the predictions from the network) is denoted
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Fig. 7.3 Unfolding of an RNN over the temporal dimension

by ŷt . Figure 7.3 shows how the network unfolds the data along the temporal
dimension. Mathematically, this unfolding is written as

ht = fh (Whxxt + Whhht−1 + bh) ,

ŷt+1 = fo

(
Wyhht + by

)
, (7.18)

where the current input datapoint xt is fed into the network along with the output of
the hidden layer from the previous timestep ht − 1, and the output from the hidden
layer is used to generate the prediction ŷt+1. The remaining terms in Eq. (7.18)
include the activation functions fo and fh, the weight matrices Whx, Whh, and Wyh,
and the biases for each layer bh and by.

7.3.1.2 Long Short-Term Memory Network

In theory, RNNs should be capable of handling long-term temporal relationships
because of their ability to retain information from previous timesteps. In practice,
vanishing gradients make it difficult for them to learn long-term dependencies. Long
short-term memory networks (LSTM) are a variation on the traditional RNN that are
more effective at learning long-term trends in data, making them efficient at time
series forecasting problems.

The key difference between RNNs and LSTMs is that the latter replaces hidden
nodes with a more complex memory cell that handles the recurrent transfer of
information (see Fig. 7.4). Four layers of neural connections, which exchange
information in a particular special way, form the foundation of these memory cells.
LSTMs are capable of learning long-term dependencies because the memory cells
retain the existing information and append the unit with the new information; in
RNNs, the content of the hidden node is replaced with the new value calculated
from the current input.
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Fig. 7.4 LSTM memory cell diagram (from [55])

The mathematical formulation governing the flow of information in a LSTM
cell is

ft = σ

(
Wf

[
h

t−1 x
t

] + bf

)
,

it = σ

(
Wi

[
h

t−1 x
t

] + bi

)
,

∼
Ct = tanh

(
Wc

[
h

t−1 x
t

] + bc

)
,

Ct = ft ◦ Ct−1 + it ◦ ∼
Ct ,

ot = σ

(
Wo

[
h

t−1 x
t

] + bo

)
,

ht = ot ◦ tanh (Ct ) . (7.19)

Note that the nodes in the cell operate on the concatenated vector[
h

t−1 x
t

]
where xt is the current input vector and ht − 1 denotes the output

from the cell at the previous timestep. The value Ct is the current state of the cell
and is defined by a combination of the information from the forget gate ft and the
input gate it (where ◦ denotes the element-wise Hadamard product). The output
gate ot is acted on by the cell state to produce the output of the cell ht. The various
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W’s and b’s represent the weights and biases in the cell, while σ and tanh are the
sigmoid and hyperbolic tangent activation functions, respectively.

Once the model is chosen, there are two main iterative phases in the learning
algorithm: (1) forward propagation and (2) weight update. For an RNN or LSTM,
the architecture first unfolds the time series input along the temporal dimension,
making the network similar to a traditional feedforward neural network. In the
forward propagation phase, the input vector propagates through the hidden layers
(using randomly initialized values for the weight matrices and biases) to compute
the output vector. The mismatch between the interim prediction output and the
actual target is calculated as a loss function (e.g., the mean squared-error loss).
The weights are updated using gradient descent with the gradients with respect to
the loss function computed using the backpropagation through time algorithm.

7.3.1.3 Other Relevant Models

WaveNet deep learning models were recently introduced that apply deep learning
techniques from audio signal processing and computer vision models to time series
(sequential) data [56]. Convolutional neural networks (CNN) are a type of deep
feedforward ANN that have been used to analyze visual imagery on a large scale.
A deep convolutional WaveNet architecture, which is variation of CNN, has been
successfully used for conditional time series forecasting [57].

7.3.2 Deep Learning Applications

Deep learning has been applied to a variety of power systems prediction problems
recently, including solar forecasting, building load forecasting, system load fore-
casting, wind forecasting, and electricity price forecasting. RNN and LSTMs are the
most popular architectures published in the literature for power systems forecasting
problems. The following sections discuss the recent literature of power systems
predictive analytics using deep learning.

7.3.2.1 Load Forecasting

Load forecasting may be done at either a systems level or building level and
for different time horizons. Deep neural networks have been used for building
energy load forecasting using an LSTM and an LSTM-based sequence to sequence
modeling approach [58]. Short-term residential load forecasting is done using
an LSTM in [59]. Shi et al. [60] propose a pooling-based RNN architecture,
which outperforms traditional RNNs, along with other traditional machine learning
algorithms in residential load forecasting. Another variation of RNN, called the
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gated recurrent unit network, is used in [61] for daily peak load forecasting. CNNs
with k-means clustering have also been applied for short-term load forecasting for
smart grids [62].

7.3.2.2 Generation Forecasting

In the field of renewable energy, deep learning has been applied for wind and solar
forecasting problems. A short-term wind forecasting problem is addressed using
RNNs with a so-called infinite feature selection method in [63] and using CNNs
in [64]. A hybrid deep learning approach is proposed for day-ahead wind power
forecasting in [65]. Wind and solar irradiance forecasting are done using CNNs
with input data obtained from numerical weather prediction in [66].

Solar forecasting methodologies vary widely based on the type of inputs being
used for the process. For example, a standard time series forecasting problem may
only make use of previous solar irradiance measurement (endogenous variables).
Alternatively, one might use ground-based meteorological parameters (exogenous
variables) or sky imagery/video for predicting solar irradiance. Siddiqui et al.
propose a deep learning-based approach for solar irradiance forecasting using sky
videos [67]. LSTMs are used for solar power forecasting by Gensler et al. in [68]
and RNNs are used in [69] for solar irradiance forecasting. Section 7.4 in this
chapter examines a case study in multi-time-horizon solar irradiance forecasting
using RNNs and LSTMs [55, 70].

7.3.2.3 Electricity Price Forecasting and Electric Vehicle Charging

Electricity price forecasting in competitive energy markets is a challenging predic-
tion problem because of the rare characteristics of electricity. Electricity cannot be
treated like other commodities because trading requires a balance between supply
and demand at every point in time. The failure to maintain this balance results in
blackouts and brownouts that are hugely detrimental to the society as a whole. The
research around deep learning-based approaches to electricity price forecasting is
growing. There have been a few articles exploring this topic [71–75]. Deep learning
has also been applied for demand-side management for smart charging of EVs [76].

7.3.3 Deep Learning Strengths and Shortcomings

Deep learning has shown promising results in the field of predictive analysis,
because of its ability to model complex, nonlinear relationships between various
exogenous input variables and the associated output. It is capable of uncovering
trends in the historical dataset, providing highly accurate forecasts. For power
systems forecasting problems, deep learning algorithms are increasingly outpacing
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traditional approaches for nowcasting and short-term forecasting. In order to
produce such accurate predictions for these time horizons, deep learning algorithms
require a relatively significant amount of training data. The next two sections
summarize the strengths and weaknesses of deep learning approaches in the context
of power systems forecasting problems.

7.3.3.1 Strengths

Deep learning algorithms with recurrent connections (e.g., RNN and LSTM) are
capable of capturing short- and long-term trends in time series data. When trained
using exogenous variables, these algorithms are effective at finding and modeling
the complex temporal relationships between various input variables. Deep learning
also has the rather unique capability of performing in situ feature engineering;
that is, extensive manual feature engineering is not required for deep learning
algorithms like traditional machine learning algorithms. The data availability in
power systems has exploded in recent years, creating a natural environment for the
emergence of deep learning algorithms. For this reason, it is reasonable to assume
that deep learning has yet to reach its full potential in revolutionizing power systems
predictive analytics field.

7.3.3.2 Shortcomings

Deep learning models have traditionally been difficult to train because of their
expensive computational costs. This limitation has been overcome in recent years
with technical advances in GPUs, network architectures, and development of perfor-
mance optimization techniques. While ANNs act as universal function approxima-
tors, they are also often a black-box approach to modeling. They lack interpretability
and are prone to overfitting because of the high capacity to learn (especially deep
neural networks). Also, deep learning algorithms require significant amounts of data
for training. For cases where data are limited, deep learning algorithms may not be
the optimal method to use. Lastly, for long-term forecasting horizons (5+ years),
statistical methods still provide reasonably good predictions, given the limited data
availability.

7.4 Case Study: Multi-Timescale Solar Irradiance
Forecasting Using Deep Learning

This section reviews an example of using deep learning for real-time forecasting
of solar irradiance [55, 70], where a unified architecture is proposed for predicting
multi-time-horizon solar irradiance. This work uses both RNNs and LSTMs to make
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Fig. 7.5 The seven SURFRAD research stations distributed across the continental USA

predictions of global horizontal irradiance (GHI), also referred to as the total solar
irradiance. Recall from Sect. 7.3 that these deep learning architectures use data from
previous timesteps to inform the current one. This allows the models to learn the
underlying dynamics of system in order to enhance their predictive capabilities.

7.4.1 Data

The data for this study come from the seven Surface Radiation Budget Network
(SURFRAD) measurement stations, scattered across the continental USA (see
Fig. 7.5) that measure various meteorological parameters, including solar radiation.
The distribution of these research stations across various climate zones demonstrates
the robustness of the constructed networks in predicting GHI.1 Minute-by-minute
meteorological data for 2009–2011 from this database is used in this study. The
data are averaged over each hour to obtain mean hourly GHI values for forecasting.

1Because the supervised training approach relies on the data from the given geographic location
to learn the relationships between the various meteorological inputs and the GHI, it is difficult to
transport/reuse this model for a climatically different geographical location. Thus, the model will
need to be trained with a location-specific dataset for using it in various geographical locations.
Therefore, the algorithm itself is robust for various locations, but the model needs to be retrained
for different locations.
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Data from 2010 and 2011 at each location are used for training while corresponding
data from 2009 are used for measuring performance.

7.4.1.1 Global Horizontal Irradiance

Global horizontal irradiance (GHI) refers to the total solar power per unit area that is
incident on some surface (e.g., a photovoltaic solar panel) and is typically measured
in W/m2. This value has two main components: (1) direct normal irradiance (DNI)
and (2) diffuse horizontal irradiance (DHI). The GHI at a particular time t can be
expressed as

GHIt = DNIt × cos (θ) + DHIt , (7.20)

where θ denotes the solar zenith angle, which is the angle between the zenith
(overhead) and the sun. This value is important to understanding the availability
of solar energy on the grid.

The constructed networks (discussed in Sect. 7.4.2) directly predict a value
known as the clear-sky index Kt. This value is a ratio of the true GHI to the expected
GHI in a cloud-free scenario,

Kt = GHIt
/

GHIclear
t

. (7.21)

The clear-sky index is a dimensionless value that describes the total solar
irradiance relative to a theoretical upper limit, which occurs in cloud-free situations.
This acts as a type of normalization for the model that can increase robustness to
location or seasonality. The clear-sky GHI (GHIclear

t ) in Eq. (7.21) is calculated
using the Bird clear-sky model [77] based on latitude, longitude, elevation, and
atmospheric parameters, such as column water vapor, ozone optical thickness, and
aerosol optical depth. Based on this calculation and the predicted clear-sky index
from the deep learning model, one can easily obtain the predicted GHI.

7.4.1.2 Exogenous Input Variables

The input to the deep learning model is a vector of 20 exogenous variables for each
timestep:

• downwelling global solar (W/m2),
• upwelling global solar (W/m2),
• direct-normal solar (W/m2),
• downwelling diffuse solar (W/m2),
• downwelling thermal infrared (W/m2),
• downwelling infrared case temperature (K),
• downwelling infrared dome temperature (K),



7 Predictive Analytics in Future Power Systems: A Panorama and State-Of-. . . 173

• upwelling thermal infrared (W/m2),
• upwelling infrared case temperature (K),
• upwelling infrared dome temperature (K),
• global UVB (mW/m2),
• photosynthetically active radiation (W/m2),
• net solar (W/m2),
• net infrared (W/m2),
• net radiation (W/m2),
• 10-mean air temperature (C),
• relative humidity (%),
• wind speed (m/s),
• wind direction (

◦
),

• station pressure (mb).

Not all of the variables listed here are necessarily important to the solar irradiance
forecast, but they have been used in this case study. As an extension to this work,
further experiments can be conducted to understand the relevance of the individual
input variables and accordingly reduce the dimensionality of the dataset.

7.4.1.3 Data Preprocessing and Postprocessing

The algorithmic approach in this case study begins by preprocessing the data. This
includes removing extreme outliers (values which are +/− 4 standard deviation
away from the mean) as well as nighttime values, filling in missing data with the
mean value of surrounding points, and normalizing the input data vectors. The
clear-sky GHI is computed using the Bird model (see Sect. 7.4.1.1) and used to
transform target GHI values to the clear-sky index Kt. Postprocessing the data
includes recovering the predicted GHI from the clear-sky index and computing the
performance of the network using the mean squared error.

7.4.2 Model Architecture and Training

This case study examines two scenarios: (1) a fixed-time horizon that is similar
to other statistical and machine learning forecasting approaches (such as those
discussed in Sects. 7.2.2 and 7.2.3) and (2) a multi-time-horizon that is better suited
for the flexibility of a deep learning model. In the fixed-time case, separate models
are trained for each desired time horizon (1, 2, 3, and 4 h) while a single model is
used to predict all of the time horizons in the multi-time case. In both scenarios,
separate models are trained for each of the seven SURFRAD locations.

For the fixed-time-horizon problem, this study only considers traditional RNN
models and compares the performance of this deep learning method to standard
machine learning approaches. The network is constructed using rectified linear units
(ReLU) activation functions for all hidden layers and a linear activation on the
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output layer. The output is scalar-valued because the goal is to predict GHI for a
single time horizon.

The multi-time-horizon networks predict GHI at 1-, 2-, 3-, and 4-h time
horizons simultaneously, producing a four-dimensional output vector. This work
also proposes an extension to the unified architecture for predicting multi-time-
scale solar irradiance, which covers 5-min, 15-min, and other such intrahour
time horizons. This work compares LSTMs and RNNs; however, no comparison
is made to traditional machine learning methods because these approaches are
unable to perform multi-time-horizon predictions. The RNNs have similar activation
architectures to the fixed-time-horizon case. The LSTM networks use sigmoid and
hyperbolic tangent activations within the memory cells.

For training, the deep learning models have access to the target GHI values so
that the mean squared loss can be computed. The models are trained using stochastic
gradient descent where the gradients with respect to this loss are computed using
backpropagation through time. The training minibatch sizes are n = 100, and the
networks are trained for 1000 epochs.

7.4.3 Results

7.4.3.1 Single Time Horizon Model

Table 7.2 shows the comparison between the RNN performance and the perfor-
mance of other machine learning forecasting approaches. The values in the ML
column are those presented in [78] where the authors perform the same fixed-time-
horizon study using several traditional machine learning algorithms (SVRs, random
forests, and gradient boosting) as well as a traditional feedforward neural network.
The listed performance is the optimal performance across all testing algorithms for
each horizon/location combination. In each case, the RNN approach significantly
outperforms the others.

7.4.3.2 Multi-Time-Horizon Model

Table 7.3 contains the results of the RNN/LSTM comparison study for the multi-
time-horizon problem.2 Recall that for this study, a single RNN or LSTM network
is trained for each location that forecasts GHI out to all four time horizons. Neither
network architecture outperformed the other across all seven locations. However,
within each location there is a significant increase in error from the 3-h to the 4-h

2Note that Table 7.2 compares the GHI W/m2 values between RNN and traditional ML approaches
while Table 7.3 is comparing the performance of RNN and LSTM algorithms based on clear-sky
index (which is a dimensionless parameter).
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forecasting horizon. This could indicate that autocorrelation in the time series data
decays after 3 h.

7.5 Summary and Future Work

Given the rapidly occurring technological changes in power systems and their
forthcoming transformation into the smart grid, which operates as a part of a
complex amalgamation of interdependent transportation, communication, and IoT
networks, there is an urgent need for developing and deploying better algorithms
for forecasting the various power systems quantities. Moreover, operational uncer-
tainties continue to increase with the burgeoning share of utility-scale as well
as DER-scale renewable energy generation on the grid, calling for better short-
term forecasts. These play a significant role in the optimization of the operational
efficiency of power systems, both economically and in terms of reliability.

Forecasting accuracies for electricity price prediction play a major role in
maintaining the economic viability of energy producers’ businesses in the market.
Resource and load forecasting also have a major role to play in large-scale
deployment of microgrids because these quantities are the main inputs to the
optimization algorithms aimed at operating the microgrids intelligently (i.e., maxi-
mizing economic benefit while maintaining the reliability of the local supply).

Deep learning algorithms (e.g., RNNs and LSTMs) have been applied to power
systems forecasting problems with promising results in the recent literature. They
also offer the potential to continue improving as they are trained further on the
continuous stream of newly generated data. As with any research area, the goal is
to ultimately move these algorithms to the industry deployment phase. Because of
their low forward inference time (on the order of milliseconds), these algorithms and
architectures can provide forecasts in the near real-time horizon. The performance
of the deployed systems can be further improved by implementing sophisticated
hyperparameter tuning mechanisms.

The following two sections briefly note some areas where there is plenty of scope
as well as a need for further development of deep learning applications for power
systems.

7.5.1 Deterministic Versus Probabilistic Forecasting

The forecasted values from the deep learning models discussed in Sect. 7.3 are
deterministic in nature. That is, given the same sequence of inputs, the networks will
always produce the same output. Furthermore, there is no measure of confidence
related to the predictions. Recall the Gaussian process regression (GPR) from Sect.
7.2.3.2. This probabilistic forecasting approach naturally produces a measure of
confidence based on the variance in the GP. As the predicted values get further
from any given data, the variance grows and the confidence in the predicted value
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decreases. Such understanding of uncertainties in power systems forecasting is
critical because of the highly variable nature of the data and the large cost of grid
blackouts and brownouts. Some work has considered how deep learning can be
recast as a probabilistic model [79, 80], but continued research into the topic is
critical.

7.5.2 Other Potential Applications

Anomaly detection in smart grids is a timely and relevant topic as the distribution
grid infrastructure in industrialized countries like the USA has aged and needs
refurbishment and replacement to maintain the reliability of the supply. There has
been relatively less progress in applying deep learning algorithms for anomaly
detection in power systems prognostics and fault prediction problems [81–83]. The
application areas include anomaly detection for predicting the remaining useful life
of the components of power systems, predicting impending fault on power systems,
and predicting building level faults based on the data from building sensors.
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Bi-level Adversary-Operator
Cyberattack Framework and Algorithms
for Transmission Networks in Smart
Grids
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Abstract Transmission system is one of the most important assets in secure power
delivery. Recent advancements toward automation of smart grids and application
of supervisory control and data acquisition (SCADA) systems have increased
vulnerability of power grids to cyberattacks. Cyberattacks on transmission network,
specifically the power transmission lines, are among crucial emerging challenges
for the operators. If not identified properly and in a timely fashion, they can cause
cascading failures leading to blackouts. This chapter tackles false data injection
modeling from the attacker’s perspective. It further develops an algorithm for
detection of false data injections in transmission lines. To this end, first, a bi-level
mixed integer programming problem is introduced to model the attack scenario,
where the attacker can target a transmission line in the system and inject false data
in load measurements on targeted buses in the system to overflow the targeted line.
Second, the problem is analyzed from the operator’s viewpoint and a detection
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algorithm is proposed using l1 norm minimization approach to identify the bad
measurement vector in data readings. In order to evaluate the effectiveness of the
proposed attack model, case studies have been conducted on IEEE 57-bus test
system.

Keywords Cyberphysical security · Optimal attacker strategy · Attack
detection · Sparsity-based decomposition · Energy systems · Smart grid

8.1 Introduction

8.1.1 Overview

Transmission system is one of the most important assets in secure power delivery.
Recent advancements toward automation of smart grids and application of supervi-
sory control and data acquisition (SCADA) systems have increased vulnerability of
power grids to cyberattacks. Cyberattacks on transmission network, specifically the
power transmission lines, are among crucial emerging challenges for the operators.
If not identified properly and in a timely fashion, they can cause cascading
failures leading to blackouts. This chapter tackles false data injection modeling
from the attacker’s perspective. It further develops an algorithm for detection of
false data injections in transmission lines. To this end, first, a bi-level mixed
integer programming problem is introduced to model the attack scenario, where
the attacker can target a transmission line in the system and inject false data in load
measurements on targeted buses in the system to overflow the targeted line. Second,
the problem is analyzed from the operator’s viewpoint and a detection algorithm
is proposed using l1 norm minimization approach to identify the bad measurement
vector in data readings. In order to evaluate the effectiveness of the proposed attack
model, case studies have been conducted on IEEE 57-bus test system.

In recent years, as online monitoring devices have widely being developed and
implemented in smart grids, cybersecurity has also become a more serious issue
to be tackled. In addition, interconnection of power systems in different areas
and development of advanced communication technologies to automate smart grid
assets have made the grid more vulnerable to cyber-physical attacks. A cyberattacker
can therefore inject computer viruses or anomalies to endanger the security and
resiliency of the smart grid system [1–4]. Example of such attach includes Russian’s
cyberattack on obtaining detailed data on nuclear power plants and water facilities
in the USA in 2018 [6]. Another real-world example is the successful cyberattack by
Russian hackers in December 2015 on the Ukraine power grid. In this cyberattack,
30 substations were switched off by hackers which resulted in a power outage of
1–6 h for almost 230,000 people [7].

Transmission lines are the most important assets in power delivery in smart
grids, and if failed, can cause serious cascading problems leading to blackouts. One
example of such cascading failure was a blackout in Italy that happened in 2004
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[8]. Cyberattacks on transmission lines are normally designed to overflow a line or
series of lines with the aim of cascading failures. Such transmission line congestion
can be achieved if an attacker injects false data on load measurements without being
detected by bad data detection algorithms in state estimation process. Recent studies
show that by having information on the topology of the system, these false data
injections can be designed in a way to bypass state estimation methods without
being detected [9–11]. Thus, to protect the smart grid against these vulnerabilities
and increase the resiliency of the system, it is crucial to understand the problem
from attacker’s point of view and develop models that account for various attack
scenarios in transmission line congestion.

A few studies developed models for false data injection attacks with the aim of
bypassing state estimation in smart grids [12–17]. For instance, [12] extensively
modeled false data injection attacks which could not be detected by DC state
estimation algorithms. It was shown that if the injected false values in load buses
follow system’s admittance matrix (B), the attack can be successful. To identify the
worst attacking strategy in false data injection attacks, a heuristic algorithm was
developed in [14]. Furthermore, an attack model was formulated in [16] that would
allow the attacker to make profits in real-time markets. Moreover, a comparison
between few bad data detection algorithms were reported in [17]. Although these
studies provided a full insight to false data injection problems in smart grids, they
did not focus on transmission line congestion and also would require the attacker to
have complete access to the system, which was not realistic.

There are also several studies which aimed to generalize false load data injection
attacks by focusing on incomplete power system models and limited access by the
attackers [18–22]. For example, a practical model on false data injection attack was
introduced in [19]. Physical constraints of the smart grid system were considered to
formulate the model. The model was developed based on the fact that the attackers
could not alter the generator output powers. As a result, the power balance needed
to be met continuously. Furthermore, an attack model was developed in [18],
which only relied on the data and the topology of a local targeted region that
could bypass the bad data detection algorithm. Recent studies showed that mixed
integer linear programming (MILPs) modeling of the cyberattacks is the most
suitable and practical modeling procedures for false data injection attacks [19, 21].
Several studies introduced MILP attack models to initially maximize the system
costs [20, 22]. Nevertheless, the main focus of these studies were on attacks which
maximized the system costs, and attacks on transmission lines’ congestion were not
considered.

In [23], in order to overflow transmission lines, a tri-level MILP solution was
developed. This model took into account the security constrained economic dispatch
problem to find an optimal strategy to overflow multiple targeted transmissions lines
through data falsification. Although this model is effective for the scenario in which
attacker has access to all lines, in realistic scenarios attacker does not have access
to all buses. Due to complexity of tri-level model, it increases the complexity of
protection schemes as well. In order to tackle the complexity issues regarding the
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model in [23], a bi-level MILP model was proposed in [24]. This model also ignored
some practical limits. Optimal injection on load buses was not modeled in this study,
i.e., there is no specific strategy to choose the most vulnerable bus from attacker’s
perspective. In practice, this may not be possible due to limited access to a part of
network.

This study addresses two cybersecurity problems from two completely different
perspectives: (1) optimal attack strategy from the attacker’s viewpoint, (2) state
estimation to identify bad data injection considering presence of cyberattacks from
operator’s viewpoint. The main advantages of the presented MILP approach for the
attacker are:

• Optimizing false data injections rather than number of target buses to achieve a
more realistic attack model to overflow the transmission lines.

• Restricting transmission line overflow to a certain upper limit to prevent unrealis-
tic spike in line flow, e.g., two times as compared with normal operating scenario
in some cases [24].

• Making the realistic assumption that all lines/buses may not be accessible to the
attacker. To this end, our model assumes attacking to a target load bus without
being detected by the operator.

• Developing a bi-level MILP model as an alliterative to tri-level methods. This
simplifies protection scheme in resilient power system studies. Further, we have
included load injection limits to outperform the bi-level model in [24].

More importantly, this chapter proposes a detection framework that identifies the
false data injections in smart grids, this has never been studied in the existing
literature.

The organization of this chapter is as follows. Section 8.2 provides the pre-
liminaries regarding DC power flow model. Section 8.3 explains the false data
injection attacks and their effect on smart grid state estimation. Section 8.4 explores
a bi-level MILP model to find the optimal strategy of an attacker in transmission
networks. Section 8.5 is devoted to the operator’s strategy for bad data injection
identification using sparsity-based decomposition. Section 8.6 includes the case
studies on IEEE 57-bus benchmark model, followed by Sect. 8.7 that concludes the
paper. The overall structure of this study is provided in Fig. 8.1.

8.2 DC Power Flow Model

Here, we provide the preliminaries for DC power flow formulation. This notation
is used both for finding the optimal cyberattack strategy for the attacker and
developing a bad data detection method for the operator.

The following assumptions are made due to the physical characteristics of
transmission networks to obtain linear DC power flow formulation as opposed to
nonlinear AC power flow model:
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Fig. 8.1 Overall structure of this study: exploring the cyberattack from attacker’s and operator’s
perspectives

1. Due to the high X/R ratio in transmission networks, only the inductive compo-
nent of impedance is considered [25], i.e., Rij = 0 for all lines.

2. Voltage mismatch among neighboring (connected) buses is negligible, i.e., δi −
δj ≈ 0; hence, we can make the following approximations cos(δi − δj ) ≈ 1 and
sin(δi − δj ) ≈ 0.

3. Due to the low voltage deviation in transmission networks, all voltage magni-
tudes are set to 1 p.u.

Newton–Raphson power flow method is the most suitable approach to solve
the power flow equations due to its quadratic convergence. DC power flow is
a simplified version of decoupled power flow by further dropping the Q − |V |
equations and assuming a constant voltage profile for all the buses in the system.
Therefore, it is assumed that |Vi | = 1 p.u. for all the buses. Assuming the system
has N buses and bus number 1 is the slack bus (e.g., V1 = 1� 0 p.u.), the decoupled
power flow can be modeled by

[
�P

�Q

]
=

[
J1 0
0 J4

] [
�θ

�|V |
]

(8.1)

where �P = [�P2,�P3, . . . ,�PN ] and �Q = [�Q2,�Q3, . . . ,�QN ] are vec-
tors representing the mismatch between the scheduled and calculated active/reactive
powers (e.g., �Pi = P sch

i − P
(k)
i , �Qi = Qsch

i − Q
(k)
i ), J1 and J4 are elements of

Jacobean matrix represented by
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⎤

⎥⎥⎥⎥⎦
(8.2)

Disregarding the resistance of transmission lines, this model can be further simpli-
fied to the DC power flow formulation as,

⎡

⎢⎣
�P2

...

�PN

⎤

⎥⎦ =

⎡

⎢⎢⎢⎣

B11 B12 B13 . . . B1N

B21 B22 B23 . . . B2N

...
...

...
. . .

...

BN1 BN2 BN3 . . . BNN

⎤

⎥⎥⎥⎦

⎡

⎢⎣
�θ2

...

�θN

⎤

⎥⎦ (8.3)

where Bik = − 1

xik

and Bii = ∑N
i=1

1

xik

, and xik is the reactance of the transmission

line between bus i and bus k. In a matrix form, the DC power flow is formulated as

P − D = Bθ (8.4)

where P is the vector of generated active powers and D is the demand vector in the
system. The power flow in transmission lines between bus i and k using DC power
flow is formulated by

Pik = 1

xik

(θi − θk) (8.5)

8.3 False Data Injection Attacks Based on DC
State Estimation

In smart grids, the supervisory control and data acquisition is in charge of estimating
the parameters of the system based on received phasor measurement unit (PMU)
measurements. This is mainly to ensure an error-free measurement by running a
bad data detection algorithm in state estimation process. State estimation is the
process of using sample measurements to calculate the values of state variables
in power systems. In DC power flow, since the only variables are bus voltage
angles, the objective of state estimation is to estimate the bus voltage angles using
measured values. The maximum likelihood criterion is normally used to estimate
the parameters of the system in this case. The objective of maximum likelihood
criterion is to maximize the probability that estimated value (x̂) is the true value of
the state variable x. This can be formulated as
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P(x̂) = x (8.6)

In the maximum likelihood criterion, it is assumed that the probability density
function (PDF) of the random measurement errors is known. However, if the PDF
of sample measurements is assumed to follow a normal (Gaussian) distribution
function, the least square estimates can be used to estimate the states of the system
[26]. Therefore, if a single parameter, θ , is to be estimated using Nm measurements,
the objective is to [26]

min
Nm∑

i=1

[
θmeas
i − fi(θ)

]2

σ 2
i

(8.7)

where fi(θ) is the function used to calculate the bus voltage angles, which is equal
to Hθ in DC power flow. It is noted that H is an Nm × Ns matrix of the coefficients
of linear function fi(θ) and is related to transmission line reactances. Furthermore,
σ 2

i is the variance of ith measurement, θmeas
i is the measured bus voltage angle, and

Nm is the total number of measurements in the system. By converting (8.7) to matrix
form, the problem can be written as [26]

min J (θ) = [θmeas − Hθ ]T W−1[θmeas − Hθ ] (8.8)

where J (θ) is the measurement residual, and θmeas and W are defined as

θmeas =

⎡

⎢⎢⎢⎣

θmeas
1

θmeas
2
...

θmeas
Nm

⎤

⎥⎥⎥⎦ ,W =

⎡

⎢⎢⎢⎣

σ 2
1

σ 2
2

. . .

σ 2
Nm

⎤

⎥⎥⎥⎦ (8.9)

To find the minimum of J (θ) in (8.8), the gradient of measurement residual must be
zero (e.g., ∇J (θ) = 0), this will result in a solution of estimated values

θ̂ = [HT W−1H ]−1HT W−1θmeas (8.10)

After deriving the estimated values, the SCADA system normally runs a bad data
check to calculate the two-norm value of the mismatch between the estimated values
and measured values. If the error is greater than the threshold, the bad data is
detected. It was proved in [23] that an attacker can bypass the bad data detection
algorithm if the false data is designed to satisfy

�z = H�θ (8.11)

where �θ is the change in the bus voltage angles, and �z is the change in the
measurement vector due to the false data injection.
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It should be noted that the successful attack might not be guaranteed, this is
because of the fact that after the false data injections, the control center should adjust
the generation powers for an optimal power flow that results in a lower system cost.
The economic dispatch problem will then be run in presence of false data injection,
which results in a new transmission flow that deviates from normal load flow results.
Since the economic dispatch might have multiple solutions, the success of attack
cannot be guaranteed [23]. The main assumptions for false data injection attacks
due to system limitations can be listed as [27]:

• The synchronous generator readings cannot be altered
• The measurement tampering on each load is limited within its nominal rating
• Power balance, which is a mismatch between the generation and load, should

always be met

These limitations will mathematically be modeled and included in the cyberattack
problem to be formulated in the next section. It is also assumed that the attacker
has limited access to the system buses for false data injection. Therefore, a subset
of all system buses (F ) that the attacker can access is defined to highlight the
fact that the attack can only be done on the subset. In addition, to avoid supply–
demand violation, sum of injected powers by the attacker has to be zero, this can be
formulated as

∑

i∈F

�Di = 0 (8.12)

where �Di is false active power injection at bus i. To account for limited injection
on each measurement, a new constraint has to be defined,

− τDi ≤ �Di ≤ τDi (8.13)

where τ is the limit on the maximum injection and is considered as 15% in this
study, and Di is the nominal load at bus i.

8.4 Attacker’s Problem: Finding the Optimal Set
of Target Transmission Lines using MILP

In this section, the attacker’s problem is modeled as a bi-level mixed integer
linear programming (MILP) optimization model, where an attacker can target a
transmission line and overflow the targeted line by injecting false data on targeted
buses. The assumption is that the attackers have enough information on topology
of the system to conduct attacks; however, they might not have access to all buses
in the system. The attacker’s problem is designed in a way that the transmission
flow of a targeted line always exceeds the maximum thermal limit of the line after
running the security constraint economic dispatch problem. As a result, regardless
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of the economic dispatch solution (it might have multiple solutions), the targeted
line will always be overflowed. Another assumption of this problem is that all
generating units are online in the period of false data injection. Thus, instead of
unit commitment, economic dispatch is formulated.

min
∑

i∈F

�Di (8.14)

s.t. P t
ij + UiM ≥ αP max

ij (8.15)

− P t
ij + (1 − Ui)M ≥ αP max

ij (8.16)

− 1.2 ≤ P t
ij

P max
ij

≤ 1.2 (8.17)

∑

i∈F

�Di = 0 (8.18)

− τDi ≤ �Di ≤ τDi (8.19)

P − (D + �D) = Bθt (8.20)

P t
ij = θ t

i − θ t
j

xij

(8.21)

− 2π ≤ θ t
i ≤ 2π (8.22)

min
nG∑

i=1

Cg,i(PG,i) (8.23)

s.t. Cg,i(PG,i) = ai + biPG,i + ciP
2
G,i (8.24)

P − (D + �D) = Bθf (8.25)

P min
G,i ≤ PG,i ≤ P max

G,i (8.26)

− P max
ij ≤ θ

f
i − θ

f
j

xij

≤ P max
ij (8.27)

The developed MILP problem is separated into two sub-problems known as
upper level and lower level problems. The upper level problem formulates the
attack using a given power flow results and outputs the injection vector on targeted
lines to ensure bypassing the bad data detection method in DC optimal power flow.
The lower level problem formulates the DC economic dispatch problem with false
data injections to retain the operation of power system within the desired limits.
The problem is shown in (8.14)–(8.27).



192 M. H. Amini et al.

The upper level objective function (8.14) is designed to find the minimum
injections needed in a subset of targeted buses (F ). The main target of the attacker
is to overflow a targeted transmission line, it is also noted that the transmission line
flow can be bi-directional, this can be formulated as

|P t
ij | ≥ αlP

max
ij (8.28)

where |P t
ij | is the transmission flow between bus i and j , the absolute value

is used to reflect the fact the flow can be bi-directional, P max
ij is the maximum

thermal limit of the line between bus i and j , and α is a number greater than 1 to
ensure the transmission line flow will be greater than the limit. Due to the existence
of absolute value in the constraint (8.28), the problem becomes nonlinear. To solver
the issue, this constraint can be linearized by introducing a binary variable Ui and
a large enough constant M . The linearization will result in two constraints shown
in (8.15) and (8.16). The readers are encouraged to refer to [28] for more information
on linearizing the constraints with absolute value using the big M method.

Constraint (8.17) enforces the overflow to be within 20% of maximum power
flow, although the main target is to overflow a line, to avoid being detected by the
operator, the max flow should be limited. Constraint (8.18) is designed to ensure
the power balance is always met; therefore, summation of all the injections should
be zero at any moment. Constraint (8.19) refers to the fact that an attacker cannot
inject any amount of data at any load bus; therefore, the false injected power at
any bus is limited to τ% of the nominal load at that bus. Constraint (8.20) ensures
bypassing the bad data detection. As it was mentioned in (8.11), the attacker
can bypass the DC state estimation without being detected if the injected data is
designed based on (8.11). By rearranging (8.20),

(P − D) + �D = Bθ + B�θ (8.29)

where �θ is the change in the bus voltage angles due to false data injection. Know-
ing the fact that P − D = Bθ , (8.29) can be simplified to (8.11). Constraints (8.21)
and (8.22) relate the transmission flow to maximum allowable limits of bus voltage
angles. The lower level problem is the economic dispatch problem based on DC
power flow, which is formulated through (8.23)–(8.27). In the lower level problem,
the objective is to minimize the generation cost for all nG generators in the system.
It is assumed that the generating units do not contain several control valves. Hence,
the “convex” cost function of the generators is represented by ai + biPG,i + ciP

2
G,i ,

where PG,i is the active power generated by generator i, and a, b, and c are
cost function constants (constraint (8.24)). Constraint (8.25) represents the power
balance equation in presence of false data injection, constraints (8.26) and (8.27)
ensure the generator powers and transmission line flows are within the limit after
injection, where xij is the reactance of the transmission line between bus i and j .
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8.4.1 Identifying Feasible Attacks

Realistically, physical limitations of power systems and solution of economic
dispatch problem limit the feasibility of the attacks from attacker’s point of view.
In other words, it is impractical to target all the transmission lines in the system
and only a few lines might be practically targeted at any moment. Therefore, the
attacker’s first step is to recognize the feasible attacks and then inject data on
selected buses (targeted buses) to overflow those lines that can result in a feasible
solution. An algorithm is defined to identify the feasible solution of overflowing
transmission lines in the system. The model requires the power flow data from
previous step to result in a successful subset of transmission line numbers that can
be targeted without violating the bad data detection algorithm in state estimation
procedure. The flowchart of the proposed algorithm that results in feasible solutions
of the line overflows is shown in Fig. 8.2.

8.5 Operator’s Problem: Bad Data Detection to Prevent
Outages Caused by Cyberattack

In the previous section, we explained the algorithm for finding the optimal attack
strategy from attacker’s perspective. Successful attack will affect the result of
DC power flow problem. Power system operator is responsible for maintaining
situational awareness, as well as ensuring resilient and secure energy delivery by
identifying these attacks and deploying preventive measures [29]. In this section, we
focus on a specific algorithm to identify bad data injection attacks, i.e., attacks that
manipulate the measurement vector to falsify the real values used for DC power flow
calculation in transmission networks. The main idea is to design a state estimator
which is robust to error/attack in the measurement vector while obtaining the power
flows. This estimator leverages the structure of admittance matrix to efficiently
identify bad data injection attacks.

The following section is devoted to the details of this state estimator. To this
end, we build on the proposed sparsity-based error detection algorithm proposed in
[30]. This algorithm leverages the singularity of B matrix due to the geographically
dispersed transmission networks, as well as the sparse nature of estimation error
vector. Sparsity-based cyberattack detection algorithm is based on the following
steps:

1. Reformulating the DC power flow problem into a sparse vector recovery problem
2. Deploying l1-norm minimization approach [31]
3. Obtaining the bad data elements in the measurement vector
4. Identifying bad data injection attacks and measurement error given the normal

distribution of measurement noise
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Fig. 8.2 Flowchart of the
proposed BMILP program for
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There is a low dimensional structure in most of the collected data and measure-
ments in real-world applications, including DC power flow problem. This has been
leveraged by some of the prior studies to improve sparse vector recovery [31, 32],
e.g., they have explored sparse vector recovery in case of having limited available
measurements. In order to recover an N -dimensional sparse vector, these algorithms
do not necessarily require N data points [32, 33].

Candes et al. [32] proposed a sparse vector recovery algorithm that only needs a
minor portion of random orthogonal projection [30]. Let v ∈ R

N denote an arbitrary
sparse vector with its number of non-zero components defined as l0-norm, i.e., ‖v‖0.
We define set of orthonormal basis matrix as O ∈ R

N×N . We have
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OT O = I, (8.30)

where I represents identity matrix. We represent a set of random columns from O
as M ∈ R

N×m. We further let μ denote the lowest value that meets the following
inequality:

max
i

‖MT ei‖2 ≤ μm

N
, (8.31)

where ei denotes a standard basis. Note that the dimension of space is N ×m. Small
values of μ refers to the fact that the subspace corresponding to columns of M is not
in the same direction as standard basis. The orthogonal matrix M is used to measure
the sparse vector. As we use this matrix to measure sparse vector, it should not be
sparse.

According to [32], if

m ≥ c‖v‖0μ log
N

δ
(8.32)

where c is a constant, then, solution of following optimization problem

min
ẑ

‖ẑ‖1

subjectto MT ẑ = MT v
(8.33)

is the same as v with a lower probability bound of (1 − δ), i.e., we can reconstruct
the N -dimensional vector given a limited set of random measurements [34].

Given the above-mentioned preliminaries on sparse vector recovery, we now
explain the sparsity-based decomposition algorithm for bad data injection in DC
power flow calculation [30]. In the B matrix, due to the row corresponding to slack
bus, there is at least one row which can be obtained as linear combination of the
other rows, i.e., B matrix is not full rank. Let rB denote rank of B matrix. Hence,
we can reformulate DC power flow problem as p = Qθ + ε, where Q ∈ R

ℵ×rB

represents orthonormal basis for column subspace of B matrix. Conventionally, in
order to estimate the coefficient vector, which is equivalent to the voltage angles
vector in DC power flow problem (i.e., θ ) least square approach is used as follows:

min
θ̂

‖p − Qθ̂‖2 (8.34)

The optimization problem in (8.34) basically projects p on the columns subspace
of Q. Hence, the effectiveness of the estimator depends on the noise vector ε and
its projection on column subspace of B matrix. Note that noise vector aims at
modeling the natural measurement noise in normal situation. However, in presence
of attackers (e.g., the attack scenario that has been introduced in previous section) or
measurement anomalies (e.g., communication failure or defective equipment), some
elements of this vector will have abnormal value.
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We assume that the error/attack vector ε is a sparse vector, i.e., attackers cannot
manipulate all measurements at the same time. As opposed to l2-minimization, l1-
minimization methods are adaptive in presence of sparse error/attack vector [34, 35],
i.e., if ε is sufficiently sparse and Q meets incoherency criterion [31, 35], solution
of

min
θ̂

‖p − Qθ̂‖1 (8.35)

is θ .
In the proposed sparsity-based decomposition algorithm in [30], based on the

sparsity assumption for B matrix, rB < ℵ. If Q⊥ ∈ R
ℵ×(ℵ−rB) represent the

matrix that complements the column subspace of Q, according to [31, 35], we can
rewrite (8.35) as

min
ε̂

‖ε̂‖1

subjectto (Q⊥)T ε̂ = (Q⊥)T p
(8.36)

If the following inequality holds,

(ℵ − rB) ≥ c‖ε‖0μB log
N

δ
(8.37)

then, with a lower bound probability of (1 − δ), the optimal solution of (8.36) is θ ,
where μB is obtained using the following:

max
i

‖(Q⊥)Ti ‖2 ≤ μB(ℵ − rB)

ℵ (8.38)

Consequently, given the assumption regarding low rank of B matrix ((ℵ − rB) is
fairly large), the optimization problem in (8.35) can find the exact estimation.

8.6 Case Studies

The proposed BMILP cyberattack model is validated in IEEE 57-bus benchmark
model using MATLAB. The parameters of the system are derived from MAT-
POWER toolbox, which is an open access MATLAB toolbox used for load flow
studies [36]. The maximum flow limits (P max

ij ) for IEEE 57-bus system were not
provided in the toolbox, and it was considered to be 120 MW for each transmission
line. The structure of the system is illustrated in Fig. 8.3, the system is composed
of 7 generators, 80 transmission lines, and 42 loads. The upper level problem for
best scenario false data injection attacks represented in (8.14)–(8.22) is solved using
(“intlinprog”) function of MATLAB, which is designed to solve mixed integer linear
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Fig. 8.3 Schematic of the IEEE 57-bus system studied in this work; transmission lines highlighted
by red color indicate the potential lines that can be targeted by attackers. The highlighted area is
used to illustrate the effect of gaining access to a complete area in the system

programming problems. The lower problem represented in (8.23)–(8.27) involves a
nonlinear objective function and therefore, a nonlinear solver of MATLAB named
(“fmincon”) is used to solve the lower level problem. A few case studies are carried
out in the following sections.

8.6.1 Feasibility of Line Overflow

Due to the physical limitations imposed on cyberattacks and false data injections,
the attackers cannot target any transmission line in the system. For example, the
factor τ limits the injection on each load to 15% in this study. Furthermore, the
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Table 8.1 Feasibility of line overflow in IEEE 57 case

Line number From bus To bus Ui

3 3 4 0

15 1 15 1

37 24 26 0

79 38 48 1

flow of a line cannot exceed 120% of the maximum limit (1.2 × 120 MW). These
limitations will leave the attackers with few options to overflow. The proposed attack
model in (8.14)–(8.27) can be run for all the buses in the system in order to identify
a list of transmission lines that can be overflowed successfully. In this case study,
the algorithm was run for all 80 transmission lines in the IEEE 57-bus system to
identify a list of lines to be targeted for overflowing. To solve this problem, the
objective function in (8.14) is run for all buses in the system instead of a subset F

of system buses. This means, the subset F is considered as i = 1, 2, . . . , 57.
Test results for the list of feasible attacks on targeted transmission lines to

overflow in IEEE 57-bus system are illustrated in Table 8.1. It is seen that four
transmission lines can be targeted in this system by attackers, which includes
transmission lines number 3, 15, 37, and 79. The second and third column represent
that each line number is assigned based on the MATPOWER data from one bus to
another, and the last column shows the value of the binary variable for overflowing
the line (Ui). These transmission lines are highlighted by red color in IEEE 57-bus
system depicted in Fig. 8.3. It is worth mentioning that the results in Table 8.1 are
only valid for the conditions considered in this case (e.g., τ = 15%, α = 1.01).
Therefore, the results might change if the security constraints in (8.15), (8.16),
and (8.19) are relaxed.

8.6.2 Targeted Attack on Line 15

This case investigates targeted attacks to overflow transmission line number 15,
which connects bus 1 to bus 15 in IEEE 57-bus system as shown in Fig. 8.3. Since
the attacks are targeted, the attacker can target any set of buses to inject false data
and overflow this line. Ideally, the attacker would access buses close to the targeted
line and inject data. A few set of feasible solutions to overflow line number 15 is
shown in Table 8.2. Three different combinations are considered to overflow line
15, in the first scenario, the attacker targets buses 12, 44, 47, and 49 that are very
close to the targeted transmission line. In the second case, the attacker targets buses
8, 9, and 12, and finally, it is shown that if the attacker only targets buses 9 and
12, the attack can successfully be done. Table 8.2 shows the attack results for these
three test scenarios. It is noted that the attackers target specific buses in the system
that they can access and the program outputs the minimum injections needed to
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Table 8.3 False data injection on buses to overflow one area

Targeted buses �D Targeted buses �D

1 −11 MW 12 28 MW

13 −3.6 MW 16 −8.4 MW

17 −8.6 MW 49 3.6 MW

P15 = 125.9 MW

Cost (no attack) = $ 45,342

Cost (with attack) = $ 45,685

overflow the targeted transmission line. It is observed that the targeted line 15 is
overflowed in all three cases as its power flow (P15) is more than 120 MW limit.
The last two columns show the cost of the system with no attack and after attack,
it can be inferred from the Table 8.2 that in case 2 and 3, the system cost is less
with data injections, compared to the no data injection case, which might trick the
operator to choose this scenario as an acceptable economic dispatch case study.

8.6.3 Severe Attack on an Area

This case study considers a severe false data injection attack, where the attacker(s)
can access an area in the power system and can inject false data in any bus within
that area. This concept is illustrated in the highlighted area shown in Fig. 8.3.
The attacker targets line 15 and injects data on buses 1, 12, 13, 16, 17, and 49
within the area. Results of false data injection on the whole area are illustrated in
Table 8.3. The false data injections are also shown in second and fourth column for
each bus. It is observed that the attack can successfully overflow line 15 and the cost
of operation has also increased after the attack.

8.7 Conclusion

In this chapter, a framework was proposed to initially model the false data injection
attacks on smart grids with the aim of transmission line congestion on targeted buses
and eventually proposed a detection framework to detect such injections. A bi-level
mixed integer programming problem was considered for the attacker’s problem that
would allow attackers to target a transmission line in the system and inject false data
on targeted buses in vicinity of the targeted transmission line to cause congestion
without being detected by DC state estimation algorithm. Through case studies, it
was shown that the proposed attack model results in a list of available transmission
lines to overflow. Furthermore, it was shown that the attacker can inject false data
on selected buses or buses in a hacked area in the system to overflow a targeted
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line. To detect these attacks, a detection framework from operator’s point of view is
also developed that uses l1 norm minimization to identify the bad measurement
vector. The proposed model can easily be integrated to the security constraint
economic dispatch problem in order to protect the smart grid against transmission
lines congestion cyberattacks. Future research will focus on (1) validating the
detection algorithm in IEEE benchmarks, (2) proposing a framework that would
protect the system against congestion attacks on multiple lines at the same time, and
(3) introducing market frameworks in which market participants can gain profit by
contributing to mitigation of system congestion caused by cyberattacks.
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and Education (CSRE) seed grant 2019.
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Chapter 9
Toward Operational Resilience of Smart
Energy Networks in Complex
Infrastructures
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Abstract Smart energy systems can mitigate electric interruption costs provoked
by manifold disruptive events via making efforts toward proper pre-disturbance
preparation and optimal post-disturbance restoration. In this context, effective
contingency management in power distribution networks calls for contemplating
disparate parameters from interconnected electric and transportation systems. This
chapter, while considering transportation issues in power networks’ field operations,
presents a navigation system for pre-positioning resources such as field crews and
reconfiguring the network to acquire a more robust configuration in advance of the
imminent catastrophe. Also, after the occurrence of the calamity, this navigator
optimally allocates the resources to recover the devastating system. So, providing
a coordination framework for manual field operation and automation system, this
navigator takes a step from traditionally operated systems accommodation toward
smart networks. During the contingency management process, there might be
modifications in initial data due to the dynamic and time-varying condition of
electric and transportation systems. Therefore, the mentioned navigator copes with
a real-time problem of data-driven decision making in which, the decisions need
to track online changes to the input data. Decision making by the navigation
system in this environment is based on a mixed integer linear programming (MILP)
optimization which is described in this chapter in detail.
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9.1 Introduction

9.1.1 Overview

Smart energy systems can mitigate electric interruption costs provoked by manifold
disruptive events via making efforts toward proper pre-disturbance preparation
and optimal post-disturbance restoration. In this context, effective contingency
management in power distribution networks calls for contemplating disparate
parameters from interconnected electric and transportation systems. This chapter,
while considering transportation issues in power networks’ field operations, presents
a navigation system for pre-positioning resources such as field crews and recon-
figuring the network to acquire a more robust configuration in advance of the
imminent catastrophe. Also, after the occurrence of the calamity, this navigator
optimally allocates the resources to recover the devastating system. So, providing
a coordination framework for manual field operation and automation system, this
navigator takes a step from traditionally operated systems accommodation toward
smart networks. During the contingency management process, there might be
modifications in initial data due to the dynamic and time-varying condition of
electric and transportation systems. Therefore, the mentioned navigator copes with
a real-time problem of data-driven decision making in which, the decisions need
to track online changes to the input data. Decision making by the navigation
system in this environment is based on a mixed integer linear programming (MILP)
optimization which is described in this chapter in detail.

The continuous supply of energy has a direct influence on customers’ satisfac-
tion, hence, has always been one of the most important issues for power distribution
utilities. In this regard, the occurrence of a fault caused by equipment failure or
due to events such as adverse weather conditions may cause a blackout in the
grid and jeopardize the reliability of electric energy services. In this situation, the
restoration of the power supply to interrupted customers should be done as quickly
as possible and with the lowest cost. To this end, researchers have always been
trying to describe the optimal operation required in post-fault situations [1–8]. In
the fault management process, the use of remote controlled switches (RCSs) due to
their ability to promptly restore a significant share of the network’s disconnected
load has been noticed [8–17]. However, manual switching in the network and repair
operations require the presence of field operation crews at the network level. The
dispersed manual switches (MSs) at the network level and the limited crew teams
necessitate the optimal use of the transportation system in implementing the load
restoration process.

Meanwhile, optimal fault management can have a more important role in service
restoration after natural disasters. Severe weather events can have a significant
impact on power system infrastructures. In recent years, the incidence and severity
of these events have been increasing due to climate changes [18]. In 2016, based on
Energy Information Administration (EIA) reports, West Virginia recorded the high-
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est SAIDI1 of 6 h in the USA when major events were excluded. While, including
major events, highest reliability index was more than 20 h per customer because
of hurricane Matthew in South Carolina. Given such incidents, the development
of methods to increase the resilience of power systems against natural disasters,
especially climatic events, is becoming more important. Power systems as a critical
infrastructure should be reliable under normal circumstances and predictable faults
[19]. In this regard, power systems are designed and exploited based on the key
features of reliability, namely, security and adequacy [20, 21]. However, due to
the increase in natural disasters in recent years, the power system infrastructures
must be resilient to high impact low probability (HILP) incidents too. Therefore, in
this chapter, measures to increase resilience of the power system before and after
predicted events are described. Using meteorological forecasts, these measures take
the distribution network to the most robust configuration to avoid likely failures.
Also, the transportation system issues are considered in performing field operations
by the crew teams.

9.2 Resilience Enhancement Scheme

Nowadays, due to remarkable advances in weather forecasting, natural disasters
and their severity can be predicted much more precisely than before. For example,
today’s weather forecasting systems are able to predict tornados for 2 h and
hurricanes and tropical storms from 24 to 72 h before their occurrence [21].
Therefore, in this chapter, the concept of proactive planning of electric power
distribution networks has been harnessed to increase the resilience of these networks
to natural disasters, which is related to the operations performed before the incident
[22–25]. In this regard, in the pre-storm stage, distribution network operators
try to change the network configuration to acquire a storm-resistant structure. In
fact, by calculating the failure probability of the distribution system branches, the
system operator tends to supply the customers especially critical ones via available
redundant paths rather than exploiting the branches with higher failure probability.
The proposed model thus provides an optimal switching sequence for RCSs and
MSs. In addition, with the aim of speeding up the likely post-event actions, the
system operator, after reconfiguring the system, dispatches the available crew teams
to the available staging locations; thus, in the post-event stage, he/she can recover
the system more quickly. This placement will be such that post-event operations
are carried out as quickly as possible, and customers of the distribution network
experience the least possible interruption duration. It is worthwhile to note that all
operations must be carried out within a specific time period (i.e., the remaining time
to the incident) and crews must arrive at the prepared sites before the event occurs.

1System Average Interruption Duration Index.
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Fig. 9.1 Typical fragility curves against wind speed [14]

All of these pre-event preparation scheduling is obtained as the result of
identifying the likely damages of the distribution system branches. In fact, there has
to be a prediction of damages caused by the forthcoming event. For this purpose,
the fragility curves of distribution network equipment are used. A fragility curve is
a statistical tool representing the probability of exceeding a given damage state
(or performance) as a function of an engineering demand parameter. There are
sample fragility curves for lines and poles in Fig. 9.1 [26–28]. In this study, fragility
curves associated with poles and lines are utilized in order to obtain their failure
probability. Thus, aggregating the related data to characteristics of the upcoming
disaster (e.g., tornado) such as intensity and approaching angel, and mapping the
obtained intensity to the associated fragility curve, the failure probability of each
component could be calculated.

The failure probabilities can be calculated as follows:

ρl(w) = ρl,c(w) + ρl,p(w) − ρl,c(w)ρl,p(w) (9.1)

ρl,p(w) = 1 − (
1 − ρp−ind(w)

)Np,l (9.2)

where ρl(w) is the failure probability of line l associated with wind speed w. In
addition, parameters ρl, c(w) and ρl, p(w) are the failure probability of conductors
and poles, respectively, and ρp − ind(w) is the failure probability of an individual
pole. Also, Np, l is the number of poles holding line l. Therefore, exerting the above
relations, failure probability of distribution lines can be calculated.

After applying the proactive actions, the system operator monitors the system
during the natural calamity and aggregates the data related to the operating condition
of the distribution system’s components. Then, after the occurrence of the event,
he/she tends to recover the system based on the initial configuration of the system
which is the result of the pre-event actions, and the status of the distribution
system branches after confronting the disaster. To do so, he/she reconfigures the
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system optimally via co-optimizing the operation of MSs, RCSs, and various
distributed energy sources such as photovoltaics (PVs), wind turbines (WTs), and
energy storages (ESs).

9.3 Real-Time Decision Making Process

Optimal fault management in power distribution networks not only depends on
technical electrical parameters but is also dependent on other interconnected
infrastructures. Field operations are performed in the context of the transportation
system, and meteorological forecasts provide necessary information for pre-event
preventive measures. In this regard, the method presented in this chapter can be used
as the core of the decision making algorithm to develop a navigator system for fault
management procedure. Data preparation procedure for the navigation system is
shown in Fig. 9.2. This navigator utilizes locational and technical data from different
toolboxes such as travel time estimator, load estimator, and failure estimator for
data-directed decision making to produce information about the optimal schedule
of switching actions and routing for field crews. The failure estimator toolbox as
the connection interface of the electrical system with the meteorological system
uses event characteristics data and components fragility curves to produce probable

Electrical Network

Distribution management system

Location of fault

Location of crews

Load measurements

Load estimator

Measurements &
Historical Data

Forecasted
Load Data

Various Time
Distances

Fault location package

GPS-based technology

Smart meters

Travel time estimator Failure estimator

Navigator Optimizer

Final Decisions

Technical & Locational Data

Transportation System Meteorology System

Storm CharacteristicsTraffic Data

Navigator

Locations of Fault,
Crews and MSs

Fragility
Curves

Failure
Probabilities

Fig. 9.2 Navigator data flow in complex infrastructures
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post-incident damages. Also, travel time estimator toolbox as the link between
the electrical system and transportation system processes the locational data of
crews, faults, and MSs locations and also traffic data to calculate mutual distances.
Fortunately, effective approaches to the online estimation of travel time have been
widely investigated [29, 30]. It should be noted that fault location data in the pre-
disaster situation are probabilistic data from the failure estimator toolbox.

During the restoration process, the initial data, due to network and area dynamic
conditions might be corrected or changed. In this regard, one-time decision making
for the entire future operations may make the expected outcome vulnerable to many
unexpected incidents. Therefore, the presented navigator periodically gathers new
or updated data and decides about the best possible decisions in the future horizon.
Then, comparing new decisions with previous ones, essential modifications can be
made (see Fig. 9.3).

9.4 Optimization Model

As discussed before, in order to enhance the resilience of electric power distribution
systems, a three-stage model is presented in this chapter each of which is described
in below.

9.4.1 Pre-event Preparation Strategy

As was discussed before, it is assumed that before the approaching event hits the
system, distribution system operators tend to use more reliable redundant paths
in the system rather than most likely fragile paths (i.e., lines with higher failure
probability); thus, the total demand of the system will be supplied with highly
reliable lines. In this regard, system operators can use the following model to attain
the mentioned desire.
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Min
∑

t,l

ρl ×
ϑt,l︷ ︸︸ ︷

St,l ×
∣∣∣P f

t,l

∣∣∣ (9.3)

y1 − y2 = P
f
t,l (9.4)

∣∣∣P f
t,l

∣∣∣ .w = y1 (9.5)

∣∣∣P f
t,l

∣∣∣ . (1 − w) = y2 (9.6)

−St,l × Cap ≤ ϑt,l ≤ St,l × Cap (9.7)

∣∣∣P f
t,l

∣∣∣ − (
1 − St,l

) × Cap ≤ ϑt,l ≤
∣∣∣P f

t,l

∣∣∣ + (
1 − St,l

) × Cap (9.8)

where, St, l is a binary variable indicating whether line l at time t is in a closed state
or not. Also, P

f
t,l is a variable which indicates the power flow of line l at time t.∣∣∣P f

t,l

∣∣∣ is the absolute value of P
f
t,l . y1 and y2 are positive auxiliary variables. Also,

w is an auxiliary binary variable. Capl represents the capacity of line l, and M is
a satisfactorily big positive number. The parameter ρl stands for failure probability
of line l. Here, using objective function (9.3), the system operator trips the lines
with higher power flow and failure probability out as much as possible subject to
supplying the total demand. It should be noted that the set of Eqs. (9.4–9.8) stand
for linearization of the objective function.

Power Balance Equations The following expressions ensure that active and
reactive power balance is satisfied in each bus in the time horizon.

P D
m,t − P ES

m,t − P DG
m,t − P WT

m,t − P PV
m,t +

∑

t

∑

l

P
f
t,l = 0,∀m, t (9.9)

QD
m,t − QES

m,t − QDG
m,t − QWT

m,t − QPV
m,t +

∑

t

∑

l

Q
f
t,l = 0,∀m, t (9.10)

where, P D
m,t and QD

m,t are the active and reactive demand at bus m at time t. Also,
P DG

m,t and QDG
m,t are the active and reactive output power of the distributed generation
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(DG) at bus m at time t. In addition, P ES
m,t , P WT

m,t , and P PV
m,t are the active power of

ES, WT, and PV systems at bus m at time t.

Power Flow Equations Here, the linear AC power flow equations [31] and
expressions associated with the allowed range for the capacity of each line of the
system are provided.

−St,l .Capl ≤ P
f
t,l ≤ St,l .Capl ,∀t, l (9.11)

vt,n − vt,m + rl .P
f
t,l + xl.Q

f
t,l

Vt,1
≥ (

αt,l − 1
)
M,∀t, l (9.12)

vt,n − vt,m + rl .P
f
t,l + xl.Q

f
t,l

Vt,1
≤ (

1 − αt,l

)
M,∀t, l (9.13)

V ≤ vm,t ≤ V ,∀m, t (9.14)

A2 ≥
(
∑

l

P
f
t,l

)2

+
(
∑

l

Q
f
t,l

)2

,∀t, l ∈ (m, n) ,m = 1 (9.15)

αm,n,t + αn,m,t = St,l,∀l ∈ (m, n) , n ∈ ϕm, t = EP (9.16)

∑

n∈ϕm

αm,n,t = 1,∀m /∈ ϕroot, t = EP (9.17)

α1,n,t = 0,∀m ∈ ϕroot, t = EP (9.18)

where, M is a satisfactorily big positive number. In addition, parameters rl and xl are
the resistance and reactance of line l, respectively, and variable vm, t represents the
voltage magnitude at bus m at time t. Needless to mention, line l is between buses m
and n. Finally, parameters V and V stand for the maximum and minimum allowable
voltage range, and parameter A is the maximum apparent power of the main grid.
Also, αm, n, t is a binary variable which is equal to 1 if bus n is the parent of bus m.
ϕm is a binary parameter which indicates the set of buses connected to bus m via
a line. In addition, parameter EP represents the event’s predictability, which means
that how much early the system operator can foresee the upcoming event. Note that
at each time interval, the power flowing through a given line cannot exceed the line’s
capacity, which is assured by (9.11). As can be observed, (9.12) and (9.13) are the
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linear AC power flow equations, and (9.14) implies that the voltage magnitude at
the buses cannot violate the acceptable range. Finally, (9.15) is used to restrict the
apparent power imported from the main grid. Note that, (9.15) is linearized using the
special-ordered-sets-of-type 2 (SOS2) method [32]. Set of constraints (9.16)–(9.18)
are considered for maintaining the radial structure of the distribution system [33].

Output Power of Distributed Energy Resources Here, the allowed output power
ranges for various distributed energy resources are defined as follows:

γt,m.P DG
m ≤ P DG

t,m ≤ γt,m.P DG
m , ∀t, m (9.19)

γt,m.QDG
m ≤ QDG

t,m ≤ γt,m.QDG
m ,∀t, m (9.20)

0 ≤ P PV
m,t ≤ P PV

m,t , ∀t, m (9.21)

0 ≤ P WT
m,t ≤ P WT

m,t ,∀t, m (9.22)

0 ≤ P ES
m,t ≤ P ES

m,t ,∀t, m (9.23)

where γ t, m indicates whether the DG at bus m at time t is scheduled or not. Also,
parameters P DG

m /P DG
m and QDG

m /QDG
m represent the max/min active and reactive

output powers of DGs, respectively. Furthermore, parameters P PV
m,t , P WT

m,t , and P ES
m,t

are the maximum active power of PV system, WT, and ES at bus m at time t,
respectively. The set of constraints (9.19–9.23) represent the limitation of various
types of energy sources, including DGs, PVs, WTs, and ESs. It is assumed that the
PVs, WTs, and ESs are constant power sources with a constant power factor.

Crew Dispatching in the Transportation System Since changing the configura-
tion of the system requires crew dispatching to the MS locations, the movement of
the crew teams in the transportation system is modeled as follows:

−ψt,l ≤ St,l − St−1,l ≤ ψt,l,∀t, l (9.24)

ψt,l ≤ St,l + St−1,l ≤ 2 − ψt,l,∀t, l (9.25)

where binary variable ψ t, l indicates whether the status of the switch of line l at time
t is changed or not. In this regard, as delineated in (9.24) and (9.25) whenever the
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status of a switch changes, it is set to 1. The following constraints are considered
for modeling the travel of the crew teams in the transportation system and manual
switching actions.

τc,i + TTi,j + SCTj − τc,i ≤ M
(

1 − βroute
c,i,j

)
,∀c, i, j (9.26)

τc,i + TTi,j + SCTj − τc,i ≥ −M
(

1 − βroute
c,i,j

)
,∀c, i, j (9.27)

0 ≤ τc,i ≤ M
∑

i

βroute
c,i,j ,∀c, j (9.28)

∑

l

∑

dp

βroute
c,dp,l ≤ 1,∀c (9.29)

∑

c

∑

i

βroute
c,i,l =

∑

t

ψt,l , ∀l ∈ xm
l (9.30)

∑

i

βroute
c,i,l −

∑

j

βroute
c,l,j = 0,∀c, l ∈ xm

l (9.31)

∑

c

∑

i

βroute
c,i,l ≤ 1,∀l ∈ xm

l (9.32)

∑

sl

∑

i

βroute
c,i,st = 1,∀c (9.33)

∑

j

βroute
c,st,j = 0,∀c, st (9.34)

∑

t

t .ψt,l ≥
∑

c

(
τc,l + SCTl

∑

i

βroute
c,i,l

)
,∀l ∈ xm

l (9.35)
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∑

t

t .ψt,l ≤
∑

c

(
τc,l + SCTl

∑

i

βroute
c,i,l

)
+ 1 − ε,∀l ∈ xm

l (9.36)

∑

i

βroute
c,i,j −

∑

i

βroute
c,j,i ≥ 0,∀c, j/ {dp} (9.37)

∑

c

∑

i

βroute
c,i,l = 0,∀c, l ∈ xr

l (9.38)

τc,i ≤ EP,∀c, i (9.39)

where, variable τ c, i stands for the arrival time of crew c at point i. Also, parameter
TTi, j is the travel time from point i to j, and parameter SCTj designates the time
required for changing the status of MS at point j. Moreover, binary variable βroute

c,i,j

indicates whether crew c moves from point i to j or not. Equations (9.26) and (9.27)
stand for determining the arrival time of a crew to a specific point, which comprises
of the travel time between the two so-called points, switch status changing time, and
previous actions’ time. In this regard, (9.28) ensures that the arrival time of crew c
to point j is equal to zero in case the crew is not dispatched to there. As shown in
(9.29), crew teams start their ride from the depot. Furthermore, a crew team should
not move to a switch location unless he/she inclines to change its status, which is
modeled in (9.30). In addition, in case a crew moves to the location of the switch of
line l, he/she should leave its location after changing the status as stated in (9.31).
Also, (9.32) imposes that at most one crew could be dispatched to the location of
each switch. Also, (9.33) and (9.34) ensure that crew teams after reconfiguring the
system, i.e., in their last action, are dispatched to the staging locations with the aim
of enabling prompt service restoration of the system after occurrence of the disaster.
(9.35) and (9.36) are contemplated to determine the time that the status of a switch
changes, which is equal to the arrival time of the crew team to the location of the
MS plus the time required for changing the status of the MS. Also, (9.37) states
that crew c cannot start its travel from point i unless it has been moved to that point
previously, except from depot, which is the initial point. In addition, since changing
the status of RCSs calls for no crew, crews should not be dispatched to the location
of RCSs, which is shown in (9.38). Finally, the arrival time of the crew teams to
each point should not exceed the value of EP (9.39).

9.4.2 Mid-Event Monitoring

In this study, it is assumed that during the occurrence of the event, considering the
harsh nature of HILP events in order to maintain the safety of the crew teams, the
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system operators take no actions and only monitor the situation; thus, they aggregate
the data associated with the operating condition of different components. Therefore,
by taking this strategy and having the real status of the lines in the post-event stage,
the system operator will be able to restore the system from the devastated state as
soon as possible through reconfiguring the system and dispatching output power of
energy sources.

9.4.3 Post-event Restoration Problem

After the occurrence of the event and collecting the real data, now the distribution
company is capable of mitigating the consequences of the event by co-optimizing
the electric power distribution system and transportation system.

Min
∑

t,m

ωm × P Shed
t,m .�t (9.40)

where, parameter ωn represents the importance of load at bus m, and variable P Shed
t,m

denotes the amount of curtailed load at bus m at time t. Also, �t is the time step.
Therefore, as can be observed in (9.40), after the occurrence of the event, the
objective of the distribution company is to minimize the curtailed load considering
the priorities. The objective function is subject to various constraints as follows:

(9.11), (9.15) − (9.25), (9.27) − (9.29), (9.32), (9.33), (9.35) (9.41)

P D
m,t − P Shed

m,t − P ES
m,t − P DG

m,t − P WT
m,t − P PV

m,t +
∑

t

∑

l

P
f
t,l = 0,∀m, t (9.42)

QD
m,t − QShed

m,t − QES
m,t − QWT

m,t − QPV
m,t − QDG

m,t +
∑

t

∑

l

Q
f
t,l = 0,∀m, t

(9.43)

ξt,l = St,l × Dt,l,∀t, l (9.44)

−ξt,l .Capl ≤ P
f
t,l ≤ ξt,l .Capl , ∀t, l (9.45)
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vt,n − vt,m + rl .P
f
t,l + xl.Q

f
t,l

Vt,1
≥ (

ξt,l − 1
)
M,∀t, l (9.46)

vt,n − vt,m + rl .P
f
t,l + xl.Q

f
t,l

Vt,1
≤ (

1 − ξt,l

)
M,∀t, l (9.47)

0 ≤ P Shed
m,t ≤ P D

m,t ,∀m, t (9.48)

QShed
m,t = P Shed

m,t

QD
m,t

P D
m,t

,∀t, m > 1 (9.49)

αm,n,t + αn,m,t = ξt,l ,∀t, l ∈ (m, n) , n ∈ ϕm (9.50)

∑

n∈ϕm

αm,n,t ≤ 1,∀t, m /∈ ϕroot (9.51)

α1,n,t = 0,∀t, m ∈ ϕroot (9.52)

where, binary parameter Dt, l indicates whether line l is damaged at time t or not.
Similarly, binary variable ξ t, l signifies the overall status of line l, i.e., including
the status of the switch (i.e., open or closed) and status of the line (i.e., whether
damaged or not). Also, binary variable αm, n, t indicates whether bus n at time t
is the parent of bus m or not. In the above expressions, (9.42) and (9.43) are the
active and reactive powers balance at bus m at time t. As shown in (9.44), after the
occurrence of the event, the status of a line depends on both the status of the switch
of the line (whether closed or not) and status of the conductor (whether damaged
(Dt, l = 0) or not). In this regard, (9.45) indicates the capacity limit of line l . In
addition, (9.46) and (9.47) are the modified version of the power flow equations.
In (9.48), the curtailed load at bus m at time t is restricted to the total load hosted
by the bus at time t. Set of constraints (9.50)–(9.52) are considered for maintaining
the radial structure of the distribution system [33]. The following expressions are
the modified versions of (9.26), (9.30), (9.31), and (9.34), respectively. They are
considered to model the initial and final dispatching of the crew team, since in the
post-event stage crews start their travel from the staging locations, and finally they
travel to the depot.
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∑

l

∑

sl

βroute
c,st,l ≤ 1,∀c (9.53)

∑

dp

∑

i

βroute
c,i,dp = 1,∀c (9.54)

∑

j

βroute
c,dp,j = 0,∀cr, dp (9.55)

∑

i

βroute
c,i,j −

∑

i

βroute
c,j,i ≥ 0,∀c, j/ {sl} (9.56)

All the above problems are established in MILP fashion which can be solved
exploiting the available software packages. The optimal decisions derived from the
pre-event model include the output power of various energy sources, switching
sequence of the RCSs and MSs via contemplating the crews’ travel in the trans-
portation system as well as the prepositioned locations of the crew teams. Also,
the decisions derived from the post-event model contain the optimal restoration of
the system contemplating the travel of crew teams in the transportation system and
output power of the DGs, PVs, WTs, and ESs.

9.5 Simulation Results

Here, the proposed model is applied to a test system, shown in Fig. 9.4, which is
taken from [34]. As can be seen in the figure, the system consists of four feeders,
47 buses with a total peak load of 35 MW. Also, the single line diagram of the
system is shown in Fig. 9.5. The load profile of the system is illustrated in Fig. 9.6.
Furthermore, there are three RCSs and three maneuver points in the system. As can
be observed, three WT units are installed on buses 26, 33, and 37, and their output
powers are drawn in Fig. 9.7. Additionally, a PV unit is installed on bus 20, and
its output power is drawn in Fig. 9.8. Moreover, two DG units are available in the
system with a maximum output of 5 MW. Also, three 0.5 MWh ESs are available at
buses 19, 24, and 33. In order to consider the traffic issues after the occurrence of
the event and likely congestions, traffic congestion factor (TCF) is defined as an
emergency condition traveling time over the normal condition traveling time. In
this study, it is assumed that the value of TCF is set equal to two. In addition, it is
assumed that only two crew teams are available in the system.

Case 1 Here, to simulate the post-event restoration process of the distribution
system, it is considered that the system operator takes no actions in the pre-event
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stage and recovers the system after the occurrence of the disturbance. In this regard,
switching actions associated with recovering the system under this circumstance is
provided in Table 9.1.

As can be observed, after the event hits the system, the operator by running
the proposed model dispatches the crew teams to the location of MSs. In order
to restore the curtailed customers, the system operator closes the switch of line
31–48 remotely within 5 min after the event. Then, the second crew arrives at the
location of line 9–17 and closes it within 85 min. Afterward, the first crew closes
the switch of line 21–30 after 105 min. It stands to reason that due to traffic issues,
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Fig. 9.8 The output power of the photovoltaic unit

travelling of crew teams in the transportation system takes a long time even with
considering two for the TCF value, which is a totally normal value considering
major natural disasters. The scheduling of the crews and the configuration of the
system are illustrated in Fig. 9.9. In addition, the percentage of supplied load during
the event and restoration process is depicted in Fig. 9.10. It should be noted that the



9 Toward Operational Resilience of Smart Energy Networks in Complex. . . 219

Table 9.1 Switching actions after the occurrence of the event: Case 1

Crew/RCS Path/switch Action Required time (min)

RCS Line 31–48 Close 5
Crew2 Depot → Line 9–17 Close 85
Crew1 Depot → Line 21–30 Close 105
Crew2 Line 9–17 → Depot – 165
Crew1 Line 21–30 → Depot – 205
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Fig. 9.9 Post-event scheduling of the crew teams: Case 1
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Fig. 9.10 Supplied load during the restoration process: Case 1

point zero in the figure indicates the start point of the post-event stage. As can be
seen, after the occurrence of the event, the supplied load level of the system falls to
72% which rises to 78% by closing the switch of line 31–48 within 5 min. Then, it
almost stands until the actions of the first crew team which takes place after 85 min
by which the supplied load level of the system reaches 81.7%. Finally, closing the
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Table 9.2 Switching actions before the occurrence of the event: Case 2

Crew/RCS Path/switch Action Required time (min)

RCS Line 31–48 Close 5
Crew1 Depot → Line 15–17 Open 35
Crew1 Line 15–17 → Line 9–17 Close 45
Crew2 Depot→ Line 30–31 Open 55
Crew1 Line 9–17 → Line 22–23 Open 80
Crew2 Line 30–31 → Line 21–30 Close 85
Crew1 Line 22–23 → S2 – 100
Crew2 Line 21–30 → S1 – 115
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Fig. 9.11 Pre-event scheduling of the crew teams: Case 2

switch of line 21–30, the system operator energized 89.7% of the total load. Also,
the amount of curtailed energy within the 2 h after the event is equal to 10.107 MWh.

Case 2 In this case, in order to simulate the pre-event actions of the crew teams,
it is assumed that the predictability of the approaching event is 2 h, which means
that the system operator has 2 h to reconfigure the system before the disturbance
hits the system; thus, acquire a stronger configuration of the system in dealing with
the natural calamity. To do so, the value of the EP is set to 2 h in the simulations,
and the associated results are provided in Table 9.2. In addition, schedule of the
crew teams is depicted in Fig. 9.11. As can be observed, in the first action, switch
of line 31–48 is closed remotely within 5 min. Then, the first crew moves to the
location of the switch of line 15–17 and opens the switch in 35 min. Afterward,
the mentioned crew closes the switch of line 9–17 within 45 min. At the same
time, the second crew moves to the location of line 30–31 in order to open the
respective switch. Then, 80 min after the occurrence of the event, the first crew
opens the switch of line 22–23. Finally, the second crew closes the switch of line
21–30 after 85 min. Furthermore, the percentage of supplied load during the event
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Fig. 9.12 Supplied load during the restoration process: Case 2

Table 9.3 Switching actions before the occurrence of the event: Case 3

Crew/RCS Path/switch Action Required time (min)

RCS Line 31–48 Close 5
Crew1 Depot → Line 15–17 Open 35
Crew1 Line 15–17 → Line 21–30 Close 55
Crew2 Depot→ Line 30–31 Open 55
Crew1 Line 21–30 → S2 – 90
Crew2 Line 30–31 → S1 – 90

and restoration process is shown in Fig. 9.12. As can be seen, due to proactive
actions, the load level of the system drops to 90%, which means that the obtained
configuration has been strong enough to confront the disturbance. The amount of
curtailed energy within 2 h is equal to 5.21 MWh.

It is worthwhile to mention that no more actions needed to be applied after the
event in this case. This is mainly due to the enough time for taking appropriate
proactive actions as well as the pretty precise forecasts about the line damages
caused by the event. Needless to mention, shorter times for proactive actions and/or
erroneous forecasts about potential damages may make some post-event actions
necessary.

Case 3 In this case, it is assumed that the system operator can foresee the upcoming
disaster 90 min before it hits the system; so, he/she has 90 min to reconfigure
the system and preposition the crew teams in order to mitigate the negative
consequences of the event and heighten the resilience level of the system. In this
regard, the required proactive actions to reconfigure the system are provided in Table
9.3. As can be seen, in the first action, the switch of line 31–48 is closed remotely.
Then, after 35 min, the first crew arrives at the location of line 15–17 and opens the
switch of the line. Following this action, the crew moves to the location of the switch
of line 21–30 and closes the switch within 55 min. Simultaneously, the second crew
travels to the location of line 30–31 and opens the switch after 55 min. Afterward,
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Fig. 9.13 Pre-event scheduling of the crew teams: Case 3

Table 9.4 Switching actions after the occurrence of the event: Case 3

Crew/RCS Path/switch Action Required time (min)

Crew2 S1 → Line 9–17 Close 55
Crew1 S2 → Depot – 80
Crew1 Line 9–17 → Depot – 135

both of the crew teams are dispatched to the staging location in order to speed up
the post-event actions. In addition, schedule of the crews is depicted in Fig. 9.13.

After the occurrence of the event and collecting the data related to the damage
status of the lines, the system operator runs the post-event model in order to
reconfigure the system and recover the curtailed customers optimally. Post-event
scheduling of the crew teams is provided in Table 9.4. As can be observed, 55 min
after the occurrence of the event, the second crew closes the switch of line 9–17.
Furthermore, the configuration of the system is illustrated in Fig. 9.14. Also, the
amount of supplied energy after the occurrence of the event is shown in Fig. 9.15. It
is worthwhile to mention that in this circumstance, the curtailed energy within 2 h
after the event is equal to 6.127 MWh.

Finally, the amount of supplied load during the restoration process regarding the
provided three cases is compared in Fig. 9.16. As can be seen, applying proactive
actions considerably enhances the resilience level of the system. Furthermore, the
sooner the system operator could foresee the approaching disaster, the more he/she
can mitigate the consequences of the disaster; thus, the system becomes more
resilient in dealing with a natural hazard.

Case 4 In this case, it is assumed that the input information regarding the situation
of the system changes after the first run. Thus, the system operator by running the
model with the updated data changes its strategy regarding the dispatching of the
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Fig. 9.14 Post-event scheduling of the crew teams: Case 3
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Fig. 9.15 Supplied load during the restoration process: Case 3
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Table 9.5 Switching actions before the occurrence of the event: Case 4

Crew/RCS Path/switch Action Required time (min)

RCS Line 31–48 Close 5
Crew1 Depot → Line 15–17 Open 35
Crew1 Line 15–17 → Line 9–17 Close 45
Crew2 Depot→ Line 30–31 Open 55
Crew1 Line 9–17 → S1 – 85
Crew2 Line 30–31 → S2 – 105
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Fig. 9.17 Pre-event scheduling of the crew teams: Case 4

crew teams. To do so, it is assumed that at first the system operator has 2 h before
the occurrence of the disaster. So, it dispatches the crew teams as discussed in Case
2. But, after closing the switch of line 9–17 by the first crew, the input data of the
navigator regarding the travel time of the crew teams changes. Thus, the system
operator in order to preserve the safety of the crew teams and resilience of the
system, modifies its strategy. In this regard, the new plan of the system operator
in the pre-event stage is given in Table 9.5. Besides, the configuration of the system
and crew schedules in this case are shown in Fig. 9.17.

So, after the occurrence of the event and collecting the data associated with
the damage status of the lines, the system operator runs the post-event model and
recovers the devastated system optimally. In this regard, scheduling of the crew
teams is given in Table 9.6. Also, scheduling of the crew teams and the system
configuration are illustrated in Fig. 9.18. Moreover, the amount of the supplied load
during the restoration process is shown in Fig. 9.19, where the amount of curtailed
energy within 2 h after the event is equal to 7.406 MWh. As can be seen, any error in
forecasted data can deviate the navigator from the optimal actions. This emphasizes
on the importance of developing precise forecasting toolboxes besides working on
models for the optimal proactive action scheduling.
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Table 9.6 Switching actions after the occurrence of the event: Case 4

Crew/RCS Path/switch Action Required time (min)

Crew1 S1 → Line 21–30 Close 65
Crew2 S2 → Depot – 80
Crew1 Line 21–30 → Depot – 165
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Fig. 9.18 Post-event scheduling of the crew teams: Case 4
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Fig. 9.19 Supplied load during the restoration process: Case 4

Here, to investigate the impact of the traffic issues on the restoration process
of the system, a sensitivity analysis is conducted on the value of TCF, and the
associated results are illustrated in Fig. 9.20. As can be observed, increasing the
value of TCF drastically influences the amount of the curtailed load. It should
be noted that the harnessed test system was relatively small and it has only two
maneuver points which have MSs. Therefore, it stands to reason that the larger
the system becomes, the crucial the impacts of proactive actions, number of crew
teams, and traffic issues become. As can be seen in Fig. 9.20, the number of crew
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teams, predictability of the event, and TCF have a drastic impact on the amount of
curtailed energy after a major disaster. It is worthwhile to mention that regarding
the events which cause massive destructions in the transportation system (e.g.,
floods), applying the presented model for optimally scheduling proactive actions
could improve the resilience level of the system efficiently.

9.6 Conclusion

In this chapter, in order to enhance the resilience of electric power distribution
systems in dealing with the natural calamities, a new approach has been presented,
wherein, the problem is modeled in an MILP fashion. The presented strategy
consists of three stages namely pre-, mid-, and post-event stages. The first stage
takes place before the occurrence of an upcoming disaster, wherein the system
operator using a navigator, tends to change the configuration of the distribution
system in the hope of acquiring a more robust configuration to confront the
disaster. To do so, he/she optimizes the network configuration contemplating the
manifold parameters including the travel time of the field crews in the transportation
system. Also, he/she prepositions the crew teams in the staging locations after
reconfiguring the system in the hope of accelerating expected post-event actions.
The second stage is for collecting the data related to the operating status of the
system components. Then, after the occurrence of the event, the system operator
using the navigator restores the curtailed customers as quickly as possible with
respect to their criticality. Finally, the presented model is implemented on a 47-bus
power distribution system. The simulation results confirm the efficacy of applying
proactive actions before the occurrence of the natural calamities, which strengthens
the system and enables it to rapidly recover from the devastated state.
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Chapter 10
Control of Cooperative Unmanned Aerial
Vehicles: Review of Applications,
Challenges, and Algorithms

Arman Sargolzaei, Alireza Abbaspour, and Carl D. Crane

Abstract A system of cooperative unmanned aerial vehicles (UAVs) is a group
of agents interacting with each other and the surrounding environment to achieve
a specific task. In contrast with a single UAV, UAV swarms are expected to
benefit efficiency, flexibility, accuracy, robustness, and reliability. However, the
provision of external communications potentially exposes them to an additional
layer of faults, failures, uncertainties, and cyberattacks and can contribute to the
propagation of error from one component to other components in a network. Also,
other challenges such as complex nonlinear dynamic of UAVs, collision avoidance,
velocity matching, and cohesion should be addressed adequately. Main applications
of cooperative UAVs are border patrol; search and rescue; surveillance; mapping;
military. Challenges to be addressed in decision and control in cooperative systems
may include the complex nonlinear dynamic of UAVs, collision avoidance, velocity
matching, and cohesion. In this paper, emerging topics in the field of cooperative
UAVs control and their associated practical approaches are reviewed.

Keywords Cooperative unmanned aerial vehicles · Nonlinear dynamics · UAV
swarm
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CML Concurrent mapping and localization
DDDAS Dynamic Data-Driven Application System
DDF Decentralized Data Fusion
DI Dynamic inversion
DoS Denial of service
ECM Electronic Counter-Measure
EJ Escort Jamming
FDI Fault Detection and Identification
FTC Fault Tolerant Controllers
GNN Grossberg Neural Network
LIDAR Light detection and ranging
LOS Line of Sight
LQR Linear Quadratic Regulator
PC Probability collective
PDF Probability Density Function
POMDP Observable Markov Decision Process
PN Proportional navigation
PP Pure pursuit
PRS Personal Remote Sensing
ROS Robot Operating System
SAM Surface-to-Air Missile
SLAM Simultaneous Localization and Mapping
SWEEP Swarm Experimentation and Evaluation Platform
TDS Time delay switch
UAV Unmanned Aerial Vehicles
UCAVs Unmanned Combat Air Vehicles
WSN Wireless Sensor Network

10.1 Introduction

Swarm intelligence deals with physical and artificial systems formed of entities that
have internal and external interactions coordinating by incentive or a predefined
control algorithm. Flocking of birds, swarming of insects, shoaling of fishes, and
herding of quadrupeds were a motive for the cooperated control of UAVs. A group
of UAVs can be modeled similar to natural animal cooperation where bodies operate
as a system toward reaching mutual benefits. Animals can benefit from swarm
performance in defending against predators, food seeking, navigation, and energy
saving. Cooperative multi-robots complete a task in a shorter time [1], have synergy
[2, 3], and cover a larger area. They are also more cost-effective using smaller,
simpler, and more durable robots [4]. Furthermore, they can complete a task more
accurately and robustly [5].
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Cooperative control is one of the most attractive topics in the field of control sys-
tems which has received the attention of many researchers. Cooperative algorithms
and utilization are mainly discussed in the recent decade. Many useful surveys have
been done to review the recent contributions in this field [6–11]. However, most
of them were just focused on the algorithms and on the consensus control theory.
A valuable review of the consensus control problem was done by Ren et al. [6];
however, significant contributions have been done thereafter. Anderson et al. [7]
also focused on consensus control of the multi-agent systems. Wang et al. [8] and
Zhu et al. [10] reviewed most of the consensus control problems; however, other
cooperative techniques and the application of these algorithms were not discussed.
Senanyake et al. investigated cooperative algorithms for searching and tracking
applications [11]; however, the other algorithms and applications of the cooperative
system were not considered.

To enhance the current related literature mentioned above and cover most of the
applications and algorithms, the recent research studies in the field of cooperative
control design will be reviewed. The applications, algorithms, and challenges
are considered. The applications are categorized into surveillance, search and
rescue, mapping, and military applications; then, the recent developments related to
each category are reviewed. Similarly, the algorithms can be categorized into three
main classes: consensus control, flocking control, and guidance based cooperative
control. The challenges related to the cooperative control and applications of
cooperative algorithms are investigated in a separate section. Moreover, the related
mathematics of cooperative control algorithms is simplified to make it easier for
readers to understand the concepts.

This paper is organized as follows: Sect. 10.2 provides potential applications of
cooperative control, and Sect. 10.3 highlights possible challenges when applying
cooperative control. Section 10.4 reviews algorithms used in cooperative control
design. Finally, Sect. 10.5 provides the summary and conclusion of this work.

10.2 Applications and Literature Review

Cooperative control of multiple unmanned vehicles is one of the topics in control
areas that have received increasing interest in the past several years. Single
UAVs have been applied for various applications, and recently, investigators have
attempted to expand and improve their applications by using a combination of
multiple agents. The multiple agents concept has been used for search and rescue
[2, 12–16], geographic mapping [17–20], military applications [21–23], etc. In this
section, the current and potential applications of the cooperative control of UAVs
are surveyed.



232 A. Sargolzaei et al.

Fig. 10.1 A cooperative approach to search for a victim in a hard to access area [25]

10.2.1 Search and Rescue

UAVs have been used for several years for search and rescue purposes since they
are more compact and cost-effective and require less amount of time to deploy than
a plane or helicopter, particularly when multiple numbers of UAVs are required
to accomplish the task. Figure 10.1 displays a scenario for cooperative control
of quadrotors to search for and rescue a patient or missing person in a hard to
access environment. In this kind of operation, search time is the most critical
factor. To satisfy the time constraint, Scherer et al. implemented a distributed
control system in the robot operating system (ROS) of the multiple multi-copters,
to capture the situations and display them as video streams in real-time at base
stations [24]. Since UAVs have their advantages such as agility, swiftness, remote-
controlling, birds eye-vision, and other integrities, they can creditably perform
practical work promptly. However, when those advantageous of UAVs are operated
by a cooperative control algorithm to complete a mission, the requirement of
minimum time delay and other critical constraints can be achieved in searching and
rescuing casualties or victims.

Many types of research and experiments are performed in search and rescue
requiring cooperative control unmanned aerial vehicles (CCUAVs). For example,
Waharte et al. showed that employing multiple autonomous UAVs has excellent
benefits in the search and rescue operations for the corollary of Hurricane Kat-
rina in September 2006. The notable sophistication of their work was that they
divided the real-time approaches into three main categories which were greedy
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heuristics, potential-based heuristics, and partially observable Markov decision
process (POMDP) based heuristics [25]. In a case of fire, Maza et al. investigated
a multi-UAV firefighters monitoring mission in the framework of the AWARE
Project using two autonomous helicopters to monitor the firemen’s performance
and safety in real-time from a simulated situation where firefighters are assisting
injured people in front of a burning building. This work has been done based
on their previous work’s algorithm [26], SIT algorithm, which follows a market-
based approach combined with a network of ground cameras and a wireless sensor
network (WSN) [27]. Another scenario that CCUAVs can be wholly beneficial is
to search and rescue missing persons in a wilderness. It has been many centuries
that travelers had been lost in wildernesses such as mountains, oceans, deserts,
jungles, rain forests, or any abandoned or uncolonized areas. Some of the missing
people could be found and rescued, but many of them were lost from their families
forever. Goodrich et al. have shown and identified a set of operational practices for
using mini unmanned aerial vehicles (mUAVs) to support wilderness search and
rescue (WiSAR) operations. In their work, technical operations such as sequential
operations, remote-led operations, and base-led operations have been used to gather
and analyze evidence or potential signs of a lost person to simulate a stochastic
model of his behavior and a geographic description of a particular region. If the
model is well matched to a specific victim, then the location of the missing person
would be estimated according to the probability of the area where the lost person
could be located [12]. The result of their research shows that the mUAVs could
address the limitations of human-crewed aircraft which also upholds the research
algorithm of CCUAVs.

10.2.2 Surveillance

Surveillance is one of the applications of UAVs that have been widely used.
Figure 10.2 shows an overall scheme of the surveillance application using the
cooperative quadrotors system. Bread et al. studied aerial surveillance of fixed-
wing multi-UAVs. Fixed-wing aircraft may have a significant advantage in speed.
However, the lack of hovering ability would increase their chance of collision
when they work in cooperative control mode. To mitigate and overcome this
constraint, Bread et al. presented an approach which consists of four significant
steps: cooperation objective and constraints, coordination variable and coordination
function, centralized cooperation scheme, and consensus building [28].

Ahmadzadeh et al. [16] have studied the cooperative motion-planning problem
for a group of heterogeneous UAVs. In their work, the surveillance operations
were conducted via the body-fixed cameras equipped on their fixed-wing UAV.
They demonstrated multi-UAV cooperative surveillance with spatiotemporal spec-
ifications [16]. Besides, they used an integer programming strategy to reduce the
computational effort. The main contribution of their study was to generate an
appropriate trajectory associated with the complexities of coupling cameras field
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Fig. 10.2 Cooperative surveillance concept for patrolling urban areas

of view with flight paths. Paley et al. designed a glider with a coordinated control
system for long-duration ocean sampling using real-time feedback control [23].
In their design, agents were modeled as Newtonian particles to steer a set of
coordinated trajectories. However, this model cannot be applied for closed flocking
due to the assumption that there is enough space between particles.

In the case of persistent surveillance, Nigam et al. have intensively researched on
UAVs for persistent surveillance and their works have been consecutively released
in the past few years. Their early efforts focused on investigating techniques for a
high-level, scalable, reliable, efficient, and robust control of multiple UAVs [14]
and derived an optimum policy with a single UAV [29]. They also suggested
that modifications of the existing control policies would improve the system
performance under dynamic constraints and proposed multi-agent reactive policy
to integrate multiple UAVs and optimized the performance using a real-encode
probability collective (PC) optimization framework. In the later works, Nigam et
al. have developed algorithms to control multiple UAVs for persistent surveillance
and devised a semi-heuristic approach for a surveillance task using multiple UAVs
[15]. Their research considered the effect of aircraft dynamics on the performance of
the designed cooperative mission and the advantages of their policy’s performance
was demonstrated by comparing it with other benchmark approaches such as
the potential field-like approach, the planning-based approach, and the optimum
approach. Paley and Peterson developed their previous research for ocean sampling
[23], for environmental monitoring and surveillance [30]. Each UAV was considered
as a Newton particle which was incorporated in a gyroscopic steering control
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system. This design has several drawbacks: first, obstacle avoidance in Newton
particle method is not considered; second, all UAVs are moving in the same
direction which is not flexible for surveillance and searching tasks; third, each UAV
orbit around an inertially fixed point at constant radius which is not an energy
efficient method for monitoring and surveillance.

10.2.3 Localization and Mapping

High agility, wide vision, and accessibility are some of the significant factors that
made the UAVs a popular tool to map and model lands or terrains [18]. UAVs
have been used to map in several types of research [18–20]. Figure 10.3 shows
the concept of cooperative 3D mapping by multiple quadrotors. Remondino et al.
used UAVs for space-mapping and 3D-modeling in several types of vehicles and
techniques [18]. One of the high systems in the mapping technology of UAVs is
known as light detection and ranging (LIDAR) was employed by Lin et al. [19].
They have applied the LIDAR-based system on a mini-UAV-borne cooperating with
Ibeo Lux and Sick laser scanners and an AVT Pike F-421 CCCD camera to map a
local area in Vanttila, Espoo, Finland in a fine-scale.

As the surveillance and searching algorithms, the cooperative mapping task of
UAVs can help to improve the accuracy and reduce the operation time through
sharing their responsibilities. Cooperative control of autonomous vehicles can be

Fig. 10.3 Cooperative three-dimensional mapping using quadrotor UAVs



236 A. Sargolzaei et al.

used to make a map for an unknown environment and 3D-modeling. Fenwick
et al. introduced a novel algorithm for concurrent mapping and localization (CML)
which combines the information of navigation and sensors of multiple unmanned
vehicles [17]. This algorithm is working based on stochastic estimation and to
extract landmarks from the mapping area using a feature-based approach. Gktoan
et al. developed and demonstrated the multiple sensing nodes of numerous UAV
platforms using decentralized data fusion (DDF) algorithm to simultaneously
localize and map the flight simulator in real-time [31].

Simultaneous localization and mapping (SLAM) presented by Williams et al.
[32] can be used to examine the prospect of the constrained local submap filter
(CLSF) algorithm and applied to the multi-UAVs as SLAM algorithm. The advan-
tage of this approach is that it allows the cross-covariance process to be scheduled
at convenient intervals and aids in the data association problem.

Localization and mapping in unsafe or obscure places is another critical appli-
cation of UAVs. Multi-UAV cooperative control has been used for mapping in wild
or unknown areas in several types of research [33, 34] such as the continuation
of the SLAM algorithm and its applications presented by Bryson and Sukkarieh
[33]. Han et al. have introduced personal remote sensing (PRS) multi-UAVs for
contour mapping in two scenarios of nuclear radiation [34]. Their work also
focused on the costs of the multi-UAVs and the efficiency of atomic radiation
detection in a necessary time which were the main advantages over a single UAV
mapping. Kovacina et al. also focused on mapping a hazardous substance which
was a chemical cloud. To map the chemical cloud, Kovacina et al. used swarm
experimentation and evaluation platform (SWEEP) with their developed rule-based,
decentralized control algorithm to simulate an air vehicle swarm searching for and
mapping a chemical cloud [35].

10.2.4 Military Applications

The cooperative control of UAVs has various practical and potential military appli-
cations varying from reconnaissance and radar deception to surface-to-air-missile
jamming. It has been demonstrated that a group of low-cost and well-organized
UAVs can have better effects than a single high-cost UAV [36]. Generally, the
application of cooperative control for the unmanned system in the military can
be categorized into two main categories: reconnaissance and penetrating strategies.
To achieve these types of applications, UAVs may need to flying near each other
with a specific structure. Formation flight control is one of the most straightforward
cooperative strategies which consists of a set of aircrafts flying near to each other
in a defined distance [37]. One of the advantages of flight formation is a significant
reduction in fuel consumption through locating the follower aircraft such that the
vortex of the leader aircraft reduces the induced drag of the follower aircraft [38].



10 Control of Cooperative Unmanned Aerial Vehicles: Review of. . . 237

Fig. 10.4 Target detection using multiple cooperative UAVs in a reconnaissance mission [44]

10.2.4.1 Reconnaissance Strategy

A formation or cooperative design of UAVs can be used as reliable radars or
reconnaissance tools to detect enemy troops and ballistic missiles [39, 40]. The
integration of the UAVs radars will help to identify incursion objects or observe
ground activities of an adversary [41, 42]. Ahmadzadeh et al. introduced a coop-
erative strategy to enable a heterogeneous team of UAVs to gather information for
situational awareness [43]. In their work, an overall framework for reconnaissance
and an algorithm for cooperative control of UAVs considering collision and obstacle
avoidance were presented. Figure 10.4 shows a reconnaissance mission using
multiple cooperative UAVs.

10.2.4.2 Penetrating Strategy

The new and robust defense mechanism of rivals makes it difficult to penetrate to
their territories. To this aim, various strategies have been designed to deceive the
target radar and defense mechanism [45–47].

Being hidden from the enemy radars through electronic counter-measure (ECM)
is called radar jamming which is a very important action that is mostly used by
unmanned combat air vehicles (UCAVs) to protect or defend themselves from
surface-to-air missiles when the vehicles reconnoiter into enemy territories. The
radar jamming consists of sending some noise to deceive the enemies radar signal.
The radar jamming and deception can be more effective when a group of UCAVs
works together. Jongrae et al. focused on the escort jamming (EJ) of the UAVs while
a close formation and cooperative control procedure are designed to deceive the
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Fig. 10.5 Cooperative radar
jamming using multiple
UAVs [45]

tracking radar of the surface-to-air missile (SAM) [45]. Generally, jamming can be
classified into two categories: self or support jamming. Figure 10.5 shows the two
mentioned methods of interference, where “D” shows the self-jamming and “A, B,
C” UAVs show the support jamming.

The missiles control system is similar to the UAV control system. However, they
are not designed to come back to the station. Since penetrating to the high-tech
defense mechanism of a target is very complicated, a group of cooperative missiles
will have more chance to penetrate a defense mechanism in comparison with being
independently operated [46, 47]. Figure 10.6 shows a collective missile attack to a
ship target.

10.3 Challenges

Multi-UAV systems have advantages over single UAVs in the impact of failure,
scalability, survivability, the speed of the mission, cost, required bandwidth, and
range of antennas [48]. However, these systems are complex and hard to coordinate.
Gupta and Vaszkun considered three challenges in providing a stable and reliable
UAV network: architectural design of networks; routing the packet from an origin
to a destination and optimizing the metric; transferring from an out-of-service UAV
to an active UAV, and energy conservation [48]. According to a study at MIT,
the main challenges associated with the development and testing of cooperative
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Fig. 10.6 Cooperative
missile attacking concept to a
target

UAVs in dynamic and uncertain situations are real-time planning; designing a robust
controller; and using communication networks [23]. Ryan et al. address issues
in cooperative UAV control which are aerial surveillance, detection, and tracking
which allows vision-based control; collision and obstacle avoidance and formation
reconfiguration; high-level control needed for real-time human interfacing; and
security of communication links [49]. Oh et al. addressed the problem of modeling
the agent’s interactions with each other and with the environment which is chal-
lenging to predict [50]. The most significant challenges in cooperative control of
multi-agent systems can be summarized as below.

1. In cooperative control, instead of developing a control objective for a single
system, it is necessary to devise control objectives for several sub-systems.
Moreover, the relation between the team goal and agent goal needs to be
negotiated and balanced [51].

2. The communication bandwidth and quality of connection among agents in the
system are limited and variable. Moreover, the security of communication links
in the presence of intruders should be considered in the design [52–55]. The
CUAV is vulnerable to a range of cyberattacks such as denial of service (DoS)
and time delay switch (TDS) attacks [56–59].

3. The aerodynamic interference of the agents on each other should be considered
in the design [50]. Close cooperative flight control or formation has also
specific aerodynamic challenges which are called aerodynamic coupling. These
aerodynamic interferences are caused by the vortex effect of the leading aircraft
and should be modeled and quantified in the controller design to avoid their
critical impact on the system stability. Otherwise, unwanted rolling or yawing
moment will be generated which can destabilize the overall system [60, 61].
However, incorporating the coupled dynamic in the formation design can help
to reduce energy consumption through the mission [62, 63].
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4. The controller design of CUAV should include fault tolerable algorithms through
software redundancy because hardware redundancy is not an option for mini-
UAVs. The fault tolerant control design for one UAV is a challenging task by
itself, which has been discussed in the literature [64, 65].

10.4 Algorithms

The cooperative algorithms can be categorized into three main groups based on their
methodologies. They are (1) consensus techniques; (2) flocking techniques; and (3)
formation based techniques. Figure 10.7 shows the main algorithms that are used for
the UAVs system. Algorithms for consensus control, flocking control, and formation
control are discussed below, respectively.

10.4.1 Consensus Strategies

In the area of cooperative control, consensus control is an important and complicated
problem. In consensus control, a group of agents communicates with each other
through a sensing or communication network to reach a common decision. The
roots of the consensus control belong to computer science and parallel computing
[66, 67]. In the last decade, the research works of Jadbabaie et al. [68] and Olfati-
Saber et al. [69] had a considerable impact on other researchers to work on
consensus control problems. Generally, Jadbabaie et al. [68] provided a theoretical
explanation for the alignment behavior of the dynamic model introduced by Vicsek
[70], and Olfati-Saber introduced a general framework to solve consensus control
problem of the networks of the integrators [69]. In the following subsection, the
basic concepts of the consensus control will be explained; then, recent research
works in this area will be reviewed. In the cooperative control, the communications
among agents are modeled by undirected graphs. Thus, a basic knowledge of graph

Cooperative Algorithms

Consensus
Algorithms

Flocking
Algorithms

Guidance-Law
Algorithms

Fig. 10.7 Cooperative algorithms are categorized and explained in three main algorithms
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Fig. 10.8 Directed and undirected graph structure

theory is needed to understand the concept of cooperative algorithms. Therefore, the
basic concept of graph theory will be briefly explained, followed by the concept of
consensus control theory.

10.4.1.1 Graph Theory Basics in Communication Systems

Communications or sensing among the agents of a team is commonly modeled by
undirected graphs. An undirected graph is denoted by G = (V , ε,A), where V =
{1, 2, . . . , N} is the set of N nodes or agents in the network, and ε(i, j) ∈ V × V

is set of edges between the ordered pairs of j th and ith agents. β = [aij ] ∈ RN×N

is the adjacency matrix associated with graph G which is symmetric, and ai,j is a
positive value if (i, j) ∈ ε and i �= j , otherwise aij =0. Figure 10.8 shows the basic
structure of a directed and undirected graph.

For example the adjacency matrix associated with the undirected graph shown in
Fig. 10.8 is

β =

⎡

⎢⎢⎣

0 1 0 0 0
1 0 1 1 0
0 1 0 1 1
0 0 1 1 0

⎤

⎥⎥⎦ (10.1)

where node A, B, C, D, and E are considered to be nodes 1, 2, 3, 4, and 5,
respectively.
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10.4.1.2 Consensus Control Theory

The basic concept of the consensus control theory is to stimulate similar dynamics
on the state’s information of each agent in the group. Based on the communication
type, each agent (vehicle) in the system can be modeled based on differential
or difference equations. If the bandwidth of the communication network among
the agents is large enough to allow continuous communication, then a differential
equation can be used to model agent dynamics. Otherwise, the transmitted data
among agents should be sent through discrete packets that need difference equations
to model the agent dynamics. These are briefly explained here.

• Continuous-time Consensus: The most common consensus algorithm used for
the dynamics defined by differential equations can be presented as [6, 71, 72]

ẋi (t) = −
n∑

j=1

aij (t)
(
xi(t) − xj (t)

)
, i = 1, . . . , n (10.2)

where xi(t) is the information state of the ith agent, and aij (t) is the (i, j)

element of the adjacency matrix β which is obtained from the graph G. If aij = 0,
it indicates that there is no connection between agents i and j , subsequently, they
cannot exchange any information between them. The consensus algorithm shown
in Eq. 10.2 can be rewritten in a matrix form as

ẋ(t) = −L(t)x(t) (10.3)

where the Laplacian matrix L = [lij ] ∈ RN×N is related to the graph G and can
be obtained as follows

lij =
{∑

j∈Ni
, i = j

−ai,j , i �= j
(10.4)

Since the lij has zero row sums, an eigenvalue of L is 0, which is associated with
an eigenvector of 1. Because L is symmetric, in a connected graph, L has N − 1
real eigenvalues on the right side of the imaginary plane. Thus, N eigenvalues of
L can be defined as follows

0 = λ1 < λ2 ≤ λ2 . . . ≤ λN (10.5)

Based on this condition and the fact that L is symmetric, the diagonalized L

can be obtained by orthogonal transformation matrix as

L = PJP T (10.6)

where P consists of the eigenvectors of the L and J is a diagonal form of L

which are defined as follows
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P = [r1 r2 . . . rn]

J =
[

0 01×(N−1)

0(N−1)×1 γ

]

where γ is a matrix with diagonal form which contains N − 1 eigenvalues of L

which have positive values, and ri , i ∈ {1, 2, . . . , N} describes the eigenvectors
of L where rT

i ri = 1 [6].
It can be claimed that consensus is achieved for a team of agents for all xi(0)

and all i, j = 1, . . . , n, if limt→∞|xi(t) − xj (t)| = 0 [6].
• Discrete-time Consensus: The discrete-time consensus is used when the com-

munication bandwidth among the agents in the team is weak or occurs at discrete
instants. In this case, the information states are updated through difference
equations. The following form commonly presents the discrete-time consensus
[73–76]

xi[k + 1] =
n∑

j=1

dij [k]xj [k], i = 1, . . . , n (10.7)

where k is the solving step associated to the communication event; dij [k] is the
(i, j) element of the stochastic matrix D = [dij ] ∈ Rn×n. The discrete-time
consensus algorithm in Eq. 10.7 can be rewritten in a matrix form as

x[k + 1] = D[k]x[k] (10.8)

where D = [dij ] > 0, if i �= j and the information flows from the agent j to i,
otherwise dij [k] = 0 [75]. Similarly, a discrete-time consensus is achieved for a
team of agents for all xi[0] and all i, j = 1, . . . , n, if we have limk→∞|xi[k] −
xj [k]| = 0 [75].

10.4.1.3 Consensus Recent Researches

The consensus control algorithm, which is based on graph theory, has received a
growing interest among researchers [77, 78]. Jamshidi et al. developed a testbed and
a consensus technique for cooperative control of UAVs [77]. Rezaee and Abdollahi
proposed a consensus protocol for a class of high-order multi-agent systems [78].
They showed how agents achieve consensus on the average of any shared quantities
using their relative positions. Li presented a geometric decomposition approach for
cooperative agents [79]. Under topology adjustments, decomposing a system into
sufficiently simple sub-systems facilitates subsequent analyses and provides the
flexibility of choice. Liang et al. introduced an observer-based discrete consensus
control system. The nonlinear observer was used to obtain the states of the agents,
and a feedback control law was designed based on the data received from the
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Fig. 10.9 Multi-consensus control of three subgroups by Han et al. [82]

observer [80]. Xia et al. introduced an optimal design for consensus control of
agents with double-integrator dynamics with collision avoidance considerations
[81]. Han et al. introduced a nonlinear multi-consensus control strategy for multi-
agent systems [82]. In their research, both of the switching and fixed topology
were considered, and their consensus controller could control three subgroups,
as shown in Fig. 10.9. They were also compared their research work with their
previous work [83] in which they could reduce the convergence time in consensus
control. Shoja et al. introduced an estimator based consensus control scheme for
agents with nonlinear and nonidentical dynamic systems [84]. In their design, they
used an undirected graph model for their communication system among the agents,
and multiple leaders were considered in their design. A sliding mode consensus
control design for double-integrator multi-agent systems and 3-DoF helicopters
was introduced by Hou et al. [85]. The advantage of their proposed method
was achieving synchronization in the presence of disturbances and the ability to
be implemented on 3-DoF model of helicopters.

Taheri et al. introduced an adaptive fuzzy wavelet network approach for con-
sensus control of a class of a nonlinear second-order multi-agent system [86]. The
adaptive laws were obtained using the Lyapunov theory to maintain the nonlinear
dynamic stability. Then, an adaptive fuzzy wavelet network was used to compensate
for the effect of unknown dynamics and time delay in the system. However, the
authors did not address the design of a consensus control design for a second-
order multi-agent system with a directed graph. Neural networks and robust control
techniques have been used in [87] and [88] to design a consensus controller for
higher-order multi-agent systems and their semi-global boundedness of consensus
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error was ensured by choosing sufficiently large control gains. Consensus fault
tolerant controllers (FTC) with the ability to tolerate faults in the actuators of agents
in a multi-agent system were also investigated [89–91]. Gallehdari et al. introduced
an online redistributed control reconfiguration approach that employed the nearest
neighbor information and the internal fault detection and identification (FDI) of the
agent to keep the consensus control in the presence of faults in the actuators. They
used the first-order dynamic model for their agents, and their proposed controller
was designed based on minimizing the cost of faulty agent performance index
which led to optimizing the performance index of the team. Later, they developed
their work to optimize all the agents in the consensus FTC system [90]. Hua et al.
introduced a consensus FTC design for time-varying high-order linear systems
which could tolerate faults in the actuators [91].

Wang et al. introduced a new smooth function-based adaptive consensus control
approach for multi-agent systems with nonlinear dynamic, unknown parameters,
and uncertain disturbances without the need for the assumption of linearly param-
eterized reference trajectory [92]. Their approach was based on the premise of
transmitting data among the agents based on an undirected graph model. Later, they
extended their work for directed graph model as well [93].

10.4.2 Flocking Based Strategies

Flocking can be defined as a form of collective behavior of a group of interacting
agents with mutual objectives. Flocking algorithms are inspired by a flock of birds
and developed based on Reynolds rules. Reynolds modeled the steering behavior
of each agent based on the positions and velocities of nearby flock-mates, using
three terms of separation (collision avoidance), alignment (velocity matching), and
cohesion (flock centering) [94].

10.4.2.1 Flocking Control Theory

Similar to consensus algorithms, flocking algorithms are based on graph theory.
Unlike the formation strategies that require the group of agents to be in a particular
shape, the group of agents in the flocking is not necessarily in a rigid shape or form.
In other words, in flocking control, as long as the flock goals are satisfied, transition
in the shape of the flock is allowed, e.g., it can be transformed from a rectangular
shape to a triangular shape.

Several flocking algorithms have been devised for multi-agent systems with a
second-order dynamic model [95–97]. The following equation of motion can present
a group of agents with a second-order dynamic model.
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{
q̇i = pi

ṗi = ui
(10.9)

where qi is the position of agent (node) i and pi is the velocity. pi, qi, ui ∈ Rm and
i ∈ V = 1, 2, . . . , N (set of N nodes or agents in the network). Flocking algorithms
consists of three terms: (1) a gradient-based term, (2) a consensus term, and (3) a
navigational feedback term, and can be presented as follows [96]

ui =
∑

j∈Ni

φα(‖qj − qi‖)nij

︸ ︷︷ ︸
gradient-based term

+
∑

j∈Ni

aij (q)(pj − pi)

︸ ︷︷ ︸
consensus term

+ f
γ

i (qi, pi, qr , pr)︸ ︷︷ ︸
Navigational-based term

(10.10)

where φ(•) is a potential function, and nij = σε(qj−qi) = (qj−qi/

√
1 + ε‖qjqi‖2)

is a vector along the line connecting qi to qj in which ε ∈ (0, 1) is a constant
parameter of the norm in σ -norm. The pair (pr , qr ) ∈ Rm × Rm is the state of a γ

agent. The navigational feedback term f
γ

i is given as follows

f
γ

i (qi, pi, qr , pr) = −c1(qi − qr) − c2(pi − pr), c1, c2 > 0 (10.11)

The flocking algorithm in Eq. 10.10 can be developed by using some updating terms
to tackle the problem of uncertainties in the flock control. One major problem
with flocking control is its incapability of covering a large area. Thus, a semi-
flocking algorithm was introduced to tackle this problem [98]. In the semi-flocking
algorithm, the navigation feedback term is modified to make each agent able to
decide whether to track a target or to search for a new one.

10.4.2.2 Flocking Recent Researches

Moshtagh and Jadbabaie introduced a novel flocking and velocity alignment
algorithm to control the kinematic agents using graph theory [95]. In their design
which was capable of flocking control in two and three dimensions, they used a
geodesic control to minimize the misalignment potential which leads to flocking
and velocity alignment. They also demonstrated that their method could keep the
flocking even when the topology of proximity graph changes, and as long as the
joint connectivity is well-maintained, the algorithm will be successful in consensus
control. However, to guarantee the flocking success, still, one problem has to be
solved, and that is how to keep the connectivity condition in the proximity graph.
Olfati-Saber introduced a systematic approach for the generation of cost functions
for flocking [96]. In these cost functions, the deviation from flock objects will be
penalized. They demonstrated that a peer-to-peer network of agents could be used
for the migration of flocks and the need for a single leader for the flock can be
eliminated. The simulation results for flocking hundreds of agents in 2-D and 3-D,
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squeezing, and split/reuniting maneuvers were provided that showed the success of
the proposed algorithm in the presence of obstacles. Saif et al. introduced a linear
quadratic regulator (LQR) controller for a flock of UAVs which is independent of
the number of agents in the flock [97]. This control strategy can satisfy the Reynolds
rules, and independent of the number of UAVs in the flock it allows designing an
LQR controller for each of the UAVs. Chapman and Mesbahi designed an optimal
controller for UAV flocking in the presence of wind gusts, using a consensus-based
leader-follower system to improve velocity tracking [99].

Tanner et al. introduced a control law for flocking of multi-agent systems
with double-integrator dynamics and arbitrary switching in the topology of agent
interaction network [100]. The non-smooth analysis was used to accommodate
arbitrary switching the agent’s network, and they demonstrated that their control
law is robust against arbitrary changes in the agent communication network as long
as they are connected in their maneuvers. Hung and Givigi developed a model-
free reinforcement learning approach to flocking of small fixed-wing UAVs in a
leader-follower topology [4]. In their study, agents experience disturbances in a
stochastic environment. The advantage of their online learning design is that their
model is not dependent on the environment; hence, it can be implemented in a
different environment without any information about the plant and disturbances in
the system. This characteristic increases the adaptability of the system to unforeseen
situations. However, the learning rate and convergence speed of flocking are two
factors that still need to be solved. Quintero et al. introduced a leader-follower
design for flocking control of multiple UAVs to conduct a sensing task [101]. The
UAVs were considered as fixed-wing airplanes flying at a constant speed with fixed
altitude which limits its movement in a 2-D planar surface. In their strategy, each
of the followers is controlled using a stochastic optimal control problem where
the cost function is the heading and distance toward the leader. This algorithm
was successfully applied and implemented in three UAVs equipped with cameras;
however, the offline solving the optimization problem cannot guarantee the flocking
behavior of the system in the presence of nonlinear behavior of flock and its agents.

McCune et al. introduced a framework based on a dynamic data-driven appli-
cation system (DDDAS) to predict, control, and improve decision making artificial
swarms using repeated simulations and synergistic feedback loops [5]. Using this
strategy helps to improve the decision making in the process of swarm control;
however, the time frame for the real-time application of this strategy has not
been considered which can affect the effectiveness of this approach. Martin et al.
[102] considered a system of agents with second-order dynamics. They determined
conditions to ensure that agents agree on a common velocity to achieve system
flocking. The significance of their design was the allowance for disconnected
communication links that were unnecessary for flocking. Practical bounds for two
different communication rules were investigated; first, the agents communicate
within the radius of communication bound; second, agents communicate with each
other with different and randomly communication radiuses. Overall, they concluded
that by choosing a proper initial velocity disagreement or by setting a small enough
time step, flocking can be achieved with random communication radiuses. One of
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the drawbacks of their approach was an asymmetric requirement in the interaction
among the agents. Generally, other types of interaction (i.e., assuming that agents
interact with the nearest neighbors with a fixed parameter which is called topological
interaction rule) can happen in the flock. Riehl et al. introduced a receding-horizon
search algorithm for cooperative UAVs [2]. In order to find a target in the minimum
time, each of the UAVs was equipped with a gimbal sensor which could be rotated
to observe the nearby target; then by gathering information on a potential location
for the target, they could find it. The algorithm helps to minimize the expected
time for finding the target by controlling the position of UAVs and their sensors.
The optimization process is a receding-horizon algorithm based on a graph with
variable target probability density function (PDF). This algorithm was successfully
tested using two small UAVs equipped with gimbaled video cameras.

10.4.3 Guidance Law Based Cooperative Control

This subsection is separated from the other cooperative control techniques because
they do not deal with the guidance system in their design. In order to achieve a
formation, the acceleration and angular velocity of each agent in the formation group
should be calculated separately [103]. To this aim, guidance law techniques are
used to obtain the desired acceleration and angular velocities. Pure pursuit (PP)
guidance algorithm is one of the most practical leader-follower guidance techniques
in the formation control. This algorithm was initially implemented on ground-attack
missile systems that aim to hit the target [104]. Later by introducing the concept
of the virtual leader (or target) it has been developed for the formation of flight
control which the followers keep their line of sight (LoS) in-line with the leader
movement. In other words, the velocity direction of the agents should be aligned
with the velocity of the leader [103].

In the PP algorithm, between the follower speed vector �V and the virtual leader
�R the following equation is maintained:

�Vf × �R = 0 (10.12)

Figure 10.10 shows the geometry between the virtual leader and the follower in the
PP algorithm. In this figure, dxref

, dyref
, and dzref

represent the distance between
the leader and the virtual leader in the longitudinal axis, lateral axis, and the vertical
axis, respectively. The required acceleration in the follower aircraft to reach the
virtual leader can be calculated as follows [105, 106]

�Af = N( �Vf × �R) × �Vf

‖ �Vf ‖ ‖ �R‖ (10.13)
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Fig. 10.10 Geometry of the PP guidance algorithm [105]

where N is the navigational constant which is usually chosen between 0.3 and 0.5.
Proportional navigation (PN) guidance is another candidate that can be applied in
the formation control design; however, because when the closing velocity is negative
(the leader velocity is higher than the follower aircraft), the PN guidance is likely to
guide the follower away from the leader [106]. In contrast, the PP guidance does not
depend on the leader velocity and always guides the follower in the direction of the
leader. Thus, we discussed the PP guidance laws application in the control design of
the flight formation systems.

10.4.3.1 Guidance Law Based Recent Researches

Gu et al. [107] introduced a nonlinear leader-follower based formation control law.
A two-loop controller was designed where nonlinear dynamic inversion (DI) was
used to design the velocity and position tracker in the outer-loop, and a linear
controller was used to track the leader attitude in the inner-loop. This two-loop
design is based on the difference in the changing rate of the inner-loop and outer-
loop dynamic parameters. The introduced controller was experimentally tested
on two WVU YF-22 aircrafts as leader and follower. The experimental results
demonstrated the effectiveness of their proposed formation control law. Yamasaki
et al. introduced a PP guidance based formation control system for a group of UAVs
[106]. Their proposed control system uses a PP guidance algorithm and a velocity
controller based on the DI control technique to avoid a collision. The attitude
controller of the follower aircraft was designed based on a two-loop DI controller.
Sadeghi et al. improve the Yamasaki work [106] and introduced a new approach
to integrating the guidance and control system through a PID control design [37].
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Their proposed approach could improve the PP guidance algorithm accuracy and
the maneuverability of the formation group.

Zhu et al. introduced a least-squares method for the estimation of the leader
location, then, a guidance law based on sliding mode control was designed to
control the heading rate of the follower aircrafts toward the leader estimated location
[108]. Ali et al. presented a guidance law for lateral formation control of UAVs
based on sliding mode theory [109]. Two sliding surfaces were integrated into
series to improve the control response in the formation design. A new approach for
UAVs formation control considering obstacle/collision avoidance using modified
Grossberg neural network (GNN) was developed by Wang et al. [110]. In order to
track the desired trajectory, a model predictive controller was used. They simulated
their collision/obstacle avoidance design in a 3-D environment. A LOS guidance
law approach for formation control of a group of under-actuated vessels is studied in
[111]. In their approach, a nonlinear synchronization controller was combined with
the LOS-based path following controller to make the overall system more robust
and controllable under the under-actuation situation.

10.5 Summary and Conclusion

In this chapter, the algorithms and applications of cooperative control techniques
for UAVs are reviewed. By categorizing the recent researches to applications and
methods, each was discussed separately. The latest studies in the field of cooperative
control of UAVs have been investigated and the advantages and disadvantages of
methods were discussed. Applications of cooperative UAVs mission in various fields
have been explored. Although some studies in the cooperative field may have been
missed in this survey, it is hoped that this survey would be helpful for researchers to
overview the major achievements in cooperative control of UAVs.
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An Optimal Approach for
Load-Frequency Control of Islanded
Microgrids Based on Nonlinear Model
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Abstract Due to the increased environmental and economic challenges, in recent
years, renewable based distribution generation has been developed. More penetra-
tions from the side of consumers caused a new concept called microgrids which
are able to stand with or without connection to the bulk power system. Control
of microgrids in islanded mode is very crucial for decreasing the amplitude of
frequency deviations as well as damping speed. This chapter aims to propose an
optimal combination of FOPD and fuzzy pre-compensated FOPI approach for load-
frequency control of microgrids in islanded mode. The optimization parameter of
the control scheme is designed by the differential evolution (DE) algorithm which
has been improved by a fuzzy approach. In the optimization, control effort is con-
sidered as a constraint. Due to the robustness and flexibility of the proposed method,
the simulation results have been improved substantially. Robust performance of the
proposed control method is examined through sensitivity analysis.
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TBESS BESS time constant
u Control effort
GDEG(s) DEG Linear Transfer Function
TT DEG time constant
KD Derivative gain of FOPD
PDEG Electrical power of DEG
GFC(s) FC Linear Transfer Function
TIN FC time constant
TIC FC time constant
TG FC time constant
TFC FC time constant
KFESS FESS gain
GFESS(s) FESS Linear Transfer Function
TFESS FESS time constant
Kp2 FOPI proportional gain
β Fractional order of Integral
α Fractional order of the derivative
KI Integral gain of FOPI
PL Load power
�f Microgrid frequency deviations
PBESS Output electrical power of BESS
PFC Output electrical power of FC
PFESS Output electrical power of FESS
PPV Output electrical power of PV
Kp1 Proportional gain of FOPD
GPV(s) PV Linear Transfer Function
Psol The solar heat power (light intensity)
Gload(s) Transfer function of the model of load disturbance
Gsol(s) Transfer function of solar power generation model
Gwind(s) Transfer function of wind power generation model
PW Wind mechanical power
PWTG WTG electrical power
KW WTG Gain
GWTG(s) WTG Linear Transfer Function
TW WTG time constant

11.1 Introduction

Overview Due to the increased environmental and economic challenges, in recent
years, renewable based distribution generation has been developed. More penetra-
tions from the side of consumers caused a new concept called microgrids which
are able to stand with or without connection to the bulk power system. Control
of microgrids in islanded mode is very crucial for decreasing the amplitude of



11 An Optimal Approach for Load-Frequency Control of Islanded Microgrids. . . 259

frequency deviations as well as damping speed. This chapter aims to propose an
optimal combination of FOPD and fuzzy pre-compensated FOPI approach for load-
frequency control of microgrids in islanded mode. The optimization parameter of
the control scheme is designed by the differential evolution (DE) algorithm which
has been improved by a fuzzy approach. In the optimization, control effort is con-
sidered as a constraint. Due to the robustness and flexibility of the proposed method,
the simulation results have been improved substantially. Robust performance of the
proposed control method is examined through sensitivity analysis.

After the era of post-restructuring, bulk power systems have been faced with
different challenges such as, but not limited to the lack of available capacity due to
transmission congestion, environmental concerns, as well as new problems related
to energy market. Environmental concerns, high cost of installing new power plants,
and barriers in front of transmission expansion planning motivate proliferation of
distributed generation units in power industry. Thanks to the development of new
small-scale generation technologies, newborn stand-alone grid, called microgrid,
has been developed. Microgrids are small power systems that work in low voltage
and consist of conventional and renewable power generations, controllable and
uncontrollable loads. Microgrids could be operated in two modes: on-grid and off-
grid (with or without connection to the upper-level networks). One of the most
advantages of a microgrid is the islanding capability and independent operation. The
advantage of islanding of a microgrid is increasing the reliability of the consumers
connected to the microgrid. In both operation modes reacting to the rapid changes in
power consumption is very necessary. In the on-grid mode, frequency and power of
microgrid depend on the main grid. However, in the islanding mode, frequency and
voltage of microgrid oscillate and independent control is required. By disconnecting
from the main grid, operation and duties of the microgrid’s resources change.
The new duties include voltage and frequency control, power-sharing between
the resources, and appropriate response to the variation of load and the other
disturbances. The power system consists of different components which transmit
electrical energy in large-scale. In the case of variation in loads or generated power
of the resources, frequency deviation occurs. A lack of sufficient attention to this
problem might cause frequency instability. If generated power is less than the con-
sumed power, frequency decreases. The larger is the system, load variation affects
less on the frequency of the systems. In this regard, effective control approaches play
a very important role to maintain frequency within its acceptable range with less
oscillation. The goal of designing load-frequency controller is to decrease frequency
oscillation and damping of the disturbance in frequency from the viewpoint of
domain or time in the normal operation and the case of disturbance [1–5].

Various literature addressed different load-frequency control in the microgrid.
The most commonly used control approach for load-frequency control is the
proportional–integral–derivative (PID) controller [6]. In [7, 8], PI or PID controllers
have been used. Optimal tuning of PID parameters is very important for getting
the best dynamic performance. To this purpose, in the literature, different methods
such as Harmonic Search (HS) [9], Social-Spider Optimizer (SSO) [10], and Particle
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Swarm Optimization (PSO) [11] have been used in load-frequency control of micro-
grid. On the other hand, the performance of the classic PID controller is deteriorated
while the operating conditions change. To tackle this challenge, the fuzzy approach
is an effective solution to determine the PID parameters. The performance of the
fuzzy approach depends on its membership. In [12], fuzzy control has been used and
its coefficients have been optimized using PSO, simultaneously with load change.
In [13], a fuzzy PSO-based controller has been adopted for the sake of frequency
control. In the optimization approach frequency deviations, without paying attention
to the control effort, are considered. In [14], an adaptive fuzzy P-PID controller
is applied whose parameters have been optimized using an objective function
including frequency deviations and eigenvalues. In addition to the PID controller,
more advanced control schemes are used for the sake of load-frequency control. In
[15], model-predictive control (MPC) has been used. In [16], multiple prediction
control has been deployed for load-frequency control in the microgrid. In [17], a
model-predictive coordinated control of wind turbine blades and the hybrid electric
vehicle has been used for reducing power and frequency oscillation. In [18], in
the proposed load-frequency control approach, wind turbine blades and PHEVs
are controlled using MPC. In the above-mentioned control approaches, a linear
model of the microgrid has been used for load-frequency control. Although the
small-signal model can be used to study the dynamic behavior of microgrids, there
are several phenomena in microgrids whose nonlinear nature must be taken into
account in load-frequency control. Nonlinear factors include non-linearity of the
output power of some distributed generation sources (such as wind turbine and solar
cell) in terms of inputs, limitations of power conversion rates in energy sources and
storage, limitation of energy capacity in storage systems, and saturation phenomena
[19–21]. In power system literature, numerous references can be found in which
nonlinear phenomena (such as time delay of communication systems, limitations
of power rate variations, and saturation phenomena) in load-frequency control have
been considered [22–24]. A nonlinear model-based load-frequency control has been
proposed in some researches. In [25], the robust (H∞) method has been used and
the limitation of power reserve rate variations has been considered. In [26–29],
PI or PID controllers—whose parameters are determined in different ways—are
used to control the load-frequency in a nonlinear model-based microgrid. In [26]
fractional order PID (FOPID) controller, in [27], fractional order fuzzy control
based PID (FOFCPID), and in [28, 29], type II fuzzy system have been used. The
nonlinear limitations of the generators in [26, 27] are considered. Different control
strategies have been proposed to improve system performance despite uncertainties.
These include optimal control in [30], sliding mode control in [31], intelligent
control in [32], and robust control in [25]. PID control is the most commonly
used commercial controller with three design parameters: proportional, integral, and
derivative coefficients. On the other hand, fractional calculus has received more
attention in recent years. In recent years, fractional calculus has been used for
system modeling and controller design. Fractional order PID (FOPID) is the most
famous fractional order controller. Some efforts have been made to apply FOPID
for load-frequency control purposes. As an instant, in [33], a combination of FOPID



11 An Optimal Approach for Load-Frequency Control of Islanded Microgrids. . . 261

and ICA optimization approach is used. Frequency deviations is considered in the
objective function. The approach is very prospective for load-frequency control.
However, control effort is not considered in the proposed unconstraint objective
function. Hence, the application of an improved FOPID control approach seems
very necessary.

For the above-mentioned purpose, in this chapter, the optimal combination of
FOPD and fuzzy pre-compensated FOPI approach is proposed and applied for
load-frequency control. Here, nonlinear phenomena have been added to the linear
model of microprocessor components in dynamic network modeling, including
saturation and rate limiting. The flexible and robust proposed control scheme is
able to improve frequency deviations. Note that optimizing the parameters of this
control approach is more complicated in comparison with the conventional fuzzy
PID controller. For this purpose, a meta-heuristic approach, differential evolution
(DE) algorithm which has been improved by the fuzzy approach, is applied. The
purpose of control is to minimize frequency deviations with limited control effort.
Microgrid simulation is done in MATLAB environment. The dynamic model of
various disturbances, including load changes, changes in wind speed, and changes in
sunlight, are considered. Results with PID controller, fractional order PID controller
and FOPD+FFOPI controller are compared, while their coefficients are optimized
by fuzzy DE. The proposed controller is observed to perform better in damping
of oscillations. Also, with the same number of iterations and with the same initial
population, better results have been obtained by fuzzy differential evolution algo-
rithm. The simulations have been carried out considering and without considering
the uncertainty of the parameters of the dynamic grid model. Considering the
considerable variations of the model parameters, the robustness of the proposed
control scheme is confirmed.

The chapter is organized as follows: after providing an introduction in Sect. 11.1,
the dynamic model of the microgrid is provided in Sect. 11.2. The proposed control
method is presented in Sect. 11.3. Simulation results are presented in Sect. 11.4.
Finally, Sect. 11.5 concludes the chapter.

11.2 Dynamic Model of Microgrid

A microgrid consists of DGs which electrifies local loads in two operational modes,
connected to the network and islanded. Because of the intermittent nature of
small-scale renewable resources that are connected to the microgrids, energy
storage is required to help the system to stand in a stable way. In this chapter,
information related to the examined microgrid is obtained from [12]. This microgrid
includes diesel engine generators (DEG), photovoltaic (PV), wind turbine generator
(WTG), fuel cells (FC), battery energy storage system (BESS), and flywheel energy
storage system (FESS). Table 11.1 shows the transfer functions of the mentioned
components.
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Table 11.1 Model of the
microgrid’s component

System Model

WTG GWTG(s) = KW

1+sT W
= PWTG

PW

PV GPV(s) = 1
(1+sT IN)(1+sT IC)

= PPV
Psol

DEG GDEG(s) = 1
(1+sT G)(1+sT T )

= PDEG
u−R−1�f

FC GFC(s) = 1
(1+sT FC)(1+sT IN)(1+sT IC)

= PFC
u

BESS GBESS = KBESS
1+sT BESS

= PBESS
�f

FESS GFESS = KFESS
1+sT FESS

= PFESS
�f

Fig. 11.1 Nonlinear model of the test microgrid

It is mentioned that, in Table 11.1, K and T represent gain and time constant,
respectively. Figure 11.1 shows the nonlinear model of the test microgrid which is
to be controlled. In the practical applications, the generated power of FESS, BESS,
DEG, and FC and their derivatives are limited. In this regard, power generation
constraint (GC) and power generation rate constraint (GRC) blocks are considered
in the nonlinear model of the test microgrid. For input P, their output, q, is as
follows:

q =
⎧
⎨

⎩

Pmin P < Pmin

P Pmin ≤ P ≤ Pmax

Pmax P > Pmax

(11.1)
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The input of the GRC is a derivative of generated power, and the input of the GC
is generated power.

11.3 The Proposed Intelligent Control Method

Figure 11.2 shows the proposed control approach used in this chapter. It is noticed
that this control structure has been used in [34]. The input and output membership
functions of the fuzzy system and its fuzzy rules are obtained from [34] and are
shown in Fig. 11.3 and Table 11.2, respectively.

Fuzzy 

Systemsα

KP1

KD

+

+

e(t) u(t)U

E 1
E 2 s -β

KP2

KI

FOPD FOPI

Fig. 11.2 Combination of FOPD and fuzzy pre-compensated FOPI
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Fig. 11.3 Membership functions of controller’s fuzzy system [34]

Table 11.2 Rules of controller’s fuzzy system [34]

E2→ NL NM NS ZR PS PM PL
E1↓
PL ZR PS PM PL PL PL PL
PM NS ZR PS PM PL PL PL
PS NM NS ZR PS PM PL PL
ZR NL NM NS ZR PS PM PL
NS NL NL NM NS ZR PS PM
NM NL NL NL NM NS ZR PS
NL NL NL NL NL NM NS ZR
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Fig. 11.4 Fuzzy DE
flowchart

In the industrial implementation and simulation, fractional order of s is approxi-
mated with a transfer function of integer order. The most popular approximation for
sα , in the frequency bound [ωL, ωH], is a filter of the order of 2N + 1 [35]:

sα = ωα
H

N∏

k=−N

s − zk

s − pk

, 0 < α < 1 (11.2)

where zk = −ωL(ωH /ωL)
2k+2N+1+α

2(2N+1) , and pk = −ωL(ωH /ωL)
2k+2N+1−α

2(2N+1) .
Design parameters of this controller are proportional gain (KP1), integral gain

(KI), derivative gain (KD), integral order (β), and derivative order (α). The value of
these parameters affects substantially the quality of the system response. In order to
achieve the desired performance, fuzzy DE is used. Figure 11.4 shows the flowchart
of fuzzy DE.

Fuzzy DE algorithm has been introduced in [36]. In fuzzy DE algorithm, the
initial population consists of n random vectors which include d decision variables.
The ith member of the population set in the Gth generation, P G

i , is considered as

P G
i =

[
pG

i,1 pG
i,2 · · · pG

i,d

]
, i = 1, 2, . . . , n (11.3)

In each generation, the population of the next generation is produced using three
operators of fuzzy mutation, crossover, and selection. In mutation for each P G

i , three
random vectors P G

r1
, P G

r2
, and P G

r3
are chosen and mutation vector, MG

i , is produced
as follows:

MG
i = P G

r1
+ F

(
P G

r2
− P G

r3

)
, r1 �= r2 �= r3 �= i (11.4)

where F is the mutation factor.
Crossover operation combines mutation vector, MG

i , and parent vector, P G
i , in

order to constitute the polar vector, ZG
i , as follows:

zG
j,i =

{
mG

j,i if ri ≤ Cr or j = Jr

pG
j,i otherwise

, j = 1, 2, . . . , d (11.5)
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where ri is a random variable between 0 and 1 and Jr ensures MG
i �= P G

i .
The section operator chooses the best vector between the parent vector and test
vector as

P G+1
i =

{
ZG

i if f
(
Ui

G
) ≤ f

(
Xi

G
)

P G
i otherwise

(11.6)

Two points should be considered for choosing F. First, at the primary iterations
of the DE algorithm, a big value should be assigned to F to speed up the
exploration. By increasing the iterations, the smaller values should be assigned to
F for speeding up the exploitation. Second, the less is the relative distance of the
population members, the less is the effective F and vice versa. Population diversity is
defined as

diversity(G) =
∑n−1

a=1
∑n

b=a+1

∣∣∣∣
P G

a −P G
b

U−L

∣∣∣∣
2d (n − 1) n

(11.7)

where, L and U are the vectors containing the lower and upper bound of the
population members. The above equation evaluates the average normal distance
between the population members. In this regard, this criterion is effective for
representing population diversity. For improving DE performance, fuzzy logic is
used to determine F based on the number of generation and population diversity.
The Block diagram of the controlled microgrid with FOPD+FFOPI controller based
on fuzzy DE algorithm is shown in Fig. 11.5. The related membership function and
fuzzy rules of fuzzy DE are shown in Fig. 11.6 and Table 11.3, respectively.

Fig. 11.5 Block diagram of the microgrid by the proposed control approach
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11 An Optimal Approach for Load-Frequency Control of Islanded Microgrids. . . 267

Table 11.3 The fuzzy rules
of fuzzy DE [36]

diversity(G)
S M L

G S M L VL
M S M L
L VS S M

11.4 Simulation and Results

In the load-frequency control problem, minimization of the frequency deviations is
desired. On the other hand, control efforts are limited. The objective function of the
optimization is the mean absolute of frequency deviations defined as follows:

J =
∫ T

T1
|�f | dt

T − T1
(11.8)

The closed form of the optimization problem is as follows:

Min J (X)

s.t.

{
L ≤ X ≤ U

|u| ≤ umax

(11.9)

Vector X consists of the following decision variables:

X = [
Kp1 Kp2 KI KD β α

]
(11.10)

The uncontrolled inputs, wind power, solar thermal power, and variable load, are
generated using the models of [37]. The parameters of the system are similar to that
of [37, 38] and are shown in Table 11.4.

In this chapter, the parameters of Eq. (11.2) are chosen as ωH = 100, N = 3, and
ωL = 0.01.

For the microgrid of Fig. 11.1, PID controller ( U(s)
�F(s)

= KP + KI

s
+ KDs),

FOPID controller ( U(s)
�F(s)

= KP + KI

sβ + KDsα), and a combination of FOPD and
fuzzy pre-compensated FOPI controller of Fig. 11.2 are designed and the related
parameters of them are optimized using fuzzy DE. In this regards, these controllers
are named FDE-PID, FDE-FOPID, and FDE-FOPD+FFOPI, respectively. Also,
FOPD + FFOPI controller is designed, and its parameters are optimized using DE.
This controller is named DE-FOPD+FFOPI. In Fig. 11.7, the frequency deviations
of the microgrid after implementation of the designed controllers are shown and
compared.

In all optimization algorithms, the same number of iterations is considered
as the terminal condition. The controllers are sorted based on the value of the
oscillation frequency of the frequency deviations as follows: FDE-PID, DE-FOPD-
FFOPI, FDE-FOPD-FFOPI, and FDE-FOPID controller. In this list, FDE-PID has
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Table 11.4 The parameter values of the test microgrid

Parameter Value Parameter Value

Kw 1 R 3
KFESS = KBESS 1 Tw 1.5s
TFESS = TBESS 0.1s TIN 0.04s
Max (PFESS) = Max (PBESS) 0.11 TIC 0.004s
Max (PFC) 0.48 KFC 1
Max (PDEG) 0.45 TFC 0.26
Max

(
P ′

FESS

) = Max
(
P ′

BESS

)
0.05 TG 0.08

Max
(
P ′

FC

)
1 TT 0.4

Max
(
P ′

DEG

)
0.5 D 0.015

Γ LOAD 0.9u (t) + 0.03u (t − 110) + 0.03u
(t − 130) + 0.03u (t − 150) + 0.15u
(t − 170) + 0.1u (t − 190)

H 1/12

Γ load 0.02u (t) ηload 0.9
Gload (s) 1 − 300/(300s + 1) − 1/(1800s + 1) Bload 10
Γ wind 0.24u (t) − 0.04u (t − 140) ηwind 0.8
Gwind (s) 104s/(104s + 1) βwind 10
Γ sol 0.05u (t) − 0.02u (t − 180) ηsol 0.1
Gsol (s) 104s/(104s + 1) Bsol 10

the highest and FDE-FOPID has the least oscillation frequency. Negative frequency
variations indicate a decrease in frequency and positive indicate an increase in
frequency. The maximum values of increase and decrease of frequency variations
are observed with FDE-FOPID, DE-FOPD-FFOPI, FDE-FOPD-FFOPI, and FDE-
PID controllers, respectively. The FDE-FOPID controller has the lowest oscillation
frequency and the highest frequency reduction, while the FDE-PID controller has
the highest oscillation frequency and the lowest frequency reduction. In other words,
the improvement of the oscillation frequency of frequency deviations is inconsistent
with its improvement of the maximum increase and decrease. It can be concluded
that the proposed controller has created a favorable trade-off between the oscillation
frequency and the maximum value of increasing and decreasing of the frequency
variations.

In Fig. 11.8, log 10 of the values of the objective function in the sequential
iterations is compared for DE-FOPD+FFOPI and FDE-FOPD+FFOPI. In order
to compare DE and fuzzy DE in determining the parameters of FOPD-FFOPI
controller rationality and fairly, the random initial population of them are selected
identical and their terminal condition is chosen the same number of iterations. As
it is expected by applying the fuzzy system, at the primary iterations of the DE
algorithm, the exploration speeds up and at the last iterations, the exploitation speeds
up. In other words, the fuzzy system improves the performance of the DE algorithm
from the viewpoint of convergence rate and more precise searching, considerably.

In Table 11.5, the performance of the controllers is more precisely compared
with quantitative indices J , max(|u|), and max(|�f |). It is observed that the mean
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Fig. 11.7 Comparison of frequency deviations with designed controllers
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Table 11.5 Quantitative comparison of the performance with designed controllers

Index → Controller ↓ J × 10−3 max(|u|) max (|�f |) × 10−2

FDE-PID 4.8414 30.218 3.7857
FDE-FOPID 2.489 7.5941 7.395
DE-FOPD+FFOPI 1.9617 70.797 7.324
FDE-FOPD+FFOPI 1.6097 38.665 4.7752

absolute of frequency deviations of the FDE-FOPID controller is less than that
of FDE-PID and the performance of DE-FOPD + FFOPI in decreasing the mean
absolute of frequency deviations is better than that of FDE-PID controller. The
results show that by using the FDE-FOPID controller there is a good trade-
off between these three quantitative and conflict indices. This demonstrates the
capability of the fractional calculus. There is no logical relationship between
max(|u|) and the other two indices, but the constraint of limited amplitude of
the control effort is satisfied. The least mean absolute of frequency deviations
is pertaining to the FDE-FOPD + FFOPI controller. These results confirm the
superiority of the proposed control method with the fuzzy DE optimization method.

It is noteworthy that considering the variations of the system parameters is
essential when evaluating the performance of a load-frequency control system.
Ignoring the parameter uncertainties can, in practice, lead to undesirable system
behavior and the failure in achieving the desired control objectives. In this regard,
the uncertainty of the parameters D, H, R, TFC, TG, and TT are considered and the
frequency deviations of the microgrid are assessed under the variation of them for
evaluating the robustness of the proposed approach. The related results are shown
in Figs. 11.9 and 11.10 and Table 11.6. The results confirm the robustness of the
proposed approach.

As shown in Figs. 11.9 and 11.10, in spite of the substantial change in the
parameters of the system, frequency deviations are retained in an acceptable range
and the control performance is still acceptable. The quantitative results in Table 11.6
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Fig. 11.9 Robust performance under increasing the parameters with FDE-FOPD+FFOPI
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Fig. 11.10 Robustness performance under decreasing the parameters with FDE-FOPD+FFOPI
controller

Table 11.6 Robust performance under variation the parameters with FDE-FOPD+FFOPI

J × 10−3 max (|�f |) × 10−2 J × 10−3 max (|�f |) × 10−2

Increase Decrease

70%D 1.5808 4.7672 1.7043 6.2765
30%H 1.2551 3.6343 2.3250 7.6134
70%R 1.6785 4.7939 1.6312 4.8079
20%TFC 1.6333 5.0586 1.6194 4.7472
70%TG 1.6867 8.2170 2.5443 6.1443
70%TT 1.6060 6.1088 2.3178 5.7546
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demonstrate that variation of the parameters affects the maximum of the frequency
variation (max(|Δf |)) more than J. By increasing the parameters, J does not change
dramatically and the maximum of the frequency variation changes more. However,
by decreasing the parameters both indices, J and max(|Δf |), change. It is also
observed that by decreasing H and increasing TG, max(|Δf |) is maximized.

11.5 Conclusion

In this chapter, an optimal combination of FOPD and fuzzy pre-compensated
FOPI approach was designed for reducing the frequency deviations of an islanded
microgrid. Nonlinear phenomena such as saturation and rate-limiting power have
been added to the linear model of the microgrid components. The dynamic model
of various perturbations, including load changes, changes in wind speed, and
changes in sunlight, were considered. The fractional order structure was proposed
because of increasing the controller degrees of freedom and its robust performance.
The parameters of the controller were determined via differential evolution (DE)
algorithm which was improved by the fuzzy system. In the proposed optimization
approach, the objective function was to optimize the average magnitude of the
frequency variations while the control effort amplitude does not exceed the pre-
determined value. Control effort has been limited by including a relevant constraint
in the optimization model. Simulations were performed using MATLAB, and the
performance of the proposed control approach was compared with the performance
of fractional order PID and PID controllers whose parameters were determined
by fuzzy differential evolution algorithm. Frequency deviations had the smallest
magnitude with PID controller and it had the least frequency of variations with
FOPID controller. Using FDE-FPD-FFOPI controller, a good trade-off was made
between the two conflict criteria: variation’s frequency and magnitude of frequency
deviations. The same number of iterations was chosen as the terminal condition
of the fuzzy differential evolution algorithm to determine the parameters of all three
controllers. The simulation results showed improvement of frequency deviations via
implementing the proposed control schema. To illustrate the superior performance
of the fuzzy differential evolution algorithm compared to the differential evolution
algorithm, the FPD-FFOPI controller parameters were determined using both
algorithms. For fair and rational comparison, the initial population was selected
random and identical and the same number of iterations was chosen as the terminal
condition in both optimization. Applying the fuzzy system, at the primary iterations
of the DE algorithm, the exploration and at the last ones, the exploitation speeded up.
In another words, the fuzzy system improves the performance of the DE algorithm
from the viewpoint of convergence rate and more precise searching, considerably.

For quantitative analysis of simulation results, the maximum amplitude of the
control effort and frequency variations were calculated. Since it is important to
evaluate the performance of the load-frequency control system under the param-
eter uncertainties. The performance of the proposed controller is investigated by
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considering significant changes in the parameters T, D, H, R, TFC, TG, and TT. The
quantitative and qualitative results of this investigation showed that despite consid-
erable variations in system parameters, the frequency variations remained within the
acceptable range. A performed sensitivity analysis confirmed the robustness of the
proposed approach.
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Chapter 12
Photovoltaic Design for Smart Cities
and Demand Forecasting Using
a Truncated Conjugate Gradient
Algorithm

Isa S. Qamber and Mohamed Y. Al-Hamad

Abstract Worldwide, global warming is a very important concern. This refers to
climate change caused by human activities, which affect the environment. Climate
change presents a serious threat to the natural world. This is likely to affect
our future unless action is taken to avoid such phenomena. In addition, without
ambitious mitigation efforts, global temperature rises will occur in this century. In
recent years, countries all over the world have had their own vision directed toward
renewable energy, which is a clean option to will help to avoid the results of global
warming. One of these energy sources is solar energy. The idea of solar energy has
been raised to improve sustainability in individual countries and in the energy sector.
Various countries have made decisions to develop renewable energy projects. Solar
energy plans have become important in recent years. Integration of variable energy
resources into an electricity grid can use solar photovoltaics as a main resource.
These variable energy resources, as new resources, are currently envisioned to be
either wind or solar photovoltaics. However, the output of these types of resources
can be highly variable and depend on weather fluctuations such as wind speed and
cloud cover. Since photovoltaic power generation is highly dependent on weather
conditions, photovoltaic power generation operates differently in different regions.
In particular, solar irradiance affects photovoltaic power generation. This means
that solar power forecasting becomes an important tool for optimal economic
management of the electric power network. In this chapter, an artificial intelligence
technique is recommended to calculate the number of solar power panels required
to satisfy a given estimated daily electricity load for five countries: the Kingdom of
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Bahrain, Egypt, India, Thailand, and the UK. Such artificial intelligence techniques
play an important role in modeling and prediction in renewable energy engineering.
The main focus of this chapter is the design of photovoltaic solar power plants,
which help to reduce carbon dioxide emissions where they are connected to the
national electricity grid in order to feed the grid with the extra electricity they
generate. In this case, the power plant becomes more efficient than a combined cycle
plant. At the same time, modeling and prediction in renewable energy engineering
helps engineers to make predictions regarding future required loads.

Keywords Demand forecast · Optimization · Smart cities · Photovoltaics ·
Rule-based neural networks · Solar power · Renewable energy

Abbreviations

ANFIS Adaptive neuro-fuzzy inference system
ANN Artificial neural network
APopPV Actual power output of a photovoltaic panel
Bapco Bahrain Petroleum Company
BHD Bahraini dinars
CombE Combined efficiency
CPV Concentrated photovoltaic
CSP Concentrated solar power
EnPby1PD Energy produced by a 1-peak-watt panel in a day
FS Feature selection
GCC Gulf Cooperation Council
GWh Gigawatt-hour
ICT Information and communications technology
IPP Independent power producer
IRENA International Renewable Energy Agency
KISR Kuwait Institute for Scientific Research
kWh Kilowatt-hour
kWp Peak kilowatt
MENA Middle East and North Africa
MLR Multiple linear regression
NhrsPD Number of hours per day
NoUnits Number of units
NREAP National Renewable Energy Action Plan
NSP Number of solar power panels required to satisfy a given estimated

daily electricity load
OpF Operating factor
Ophrs Operating hours
PEndU Power used at the end use [it is less because of lower combined

efficiency of the system]
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PGF Panel generation factor
PPR Peak power rating
PV Photovoltaic
QSE Qatar Solar Energy
REPDO Renewable Energy Projects Development Office
REQP Rating of the equipment
RES Renewable energy source
SEIA Solar Energy Industries Association
STEEB Solar Technology Energy and Environment in Bahrain
TRL Total required load (total connected load)
TWh Terawatt-hour
TWhrR Total watt-hour rating of the system
UAE United Arab Emirates
VER Variable energy resource
Wp Peak watt

12.1 Introduction

A solar energy project involves several factors that affect the selection of the area for
that project. Thus, site selection is a critical issue for building a solar energy plant.
Solar energy is a natural and renewable energy source (RES). The main resource
for solar energy is the sun, which rises every day. Nowadays, many countries are
moving toward using renewable energy because it is clean. In recent years, the Gulf
Cooperation Council (GCC) countries (Kuwait, the Kingdom of Saudi Arabia, the
Kingdom of Bahrain, Qatar, the United Arab Emirates, and the Sultanate of Oman)
have been considering moving toward renewable energy, especially solar energy.
It is well known that the Arabian Gulf region is the site of the highest summer
temperatures ever recorded. This means that it is among the most productive solar
regions, and it has been presented in the literature as an example of this. These
countries are pursuing their own solar energy projects, aimed at the most economical
targets, as they have very high electricity consumption per capita. The reasons for
this target are rapid population growth and industrial expansion in the GCC area.
Many relevant studies have been carried out, as discussed in the present chapter.
It is just a matter of how much is enough to justify the cost of solar energy over
other energy options. Even areas with large amounts of rain can easily provide
solar energy, albeit less than other areas with more sunlight hours. All of this has
been prompted by global climate change, which presents a serious threat to the
nature of the world we are living in [1, 2].

Solar irradiation has been investigated as a source of energy, as it is easily
obtained at the earth’s surface and has various useful applications. Solar energy
can be used as renewable energy in many fields such as power generation, in the
form of solar photovoltaic (PV) systems. Solar energy estimation includes accurate
measurement of solar irradiation, which depends on different atmospheric variables
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that can influence the energy yield to a large extent. The largest amount of energy is
generated in areas with high solar irradiation [3].

12.2 Objectives and Targets

The objective of the present mission is to achieve a clean environment, which entails
several factors that need to be satisfied [4], such as:

1. Reducing emissions of greenhouse gases into the atmosphere—for example, by
planting trees, which absorb carbon dioxide and give off oxygen

2. Isolating greenhouse gas emissions from the atmosphere

At the same time, climate change due to human behavior is occurring because
of the building of factories without due consideration regarding the risks they pose.
These risks are raised by ignoring the outcome of the operation of factories and
even power stations. There would be substantial benefits from reducing the waste
produced by both factories and power stations. Burning of fuels in gas power
stations results in discharge of waste gas (flue gas) into the air. This discharge
contains various different gases, such as carbon dioxide, nitrogen, methane, and
water vapor, in addition to other pollutants such as sulfur oxides. By reducing the
waste, the following outcomes can be achieved:

3. Sustainable electric power use
4. Sustainable electric power management
5. Reduction, prevention, and control of air pollution

12.3 Literature Review

The development of a smart grid anywhere is a step toward improved generation
of electricity. Improvements are achieved by diversification and conservation in
electric power generation. Smart grids manage strong and healthy energy demand
and reduce the influences of climate change and global warming. In the growth of
any electricity network in any country or region, it is helpful and recommended
to include renewable energy, which helps to provide clean energy. This aim drives
the selection of smart grid technology. Selection of RES has increased in recent
years. The ongoing challenges facing governments, utilities, and even commercial
companies are (1) to obtain clean energy that avoids discharge of waste gases into
the air and (2) to replace use of thermal power stations to generate electricity with a
clean power generation source. This means that the clean energy that is generated is
required to provide reliable power to meet the demand.

The process of finding and selecting the most useful features for the generated
power is called feature selection (FS), which is suitable for economic consumption
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and is used as a procedure to pick a suitable prediction model for the future. Eseye
et al. [5] proposed use of machine learning to find the most relevant model not
characterized by repetition, for accurate short-term load demand forecasting in dis-
tributed power systems. The suggested approach improved the quality and efficiency
of the estimated selection with minimal selection for accuracy. The suggested model
was trained using a 2-year set of hourly data. Then, the results were tested with
another 1-year set of hourly data. Finally, the obtained results verified that the
feedforward artificial neural network model forecast training feature had reached
an annual 1.96% mean absolute percentage error, which is a very acceptable value
for electrical load demand forecasting in small-scale, decentralized power systems.

Mito et al. [6] reviewed numerous studies that focused on using mature RES, and
presented the state of the art in both wind and solar PV power. These RES can be
used to drive reverse osmosis plants on a small scale. Direct coupling of a reverse
osmosis plant to a RES requires variable-speed operation and/or modular operation
to match the needed load to the power available in the network. This review of the
use of wind and solar PV to drive reverse osmosis took into consideration the plant
configuration, operational strategy, control system, and methods followed to tailor
the plant selection for the relevant RES. The performance of membrane desalination
is helping the operation of wind and solar power to be economically viable in RES-
powered reverse osmosis plants.

The Bahrain government has provided coordination to help protect Bahrain’s
environment by supporting sustainable investment in clean technologies. This will
help to minimize pollution and conserve national resources. Albuflasa [7] published
a paper highlighting the average annual solar irradiation in Bahrain, which is
approximately 2600 kWh/m2/year, and the achievable generation of electricity using
the heat energy from the sun is approximately 33 TWh/year. Bahrain’s target for
renewable energy is 5% by 2025 with generation of around 480 GWh/year of
clean energy. By the year 2035, the target will be raised to 10%, which is double
that for 2025. This means that generation of 1460 GWh/year of clean energy is
required. This is the National Renewable Energy Action Plan (NREAP). The growth
projection is around 50% from the years 2025 to 2035. Albuflasa [7] mentioned that
the first renewable energy grid in Bahrain is a 5 MW PV project owned by the
Bahrain Petroleum Company (Bapco). The project was commissioned in the year
2012 and installed at three locations: Awali, the Refinery, and the University of
Bahrain.

For evaluation of the performance of a solar energy conversion system, data
on terrestrial solar irradiation are essential. In addition, the evaluation of solar
energy must take into account the location and the efficiency of the solar system.
In a study by Pareek and Gidwani [3], a curve-fitting method was used to find
a modeling equation and estimate the horizontal global solar irradiation. The
authors [3] presented a comparison between software and instruments for measuring
solar irradiation using different techniques and methodology. Artificial neural
network (ANN) models approximate daily solar irradiation at locations where solar
irradiation data are not collected.
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A new method is needed to develop renewable-energy-based grids that balance
the load and generation using efficient energy storage models. This was discussed
by Sidorov et al. [8], who proposed a new mathematical model for load forecasting
using deep learning and support vector regression models. Their research included
various features such as the average daily temperature. Germany’s electrical grid
was selected, which has many RES, with approximately 6.7 GW of pumped storage
power plants. The proposed models are efficient.

Ferwatia et al. [9] concentrated on green building rating systems in the devel-
opment of neighborhood sustainability assessment tools. Qatar selected some of
these tools. In their study, the authors developed the Qatar Sustainability Assessment
System. Their study was divided into three phases. The first phase identified eight
sustainability criteria. The second phase was used to design the model and apply an
analytical network process method to find the weights of the criteria. The developed
model was applied to a real case.

The objective of a study by Al-Hamad and Qamber [10] was a 20% reduction of
the load flow through distribution and transmission equipment to help relieve loaded
equipment in all networks. In addition, many projects are starting to be developed
in the GCC countries. These developments are helping to maximize the benefits
from involvement of RES in networks. It is well known that the GCC countries
have a good location for solar energy, with a high intensity of solar irradiation.
In addition, the sky is clear of cloud cover in the GCC countries throughout the
year. The opportunities for this region are being explored to create sustainable
energy resources. Moreover, the target of this research is to engage PV technology
in such a way that reduces the overload on current equipment and meets the
electricity demand on the consumer side. PV systems could be used to add electricity
generation units in cities and other areas. The roofs of houses could be used to install
PV units to handle a portion of the local demand. Annually, the GCC countries
are spending millions of dollars to support their networks to satisfy the needs for
reinforcement.

Albuflasa [11] has studied Bahrain residents’ needs for sustainable economic
development. Household energy demand accounts for 51% of the total electricity
consumption in Bahrain. The optimal scenario is that future energy systems will
be sustainable, integrated, smart energy systems. The challenge in designing smart
energy technologies is achieving full understanding of the energy consumption.
The research carried out by Albuflasa [11] assesses the actual deployment of
smart energy solutions and energy supply systems in Bahrain, and highlights the
opportunities for using information and communications technology (ICT), such as
smart meters to enable customers to make smart decisions regarding their power
consumption. At the same time, it helps utility providers to reshape the overall
energy profile.

A research article by Qamber and Al-Hamad [12] presented a way of connecting
PV panels to the grid to reduce the demand on the power authority and help achieve
a reduction of load for the authority. Since the intensity of the solar irradiation in this
region is high, this means the production of electricity from the sun will increase in
these locations. In their study, the location of the six GCC countries was considered
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Fig. 12.1 Proposed model for solar power panels

a strategic location; thus, the GCC countries have a new competitive energy resource
and can be engaged in both distribution and transmission systems. Qamber and Al-
Hamad derived their model’s solar cell design from five countries with the same
house specifications. In addition, a panel generation factor (PGF) was included in
the study to achieve the specification of the cells. The PGF depends on the climate.
Therefore, renewable energy provides many benefits for the climate, the economy,
and health. The total (peak kilowatts (kWp)) of the PV panel capacity for the five
countries, the number of PV panels needed to design a 110-peak-watt (110 Wp) PV
module, and the solar charge controller rating were calculated on the basis of the
PGF of each country, following the proposed model shown in Fig. 12.1.

Al-Hamad and Qamber [13] developed a suitable model to calculate electricity
demand forecasting as requested by the relevant decision-makers. They dealt with
the electrical long-term peak load demand forecasting using a developed adaptive
neuro-fuzzy inference system (ANFIS) and multiple linear regression (MLR)
methods. The neuro-fuzzy training used previous sets of data. The obtained results
had an acceptable level of mean errors, encouraging the GCC countries to further
explore solar energy for the future. The novelty of this research was that it avoided
an increase in generation capacity in both medium-term and long-term plans to help
the GCC countries avoid load shedding. In addition, the developed models helped
to find optimum times for electrical energy trading. It was concluded that the neuro-
fuzzy technique was a more accurate technique than MLR and could be used in
power system planning and development.

The NREAP of Bahrain [14–18] was presented on the occasion of STEEB [Solar
Technology Energy and Environment in Bahrain] 2017, organized by the Bahrain
Solar Industry Association in the capital of Bahrain. The planned PV capacity by
the year 2025 is 255 MW. This amount of power is sufficient to cover approximately
5% of Bahrain’s power load, and by the year 2030 it is aimed to reach a capacity of
700 MW of renewable energy power generation. In addition, the target of the Askar
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project [14–18] is a 100 MW solar power plant located at the Askar landfill site,
which is in the Southern Governorate of Bahrain.

The 50 MW Shagaya concentrated solar power (CSP) plant is part of the first
phase of the 2 GW Kuwait Shagaya Renewable Energy Park [19]. (CSP is a type of
solar technology that uses mirrors to direct sunlight onto a receiver. It is discussed
in more detail later in the text.) This project has been developed by the Kuwait
Institute for Scientific Research (KISR). The concept of the project is based on a
micro gas turbine. The capacity of the project is 100 kW, with a compact heliostat
(tracking mirror) field. The heliostats are close to the tower. The 2 GW Shagaya
project has a three-phase master plan. The first phase of the Shagaya Power Plant has
a 70 MW renewable energy capacity (50 MW CSP, 10 MW PV, and 10 MW wind
power) [19]. The second phase is a 930 MW extension of the plant to reach a total
of 1000 MW installed renewable energy capacity (including CSP, concentrated PV
(CPV), PV, and/or wind power). However, although the target year for completion of
the expansion is 2030, the latest analysis by KISR illustrates that the CSP capacity
will not exceed 400 MW by then [20].

Solar energy is one of the only renewable energy resources available in Oman.
The solar irradiation in Oman varies between 4.51 and 6.09 kWh/m2/day [21].
This means that it varies between 1640 and 2200 kWh/year. The Fahud location in
Oman is taken as an example. Its global insolation varies between 2 and 5 kWh/day
during January and between 5 and 7 kWh/day between July and September. The
average variation annually varies between 4 kWh/m2/day during January and about
6.5 kWh/m2/day in May [21]. The other locations can be obtained by referring to
SEM/NBP/KF/SAJ [21] and Al-Mahrouqi and Amin [22]. Oman, in most of its
regions, possesses a statistical high predictability of insolation during summer. The
solar energy procurement includes the 500 MW Ibri II solar independent power
project (IPP)) scheduled for the year 2021 [23]. Al Hatmi and Tan [24] performed a
comprehensive review of energy sources in Oman, where the population is growing.
Furthermore, the spacing between housing units in Oman has become a major
challenge to the government.

Several research projects at centers in Qatar are focused on renewable energy.
KAHRAMAA has planned to generate 200 MW of solar energy at approximately
60 sites across the country by the year 2020. Its first PV project is the 220 MW
Duhail Power Plant, and the second project is an increase of 10 MW at the same
plant. This is based on a MEED Middle East Business Intelligence (MENA Business
Intelligence) report [25]. The solar energy potential has an ambitious target of a 2%
renewable energy contribution to the national energy mix by the year 2022, reaching
220 MW [26]. Qatar Solar Energy (QSE) was selected as the provider for the project
because of its ability to produce higher-efficiency solar solutions at a lower cost
through a contract with both the Japanese and Thai markets [27].

In the Gulf region, the Saudi Arabia power sector is considered to have the
biggest installed generating capacity. The capacity was over 61 GW in the year
2014. It has the greatest potential for renewable energy in the Middle East and
North Africa (MENA) region. Seven PV solar projects are planned as part of
Saudi Arabia’s NREAP [28]. These projects will have a combined total capacity
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of 1.51 GW, and each project will be developed under construction: 50 MW from
the Medina IPP, 45 MW from the Rafha IPP, 200 MW from the Qurayyat IPP,
600 MW from the Al-Faisaliah IPP, 300 MW from the Rabigh IPP, 300 MW from
the Jeddah IPP, and 20 MW from the Mahd al-Dahab IPP. The kingdom is aiming
at an ambitious 27.3 GW of clean energy by the year 2024 and 58.7 GW by the
year 2030. The year 2024 target is 20 GW of PV solar capacity, while the year 2030
target includes 40 GW of PV solar capacity [28]. The Renewable Energy Projects
Development Office (REPDO) was set to issue tenders for 2225 MW of solar power
projects in the year 2019 [29].

In terms of renewable energy, the International Renewable Energy Agency
(IRENA) has published a roadmap report envisaging that by the year 2050, 86%
of the world’s power demands could be met by renewable energy. The United
Arab Emirates (UAE) aims to obtain 30% of its energy from renewable sources by
the year 2030, using CSP technology with extremely huge mirrors. The sunlight
directed onto the receiver by the mirrors is converted to heat. Several types of
mirrors are used: parabolic troughs, rounded dishes, and power towers. It has been
found that CSP is a lot more effective than solar PV technology, which needs
sunlight to operate, whereas CSP does not. The UAE has had CSP since 2013. The
capacity installed at that time was 100 MW, generating energy of 261 GWh. Masdar
states that its 10 MW and 1 MW solar power plant and rooftop panels can power
500 homes for a year [30, 31].

The Sweihan PV power station [31–34] started commercial operations at the
1177 MW Noor Abu Dhabi PV power project in the UAE on June 30, 2019. The
project was financed by eight commercial banks and sponsored by an AED 3.2 bil-
lion (US$871.2 million) loan agreement signed in May 2017. This amount is
expected to reduce Abu Dhabi’s carbon dioxide emissions by one million tons. This
is equivalent to taking 200,000 cars off the roads. The station is providing enough
power capacity to meet the demands of 90,000 people. The project will allow Abu
Dhabi to increase its production of renewable energy and reduce its dependence on
natural gas for electricity generation.

Boyle [35], in his book, provides a comprehensive overview of the principal
types of renewable energy, explaining the underlying physical and technological
principles of renewable energy and discussing the environmental impact and
prospects of different energy sources. The book includes more than 350 illustrations
and more than 50 tables of data, with some case studies also being illustrated [35].

Turner [36] highlights the USA as an example of renewable resource use,
taking into consideration the number of renewable systems and discussing energy
payback issues, carbon dioxide abatement, energy storage, and the implementation
of hydrogen technologies in the energy infrastructure.

Johansson et al. [37] highlight the Energy Technology Options Conference,
opening with a presentation by Johansson on the prospects for renewable energy
in a global context, based on a study commissioned by the United Nations Solar
Energy Group for Environment and Development. The study includes sources for
fuels and electricity, including reports by specialists on a long list of renewable
technologies.
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12.4 Rule-Based Neural Network Structure

The rule-based neural network detailed in the present chapter uses a multilayer
network structure with transfer functions and links representing a fuzzy logic system
[13]. In minimizing the neuro-fuzzy weight, an updating vector needs to be found,
such as:

αx = αr∑m
i=0 ai

(12.1)

A popular truncated method is the Newton algorithm to obtain a step size and
direction in weight space that drives a cost function toward its minimum. In addition,
using Taylor’s expansion, the cost function JN (.) can be approximated by the
quadratic function:

JN (w + �w) = JN(w) + �w
dJN(w)

dw
+ 1

2
�wT d2JN(w)

dw2 �w (12.2)

where �w is the weight vector update.
Differentiating Eq. (12.2) with respect to �w, and with the result set to zero,

setting the equation to zero will minimize the equation:

dJN(w)

dw
= d2JN(w)

dw2
�w (12.3)

g = −H �w (12.4)

where g and H represent the gradient and Hessian of JN(wk), respectively.
A truncated conjugate gradient algorithm will help us to find the solution for

Newton’s equation. This will ensure that the weight vector lies in a trust region.
This algorithm can be summarized as follows:

(i) k = 0.
(ii) Set initial weight vector, wk.

(iii) Calculate gradient g(wk) and Hessian H(wk).
(iv) If ||g(wk)|| <∈ then terminate.
(v) Solve H(wk) �wk + g(wk) using a conjugate gradient, ensuring || wk+1|| ≤

Dk.
(vi) Starting with λk = 1, find λk where wk+1 = wk + λkΔwk.

(vii) Adjust the trust region radius (Dk+1) with the following heuristic:

Dk+1 =
{

2 Dk if λk ≥ 1
Dk

3 if λk < 1
(12.5)
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(viii) Go to step (iv).

In a sequence to implement the previous algorithm, the gradient and Hessian of
the cost function JN (wk) are required. The weight vector w needs to be taken into
consideration. These derivatives can be constructed as follows:

∂JN(w)

∂wp

= 1

N

N∑

k=1

2
∂ŷ (w(k),w)

∂wp

[
y(k) − ŷ (w(k),w)

]
(12.6)

∂2JN(w)

∂wp∂wq

= 1

N

N∑

k=1

[
2
∂2ŷ (y(k), w)

∂wp∂wq

y(k) − ŷ (w(k),w)

+2
∂ŷ (w(k),w)

∂wp

∂ŷ (w(k),w)

∂wq

] (12.7)

The gradient of the model output with respect to the weights is represented as
follows:

∂ ŷ (x,w)

∂wp

=
{

μu
Ai[∏U

u=1,u�=k

∑Pu

i=1 μu
Ai w

u
i

]
μk

Aj

(12.8)

wp refers to the ith weight of the uth tensor model, and wp refers to the jth weight of
the kth submodel.

∂2ŷ (x, w)

∂wp∂wq

=
{[∏U

u=1,u�=m�=k

∑Pu

i=1 μu
Ai w

u
i

]
μk

Aj μ
m
Al

0
(12.9)

wp and wp refer to the jth weight of the kth submodel and the lth weight of the mth

submodel.
The dependency of μu

Ai (xi) on the input vector xi has been dropped to reduce
the notation.

12.5 The Proposed Model

The developed model illustrated in Fig. 12.1 represents the model proposed in the
present chapter. The final step of the proposed model is reaching the number of
solar power panels required to satisfy a given estimated daily electricity load (NSP).
Furthermore, the presented model illustrated in Fig. 12.1 is a neuro-fuzzy system to
calculate the NSP. The model is the corresponding equivalent ANFIS architecture.
The fuzzy system uses a learning algorithm derived from neural network theory,
where the objective is to calculate its parameters by processing the input data.
The represented neuro-fuzzy system is viewed as a five-layer feedforward neural
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network. The first layer represents the input variables, where the second, third, and
fourth layers (multiplications) represent fuzzy rules. Every node from the second to
the fourth layer is fixed, whose output is the product of the inputs. At the same time,
every node is adaptive. In addition, the fifth layer represents the output variable. The
fuzzy sets are encoded as fuzzy connection weights.

Therefore, following the steps needed to calculate the number of solar panels
required for the solar PV system design for each considered country, the study
considers the five countries presented in Qamber et al. [12]. The following steps
were followed to meet the target of the study as presented by Qamber et al. [12]:

T RL = NoUnits.REQP (12.10)

APopPV = PPR.OpF (12.11)

T WhrR = T RL.Ophrs (12.12)

PEndU = APopPV.CombE (12.13)

EnPby1PD = PEndU.NhrsPD (12.14)

NSP = T WhrR

EnPby1PD
(12.15)

where APopPV is the actual power output of a photovoltaic panel, CombE is the
combined efficiency, EnPby1PD is the energy produced by a 1-peak-watt panel in a
day, NhrsPD is the number of hours per day, NoUnits is the number of units, OpF is
the operating factor, Ophrs is the operating hours, PEndU is the power used at the
end use [it is less because of lower combined efficiency of the system], PPR is the
peak power rating, REQP is the rating of the equipment, TRL is the total required
load (total connected load), and TWhrR is the total watt-hour rating of the system.

12.6 Results and Discussion

On the basis of the model proposed in the present chapter, it is obvious from Eqs.
(12.10–12.15) that the neuro-fuzzy model shown in Fig. 12.1 could be followed
to obtain the required results. The results shown in Table 12.1 were found for five
countries [12]: Bahrain, Egypt, India, Thailand, and the UK. If the GCC countries
are considered, the results obtained for Bahrain will be the same as those for the
other GCC countries or very close to them because their climates are almost the
same. Furthermore, carbon dioxide emissions in the GCC countries are causing
climate extremes and temperature rises. In addition, urbanization and economic
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Table 12.1 Total photovoltaic (PV) panel capacity needed in five countries [12]

Country Total PV panel capacity needed (kWp) Total PV panel capacity needed (%)

Bahrain 53.5313 14.73429101
Egypt 39.5725 10.89218328
India 72.3664 19.91858215
Thailand 91.1436 25.08693654
UK 106.6972 29.36800702
Total 363.3110 100

kWp peak kilowatts

growth are leading to air pollution. At the same time, the heat of the islands is
raised with the increase in urbanization, which pushes the country toward greater
energy consumption. Power consumption for cooling increases the temperatures in
the region, which are related to emissions. GCC investments have started in several
sectors, including modernization, renewable energy, technological investments, and
high technology.

Figure 12.1 illustrates the proposed neuro-fuzzy system model to calculate
the NSP. The model consists of interconnected layers of processing factors. The
required factors are passed through the layer’s interconnections. Data are passed
through the network from layer to layer via the junction between two neurons. In
addition, an activation function is associated to limit the amplitude of the output
of a neuron. To satisfy the relationship between the input and output of the neuro-
fuzzy schematic diagram, the connection weights and the activation functions must
be derived. The method has been derived previously and is known as supervised
training. The proposed model, when implemented, is trained with respect to data
sets until it learns the patterns used as inputs. Once it is trained, new patterns may
be obtained for the number of solar panels, then for prediction of the electricity
load. The ANN can automatically learn the recognition patterns in data from real
systems or from physical models. The model can obtain many inputs and produce
results. Figure 12.1 has five layers, starting with an input layer and reaching the
output layer. The incoming connection has seven factors. The output is a function
of the target required, which is the NSP.

It can be concluded that the processing is an interconnection formed by links
(synapses) with weights. Furthermore, the neuro-fuzzy approach has been devel-
oped for prediction of the index or what might be called a factor and has a symbol
(NSP). An adaptive ANN and hybrid models for prediction of solar panels are
proposed and discussed in the present chapter. The model consists of a combination
of ANN and fuzzy logic, forming an ANFIS. The proposed new neuro-fuzzy-based
model is used for predicting the design of a PV system. Finally, the application for
sizing a PV model is presented on the basis of the data generated by this model.
The study uses fuzzy logic to obtain and assess the solar panel model in the five
countries, where the evaluation using fuzzy logic is based on different factors as
mentioned earlier.
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Fig. 12.2 Waterfall chart of the total photovoltaic (PV) panel capacity (expressed in peak kilowatts
(kWp)) needed in five countries

Fig. 12.3 Pie chart of the total photovoltaic (PV) panel capacity (expressed in peak kilowatts
(kWp)) needed in five countries

Figures 12.2, 12.3, 12.4, 12.5, and 12.6 show different charts for the five
considered countries. The results for Bahrain are almost identical to those for the
other GCC countries. The waterfall chart in Fig. 12.2 shows the positive amounts for
the studied countries that have influenced the total amount, based on consideration
of Bahrain for the starting value.

The results are plotted as a pie chart in Fig. 12.3, which displays the data in
a circular graph form. The pieces of the graph (with country as a category) are
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Fig. 12.4 Radar chart of the total photovoltaic (PV) panel capacity (expressed in peak kilowatts
(kWp)) needed in five countries

Fig. 12.5 Doughnut chart of the total photovoltaic (PV) panel capacity (expressed in peak
kilowatts (kWp)) needed in five countries

proportional to the fraction of the whole. In addition, each slice is relative to the
size of that category. Each pie slice represents a portion of the whole.

The radar chart shown in Fig. 12.4 simplifies the reading of the results and makes
the total PV panel capacity easy to see. In percentage terms, the UK has the highest
total PV panel capacity and Egypt has the lowest percentage capacity. All axes in
Fig. 12.4 are arranged radially with equal distances between them, and the scale is
the same between all axes, where the grid lines are used as a guide.
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Fig. 12.6 Photovoltaic (PV)
solar surface area for five
countries
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The doughnut chart in Fig. 12.5 shows the relationship of the parts to the
whole shape. The results show the proportion of each country’s percentage versus
the summation of the countries (which is 100%), and the center of the doughnut
chart can be selected to extract additional information such as the total of all data
percentages, as well as the data value of the slice being examined. In addition,
execution data labels and data values are not separately required. This means that
both are available on the chart.

The area that forms the basis of the manufacturer’s measurement of module
efficiency is called the PV solar surface area (Fig. 12.6). The values shown in
the same color range represents the optimum results. The size of the solar panel
can be estimated by reading the surface chart. The surface area of the panel is
recommended on the basis of the obtained results in comparison with the garden
or roof area available at home. A two-dimension rectangular grid is formed after
obtaining the data results. The obtained results are found using the simulation
program, which calculates the solar surface area from the calculated power and
efficiency.

If an inverter size is considered in the range of a 25–30% bigger size for safety
purposes, the results obtained are as shown in Table 12.1. At the same time, the
calculation of the recommended battery size needs to take into account several
factors. These factors are the total watt-hours per day, the expected efficiency of the
battery (which is assumed to be approximately equal to 0.85), the depth of discharge
(which is assumed to be 0.6), and the nominal battery voltage (which is equal to
12 Volts DC). When there is no power produced by the PV panels, autonomy days
are assumed, where these days are the number of days when the system needs to
operate when no power is produced by the PV panels. The autonomy days are
assumed to be equal to 3 days.
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12.7 Conclusion

Worldwide, CSP systems are being used to generate solar power. This type of power
is generated using mirrors or lenses. The mirrors and lenses concentrate a large area
of sunlight, or solar thermal energy, onto a small area. The resulting concentrated
heat is used to eventually spin a turbine and generate electricity. CSP systems
depend on moving parts, whereas photovoltaic systems do not.

According to the Solar Energy Industries Association (SEIA), CSP plants use
different formations of mirrors to concentrate the heat from the sun to drive tradi-
tional steam turbines or engines that can generate electricity. Therefore, the thermal
energy concentrated in a CSP plant can be stored and used to produce electricity
day or night whenever it is needed.

Obtaining a suitable model for the required PV panels (NSP) using artificial
intelligence is the main goal of the present study. After finding the required NSP
model, some factors may be adjusted for more suitable design of the solar panels.
The calculated total PV panel capacity varies between 39.5725 and 106.6972 kWp.
The main difference between the present study and the previous ones is the NSP. In
the present study, the calculated NSP is helpful in the design of PV panels, taking
into account the considered factors. The NSP is the main advantage of the present
study.

The study carried out by Al-Hamad and Qamber [13] developed a model to find
the forecast electricity demand for the six GCC countries, using ANFIS and MLR
methods. ANFIS was the most accurate technique according to the comparison in
their study [13]. On the basis of the plan for each GCC country using renewable
energy, the model for each country could be studied and investigated. In addition,
the investment saving could be targeted.

The main purpose of a solar energy power plant is summarized in the following
points:

1. Carbon dioxide emissions are reduced, which is considered one of the environ-
mental benefits.

2. The power plant becomes more efficient than a conventional combined cycle
plant.

3. Solar power plants directly feed the national electricity grid.

The development of CSP helps to lower costs and increase efficiency. In addition,
CSP provides more reliable performance than current technologies. The proposed
model shows new concepts in the collector, where the technologies will lower
operation and management costs. The GCC countries are conducting their own solar
energy projects, including Bahrain, which is one of the five countries considered in
our analysis. Furthermore, in the present analysis, artificial intelligence techniques
have been used to help calculate the number of PV solar panels required by each
considered country. The calculation of the number of solar panels is based on the
required power produced by the solar cells designed for each purpose. Furthermore,
these artificial intelligence techniques play an important role in modeling and
prediction of renewable energy engineering.
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Load forecasting, as a future study, is recommended, using the proposed artificial
intelligence model, and can be determined for the proposed five countries or for any
other country on the basis of the power output produced by the solar cells designed
for such purposes. The combination of the models from these studies [12, 13] will
allow us to devise a novel model to assist the design and estimation load for any
country. In addition, the cost of each solar panel, with its power output under the
required specification, can be found.
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