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In our course we have presented the basics of twistor theory and its applications to
the solution of Yang–Mills duality equations. The first part describes the twistor
correspondence between geometric objects in Minkowski space and their counter-
parts in twistor space. In the second part we apply twistor theory to the study
of Yang–Mills duality equations on R4. We include a list of references for further
study.

1. Twistor model of Minkowski space
We start with the geometry of Minkowski space M provided with the action of
the Lorentz group. The main geometric objects are the light lines (light rays) and
light cones together with their complex analogues. Complexified Minkowski space
CM contains both M and its Euclidean counterpart E. We also make use of the
future tube CM+ = M + iV+ (V+ is the future light cone) which is an open subset
in CM .

The Pauli map associating with a vector x = (x0, x1, x2, x3) ∈ M the Her-
mitian matrix

X :=

3∑
µ=0

xµσµ,

where σ0 = I, σi, i = 1, 2, 3, are Pauli matrices, realizes M as the space Herm(2) of
Hermitian 2×2-matrices and CM as the space C[2×2] of complex 2×2-matrices.
Under this map the Lorentz norm of x ∈M is sent to detX. The group SL(2,C)
acts naturally on Herm(2) and is a double cover of the Lorentz group.
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The future tube CM+ under Pauli map is transformed into the matrix upper
halfplane

H+ =
{
Z ∈ C[2× 2] : Im Z :=

1

2i
(Z − Z∗) > 0

}
where the inequality Im Z > 0 means that the Hermitian matrix Im Z is positive
definite. The space C2, provided with the action of the group SL(2,C), is called
the spinor space.

The twistor space T is the 4-dimensional complex vector space with coor-
dinates written in the form ζ = (ω, π) with ω, π ∈ C2. Associate with a matrix
Z ∈ C[2× 2] the 2-dimensional complex subspace in T determined by the system
of two complex homogeneous equations: ω = Zπ. This map defines an embedding
of the space C[2 × 2] into the Grassmann manifold G2(T) of 2-dimensional com-
plex subspaces in T. Taking its composition with the Pauli map we obtain the
embedding

CM −→ C[2× 2] −→ G2(T)

of the complexified Minkowski space CM into the Grassmannian G2(T). Since
G2(T) is compact it is natural to consider it as a model of compactified complexified
Minkowski space CM. The projectivization PT of the twistor space T is called the
space of projective twistors. We can also consider the Grassmannian manifold
G2(T) as the space G1(PT) of projective lines in PT. The composite map CM →
G2(T) = G1(PT) is called the twistor transform or Penrose correspondence.

2. Twistor correspondence
Consider first the properties of twistor correspondence in the case of complex
Minkowski space. By twistor transform a point of CM is sent to a projective line
in PT. On the other hand, a point in PT corresponds to a light plane in CM called
α-plane (light plane is the plane generated by the pair of light lines). In dual way, a
projective plane in PT corresponds to a light plane in CM called β-plane. It implies
that a complex light line (which is the complexification of light line) is sent to a
(0, 2)-flag in PT consisting of a point in PT and projective plane containing this
point.

Switch now to the case of real Minkowski space M . Denote by Φ(ζ) the norm
of a twistor ζ = (ω, π) ∈ T given by Φ(ζ) = Im < ω, π > where < ω, π > is the
Hermitian product of vectors ω, π ∈ C2. Denote by N the quadric in T given by the
equation N = {ζ ∈ T : Φ(ζ) = 0} and by PN the associated projective quadric.
The points of M under twistor transform are sent to the projective lines lying in
PN. On the other hand, a light line in M corresponds to a point of PN. So in the
case of M we have the following duality: points of M correspond to projective
lines in PN and light lines in M correspond to points of PN. We see that the light
lines, which can intersect in M , split into separate points of PN. This fact is of
fundamental importance for the twistor theory.
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The quadric N divides the twistor space T into two parts. Denote them by
T± = {ζ ∈ T : (±1)Φ(ζ) > 0} and by PT± the corresponding projective subsets.
A point of the future tube CM+ under twistor transform is sent to a projective line
contained in PT+. The quadric N has the signature (2,2) and the group SU(2, 2) of
linear transformations of T, preserving this quadric, is a 4:1 covering of the group
of conformal transformations of M .

We turn now to the case of Euclidean space E. A point of E under twistor
transform is sent to the projective line in PT which is invariant under the map
j : [ζ1 : ζ2 : ζ3 : ζ4] 7−→ [−ζ2 : ζ1 : −ζ4 : ζ3]. In the Euclidean case the twistor
transform coincides with the Hopf bundle

π : CP3 CP1

−→ E

where E is the compactified Euclidean space equal to the sphere S4 and the fibers
of π are precisely the j-invariant projective lines.

The main idea of Penrose twistor program is that under twistor transform
solutions of conformally invariant equations of field theory in M should correspond
to the objects of complex algebraic geometry in PN.

3. Instantons and Yang–Mills fields
Let X be a compact oriented Riemannian 4-manifold and G is the gauge group
being a compact Lie group (e.g. G = SU(2)) with Lie algebra g. Let P → X
is a principal G-bundle on X and A is a gauge potential on X given a 1-form
A ∈ Ω1(X, adP ) with values in the adjoint bundle adP = P ×G g. Denote by D
the exterior covariant derivative associated with A. Then F = DA is the gauge
field generated by A.

The Yang–Mills action is given by the formula

S(A) =
1

2

∫
X

‖F‖2vol

where the norm ‖ · ‖2 is the inner product on differential forms with values in g,
generated by the Riemannian metric on X and an invariant inner product on g,
vol is the volume element on X. The Yang–Mills field is a critical point of the
functional S being a solution of the Euler–Lagrange equations. They have the
form D∗F = 0 (D∗ is the adjoint operator of D) and are called the Yang–Mills
equations. They can be also written in the form D(⋆F ) = 0, where ⋆ is the Hodge
⋆-operator.

A gauge field F is called selfdual (resp. anti-selfdual) if ∗F = F (resp. ∗F =
−F ). Due to Bianchi identity DF = 0, solutions of the duality equations ∗F =
±F satisfy automatically the Yang–Mills equations. By writing F in the form
F = F+ + F− where F± = 1

2 (∗F ± F ) we can rewrite Yang–Mills functional as

S(A) =
1

2

∫
X

‖F+‖2 + ‖F−‖2)vol.
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The topological charge of F is given by the formula

S(A) =
1

8π2

∫
X

‖F+‖2 − ‖F−‖2)vol.

Comparing the last two formulas we see that
S(A) ≥ 4π2|k|

and the equality here is attained precisely on solutions of the duality equations. In
other words, solutions of the duality equations yield local minima of S. Instantons
(resp. anti-instantons) are anti-selfdual (ASD)(resp. selfdual) solutions of duality
equations with finite Yang–Mills action. The moduli space of instantons is the
quotient of the space of instantons modulo gauge transformations.

4. Atiyah–Ward theorem
We specify now to the case when X = S4 and G = SU(2). We have a principal
SU(2)-bundle P → S4 and associated complex vector bundle E → S4 of rank 2.
Consider an instanton given by an ASD solution A of the duality equations and
denote by ∇ = ∇A the covariant derivative associated with A.

Consider the twistor bundle π : CP3 → S4 and denote by Ẽ := π∗E the
pull-back of the bundle E to CP3 via the map π. The anti-selfduality of A implies
that its pullback Ã to the bundle Ẽ defines a holomorphic structure on Ẽ. The
obtained holomorphic bundle Ẽ → CP3 is by construction holomorphically trivial
on j-invariant projective lines in CP3 being the fibers of the map π.

Atiyah–Ward theorem. There exists a bijective correspondence between{moduli space of
instantons on S4

}
←→

{holomorphic vector bundles over CP3

which are holomorphically trivial on π-
fibers

}
.

There is also a purely complex version of this theorem. Consider it first for
the future tube CM+. Let E be a holomorphic vector bundle over CM+ and
∇ = ∇A is the holomorphic covariant derivative acting on sections of E generated
by a holomorphic connection A. This connection is called anti-selfdual (ASD) if its
curvature vanishes on all α-planes. The complex variant of Atiyah–Ward theorem
asserts that there exists a bijective correspondence between{

moduli space of holomorphic
ASD-connections on CM+

}
←→

{holomorphic vector bundles on
PT+ holomorphically trivial on
projective lines lying in PT+

}
.

This theorem is based on the following Ward construction. Let Ẽ be a holo-
morphic vector bundle over PT+ which is holomorphically trivial on projective lines
in PT+. The fiber Ez of the corresponding holomorphic vector bundle E → CM+

at z ∈ CM+ consists by definition of holomorphic sections of Ẽ over the projective
line CP1

z corresponding to the point z. If two projective lines CP1
z and CP1

z′ inter-
sect, i.e. the points z and z′ lie on the same complex light line, we can identify the
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fibers Ez and Ez′ . In this way we define a parallel transport on E along complex
light lines in CM+ generating a holomorphic connection in E. By construction this
connection is anti-selfdual.

For the inverse construction (from E to Ẽ) it is convenient to use the double
diagram

F+

µ

}}

ν

""
PT+ CM+

where F+ is the space of (0, 1)-flags in PT+, i.e. pairs (point of PT+, projective line
in PT+ containing this point). The space CM+ is identified with the Grassmann
manifoldG1(PT+) of projective lines lying in PT+, and µ, ν are natural projections.
Denote by E′ the pull-back of E to a bundle over F+ via the map ν and by ∇′

the pull-back of the connection ∇ to the bundle E′. Define the fibre of the bundle
Ẽ → PT+ at ζ ∈ PT+ as the space of holomorphic sections s′ ∈ Γ(µ−1(ζ), E′)
satisfying the equation ∇′

µs
′ = 0 (∇′

µ is the component of ∇′ acting along the
fibers of µ). In other words, the fibre Ẽζ consists of horizontal holomorphic sections
of E′ over µ−1(ζ). This definition is correct due to the anti-selfduality of ∇.

The given complex version of Atiyah–Ward theorem remains true if we replace
PT+ by a domain D̃ in CP3 such that projective lines in D̃ correspond to the points
of some domainD in CM . This domain should have an additional property that the
intersection of any complex light line with D is connected and simply connected.
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