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Preface

This volume contains a selection of papers presented during the Thirty-Seventh
Workshop on Geometric Methods in Physics in 2018, organized by the Institute
of Mathematics of the University of About 70 physicists and math-
ematicians from important scientific centers from all over the world attended
the workshop. The Workshop was accompanied by the School of Geometry
and Physics, where several cycles of didactic lectures on important and new
subjects for advanced students and young scientists were presented. Abstracts
of these lectures are also included in this volume. Information on previous and
upcoming schools and workshops, and related materials, can be found at the
URL: http://wgmp.uwb.edu.pl.

The geometrical methods in Physics constitute a very wide branch of math-
ematical physics. The main topics that have been discussed this year are:
quantum groups, non-commutative geometry, integrable systems, differential
equations, operator algebras, quantization and infinitely dimensional geome-
try.

An important event during the workshop was a session dedicated to the
scientific activity of professor Daniel Sternheimer on the occasion of his 80th
birthday.

which is a traditional place, where the Workshops take place de-
serves special mention. It is located on the border between Poland and Belarus
and is the only place in Europe where there are the remains of primeval forests
and was designated a UNESCO World Heritage Place. Such close contact
with nature creates a special atmosphere during the workshop and scientific
discussions take less formal character.

The Organizing Committee of the 2018 Workshop on Geometric Method
in Physics gratefully acknowledges the financial support of the University of

The Editors

Geometric Methods in Physics. XXXVII Workshop 2018
Trends in Mathematics, ix–x
c© Switzerland AG 2019Springer Nature

Białowieża,

Białystok.

Białystok.
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Participants of the XXXVII WGMP
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The original version of this book was revised. The correction is available at
-3-030-34072-8_29 https://doi.org/10.1007/978
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In Memoriam Bogdan Mielnik

(Photo by Alonso Contreras Astorga)

Bogdan Mielnik 1936–2019

Our colleague and friend Bogdan Mielnik sadly passed away in Mexico City on
January 22, 2019, due to complications of heart surgery.

Bogdan was born on May 6, 1936, in Warsaw, Poland. He was a brilliant
scientist whose career developed mainly at the Institute of Theoretical Physics,
Warsaw University (Poland) and at the Center for Research and Advanced Studies
(Cinvestav) in Mexico.

c© Switzerland AG 2019Springer Nature



xii In Memoriam Bogdan Mielnik

He made many important contributions to quantum theory. In the 1960s and
1970s Bogdan was one of the pioneers in using geometric methods in quantum me-
chanics, in particular theories of filters and convex sets which now are standard
tools in quantum information science. During the 1980s he became one of the
leaders of the factorization method, a simple technique for generating new exactly
solvable potentials and for implementing spectral design. His work on quantum
control and dynamical manipulation was equally relevant, including such sugges-
tive proposals as the idea of reversing the time evolution of a system and the
introduction of evolution loops as the basis for inducing arbitrary unitary trans-
formations on quantum systems.

Above all, Bogdan was an exceptionally wise man with a highly individual
way of thinking. He did not publish many papers, and was critical of massive
publications. Each of his works was deeply thought-out and based on profoundly
original elements. Thanks to this, he came to be recognized as one of the great
authorities in the foundations and formalism of quantum mechanics.

He loved to interact with people, especially with students. This led to his
creating an entire school of thought in Theoretical and Mathematical Physics with
his many excellent students in Mexico and in Poland. One of Bogdan’s former
students – Anatol Odzijewicz – has been the main organizer of the Białowieża
Workshops. Bogdan participated enthusiastically in these Workshops during recent
years, making important contributions to the program and giving original talks.

Bogdan also had a great sense of humor, a unique aesthetic taste in the
visual arts, and a great literary talent. He loved science fiction, and wrote brilliant
stories himself within this genre. We will always remember his lively imagination,
his acute criticism, and his intellectual irreverence – the qualities that made him
the person he was. We shall miss him greatly.
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Some aspects of the work of Daniel Sternheimer

Giuseppe Dito
Mathematics Subject Classification (2000). 01A70, 53D55, 81R05, 22E60.
Keywords. Unification, symmetry, Lie algebras, representations, integrability,
quantization, deformations.

A life dedicated to mathematical physics
Daniel Sternheimer was born in 1938 in Lyon, France. After graduating in mathe-
matics from the University of Lyon in 1958, he temporarily moved to Israel where
he earned his Master’s degree in 1961 from the Hebrew University of Jerusalem. It
was in Jerusalem that Daniel met his lifetime chief collaborator and close friend,
Moshé Flato. Back to France, he prepared his D.Sc. thesis and received his Doctorat
d’État from the University of Paris in 1968 with a thesis titled Quelques problèmes
concernant les algèbres de Lie posés par la physique mathématique. Croissance de
séries de Dirichlet.

Daniel pursued his entire career at the C.N.R.S. where he was recruited as
an Attaché de recherches as early as he started to work on his D.Sc. thesis in 1961.
He has been pursuing his career at C.N.R.S. until his retirement in 2003, climbing
all the steps leading him to the level of Research Professor. Since then, he has
been sharing his time between France, Israel, Japan and the U.S.A. Daniel held
several visiting positions including one as a Visiting Professor at Keio University
in Yokohama for the period 2004-2010. Since 2002 he is a member of the board
of governors of the Ben-Gurion University of the Negev. In 2004 he became an
honorary professor of Saint Petersburg University

He is currently a visiting research fellow at Rikkyo University in Tokyo and
an associate member of the Mathematics Institute in Dijon.

A considerable time and energy was devoted by Daniel in serving the com-
munity. He was involved in the International Association of Mathematical Physics
and served as a member of its Executive Committee (1978-1984). He was also a
member of the Mathematical Physics Commission of the International Union of
Pure and Applied Physics for the period 1981-1987.

c© Switzerland AG 2019Springer Nature
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He has served on the editorial board of several journals including Reports on
Mathematical Physics, Reviews in Mathematical Physics, and especially Letters in
Mathematical Physics (LMP). In fact Daniel was involved in LMP from the very
beginning in the mid-seventies, when it was founded by M. Flato with the help of
M. Guenin, R. Rączka and S. Ulam. After the passing of M. Flato in 1998, Daniel
took the direction of the journal and thus ensured continuity. He is still an active
editor of LMP.

Major achievements
In what follows, I made a deliberate choice to highlight 3 topics on which Daniel
has worked that I found particularly important, stimulating and beautiful, and
also that had (and have) a great impact in mathematical physics. These subjects
are presented chronologically.

Unification of symmetries. Symmetries in Nature and in elementary particle physics
are at the heart of Daniel’s work. This topic attracted a lot of attention in the
sixties and it was a natural playground for him. In 1965, L. O’Raifeartaigh pub-
lished a paper [16] in which it was advocated that any unitary representation of a
Lie algebra containing the Poincaré Lie algebra as a subalgebra does not generate
a splitting of the spectrum of the mass operator, namely, the extra symmetries
would lead to degenerate multiplets in the mass spectrum. This no-go “theorem”
was carefully analyzed from a mathematical viewpoint by Daniel in a joint paper
with M. Flato [6]. They showed that an actual proof was not given in [16] and ex-
pressed doubts about the validity of the claimed statement. Actually, an explicit
counterexample was given [7] by considering a representation of the Lie algebra of
the conformal group, su(2, 2), which cannot be integrated to a unitary representa-
tion of the conformal group due to the lack of analytic vectors (see below) in the
Lie algebra representation. Another counterexample involving an infinite dimen-
sional Lie algebra and discrete mass spectrum appeared in [8]. Daniel has studied
further mathematical aspects of these questions in [17,18].

The general context of this period is vividly reviewed by Daniel in his con-
tribution [19] to the WGMP XXXII volume.

Integrability of representations. Recall that an analytic vector for a densely-defined
operator T on a Banach space B is a vector x ∈ B belonging to the domain of all
the Tn, n ∈ N, such the series

∑
n

tn

n! ∥T
nx∥ has a positive radius of convergence.

This notion was introduced in a classical paper by E. Nelson [15] and used by
him to provide a criterion for the integrability of a representation of a finite-
dimensional Lie algebra by skew-symmetric operators to a unitary representation
of the corresponding Lie group. More precisely, Nelson’s criterion says that: given
a representation ρ of a real finite-dimensional Lie algebra g in a Hilbert space H
by skew-symmetric operators ρ(g), g ∈ g, on a common dense g-invariant domain
D ⊂ H and such that the Laplacian in a given basis of g: ∆ρ :=

∑
i ρ(Xi)

2 is
essentially self-adjoint, then ρ exponentiates to a unitary representation of the
corresponding (connected and simply connected) Lie group.
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In an important paper [9], M. Flato, J. Simon, H. Snellman, and D. Stern-
heimer have weakened the assumptions in Nelson’s criterion by providing a new
integrability criterion, nowadays known as the FS3-criterion, that we now state:
Given a representation ρ of a real finite-dimensional Lie algebra g in a Hilbert space
H by skew-symmetric operators ρ(g), g ∈ g, on a common dense invariant domain
D ⊂ H such that all of the vectors of D are analytic vectors for the operators
ρ(Xi) in a given basis (Xi)i of g, then ρ exponentiates to a unitary representation
of the corresponding Lie group.

The advantage of the FS3-criterion is also a practical one: it does not require
joint analyticity as in Nelson’s criterion, but only separate analyticity, i.e. for each
generators and not for the whole Lie algebra.

Deformation quantization. This is by far the field in which Daniel’s contributions
are the best known.

The general theory of deformations of algebraic structures (e.g. Lie or as-
sociative) was introduced in the sixties and has been studied over a decade by
M. Gerstenhaber in a series of papers [12, 13]. Around the mid-seventies, with
M. Flato and A. Lichnerowicz, Daniel started to study deformations of the Pois-
son bracket on a symplectic manifold [10,11]. The idea was to deform the Poisson
bracket {·, ·} of classical mechanics into a bracket

[f, g]λ = {f, g}+
∑
k≥1

λkPk(f, g),

where f, g are smooth functions on the symplectic manifold. The deformed bracket
is required to formally satisfy Jacobi identity and the Pk are skew-symmetric
bidifferential operators of order at most 1 in each argument (one speaks of 1-
differentiable deformations). It defines a new Lie structure on the space of formal
series in a parameter λ with coefficients in the space of smooth functions on the
symplectic manifold (actually contact manifolds were also considered). A thorough
study of the cohomology induced by these deformations was done in [11]. Although
this paper was of purely mathematical nature, the idea of its potential applications
to quantization problems was already mentioned in the introduction.

In an important work [21], J. Vey extended the context of [10] to deforma-
tions of the Poisson brackets where the order of the Pk’s is not bounded, and as
a by-product rediscovered the old Moyal product and bracket and, showed the
existence of such deformations on any symplectic manifold with vanishing third
Betti number.

The crucial step was announced in [1]: an autonomous approach to Quantum
Theory (i.e. without Hilbert space) is put forward by providing an interpretation
of quantum mechanics as a deformation of classical mechanics. The Planck con-
stant is interpreted in this context as the deformation parameter. The notion of
star-product was introduced and thoroughly studied in the comprehensive and
very influential twin papers [2, 3] published in 1978 in Annals of Physics. One
should stress that many of the standard examples of Quantum Mechanics such
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as harmonic oscillators, hydrogen atom, etc., have been thoroughly treated in [3].
The key notion here is that of star-exponential of the Hamiltonian which allows
for a formal spectral theory. Needless to say that the results are in agreement with
traditional Quantum Mechanics.

Since then, deformation quantization has become a classical tool in many
other fields of physics and mathematics, and is taught in graduate programs world-
wide. It has triggered so many works that it is impossible to even mention them
in this short Note. I shall confine myself to the beautiful construction of B.V. Fe-
dosov [5] and the Formality Theorem proved in 1997 by M. Kontsevich [14] which,
among its many important consequences, implies that any smooth Poisson mani-
fold admits a deformation quantization.

For a review with many historical remarks on deformation quantization, the
reader can consult with benefit the extensive review by Daniel [20] (see also [4] for
a more recent review).

There is still a lot to say about the contributions of Daniel to other fields such
as singletons and conformal invariance, non linear representations of Lie groups
and algebras, quantum groups, etc. All these themes are still at the center of
Daniel’s scientific and philosophical thoughts about the role of symmetries and
deformations in modern mathematical physics (see e.g. [19]).
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Daniel Sternheimer is 80 years young!

(Photo by Tomasz Goliński)
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Differential equations and
integrable systems
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On canonical parametrization of phase spaces
of Isomonodromic Deformation Equations
Mikhail V. Babich

Abstract. The space of the Fuchsian systems is the algebraic Poisson mani-
fold, and the equations of the Isomonodromic Deformations are the Hamil-
tonian equations. The internal symmetry of the problem makes it possible to
reduce the dimension of the problem using the symplectic-quotient theory.
The phase-space is constructed from the orbits of (co)adjoint representation
of the general linear group. The presented parametrisation of the quotient-
space is based on the construction of the flag coordinates on the orbits. The
simplest non-trivial case that is Painlevé VI case is considered as an example.

Mathematics Subject Classification (2000). Primary 34-02, 34M55; Secondary
33E17, 34A26, 34A30, 34M35, 37J05.
Keywords. Isomonodromic deformations, Fuchsian equations, flag coordinates,
momentum map, Painlevé VI equation.

1. Fuchsian systems and their monodromy
A differential system is called Fuchsian if the coefficients have simple poles only:

d

dz

−→
ψ = A(z)

−→
ψ =

N−1∑
k=1

A(k)

z − zk

−→
ψ , Ak ∈ gl(n,C), z, zk ∈ C,

−→
ψ =

−→
ψ (z) ∈ Cn.

We denote
∑N−1

k=1 A
(k) by −AN , so

∑
k A

(k) = 0 and zN := ∞ ∈ C. Let us consider
the fundamental group π1 of C \ {z1, . . . , zN}. It can be treated as a group of
loops passing some fixed point P0 ∈ C \ {z1, . . . , zN}. The group operation is the
sequential passing the loops.

Let us consider a fundamental system of solutions −→
ψ 1, . . . ,

−→
ψ n, and collect

them to a square matrix Ψ :=
(−→
ψ 1

−→
ψ 2 . . .

−→
ψ n

)
. It is evident that Ψ ∈ GL(n,C).

c© Switzerland AG 2019Springer Nature
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We get two fundamental solutions Ψ(z) and Ψ |l(z) of the same system if we
denote by Ψ |l(z) the same matrix-solution Ψ(z) but after passing the loop l. Two
fundamental solutions of the same system differ by a constant right factor that we
denote by Ml:

Ψ |l(z) = Ψ(z)Ml , Ml ∈ GL(n,C).
It is not difficult to see that such analytical continuation of Ψ along the loops
induces the (anti)representation of the fundamental group

π1
(
C \ {z1, . . . , zN}

)
→ GL(n,C).

The question: “How can we change the differential system to keep this represen-
tation constant?” is called an Isomonodromic Deformation problem.

There are some trivial transformations like the Möbius transformation of
zk → azk+b

czk+d with constant A(k)’s, or the simultaneous conjugation of all A(k) by the
same matrix A(k) → g−1A(k)g. Nevertheless there are nontrivial transformations
too.

Let us introduce a deformation parameter t, so A(k) = A(k)(t) and zk =
zk(t). It is the classical result (see [3]), that the Isomonodromy condition of dΨ =
A(z, t)dz is equivalent to the existence of a such matrix-function B(x, t) that a
form ω := Adz +Bdt is flat:

dω = ω ∧ ω.
Such form is called a deformation form.

2. Isomonodromic Deformation Equations. Schlesinger system and
its phase space

There is a following ansatz that gives the most important family of the isomon-
odromic deformations:

ω =
∑
k

A(k) dz − dzk
z − zk

,

it is a so-called Schlesinger ansatz. The deformation parameter is the position of
the poles here, for example z3 =: t, dzk = 0, k ̸= 3.

The flatness condition is equivalent to the nice system of equations on the
residues A(k) = A(k)(z1, z2, . . . ):

dA(k) +

A(k),
∑
i̸=k

A(i) dzk − dzi
zk − zi

 = 0,

they are the so-called Schlesinger equations.
Schlesinger equations define a dynamical system on the Poisson space

gl(n,C)× · · · × gl(n,C) ∋
{
A(1), A(2), . . . , A(N)

}
.
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It can be easily verified that it is Hamiltonian system. The Hamiltonians are
generated by the differential

h :=
∑
i<j

tr A(i)A(j) dzi − dzj
zi − zj

.

Namely, the evolution of the system according to “time” zi is Hamiltonian and the
corresponding Hamiltonian is h

∣∣
dzj=0/dzi .

The Schlesinger equations do not change the conjugation classes of the ma-
trices A(k), because the equation on the matrices has the form dA(k) = [A(k), . . . ].
Let us denote by O the set of all matrices similar to some J,

O :=
⋃

g∈GL(n,C)

g−1Jg.

It is the orbit of (co)adjoint representation of GL(n,C). Each matrix A(k) belongs
to a fixed orbit. We denote this orbit by O(k) ∋ A(k).

A simultaneous conjugation of the elements of the set{
A(k)

}N
k=1

→
{
g−1A(k)g

}N
k=1

by any matrix g ∈ GL(n,C) moves the flow on O(1) ×O(2) × · · · × O(N) to itself:

d
(
g−1A(k)g

)
= −

g−1A(k)g,
∑
i̸=k

g−1A(i)g
dzk − dzi
zk − zi

 .
It is the symmetry of the Hamiltonian system and the flow can be projected on
the quotient space

O(1) ×O(2) × · · · × O(N)/GL(n,C).

The same projection have all the equations that differ from the presented one
by the gauge transformations with non-constant g = g(z1, . . . , zN ):

dA(k) = −

A(k), ω̃g +
∑
i̸=k

A(i) dzk − dzi
zk − zi

 ,
where ω̃g is an arbitrary flat 1-form. It is natural to investigate just the projection
that is a Hamiltonian flow on the quotient-space. It is a subject of the symplectic
reduction theory.

The symplectic reduction theory states that the symplectic leave of such
quotient-space is the constant level of the so called momentum map.

A momentum map is such a map
O(1) ×O(2) × · · · × O(N) → gl∗(n,C)

that its value (it is a function on gl(n,C)) generates Hamiltonians that produce
the flows corresponding the elements of Lie algebra gl(n,C) acting on O(1)×O(2)×
· · · × O(N).



6 M.V. Babich

In our case the action is the diagonal action, consequently each element
G ∈ gl(n,C) generates the flow [A(k), G] on each Cartesian factor of the prod-
uct, consequently the element of gl∗(n,C) in question is

N∑
k=1

A(k) ∈ gl(n,C) ≃ gl∗(n,C),

because each A(k) ∈ gl(n,C) ≃ gl∗(n,C) acts on its own Cartesian factor as Hamil-
tonian (function) in this sum. We are interested in its zero-value level

∑N
k=1A

(k) =
0, because it is the total residue of the differential A(z)dz.

A symplectic manifold O(1) × O(2) × · · · × O(N)//GL(n,C), that is by the
definition({

A(1), A(2), . . . , A(N) :
N∑

k=1

A(k) = 0

}
∩ O(1) ×O(2) × · · · × O(N)

)
/GL(n,C),

forms the phase space of the Isomonodromic Deformation Equations. It is the
space that will be canonically parameterized in the present article.

3. Flag coordinates on orbit O
In the works [1,2] flag coordinates on the coadjoint orbits of the general linear group
were introduced. The method of their construction is based on the observation that
the representation of matrix A from the orbit:

A =

(
I 0
Q I

)(
λ P

0 Ã

)(
I 0
Q I

)−1

produces the skew-orthogonal with respect to Lie–Poisson–Kirillov–Kostant struc-
ture {, }LP families of functions on the orbit:{

Pij , Pkl

}
LP

=
{
Qij , Qkl

}
LP

=
{
Pij , Ãkl

}
LP

=
{
Qij , Ãkl

}
LP

= 0.

Matrix Ã belongs to the orbit of the smaller dimension than the dimension of A,
that makes possible to organize the iteration process.

The geometrical interpretation of the flight of the iteration is the projection
of the action of A ∈ End (Cn) along the eigenspace corresponding to λ on a
coordinate subspace. The projection induce Ã ∈ End

(
Cñ
)
, and the pair P,Q.

Let us construct Q. Consider the projection of a subset e′ of the set (e′, e′′)
of the basic vectors on the eigenspace corresponding to the eigenvalue λ parallel
to the coordinate subspace L (e′′) and then project a result to L (e′′) parallel to
L (e′). It gives matrix Q:

e′ → e′ + e′′Q→ e′′Q.

The projection on the eigenspace and the subsequent projection on L (e′′) can be
treated as a linear map Q ∈ Hom

(
L (e′),L (e′′)

)
. The family of the conjugated
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functions (P )ij can be treated as coordinates coming from the opposite direction
map P ∈ Hom

(
L (e′′),L (e′)

)
:

A =

(
∗ P
∗ ∗

)
.

The pairing tr PQ coincides with the pairing of functions on the orbit generated
by the Lie–Poisson–Kirillov–Kostant structure.

The transposed equality

A =

(
I −Qb

0 I

)(
λ 0

Pb B̃

)(
I −Qb

0 I

)−1

produces another set of functions Pb, Qb on the orbit. It is evident that they are
conjugated too. The coordinates P,Q and Pb, Qb are called flag coordinates on the
orbit.

Geometrically the construction of Pb, Qb can be treated as the contraction of
A on the co-eigenspace im(A − λI) and the corresponding transformations of the
coordinate subspaces give Pb, Qb.

The geometrical interpretations are fundamental for the parametrization of
the phase space of the Isomonodromic Deformation Equations that is the reduced
space {

O(1) × · · · × O(N)/GL(n,C),∑N
k=1A

(k) = AΣ = const.
(1)

Consider a case of a general position when matricesA(k) have one-dimensional
eigenspaces only. The iteration process of the construction of the flag coordinates
factorize each A(k) to the product of triangular matrices Q(k)P̃ (k)(Q(k))−1:

Q(k) =

(
1 0
∗ I

)
=


1 0 . . . 0 0

Q2,1 1 . . . 0 0
...

... . . . 0 0
Qn−1,1 Qn−1,2 . . . 1 0
Qn,1 Qn,2 . . . Qn,n−1 1

 ,

P̃ (k) =

(
λ
(k)
1 ∗
0 Λ(k)

)
=


λ
(k)
1 P̃1,2 . . . P̃1,n−1 P̃1,n

0 λ
(k)
2 . . . P̃2,n−1 P̃2,n

0 0
. . . ...

...
0 0 . . . λ

(k)
n−1 P̃n−1,n

0 0 . . . 0 λ
(k)
n

 .

We sometimes skip the upper-index “(k)” for short.
Matrix elements Qij are just canonical coordinates, but P̃ji are not. To in-

troduce coordinates Pji conjugated to Qij , let us denote a square lower-right j× j
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block of Q by Qj×j :

Qj×j :=


1 0 . . . 0 0

Qn−j+2,n−j+1 1 . . . 0 0
...

... . . . 0 0
Qn−1,n−j+1 Qn−1,n−j+2 . . . 1 0
Qn,n−j+1 Qn,n−j+2 . . . Qn,n−1 1

 ,

and denote a non-trivial part of j’s row of P̃ by P̃j :(
0, . . . , 0, λ

(k)
j , P̃j,j+1, . . . , P̃j,n−1, P̃j,n

)
=
(−→
0 , λ

(k)
j , P̃j

)
,

it is (n− j)-dimensional vector-row. A set of the canonical coordinates(
Pj,j+1, . . . , Pj,n−1, Pj,n

)
=: Pj

is the product

P̃jQ
−1
n−j×n−j := Pj , Pn−1,n = P̃n−1,n = Pn−1 = P̃n−1 ∈ C.

We can see that P (k)
ji is linear with respect to P̃ (k)

ji , and P
(k)
ji = P̃

(k)
ji if Q(k) = I.

4. Parameterization of reduced space
Our plan is to parameterise the orbits and present such set of Q-coordinates that
their common zero-value gives a section of

O(1) ×O(2) × · · · × O(N) → O(1) ×O(2) × · · · × O(N)/GL(n,C),

consequently the rest set of the coordinates form the coordinates on the base that
is the quotient manifold.

We will explicitly solve the constant momentum level equation
∑

k A
(k) = 0 ∋

gl(n,C) after that. It will be linear equations in the terms of the flag coordinates.

4.1. Factorization with respect to adjoint GL(n,C)-action
Let A(N) has different eigenvalues λ(N)

1 , λ
(N)
2 , . . . , λ

(N)
n for the simplicity. A set of

the subspaces

Fs = ker
(
A(N) − λ

(N)
1 I

)(
A(N) − λ

(N)
2 I

)
· · ·
(
A(N) − λ(N)

s I
)
, s = 1, 2, . . . , n

form a compleat flag 0 ⊂ F1 ⊂ · · · ⊂ Fn−1 in Cn.
Let us denote the basic vectors by ek. It is evident that Q(N) = I is equivalent

to the coinciding the coordinate subspaces and the subspaces of the flag:

Fs = L (e1, e2, . . . , es).
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Let us transpose the equalities now, but keep the notations: A(N−1) = QP̃Q−1,

Q =


1 Q1,2 . . . Q1,n−1 Q1,n

0 1 . . . Q2,n−1 Q2,n

0 0
. . . ...

...
0 0 . . . 1 Qn−1,n

0 0 . . . 0 1

 , P̃ =

(
λ
(N−1)
1 0
∗ Λ(N−1)

)
.

A set of subspaces F ′
k = im

(
A(N−1) − λ

(N−1)
1 I

)
∩ im

(
A(N−1) − λ

(N−1)
2 I

)
∩

· · · ∩ im
(
A(N−1) − λ

(N−1)
k I

)
form a complete flag too:

Cn = F ′
0 ⊃ F ′

1 ⊃ · · · ⊃ F ′
n−1.

The identity Q = I means the coinciding of the flag with the coordinate flag
again. Let us denote

lk := Fk ∩ F ′
k−1, k = 1, 2, . . . , n; F ′

0 := Cn.

If A(N) and A(N−1) are in a general position, dim lk = 1, ∀k because dimFk +
dimF ′

k−1 = n+ 1.
We get n (coordinate) directions in Cn, but it is not enough for the fixation

of the frame in the space. We must to coordinate the scales along the directions.
Let us fix one more direction, let it be an eigenspace ker

(
A(N−2)−λ(N−2)

1 I
)

of some A(N−2). We denote it by l0:

l0 := ker
(
A(N−2) − λ

(N−2)
1 I

)
.

Stated above construction defines n + 1 directions in Cn. These directions
uniquely fix a projective frame such that ek is parallel to lk and

∑
k ek is parallel

to l0. The construction can be treated as choosing such a section of the fiber bundle

O(1) ×O(2) × · · · × O(N) → O(1) ×O(2) × · · · × O(N)/GL(n,C)

that A(N) and A(N−1) are
λ
(N)
1 a2

1 a3
1 . . . an

1

0 λ
(N)
2 a3

2 . . . an
2

0 0 λ
(N)
3 . . . an

3

...
...

...
. . .

...
0 0 0 . . . λ

(N)
n

 and


λ
(N 1)
1 0 0 . . . 0

b12 λ
(N 1)
2 0 . . . 0

b13 b23 λ
(N 1)
3 . . . 0

...
...

...
. . .

...
b1n b2n b3n . . . λ

(N 1)
n

 ,

(2)
and (1, 1, . . . , 1) is the eigenvector of A(N−2) corresponding λ(N−2)

1 .
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4.2. Constant value of momentum map
We need to solve the equation

N∑
k=1

A(k) = 0.

It is N2 scalar equations, but one of them has been solved automatically, it is∑
k tr A

(k) = 0, because eigenvalues of A(k)’s are the parameters of the orbits. It
must be satisfied in advance:

∑
k tr A

(k) = 0.
Let us consider the first step of the iteration process of the construction of

the flag coordinates for A(N−2). It gives

A(N−2) =

(
λ
(N−2)
1 − cΣ c⃗(

(λ− cΣ)I− Ã(N−2)
)
1⃗ Ã(N−2)

)
+

(
0 0

0 1⃗ · c⃗

)
,

where

1⃗ · c⃗ =


c2 c3 . . . cn
c2 c3 . . . cn
...

... . . . ...
c2 c3 . . . cn

 ∈ gl(n− 1,C), c⃗⃗1 =: cΣ ∈ C.

Matrix Ã(N−2) is an arbitrary matrix from the orbit Õ(N−2). The orbit is defined
by the eigenvalues λ(N−2)

2 , λ
(N−2)
3 , . . . , λ

(N−2)
n .

Consider the diagonal part of
∑

k A
(k) = 0 first. The n− 1 equations will be

satisfied if we set

cs := −

(
Ã(N−2) +

N−3∑
k=1

A(k)

)
ss

− λ(N)
s − λ(N−1)

s , s = 2, 3, . . . , n.

The vanishing of the last diagonal element follows from the equality
∑

k tr A
(k)

= 0.
The equations for non-diagonal elements of

∑
k A

(k) = 0 will be solved due
to (2):

aji := −

(
N−2∑
k=1

A(k)

)
ij

, bij := −

(
N−2∑
k=1

A(k)

)
ji

.

5. Example: Painlevé case
Let us consider the simplest non-trivial case that is four poles and 2×2 matrices. All
the theory is invariant with respect to the Möbius transformation of the variable
z, so we move three poles to {0, 1,∞}, and denote by t the position of the rest
pole:

z1 = 0, z2 = ∞, z3 = t, z4 = 1.
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The above-stated method of the parameterization of

O(1) ×O(2) ×O(3) ×O(4)//GL(2,C)

gives the following explicit form of the Fuchsian system

d

dz
Ψ =

(
A(1)

z
+
A(3)

z − t
+

A(4)

z − 1

)
Ψ, A(2) = −

∑
k

A(k),

A(1) =

(
λ1 pq p

q(pq 2λ1) pq λ1

)
, A(2) =

(
pq λΣ + λ2 λΣ pq
pq λΣ + 2λ2 λΣ λ2 pq

)
,

A(3) =

(
λ3 p(q 1) λΣ

0 λ3

)
, A(4) =

(
λ4 0

q(p(q 1) 2λ1) + λΣ 2λ2 λ4

)
.

The eigenvalues of A(k) are denoted by ±λk and
∑4

k=1 λk =: λΣ. The numeration
of the matrices was fixed in the previous sections, and the reason of the present
numeration of the poles zk is the simplification of the calculation of the Hamilton-
ian. We move to infinity the most bulky matrix-residue and take as t the pole with
the simplest one. The calculation of the Hamiltonian corresponding the dynamics
with respect to z3 = t gives:

H =
∑
k ̸=3

tr A(3)A(k) dz3 − dzk
z3 − zk

∣∣∣∣∣∣
dzk=0

/dz3

=
1

t(t− 1)
tr A(3)

(
(t− 1)A(1) + tA(4)

)
=

1

t(t− 1)

(
q(q − 1)(q − t)

(
p2 − p

(
c1
q

+
c3
q − t

+
c4

q − 1

))
+ c2q

)
+ constt,

where c1 = λ1 −λ2 +λ3 +λ4, c2 = 2λ1(λ1 +λ2 +λ3 +λ4), c3 = λ1 +λ2 +λ3 −λ4,
c4 = λ1 + λ2 − λ3 + λ4 are the parameters of the Isomonodromic Deformation,
and constt does not depend on p, q. It is well known Hamiltonian of Painlevé VI
system, its Euler–Lagrange equation is Painlevé VI equation.

The resulting formulae are valid for any values of the eigenvalues A(k) ∈
sl(2,C). We have two orbits if the eigenvalues ±λk coincide (i.e. vanish). One of
them consists of Jordan matrices and the second one is just zero matrix. The
formulae describe the case of the maximal dimension that is the orbits of Jordan
boxes.

Note that the presented parameterization of the phase space is not unique.
We can permute the poles zk, it gives the action of the Σ4-symmetry group on
the Painlevé VI equation. The so-called Okamoto-symmetry corresponds to the
change of the scales on the coordinate lines, namely instead of the fixation of the
direction of the eigenvector of A(2) we can fix the value of its non-diagonal matrix
element.
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6. Conclusion
The phase space of the Isomonodromic Deformation equations is

O(1) ×O(2) × · · · × O(N)//GL(n,C).
The canonical parameters on it are the flag coordinates on N − 3 orbits O(k), k =
1, . . . , N−3, and the coordinates constructed on O(N−2), except those constructed
on the first step of the iteration process.
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1. Introduction
In this paper we shall first recall some basic notions from Poisson geometry. We
consider the concept of lifting multivectors from manifold M to TM . The complete
lift of Poisson tensor π from Poisson manifold M is the same as the Poisson
structure πC associated with the algebroid bracket of differential forms on T ∗M .
Next for a certain class of tensors on M we show how to build deformations
of the Poisson structure πC . In the end, we will explain the relationship of this
construction with the geometry of these objects. We also present some examples
of application to the theory of real low-dimensional Lie algebras.

2. Lifting of Poisson structure
Let (M,π) be a N -dimensional Poisson manifold. Then the Poisson tensor π ∈
Γ
(∧2

TM
)
in a system of local coordinates x = (x1, . . . , xN ) on M can be written
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as

π(x) =
N∑

i,j=1

1

2
πij(x)

∂

∂xi
∧ ∂

∂xj
, (1)

where πij(x) = −πji(x) = {xi, xj} satisfies the following system of equations
equivalent to the Jacobi identity

N∑
s=1

(
∂πij

∂xs
πsk +

∂πki

∂xs
πsj +

∂πjk

∂xs
πsi

)
= 0. (2)

The Poisson bracket on M is given by {f, g} = π(df, dg) and it is a skew-symmetric
bilinear mapping satisfying the Jacobi identity and the Leibniz rule.

We say that manifold M with two Poisson tensors π1, π2 is a bi-Hamiltonian
manifold if they are compatible, i.e., their linear combination is again a Poisson
tensor πλ = π1 + λπ2.

Next we recall the concept of lifting multivectors from M to TM , see [6,9,13].
If we have a multivector field on M (in local coordinates) given as

X =
N∑

i1,...,ik=1

vi1...ik(x)
∂

∂xi1

∧ · · · ∧ ∂

∂xik

(3)

then the complete lift to TM is given by formula

XC =
N∑

i1,...,ik=1

(
vi1...ik(x)

∂

∂yi1
∧ . . . ∧ ∂

∂yil−1

∧ ∂

∂xil

∧ ∂

∂yil+1

∧ · · · ∧ ∂

∂yik

+
N∑
s=1

∂vi1...ik
∂xs

(x)ys
∂

∂yi1
∧ · · · ∧ ∂

∂yik

)
,

(4)

where (x,y) = (x1, . . . , xN , y1, . . . , yN ) is a system of local coordinates on TM
induced by the coordinates (x1, . . . , xN ) on M . Similarly the vertical lift is defined
by

XV =
N∑

i1,...,ik=1

vi1...ik(x)
∂

∂yi1
∧ · · · ∧ ∂

∂yik
. (5)

If we apply it to the Poisson tensor (1), we get

πC(x,y) =

N∑
1≤i<j

(
πij(x)

∂

∂xi
∧ ∂

∂yj
+ πij(x)

∂

∂yi
∧ ∂

∂xj

+
N∑
s=1

∂πij

∂xs
(x)ys

∂

∂yi
∧ ∂

∂yj

)
.

(6)

Now, we consider a certain Lie algebroid structure on T ∗M . The algebroid
bracket of differential forms on one-forms is given by the following formula:

[df, dg] = d{f, g} (7)
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where f, g ∈ C∞(M). This bracket also satisfies the following conditions:
[df, h dg] = h[df, dg] + a(df)(h)dg, (8)

a ([df, dg]) = [a(df), a(dg)], (9)
for all df, dg ∈ Γ(T ∗M), h ∈ C∞(M), see [7, 8], where anchor a : T ∗M → TM is
defined by Poisson bracket as follows a(df)(·) = {f, ·}. On the dual space TM to
the Lie algebroid T ∗M we have the tangent Poisson structure

{f ◦ qM , g ◦ qM}TM = 0, (10)
{ldf , ldg}TM = l[df,dg], (11)

{f ◦ qM , ldg}TM = −a(dg)(f) ◦ qM , (12)
where f, g ∈ C∞(M) and qM : TM → M . In the above formulas ldf ∈ C∞(TM)
is defined by pairing ldf (X) =

〈
X, df(qM (X))

〉
, where X ∈ TM . So the Poisson

structure is related to the structure (6) and can be represented by a matrix

πC(x,y) =

 0 π(x)

π(x)
∑N

s=1
∂π
∂xs

(x)ys

 , (13)

where ys = ldxs .

3. Some deformations of the Poisson structure
In this section, we present some deformations of the Poisson structure (13) on TM
and we give a geometrical interpretation of them. In addition, we also apply them
to the example based on Lie algebra e(2).

We consider a one-parameter deformation of a Poisson structure πC on TM
given by

πλ = πC + λπ̃. (14)
It is possible to describe some of them starting from the initial Poisson structure
π on the manifold M .

The particular case of above construction, when a Poisson structure π on the
manifold M satisfies a specific condition, is described by the following theorem.

Proposition 1. Let (M,π) be a Poisson manifold and let x = (x1, . . . , xN ) be a
system of local coordinates on M . If the Poisson tensor π does not depend on the
variable xp for certain 1 ≤ p ≤ N , and the function c is Casimir function for π,
then we obtain a new Poisson tensor on TM

πC,c(x)(x,y) =

 0 π(x) + Eppc(x)

π(x)− Eppc(x)
∑N

s=1
∂π
∂xs

(x)ys

 , (15)

where (x,y) = (x1, . . . , xN , y1, . . . , yN ) is a system of local coordinates on TM and
Epp is the N × N matrix all of whose entries are zero except the diagonal (p, p)
entry which is one.
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Proof. If c(x) = 0, then we obtain the classical tangent Poisson structure (13). For
c(x) 6= 0, by a direct calculation we obtain

	 {{xi, xj}C,c(x), xk}C,c(x) =	 {{xi, xj}C,c(x), yk}C,c(x) = 0, (16)
	 {{yi, yj}C,c(x), xk}C,c(x)

=
N∑

m=1

δpk (δpiπmj(x)− δpjπmi(x))
∂c

∂xm
(x)

+ c(x)

(
δpi

∂πjk

∂xp
(x) + δpj

∂πki

∂xp
(x)− δpk

∂πij

∂xp
(x)

)
= 0,

	 {{yi, yj}C,c(x), yk}C,c(x)

=
N∑
s=1

ysc(x)

(
δpi

∂2πjk

∂xp∂xs
(x) + δpj

∂2πki

∂xp∂xs
(x) + δpk

∂2πij

∂xp∂xs
(x)

)
,

because c is Casimir function for π and π does not depend on the variable xp. Here
	 {{f, g}, h} indicates the sum over circular permutations of f , g, h. This finishes
the proof. �

Remark. If M = Rn is a Poisson manifold, where the Poisson tensor π does not
depend on the variable xp and the function c is a linear Casimir function for π,
then

πC,c(y)(x,y) =

 0 π(x) + Eppc(y)

π(x)− Eppc(y)
∑N

s=1
∂π
∂xs

(x)ys

 , (17)

is also a Poisson tensor on TM .

Proposition 2. If c1, . . . , cr, where r = dimM − rankπ, are Casimir functions for
the Poisson structure π and if all ci do not depend on the variable xp for certain
1 ≤ p ≤ N , then the functions

ci ◦ qM and ldci =

N∑
s=1

∂ci
∂xs

(x)ys, i = 1, . . . r, (18)

are Casimir functions for the Poisson tensor πC,c(x) and πC,c(y).
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Proof. Let us take the Poisson tensor πC,c(x). A direct calculation gives us
{ci(x), xj}C,c(x) = 0,

{ci(x), yj}C,c(x) =
N∑
s=1

∂ci
∂xs

(x)πsj(x) + δpjc(x)
∂ci
∂xp

(x) = 0,

{ldci , xj}C,c(x) =

N∑
s=1

∂ci
∂xs

(x)πsj(x)− δpjc(x)
∂ci
∂xp

(x) = 0,

{ldci , yj}C,c(x) =
N∑

s,m=1

ym
∂

∂xm

(
πsj(x)

∂ci
∂xs

(x)

)
+ δpjc(x)

∂2ci
∂xp∂xs

(x)ys = 0,

because ci(x) is a Casimir function for π and ci(x) does not depend on the variable
xp. The proof for the structure πC,c(y) is completely analogous. �

Example 1. Let us consider the Euclidean Lie algebra e(2). The commutation rules
for e(2) are [e1, e3] = −e2, [e2, e3] = e1. On R3 with coordinates (x1, x2, x3) we
have the linear Poisson structure

π(x1, x2, x3) =


0 0 −x2

0 0 x1

x2 −x1 0

 (19)

associated with this Lie algebra. This tensor has one Casimir c = x2
1 + x2

2. Then
on TR3 we have the Poisson tensor

πC(x1, x2, x3, y1, y2, y3) =



0 0 0 0 0 −x2

0 0 0 0 0 x1

0 0 0 x2 −x1 0

0 0 −x2 0 0 −y2

0 0 x1 0 0 y1

x2 −x1 0 y2 −y1 0


. (20)

Using the constructions described in Proposition 1 we obtain the following defor-
mation of Poisson structure on TR3:

πC,c(x)(x,y) =



0 0 0 0 0 −x2

0 0 0 0 0 x1

0 0 0 x2 −x1 x2
1 + x2

2

0 0 −x2 0 0 −y2

0 0 x1 0 0 y1

x2 −x1 x2
1 + x2

2 y2 −y1 0


. (21)
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In this case, the Casimir functions (Proposition 2) are given by the formulas

c(x,y) = x2
1 + x2

2, ldc(x,y) = 2x1y1 + 2x2y2. (22)

Proposition 1 also has a geometric interpretation. But at the beginning we
recall the well-known notion of a Poisson vector field. A smooth vector field X on
a Poisson manifold M such that LXπ = 0 or equivalently

X ({f, g}) = {X (f) , g}+ {f,X (g)} (23)

is called a Poisson vector field. Next, we observe that if a Poisson tensor π does
not contain the variable xp, then X = ∂

∂xp
is a Poisson vector field for its and also

for a Poisson tensor πC . In addition, Y = ∂
∂yp

is also a vector field for a Poisson
tensor πC . More generally if we find Poisson vector fields X,Y for a Poisson tensor
π on M , which commute [X,Y ] = 0, we can construct deformations at the level
of manifold TM . Using complete XC and vertical YV lifts of these Poisson vector
fields, we can build a Poisson tensor π̃ = XC ∧ YV that is compatible with the
initial Poisson tensor πC . The manifold (TM, πC , π̃) equipped with these Poisson
structures is a bi-Hamiltonian manifold. This of course means that XC∧YV belongs
to second Poisson cohomology group H2

πC
(TM) and can be used as infinitesimal

deformation of πC , see [3, 5].

Example 2. If we again take the Euclidean Lie algebra e(2) then we find that the
Poisson vector field with the first degree polynomial coefficients has the form

X = (ax1 + bx2)
∂

∂x1
+ (−bx1 + ax2)

∂

∂x2
+ (cx1 + dx2 + e)

∂

∂x3
, (24)

where a, b, c, d, e ∈ R.
1. Let us take now Poisson vector fields

X = x2
∂

∂x1
− x1

∂

∂x2
, Y =

∂

∂x3
. (25)

Then their complete and vertical lifts are of the form

XC = x2
∂

∂x1
− x1

∂

∂x2
+ y2

∂

∂y1
− y1

∂

∂y2
, YV =

∂

∂y3
. (26)

They form the bi-vector

XC ∧ YV = x2
∂

∂x1
∧ ∂

∂y3
− x1

∂

∂x2
∧ ∂

∂y3

+ y2
∂

∂y1
∧ ∂

∂y3
− y1

∂

∂y2
∧ ∂

∂y3
,

(27)

which can be considered as a deformation of the Poisson tensor (20), i.e., we
get a linear Poisson structure on TR3

πC +XC ∧ YV = x2
∂

∂x3
∧ ∂

∂y1
− x1

∂

∂x3
∧ ∂

∂y2
. (28)
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We recognize the Lie–Poisson structure related to direct sum A5,1⊕〈y3〉. An
isomorphism is given by mapping

(x1, x2, x3, y1, y2, y3) 7→ (e1,−e2, e5, e4, e3, e6).

The commutation rules for Lie algebra A5,1 are [e3, e5] = e1, [e4, e5] = e2,
see [10]. Because the Lie derivatives for the Casimir function c = x2

1 + x2
2 for

the Poisson tensor (19) along X and Y vanish, i.e., LXc = 0 = LY c, then c
and ldc are Casimir functions for (28). However x1 and x2 are also Casimir
functions. Finally, we have three Casimir functions x1, x2, ldc for A5,1.

2. Let us take now Poisson vector fields

X = (x1 + x2)
∂

∂x1
+ (−x1 + x2)

∂

∂x2
, Y =

∂

∂x3
. (29)

Then their complete and vertical lifts are of the form

XC =(x1 + x2)
∂

∂x1
+ (−x1 + x2)

∂

∂x2

+ (y1 + y2)
∂

∂y1
+ (−y1 + y2)

∂

∂y2
,

YV =
∂

∂y3
.

(30)

They form the bi-vector XC ∧ YV which can be considered as a defor-
mation of the Poisson tensor (20), i.e., we get a linear Poisson structure on
TR3

πC +XC ∧ YV = x1
∂

∂x1
∧ ∂

∂y3
+ x2

∂

∂x2
∧ ∂

∂y3

+ x2
∂

∂x3
∧ ∂

∂y1
− x1

∂

∂x3
∧ ∂

∂y2

+ y1
∂

∂y1
∧ ∂

∂y3
+ y2

∂

∂y2
∧ ∂

∂y3
.

(31)

We recognize the Lie–Poisson structure related to Lie algebra S6,140. An
isomorphism is given by mapping

(x1, x2, x3, y1, y2, y3) 7→ (e1,−e2, e5, e4, e3,−e6).

The commutation rules for Lie algebra S6,140 are [e3, e5] = e1, [e4, e5] = e2,
[e6, e1] = e1, [e6, e2] = e2, [e6, e3] = e3, [e6, e4] = e4, see [11]. The Casimir
functions have the form

x2

x1
and x1y1 + x2y2

x1x2
.

In addition, based on work [2, 4], we can make subsequent modifications to
the Poisson tensor πC .

Proposition 3. Let (M,π1, π2) be a bi-Hamiltonian manifold and the Poisson ten-
sors π1 and π2 do not depend on the variable xp for a certain 1 ≤ p ≤ N .



20 A. Dobrogowska, G. Jakimowicz and K. Wojciechowicz

1. If the function c is a Casimir function for π2, then the structure on TM

πC,λ,c(x)(x,y) =

(
0 π2(x) + Eppc(x)

π2(x)− Eppc(x)
∑N

s=1
∂π2

∂xs
(x)ys + λπ1(x)

)
(32)

is a Poisson tensor.
2. If M = Rn and the function c is a linear Casimir function for π2, then the

structure on TM

πC,λ,c(y)(x,y) =

 0 π2(x) + Eppc(y)

π2(x)− Eppc(y)
∑N

s=1
∂π2

∂xs
(x)ys + λπ1(x)

 (33)

is a Poisson tensor.

Proof. By direct calculation. �

Proposition 4. Let c1, . . . , cr, where r = dimM − rankπ2, be Casimir functions
for the Poisson structure π2 and functions fλ

i , i = 1, . . . , r, satisfy the conditions

{fλ
i , xj}2 = {xj , ci}1, for j = 1, · · · , n. (34)

If the functions ci and fi do not depend on the variable xp for certain 1 ≤ p ≤ N ,
then the functions

ci ◦ qM and c̃i(x,y) =
N∑
s=1

∂ci
∂xs

(x)ys + λfλ
i (x), i = 1, . . . , r, (35)

are Casimir functions for the Poisson tensor πC,λ,c(x) and πC,λ,c(y) given by (32),
(33), respectively.

Proof. The proof is analogous to the proof of Proposition 2. �

Some results were investigated also in the works [1,12] for some similar con-
structions.

In the case of a linear Poisson structure, when M = g∗ is the dual to Lie
algebra g, we have additional Poisson structures on TM .

Proposition 5. Let π be the Lie–Poisson structure on g∗, which does not depend
on the variable xp.
1. If c is a Casimir function for π then the tensor

π̃Tg∗,c(x)(x,y) =

 λπ(x) π(x) + Eppc(x)

π(x)− Eppc(x) π(y)

 (36)

gives a Poisson structure on Tg∗ for any λ ∈ R.
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2. If c is a linear Casimir function for π then the tensors

π̃Tg∗,c(y)(x,y) =

 λπ(x) π(x) + Eppc(y)

π(x)− Eppc(y) π(y)

 , (37)

˜̃πTg∗,c(x)(x,y) =

 λπ(y) π(x) + Eppc(x)

π(x)− Eppc(x) π(y)

 , (38)

˜̃πTg∗,c(y)(x,y) =

 λπ(y) π(x) + Eppc(y)

π(x)− Eppc(y) π(y)

 (39)

give Poisson structures on Tg∗ for any λ ∈ R.

Proof. By direct calculation. �

Proposition 6. Let c1, . . . , cr, where r = dimM − rankπ, be Casimir functions for
the Poisson structure π and let ci do not depend on the variable xp for certain
1 ≤ p ≤ N .

• The functions

ci(x) and ˜̃ci = ci(x− λy)− ci(x), i = 1, . . . r, (40)

are Casimir functions for the Poisson tensor π̃Tg∗,c(x) and π̃Tg∗,c(y) given by
(36) and (37).

• The functions

ĉi(x,y) = ci(x−
√
λy) + ci(x+

√
λy) (41)

and
ˆ̂ci = ci(x−

√
λy)− ci(x+

√
λy), i = 1, . . . r, (42)

are Casimir functions for the Poisson tensor ˜̃πTg∗,c(x) and ˜̃πTg∗,c(y) given by
(38) and (39).

Proof. By direct calculation. �

Proposition 7. Let (g∗, π1, π2) be a bi-Hamiltonian manifold and the Poisson ten-
sors π1 and π2 do not depend on the variable xp for certain 1 ≤ p ≤ N . If the
function c is a Casimir function for π2, then the structure on Tg

π̃Tg,λ,c(x)(x,y) =

 ϵπ2(x) π2(x) + Eppc(x)

π2(x)− Eppc(x)
∑N

s=1
∂π2

∂xs
(x)ys + λπ1(x)− λϵπ1(y)


(43)

is Poisson tensor.

Proof. By direct calculation. �
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Example 3. Starting from Lie algebra e(2) and using Proposition 3, we obtain

πC,c(x)(x,y) =



0 0 0 0 0 −x2

0 0 0 0 0 x1

0 0 0 x2 −x1 x2
1 + x2

2

0 0 −x2 0 0 −y2 + λx1

0 0 x1 0 0 y1 − λx2

x2 −x1 x2
1 + x2

2 y2 −y1 0


, (44)

where we use the compatible Poisson structure related to Lie algebra A3,4. In this
case, the Casimir functions (Proposition 4) are given by the formulas

c1(x,y) = x2
1 + x2

2, c̃1(x,y) = 2x1y1 + 2x2y2 − 2λx1x2. (45)

From Proposition 5 we have

πC,c(x)(x,y) =



0 0 −λx2 0 0 −x2

0 0 λx1 0 0 x1

λx2 λx1 0 x2 −x1 x2
1 + x2

2

0 0 −x2 0 0 −y2

0 0 x1 0 0 y1

x2 −x1 x2
1 + x2

2 y2 −y1 0


. (46)

In this case, the Casimir functions (Proposition 6) are given by the formulas

c1(x,y) = x2
1 + x2

2, ˜̃c1(x,y) = λ2y21 + λ2y22 − 2λx1y1 − 2λx2y2. (47)

4. Conclusions
We have shown that by starting from the three-dimensional Lie algebra we can
build a six-dimensional Lie algebra. Next, using some deformations of the initial
Poisson structure related to the algebroid bracket of differential forms, we get other
Lie algebras of dimension six or five. Therefore it seems to be interesting to apply
this formalism and some of its modifications to the theory of classification of real
low-dimensional Lie algebras.
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Generation of Painlevé V transcendents

David Bermudez, David J. Fernández and Javier Negro

Abstract. An algorithm for generating solutions to the Painlevé V equation
(the Painlevé V transcendents) is presented. The first step is to look for general
one-dimensional Schrödinger Hamiltonians ruled by third degree polynomial
Heisenberg algebras, which have fourth order differential ladder operators. It
is realized then that there is a key function that must satisfy the Painlevé
V equation. Conversely, by identifying systems ruled by a third degree poly-
nomial Heisenberg algebra, in particular their four extremal states, this key
function can be built straightforwardly. The simplest Painlevé V transcen-
dents will be generated through this algorithm.

Mathematics Subject Classification (2000). Primary 34M55; Secondary 81Q60.
Keywords. Painlevé equations, supersymmetric quantum mechanics, polyno-
mial Heisenberg algebras.

1. Introduction
Nowadays there is a growing interest in the analysis of nonlinear phenomena,
looking for possible connections between certain physical systems and nonlinear
differential equations [1]. In particular, a link between third degree polynomial
Heisenberg algebras (PHAs) and Painlevé V (PV) equation has been found [2–8].
Through this connection a method for generating solutions to the PV equation (the
PV transcendents) can be designed (see for example [7]). The key point to this
approach is to identify systems ruled by such algebra, in particular their extremal
states. It is known that for the radial oscillator it is possible to define second order
ladder operators and to identify in a simple way the associated extremal states. In
addition, some of its SUSY partners are ruled by fourth order ladder operators,
thus supplying a lot of realizations of the third degree PHA and consequently
plenty of PV transcendents.

c© Switzerland AG 2019Springer Nature
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In the next section we will introduce the kth order intertwining technique. In
Section 3 we shall discuss in general the PHAs, while in Section 4 we will address
those of third degree. It will also be established the link between third-degree PHA
and Painlevé V equation. In Section 5, the SUSY partners of the radial oscillator
shall be studied, the subfamily ruled by third-degree PHA is going to be identified,
and the corresponding PV transcendents will be generated. Our conclusions shall
be presented in Section 6.

2. kth order intertwining technique
Let H0 and H1 be two Schrödinger Hamiltonians intertwined to each other as
follows:

H1A
+
1 = A+

1 H0, H0A
−
1 = A−

1 H1, (1)

Hj = −1

2

d2

dx2
+ Vj(x), j = 0, 1, (2)

A±
1 =

1√
2

[
∓ d

dx
+ w1(x, ϵ1)

]
. (3)

Thus, the following equations must be fulfilled:
w′

1(x, ϵ1) + w2
1(x, ϵ1) = 2[V0(x)− ϵ1], (4)

V1(x) = V0(x)− w′
1(x, ϵ1), (5)

where ϵ1 is called factorization energy. If the procedure is repeated several times,
after the kth step we will get:

HkA
+
k = A+

kHk−1, Hk−1A
−
k = A−

k Hk, (6)

A±
k =

1√
2

[
∓ d

dx
+ wk(x, ϵk)

]
, (7)

and hence
w′

k(x, ϵk) + w2
k(x, ϵk) = 2[Vk−1(x)− ϵk], (8)

Vk(x) = Vk−1(x)− w′
k(x, ϵk) = V0(x)−

k∑
j=1

w′
j(x, ϵj). (9)

As a consequence, the Hamiltonians H0 and Hk are intertwined by kth order
differential operators [9–11], namely,

HkB
+
k = B+

k H0, H0B
−
k = B−

k Hk, (10)
B+

k = A+
k · · ·A+

1 , B−
k = A−

1 · · ·A−
k . (11)

As can be seen from equation (9), the determination of the potential Vk(x)
depends of V0(x) and the sequence of solutions wj(x, ϵj), j = 1, . . . , k, which turn
out to be determined by k solutions w1(x, ϵj), j = 1, . . . , k of the initial Riccati
equation (4) for the k factorization energies involved [12].
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3. Polynomial Heisenberg algebras
The polynomial Heisenberg algebras (PHAs) of degree m − 1 are deformations
of the Heisenberg–Weyl algebra [4], also with three generators {H,L+

m,L−
m}, such

that:

[H,L±
m] = ±L±

m, (12)
[L−

m,L+
m] ≡ Nm(H + 1)−Nm(H) ≡ Pm−1(H), (13)

Nm(H) ≡ L+
mL−

m =
m∏
i=1

(H − Ei) . (14)

It is important to represent such PHA in its differential form, in which

H = −1

2

d2

dx2
+ V (x), (15)

while L±
m are mth order differential ladder operators. The spectrum of the Hamil-

tonian Sp(H) will depend of its extremal states, which satisfy L−
m ψEi

= 0 and
HψEi

= EiψEi
. We observe two possibilities:

(a) If {ψEi
, i = 1, . . . , s} satisfy the boundary conditions, where s ≤ m, then Sp(H)

in general will contain s infinite energy ladders.
(b) If among these s extremal states the jth one is such that (L+

m)
n−1

ψEj ̸= 0 but
(L+

m)
n
ψEj

= 0, then Sp(H) will contain s − 1 infinite ladders plus the jth one,
which will be finite.

Next, let us explore systems ruled by a third degree PHA, that have fourth
order differential ladder operators and are linked with the Painlevé V equation.

4. Third degree PHA
Let L±

4 be fourth-order ladder operators such that [7]

L+
4 = A+

4 A
+
3 A

+
2 A

+
1 , L−

4 = A−
1 A

−
2 A

−
3 A

−
4 , (16)

Hj+1A
+
j = A+

j Hj , HjA
−
j = A−

j Hj+1, j = 1, 2, 3, 4, (17)
H5 = H1 − 1 ≡ H − 1, (18)

where

A±
j =

1√
2

(
± d

dx
− fj

)
, j = 1, 2, 3, 4. (19)

Equations (16)–(19) lead to a system of coupled differential equations for the
involved functions and potentials. When decoupling such system, the key at the
end is to find a solution w(z) to the Painlevé V (PV) equation:

w′′ =

(
1

2w
+

1

w − 1

)
w′2 − w′

z
+

(w − 1)2

z2

(
aw +

b

w

)
+ c

w

z
+ d

w(w + 1)

w − 1
, (20)
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where z = x2, the ′ means here derivative with respect to z, and the parameters
of the PV equation are related with the factorization energies as follows:

a =
(E1 − E2)2

2
, b = − (E3 − E4)2

2
, (21)

c =
E1 + E2 − E3 − E4 − 1

2
, d = −1

8
. (22)

The key functions of this treatment are related with w(z) in the way:

g(x) = −f1 − f2 =
x

w(x2)− 1
, (23)

h(x) = −x− g(x) = −x− x

w(x2)− 1
. (24)

The analogue of the number operator is a polynomial of degree 4 in H:

N4(H) = L+
4 L

−
4 = (H − E1)(H − E2)(H − E3)(H − E4), (25)

whose roots Ei have associated extremal states given by

ψE1
∝
[
h

2

(
g′

2g
− h′

2h
− x

2
+

E2 − E1
g

)
− E1 +

E3 + E4
2

]
× exp

[∫ (
g′

2g
+
g

2
+

E2 − E1
g

)
dx

]
, (26)

ψE2
∝
[
h

2

(
g′

2g
− h′

2h
− x

2
+

E1 − E2
g

)
− E2 +

E3 + E4
2

]
× exp

[∫ (
g′

2g
+
g

2
+

E1 − E2
g

)
dx

]
, (27)

ψE3
∝ exp

[∫ (
h′

2h
+
h

2
+

E4 − E3
h

)
dx

]
, (28)

ψE4 ∝ exp

[∫ (
h′

2h
+
h

2
+

E3 − E4
h

)
dx

]
. (29)

Thus, in the direct approach given the PV solution w(z) all the relevant functions
of the system turn out to be determined.

On the other hand, in the inverse approach one looks for systems ruled by
third degree PHA, in particular their four extremal states and associated factor-
ization energies. Now, h(x) is found from equations (28)–(29), which in turn is
directly related with the solution w(z) to the PV equation as follows:

h(x) =
2(E3 − E4)

[ln(ψE4
)− ln(ψE3

)]′
= {ln [W (ψE3

, ψE4
)]}′ , (30)

w(z) =
h(
√
z)√

z + h(
√
z)
. (31)

Thus, the extremal states of systems ruled by PHA of third degree produce solu-
tions to the PV equation through equations (30)–(31).
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5. Radial oscillator SUSY partners
The Hamiltonian for the radial oscillator reads [7]

Hℓ = −1

2

d2

dx2
+ Vℓ(x) = −1

2

d2

dx2
+
x2

8
+
ℓ(ℓ+ 1)

2x2
, (32)

which has second order differential ladder operators given by

b±ℓ =
1

2

(
d2

dx2
∓ x

d

dx
+
x2

4
− ℓ(ℓ+ 1)

x2
∓ 1

2

)
, (33)

so they generate a first degree PHA:
[Hℓ, b

±
ℓ ] = ±b±ℓ , (34)

[b−ℓ , b
+
ℓ ] = 2Hℓ. (35)

The analogue of the number operator reads

b+ℓ b
−
ℓ = (Hℓ − E1)(Hℓ − E2) =

(
Hℓ −

ℓ

2
− 3

4

)(
Hℓ +

ℓ

2
− 1

4

)
, (36)

while the two extremal states, which are annihilated by b−ℓ and are formal eigen-
functions of Hℓ, are given by

ψE1 ∝ xℓ+1 exp(−x2/4), E1 =
ℓ

2
+

3

4
≡ E0ℓ, (37)

ψE2
∝ x−ℓ exp(−x2/4), E2 = − ℓ

2
+

1

4
= −E0ℓ + 1. (38)

Only the first one fulfills the boundary conditions and thus leads to a ladder of
physical eigenfunctions. The spectrum of the radial oscillator is therefore

Sp(Hℓ) =

{
Enℓ = n+

ℓ

2
+

3

4
, n = 0, 1, . . .

}
. (39)

Now, a kth order SUSY transformation is applied to Vℓ(x) by using k seed
solutions of the form

u(x, ϵ) = x−ℓe−
x2

4

[
1F1

(
1− 2ℓ− 4ϵ

4
,
1− 2ℓ

2
;
x2

2

)
+ ν

Γ
(
3+2ℓ−4ϵ

4

)
Γ
(
3+2ℓ
2

) (
x2

2

)ℓ+1/2

1F1

(
3 + 2ℓ− 4ϵ

4
,
3 + 2ℓ

2
;
x2

2

)]
, (40)

which creates k new levels below E0ℓ as follows:
ϵk < ϵk−1 < · · · < ϵ1 < E0ℓ, (41)

where νj ≥ − Γ( 1 2ℓ
2 )

Γ( 1 2ℓ 4ϵ
4 )

for j odd and νj ≤ − Γ( 1 2ℓ
2 )

Γ( 1 2ℓ 4ϵ
4 )

for j even.
The new potential reads now

Vk(x) =
x2

8
+
ℓ(ℓ+ 1)

2x2
− {ln[W (u1, . . . , uk)]}′′, (42)
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and the associated spectrum is
Sp(Hk) = {ϵk, . . . , ϵ1, E0ℓ, E1ℓ, . . . }. (43)

The natural (2k + 2)th-order ladder operators of Hk are given by
L±
k = B+

k b
±
ℓ B

−
k , (44)

which satisfy
[Hk, L

±
k ] = ±L±

k , (45)
while the analogue of the number operator reads

N(Hk) =

(
Hk − ℓ

2
− 3

4

)(
Hk +

ℓ

2
− 1

4

) k∏
j=1

(Hk − ϵj)(Hk − ϵj − 1). (46)

In order to link with the PV equation, a reduction for the order of the ladder
operators from 2k + 2 to 4 is required, which is achieved when the requirements
contained in the following theorem are fulfilled.

Theorem 1. Let Vk(x), the SUSY partners of Vℓ(x), be generated by k seed solutions
which are connected as follows:

uj = (b−ℓ )
j−1u1, ϵj = ϵ1 − (j − 1), j = 1, . . . , k, (47)

where the free solution u1 is nodeless, ϵ1 < E0 = ℓ
2 +

3
4 , ν1 ≥ − Γ( 1 2ℓ

2 )
Γ( 1 2ℓ 4ϵ1

4 )
. Then,

L+
k = Pk−1(Hk)l

+
k , (48)

Pk−1(Hk) = (Hk − ϵ1) · · · (Hk − ϵk−1), (49)

where l+k is a fourth-order differential ladder operator such that

[Hk, l
+
k ] = l+k , (50)

l+k l
−
k = (Hk − E0) (Hk + E0 − 1) (Hk − ϵk)(Hk − ϵ1 − 1). (51)

The proof of this theorem can be found in [7]. Let us note that the operators
{Hk, l

−
k , l

+
k } satisfy a third degree PHA, which imply that solutions to the PV

equation can be found from the corresponding extremal states
ψE1

∝ B+
k b

+
ℓ u1, E1 = ϵ1 + 1, (52)

ψE2 ∝ B+
k

[
x−ℓ exp(−x2/4)

]
, E2 = −E0 + 1, (53)

ψE3
∝ W (u1, . . . , uk−1)

W (u1, . . . , uk)
, E3 = ϵk, (54)

ψE4
∝ B+

k

[
xℓ+1 exp(−x2/4)

]
, E4 = E0. (55)

If we remember that the PV transcendent is generated from equations (30)–(31),
making all possible permutations on the ordering of the extremal states, we found
the solutions for k = 1, ϵ1 = E0ℓ and k = 2, ϵ1 = E1ℓ shown in Tables 1 and 2,
respectively.
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Order w(z)− 1
1234 0
1324 0
1423 z(2ℓ− z + 1)−1

2314 0

2413 z[8ℓ3−4ℓ2(z−1)−2ℓ(5z2+2z+2)+5(z−3)z2]
−8ℓ3(z−4)+4ℓ2(z2−3z+4)+2ℓ(5z3+2z2−2z−8)−5(z−1)z3

3412 z[8ℓ3+4ℓ2−2ℓ(2+5z2)−15z2]
16ℓ(2ℓ2+ℓ−1)

Table 1. PV transcendents for k = 1, ϵ1 = E0ℓ.

Order w(z)
1234 0
1324 0

1423 4(z−2ℓ−3)
z2−2z(2ℓ+1)+4ℓ2+8ℓ+3

2314 0

2413 (−z+2ℓ+3)(2ℓ+1)
z2−2z(2ℓ+1)+4ℓ(ℓ−2)+3

3412 ∞

Table 2. PV transcendents for k = 2, ϵ1 = E1ℓ.

We can obtain also analytic expressions when using the general solution as
given in (40). However, if we choose seed solutions with factorization energies that
do not coincide with the eigenvalues of Hℓ, the explicit expressions for the PV
transcendents become too long to be written here. Hence, we decided just to plot
some of these solutions. Thus, in Fig. 1(left) the PV transcendents generated from
first-order SUSY (k = 1) for ℓ = 1, ϵ1 = 1 and different values of the parameter
ν1 are shown. In Fig. 1(right) the corresponding solutions appearing from second-
order SUSY (k = 2) for ℓ = 0, ν1 = 0 and different values of the factorization
energy ϵ1 are plotted. A complex PV transcendent, generated from a complex
first-order SUSY (k = 1) for ℓ = 2, ϵ1 = 2, ν1 = i is shown in Fig. 2 (see,
e.g., [10, 13]).

It is important to note that the PV transcendents derived through the general
solution to the stationary Schrödinger equation belong to the so-called confluent
hypergeometric function hierarchy. It is possible to make a more detailed classifica-
tion, by taking specific values of ϵ1 and/or ν1. In this way the following hierarchies
of solutions can be obtained:
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Figure 1. Real PV transcendents generated through first-order
SUSY for ℓ = 1, ϵ1 = 1, ν1 = {0.905 (blue), 0.913 (magenta), 1
(yellow), 10 (green)} (left), and through second-order SUSY for
ℓ = 0, ν1 = 0, ϵ1 = {1/4 (blue), −3/4 (magenta), −7/4 (yellow),
−11/4 (green)} (right).

Figure 2. Real (continuous curve) and imaginary part (dashed
curve) of the complex PV transcendent generated through first-
order SUSY for ℓ = 2, ϵ1 = 2 and ν1 = i.

Laguerre polynomial hierarchy. For some particular values of ϵ1 the confluent hy-
pergeometric functions in the general seed solution become the Laguerre polyno-
mials. Two examples of such solutions are given by:

w1(z) = 1− z−1/2L
(α)
0 , (56)

w1(z) = 1− z3/2L
(α)
1 (z2/2)

2L
(α)
1 (z2/2)− 2α− 1

, α = −(2ℓ+ 1)/2. (57)

Hermite polynomial hierarchy. For certain values of ϵ1 the confluent hypergeo-
metric functions becomes a Hermite polynomial; two members of such a hierarchy
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are:

w1(z) = 1− z3/2H2n(z)

(z2 + 1)H2n(z)− 4nzH2n−1(z)
, (58)

w1(z) = 1 +
z1/2H2n(z)

4nH2n−1(z)− zH2n(z)
. (59)

6. Conclusions
In this paper we have stressed the importance that systems ruled by polynomial
Heisenberg algebras has in theoretical and mathematical physics. In particular,
it was pointed out that the third degree PHA is connected with PV equation.
Moreover, it was shown that SUSY QM applied to the radial oscillator supplies
the simplest realizations of the third degree PHA.

On the other hand, by using inverse techniques it was possible to design an
algorithm for generating solutions to the PV equation. The simplest PV transcen-
dents were also generated through such recipe (see [8]).

We believe a greater effort is required to improve the present classification of
the PV hierarchies [7]. We hope to contribute to this task in the near future, as
we did previously in the case of Painlevé IV transcendents (see [14,15]).
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Hamiltonian Dynamics for the Kepler
Problem in a Deformed Phase Space

Mahouton Norbert Hounkonnou and Mahougnon Justin Landalidji

Abstract. This work addresses the Hamiltonian dynamics of the Kepler prob-
lem in a deformed phase space, by considering the equatorial orbit. The recur-
sion operators are constructed and used to compute the integrals of motion.
The same investigation is performed with the introduction of the Laplace–
Runge–Lenz vector. The existence of quasi-bi-Hamiltonian structures is also
elucidated. Related properties are studied.

Mathematics Subject Classification (2000). 37C10; 37J35.

Keywords. Hamiltonian dynamics, Kepler problem, deformed phase space,
Laplace–Runge–Lenz vector, quasi-bi-Hamiltonian structure.

1. Introduction

In 1601, Kepler obtained a detailed set of observations of the motion of the planet
Mars from the Danish astronomer Tycho Brahe [4]. From his analysis of these
data, Kepler determined that the path of Mars is an ellipse, with the Sun located
at a focal point, and that the radius vector from the Sun to the planet sweeps out
equal areas in equal times. The direct problem was to determinate the nature of
the force required to maintain elliptical motion about a focal force center. This
direct problem remained unsolved until after 1679, when Newton determined the
functional dependence on distance of the force required to sustain such an elliptical
path of Mars about the Sun as a center of force located at a focal point of the
ellipse.

Building on Newton’s description of the nature and universality of the grav-
itational force, scientists of the eighteenth century shifted their interest almost
exclusively from direct to inverse problems. They used the combined gravitational
forces of the Sun and the other planets to predict and explain perturbations in the

c© Switzerland AG 2019Springer Nature
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conic paths of planets and comets. That interest continued through the nineteenth
and twentieth centuries, and today scientists still concentrate upon the inverse
problem rather than the direct one.

In particular, in the last few decades there was a renewed interest in the Ke-
pler problem as one of completely integrable Hamiltonian systems (IHS), the con-
cept of which goes back to Liouville in 1897 [19] and Poincaré in 1899 [24]. Loosely
speaking, IHS are dynamical systems admitting a Hamiltonian description, and
possessing sufficiently many constants of motion. Many of these systems are Hamil-
tonian systems with respect to two compatible symplectic structures [11,12,20,33]
leading to a geometrical interpretation of the so-called recursion operator [18].
The theory of integrable Hamiltonian systems, based on the use of the Nijenhuis
torsion, is a part of the geometry of a particular class of manifolds, called Poisson–
Nijenhuis manifolds [21]. In 1992, Marmo and Vilasi [23] constructed a recursion
operator for the Kepler dynamics, and obtained related constants of motion.

From the Magri works [20,21], it is known that the eigenvalues of the recur-
sion operator of bi-Hamiltonian systems form a set of pairwise Poisson-commuting
invariants [6]. It is, however, worth noticing that two kinds of difficulties often arise,
while investigating these systems: (i) Firstly, it is in general very difficult to give
locally an explicit second Hamiltonian structure for a given integrable Hamiltonian
system [25] even if it is theoretically always possible in the neighborhood of a reg-
ular point of the Hamiltonian [7]; (ii) Secondly, the global or semi-local existence
of such structures implies very strong conditions which are rarely satisfied [8, 10].

In 1996, R. Brouzet et al. defined a weaker notion under the name of quasi-
bi-Hamiltonian system (QBHS) which relaxes these two difficulties for two degrees
of freedom. In 2000, G. Sparano et al. constructed recursion operator for the
Kepler dynamics, in the non-commutative case using the so-called Delauney action-
angle coordinates [28]. Further, in 2013, Hosokawa and Takeuchi [15] solved the
same problem, but using the Runge–Lenz–Pauli vector, and got new constants of
motion. A bi-Hamiltonian formulation for a Kepler problem was also studied with
Delaunay-type variables [14]. In 2016, J. F. Cariñena et al. [9] investigated some
properties of the Kepler problem related to the existence of quasi-bi-Hamiltonian
structures. In this work, we investigate the Kepler dynamics in a deformed phase
space.

The paper is organized as follows. In Section 2, we present the considered
deformed phase space. In Section 3, we define, in action-angle coordinates, the
deformed Hamiltonian function, symplectic form and vector field describing the
Kepler dynamics. In Section 4, we construct recursion operators, and compute the
associated integrals of motion. In Section 5, we give an alternative Hamiltonian
description for the dynamical systems and obtain associated recursion operators in
a non resonant case. In Section 6, we study the existence of quasi-bi-Hamiltonian
structure for the considered Kepler dynamics. In Section 7, we end with some
concluding remarks.
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2. Deformed phase space and Kepler Hamiltonian

Let R3
0 = R3\{0, 0, 0} be the configuration manifold Q, and T ∗Q = Q×R3 be the

cotangent bundle with the local coordinates (q, p). The cotangent bundle T ∗Q has
a natural symplectic structure ω which, in local coordinates, is given by

ω =
3∑
i=1

dqi ∧ dpi.

Since ω is non-degenerate, it induces the map Λ: T ∗Q −→ T Q defined by

Λ =

3∑
i=1

∂

∂qi
∧ ∂

∂pi
,

where T Q is the tangent bundle. The map Λ is called the bivector field [34] and
used to construct the Hamiltonian vector field Xf of a Hamiltonian function f by
the relation

Xf = Λdf. (1)

The phase space deformation is here understood by replacing the usual product
with the γ-star product (also known as the Moyal product law) between two ar-
bitrary functions of position and momentum [16,22,32]:

(f ∗γ g)(q, p) = f(qi, pi) exp

(
1

2
γab
←−
∂ a
−→
∂b

)
g(qj , pj)

∣∣∣∣∣
(qi,pi)=(qj ,pj)

, (2)

where

γab =

(
Θij δij
−δij 0

)
, (3)

Θ is an antisymmetric n× n matrix inducing the deformation in the coordinates.
Without loss of generality, we restrict our study to the first two terms of the ∗γ
deformed Poisson bracket expansion to obtain

{f, g}γ = Θij
∂f

∂qi
∂g

∂qj
+

(
∂f

∂qi
∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)
, (4)

giving
{qi, qj}γ = Θij , {qi, pj}γ = δij , {pi, pj}γ = 0. (5)

The Kepler Hamiltonian in T ∗Q takes the form

H =
pip

i

2m
+ V (r), (6)

yielding the Hamilton’s equations:

q̇i := {qi, H}γ =
pi

m
+Θij

∂V (r)

∂qj
, ṗi := {pi, H}γ = −∂V (r)

∂qi
, (7)

and the following correction to the Newton second law [27]:

mq̈i = −q
i

r

k

r2
+mεijk q̇jΩk +mεijkqjΩ̇k, (8)
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where the deformation parameter Θij = εijkαk, and the angular velocity

Ωi =
k

r3
αi, i = 1, 2, 3.

Setting the deformation parameter αi = δi3α transforms H into

H =
1

2

[
(q̇1 − q2Ω)2 + (q̇2 + q1Ω)2 + (q̇3)2

]
− k

r
, (9)

which is reduced to

H =
p2r
2m

+
p2ϕα

2mr2
− k

r
(10)

in spherical coordinates (r, υ, ϕ), and equatorial orbit corresponding to υ =
π

2
,

where pr = mṙ and pϕα = mr2ϕ̇α, with ϕ̇α = (ϕ̇+Ω) and ϕα = (ϕ+Ωt) ∈ (0, 2π).

Equation (9) encodes the information on the phase space deformation through
Ω, which depends on the deformation parameter α. However, it can evidently be
interpreted as equivalent to the Hamiltonian for a charged particle in a homoge-
neous, independent of time, magnetic field along z axis, and the central Newtonian
gravitational field in the usual commutative space.

Now considering the coordinate system (r, ϕα, pr, pϕα), and using (1), we get
the following Hamiltonian vector field:

XH =
1

m

[
pr

∂

∂r
− 1

mr3

(
− p2ϕα +mkr

)
∂

∂pr
+
pϕα
mr2

∂

∂ϕα

]
. (11)

3. Hamiltonian system in the action-angle coordinates

The Hamiltonian function (10) does not explicitly depend on the time. Then,
setting V = W − Et, it is possible to find a complete integral for the equation of
motion by using the method of variable separation:

W = Wr(r) +Wϕα(ϕα). (12)

In this case, the Hamilton–Jacobi equation [3] is reduced to

E =
1

2m

(
∂W

∂r

)2

+
1

2mr2

(
∂W

∂ϕα

)2

− k

r
, (13)

leading to the following set of equations:
(
dWϕα(ϕα)

dϕα

)2

= D2
ϕα ,

−r2
(
dWr(r)

dr

)2

+ 2mr2E + 2mrk = D2
ϕα ,
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where Dϕα is constant. In the compact case [34], characterized by E < 0, we can
introduce the action variables [2] Jr and Jϕα such that

Jϕα =
1

2π

∮ dWϕα(ϕα)

dϕα
dϕα,

Jr =
1

2π

∮ dWr(r)

dr
dr.

Using the method of residues [1, 34], we get

Jr = −pϕα +
mk√
−2mE

, Dϕα = pϕα ,

and the integrable system [5]:J̇i = 0,

ϕ̇i =
∂H

∂Ji

=⇒

llJ1 = Jr; J2 = Jϕα ,

ϕ1 =
mk2

(J1 + J2)3
t; ϕ2 =

mk2

(J1 + J2)3
t, ϕ1(0) = ϕ2(0) = 0.

(14)

Proposition 1. In action-angle coordinates (J, ϕ), Hamiltonian H, symplectic form
ω, and the Hamiltonian vector field XH are respectively:

H = E = − mk2

2(J1 + J2)2
, ω =

2∑
h=1

dJh ∧ dϕh, (15)

and

XH = {H, ·} :=
mk2

(J1 + J2)3

(
∂

∂ϕ1
+

∂

∂ϕ2

)
, (16)

where {·, ·} is the usual Poisson bracket.

4. Recursion operators

Let us define a 2-form ω1 and a vector field ∆,

ω1 :=
2∑

h,k=1

SkhdJk ∧ dϕh =
2∑

h=1

dλh ∧ dϕh, ∆ := λh
∂

∂Jh
, (17)

where S =

(
J1 J2
J2 J1

)
, and

λ1 =
1

2

(
J2
1 + J2

2

)
,

λ2 = J2J1,
are such that ω1 is the Lie

derivative of the symplectic form ω in (15) with respect to the vector field ∆, i.e.,

L∆ω = ω1.

The vector field ∆ generates a sequence of finitely many (Abelian) symmetries
according to the following scheme:

Xi+1 := [Xi,∆]µ =
2

µ
(Xi(∆)−∆(Xi)),
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where µ = 3− i, i = 0, 1, 2 and X0 = XH in (16). The Xi’s, given by

X0 =
mk2

(J1 + J2)3

(
∂

∂ϕ1
+

∂

∂ϕ2

)
, X1 =

mk2

(J1 + J2)2

(
∂

∂ϕ1
+

∂

∂ϕ2

)
, (18)

X2 =
mk2

(J1 + J2)

(
∂

∂ϕ1
+

∂

∂ϕ2

)
, X3 = mk2

(
∂

∂ϕ1
+

∂

∂ϕ2

)
, (19)

are:

(i) in involution, i.e.,

[Xh, Xk]µ = 0, h, k = 0, 1, 2, 3, µ = 1, 2, 3. (20)

(ii) Hamiltonian vector fields, i.e., can be expressed as:

Xi = {Hi, ·} = {Hi+1, ·}1 , i = 0, 1, 2, (21)

with respect to the Poisson bracket {·, ·}
1

defined by

{f, g}
1

:=
n∑

h,k=1

(S−1)hk

(
∂f

∂Jk

∂g

∂ϕh
− ∂f

∂ϕh
∂g

∂Jk

)
, (22)

where

S−1 =


J1

(J1 − J2)(J1 + J2)

−J2
(J1 − J2)(J1 + J2)

−J2
(J1 − J2)(J1 + J2)

J1
(J1 − J2)(J1 + J2)

 ,

and

H0 =
−mk2

2(J1 + J2)2
, H1 =

−mk2

(J1 + J2)
,

H2 = mk2 ln(J1 + J2), H3 = mk2(J1 + J2). (23)

Proposition 2. The recursion operator for the Kepler dynamics in the action-angle
coordinates (J, ϕ) is given by

T =
∑
h,k

(S)hk

(
∂

∂Jh
⊗ dJk +

∂

∂ϕh
⊗ dϕk

)
, where S =

(
J1 J2
J2 J1

)
,

LXlT = 0 (l = 0, 1, 2, 3), and the Nijenhuis torsion vanishes, i.e.,

(NT )hij := T ki
∂Thj
∂Jk

− T kj
∂Thi
∂Jk

+ Thk
∂T ki
∂Jj

− Thk
∂T kj
∂J i

= 0 (i, j, k, h = 1, 2).

Consider the constants of motion [26],

H in (15), M = mr2(ϕ̇+ 2Ω), and Lα = M +mαH,

i.e.,

{H,M} = 0, {H,Lα} = 0, {M,Lα} = 0. (24)

Then, there exist functions φ1, φ2 satisfying

ω′ = dξ1 ∧ dφ1 + dξ2 ∧ dφ2, (25)
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such that the equations of motion in the coordinate system (ξ, φ) areξ̇i = 0,

φ̇i =
∂H ′

∂ξi

=⇒

ξi = cst,

φi =
∂H ′

∂ξi
t, φi(0) = 0, i ∈ {1, 2},

(26)

where ξ1 = Lα, ξ2 = M, H ′ =
1

mα
(ξ1 − ξ2). We get the relationships

J1 = −ξ2 +$ +

√
m2αk2

2(ξ2 − ξ1)
, J2 = ξ2 −$, (27)

ϕ1 =
2
√

2α

mαk
(ξ2 − ξ1)3/2φ1, ϕ2 = −2

√
2α

mαk
(ξ2 − ξ1)3/2φ2, (28)

where $ = mr2Ω, ξ2 > ξ1 > 0, α > 0. Finally, we arrive at

Proposition 3. In the coordinate system (ξ, φ), Hamiltonian function H ′, sym-
plectic form ω′, Hamiltonian vector field X ′H , and the recursion operator T ′ are
respectively:

H ′ =
1

mα
(ξ1 − ξ2), ω′ =

2∑
h=1

dξh ∧ dφh, X ′H′ =
1

mα

(
∂

∂φ1
− ∂

∂φ2

)
, (29)

T ′ =

2∑
i=1

Ri

(
∂

∂ξi
⊗ dξi +

∂

∂φi
⊗ dφi

)
, where R =

(
ξ1 0
0 ξ2

)
. (30)

Two interesting cases deserve investigation:

I) Introduce the Laplace–Runge–Lenz (LRL) vector A given by [13]

A = p× L−mkq
r
, (31)

where p is the momentum vector, q is the position vector of the particle of
mass m, and L is the angle momentum vector, L = q × p [29]. We obtain

L1 = 0, L2 = 0, L3 = mr2ϕ̇α = pϕα , (32)

A1 = C sinβ +D cosβ; A2 = C cosβ −D sinβ; A3 = 0, (33)

{A1, H} :=

(
∂A1

∂r

∂H

∂pr
− ∂A1

∂pr

∂H

∂r

)
+

(
∂A1

∂ϕα

∂H

∂pϕα
− ∂A1

∂pϕα

∂H

∂ϕα

)

=
3kαpr
mr4

(D sinβ −B cosβ), (34)

{A2, H} =
3kαpr
mr4

(B sinβ −D cosβ), (35)

where

C = −prpϕα cosϕα +
p2ϕα
r

sinϕα −mk sinϕα
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and

D = prpϕα sinϕα +
p2ϕα
r

cosϕα −mk cosϕα, β = Ωt.

Remark 4. We have:
(i) The Ai, i = 1, 2, 3, commute with the Hamiltonian H in (10), i.e.,
{Ai, H} = 0, if

β =
π

4
;

prpϕα
p2ϕα
r
−mk

= − cot(β + ϕα), (β + ϕα) ∈ (0, π). (36)

(ii) {A1, A2} =
(
−2mH+

3kαpr
r4

)
pϕα , {A1, L3} = A2, and {A2, L3} = A1.

(iii) Setting L3 = A3 and p2ϕα = r[2mk − r + pr(3Ω − rpr)] ≡ A2
3, then, the

Ai
′s generate an su(2) Lie algebra, i.e., {Ai, Aj} = εijlAl.

II) Consider a scaled Runge–Lenz–Pauli vector Γ, defined on the domain {(q, p) ∈
T ∗(R3\{0, 0, 0})|H(q, p) < 0} by

Γ =
1√
−2mH

A, (37)

where H is the Hamiltonian function given in (10). The components Γi are

Γ1 =
1√
−2mH

(C sinβ +D cosβ),

Γ2 =
1√
−2mH

(C cosβ −D sinβ), Γ3 = 0,

(38)

with

|Γ|2 = −mk
2

2H
+ L2

3. (39)

The quantities H, |Γ|2, and L3 are in involution, i.e.,

{|Γ|2, L3} = 0, {|Γ|2, H} = 0, {L3, H} = 0.

Putting π1 = |Γ|2 and π2 = pϕα , the equations of motion in the (π, χ) system
become:π̇i = 0,

χ̇i =
∂H ′′

∂πi
, H ′′ =

mk2

2(π2
2 − π1)

=⇒

πi = cst, i = 1, 2,

χi =
∂H ′′

∂ξi
t+ χi(0), χi(0) = 0.

(40)
The relationships between (J, ϕ) and (π, χ) are deduced as:

J1 = −π1 +
√
π1 − π2

2 , J2 = π2, χ1 =
1

(J1 + J2)
ϕ1, χ2 = − J2

(J1 + J2)
ϕ2. (41)

Finally, we get
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Proposition 5. In the coordinate system (π, χ), Hamiltonian function H ′′, sym-
plectic form ω′′, Hamiltonian vector field X ′′H′′ , and the recursion operator T ′′ are
given as follows:

H ′′ =
mk2

2(π2
2 − π1)

, ω′′ =
2∑

h=1

dπh ∧ dχh, (42)

X ′′H′′ =
mk2

2(π2
2 − π1)2

(
∂

∂χ1
− 2π2

∂

∂χ2

)
, (43)

T ′′ =

2∑
i=1

Fi

(
∂

∂πi
⊗ dπi +

∂

∂χi
⊗ dχi

)
, where F =

(
π1 0
0 π2

)
. (44)

5. Alternative Hamiltonian description

Let
Υ = J1X1 + J2X2 (45)

be a dynamical system on the manifold T ∗Q, with X1 and X2 obtained in (18)
and (19). The relation (45) can be rewritten as

Υ = νaX
a + νeX

e, (46)

where

νa = −2Ha, νe = He, Ha = J1H0, He = J2H1, X
a =

∂

∂Φa
, Xe =

∂

∂Φe
, (47)

∂

∂Φa
=

(
∂

∂ϕ1
+

∂

∂ϕ2

)
,

∂

∂Φe
= −

(
∂

∂ϕ1
+

∂

∂ϕ2

)
. (48)

The vector fields Xa, Xe and the C∞-functions Ha, He satisfy the following prop-
erties:

[Xi, Xj ] = 0, LXiHi = 0, i, j ∈ {a, e}. (49)

Let N be an open dense submanifold of T ∗Q on which Υ is explicitly integrable
such that

Xa ∧Xe 6= 0, dHa ∧ dHe 6= 0. (50)

Now, considering the coordinate system (H,Φ) with Φi, i ∈ {a, e}, which are closed
differential 1-forms, the equations of motion of Υ are given by

Φ̇a = −2Ha, Φ̇e = He, Ḣa = 0, Ḣe = 0, (51)

with the functions Ha and He obeying condition (50). We can construct a closed
2-form, for i ∈ {a, e},

ω̃ =
∑
i

df i(Hi) ∧ dΦi, (52)

which is non-degenerate as long as dfa ∧ dfe 6= 0, and

ι
Xi
ω̃ = −df i, ιΥ ω̃ = −

∑
i

νidf
i,

∑
i

dνi ∧ df i = 0. (53)
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Notice that (53) is a necessary condition for ιΥ ω̃ to be exact, i.e., it is closed. Since
dνa ∧ dνe 6= 0, the solutions of (53) are given by linear functions [17]

f i =
∑
j

Lijνj , i, j ∈ {a, e}, where L =

(
−1/2 0

0 1

)
. (54)

Then, we get

fa = −1

2
νa, fe = νe. (55)

From (47) and (55), we can rewrite (52) in the new coordinate system (ν,Φ) as

ω̃ =
∑
i

df i(νi) ∧ dΦi, i ∈ {a, e}, (56)

leading to the following form:

ω̃ = −1

2
dνa ∧ dΦa + dνe ∧ dΦe. (57)

The corresponding Hamiltonian description for Υ is given with the following qua-
dratic Hamiltonian function

H̃ = −1

4
ν2a +

1

2
ν2e . (58)

In addition, from [34] other symplectic structures of the form (56) can be con-
structed, in which any fi depending only on the corresponding frequency νi, i ∈
{a, e}, will be admissible as long as ω̃b, b ∈ {1, . . . , n}, is non-degenerate, i.e., as
long as dfa ∧ dfe 6= 0. From above, putting

fa = νa, f
e = νe and fa = ν2a, f

e = ν2e , (59)

we respectively obtain

ω̃1 = dνa ∧ dΦa + dνe ∧ dΦe and ω̃2 = 2νadνa ∧ dΦa + 2νedνe ∧ dΦe. (60)

Then, the (1, 1)-tensor field T = ω̃2 ◦ ω̃−11 is constructed, taking the form

T = T1 + T2, (61)

where

T1 = 2νa

(
∂

∂νa
⊗dνa+

∂

∂Φa
⊗dΦa

)
and T2 = 2νe

(
∂

∂νe
⊗dνe+

∂

∂Φe
⊗dΦe

)
. (62)

Finally, basing on [29–31], T1 and T2 are recursion operators for the dynamical
system Υ. Hence, T is also a recursion operator for the dynamical system Υ as a
sum of two recursion operators.
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6. Quasi-bi-Hamiltonian structures

Basing on [8] and [9], in this part, we investigate the recursion operators for quasi-
bi-Hamiltonian structures.

Definition 6. A Hamiltonian vector field Y on a symplectic manifold (M, ω) is
called quasi-bi-Hamiltonian if there exist another symplectic structure ω1 and a
nowhere-vanishing function g such that gY is a Hamiltonian vector field with
respect to ω1, i.e.,

ι
Y
ω0 = −dH0, ι

gY
ω1 = ι

Y
(gω1) = −dH1, (63)

where H0 and H1 are integrals of motion for the Hamiltonian vector field Y ; gω1

is not closed in general.

A consequence of this definition is that the pair (ω0, ω1) determines a (1, 1)-
tensor field T defined as T := ω̂−10 ◦ω̂1, that is, ω0(Y,X) = ω1(TY,X), where X, Y
are two Hamiltonian vector fields, and ω̂ := ι

Y
ω. In the action-angle coordinates

(J, ϕ), the decomposition of the symplectic form ω′ = ω′1 + ω′2, where

ω′1 = dJ1 ∧ dϕ1 −
(

2(J1 + J2)3

m2k2α
+ 1

)
dJ2 ∧ dϕ2, (64)

ω′2 = −dJ1 ∧ dϕ2 +

(
2(J1 + J2)3

m2k2α
+ 1

)
dJ2 ∧ dϕ1, (65)

shows that:

(i) ω′1 and ω′2 are not closed, i.e., dω′1 6= 0, dω′2 6= 0, where d is the exterior
derivative. So, ω′1 and ω′2 are not symplectic.

(ii) ι
XH
ω′1 = −dh′1, ιXH ω

′
2 = −dh′2, where h′1 = −h′2 = −2J2

mα
.

(iii) The functions h′1 and h′2 are first integrals of XH , i.e., XH(h′1) = XH(h′2) = 0.

Proposition 7. Hamiltonian vector field XH is quasi-bi-Hamiltonian with respect
to the two 2-forms (ω, ω′1); idem for (ω, ω′2). The weaker ω′i recursion operators
are given by:

T̃ ′1 := ω−1 ◦ ω′1 (66)

=
∂

∂J1
⊗ dJ1 +

∂

∂ϕ1
⊗ dϕ1 − (2K + 1)

(
∂

∂J2
⊗ dJ2 +

∂

∂ϕ2
⊗ dϕ2

)
(67)

and

T̃ ′2 := ω−1 ◦ ω′2

= (2K + 1)

(
∂

∂J1
⊗ dJ2 +

∂

∂ϕ2
⊗ dϕ1

)
− ∂

∂ϕ1
⊗ dϕ2 − ∂

∂J2
⊗ dJ1, (68)

where K =
(J1 + J2)3

m2k2α
and the 2-vector field ω−1 =

∂

∂Ji
∧ ∂

∂ϕi
.
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Similarly, ω′′ can be re-expressed as the sum of two 2-forms as follows:

ω′′ = ω′′1 + ω′′2 , (69)

where

ω′′1 = 2dJ1 ∧ dϕ1 −
(

2J2 +
J2(2J2 + 1)

(J1 + J2)2

)
dJ2 ∧ dϕ2, (70)

ω′′2 = −J2dJ1 ∧ dϕ2 − 2
(1 + J1)ϕ1

(J1 + J2)
dJ1 ∧ dJ2 +

(
2 +

2J2 + 1

(J1 + J2)

)
dJ2 ∧ dϕ1

+

(
2

(J1 + J2)
+

2J2 + 1

(J1 + J2)2

)
(J2 − 1)ϕ1dJ2 ∧ dJ1. (71)

As above:

(iv) ω′′1 and ω′′2 are not symplectic, i.e., dω′′1 6= 0, dω′′2 6= 0.
(v) ι

XH
ω′′1 = −dh′′1 , ιXH ω

′′
2 = −dh′′2 , where

h′′1 =
k2m(3J2(8J2 − 6J1 + 3) + J1(2J1 + 5))

6(J1 + J2)3
, (72)

h′′2 =
k2m(J2(−J2 − 3J1 + 12) + 8J1)

6(J1 + J2)3
. (73)

(vi) h′′1 and h′′2 are also first integrals of XH , i.e., XH(h′′1) = XH(h′′2) = 0.

Proposition 8. Hamiltonian vector field XH is quasi-bi-Hamiltonian with respect
to the two 2-forms (ω, ω′′1 ); idem for (ω, ω′′2 ). The weaker ω′′i recursion operators

T̃ ′′1 and T̃ ′′2 are:

T̃ ′′1 := ω−1 ◦ ω′′1

= 2

(
∂

∂ϕ1
⊗ dϕ1 +

∂

∂J1
⊗ dJ1

)
− J2

(
2 +

Ṽ

V 2

)(
∂

∂J2
⊗ dJ2 +

∂

∂ϕ2
⊗ dϕ2

)
,

(74)

T̃ ′′2 := ω−1 ◦ ω′′2

=

(
2 +

Ṽ

V

)(
∂

∂J1
⊗ dJ2 +

∂

∂ϕ2
⊗ dϕ1

)
− J2

(
∂

∂ϕ1
⊗ dϕ2 + J2

∂

∂J2
⊗ dJ1

)
−
(

2 +
Ṽ

V 2
(J2 − 1)

)
ϕ1

(
∂

∂ϕ1
⊗ dJ2 −

∂

∂ϕ2
⊗ dJ1

)
,

(75)

where Ṽ = 2J2 + 1, V = J1 + J2.

7. Concluding remarks

In this paper, we have constructed recursion operators for the Kepler dynamics in a
deformed phase space by considering the equatorial orbit, computed the associated
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integrals of motion, and proved the existence of quasi-bi-Hamiltonian structures
for the Kepler dynamics.
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Abstract. We study the integrable two-layer generalized Heisenberg ferro-
magnet equation (HFE). The relation between this generalized HFE and dif-
ferential geometry of curves is established. Using this relation we found the
geometrical equivalent counterpart of the two-layer spin system which is the
two-component KdV equation. Finally, the gauge equivalence between these
equations is established.
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1. Introduction
The Heisenberg ferromagnet equation (HFE)

At = A ∧Axx (1)
is one of basic fundamental nonlinear differential equations integrable by inverse
scattering transform (IST) method [1]. The above A = (A1, A2, A3) is a unit
spin vector. As well-known, the HFE is geometrically and gauge equivalent to the
nonlinear Schrodinger equation (NLSE) [2, 3]

iqt + qxx + 2|q|2q = 0. (2)
The HFEs describe the nonlinear dynamics of one-layer ferromagnets [4–9]. At the
same, it is well-known that ferromagnets have the multilayer nature. To describe
such multilayer ferromagnets we need some type multilayer generalizations of the
HFE (1). This is the first and main physical motivations of this paper. On the other
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hand, there are a lot of multicomponent generalizations of known integrable sys-
tems. For example, the NLSE (2) admits the following integrable two-component
generalization:

iq1t + q1xx + 2(|q1|2 + |q2|2)q1 = 0,

iq2t + q2xx + 2(|q1|2 + |q2|2)q2 = 0,
(3)

which is known as the Manakov system [10]. Such type integrable generalizations
of soliton equations dictates also a need to construct integrable and nonintegrable
multilayer extensions of the HFE (1). It is the second (perhaps mathematical)
motivation for our study of multilayer generalizations of the HFE (1). Note that
the one of two-layer spin systems was constructed in [11,12] and reads as

At = A ∧Axx + u1Ax + v1H1 ∧A,

Bt = B ∧Bxx + u2Bx + v2H2 ∧B,

where B = (B1, B2, B3) is the second spin vector and uj , vj are some real functions
of Aj , Bj . This set of equations (which known as the two-layer M-LIII equation) is
the gauge and geometrical equivalent counterpart of the Manakov system (3) and
hence is integrable.

The outline of the present paper is organized as follows. In Section 2, we
present the two-layer M-IV equation. Also the relation between the motion of space
curves and the two-layer M-IV equation is established. Then using this relation we
found that the Lakshmanan (geometrical) equivalent counterpart of the M-LXXIII
equation is the well-known two-component KdV equation. Section 3 is devoted to
the integrable aspects of the considered systems. The gauge equivalence between
the two-layer M-IV equation and the two-component KdV equation is established
in Section 4. Some briefly information for the surface induced by the SU(3) Γ-spin
system is presented in Section 5. The paper is concluded by some comments in
Section 6.

2. Integrable two-layer spin system
In this paper, we consider the following two-layer spin system called the two-layer
M-IV equation

At = Axxx + u1Ax + v1A,

Bt = Bxxx + u2Bx + v2B,
(4)

where A = (A1, A2, A3), B = (B1, B2, B3) are unit spin vectors (A2 = B2 = 1)
and

u1 = A2
x + 3

(√
A2

x +
√

B2
x

)
, v1 =

3

2

(
A2

x

)
x
,

u2 = B2
x + 3

(√
A2

x +
√

B2
x

)
, v2 =

3

2

(
B2

x

)
x
.

We will study this set of equations from the different points of view. We start
from the construction the relation between the two-layer M-IV equation (4) and
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differential geometry of curves. Consider two interacting space curves in R4 space.
With each curves is related two set of unit vectors ej and lj , respectively. They
satisfy the Frenet–Serret equations. Before going further, here it is appropriate
to make a few comments that is here some algebraic comments in order. At the
level of Lie algebras we have that algebra so(4) matrices are just antisymmetric
matrices 4× 4. It turns out that the six-dimensional space of such 4× 4 matrices
decomposes into two three-dimensional subspaces that are each closed under taking
commutators and each of them satisfies precisely the commutation relations of
so(3). So here we use just the well-known algebraic relation so(4) = so(3)× so(3)
and/or for space R4 = R3 ×R3.

It is well-known that between some integrable (soliton) equations the so-
called geometrical (Lakshmanan) equivalence takes place. In this section, our aim
is to find the Lakshmanan equivalent counterpart of equation (4). To do that, let
us return to the interacting two 3-dimensional curves in R4. The motion of these
curves is given by the following equations:e1

e2
e3


x

= C1

e1
e2
e3

 ,

e1
e2
e3


t

= G1

e1
e2
e3

 , (5)

l1
l2
l3


x

= C2

l1
l2
l3

 ,

l1
l2
l3


t

= G2

l1
l2
l3

 . (6)

Here ej and lj are the unit tangent (j = 1), normal (j = 2) and binormal (j = 3)
vectors to the curves, x is their common arclength parametrising the curves. The
matrices Cj and Gj have the forms

C1 =

 0 κ1 0
−κ1 0 τ
0 −τ 0

 , G1 =

 0 ω3 −ω2

−ω3 0 ω1

ω2 −ω1 0

 ,

C2 =

 0 κ2 0
−κ2 0 τ2
0 −τ2 0

 , G2 =

 0 θ3 −θ2
−θ3 0 θ1
θ2 −θ1 0

 .

Curvatures and torsions of curves are given by the following formulas:

κ1 =
√

e21x, τ1 =
e1 · (e1x ∧ e1xx)

e21x
,

κ2 =
√

l21x, τ2 =
l1 · (l1x ∧ l1xx)

l21x
.

The compatibility condition of equations (5)–(6) reads as
C1t −G1x + [C1, G1] = 0,

C2t −G2x + [C2, G2] = 0,
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or in elements,

κ1t = ω3x + τ1ω2, τ1t = ω1x − κ1ω2,

ω2x = τω3 − κω1, κ2t = θ3x + τ1θ2, (7)
τ2t = θ1x − κ1θ2, θ2x = τ2θ3 − κθ1.

Now we do the following identifications:

A ≡ e1, B ≡ l1.

Then we have

κ2
1 = A2

x, τ1 =
A · (Ax ∧Axx)

A2
x

,

κ2
2 = B2

x, τ2 =
B · (Bx ∧Bxx)

B2
x

.

Now we want to simplify the problem. Namely, we assume that

τ1 = τ2 = 0.

This means we consider two plane curves without torsions. In this case we have

ω2 = ω1 = θ1 = θ3 = 0.

At the same time from (7) we get

κ1t = ω3x, κ2t = θ3x.

These results give us

ω3 = −κ1xx − 3(κ1 + κ2)κ1,

θ3 = −κ2xx − 3(κ1 + κ2)κ2.

Finally we obtain the following set of equations:
κ1t + κ1xxx + 3[(κ1 + κ2)κ1]x = 0,

κ2t + κ2xxx + 3[(κ1 + κ2)κ2]x = 0.
(8)

It is the desired set of equations and which is the Lakshmanan or geometrical
equivalent counterpart of the two-layer M-IV equation (4). Integrability properties
of the obtained set (8) and the two-layer M-IV equation (4) we will consider in
the next sections.

3. Integrability of the two-layer M-IV equation
Our aim in this section is to study integrability aspects of the M-IV equation (4).
To this end, let us consider the Lax representation of the form

Ψx = UΨ,

Ψt = VΨ,
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where
U = −iλΣ+Q,

V = −4iλ3Σ+ 4λ2Q+ 2iλF1 + F0.

Here

Σ =

1 0 0
0 −1 0
0 0 −1

 , Q =

 0 q1 q2
r1 0 0
r2 0 0

 , F1 =

 −v q1x q2x
−r1x r1q1 r1q2
−r2x r2q1 r2q2

 ,

F0 = −Qxx − 2vΣQ− F02,

where v = r1q1 + r2q2 and

F02 =

(r1xq1 − r1q1x) + (r2xq2 − r2q2x) 0 0
0 r1q1x − r1xq1 r1q2x − r1xq2
0 r2q1x − r2xq1 r2q2x − r2xq2

 .

The compatibility condition
Ut − Vx + [U, V ] = 0

gives the following set of equations:
q1t + q1xxx − 3r1(q

2
1)x − 3r2(q1q2)x = 0,

q2t + q2xxx − 3r2(q
2
2)x − 3r1(q1q2)x = 0,

r1t + r1xxx − 3q1(r
2
1)x − 3q2(r1r2)x = 0,

r2t + r2xxx − 3q2(r
2
2)x − 3q1(r1r2)x = 0.

(9)

It can be considered as the two-component modified Korteweg–de Vries (KdV)
equation. We now present some reductions of equations (9).

i) Let r1 = r2 = −1. In this case the set of equations (9) takes the form
q1t + q1xxx + 3[(q1 + q2)q1]x = 0,

q2t + q2xxx + 3[(q1 + q2)q2]x = 0.
(10)

It is the two-component KdV equation, which is integrable as the exact re-
duction of the integrable set of equations (9).

ii) Now we consider the case r1 = σ1q1, r2 = σ2q2, where σj = ±1. For this
reduction, the set (9) converted to the following set of equations

q1t + q1xxx − 6σ1q
2
1q1x − 3σ2q2(q1q2)x = 0,

q2t + q2xxx − 6σ2q
2
2q2x − 3σ1q1(q1q2)x = 0

It is nothing but the integrable two-component mKdV equation.
iii) Our third example is the following reduction: r1 = σ1q̄1, r2 = σ2q̄2. In this

case we have
q1t + q1xxx − 6σ1q̄1(q

2
1)x − 3σ2q̄2(q1q2)x = 0,

q2t + q2xxx − 6σ2q̄2(q
2
2)x − 3σ1q̄1(q1q2)x = 0,

which is the well-known two-component complex mKdV equation.
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iv) Our last example is following: r1 = σ1q1, r2 = σ2q̄2, where we assume that
q1 is real function and q2 is complex function. Then equations (9) take the
form

q1t + q1xxx − 6σ1q
2
1q1x − 3σ2q̄2(q1q2)x = 0,

q2t + q2xxx − 3σ2q̄2(q
2
2)x − 3σ1q1(q1q2)x = 0

It is some kind-integrable set of the mixed mKdV-complex mKdV equations.

4. Gauge equivalent equation
It is interesting to find the gauge equivalent equation to the set of equations (4)
that is to the two-layer M-IV equation. With this aim, let us we consider the gauge
transformation Φ = g 1Ψ, where g = Ψ|λ=0. Then we have

Φx = −iλΓΦ, (11)

Φt =

[
− 4iλ3Γ + 2λ2ΓΓx + iλ

(
Γxx +

3

2
ΓΓ2

x

)]
Φ, (12)

where

Γ = g 1Σg =

Γ11 Γ12 Γ13

Γ21 Γ22 Γ23

Γ31 Γ32 Γ33

 .

The compatibility condition of equations (11)–(12) gives

Γt + Γxxx +
3

2

(
Γ2
xΓ

)
x
= 0. (13)

This equation can be considered as the su(3) form of the two-layer M-IV equation
(4). From the definition of the Γ-matrix function follows that

Γx = g 1
[
Σ, Q

]
g

so that

Γ2
x = −4

v 0 0
0 r1q1 r1q2
0 r2q1 r2q2

 .

Hence we obtain
tr
(
Γ2
x

)
= −8v.

It is the Hamiltonian of equation (13):

H =
1

2

∫
tr
(
Γ2
x

)
. (14)

Note that from (14) we can get the Hamiltonian of the two-layer M-IV equation
(4) with the suitable reduction.
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5. Integrable surface
Lastly let us briefly construct an integrable surface related with equation (13). We
assume the following identification:

Γ ≡ Rx.

Then from (13) we have

Rt +Rxxx +
3

2
R2

xxRx = 0.

Now we can define the first fundamental form of the surface as
I = tr

(
R2

t

)
dt2 + 2 tr

(
RtRx

)
dxdt+ tr

(
R2

x

)
dx2.

Similarly we can construct the second fundamental form. These two forms allow
us to construct the surface induced by the spin system (13) and which is integrable
naturally.

6. Conclusions
In this paper, we have established the relation between the two-layer M-IV equa-
tion (4) and the two-component KdV equation (10). We have shown that the
two-layer M-IV equation (4) and the two-component KdV equation (10) is the
geometrically equivalent one to the other. Also the gauge equivalence between
these equations is proved. Our results are significant for the deep understanding
of integrable spin systems and their relations with differential geometry of curves
and surfaces in multilayer and multicomponent case. Note that the two-component
KdV equation and the two-component mKdV equation as well as the set of equa-
tions (9) can be viewed as one of members of the Manakov system hierarchy (3).
At last we note that the construction of integrable class two and (in general n)
interacting curves and surfaces is one of actual problems of modern differential
geometry of curves and surfaces. Our work in this direction is in progress.
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About the solutions to the Witten–Dijkgraaf–
Verlinde–Verlinde associativity equations and
their Lie-algebraic and geometric properties

Anatolij K. Prykarpatski

Abstract. There is devised an algebraically feasible approach to investigating
solutions to the oriented associativity equations, related with commutative
and isoassociative algebras, interesting for applications in the quantum de-
formation theory and in some other fields of mathematics. The main con-
struction is based on a modified version of the Adler–Kostant–Symes scheme,
applied to the Lie algebra of the loop diffeomorphism group of a torus and
modified for the case of the Gauss–Manin displacement equations, depending
on a spectral parameter. Their interpretation as characteristic equations for
some system of the Lax–Sato type vector field equations made it possible to
derive the determining separated Hamiltonian evolution equations for the re-
lated structure matrices, generating commutative and isoassociative algebras
under consideration.
Mathematics Subject Classification (2000). 35A30, 35G25, 35N10, 37K35, 58J70,
58J72, 34A34.
Keywords. Witten–Dijkgraaf–Verlinde–Verlinde associativity equations, ori-
ented associativity equations, Lax–Sato type vector field equations, Adler–
Kostant–Symes scheme, Lie-algebraic analysis, compatible Hamiltonian flows.

1. The introductory setting
As was mentioned in [6], the beauty of the theory of Frobenius manifolds is not
only in multiple connections with other branches of mathematics, such as quan-
tum cohomology, singularity theory and the theory of integrable systems. Even
more amazing is that, some properties discovered in the study of particular classes
of Frobenius manifolds often turn out to become universal structures of the the-
ory thus proving to be important also for other classes of Frobenius manifolds. A
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crucial part of the Frobenius manifold theory is still in studying Witten–Dijkgraaf–
Verlinde–Verlinde (WDVV) type equations, first proposed in [4,21], and the related
geometric structures, which have attracted considerable attention of specialists
in topological quantum field theory and modern mathematical physics. In arti-
cles [15,17], generalizations of the WDVV equations, the so-called oriented associa-
tivity equations, there were proposed, describing both the displacement vector [5–8]
relationships and isoassociative deformations [13] of associative algebras. Suitable
reductions of the oriented associativity equations naturally arise in topological
2D-gravity [21, 22], singularity theory and complex geometry [12, 16], differential
geometry of F -manifolds [14, 19] and theory of integrable systems [12, 18]. The
important integrability and Hamiltonian properties of 2D-associativity equations
were deeply studied in [3,10]. Being interested in the geometrical and Lie-algebraic
properties of the oriented associativity equations, I was much inspired by [3, 19]
and succeeded in their Hamiltonian reformulation within the modern Lie-algebraic
Adler–Kostant–Symes approach as some integrable flows on the coadjoint space to
a naturally constructed loop Lie algebra of the torus group diffeomorphisms. This
made it possible to study the related Gauss–Manin displacement equations, de-
pending on a spectral parameter. Their interpretation as characteristic equations
for some system of the Lax–Sato type vector field equations made it possible to
derive the determining separated Hamiltonian evolution equations for the related
structure matrices, generating commutative and associative algebras under regard.

Recall that a Frobenius algebra is a pair (A; ⟨·, ·⟩), where A is a commutative
associative algebra with a unity over a field R, and ⟨·, ·⟩ is a R-bilinear symmetric
nondegenerate invariant form on A, that is, ⟨x·y, z⟩ = ⟨x, y ·z⟩ for arbitrary vectors
x, y, z ∈ A.

Definition 1. Frobenius structure of the charge d ∈ Z+ on the manifold M is
a structure of a Frobenius algebra on the tangent spaces Tt(M) = (At; ⟨·, ·⟩t),
depending (smoothly, analytically, etc.) on the point t ∈ M. It must satisfy the
following axioms: 1 0 The metric ⟨·, ·⟩t on M is flat. Denote by ∇ the Levi-Civita
connection for the metric. The unity vector field e must be flat, ∇e = 0; 2 0 Let c
be the 3-tensor c(x, y, z) := ⟨x · y, z⟩t, x, y, z ∈ Tt(M). The 4-tensor (∇wc)(x, y, z)
must be symmetric in x, y, z, w ∈ Tt(M); 3 0 A linear vector field E ∈ V ect(M)
must be fixed on M , i.e., ∇∇E = 0, such that [E, x · y] − [E, x] · y − x · [E, y] =
x · yE⟨x, y⟩t − ⟨[E, x], y⟩t − ⟨x, [E, y]⟩t = (2− d)⟨x, y⟩t.

The last condition means that the derivations E and QΓ(M) := id + adE
define on the space Γ(M) of vector fields on M a structure of graded Frobenius
algebra over the graded ring of functions on M. Flatness of the metric ⟨·, ·⟩t implies
local existence of a system of flat coordinates t := (t0, . . . , tn) ∈ Rn+1 on M.
We will denote {ηij(t) : i, j = 0, n} the constant Gram matrix of the metric
in these coordinates ηij(t) :=

〈
∂
∂ti

, ∂
∂tj

〉
t
for all i, j = 0, n, t ∈ M. The inverse

matrix {ηij(t) : i, j = 0, n} defines the inner product on the cotangent planes as〈
dti, dtj

〉
t
= ηij(t), i, j = 0, n, t ∈ M. The flat coordinates will be chosen in such a



About the solutions to the oriented associativity equations 59

way that the unity e ∈ A of the Frobenius algebra coincides with ∂/∂t0, e = ∂/∂t0.
In these flat coordinates on M one can introduce the structure constants of the
Frobenius algebra At = Tt(M) at t ∈ M : ∂

∂ti
· ∂

∂tj
=

∑
k=0,n

Ck
ij

∂
∂tk

at for all

i, j = 0, n, which can be locally represented by the third derivatives of a function
F (t) as Ck

ij(t) = ηks(t) ∂3F (t)
∂ts∂ti∂tj

, ηij(t) = ∂3F (t)
∂t0∂ti∂tj

for any i, j, k = 0, n. The
function F (t), t ∈ M, is called potential of the Frobenius manifold. It satisfies the
following system of WDVV associativity equations:∑

k,s=0,n

∂3F (t)

∂ti∂tj∂tk
ηks(t)

∂3F (t)

∂ts∂tp∂tq
=

∑
k,s=0,n

∂3F (t)

∂ti∂tj∂tk
ηks(t)

∂3F (t)

∂ts∂tj∂ti
, (1)

suggested independently by Witten in 1990 and Dijgraaf–Verlinde–Verlinde in
1991. In 1992 B. Dubrovin deeply analyzed these Frobenius manifold structures
and reformulated them in more clear form. The vector field E is called Euler vector
field. In the flat coordinates it must have the form E =

∑
i=0,n(a

ijtj+bi) ∂
∂ti

where
a0j = 1, j = 0, n, b0 = 0. Moreover, vanishing of the curvature of the connection ∇
is essentially equivalent to the axioms of Frobenius manifold. Introducing a tan-
gent vector x := (xj : j = 0, n) ∈ T (M), the flatness condition can be rewritten as
the system of compatible linear equations

∂x(t;λ)/∂tk = λ−1Ck(t)x(t;λ), (2)

for k = 0, n and arbitrary parameter λ ∈ C\{0}, being augmented with the Eu-
ler vector compatibility equation ∂x(t;λ)/∂λ = (U(t) + λV )x(t;λ), where matri-
ces Ci(t) :=

{
Ck

ij(t) : j, k = 0, n
}
, i = 0, n, U(t) :=

{∑
s=0,n E

sCi
sj(t) : i, j =

0, n
}
and V (t) := (2−d)

2 −∇E is an antisymmetric operator on the tangent bun-
dle T (M) with respect to ⟨·, ·⟩t, that is, ⟨V x, y⟩t + ⟨x, V y⟩t = 0 for any vector
x, y ∈ T (M).

As was pointed out by B. Dubrovin [5], because of vanishing of the torsion
and curvature of the connection ∇, there locally exist on the manifold M ⊗ C
n + 1 independent new flat functions

{
tj(t;λ) ∈ R : j = 0, n

}
, called deformed

flat coordinates on a Frobenius manifold. The analytic properties of deformed flat
coordinates as multi-valued functions of λ ∈ C\{0} can be used, in particular, for
describing moduli of semisimple Frobenius manifolds. In our work we are mainly
interested in studying geometric structures, related with these deformed flat co-
ordinates on a Frobenius manifold, generating the diffeomorphism group of the
complexified torus Tn+1

C and the related oriented associativity equations for the
structure matrices Ci(t) ∈ End En+1, t ∈ Rn, i = 0, n, endowing the symmetry
constraints Ci

kj(t) = Ci
jk(t) for all i, j, k = 0, n, are given in case of a commutative

Frobenius algebra by the following relationships:

[Cm, Ck] = 0,
∂Ck

∂tm
=

∂Cm

∂tk
, (3)
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which are satisfied for all k,m = 0, n. The first condition of (3) means that the
commutative algebra in question is associative and the second one of (3) means
that there is considered its invariant isoassociative [13] quantum deformation.

As it was already mentioned above a crucial observation was done in [5]
and later in [13, 15], the oriented associativity equations (3) can be rewritten
equivalently as the compatibility condition of the Gauss–Manin type [15] linear
equations (2), where the vector x(t, λ) ∈ Tt(M) can be interpreted as a set of
complexified diffeomorphisms of the torus x(·;λ) : Tn+1

C → Tn+1
C , parametrically

depending both on the parameter λ ∈ C\{0} and the temporal evolution variable t
∈ Rn+1. The latter makes it possible to construct a new set of Lax–Sato type vector
field equations

A(k) :=
∂

∂tk
+ λ−1

∑
j=0,n

( ∑
s=0,n

Cs
kj(t)xs

) ∂

∂xj
, (4)

compatible for all tk ∈ R, k = 0, n and λ ∈ C\{0}. This property can be formulated
as the following proposition.

Proposition 2. The set of oriented associativity equations (3) is equivalent to a
set of the compatible for all k,m = 0, n commutator Lax–Sato type vector field
relationships [

A(k), A(m)
]
= 0 (5)

for the vector fields (4).

As a very interesting example of the construction above one can obtain for
the special case n = 2, taking into account a reduction of the commuting matrices
Cj ∈ End E3, j = 0, 2, presented in [3, 5, 6]. Namely, assume that the smooth
mapping F : R3 → R is representable as

F (t) =
1

2
t20t2 +

1

2
t0t

2
1 + f(t0, t1, t2), (6)

where a smooth mapping f : R2 → R satisfies, as follows from (1) in the form
(∂/∂t1 ◦ ∂/∂t1) ◦ ∂/∂t2 = ∂/∂t1 ◦ (∂/∂t1 ◦ ∂/∂t2), ∂/∂t0 ◦ ∂/∂tj = ∂/∂tj , j = 0, 2,
such a partial differential equation:

f2
t1t1t2 − ft2t2t2 − ft1t1t1ft1t2t2 = 0 (7)

for any (t0, t1, t2) ∈ R3. Equation (7), as it follows from (3), was shown by
B. Dubrovin and later used by Yu. Manin [5, 6, 15, 16], is representable as the
system of compatible linear differential equations for any λ ∈ R\{0}:

∂x

∂t0
=

1

λ
C0x,

∂x

∂t1
=

1

λ
C1x,

∂x

∂t2
=

1

λ
C2x (8)

on points x ∈ E3, determined by matrices

C0 =

1 0 0
0 1 0
0 0 1

 , C1 =

0 1 0
b a 1
c b 0

 , C2 =

 0 0 1
c b 0

b2 − ac c 0

 , (9)
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where a := ft1t1t1 , b := ft1t1t2 , c := ft1t2t2 and generating the corresponding loop
Diff(R3)-group diffeomorphisms. It is easy also to check that matrices (9) satisfy
the determining matrix equations (3):

[C1, C2] = 0,

∂C1

∂t2
=

∂C2

∂t1
,

∂Cj

∂t0
= 0

(10)

for any tj ∈ R, j = 0, 2.

Remark 3. It is worth to mention here that these commutator relationships are
equivalent to the matrix relationships (3), where the matrices Ck(t) ∈ End En+1,
k = 0, n, t ∈ Rn+1, in general, cannot satisfy the symmetry property Ci

kj(t) =

Ci
jk(t) for all i, j, k = 0, n, t ∈ Rn+1, and which should be imposed on the vector

fields (4) separately.

The commutator representations (5) make it possible to devise a Lie-algebraic
and related geometric descriptions of the WDVV type equations, an attempt which
is presented below.

2. The Lie-algebraic integrability analysis
Let G̃± := D̃iff±(Tn+1), n ∈ Z+, be subgroups of the loop diffeomorphisms group
D̃iff(Tn+1) := {C ⊃ S1 → Diff(Tn+1)}, holomorphically extended in the inte-
rior D1

+ ⊂ C and in the exterior D1
− ⊂ C regions of the unit disc D1 ⊂ C1,

such that for any g(λ) ∈ G̃−, λ ∈ D1
−, g(∞) = 1 ∈ Diff(Tn). The corre-

sponding Lie subalgebras G̃± := d̃iff±(Tn) of the loop subgroups G̃± are vector
fields on Tn+1 holomorphic, respectively, on D1

± ⊂ C1, where for any ã(λ) ∈
G̃− the value ã(∞) = 0. The split loop Lie algebra G̃ = G̃+⊕ G̃− can be nat-
urally identified with a dense subspace of the dual space G̃∗ through the pair-
ing (l̃, ã) :=

∫
Tn res ⟨l̃(x;λ), ã(x;λ)⟩dnx, where ⟨·, ·⟩ is the convolution on the

product Γ(T ∗(Tn+1))× Γ(T (Tn+1)) of differential forms, Γ(T ∗(Tn+1)) ≃ G̃∗

and vector fields Γ(T (Tn+1)) ≃ G̃ on torus Tn+1 with representatives l̃(x;λ) :=∑
k=0,n l

(k)(x;λ)dxk ∈ G̃∗, ã(x;λ) :=
∑

k=0,n a
(k)(x;λ)∂/∂xk ∈ G̃, respectively.

For the gradient ∇h(l̃) ∈ G̃ at a point l̃ ∈ G̃∗ one can determine its projec-
tions ∇h(l̃)± ∈ G̃± on the subalgebras G̃±, respectively, satisfying the splitting
∇h(l̃) = ∇h(l̃)+ ⊕ ∇h(l̃). If now to take a functional h ∈ I(G̃∗) ⊂ D(G̃∗) to be a
Casimir one, satisfying the condition ad∗∇h(l̃)

l̃ = 0 at any l̃ ∈ G̃∗, it is easy to
check that the subspaces G̃∗

+ and G̃∗
− are invariant with respect to the co-adjoint

action of the Lie subalgebras G̃+ and G̃− on element l̃ ∈ G̃∗, respectively. This
property is crucial for constructing commuting to each other Hamiltonian flows on
the adjoint space G̃∗ within the mentioned above Adler–Kostant–Symes scheme.
Namely, let h(tk) ∈ I(G̃∗), k = 0, n, be functionally independent Casimir invariants
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on G̃∗ and construct the following Hamiltonian flows with respect to the classi-
cal [1, 2, 9, 11,20] Lie-Poisson structure on G̃∗ as

∂l̃/∂tk = − ad∗∇h(tk)(l̃)_
l̃ (11)

with respect to evolution variables tk ∈ R, k = 0, n. As the functionals h(tk) ∈
I(G̃∗), k = 0, n, are chosen to be Casimir ones, the Hamiltonian flows (11) prove to
be commuting to each other. The latter property, owing to the expressions (11),
can be equivalently rewritten as the compatibility conditions[

∂

∂tk
+∇h(tk)(l̃)_,

∂

∂tm
+∇h(tm)(l̃)_

]
= 0 for all k,m = 0, n. (12)

Now it is easy to observe that the commutator relationships (5) can be identi-
fied exactly with those (12), if to assume that there exists such an element l̃ ∈ G̃∗,

for which A(k) = ∂
∂tk

+∇h(tk)(l̃)_ for every k = 0, n. From (15) one derives [11,20]
that

∇h(tk)(l̃)_ = λ−1
∑
j=0,n

( ∑
s=0,n

Cs
kj(t)xs

)
∂

∂xj
(13)

for every k = 0, n. Thus, we have reduced the problem of describing a set of the
structure matrices Ck(t) :=

{
Cs

kj(t) = Cs
jk(t) : j, s = 0, n

}
∈ EndEn+1, k = 0, n,

for any t ∈ Rn+1 to that of describing the corresponding independent Casimir
invariants h(tk) ∈ I(G̃∗), k = 0, n, whose suitably projected gradients ∇h(tk)(l̃)_ ∈
G̃−, k = 0, n, at some seed element l̃ ∈ G̃∗ coincide exactly with the expressions
(13).

To solve this problem, we need to start from the determining equation, namely
ad∗∇h(l̃)

l̃ = 0 at any l̃ ∈ G̃∗ for a Casimir invariant functional h ∈ I(G̃∗) in the
following componentwise form:〈

∂/∂x, ◦∇h(l)
〉
l +

〈
l,

∂

∂x
∇h(l)

〉
= 0, (14)

where we put, by definition, ∇h(l̃) := ⟨∇h(l), ∂/∂x⟩, l̃ := ⟨l, dx⟩. Having taken
into account the expressions (13), we need to find exactly n ∈ Z+ solutions to the
equation (14) at some seed element l̃ ∈ G̃∗, for which the following relationships
∇h(tk)(l̃)_ =

〈
∇h(tk)(l)_, ∂/∂x

〉
, where the vector

∇h(tk)(l)_ =

{
λ−1

∑
s=0,n

Cs
kj(t)xs : j = 0, n

}
, (15)

hold for all x ∈ Tn+1, k = 0, n, and any parameter λ ∈ C\{0}. Based on the
relationships (14) one can easily write down general asymptotic as λ → 0 gradient
expressions ∇h(tk)(l̃) ∈ G̃,

∇h(tk)(l̃) =
〈
∇h(tk)(l), ∂/∂x

〉
, ∇h(tk)(l) ∼

∑
j∈Z+

λj−1φ
(k)
j (l), (16)
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where φ
(k)
0 (l) =

{∑
s=0,n C

s
kj(t)xs : j = 0, n

}
for all k = 0, n. Taking into

account the expressions (15), a seed element l̃ ∈ G̃∗ can be represented in the form
l̃ = ⟨l, dx⟩, l = l0+λ−1l−1, a priori generating asymptotic as λ → 0 solutions (16)
of the determining equation (14). Really, substituting expansions (16) into (14),
one obtains that〈

∂

∂x
, ◦φ(k)

0

〉
l−1 +

〈
φ
(k)
0 ,

∂

∂x

〉
l−1 +

〈
l−1,

( ∂

∂x
φ
(k)
0

)〉
= 0,〈

∂

∂x
, ◦φ(k)

0

〉
l0 +

〈
∂

∂x
, ◦φ(k)

1

〉
l−1 +

〈
φ
(k)
1 ,

∂

∂x

〉
l−1

+

〈
φ
(k)
0 ,

∂

∂x

〉
l0 +

〈
l0,

( ∂

∂x
φ
(k)
0

)〉
+

〈
l−1,

( ∂

∂x
φ
(k)
1

)〉
= 0, . . . ,

(17)

and so on for any k = 0, n. As an example, one can take a simplest linear in
x ∈ Tn+1 solution to the first equation of (17) and given by the vector expression
l−1 =

∑
s=0,n l̄

s
−1(t)xs, where the matrix l̄−1 :=

{
l̄
(s)
−1,j(t) : j, s = 0, n

}
satisfies the

matrix equation (trCk)l̄−1+Cᵀ
k l̄−1+ l̄−1Ck = 0 for any k = 0, n. The latter means

that if trCk ̸= 0, k = 0, n, we need to take such a matrix l̄−1 ∈ EndEn+1, for which
the matrix equation l̄−1 + l̄−1C̄j + C̄ᵀ

j l̄−1 = 0 possesses exactly n ∈ Z+ linearly
independent solutions

{
C̄k ∈ EndEn+1 : k = 0, n

}
, determining the matrices

Ck ∈ EndEn+1 as Ck = ξkCk for arbitrary ξk ∈ R\{0} and every k = 0, n.Whence
we can derive that the resulting Casimir functionals h(tk) ∈ I(G̃∗), k = 0, n, are
functionally independent and generate independent and commuting Hamiltonian
flows (11). The case trCk = 0 for all k = 0, n results in the equation l̄−1Ck +
Cᵀ

k l̄−1 = 0,which for a suitably chosen matrix l̄−1 ∈ EndEn+1 also provides n ∈ Z+

linearly independent solutions
{
Ck ∈ EndEn+1 : k = 0, n

}
and where the sign "ᵀ"

means the usual matrix transposition. The general case trCk ̸= 0 for all k = 1, p
and trCk = 0 for all k = p+ 0, n and some p ∈ {0, 2, . . . , n} reduces simply to
finding such a matrix l̄−1 ∈ EndEn+1, for which the matrix system

l̄−1 + l̄−1C̄j + C̄ᵀ
j l̄−1 = 0 for j = 1, p,

l̄−1C̄j + C̄ᵀ
j l̄−1 = 0 for j = p+ 0, n

(18)

possesses exactly p ∈ Z+ linearly independent solutions
{
C̄k ∈ EndEn+1 : k =

1, p
}
and (n − p) ∈ Z+ independent solutions

{
Ck ∈ EndEn+1 : k = p+ 0, n

}
,

respectively. Based on the obtained this way matrix l̄−1 ∈ EndEn+1 one can
successively proceed to finding a next matrix element l0 ∈ EndEn+1, solving
the second equation of (17), depending on the unknown, yet arbitrary, elements
φ
(k)
1 , k = 0, n. For the vector l0 ∈ EndEn+1 to be obtained analytically, there to be

taken into account compatibility conditions stemming from the second equation
of (17). Before analyzing this and related problems, let us formulate the results
above as the next proposition.
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Proposition 4. The linear in x ∈ Tn+1 solution l−1 =
∑

s=0,n l̄
s
−1(t)xs ∈ En+1 to

the first determining equation of (17) is, in general, generated by a matrix l̄−1 ∈
EndEn+1, such that the matrix system (18) for some p = 0, n possesses exactly
p ∈ {0, 1, 2, . . . , n} linearly independent solutions

{
C̄k ∈ EndEn+1 : k = 0, p

}
and

(n − p) ∈ {0, 1, 2, . . . , n} independent solutions
{
Ck ∈ EndEn+1 : k = p+ 0, n

}
,

respectively.

The preceding, linear in x ∈ Tn+1 solution, l−1 =
∑

s=0,n l̄
s
−1(t)xs ∈ En+1

does not, evidently, cover all possible solutions to the determining equations (17),
exactly depending on the structural matrices Ck(t) ∈ EndEn+1, k = 0, n, and t ∈
Rn+1. To analyze the general case, let us rewrite, preliminarily, the first equation
of (17) as ∑

s=0,n

(Ckx)s
∂l−1,j

∂xs
+

∑
s=0,n

Cj
ksl−1,s +

( ∑
s=0,n

Cs
ks

)
l−1,j = 0, (19)

where j = 0, n and a vector l−1 :=
{
l−1,j(x) ∈ R : s = 0, n

}
∈ En+1. We

have obtained a set of linear nonuniform vector field equations (19) with coef-
ficients depending both on the vector x ∈ Tn+1 and on the structure matrices
Ck(t) ∈ EndEn+1, k = 0, n. The necessary condition for the solvability of the vec-
tor field equations (19) consists in existence of a common set of first integrals for
the system of characteristic equations ∂xj

∂τk
=

∑
s=0,n C

s
kjxswith respect to evolu-

tion parameters τk ∈ R for all k, j = 0, n. Based on the corresponding compatible
set of the first integrals for γj(x;C1, C2, . . . , Cn), j = 1, n, one can successfully
solve the determining nonuniform vector fields equations (19) for the searched
vector l−1 ∈ En+1, if to take additionally into account the next set of compatible
linear characteristic equations

∂l−1

∂τk
+ Cᵀ

k l̄−1 + l̄−1Ck = 0 (20)

for all k = 0, n. The compatible system (20) also generates a common set of
first integrals µj(l

(1)
−1, l

(2)
−1, . . . , l

(n)
−1 ), j = 1, n, which make it possible to construct

general solutions to the vector field equations (19) in the form

Φ(k)(γ1,γ2, . . . , γn;µ1,µ2, . . . , µn) = 0,

where smooth mappings Φ(k) : Rn × Rn → R, k = 1, n, are such that

det

(
∂Φ(k)

∂µj
,
∂Φ(k)

∂γs

)
j,s=1,n

̸= 0

for any k = 1, n. Returning now back to the component l0 ∈ En+1, we need
to mention, taking into account that the expansion (16) is a priori infinite with
the nonzero vector components φ(k)

j ∈ En+1, j ∈ Z+, for one k = 0, n, it could be
chosen as an arbitrary nonzero functional vector, allowing to calculate successively
the mentioned above infinite hierarchy of vector components from equations (17).
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Now, based on the determined this way seed element l̃ = ⟨l0 + λ−1l−1, dx⟩ ∈ G̃∗,
one can construct the related evolution flows (11) in the following equivalent vector
form:

∂

∂tj

(
l0 + λ−1l−1

)
=

〈
∂

∂x
, ◦∇h(tk)(l)−

〉(
l0 + λ−1l−1

)
+

〈(
l0 + λ−1l−1

)
,
∂

∂x

(
∇h(tk)(l)−

)〉
, (21)

which is a priori compatible for any j = 0, n and all λ ∈ C\{0}. Taking into
account that element l−1 ∈ En+1 depends explicitly both on the vector x ∈ Tn+1

and on the set of compatible structure matrices Ck ∈ EndEn+1, k = 0, n, it is
easy to observe that the system of evolution equations (21) can be equivalently
rewritten as

∂Ck

∂tj
= Fkj(C1, C2, . . . , Cn) (22)

for some n(n+ 1)/2 ∈ Z+ matrix symmetric functions
Fkj : (En+1)n+1 → EndEn+1, j, k = 0, n,

solutions to which solve the initial problem of describing this set of structure
matrices, satisfying the oriented associativity equations (3). The obtained results
one can formulate as the following proposition.

Proposition 5. A general solution to the oriented associativity equations (3), pro-
vided by the set of evolution equations (22), depends on n ∈ Z+ functional param-
eters, stemming from a priori nonzero seed component l−1 ∈ En+1, entering the
evolution flows (21).

Taking into account the linear representation l−1 =
∑

s=0,n l̄
s
−1(t)xs, one can

similarly put

φ
(k)
1 (l) =

{ ∑
s=0,n

Ds
kj(t)xs : j = 0, n

}
(23)

with suitably chosen quadratic matrices Dk :=
{
Ds

kj(t) : j, s = 0, n
}
, k = 0, n, and

obtain a special vector solution

l0 =

{ ∑
s=0,n

l̄s0,j(t)xs : j = 0, n

}
, (24)

also linear in x ∈ Tn+1, where the matrix l̄0 :=
{
l̄s0,j(t) : j, s = 0, n

}
∈ EndEn+1

satisfies, owing to (17), the following matrix equation:(
trCk

)
l̄0 + (trDk)l̄−1 + Cᵀ

k l̄0 + l̄0Ck +Dᵀ
k l̄−1 + l̄−1Dk = 0 (25)

for all k = 0, n. Analytical solutions to the matrix equations (18) and (25) make
it possible to construct the seed vector l =

(
l̄0 + λ−1 l̄−1

)
x ∈ En+1 and derive the

separated evolution equations (22). The realization of this scheme for partial cases
n = 2, 3, and so on, is postponed for another work in progress.
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3. Conclusion
In the work we proposed an effectively enough and algebraically feasible approach
to investigating solutions to the oriented associativity equations, related with com-
mutative and isoassociative algebras, interesting for applications in the quantum
deformation theory and in some other fields of mathematics. Our construction is
based on a version of the Adler–Kostant–Symes scheme, applied to the Lie algebra
of the loop diffeomorphism group of a torus, devised recently in [11] and modified
for the case of the Gauss–Manin displacement equations, depending on a spec-
tral parameter. Their interpretation as characteristic equations for some system
of the Lax–Sato type vector field equations made it possible to apply and suitably
develop the results from [11] and derive the determining separated evolution equa-
tions for the related structure matrices, generating commutative and associative
algebras under regard.
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2+2-Moulton Configuration – rigid and flexible
Naoko Yoshimi

Abstract. We consider a new problem on Moulton configuration. For a given
two-body system, we add two bodies in a way such that (i) the total four-body
system is also in a state of collinear central configuration without changing
the positions of original two bodies and (ii) the initial two-body system keeps
its motion without any change during the process. We show the existence of
this configurations in a general way. We also pose a flexible version of this
problem by modifying the condition (ii) and we also find solutions to the
second problem.

Mathematics Subject Classification (2000). Primary 70F15; Secondary 70F10.
Keywords. Collinear central configuration, four-body problem, celestial me-
chanics.

1. Introduction
Solutions of Newtonian n-body problem on a line are called a Moulton configura-
tion, which will be also abbreviated as M.c., and they become collinear central
configuration, that is, the ratios of the distances of the bodies from the cen-
ter of mass are constants [2, 4]. F. R. Moulton [4] proved that for a fixed mass
vector m = (m

1
, . . . ,mn) and a fixed ordering of the bodies along the line,

there exists a unique collinear central configuration q = (q1, . . . , qn) with mass
m = (m1, . . . ,mn) (up to translation and scaling), where qi denotes the position
of ith body, i = 1, . . . , n.

In this paper, we consider the following problem [5]. We assume we are given
an M.c. q

A
= (q

A1
, q

A2
) of two bodies A1, A2 such that q

A1
< q

A2
with mass

m
A
= (m

A1
,m

A2
). We add two bodies B1, B2 to A1, A2 on the same line so that

(i) the configuration of A1, A2, B1 and B2 is M.c. without changing the original
positions of A1, A2 and (ii) the motion of A1, A2 are kept invariant during the

c© Switzerland AG 2019Springer Nature

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34072-8_7&domain=pdf


2+2-Moulton Configuration 69

process. More precisely, let qi (i = 1, 2, 3, 4) denote one of the positions of A1, A2,
B1 and B2, different from each other, and mi be its mass, respectively.

Definition 1 (2+2-Moulton configuration). We call q = (q1, q2, q3, q4) with m =
(m1,m2,m3,m4) a “2+2-Moulton configuration” for two bodies A1 and A2 when
it satisfies the following conditions:

(i) A1, A2 and B1 and B2 are in Moulton configuration and the configuration
of A1, A2 is equal to the original one q

A
with m

A
.

(ii) The center of mass of A1, A2, B1 and B2 is equal to that of A1, A2, and the
motion of A1, A2 is the same as the original one.

In [5] we have shown an existence of 2+2-M.c. In this paper we give a more
general proof of this theorem as follows.

Theorem 2 (2+2-Moulton configuration). For a given Moulton configuration q
A
=

(q
A1

, q
A2

) with m
A
= (m

A1
,m

A2
),

(i) there exist three 2+2-Moulton configurations,
(ii) each mass of the added bodies is zero.

We also consider the situation such that only the condition (i) of Definition 1
is satisfied, namely A1, A2, B1 and B2 is in Moulton configuration, while the
configuration of A1, A2 is the same as the original one but their motion is not nec-
essarily equal to the original one. The 2+2-Moulton configuration in Definition 1
can be regarded as a strong or rigid version and the following Definition may give
2+2-Moulton configuration of weak or flexible version. The second main theorem
of this paper is on an existence of this general configuration as follows.

Definition 3 (2+2-weak Moulton configuration). We call q with m a “2+2-weak
Moulton configuration” for q

A
with m

A
when it satisfies only the condition (i) of

Definition 1.

Theorem 4. For a Moulton configuration q
A
= (q

A1
, q

A2
) with m

A
= (m

A1
,m

A2
),

there is a domain of R2 of the configurations of added bodies such that for every
configuration of the domain, there exists a 2+2-weak Moulton configuration having
strictly positive masses.

2. Equations for 2+2-Moulton configuration
Collinear central configuration. We consider n bodies lying on a straight line which
give a collinear solution of the Newtonian n-body problem. It is known [4] that the
ratios of the distances of the bodies from the center of mass are constant. Then
we can divide the equation into that of the distances and that of the ratios, and
the problem for ratios, namely, the problem of collinear central configuration, is
given as follows (cf. [1, 4, 5]). Let q = (q1, . . . , qn) and m = (m1, . . . ,mn) denote
their configuration and mass vector, respectively. We consider a real number c



70 N. Yoshimi

representing the center of mass and set c = (c, . . . , c) ∈ Rn. Then q is a collinear
central configuration, or a Moulton configuration, when it satisfies the equation

A · tm+ λt(q− c) = 0 for some λ ∈ R, (1)

where A is a skew-symmetric matrix defined by A = (aij), aij = (qi − qj)
−2 for

i < j, and aii = 0, aji = −aij . The constant
√
λ denotes an angular velocity of

the system (cf. [1, 4]) and determines the equation for the distances (cf. [4, 5]).
It is known that any configuration of two bodies is always a collinear central
configuration.
Equations for n = 2. Let q

A
= (q

A1
, q

A2
) be the configuration of two bodies

A1, A2 and let m
A
= (m

A1
,m

A2
) be its mass vector such that m

Ai
> 0, i = 1, 2.

We assume that q
A1

< q
A2

. Then equation (1) is written explicitly as(
m

A1

m
A2

)
=

λ
A

a12

(
q
A2

− c
A

c
A
− q

A1

)
, (2)

where c
A

is the center of mass, satisfying q
A1

< c
A
< q

A2
.

Equation for n = 4. Let q = (q1, q2, q3, q4) be the configuration of four bodies
such that q1 < q2 < q3 < q4 and let m = (m1,m2,m3,m4) be its mass vector. As
to 2+2-Moulton configuration, we consider mi ≥ 0, i = 1, . . . , 4. For n = 4, the
coefficient matrix is invertible and the inverse is given A−1 = B/P in (3) below.
Then equation (1) is written explicitly as

m1

m2

m3

m4

 = − λ

P


0 −a34 a24 −a23
a34 0 −a14 a13
−a24 a14 0 −a12
a23 −a13 a12 0



q1 − c
q2 − c
q3 − c
q4 − c

 , (3)

where P = a12a34 − a13a24 + a14a23 is the Pfaffian of A.

3. Proof of Theorem 2
Now suppose we are given two bodies A1, A2 with a Moulton configuration q

A
=

(q
A1

, q
A2

) and the mass m
A
= (m

A1
, m

A2
) such that q

A1
< q

A2
and m

A1
, m

A2
> 0.

We add two bodies B1, B2 with masses m
B1

, m
B2

on the line containing A1, A2

so that A1, A2, B1 and B2 give a 2+2-Moulton configuration for two bodies A1,
A2.

We set the distance of q
A1

and q
A2

to one unit and c
A
= 0 by scaling and

translation for simplicity, then equation (2) is written as

m
A1

= λ
A
q
A2

, m
A2

= −λ
A
q
A1

(4)

because a12 = (q
A2

− q
A1

)−2 = 1.
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Condition (i) of Definition 1. By the condition, the four bodies are in a Moulton
configuration and then satisfy equation (3). Using a convention such that aij =
−aji (1 ≤ i, j ≤ 4) for the components of the coefficient matrix A, we can write
the equation in the form

mi = −λ(αi − cβi)/P, (5)
where αi, βi are the ith components of B tq and B t(1, 1, 1, 1), respectively, where
B/P = A−1 (see (3)), and are written as

αi = (−1)i
∑
(j,k,l)

ajkql, βi = (−1)i
∑
(j,k,l)

ajk, 1 ≤ i, j, k, l ≤ 4,

and
∑

(j,k,l) is a cyclic summation.
Now we suppose A1 is the ith body and A2 is the jth body among qi, i =

1, . . . , 4. Then m
A1

= mi, mA2
= mj (1 ≤ i < j ≤ 4), and thus by (4) condition (i)

is equivalent to the equation(
mi

mj

)
= − λ

P

((
αi

αj

)
− c

(
βi

βj

))
=

(
m

A1

m
A2

)
= λ

A

(
qj
−qi

)
. (6)

From this equation we obtain

c =
αiqi + αjqj
βiqi + βjqj

, λ = λ
A
P

βiqi + βjqj
αjβi − αiβj

.

Then equation (5) yields the masses of the added bodies are given as

mk =
λ

A

αjβi − αiβj
((αiqi + αjqj)βk − (βiqi + βjqj)αk) , k ̸= i, j. (7)

Condition (ii) of Definition 1. This condition is written explicitly as c = 0 and
λ = λ

A
, which gives the equations

αiqi + αjqj = 0, P (βiqi + βjqj) = αjβi − αiβj . (8)

Thus, B
i

(i = 1, 2) give a 2+2-Moulton configuration if and only if (q
B1

, q
B2

)

satisfies equations (6) and (8).
We remark here that by a simple calculation equation (8) gives αk = αl = 0,

which plays an important role afterwards.
Proof of Theorem 2. Now we discuss the existence of q

B1
, q

B2
satisfying equa-

tions (6) and (8) in the following six cases:

Case 1: q
B1

< q
B2

< q
A1

< q
A2

; Case 2: q
B1

< q
A1

< q
B2

< q
A2

;
Case 3: q

B1
< q

A1
< q

A2
< q

B2
; Case 4: q

A1
< q

B1
< q

B2
< q

A2
;

Case 5: q
A1

< q
B1

< q
A2

< q
B2

; Case 6: q
A1

< q
A2

< q
B1

< q
B2

.

First, a direct calculation gives the following.

Lemma 5. Equation (8) yields αi = −Pqj, αj = Pqi.
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Case 1: q
B1

< q
B2

< q
A1

< q
A2

. In this case (q1, q2, q3, q4) = (q
B1

, q
B2

, q
A1

, q
A2

).
Applying Lemma 5 gives −Pq4 = α3 = (−1)3(a41q2+a12q4+a24q1), Pq3 = α4 =
(−1)4(a12q3 + a23q1 + a31q2), and then we have a24q1 − a14q2 = (P − a12)q4 and
a23q1 − a13q2 = (P − a12)q3. From these relations we easily obtain q

B1
= q1 =

a14q3 − a13q4, q
B2

= q2 = a24q3 − a23q4, which yield q
B1

= q
B2

. Actually q
B1

, q
B2

are the solutions of the following equation:

f(x) = x−
q
A1

(x− q
A2

)2
+

q
A2

(x− q
A1

)2
= 0, x < q

A1
< q

A2
.

Notice q
A1

< c
A

= 0 < q
A2

and f(x) is strictly increasing for x < q
A1

. Since
limx→−∞ f(x) = −∞ and limx→q

A1
,x<q

A1
f(x) = +∞, we obtain the unique solu-

tion for f(x) = 0, x < q
A1

, and this induces q
B1

= q
B2

which contradicts q
B1

̸= q
B2

.
Therefore we have no 2+2-Moulton configuration in case 1. We can show similar
result in case 4 and 6, and thus no 2+2-Moulton configurations for these cases.
Case 2: q

B1
< q

A1
< q

B2
< q

A2
. In this case (q1, q2, q3, q4) = (q

B1
, q

A1
, q

B2
, q

A2
)

and similarly as in case 1, we obtain q
B1

= q1 = a14q2 − a12q4, q
B2

= q3 =
a34q2+ a23q4. Note here that q1 = a14q2− a12q4, q3 = a34q2+ a23q4 are equivalent
to α3 = 0, α1 = 0, respectively, since a24 = 1.

Thus q
B1

, q
B2

are respectively solutions of the following equations:

f21(x) = x−
q
A1

(x− q
A2

)2
+

q
A2

(x− q
A1

)2
= 0, x < q

A1
,

f23(x) = x−
q
A1

(x− q
A2

)2
−

q
A2

(q
A1

− x)2
= 0, q

A1
< x < q

A2
.

These functions are strictly increasing because df21/dx > 0 for x < q
A1

, df23/dx >
0 when q

A1
< x < q

A2
, and limx→−∞ f21 = −∞, limx→q

A1
f21 = +∞, and

limx→q
A1

f23 = −∞ limx→q
A2

f23 = +∞. Then there is a unique solution (q
B1

, q
B2

)

for the equation above and which gives a 2+2-Moulton configuration. Moreover,
we substitute αiqi + αjqj = 0, αk = 0 (k = 1, 3) into equation (7), and then we
obtain m

Bi
= 0 (i = 1, 2). Thus we obtain Theorem 2 for case 2.

Case 3: q
B1

< q
A1

< q
A2

< q
B2

. In this case (q1, q2, q3, q4) = (q
B1

, q
A1

, q
A2

, q
B2

).
In the same way as in the previous cases we obtain q

B1
= q1 = a13q2 − a12q3,

q
B2

= q4 = a24q3−a34q2. Then q
B1

, q
B2

are the solutions of the following equations

f31(x) = x−
q
A1

(x− q
A2

)2
+

q
A2

(x− q
A1

)2
= 0, x < q

A1
,

f34(x) = x−
q
A2

(q
A1

− x)2
+

q
A1

(q
A2

− x)2
= 0, q

A2
< x.

The functions f31(x), f34(x) are strictly increasing, which yields a unique solution
(q

B1
, q

B2
) for these equations, and then we have a unique 2+2-M.c..

Case 5: q
A1

< q
B1

< q
A2

< q
B2

. In this case we also have a unique 2+2-M.c. by
means of the same argument as in cases 1 and 3.
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For cases 3 and 5 we can also show αk = 0, and then by using (7) we obtain
Theorem 2.

4. Proof of Theorem 4
In the previous sections, the masses of the added bodies are given as functions of
q
B1

, q
B2

, namely, m
Bi

= m
Bi
(q

B1
, q

B2
) (i = 1, 2). Then (q

B1
, q

B2
) together with

(m
B1

(q
B1

, q
B2

),m
B2

(q
B1

, q
B2

)) is a 2+2-weak Moulton configuration.
In this section, we show there are open domains such that for every (q

B1
, q

B2
)

of the domain, the masses m
Bi
(q

B1
, q

B2
), (i = 1, 2) are strictly positive. For this

purpose, taking account of (7), it is enough to consider the following functions:
m̃

B1
(q

B1
, q

B2
) = m̃k(qk, ql) = c(qk, ql)βk(ql)− αk(ql),

m̃
B2

(q
B1

, q
B2

) = m̃l(qk, ql) = c(qk, ql)βl(qk)− αl(qk) (1 ≤ k < l ≤ 4).

We notice that the function αk depends only on ql and then ∂αk

∂qk
(ql) = 0. Also

remark m
Bi

> 0 if and only if m̃
Bi

> 0 since λ/P > 0.
Now we consider the Jacobian of J = det

(
∂m̃k/∂qk ∂m̃k/∂ql
∂m̃l/∂qk ∂m̃l/∂ql

)
. Then it suffices

to show J ̸= 0 at the point (q
B1

, q
B2

) such that c = c
A
= 0 because this yields the

existence the desired domain in the neighborhood of 2+2-Moulton configuration.
Using c = 0, ∂αk

∂qk
(ql) = 0 and ∂αl

∂ql
(qk) = 0, we obtain

J =
∂αk

∂ql
(ql)

(
∂c

∂qk
(qk, ql) · βl −

∂αl

∂qk
(qk)

)
+

∂c

∂ql
(qk, ql) ·

∂αl

∂qk
(qk) · βk.

We note here that αiqi+αjqj = −αkqk−αlql because q t(α1, α2, α3, α4) = qB tq =
0 since B is skew-symmetric matrix B = A−1P , and when c = 0, we have αiqi +
αjqj = 0 and αk = αl = 0 from equation (8). Therefore we obtain

∂c

∂qk
=

1

βiqi + βjqj

(
∂

∂qk
(−αkqk − αlql)

)
=

−α
(k)
l ql

βiqi + βjqj
,

where α
(k)
l = ∂αl/∂qk and so on. Similarly, the numerator of ∂c/∂ql is equal

to −α
(l)
k qk. Then substituting these into the right side of the Jacobian J gives

J = − α
(l)
k α

(k)
l

βiqi+βjqj

∑4
t=1 βtqt ̸= 0 because α

(l)
k ̸= 0, α(k)

l ̸= 0 and
∑4

t=1 βtqt > 0.
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Melnikov functions in the rigid body dynamics

Paweł Lubowiecki and Henryk Żołądek

Abstract. We review our recent results about perturbations of two cases in
the rigid body dynamics: the Hess–Appelrot case and the Lagrange case.

Mathematics Subject Classification (2000). Primary: 05C38, 15A15; Secondary:
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nikov integral.

1. The Hess–Appelrot and Lagrange cases
The Euler–Poisson system (EP system) system

Ṁ = M ×Ω− Γ×K, Γ̇ = Γ×Ω (1)
describes the motion of a rigid body in a coordinate system associated with the
body (see [3]). Above M = IΩ = (I1Ω1, I2Ω2, I3Ω3) is the angular momentum,
Ω is the angular velocity, Γ is the unit vector in the direction of the gravity force
and K is a constant vector associated with the center of mass of the body.

System (1) is Hamiltonian with respect to certain Poisson structure with
the Casimir functions |Γ|2 (which we assume equal to 1) and (Γ,M) (the minus
vertical component of the angular momentum, −m3) with the total energy H =
1
2 (M ,Ω)− (K,Γ) (equal to E) as the Hamilton function.

The Hess–Appelrot case (HA case) is defined by the following conditions:

K2 = 0, K1

√
I1(I2 − I3) = K3

√
I3(I1 − I2), (2)

The peculiarity of this case relies upon the existence of the so-called Hess
surface

S = {(K,M) = 0} (3)

H. Ż. was supported by the NCN OPUS Grant No 2017/B/ST1/00931.

c© Switzerland AG 2019Springer Nature
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invariant for the EP system. Moreover, one finds that, after restriction to S, the
kinetic energy 1

2 (M ,Ω) equals |M |2/2I2. Next, by expanding the vector Γ in the
orthogonal frame {M ,K,M × K} (i.e., on S) and using the above properties,
one arrives at the following algebraic-differential system

ẋ = 2y, y2 = R(x), (4)

where
x = |M |2, y = (M ,Γ×K)

and R(x) is a cubic polynomial. The latter equations are integrated in terms of
elliptic functions: x = P(t) is the Weierstrass P-function. It is periodic with the
period T1 = 1

2

∮
γ
dx/y, where γ is an oval of the elliptic curve defined in the second

equation of Eq. (4).
System (4) is supplemented with the following equation for the angle-type

variable
u = tan(φ/2) ∈ RP1,

φ = arctan
(

|K|
K3

M2

M1

)
:

u̇ = A(x) +B(x)u2, (5)
where A = b/x + a

√
x, B = b/x − a

√
x for some constants a, b. One can also see

that the Hess surface is a torus.
Inserting the solution x = P(t) into Eq. (5) one obtains a periodic Riccati

equation with the monodromy map (evolution after the period) M(u) = αu+β
γu+δ .

Depending on the situation, the dynamics can be hyperbolic (with two T1-periodic
solutions), parabolic, elliptic quasi-periodic or elliptic periodic (with a second
period T2 = q

pT1, p, q ∈ N, gcd(p, q) = 1).

The Lagrange case lies at the ‘boundary’ of the HA case; namely, assuming
K1 → ∞ and I2 − I1 → 0 in Eq. (2), we arrive at the symmetric top conditions
(see [7]):

K1 = K2 = 0, I2 = I1. (6)
Now the Hess function (K,M) is invariant (equal to K3M3). So, we have a

completely integrable system (in any symplectic leaf {|Γ|2 = 1, (M ,Γ) = −m3})
with a family of 2-dimensional tori

SM3 = {(K,M) = K3M3}. (7)

One has the following analogue of Eqs. (4)–(5):

ẋ = 2y, y2 = R(x), φ̇ = D(x), (8)

where
x = |M |2, φ = argM,

M = M1 + iM2 ∈ C, R(x) is a cubic polynomial and D(x) is a rational functions
(see [7]). As before, the solution x = P(t) is periodic with period T1 (defined by



Melnikov functions in the rigid body dynamics 77

analogous contour integral but along an oval γM3
). The third equation of Eq. (8)

has the solution
φ(t) = φ∗ +

∫ t

0

D(P(s)ds.

So, we have the second period T2 =
∫ T1

0
D(P(t))dt = 1

2

∮ D(x)
y dx.

Finally, one introduces action–angle variables (Ij , φj), where

φ1 =
π

T1

∫
dx

y
, φ2 =

π

T2

(
φ− 1

2

∫
D(x)

dx

y

)
+
T1
T2
φ1. (9)

Above, the integration path lies in the oval γM3
, starts at (x1, 0) and ends at (x, y).

2. Limit cycles for perturbations of the Hess–Appelrot case
We consider perturbations of the HA case, while remaining in the scope of the EP
equations. Thus the HA conditions (2) are used to define two small parameters

ε1 =
K2

|K|
, ε2 =

K2
1

|K|2

(
1

I3
− 1

I2

)
− K2

3

|K|2

(
1

I2
− 1

I1

)
. (10)

We have the following equation for the evolution of the Hess function z =
(K,M):

ż = fM2z − ε1(G1M
2
1 +G2M

2
2 ) + ε2FM1M2 + · · · , (11)

where f, F,G1, G2 are constants.
By the normal hyperbolicity theory, the Hess surface S = {z = 0} survives

the perturbation when the transversal to it contraction or expansion is stronger
than the corresponding dynamics on S. In the case the unperturbed Hess surface
supports periodic elliptic dynamics, with the (p : q) resonance between principal
periods, the normal hyperbolicity property is measured by the following Lyapunov
exponent:

Λ = f

∫ T

0

M2(t)dt, (12)

where T = qT2 is the period.
In the normal hyperbolicity case the equation for the perturbed invariant

surface Sε takes the form z = ε1z1 + ε2z2 + · · · , where the functions z1,2 =
z1,2(x, y, u) are expressed via some integral formulas (which we do not present
here).

We focus our attention on the so-called critical circle subcase of the HA
case, when the oval γ of the elliptic curve y2 = R(x) is degenerated to a point
(x, y) = (x+, 0). The near ovals are of the form

y2 + k2x̂2 = r2, (13)
x̂ = x − x+ + · · · , where the ‘radius’ r ≥ 0 is small and k is a constant (see [5]).
We introduce the angle type variables on the Hess surface by the formulas

ϕ = 2arctan(u
√
B(x+)/A(x+)), ψ = arctan(rx̂/y); (14)
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then we obtain the system

ψ̇ = ν + ar sinψ + · · · ,
φ̇ = µ+ r(b+ c cosϕ) sinψ + · · · ,

(15)

where µ and ν are limit frequencies (provided the dynamics is elliptic) and a, b, c
are constants. It is solved by expansion in powers of r.

In [5] the expansion of the Lyapunov exponent (12) was computed. It turns
out that Λ = O(r2) when the resonance (p : q) 6= (1 : q) and in the case of (1 : q)
resonance we have

Λ = const · r cosψ∗ + · · · , (16)

for the initial condition ψ(0) = ψ∗ of the periodic trajectory. It means that we
have the normal hyperbolicity outside two trajectories.

The vector field restricted to the perturbed invariant surface Sε is not in-
tegrable and has some limit cycles. The condition for these limit cycles is the
following equation for their initial conditions ψ∗ = ψ

(j)
∗ :

J(ψ∗) = ε1J1(ψ∗) + (ε2/r)J2(ψ∗) = 0. (17)

Here

J1,2 = −
∫ 2qπ

0

ln | cosψ| · Ξ
′′
(ψ)dψ,

are Melnikov type integrals with

Ξ1 = A

(
1− ρ cosϕ

ρ− cosϕ

)2

+B cosψ∗ · Ξ2,

Ξ2 =
1

cosψ∗
(ρ− cosϕ)κ−1(C −D cosϕ), ϕ = (ϕ− ϕ∗)/q,

where A,B,C,D, ϱ, κ are some constants.

Theorem 1. The number of zeroes of the function in (17) is uniformly bounded
from the above by a constant not depending on the parameters of the problem.

Moreover, it obeys the following partial bound:

≤ 56 + 6N(κ), (18)

where N(κ) = d−2(κ+ 1)e (κ < −1), = 0 (−1 ≤ κ ≤ 0), dκ/qe (κ > 0).

The second statement of this theorem was proved in [6] using extension of the
functions J1,2 to the complex domain and applying the argument principle. Note
that this estimate depends on the parameter κ and is unbounded. The existence
of a uniform bound was proved in [7].
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3. Perturbations of the Lagrange case
Recall that the KAM theory predicts that most of the invariant tori of a completely
integrable system survive a perturbation (in the class of Hamiltonian systems). In
the Lagrange case the survived tori are among those with irrational ratio T2/T1
of the principal periods.

In [7] the problem of perturbations of resonant tori, i.e., those with rational
T2/T1 = q/p, was considered. The perturbation parameters are following:

ε1 = K1, ε2 = K2, ε3 = 1/I2 − 1/I1. (19)
Denote also

ϵ = ε1 + iε2 = |ϵ|eiθ ∈ C.
It is expected that some isolated periodic trajectories of period T = qT1

will appear. We have found that these periodic trajectories correspond to zeroes
φ∗ = φ

(j)
∗ of the following Melnikov type integral

I(φ∗) = C1 |ϵ|
∫ T

0

√
P(t) sin (φ(t)− θ) + C2ε3

∫ T

0

P(t) sin 2φ(t), (20)

where φ(t) = φ∗ +
∫ t

0
D (P(s)) ds and x = P(t) is the solution to the equation

ẋ = 2
√
R(x) (via the Weierstrass elliptic function) and C1,2 are constants.

Moreover, if I(φ(j)
∗ ) > 0 then the corresponding solution is hyperbolic (of

saddle type) and, if I(φ(j)
∗ ) < 0 then it is elliptic.

Finally, we considered the situation near the critical circle subcase, i.e., when
the oval γM3 is a small ellipse around a point (x+, 0).

Theorem 2. Under some generic assumptions, perturbations of the Lagrange case
near the critical circle subcase generate isolated periodic solutions out of p : q
resonant tori only in the cases of 1 : 1 and 1 : 2 resonances modulo O(r2) and
modulo O(|ε|2), where r is the smaller ‘radius’ of the torus. Moreover, there are
only two such periodic trajectories, one hyperbolic and one elliptic.

The analysis suggests that, using first order (linear in ε) Melnikov inte-
gral (20), only p : 1 and p : 2 resonant periodic trajectories can be found. It is
expected that other types of periodic orbits could be revealed using higher order
Melnikov functions.

4. Chaotic dynamics for perturbation of separatrix connection
subcase of the HA case

Here we consider another situation in the HA case, where calculations can be
carried out explicitly. This is the so-called separatrix connection subcase, which
corresponds to the situation when the oval γ becomes a loop with vertex at (x, y) =
(0, 0) (see [2, 4]). For the 4-dimensional system (in the symplectic leaf) the latter
vertex corresponds to a singular point O with a pair of real eigenvalues ±σ, σ =
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|K|/I2, of multiplicity two each and with trivial Jordan form. The point O

has two 2-dimensional separatrices: stable Ws and unstable Wu. Globally, they
coincide and form a separatrix connection S, which is the Hess surface.

The solutions x(t), u(t) (for x, u defined in Section 1), which lie in S, are
given by

x =
c2

cosh2 µt
,

u− 1

u+ 1
= q

(
e−µt + i

e−µt − i

)iν

, (21)

where q = u(−∞)−1
u(−∞)+1 ∈ RP1 measures the initial direction in Wu of the correspond-

ing phase curve in S and c, µ, ν are constants.
Consider a perturbation of this situation. One parameter is

ε0 = (M ,K) (22)

and other are like in Eq. (10).
In order to study the dynamics, we consider a Poincaré type map defined

as follows. Take two sections to the phase curves: ∆ transversal to Wu and Σ
transversal to Ws. They are of the form S1 × D2. Let Q : Σ 7→ ∆ and R : ∆ 7→ Σ
be the natural maps defined by intersection of the phase curves with these sections.
The Poincaré map is T = Q ◦R.

The map R measures the splitting of the separatrix connection S. There
remain only finitely many 1-dimensional homoclinic trajectories δqj , such that the
initial directions qj are zeroes of the following Melnikov function:

I (q) = ε0I0(q) + ε1I1(q) + ε2I2(q), (23)

where

I0 = |K|
{
exp

(
f

∫
M2(t; q)dt

)
− 1

}
,

I1 =

∫ (
F1M

2
1 (t; q) + F2M

2
2 (t; q)

)
dt,

I2 = G

∫
M1(t; q)M2(t; q)dt,

where the constants f, F1, F2, G are the same as in Eq. (11), the integrations are
performed along the infinite interval (−∞,∞) and

M1(t; q) =
K3

K

c

coshµt

−2qξ(t)iν

1 + q2ξ(t)2iν
,

M2(t; q) =
c

coshµt

1− q2ξ(t)2iν

1 + q2ξ(t)2iν
,

ξ(t) =
e−µt + i

e−µt − i
.
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The map R (defined via trajectories near O) is responsible for hyperbolic
properties of the Poincaré map. The eigenvalues of the singular point after per-
turbation take the form

λ = ±σ ±
√
D(ε), D(ε) = ε̃22 + 4ε̃21 − 4ε̃20, (24)

where ε̃j = const · εj .
R. Devaney [1] proved that, if the eigenvalues have nonzero imaginary part

and there exists a homoclinic connection, then the Poincaré return map exhibits
a chaotic dynamics (there exists a Smale-type horseshoe). Of course, the first
requirement is satisfied when ε1 = ε2 = 0 6= ε0. One can see that in this case the
Melnikov integral (23) has at least one zero.

Based on this, in [4] we proved the following

Theorem 3. For ε from an open and nonempty cone in R3 with vertex at ε = 0
there exists a compact subset Λ ⊂ ∆, which is invariant and hyperbolic for T , and
T |Λ is topologically conjugate with the Bernoulli shift on N ≥ 2 symbols.

This implies, in particular, that the EP system near the separatrix connection
subcase of the HA case, i.e., for ε from the above subset, does not admit any
additional first integral depending analytically on the coordinates.
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integral quantization of semi-direct product groups for the special case of
E(2). We have added to the original work the analysis of the classical limit.
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1. Introduction

The aim of this contribution is to present an elementary illustration of covariant
integral quantization in the case of semi-direct product groups. In Section 2 we
make a brief description of the method and we then specify to the group E(2).
We first build coherent states for UIR (unitary irreducible representation) of semi-
direct product groups which are square integrable modulo a subgroup. Then, we
implement covariant CS (coherent states) integral quantization for the motion of
a particle on the circle. In this case, the phase space is the cylinder viewed as a left
coset of the Euclidean group E(2). Coherent states issued from fiducial vectors are
labeled by points in the cylinder and also depend on extra parameters. In Section 3
we describe the covariance of the quantization map. In Section 4 we consider some
examples, such as the quantizations of the angular momentum and the calculation
of lower symbols and the classical limit (see Theorem 6). In Section 5, we carry out
the quantization of the 2π-periodic discontinuous angle function, and calculate its
commutator with the angular momentum and the resulting Heisenberg inequality.
Notwithstanding the classical limit, all proofs are omitted, as well as the references,
which can all be found in [1].
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http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34072-8_9&domain=pdf


86 R. Fresneda, J.P. Gazeau and D. Noguera

2. Covariant integral quantizations

Let X ∼ G/H be a homogeneous space viewed as the left coset manifold for the ac-
tion of a Lie group G, where subgroup H is the stabilizer of some point of X. If X is
a symplectic manifold (e.g., a co-adjoint orbit of G), it may be viewed as the phase
space for the dynamics of some system. Let ν be a quasi-invariant measure on X,
that is, dν(g−1x) = λ(g, x)dν(x) (∀g ∈ G) with λ(g1g2, x) = λ(g1, x)λ(g2, g

−1
1 x)

(a cocycle). For a global Borel section σ : X → G of the group, let νσ be the
unique quasi-invariant measure defined by dνσ(x) = λ(σ(x), x) dν(x). We say that
a UIR is square-integrable mod (H,σ) if there exists a density operator ρ, i.e.,
ρ ≥ 0, Tr(ρ) = 1, such that

cρ :=

∫
X

tr (ρ ρσ(x)) dνσ(x) <∞

with ρσ(x) := U(σ(x))ρU(σ(x))†. Then square-integrability mod(H,σ) gives

I =
1

cρ

∫
X

ρσ(x) dνσ(x).

For ρ = |η〉〈η|, |ηx〉 := |U(σg(x))η〉 is a coherent state and η is a “fiducial” vector.
The resolution of the identity allows the covariant integral quantization of

functions (with possible extension to distributions) on X given by the expression

f 7→ Aσf =
1

cρ

∫
X

f(x) ρσ(x) dνσ(x).

Consider sections σg : X → G, g ∈ G, which are covariant translates of σ under
g: σg(x) = gσ(g−1x) = σ(x)h(g, g−1x), where the cocycle h(g, x) belongs to H.
Given dνσg (x) := λ(σg(x), x) dν(x), define ρσg (x) = U(σg(x))ρU(σg(x))†. Then,
for U square-integrable mod(H,σ), the general covariance property of the integral
quantization f 7→ Aσf reads U(g)AσfU(g)† = A

σg
Ul(g)f , where

A
σg
f :=

1

cρ

∫
X

ρσg (x)f(x)dνσg (x) with Ul(g)f(x) = f
(
g−1x

)
.

If ρ = |η〉〈η|, we are working with CS quantization.

2.1. Illustration with E(2)

The group E(2) = R2 o SO(2) = {(r, θ) , r ∈ R2 , θ ∈ [0, 2π)} is equipped with
the composition rule (r, θ)(r′, θ′) = (r + R(θ)r′, θ + θ′) and inverse (r, θ)−1 =

(−R(−θ)r,−θ); R(θ) =

(
cos θ sin θ
sin θ cos θ

)
rotates vectors in the plane by angle θ.1

We denote by L2(S1, dα) the Hilbert space of 2π-periodic complex-valued functions
ψ(α) which are square-integrable on a period interval [α0, α0 + 2π], α0 ∈ R,∫ α0+2π

α0

dα |ψ(α)|2 ≡
∫
S1

dα |ψ(α)|2,

1Sums of angles are always to be understood mod 2π, i.e., θ + θ′ ' (θ + θ′) mod 2π.
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and equipped with the scalar product

〈φ|ψ〉 =

∫
S1

dαψ(α)φ(α).

Given a real number a 6= 0, the action of the unitary irreducible representations
of E(2) on L2(S1, dα) is realized as

L2(S1, dα) 3 ψ(α) 7→ (Ua(r, θ)ψ) (α) = eia(r1 cosα+r2 sinα)ψ(α− θ).

The cotangent bundle T ∗S1 ' (R2 o SO(2))/H ' R× S1 is viewed as the classical
phase space for a particle moving on a circle. Choose H as

H ≡ Hĉ =
{

(x, 0) ∈ E(2) | ĉ · x = 0, ĉ ∈ R2, ‖ĉ‖ = 1, fixed
}
.

The bundle T ∗S1 carries canonical coordinates (p, q) ∈ R × S1 and the invariant
measure is dp dq ≡ dp ∧ dq. Coordinates (p, q) are mapped to E(2) through a
general section σ as R× S1 3 (p, q) 7→ σ(p, q) = (f(p, q), q) ∈ E(2) where f(p, q) is
a function to be determined. We then have:

Theorem 1. Given a unit vector ĉ ∈ R2 there exists a family of affine sections
σ : R × S1 → E(2) defined as σ(p, q) = (R(q)(κκκp + λλλ), q) where κκκ,λλλ ∈ R2 are
constant vectors, and ĉ · κκκ 6= 0. The action of E(2) on its left coset, through
(r, θ)σ(p, q) = σ(p′, q′)(x, 0), ĉ · x = 0, is given by

p′ = p+
1

ĉ · κκκ R(q + θ)ĉ · r and q′ = q + θ.

This action is canonical, dp′ ∧ dq′ = dp ∧ dq.

Definition 2. With our choice of section, the UIR of E(2) with a = 1, and a
choice of fiducial vector η ∈ L2(S1, dα), we define |ηp,q〉 = U(σ(p, q))|η〉, i.e.,

ηp,q(α) = ei[R(q−α)(κκκp+λλλ)]1η(α− q) with

κκκ = κ

(
cos γ
sin γ

)
and λλλ = λ

(
cos ζ
sin ζ

)
.

Theorem 3. The vectors ηp,q form a family of coherent states for E(2) which re-
solves the identity on L2(S1, dα),

I =

∫
R×S1

dp dq

cη
|ηp,q 〉〈ηp,q |,

if η(α) is admissible, i.e., supp η ∈ (γ − π, γ) mod 2π and

0 < cη :=
2π

κ

∫
S1

|η(q)|2
sin(γ − q) dq <∞.
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3. Quantization map and its covariance

With an admissible η, the quantization of a classical observable f(p, q) is defined
as the linear map

f 7→ Aσf =

∫
R×S1

dp dq

cη
f(p, q) |ηp,q 〉〈ηp,q |.

To establish covariance of the quantization map, note that σg : E(2)/Hĉ → E(2)
is a covariant translate of σ under g = (r, θ) ∈ E(2),

σg(p, q) = gσ(g−1(p, q)) = σ(p, q)h(g, g−1(p, q)),

where the cocycle h(g, (p, q)) belongs to Hĉ. That is,

σg(p, q) = (R(q)(κp+ λ), q)

(
R(−q)r− κ R(q)ĉ · r

ĉ · κ , 0

)
.

Then,

U(g)AσfU(g)† = A
σg
Ul(g)f , A

σg
f :=

∫
R×S1

dp dq

cη
f(p, q) |U(σg(p, q)η 〉〈U(σg(p, q)η | ,

with Ul(g)f(p, q) = f
(
g−1(p, q)

)
. The section itself is invariant under pure ro-

tations g = (0, θ). The operator Aσf acts on the Hilbert space L2(S1, dα) as the
integral operator with kernel

Af (α, α′) =
1

cη

∫
S1

dq η(α− q)η(α′ − q)e2iλSζ(α,α′,q)

∫ +∞

−∞
dp ei2κSγ(α,α

′,q)p f(p, q) .

4. Some examples and classical limit

For the quantization of a function of the coordinate q, we have

Proposition 4. For f(p, q) = u(q) with u(q + 2π) = u(q), Au is the multiplication
operator (Auψ)(α) = (Eη;γ ∗ u) (α)ψ(α) where the periodic convolution product on
the circle is defined by

(Eη;γ ∗ u)(α) =

∫ α+π−γ

α−γ
dq Eη;γ(α− q)u(q).

Here Eη;γ(α) is the positive 2π-periodic function

Eη;γ(α) :=
2π

κcη

|η(α)|2
sin(γ − α)

with supp Eη;γ ⊂ (γ − π, γ).

For 0 ≤ γ < π, Eη;γ is a probability distribution on S1.

Proposition 5. If the 2π-periodic function u is bounded on a period interval, then
the 2π-periodic convolution Eη;γ ∗ u is bounded and continuous.
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The quantization is expected to regularize the original u(q) (depending on
the regularity of η). Note the translation covariance mod 2π, U(0, θ)AσfU(0, θ)† =
Aσf(·−θ) which conveys to the quantum description the transition map from one

chart to another one on the circle. Simple trigonometric functions become multi-
plication operators, as is the case with many other approaches, up to the presence
of a multiplicative constant.

For real η, one has (Apψ) (α) =
(

ib
∂

∂α
λa

)
ψ (α), where a and b are

constant. We note that, given η, one can choose the parameter κ such that b = 1
in order to get, up to the addition of an irrelevant constant, the familiar angular
momentum operator −i∂/∂α, with spectrum n ∈ Z. It is also interesting to note
the role played by the parameter λ. It introduces a kind of gauge freedom, and
since it is a free parameter, it can be chosen to be 0.

The semi-classical phase space portrait provided by the covariant or lower
symbol

f̌(p, q) = 〈ηp,q |Af |ηp,q 〉 =

∫
R×S1

dp′dq′

cη
f (p′, q′) |〈ηp′,q′ |ηp,q〉|2 (1)

of the operator Af completes the quantization map f 7→ Af . It is the local average
value of the original f(q′, p′) with respect to the probability distribution (q′, p′) 7→
|〈q, p|q′, p′〉|2, i.e., the modulus squared of the overlap between two CS, on the
phase space equipped with the measure dp′dq′/cη.

The lower symbol for f(p, q) = u(q) is ǔ(q) =
[
|η̃|2 ∗ (Eη;γ ∗ u)

]
(q), where

η̃(α) = η(−α). This convolution is expected to regularize the original u(q). The
lower symbol for f(q, p) = p (with η real) is p̌ = cp + λd, where c and d are
constants. With a fiducial vector η on the circle regularizing the Dirac delta, it is
expected that within the framework of semi-classical analysis that f̌ approaches f
as η becomes more localized.

Theorem 6. The classical limit is obtained by considering the large κ limit (or,
equivalently, ~→ 0) while imposing the condition |η(α)|2 → δ(α− γ+π/2) on the
choice of fiducial vector η. In this case, the asymptotic expression for large κ is
f̌(q, p) = f(q, p) + o(1/κ).

This is proved by applying the stationary phase approximation to the general
expression for the lower symbol (1).

5. The Angle Operator

Quantization of the 2π-periodic and discontinuous angle function a(α) = α for α ∈
[0, 2π) yields the multiplication operator (Aaψ)(α) = (Eη;γ ∗ a) (α)ψ(α). In the
simplified case where λ = 0 and γ = π/2, one has supp η ⊂ (−π/2, π/2) mod 2π.
We choose as fiducial vectors the family of 2π-periodic smooth even functions with
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support [−ε, ε] ⊂ (−π/2, π/2) mod 2π, parametrized by s > 0 and 0 < ε < π/2,

η(α) ≡ η(s,ε)(α) =
1√
εe2s

ωs

(α
ε

)
where es :=

∫ 1

−1
dxωs(x).

Here ωs(x) are the familiar smooth and compactly supported test functions for

distributions ωs(x) = exp
( s

1 x2

)
χ(−1,1)(x). As a matter of fact, the family

of the squares of these functions form a Dirac delta sequence with respect to each

parameter,
(
η(s,ε)

)2
(α) → δ(α) as ε → 0 or as s → ∞. In Figure 1 we present

plots of the spectrum of the angle operator and of its lower symbol.

α
0 π

2
3π
2

2ππ

Eη(s,ε);π2
∗ a

0

π
2

π

3π
2

2π

ε = 0.3
s = 2

ε = 0.4
s = 3.5555

q
0 π

2
3π
2

2ππ

q̌

0

π
2

π

3π
2

2π

ε = 0.3
s = 2

ε = 0.4
s = 3.5555

Figure 1. (Left) The multiplication angle operator
(
Eη(s,ε);π

2
∗ a

)
(α)

coincides with the angle function a inside [ε, 2π−ε], while outside that interval
the function Fη(s,ε);π

2
(α) regularizes a ; (Right) A plot of the lower symbol

q̌(q) of the angle operator Aa .

For λ = 0 and ψ(α) ∈ L2(S1, dα), one has(
[Ap, Aa ]ψ

)
(α) = −ic (1− 2πEη;γ(α))ψ(α) . (2)

The constant factor c can be made equal to 1. This is a regularisation of the Dirac
comb (−i + i2πδ(α)), which is recovered in the limit of the sequence of fiducial
vectors with the choice κ = 1 (for further details, see [1]).

One main issue regarding the definition of an acceptable angle operator con-
cerns the quantum angular dispersion versus the quantum angular momentum one.
The Heisenberg inequality computed with the coherent states ηp,q is

∆Ap ∆Aa >
1

2
c

∣∣∣∣1− 2π

((
η̃(s,ε)

)2
∗ Eη(s,ε);π2

)
(q)

∣∣∣∣ .
In Figure 2 we show saturation plots for the uncertainty relations.
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L.H.S.-R.H.S.

q
0 π

2
3π
2

2ππ0

0.5

1
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s = 10; ε = 0.35

s = 16.5306; ε = 0.45

Figure 2. Differences between the left- and right-hand side of the uncer-

tainty relation with respect to the coherent state |η(s,ε)p,q 〉 for various τ = s/ε2.

The state |η(s,ε)p,q 〉 saturates the Heisenberg inequality for large τ = s/ε2

6. Conclusion

The angle function a(α) = α for α ∈ [0, 2π) is mapped to a self-adjoint multiplica-
tion angle operator Aa . The continuous spectrum of Aa is [π−m(s, ε), π+m(s, ε)],
where m(s, ε) → π as ε → 0 or s → ∞. Thus systems like the classical pendulum
or the torsion spring (where the angular motion is restricted) can be quantized
without major issues. We present the (non-canonical) commutation rule between
the angle and momentum operators, as well as an expression for the uncertainty
relation between them. We also show how the classical limit can be obtained. How-
ever, a thorough study of the semi-classical limit, like the link between Poisson
brackets and commutators is part of a future program.
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Abstract. We study deformation quantization for a complex supermanifold.
Taking up a super twistor space whose body is a Calabi–Yau manifold con-
cretely, we construct a double fibration and demonstrate that a certain super
Calabi–Yau twistor space is deformation quantizable via the double fibration.
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32L25.
Keywords. Deformation quantization, complex supermanifold, twistor theory,
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1. Introduction
Deformation quantization is one approach to obtaining a quantum system from
a given classical system. The origin of it goes back to the work of F. Bayen, M.
Flato, C. Fronsdal, A. Lichnerowicz and D. Sternheimer [2], based on Weyl’s quan-
tization [14]. The study of deformation quantization has been developed until now
by many researchers: the existence of a star product for any symplectic manifold
was shown by M. De Wilde and P. B. Lecomte [4]. Proofs of the existence, using
symplectic connections and Čech cohomology, were given by B. V. Fedosov [5] and
H. Omori, Y. Maeda and A. Yoshioka [11]. The existence and classification of the
star product for any Poisson manifold was established by M. Kontsevich [6]. Re-
cently, deformation quantization for a holomorphic Poisson manifold is discussed
by N. Miyazaki [10] in algebraic/analytic categories with a certain condition.

We are mainly concerned with a supergeometry and quantization of a super-
manifold. In the article, we focus on a super Calabi–Yau twistor space which is

c© Switzerland AG 2019Springer Nature
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referred by M. Wolf [15] and discuss deformation quantization of it. One of rep-
resentative examples of super Calabi–Yau twistor spaces is a complex projective
supermanifold P3|n. After giving a short overview on complex supermanifolds and
fundamental examples of super Calabi–Yau twistor spaces, we define deformation
quantization for Poisson supermanifolds and construct a double fibration from a
complex supermanifold C4|8 × P1 to P3|4 and C4|8. By using the double fibration,
we show that the supermanifold P3|4 is deformation quantizable.

2. Super Calabi–Yau twistor spaces
We begin this section by recalling the definition of a supermanifold. We suppose
that the reader has fundamental knowledge concerning superalgebras. For the
further information for supermanifolds, we refer the reader to [7, 8, 9].

Let m,n be natural numbers. Let θ1, . . . , θn be generators of a Grassmann
algebra, which satisfy the relations θiθj + θjθi = 0 for each i, j = 1, . . . , n. Define
a sheaf Om|n of commutative superalgebras on Cm as

U 7−→ Om|n(U) := O(U)[θ1, . . . , θn]

for any open set U ⊂ Cm. Here, O(U)[θ1, . . . , θn] is a Grassmann algebra with
θ1, . . . , θn over O(U), the space of holomorphic functions on U . We denote a ringed
space (Cm, Om|n) by Cm|n.

Definition 1. A complex supermanifold of dimension (m|n) is a pair (M,AM ) of an
m-dimensional complex manifold M and a sheaf AM of supercommutative rings
on M such that every point in M has an open neighborhood which is isomorphic
to some open subset of Cm|n as a ringed space.

When there is no confusion, we sometimes denote by Mm|n a complex super-
manifold (M,AM ) of dimension (m|n), and often express a point of a supermani-
fold as

(z | θ) := (z1, z2, . . . , zm | θ1, θ2, . . . , θn).
using the local coordinates z1, z2, . . . , zn of M . By the definition, local sections f
in AM (U) are given in the form

f(z | θ) =
n∑

k=1

∑
1≤i1<i2<···<ik≤n

fi1i2...ik(z) θ
i1θi2 · · · θik , (1)

where fi1i2...ik(z) are holomorphic functions on an open set U of M .

Obviously, Cm|n is a complex supermanifold. There are some complex super-
manifolds other than it as we shall show as below. A complex supermanifold on
which we focus in the article is the one called a super Calabi–Yau twistor space.

Definition 2. A complex supermanifold M3|n of dimension (3 |n) is called a super
Calabi–Yau twistor space if
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(1) p : M −→ P1 is a holomorphic vector bundle over a complex projective space
P1;

(2) M has a family of holomorphic section of p whose normal bundle N is iso-
morphic to

OP1(1)⊕OP1(1)⊕
(
Cn ⊗C ΠOP1(1)

)
,

where the letter Π stands for the functor of changing the parity and OP1(1)
denotes the sheaf of sections of the dual of the tautological line bundle over
P1;

(3) M is a Calabi–Yau manifold in the sense that M is a compact Kähler manifold
whose first Chern class is zero.

If those two conditions other than (3) in Definition 2 are satisfied, a complex
supermanifold M3|n is called a super twistor space (see [12]). We introduce two
examples of a super Calabi–Yau twistor space in what follows below.

Example. Let us consider a ringed space

P3|n :=

(
P3,

•∧(
Cn ⊗C OP3(−1)

))
,

where OP3(−1) denotes the sheaf of sections of the tautological line bundle over
a 3-dimensional complex projective space P3. It is a complex supermanifold of
dimension (3 |n), called a (3 |n)-dimensional projective superspace. For the sake
of simplicity, we use the notationOP3|n for the structure sheaf

∧• (Cn⊗COP3(−1)
)
.

A local section of OP3|n is represented as in (1) via a degree (−k) homogeneous
element fi1i2...ik(z). As a result, the complex super projective space P3|n is a super
twistor space.

Furthermore, the first Chern class is calculated to be

c1
(
P3|n) = c1

(
OP3|n ⊗ C4

)
− c1

(
OP3|n ⊗ Cn

)
= (4− n)x

where x = c1
(
OP3(1)⊗OP3|n

)
. From this formula, the super twistor space P3|n is

a super Calabi–Yau twistor space when n = 4.

Example. Let k1, . . . , km+1 ∈ Z. We denote by WPm[k1, k2, . . . , km+1] a quotient
space

(
Cm+1 \ {0}

)
/C× by a C×-action

t · (z1, . . . , zm+1) := (tk1z1, . . . , t
km+1zm+1), t ∈ C×,

and by OWPm(d) the sheaf of germs of holomorphic homogeneous functions on
WPm[k1, k2, . . . , km+1] of degree d ∈ Z. Then, a ringed space

(WPm[k1, k2, . . . , km+1], OWPm|n)

is a complex supermanifold, where

OWPm|n :=

•∧(
OWPm(−ℓ1)⊕ · · · ⊕ OWPm(−ℓn)

)
.
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This is called the weighted projective superspace (see [15, p. 40]), denoted by
WPm|n[k1, k2, . . . , km+1 | ℓ1, ℓ2, . . . , ℓn]. It can be checked that the first Chern class
is given by

c1

(
WPm|n[k1, k2, . . . , km+1 | ℓ1, ℓ2, . . . , ℓn]

)
=

(m+1∑
i=1

ki −
n∑

j=1

lj

)
x, (2)

where x = c1
(
OWPm(1)⊗OWPm|n

)
.

Let us consider the case where all of those integers are 1. We put

Pm|n = WPm|n[1, 1, . . . , 1 | 1, 1, . . . , 1]

and define P3|n := P3|n \P1|n. Remark that its body manifold is just P3 \P1, which
is a C2-bundle over P1. It is shown that

P3|n ∼= OP1(1)⊕OP1(1)⊕
n⊕

ΠOP1(1).

This implies that P3|n is a super twistor space. From formula (2), it follows that
c1(WP3|n) vanishes if n = 4. Therefore, P3|4 is a super Calabi–Yau twistor space.

3. Deformation Quantization of Super Poisson algebras
3.1. Super Poisson algebras
Let (M,AM ) be a complex supermanifold of dimension (m|n). For an open sub-
set U ⊂ M , denote by Λ2(U,AM ) the set of AM (U)-valued bilinear maps on
Ω1(U,AM ) satisfying, for all α, β ∈ Ω1(U,AM ) and f ∈ AM (U),

π(α, β) = (−1)1+|α||β| π(β, α)

and
π(αf, β) = (−1)|f ||β|π(α, β)f.

Here, Ω1(U,AM ) denotes the right AM (U)-module of super differential 1-forms
on U (see [7]). An element π ∈ Λ2(U,AM ) is called a super Poisson structure if
it satisfies [π, π]SN = 0, where [·, ·]SN stands for the super Schouten bracket (see
[1]). It is verified that a super Poisson structure π on Mm|n yields a super Poisson
algebra in a similar way as an ordinary Poisson structure does a Poisson algebra.

A super Poisson algebra is a super vector space A = A0 ⊕A1 equipped with
two multiplications (f, g) 7→ fg and (f, g) 7→ {f, g} which satisfy
(1) {f, g} = −(−1)|f ||g|{g, f};
(2) (−1)|f ||h|{f, {g, h}}+ (−1)|g||f |{g, {h, f}}+ (−1)|h||g|{h, {f, g}} = 0;
(3) {f, gh} = {f, g}h+ (−1)|f ||g|g{f, h}

for any f, g, h ∈ A. Here, |f | denotes a parity for the homogeneous element f .
The bracket {·, ·} is called a super Poisson bracket. A super Poisson bracket is
said to be even if |{f, g}| = |f | + |g|, while it is said to be odd if |{f, g}| =
|f |+ |g|+ 1. A supermanifold (M,AM ) whose structure sheaf AM is a sheaf of a
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super Poisson algebra is called a Poisson supermanifold. For further discussion on
Poisson supermanifolds, refer to [3].

Example. The complex supermanifold Cm|n is a symplectic supermanifold by a
even 2-form

ωCm|n :=

√
−1
2

m∑
i=1

dzi ∧ dz̄i +
1

2

n∑
j=1

(dθj)
2

with respect to the standard coordinates (z1, . . . , zm | θ1, . . . , θn). In a similar man-
ner to an ordinary symplectic manifold, for any f ∈ Om|n(Cm), there is a super
vector field ξf such that ωCm|n(ξf , ·) = df(·). Using those vector fields, we define
a bracket {·, ·} as

{f, g} = ωCm|n(ξf , ξg)

for f, g ∈ Om|n(Cm). The bracket makes a Poisson supermanifold of Cm|n.

Given a super Poisson algebra A, we denote by A[[~]] the space of all formal
power series

∑∞
r=0 fr~r in a parameter ~, where fr ∈ A. We define deformation

quantization for A as follows:

Definition 3. A super Poisson algebra (A, {·, ·}) is said to be deformation quanti-
zable if there exists a product

∗ : A[[~]]×A[[~]] −→ A[[~]]
satisfying the following conditions:
(1) ∗ is bilinear and ~-linear;
(2) f ∗ (g ∗ h) = (f ∗ g) ∗ h for any f, g, h ∈ A[[~]];
(3) If f ∗ g = f · g +

∑∞
r=1 πr(f, g)~r, then π1(f, g) =

1
2{f, g}.

The product ∗ is called the star product or ∗-product (see [2, 5, 6, 11, 16]).
Using ∗, one can get a commutator by putting

[f, g]∗ := f ∗ g − (−1)|f ||g|g ∗ f
for any f, g ∈ A. We say that a Poisson supermanifold (M, AM ) is deformation
quantizable when the sheaf of super Poisson algebra AM is deformation quantiz-
able.

3.2. Main results
Let us consider a complex supermanifold C4|2n. We write xij (i, j = 1, 2) for the
standard coordinates (z1, . . . , z4) of C4 and does θiα (α = 1, 2, . . . , n) for the odd
coordinates (θ1, . . . , θ2n) like matrices. Choose a super Poisson structure ϖ on
C4|2n so that the matrix for ϖ is represented in the form

E :=

(
ϖij,kℓ O4,2n

O2n,4 ϖiα,kβ

)
, (3)

where ϖij,kℓ is a 4 × 4-matrix from the super Poisson structure restricted to
C4|0, and ϖiα,kβ a 2n × 2n-matrix from the super Poisson structure restricted
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to C0|2n (i, j, k, ℓ = 1, 2, α, β = 1, 2, . . . , n). We define a product ∗ on O4|2n(U) for
each open subset U of C4 as

(f ∗ g)(x | θ) := f(x | θ) exp

[
~
2

∑ ←−
∂

∂XA
E

−→
∂

∂XB

]
g(x | θ) (4)

for any superfunction f, g ∈ O4|2n(U). Here, ∂

∂XA
stands for a family of su-

perderivations with (xij | θiα) and ∂

∂XB
does for the one with (xkℓ | θkβ).

Proposition 4. A product by expanding (4) linearly to O4|2n[[~]] is the star product
and its commutator [·, ·]∗ satisfies the following:

[xij , xkℓ]∗ = ~ϖij,kℓ, [xij , θkα]∗ = 0, [θiα, θjβ ]∗ = ~ϖiα,jβ .

for any i, j, k, ℓ = 1, 2 and α, β = 1, 2, . . . , n.

Consider the case of n = 4. We construct a double fibration [13]

P3|4 ←−
ρ

C4|8 × P1 −→
σ

C4|8 (5)

by putting

ρ : C4|8 × P1 −→ P3|4, (yij , [λ] | θiα) 7−→ [yijλj : λi | θiαλi]

and
σ : C4|8 × P1 −→ C4|8, (yij , [λ] | θiα) 7−→ (yij | θiα),

where yij := xij −
∑2

k=1 θ
ikθk,j+2 for i, j = 1, 2 and where [λ] = [λ1 : λ2] are

homogeneous coordinates of P1. We remark that the suffix α ∈ N ranges from
1 to 4 and yijλj means to be summed over j. The double fibration (5) brings a
super Poisson structure on the super Calabi–Yau twistor space P3|4 from a Poisson
supermanifold C4|8 and proves P3|4 to be deformation quantizable.

Theorem 5. P3|4 is deformation quantizable.

Proof. Take a super Poisson structure ϖ on C4|8 like (3). Pulling ϖ back on
C4|8×P1 with σ, and moreover pushing it forward to P3|4 with ρ, we get a tensor
field π on P3|4 written locally in the form

π = λ1λ2
∂

∂ζ1
∧ ∂

∂ζ2
+

1

2
(λ1

2 + λ2
2)

4∑
α=1

∂

∂ξα
∧ ∂

∂ξα
,

where ζi = yijλj , ξ
α = θiαλi for each i, α. We can check [π, π]SN = 0, which

implies that P3|4 is a Poisson supermanifold.
Like (4), we define a product ⋆ as

(f ⋆ g)(ζ | ξ) := f(ζ | ξ) exp

[
~
2

∑ ←−
∂

∂ZA
π

−→
∂

∂ZB

]
g(ζ | ξ), (6)
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where ∂

∂Z• denotes a family of superderivations with the newly re-arranging co-
ordinates (ζi, λj | ξα) of P3|4. Similarly to Proposition 4, the product ⋆ extended
linearly to AP3|4 [[~]] proves to be the star product satisfying

[ζ1, ζ2]⋆ = 2~λ1λ2, [ξα, ξα]⋆ = ~ (λ1
2 + λ2

2) (α = 1, 2, 3, 4),

where [·, ·]⋆ stands for a commutator given by

[f, g]⋆ := f ⋆ g − (−1)|f ||g|g ⋆ f

for any f, g ∈ AP3|4 [[~]]. Therefore, P3|4 is deformation quantizable. �
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Abstract. We describe a series of cohomological obstructions for the defor-
mation of involutive families of functions on a Poisson manifold and for the
deformation of Poisson vector fields acting on it.
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1. Introduction: commutative families and obstructions. Examples
This article contains a review of the various cohomological obstructions for the
deformation quantization of involutive families on a Poisson manifold M (i.e. col-
lections of functions on (M,π) that commute with respect to the Poisson bracket)
and of the Lie algebra actions on M .

More accurately, let M be a smooth manifold and π be a Poisson bivector
on it, i.e. the Schouten bracket of π with itself vanish. By Kontsevich’s theorem
there always exists an associative ∗-product ∗ on C∞(M)[[~]] (here ~ is a formal
variable) such that

f ∗ g = fg +
~
2
{f, g}+

∑
k≥2

~kBk(f, g) (1)

for any f, g ∈ C∞(M), where Bk are suitable bidifferential operators and {·, ·} is
the Poisson bracket, induced by π; for technical reasons it is often convenient to
denote the bidifferential operator determined by Poisson bracket as 2B1, so that
B1(f, g) =

1
2{f, g} and denote the product of functions by B0.

So we shall denote by A the associative algebra (C∞(M)[[~]], ∗); it is called
a deformation quantization of M . Let C ⊂ C∞(M) be an algebra of functions

c© Switzerland AG 2019Springer Nature
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on M , that commute with respect to the Poisson bracket, i.e. {f, g} = 0 for all
f, g ∈ C. The main question, we deal with is for what C there exists a commutative
subalgebra Ĉ ⊂ A, Ĉ ≡ C mod ~?

One of the traditional devices, used for this kind of problems is to look for
the cohomology classes (in suitable cohomology theories) that should vanish in the
case there exists an algebra Ĉ with the desired properties. This was the main idea
of the paper [1]: in this paper the problem of finding the commutative subalgebra
in A, corresponding to C ⊂ C∞(M) freely generated by functions f1, . . . , fn was
reduced to vanishing of a series of classes in the second degree cohomology of
certain complex, denoted by C ·

f in this paper (a similar construction was used
in [2]).

It is easy to see that in fact, C ·
f from the cited paper is just the Cheval-

ley complex, computing the Lie algebra cohomology of the Abelian Lie algebra
of Hamiltonian fields, generated by f1, . . . , fn with coefficients in C∞(M). This
cohomology can be rather big, so the criterion is rather difficult to implement. In
the cited paper of Garay and van Straten it was also shown that the obstruction
classes (or “anomalies” as they are called in the cited paper) vanish, if M = R2n

(where n is the number of functions in the commutative family) with the stan-
dard symplectic structure, the functions f1, . . . , fn are functionally independent
and the corresponding cohomology spaces are torsion-free, as modules over the
polynomial algebra C[t1, . . . , tn], where the action of ti is given by multiplication
with fi. However, the statement can be true even under much milder assumptions.
Here’s a simple example:

Example 1. Consider the real Lie algebra so3; we can assume that its generators
are x, y, z with commutator relations

[x, y] = z, [y, z] = x, [z, x] = y.

Let M = so∗3 with the standard (linear) Poisson structure. Observe that x, y and z
can be regarded as linear functions on M so that S(so3) = C[x, y, z] give a Poisson
subalgebra of C∞(M). In this case we can restrict the quantization procedure to
S(so3); the resulting “polynomial” quantized algebra A0 can be related to the
universal enveloping algebra U(so3). Thus the question of finding commutative
deformations of involutive families is closely related with the problem of describing
the commutative subalgebras of U(so3). Consider for example the following pair of
commuting functions on M : f = x2+ y2, g = zk for arbitrary natural exponential
k (their commutation follows from the fact that x2+y2+z2 is a Casimir function).
It is not difficult to find the corresponding commutative subalgebra in U(so3): it
is enough to consider x, y and z as the corresponding generators of the enveloping
algebra.

Now fix k = 1; identifying M with R3 in an evident way we see that the
Hamiltonian vector fields, generated by f and g correspond to rotation around
the z axis (the first field in fact is equal to the second one multiplied by z). The
dimension of the commutative Lie algebra t2 generated by f and g is equal to 2,
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thus the second Lie algebra cohomology of t2 is equal to cokernel of the differential.
If we pass to the cylindrical coordinates r, φ, z in R3, then t2 is generated (up to
constant factors) by the fields rz∂φ and r∂φ respectively; thus the cohomology is
equal to the quotient of C∞(R3) by the image of r∂φ. In cylindrical coordinates
smooth polynomial functions on R3 are those, which depend on r2; on the other
hand it follows from the computations of S1 cohomology that the only function
of φ, that is not in the image of ∂φ is constant. Thus we conclude that this
cohomology can be identified with polynomials of r2 = f and z = g, in particular
this space is torsion-free as the module over the subalgebra, generated by f and
g. So the criterion of Garay and van Straten holds too. This might indicate that
this statement has a wider scope of application, than what is mentioned in [1].

Before we end this section, let us consider one more simple example:

Example 2. Let n = 2. Recall that Hamiltonian vector field Xf , generated by a
function f is determined by equality

Xf (g) = {f, g}

for all g ∈ C∞(M). Let us assume that the first of two functions in the involutive
family f1 is such that the corresponding Hamiltonian field is nowhere vanishing.
In this case there is a very nice way to choose the deformation quantization of
the involutive family f1, f2, {f1, f2} = 0 (below we shall denote f1 = f, f2 = g

for the sake of brevity). Namely, we shall put f̂ = f ∈ C∞(M) ⊂ A and look for
ĝ = g + ~g1 + ~2g2 + · · · ∈ A such that [f̂ , ĝ] = 0.

By induction this will give us a series of differential equations:

{f, gp} =

p∑
k=1

(Bk+1(f, gp−k)−Bk+1(gp−k, f)) , (2)

where Bk are the bidifferential operators from formula (1) and we set g0 = g. When
g0 = g, g1, . . . , gp−1 are known, the right hand side of this formula is fixed, so we
have an ordinary differential equation for gp. Locally this equation always has a
solution: it is enough to choose local coordinate system x1, . . . , xm, m = dimM
on M in which the Hamiltonian field Xf of f will be equal to ∂1; then the equation
(2) takes the form

∂1gp = Gp,

for some function Gp of x1, . . . , xm and can be solved by simple integration. How-
ever, globally these solutions need not “fit” into a single function on M . In this
case (although this construction is a bit redundant) one can consider the Cheval-
ley complex of the 1-dimensional Lie algebra, generated by Xf with coefficients in
C∞(M); then the existence of global solutions of (2) is equivalent to the vanishing
of the cohomology class, determined by the right hand side of this equation. How-
ever this cohomology space is quite big so this criterion has very little practical
meaning.
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Another way to “visualize” the cohomological obstruction in this situation is
by considering the Čech complex on M corresponding to the cover of M by coor-
dinate charts with the property ∂1 = Xf ; we shall take coefficients of this complex
in the sheaf of locally-defined functions, “killed” by Xf . Then the difference of
local solutions of (2) on the intersections of two such open neighborhoods will give
a cocycle in this complex, so that the cohomology class will vanish iff there exists
a global solution of this equation.

In fact, it is easy to see that the problem we consider here always has a local
solution in symplectic case. Namely let M2n be symplectic manifold and f1, . . . , fn
an involutive family. Assume that the Hamiltonian fields of these functions are
linearly independent in some point. Then by Darboux theorem one can choose
local coordinates (p1, . . . , pn, q1, . . . , qn) in M so that fi = pi, i = 1, . . . , n and the
Poisson bivector has form

π =

n∑
i=1

∂

∂pi
∧ ∂

∂qi
.

As one knows from the uniqueness property of Kontsevich quantization, in this
coordinate chart Kontsevich’s formula is equivalent by a gauge transformation to
Moyal quantization, in particular [pi, pj ] = 0 (where the commutator is taken with
respect to the ∗-product). Once again if we assume that the family f1, . . . , fn is
everywhere functionally independent, the problem can be reduced to the vanishing
condition for certain cohomology classes Ck in the degree 1 Čech cohomology of
M with coefficients in the sheaf of (local) gauge transformations of the ∗-product,
preserving the Darboux coordinates.

1.1. Agreements and notation
In the rest of this paper we shall discuss many other cohomological obstructions
for the positive solution of the problem, stated here. These obstructions will take
values in various cohomology theories, first of all in Hochschild cohomology of the
algebra of (smooth) functions on M and in the Poisson cohomology of (M,π);
we shall not discuss the construction of these cohomology spaces, this would have
taken too much time and effort: an interested reader should consult for example the
Loday’s book [3], or the book [4]. The main theorem, we need about Hochschild co-
homology is the Hochschild–Kostant–Rosenberg’s theorem, relating the Hochschild
cohomology with the space of polyvector fields on M ; besides this, we shall use
the identification of the Lichnerowicz–Poisson cohomology of symplectic manifolds
and their de Rham cohomology. Another cohomology theory that will make often
appearances in the paper is the Chevalley’s Lie algebra cohomology; reasonable
expositions of this construction can be found in a great variety of books on homo-
logical algebra and Lie groups, for example see [5]. We shall also assume that the
reader is familiar with Kontsevich’s approach to deformation quantization (see [6],
which contains a nice introduction to the subject); in particular we shall rather
freely operate with the notions of differential graded Lie algebras, Gerstenhaber
and Schouten brackets, L∞-algebras and L∞ morphisms, quasi-isomorphisms, etc.
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All this can be found in numerous papers on the subject; some notation and for-
mulas can be found e.g. in the paper [7].

The ground field we consider here is always R, although we allow smooth
functions with complex values. In particular, all the Lie algebras in this text are
supposed to be finite-dimensional and over real numbers. All the manifolds are
smooth, but not necessarily compact.

2. Poisson fields: three-step process
It is clear from the examples in the previous section that the answer to the original
question depends in a great extend on the global structure of the Hamiltonian
vector fields, their singular sets and trajectories. Therefore it is the study of the
Hamiltonian field action that we shall consider from now on. In fact, it is more
convenient to consider a less restrictive setting, namely the action of Poisson fields,
(recall that a vector field is called Poisson if the Lie derivative of π with respect
to this field vanishes). Below we shall denote the space of all Poisson vector fields
on (M,π) by V ectπ(M); clearly, it is a Lie subalgebra in the algebra of vector
fields on M and one can show that Hamiltonian fields is an ideal in V ectπ(M).
Observe that from algebraic point of view, vector fields on a manifold M are just
derivations of the algebra of smooth functions on it. Recall that derivation is a
linear map ξ of an A algebra into itself, such that ξ(ab) = ξ(a)b + aξ(b) for all
a, b ∈ A.

Summing up previous observations, we come up with the following problem:
let g be a Lie algebra, acting on M by Poisson vector fields. It means that there
is a Lie algebra representation ρ : g → V ectπ(M):

[ρ(X), ρ(Y )] = ρ([X,Y ]), for all X,Y ∈ g.

(In the case of the Hamiltonian fields generated by an involutive family, the com-
mutators should vanish). Then the problem we consider is to find the extension of
the representation ρ to ρ̂ : g → Der(A), i.e. find a linear map ρ̂ from g to the space
of all ~-linear derivations of A such that

[ρ̂(X), ρ̂(Y )] = ρ̂([X,Y ]), for all X,Y ∈ g

and ρ̂ ≡ ρ mod ~.
As we have explained above, the problem of deforming a Lie algebra repre-

sentation is closely related with the original one. In fact we can try to solve the
problem of deformation of involutive families in three stages, each step being a
separate problem of independent interest:

• Find the representation ρ̂ : g → Der(A), extending the action of the Lie alge-
bra g on M (in particular, the action of commutative algebra of Hamiltonian
fields);

• Let X̂ ∈ Der(A) be a derivation such that X̂ = Xf + ~X1 + ~2X2 + · · ·
where Xi, i ≥ 1 are some differential operators and Xf is the Hamiltonian
field of some smooth function; then the question is whether X̂ is equal to an
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inner derivation, i.e. X̂(g) = [f̂ , g] for some f̂ and all g in A. Observe that
the series for f̂ in this context should begin with ~−1f , since the Poisson
bivector appears with coefficient ~ in the series for ∗-product. To avoid the
negative powers of ~ below we shall rather consider the series X̂ beginning
with ~Xf .

• Finally, suppose we have a Lie algebra representation ρ̂ : g → Der(A) and for
every X ∈ g we have an element f̂X ∈ A such that ρ̂(X)(g) = [f̂X , g] for all
g ∈ A; then, one can ask, if the functions f̂X can be chosen so that the map
X → f̂X is a representation of g (in particular, [f̂X , f̂Y ] = 0 for all X,Y ∈ g,
if g is commutative).

We shall discuss the first two problems in this list in the remaining sections of our
paper. Let us now briefly describe the cohomology behind the last one.

To this end we suppose that ρ̂ is a representation of Lie algebras and that
we have an element f̂X ∈ A chosen for all X ∈ g. By choosing a basis in g we
can assume that this choice is in fact given by a linear map f : g → A, X 7→ f̂X .
Consider the following formula:

adf̂[X,Y ]
= ρ̂([X,Y ]) = [ρ̂(X), ρ̂(Y )] = [adf̂X , adf̂Y ] = ad[f̂X ,f̂Y ] .

Here adf denotes the inner derivative in A, generated by f ∈ A : adf (g) = [f, g]
and we use the standard properties of the commutator. It follows from this equality
that inner derivation, induced by f̂[X,Y ] and the commutator [f̂X , f̂Y ] is the same.
Thus the difference

h(X,Y ) = f̂[X,Y ] − [f̂X , f̂Y ]

is in the center Z(A) of the algebra A. The map h : g × g → Z(A) is clearly
antisymmetric, thus it can be regarded as a map h : ∧2g → Z(A). On the other
hand since derivations of an algebra preserve its center, we have a Lie algebra
action of g on Z(A) and can consider the Chevalley complex of g with coefficients
in Z(A); so h ∈ C2(g, Z(A)). Then a straightforward calculation shows that

dh(X,Y, Z) = ρ̂(X)(h(Y, Z)) + cyclic permutations of X, Y, Z
+ h([X,Y ], Z) + cyclic permutations of X, Y, Z = 0

since the first three terms vanish identically, because h(X,Y ) is in center and ρ̂
acts by inner representations, and the second line vanishes due to the properties
of the commutators.

We need to find f̂X and f̂Y such that h(X,Y ) ≡ 0; on the other hand we
cannot change the inner derivations, determined by these functions, since the
representation ρ̂ is fixed. So we can only add elements from the center Z(A)

to f̂X ; if c : g → Z(A) is this correction term, then h will be changed by
dc(X,Y ) = ρ̂(X)c(Y ) − ρ̂(Y )c(X) − c([X,Y ]) = c([Y,X]). Thus we see that the
following statement holds:
Proposition 1. Suppose we have a Lie algebra representation ρ̂ : g → Der(A) such
that for every X in g one can find an element f̂X ∈ A such that ρ̂(X) = adf̂X .
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Then there exists a Lie algebra representation J : g → A (i.e. a linear map J
for which [J(X), J(Y )] = J([X,Y ])) such that ρ̂ = ad ◦ J iff the class of h in
H2(g, Z(A)) is trivial.

Remark 2. It is known that the center of A is usually isomorphic to the center
Zπ(M) of the original Poisson algebra (C∞(M), {, }) (for instance, in the case,
when he quantization is given by Kontsevich’s formula, this follows from the exis-
tence of the associated Kontsevich’s “tangent map”, in other cases one can refer to
the uniqueness of the quantization). So the homology H2(g, Z(A)) can be replaced
by H2(g, Zπ(M)) where we let g act on Zπ(M) in the usual way. It is an inter-
esting question, how one can express the image of the class of h in H2(g, Zπ(M))
under this identification.

3. Equivariant quantization and homological obstructions
One of the possible ways to solve the problem of finding Lie algebra action on A
is by assuming that the quantization/star-product in A is g-equivariant (this is
sometimes also called g-invariant). In this section we shall first discuss the ques-
tion when there exist equivariant quantization and then describe cohomological
obstructions one encounters when passing from arbitrary derivation of A to an
inner one.

3.1. Equivariant quantization
In the present section we shall discuss a simple way (probably the most naive one)
how one can solve the problem contained in first step of the three-stage process,
described above. For the sake of brevity we shall often omit the representation
ρ : g → V ectπ(M) from our notation here.

Recall that a deformation quantization is called g-equivariant, if the corre-
sponding ∗-product commutes with the action of g:

LX(f ∗ g) = (LXf) ∗ g + f ∗ (LXg), (3)

where we let the vector fields act on the elements of C∞(M)[[~]] by setting
LX(~) = 0. We shall begin with the following well-known result (see [8] and [9] for
a generalized version of this statement, which includes the Poisson structures):

Proposition 3. Let (M,ω) be a symplectic manifold, on which a Lie algebra g acts by
Poisson vector fields. Then there exists a g-equivariant deformation quantization
of M if there exists a g-equivariant symplectic connection on TM .

Here we call a connection ∇ on M symplectic, if the covariant derivative
of the symplectic form ω with respect to ∇ vanishes. Similarly, the connection is
called g-equivariant (or g-invariant) if it commutes with the action of g, i.e. if the
following commutator is trivial:

[LX ,∇] = LX ◦ ∇ −∇ ◦ LX = 0
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for all X ∈ g (passing to efficient representation, if necessary, we may identify the
Lie algebra and the set of Poisson fields, obtained by its representation).

Observe that Proposition 3 gives only a sufficient condition for the existence
of equivariant deformation quantization, i.e. for the existence of star-product, ver-
ifying the condition (3). It is not clear, what would be a necessary and sufficient
condition in this case. However, if the condition of Proposition 3 is verified, we can
use the tautological representation of g in the construction we described above,
that is we can just put ρ̂ ≡ ρ. This construction can be used in some important
cases. For instance, if the action of g can be integrated to a symplectic action
of a compact Lie group G (for instance, if all the Liouville tori of an integrable
system are compact and all their periods are commeasurable, i.e. in the so-called
“resonance case”) then we can always obtain an equivariant connection on M just
by averaging over G the translations of an arbitrary symplectic connection on M .

So let us now discuss the possible cohomological nature of the condition
in Proposition 3. Suppose that ∇ is an arbitrary symplectic connection (their
existence is provided by the non-degeneracy of the symplectic form (see the book
[10] for example). Of course, this connection need not be g-invariant, so its Lie
derivative with respect to an element X ∈ g is a non-trivial (0, 1)-tensor field
on M with values in the degree-preserving endomorphisms of the tensor fields on
M ; indeed for any vector field ξ ∈ V ect(M), any tensor field η ∈ T⊗M and any
function f ∈ C∞(M)

(LX∇)(ξ, fη) = LX(∇ξ(fη))−∇LXξ(fη)−∇ξ(LX(fη))

= [X,∇ξ(fη))−∇[X,ξ](fη)−∇ξ([X, fη])

= [X, ξ(f)η] + [X, f∇ξη]− [X, ξ](f)η

− f∇[X,ξ]η −∇ξ(X(f)η)−∇ξ(f [X, η])

= X(ξ(f))η + ξ(f)[X, η] +X(f)∇ξη + f [X,∇ξη]− [X, ξ](f)η

− f∇[X,ξ]η − ξ(X(f))η −X(f)∇ξη − ξ(f)[X, η]− f∇ξ([X, η])

= f([X,∇ξη]−∇[X,ξ]η −∇ξ([X, η])) = f(LX)(ξ, η)

and similarly (LX∇)(fξ, η) = f(LX∇)(ξ, η). Besides this, since ∇ is a sym-
plectic connection, and g acts by Poisson vector fields, LX∇(ω) = 0. Let us
denote the space of the endomorphism of tensor fields on M which send ω to
0 by Endω(T

⊗M), so the rule X 7→ LX∇ gives us a linear map a : g →
Ω1(M,Endω(T

⊗M)). The Lie algebra g acts on Endω(T⊗M) and on the space of
1-forms with values in it by Lie derivatives, so Ω1(M,Endω(T

⊗M)) is a g-module
and we can consider the Chevalley complex of g with coefficients in this module.
A simple computations shows that

da(X,Y ) = LX(a(Y ))− LY (a(X))− a([X,Y ]) = 0.

The following proposition is a straightforward consequence of the definitions and
observations made above:
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Proposition 4. There exists a symplectic g-invariant connection on M iff the class
of a in the Chevalley cohomology of g with coefficients in Ω1(M,Endω(T

⊗M))
vanishes.

Of course, the space of all tensor endomorphisms is quite big and redundant,
since both ∇ and LX are derivations with respect to the tensor product, every-
thing is determined by the induced maps TM → TM . In this case the condition
(a(X))(ω) = 0 is replaced by the condition ω(a(X)(ξ), η)+ω(ξ, a(X)η) = 0 for all
vector fields ξ, η and all X ∈ g; one can rephrase it by saying that for all X, a(X)
is symplectic endomorphism of TM with respect to ω, or in matrix form

a(X)jiωjk = −ωija(X)jk.

Thus, we can regard a as a map g → Ω1(M, sp(TM,ω)) (on the right we have the
space of linear symplectomorphisms of TM with respect to the fibrewise symplectic
structure, determined by ω). Thus we can rephrase Proposition 4:

Proposition 5. There exists a symplectic g-invariant connection on M iff the class
of a in the Chevalley cohomology of g with coefficients in Ω1(M, sp(TM,ω)) van-
ishes.

One can call the class of a the Atiyah class of the symplectic Lie algebra
action. It is possible to use it to define other cohomology classes; for instance,
by taking its trace we obtain a class in H1(g,Ω1(M)). More generally, by taking
traces of its powers we obtain classes in Hk(g,Ωk(M)). It is clear, that these
classes should vanish, if there exist equivariant symplectic connection, but not the
otherwise.

3.2. Inductive constructions and obstructions: inner derivations
Let us now suppose that we are given a representation ρ̂ of Lie algebra g in Der(A)
(for instance, this is the case when the conditions of Proposition 3 hold). We are
going to discuss the problem of finding the inner derivatives, corresponding to this
representations in the case when the derivations in the image of ρ̂ are given by
Hamiltonian fields modulo ~; i.e. suppose that for any Y ∈ g we have

ρ̂(Y ) = XHY
+ ~Y1 + ~2Y2 + · · · , (4)

where HY is a suitable Hamiltonian function, depending on Y ∈ g and Yk, k ≥ 1
are some differential operators on M . Then we are to find a linear map g → A,
sending Y to some f̂Y ∈ A such that ρ̂(Y ) = adf̂Y .

First of all observe that since the conditions we have to fulfill are linear, it
is enough to consider the case when g is one-dimensional: if we can find fY for all
Y in a basis of g then extending the map to the whole g by linearity solves the
problem. So let Ŷ = ρ̂(Y ) ∈ Der(A) be some derivation of A given by the formula
(4). Below we shall abbreviate XHY

by Y0 and HY by f ; so Y0 is a Hamiltonian
vector field: Y0(g) = {f, g}. The condition that Ŷ is a derivation is equivalent to
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the following system of equations:

δ(Yn) +
n∑

k=1

[Bk, Yn−k] = 0, (5)

where δ is the Hochschild cohomology differential and the bracket on the right
is the Gerstanhaber bracket (see [3, 7] for definitions); it is worth noting that
δ(x) = [B0, x] where B0 is the product in C∞(M). Our problem is to find an
element f̂ ∈ A such that

adf̂ = Ŷ . (6)
Let us begin by recalling the following simple statement from the theory of

Hochschild cohomology:

Proposition 6. A Hochschild cochain v ∈ CH1(A) is closed iff v is a differentiation
of A; it is exact iff this differentiation is inner.

This statement gives a tautological answer to the question we consider here.
However, this answer is rather difficult to use, since Hochschild homology of A is
usually quite big. So in what follows we shall describe a more “hand-on” method.

To this end let us write f̂ as the formal sum f̂ =
∑

k∈Z ~kfk, fk ∈ C∞(M),
then equation (6) can be written down in the form of a series of equations

Yn =
∑

p+q=n

[Bp, fq]. (7)

It is necessary to allow the negative powers of ~ since the multiplication B0 is
commutative; alternatively and in a more convenient way, we could have replaced
the formula (4) by

Ŷ ′ = ~Y0 + ~2Y1 + ~3Y2 + · · · . (8)
Assuming this notation we can avoid the use of ~−1; in this case we can rewrite
equations (7) as follows:

Y0 = [B1, f0] = Xf0 ,

Y1 = [B2, f0] + [B1, f1],

. . .

Yn =

n∑
k=0

[Bn−k+1, fk]

. . .

(9)

We can regard this as a series of equations on fk, k = 0, 1, 2, . . . It is clear that
one should take f0 = f = HY in order to satisfy the first equality. Let us now
consider the second equation. We rewrite it as

[B1, f1] = Y1 − [B2, f0] (10)
and apply the Hochschild differential δ to both sides of it: on the left we shall have

[δ(B1), f1]− [B1, δ(f1)] = 0
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since δ ≡ 0 on C∞(M), δ(B1) = 0. On the right we have

δY1 = −[B1, Y0]− [δ(B2), f0] + [B2, δ(f0)] =
1

2
[[B1, B1], f0] = 0.

The first term on the right is obtained from (5); it vanishes since Y0 is a Hamil-
tonian vector field. The equality δB2 = − 1

2 [B1, B1] is a part of the associativity
relation of the ∗-product; then we use the Jacobi identity for the Gerstenhaber
bracket and the earlier obtained equalities [B1, f0] = Y0, [B1, Y0] = 0.

Thus we can pass to the Hochschild cohomology here. Let us now apply
the Lichnerowicz–Poisson differential to the class, determined by Y1 − [B2, f0]; we
are going to show that it is equal to 0. To this end it is enough to consider the
Gerstenhaber bracket of this expression with B1 and consider the result modulo
the image of δ. We compute:

[B1, Y1]− [B1, [B2, f0]] = [B1, Y1]− [[B1, B2], f0] + [B2, Y0]

= δY2 + [δB3, f0]

= δ(Y2 + [B3, f0])

where we use the Jacobi identity, associativity relation for ∗ and equation (5) again.
Thus the right hand side of (10) corresponds to a closed element in Lichnerowicz-
Poisson complex; let us denote it by w1. Now we can rewrite the equation (10)
as

dπf1 = w1.

And we come to conclusion that there exists f1 iff the class of w1 in H1
π(M) is

trivial. The only thing that might need some clarification is that the vanishing
property of the Poisson cohomology class only entails the existence of a solution of
(10) up to a Hochschild coboundary; however since C∞(M) is commutative alge-
bra, all 1-dimensional coboundaries in the corresponding Hochschild cohomology
complex are equal to 0.

Proceeding by induction, we assume that the equations for f0, f1, . . . , fn−1

have been solved. Then we rewrite the corresponding equation in (9) in the form

[B1, fn] = Yn −
n−1∑
k=0

[Bn−k+1, fk].

As before we show that both sides of this equation are closed with respect to the
Hochschild differential δ and that the element wn in the Hochschild cohomology
HH1(C∞(M)) = V ect(M), corresponding to the expression on the right hand side
of this equation, is closed with respect to the Lichnerowicz’s Poisson cohomology
differential; we shall denote the corresponding class in H1

π(M) by the same symbol
wn. Thus we obtain the following

Proposition 7. A differentiation Ŷ ∈ Der(A), given by (8) with Y0 = Xf , is inner
iff a certain series of cohomology classes w1, w2, . . . , wn, . . . ∈ H1

π(M) vanish.
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In general this condition is very hard to check, but in the case π is non de-
generate, so that M is symplectic manifold, its Lichnerowicz’s Poisson cohomology
coincide with the usual de Rham cohomology. So in this case we have the following
simple consequence:

Corollary 8. If M is a symplectic 1-connected manifold, then every derivation
Ŷ ∈ Der(A) given by (8) with Y0 = Xf , is inner. In particular this is true, if
Y0 = 0.

4. The representation of Lie algebras
In this section we are going to address the main part of our construction: given
a Lie algebra g acting by Poisson vector fields, find an extension of this action to
A. In Section 3.1 we considered a particular case when the action of g could be
extended to A in a straightforward way since the quantization is equivariant. In
the present section we shall describe more general constructions.

4.1. Inductive construction and obstructions: Lie algebra representations
One of the most straightforward possible approaches to the problem of quan-
tization of a Lie algebra action (i.e. of extending it from C∞(M) to A ) is by
constructing this extension inductively step by step with respect to the powers
of ~. This approach has been earlier considered by the author (see [7, 11]) and is
in effect a simple generalization of the approach used by Garay and van Straten
(see [1] and [2]). Let us briefly describe the results; an interested reader can find
some details in [7].

So let Y = Y0 be a Poisson vector field; we are looking for an extension

Ŷ = Y0 + ~Y1 + ~2Y2 + · · ·

of Y to a derivation of A. Writing down the Leibniz rule and expanding everything
in the powers of ~ we obtain a system, similar to (5): in that place these equations
were supposed to hold by the virtue of our assumption that Ŷ was a derivation;
now we shall use them to find the missing terms Y1, Y2, . . .

Reasoning inductively, we can assume that the elements Y1, . . . , Yn−1 are
given; then simple computations show that the element

∑n
k=1[Bk, Yn−k] in this

equation is closed with respect to the Hochschild differential and that the cor-
responding element in the Hochschild cohomology is closed with respect to the
Lichnerowicz–Poisson differential. On the other hand, the first term in this sum is
[B1, Yn−1] where B1 is the bidifferential operator, given by the bivector π (up to
a constant multiple), so adding vector fields (regarded as Hochschild cocycles) to
Yn−1 will not change the Poisson cohomology class of this sum. This gives us the
following (see [7])

Proposition 9. The element Yn that solves equation (5) exists if the class vn ∈
H2

π(M) (where H∗
π(M) denotes the Poisson cohomology of M) vanishes.
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In particular, if M is a symplectic manifold, then we can identify H2
π with the

second de Rham cohomology of M ; in particular, if M = R2n with some symplectic
structure, then the problem always has positive solution. Another case when this
problem has positive solution is M = g∗ for a semisimple Lie algebra g: in this case
H∗

π(M) coincide with the Lie algebra cohomology of g which is known to vanish
in dimension 1 in many cases (see [12]).

Unfortunately, this construction only works for a single Poisson vector field,
but does no good for a Lie algebra representation, since in this case there are
two algebraic conditions that we should verify: the Leibniz rule and the condition
that commutator of derivations is equal to the image of the commutator of the
corresponding elements in g:

[ρ̂(X), ρ̂(Y )] = ρ̂([X,Y ]), for all X, Y ∈ g. (11)
Let us write ρ̂ : g → Der(A) ⊂ End(A) as a formal power series

ρ̂ = ρ0 + ~ρ1 + ~2ρ2 + · · · ,
where ρ0, ρ1, ρ2, . . . are linear maps g → End(A) (End(A) denotes the space of
~-linear endomorphisms of A and ρ0 = ρ : g → V ectπ(M) is the given repre-
sentation of g in Poisson vector fields on M). Since A = C∞(M)[[~]] as linear
space, we can assume that the elements of End(A) are given by differential op-
erators on C∞(M), thus we have an isomorphism of End(A) with the space of
(local) Hochschild 1-cochains on C∞(M), denoted by C1(C∞(M)). If we con-
sider the Chevalley (bi)complex C∗(g, C∗(C∞(M))) (where one makes g act on
the Hochschild complex via the representation ρ and the second differential is
given by the Hochschild coboundary map) then ρk ∈ C1(g, C1(C∞(M))) and the
condition (11) turns into the following series of equations:

dL(ρn) +
1

2

n−1∑
k=1

[ρk, ρn−k] = 0. (12)

Here dL denotes the Chevalley differential on the bicomplex C∗(g, C∗(C∞(M)))
and we use the brackets to denote the following operation on C1(g, C1(C∞(M))):

[·, ·] : C1(g, C1(C∞(M)))⊗ C1(g, C1(C∞(M))) → C2(g, C1(C∞(M))),

[φ,ψ](X,Y ) = [φ(X), ψ(Y )] + [φ(Y ), ψ(Y )].
(13)

Here on the right-hand side we use [·, ·] to denote the Gerstenhaber brackets in
C∗(C∞(M)). If we consider the Bk as elements in C0(g, C2(C∞(M))), then equa-
tions (5) in this notation will take the form

δ(ρn) + dLBn +
1

2

n−1∑
k=1

[Bk, ρn−k] = 0. (14)

Here we use the same notation for the bracket, which is similar to (13):
[·, ·] : C0(g, C2(C∞(M)))⊗ C1(g, C1(C∞(M))) → C1(g, C2(C∞(M)))

[α, ψ](X) = [α, ψ(X)]
(15)
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(once again we use the Gerstenhaber bracket on the right-hand side and observe
that [Bn, ρ0(X)] = dLBn(X)). Recall now that the associativity condition for ∗
can be written down in the form

δBn +
1

2

n−1∑
k=1

[Bk, Bn−k] = 0, (16)

where [·, ·] denotes the Gerstenhaber bracket, which coincides with the natural
operation on C0(g, C2(C∞(M))) extending the brackets (13) and (15).

Moreover, observe that our equations do not involve any terms of the form
ρ2k(X,Y ) ∈ C2(g, C0(C∞(M))): in theory, these terms could have appeared in
equation (12), so that it would look as

dL(ρn) +
1

2

n−1∑
k=1

[ρk, ρn−k] +
1

2

n−1∑
k=1

[Bk, ρ
2
n−k] = 0, (17)

where the last brackets denote the evident extension of the (13) and (15) and
Gerstenhaber brackets to the map C2(g, C0(C∞(M))) ⊗ C0(g, C2(C∞(M))) →
C2(g, C1(C∞(M))). Equation (17) corresponds to the situation, where the repre-
sentation of g in Der(A) is given modulo the inner derivations, i.e. the following
equation holds

[ρ̂(X), ρ̂(Y )]− ρ̂([X,Y ]) = adρ̂2(X,Y ) (18)
for some ρ̂2 = ρ20 + ~ρ21 + · · · , ρ2k ∈ C2(g, C0(C∞(M))). Below we shall discuss
this formula in the context of L∞-maps.

Recall, that a degree 1 element R in a differential graded Lie algebra is called
Maurer–Cartan element, if it verifies the equation

dR+
1

2
[R,R] = 0. (19)

Thus, summing up, we see from equations (12), (14) and (16) that the problem we
consider here is in some sense equivalent to the search of Maurer–Cartan element in
the Lie algebra C̄∗(g, C∗(C∞(M)[[~]]))[1] (here [1] denotes the shift of dimension,
so that the elements ρk and Bk become of degree 1 and C̄∗ denotes the subcomplex,
spanned by the elements of positive degrees in g), where we endow this complex
with the natural Lie algebra structure, first, extending the Gerstenhaber bracket
on the Hochschild complex and the brackets from formulas (13), (15) to the whole
C∗(g, C∗(C∞(M))) by the following formula: for any φ ∈ Cp(g, Cl(C∞(M))) and
ψ ∈ Cq(g, Cm(C∞(M)))

[φ,ψ](X1, . . . , Xp+q) =
∑

σ∈Sh(p,q)

(−1)1+(l−1)|σ|

× [φ(Xσ(1), . . . , Xσ(p)), ψ(Xσ(p+1), . . . , Xσ(p+q))], (20)

where the sum is taken over all (p, q) shuffles, |σ| is the parity of the permutation σ
and we use the Gerstenhaber brackets in the right hand side. We further extend this
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bracket by ~-linearity and restrict to the C̄∗ subcomplex. We can now formulate
the following proposition:

Proposition 10. There exists a ∗-product in C∞(M)[[~]] beginning with the given
Poisson structure π and a representation ρ̂ of the Lie algebra g in the space of
derivations Der(A) of the deformed algebra A = (C∞(M)[[~]], ∗), equal modulo ~
to the given representation of g in the space of Poisson vector fields V ectπ(M), iff
there exists a Maurer–Cratan element Π + P in C̄∗(g, C∗(C∞(M)[[~]]))[1], equal
modulo ~ to π + ρ.

Remark 11. We said that the search of Maurer–Cartan element is only similar
to the problem, because in the original problem we assumed that the elements
Bk, k = 1, 2, . . . are fixed. Meanwhile in the present formulation of the problem
we fix only the degree 1 part of the ∗-product, i.e. the operator B1, determined by
Poisson bracket.

On the other hand this liberty makes the problem closer to the classical prob-
lem of deformation quantization: compare the complex C̄∗(g, C∗(C∞(M)[[~]]))[1]
with C̄∗(g, T ∗(M)[[~]])[1], where T ∗(M) denotes the Lie algebra of polyvector
fields on M and C̄∗ as before denotes the subcomplex spanned by polyvectors of
positive degrees; one can use the Schouten bracket on T ∗(M) to get a Lie algebra
structure on C∗(g, T ∗(M)[[~]])[1] and restrict it to C̄∗. The evident generalization
of the Hochschild–Kostant–Rosenberg map will then determine an isomorphism
in cohomology and one can look for the L∞-quasi-isomorphism of these algebras,
extending the HKR map (observe that the absence of the degree 0 part does not
spoil the HKR isomorphism, since the Hochschild coboundary is trivial in this
degree).

It is easy to see that if it were not for the condition ρ2k = 0, k ≥ 0, the
problem would have had a positive answer. Indeed the classical Kontsevich’s con-
struction allows a rather straightforward extension to a quasi-isomorphism of un-
restricted complexes C∗(g, T ∗(M)[[~]])[1] and C∗(g, C∗(C∞(M)[[~]]))[1]; thus the
main problem is whether one can change this quasi-isomorphism so that the degree
0 part does not appear. Below we shall give a different construction, leading to an
analogous result. Also observe that this problem is very close to the Garay and
van Straten calculus of anomalies: in both case we have to change the map so as
to eliminate the defect of the commutator. In effect, if we construct the correction
terms, killing the element ρ̂2 =

∑
k ~kρ2k inductively (with respect to the powers of

~), then we shall obtain “anomaly” classes, similar to those from the paper [1] (a
more detailed analysis of these constructions we postpone to a forthcoming work).

Also observe, that it follows from the definitions that the element ρ̂2 is closed
with respect both to Chevalley and Hochschild differentials, thus it represents a
class in the cohomology of C∗(g, C∗(C∞(M)[[~]]))[1]. It is not clear, how this class
is related with the question we consider here, since the equations, concerned with
its’ “elimination” involve elements, containing Bk and ρk and not just generic
elements of the DG Lie algebra.
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4.2. Lie algebra representations: L∞-morphisms
The construction of the derivation Ŷ from the previous section is quite nice; but
in effect it is a little more than one needs: the obstructions of Proposition 9 show,
when one can extend to a derivation a given “finite degree approximation” Ŷ n =
Y0 + ~Y1 + ~2Y2 + · · · + ~nYn, rather than to answer the question, if there exists
some formal series with the necessary property, may be obtainable by some other,
non-inductive process. In addition, we only allow changing the last chosen element
at every step, so that the condition of this proposition is not necessary, but only
sufficient (unlike the condition of Proposition 10).

It turns out that in the case when the ∗-product is given by some L∞-
morphism between the differential graded Lie algebras T ∗(M) of polyvector fields
on M (with zero differential and Schouten bracket) and C∗(C∞(M)) of (local)
Hochschild cochains on C∞(M) (with Hochschild boundary operator and Ger-
stenhaber brackets), there exists a canonical choice of the derivation Ŷ , corre-
sponding to a Poisson vector field Y . Moreover, there also exist a canonical way
to find the “representation up to inner derivations”, i.e. a pair of linear maps
ρ̂1 = ρ̂ : g → Der(A), ρ̂2 : ∧2g → A such that the equation (18) would hold.

To this end suppose that U = {Un}, Un : ∧nT ∗M → C∗(C∞(M)) is some
L∞-quasi-isomorphism, extending the Hochschild–Kostant–Rosenberg’s map (for
instance, Kontsevich’s morphism). Suppose also that the coefficients of the ∗-
product in A are given by the formula

B =
∑
k≥1

~kBk =
∑
n≥1

~k

k!
Uk

(
π, . . . , π︸ ︷︷ ︸
k times

)
.

Then we shall put:

ρ̂1(X) =
∑
k≥0

~k

k!
Uk+1

(
ρ(X), π, . . . , π︸ ︷︷ ︸

k times

)
.

An easy computation with the definition of L∞-morphisms shows that this formula
determines a linear map ρ̂1 : g → Der(A). However the map ρ̂1 fails to be a
representation of the Lie algebras: the correction term is given by

ρ̂2(X,Y ) =
∑
k≥0

~k+1

k!
Uk+2

(
ρ(X), ρ(Y ), π, . . . , π︸ ︷︷ ︸

k times

)
,

so that we have, similarly to the equation (18)

[ρ̂1(X), ρ̂1(Y )]− ρ̂1([X,Y ]) = adρ̂2(X,Y ) .

Here, as before adx, x ∈ A is the inner derivative of A with respect to the element
x, i.e. adx(y) = [x, y] = x ∗ y − y ∗ x.

In order to answer the question, when this kind of representation can be
replaced with a usual one, consider the complex CHE·(g,A) consisting of all
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linear maps from the exterior algebra of g to the ~-linear Hochschild cohomol-
ogy complex of A, CH ·(A). We introduce the grading in CHE·(g,A) by putting
deg f = p + q for a map f : ∧p(g) → Cq(A); we further introduce the differential
dCHE : CHEn(g,A) → CHEn+1(g,A): if f = {fp}, p = 0, . . . , n, where fp is a
homogeneous map as described above (with q = n − p), then d = dCHE is given
by the next formula (in which we omit the wedge signs)
df(X1, . . . , Xp) = δ(fp(X1, . . . , Xp))

−
∑
i

(−1)i(n−p)[ρ̂ 1(Xi), fp−1(X1, . . . , X̂i, . . . , Xp)]

−
∑
i<j

(−1)i+j [ρ̂ 2(Xi, Xj), fp−2(X1, . . . , X̂i, . . . , X̂j , . . . , Xp)]

+
∑
i<j

(−1)i+jfp−1([Xi, Xj ], X1, . . . , X̂i, . . . , X̂j , . . . , Xp),

where as usually δ is the Hochschild differential in Cn−p(A) and [·, ·] on the right
denote the Gerstenhaber brackets (in particular in the third line this amounts to
the substitution of ρ̂2(Xi, Xj) into the Hochschild cochain

fp−2(X1, . . . , X̂i, . . . , X̂j , . . . , Xp),

where we traditionally denote the missing arguments by the hat ̂ above them).
A straightforward computation then shows that d2 = 0.

Remark 12. One can consider the maps ρ̂1, ρ̂2 as a homogeneous map
Φ : ∧∗g → CH ·(A),

given by

Φ(X1 ∧ · · · ∧Xk) =


ρ̂1(X1), k = 1,

ρ̂2(X1, X2), k = 2,

0, otherwise.
Evidently we have Φ ∈ CHE2(g,A) and dCHEΦ = 0. One can ask, what is
cohomological meaning that one can attribute to the class of Φ? In particular,
what one can say about the complex, if this class vanishes.

Consider now the natural projection i∗ of C ·(A) to C ·(C∞(M)) given by
the inclusion of C∞(M) into A and the inverse projection A → C∞(M) (setting
~ = 0). Since we have the condition of ~-linearity, this map is a homomorphism
of chain complexes; clearly enough, it is epimorphic.Composing it with the linear
maps from ∧∗g we obtain the following short exact sequence of cochain complexes:

0 → CHE·(g,A;C∞(M)) → CHE·(g,A) → CHE·(g, C∞(M)) → 0. (21)
Here CHE·(g, C∞(M)) is the (usual) Chevalley–Eilenberg cohomology complex of
g with coefficients in the Hochschild cohomology complex of C∞(M) with standard
differential and CHE·(g,A;C∞(M)) is the kernel of the projection map.
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Using the Lie algebra structure on C ·(A) (the Gerstenhaber bracket) we can
introduce the Lie bracket on the complex CHE·(g,A): put

[{f}, {g}](X1, . . . , Xp) =

p∑
i=0

∑
σ∈Shi,p i

(−1)σ(i,p,l)

× [fi(Xσ(1), . . . , Xσ(i)), gp−i(Xσ(i+1), . . . , Xσ(p))], (22)

where σ ∈ Sh(i, p− i) is a (i, p− i)-shuffle, the sign (−1)σ(i,p,l) (l being the degree
of g) is determined by the standard Koszul rules, and [, ] is the Gerstenhaber
bracket (compare this formula with (20)). A simple calculation shows that this
bracket verifies the standard identities, including the (shifted)Jacoby identity (shift
is necessary since the degree of Gerstenhaber bracket is −1) so, we should shift the
dimensions in CHE·(g,A). Clearly, the projection i∗ commutes with the brackets,
so the shifted subcomplex CHE·(g,A;C∞(M))[1] is also endowed with the natural
differential graded Lie algebra structure.

Finally, let us consider the subspace ĈHE
·
1(g,A) in CHE·(g,A;C∞(M))[1],

spanned by the maps with values in the 1-dimensional Hochschild cocycles, i.e.
in Der(A). Since Der(A) is a Lie subalgebra in the Hochschild complex CH ·(A),
ĈHE

·
1(g,A) is in effect a DG Lie subalgebra (with respect to the restrictions of

the differential dCHE and the bracket (22)). Then the formula
Φ1(X,Y ) = adρ̂2(X,Y ) ∈ Der~(A)

determines a cocycle in ĈHE
2

1(g,A). Now the following proposition is almost
immediate from the definitions

Proposition 13. One can change the map ρ̂1 : g → Der(A) to a Lie algebra
homomorphism ρ̂ : g → Der(A) so that ρ̂ ≡ ρ̂1 mod ~ iff the Φ1 is a “curvature”
of some element ξ ∈ ĈHE

1

1(g,A), i.e.

Φ1 = dCHEξ +
1

2
[ξ, ξ].

Proof. This is just a reinterpretation of the formula: [ρ̂1(X)+ξ(X), ρ̂1(Y )+ξ(Y )] =
ρ̂1([X,Y ]) + ξ([X,Y ]). �

5. Conclusion: remarks and questions
In this paper we have described a large class of cohomology spaces and classes in
them, corresponding in one or another way to the problem of finding the commuta-
tive family of elements in the quantized algebra of functions on a Poisson manifold.
Although the list is by all means not complete, we hope it is big enough to make
this problem look interesting and having wide intricate connections with many
different constructions in Poisson Geometry and related branches of Mathematics.
In particular, we hope that even though the original problem is still far from being
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completely solved (so far even an example of non-quantizable integrable system is
lacking), some of the methods and approaches described in this paper can be used
in other related research.

For instance, it is clear that all the classes described here are invariants of
the Hamiltonian torus actions (more generally of Lie algebras actions by Poisson
fields) on Poisson manifolds, so that is they do not coincide for two given examples,
then the corresponding manifolds can not be equivariantly diffeomorphic. Thus
the classes described in this paper can be used to discriminate non-isomorphic
equivariant Poisson structures. It would be also very interesting to establish their
relation with other existing approaches to similar questions, for instance with
equivariant cohomology theories and other homotopy-theoretic constructions.

Another problem, related with the obstruction classes that we described here
is to describe their relation with the geometry of the singular foliation, correspond-
ing to the toric action. in fact, as we mentioned in the first section, property that
we consider depend on the global properties of the trajectories of the integrable
system. There exist many different geometric invariants of (singular) foliations in
general and of foliations by Liouville tori in particular. For instance in the case of
symplectic 4-dimensional manifolds, when all integrable systems consist of just two
functions, there exist an elaborate system of complete invariants, due to Fomenko
and Zieschang (see [13]). It would be interesting to describe some of the classes
described in this paper in terms of these invariants.

Let us also mention the important potential role of Atiyah class, described
in the section 3.1. Similar classes and their combinations are crucial for many
problems. For instance, they appear in Calaque’s and van den Bergh’s study of
Duflo isomorphism (see [14]). One can ask, if our classes have similar meaning, and
also what are the properties of the Todd class and other functions of the Atiyah
class presented here.

Apart from the questions, concerning the relation of the constructions we
consider in this paper with other theories, there is a number of problems, concerned
just with the constructions, described in this paper. First of all, let us observe
that there are more than ten different constructions, mentioned here. They all are
related with the same problem, so it is natural to think, that they are closely related
to each other. In some cases we are able to establish such relations; for instance, we
can show that the question of finding the Maurer–Cartan element in the differential
Lie algebra C̄∗(g, C∗(C∞(M)[[~]]))[1] (see Proposition 10, Section 4.1) is closely
related to the Garay and van Straten classes (see Remark 11).

Besides this, the construction of Section 4.1 is clearly related to Proposi-
tion 13, although it is not evident, if two questions are equivalent, or one of them
follows from the other. In general, one can suppose that the class, corresponding
to ρ̂2 (see Remark 11) and the class of Φ1 from Proposition 13 should coincide,
although the complexes in which they appear are not quite the same. All this
is also closely related with what can be thought as the “relative formality”: as
we mentioned in Remark 11, the Lie algebra C∗(g, C∗(C∞(M)[[~]]))[1] is formal
(at least for M = Rn, where we can use an equivariant version of Kontsevich’s
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map). Meanwhile the problem we consider here is related to the formality of
C̄∗(g, C∗(C∞(M)[[~]]))[1], which is the kernel of certain morphism of Lie alge-
bras. Similar question appeared in the paper [2], where we considered the exact
sequence of Lie algebras, given by the Hochschild complexes. At this moment we
know no references, in which this question is treated (a close question was consid-
ered in [15]).

Finally, one more interesting problem, related with the classes we constructed,
is what form they take if the generic Poisson structure on M is replaced by some
symplectic form? In this case for example Poisson cohomology can be identified
with the de Rham cohomology, so in many cases we shall obtain classes in the
usual real cohomology theory of the manifold. It would be interesting to find
explicit expressions for these classes as given by closed differential forms on M .
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Co-Toeplitz Quantization: A Simple Case
Stephen Bruce Sontz

Abstract. The author has introduced in a recent paper a new class of op-
erators, called co-Toeplitz operators, with symbols in a co-algebra. This is
the categorical dual to Toeplitz operators which have symbols in an algebra.
The mapping from a symbol to its co-Toeplitz operator gives a quantization
scheme, called co-Toeplitz quantization. A new, quite simple particular case
of co-Toeplitz quantization is introduced in this note. Examples are given in
order to show some of its properties.

Mathematics Subject Classification (2000). Primary 81S99; Secondary 47B99.
Keywords. Quantization, co-Toeplitz operators, co-algebras.

1. Introduction
In [2] I have defined co-Toeplitz operators in a dual way in terms of category theory
to Toeplitz operators. The structures needed for this definition are a co-algebra C
(see [1]) together with a sesqui-linear form 〈·, ·〉 defined on it. We let ∆ : C → C⊗C
denote the co-multiplication of C. Also, we suppose there is another co-algebra P
which injects into C by a map j : P → C and that there is a projection Q : C → P ,
that is, Qj = idP , the identity on P. Then we define the co-Toeplitz operator
Cg : P → P to be the linear operator defined by the composition

P j−→ C ∆−→ C ⊗ C Q⊗id−→ P ⊗ C πg−→ P . (1)
The linear map πg : P⊗C → P , where g ∈ C is called the symbol of the co-Toeplitz
operator Cg, is defined in [2] by

πg(ϕ⊗ f) := 〈g, f〉ϕ

for ϕ ∈ P and f ∈ C. (The map πg is dual to αg to be defined below.) The anti-
linear map g 7→ Cg is called the co-Toeplitz quantization of C. This in general does
not involve measure theory. For more details see [2].

c© Switzerland AG 2019Springer Nature
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The definition (1) is the dual diagram to that for a Toeplitz operator which
is defined for a symbol g ∈ A, an algebra, as the composition (right to left)

P P←− A µ←− A⊗A ι⊗id←− P ⊗A αg←− P . (2)
Here P is a sub-algebra of A with ι : P → A being the inclusion map and P : A →
P being a projection. Also, µ is the multiplication map of A and αg(ϕ) := ϕ ⊗ g
for ϕ ∈ P .

The definition (1) has a particular case: P = C and j = Q = idC . Then
Cg = πg ∆ : C → C.

In this particular simple case, which is the new idea in this note, the only structures
needed are a co-algebra and a sesqui-linear form on it. All the examples in this note
fall within this case. This simple case does not have an interesting analogue for
Toeplitz operators, since diagram (2) reduces to the right regular representation
of g acting on A if we put P = A.

If the sesqui-linear form is positive definite, then Cg acts in a pre-Hilbert space
and so may be considered as a densely defined operator acting in the Hilbert space
completion of C. Thus we can construct models for quantum physics, including
creation and annihilation co-Toeplitz operators (see [2]).

All objects in this paper are vector spaces over the complex numbers, and all
arrows are linear maps, except as noted.

2. Manin Quantum Plane
We define C to be the algebra generated by two elements a, c with the relation
ac = qca for some non-zero q ∈ C, the complex numbers. This is called the
Manin quantum plane. The notation follows that used in [2]. We define the co-
multiplication ∆ to be the algebra morphism determined by

∆(a) = a⊗ a and ∆(c) = c⊗ a.

This is well defined on C, since ∆(ac − qca) = 0 as the reader can verify. We
note that C does not have a co-unit, though this has no great importance for our
purposes. Clearly, B := {aicj | i, j ∈ N}, is a Hamel basis of C, where N denotes
the non-negative integers. Since Cg is anti-linear in the symbol g ∈ C, it suffices
to calculate Cg for the basis elements aicj . And since Cg is linear, it suffices to
evaluate it on these basis elements. We proceed to do this. First, we see that

∆(akcl) =
(
∆(a)

)k(
∆(c)

)l
= (a⊗ a)k(c⊗ a)l = akcl ⊗ ak+l.

Then
Caicj (a

kcl) = πaicj ∆(akcl) = πaicj
(
akcl ⊗ ak+l

)
= 〈aicj , ak+l〉 akcl.

So Caicj is diagonalized by the basis B with its eigenvalues determined by the
sesqui-linear form, and therefore it is neither a creation nor an annihilation oper-
ator. Rather Caicj is what is known as a preservation operator.
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At this point in the calculation it becomes clear that the definition of the
sesqui-linear form enters in a fundamental way, namely, different choices for it give
different co-Toeplitz quantizations. One simple choice is to choose it so that the
basis B is orthogonal. So we put

〈aicj , akcl〉 := δi,k δj,l w(i, j).

Here δr,s denotes the Kronecker delta. We also take w(i, j) > 0 for all i, j ∈ N so
that this is a positive definite inner product and C is a pre-Hilbert space. With
this inner product we see that

Caicj (a
kcl) = 〈aicj , ak+l〉 akcl = δi,k+l δj,0 w(i, j) a

kcl.

So Caicj = 0 if j > 0. Continuing with the case j = 0 we see that

Cai(akcl) = δi,k+l w(i, 0) a
kcl.

So Cai is diagonalized by the basis B with 0 and w(i, 0) being its eigenvalues. We
define the degree of the monomial akcl by deg akcl := k + l. Then Cai is zero on
monomials with degree 6= i and is a non-zero multiple of the identity on the finite
dimensional vector space spanned by the monomials of degree i.

Another choice for the sesqui-linear form is

〈aicj , akcl〉 := δi−j,k−l µ(i, j, k, l),

where µ : N4 → (0,∞) is a positive weight function. With this choice of sesqui-
linear form we have

Caicj (a
kcl) = 〈aicj , ak+l〉 akcl = δi−j,k+l µ(i, j, k + l, 0) akcl.

Thus the eigenvalues of Caicj are 0 and µ(i, j, i − j, 0). Moreover, Caicj is zero
except on the set of monomials of degree i− j. So i < j implies that Caicj = 0.

3. Divided Power Co-algebra
This is based on Example 2.4.8 in [1]. We let C be the vector space with basis
{xi | i ∈ N}. The co-multiplication ∆ is the linear map determined by

∆(xn) :=
∑

i+j=n

xi ⊗ xj . (3)

The degree of each basis element is defined by deg xn := n. We also define a
sesqui-linear form by

〈xi, xj〉 := w(i) δi,j , (4)
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where w : N → (0,∞) is a strictly positive weight function. So this is an inner
product making C into a pre-Hilbert space. Again, it suffices to compute the co-
Toeplitz operators Tg for g in the basis. So we compute as follows:

Cxk
(xn) = πxk

∆(xn) = πxk

( ∑
i+j=n

xi ⊗ xj

)
=

∑
i+j=n

〈xk, xj〉xi =
∑

i+j=n

δk,jw(k)xi.

Now if k > n we have δk,j = 0 for all the terms in the last sum, since j ≤ n. So
Cxk

(xn) = 0 if k > n. For the opposite case 0 ≤ k ≤ n we have

Cxk
(xn) =

∑
i+j=n

δk,jw(k)xi = w(k)xn−k.

If we define xi := 0 and w(i) := 0 for all integers i < 0, then we can write this
result as one formula for all k, n ∈ N:

Cxk
(xn) = w(k)xn−k.

So for k > 0 we have that Cxk
decreases degree by k and so is an annihilation

operator. On the other hand Cx0 is a preservation operator.

4. Negative Degrees
Here we give a modification of the previous example that includes negative degrees.
We let M ≥ 1 be an integer and define C to be the complex vector space with
basis {xi} for integers i ∈ [−M,M ]. So dim C = 2M + 1.

We define deg xi := i for i ∈ [−M,M ]. For convenience we also define xi := 0
for all integers i with |i| > M . We use the same formulas as in the previous
example, but with new interpretations. So, the co-multiplication ∆ is defined by
(3), but now for integers |n| ≤ M . With our definitions only finitely many terms
in the (now) infinite sum (3) are non-zero. We also define a sesqui-linear form by
(4) but now for integers i, j ∈ [−M,M ]. Again, for convenience we put w(i) := 0
for |i| > M . The same calculation as in the previous example gives

Cxk
(xn) = w(k)xn−k

but now for all integers k, n ∈ [−M,M ]. There are three cases:
1. Cxk

increases degree by |k| if k < 0 and is a creation operator.
2. Cxk

decreases degree by k if k > 0 and is an annihilation operator.
3. Cxk

preserves degree if k = 0 and is a preservation operator.
So we get the three types of operators relevant to physics by using the basis

elements with positive, negative and zero degrees. We also can define a ∗-operation
(≡ conjugation) on C by putting x∗

i := x−i. This definition is motivated by the
theory of complex variables. Using this as motivation, for each i > 0 we then define
the elements xi to be holomorphic and the elements x∗

i to be anti-holomorphic.
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(The element x0 could be defined as being both holomorphic and anti-holomorphic,
if one wished. But I opt not to do that.) Then the anti-holomorphic elements
are symbols of creation operators while the holomorphic elements are symbols of
annihilation operators.

5. Matrix Co-algebra
This example comes from Example 2.4.1 in [1]. Let C be the vector space with
basis {Ei,j | 1 ≤ i, j ≤ n}, where n ≥ 1 is an integer. So, dim C = n2. Of course,
the motivation is that Ei,j is analogous to the n × n matrix with all entries 0,
except for row i and column j which has the entry 1. Let the co-multiplication be
determined by

∆(Ei,j) :=

n∑
k=1

Ei,k ⊗ Ek,j .

(As a curious parenthetical remark, let us note that this vector space has a natu-
ral algebra structure motivated by matrix multiplication. However, this does not
combine with this co-multiplication to give us a bi-algebra; see [1].) We define an
inner product on C by making the basis {Ei,j} orthonormal. Then we calculate

CEr,s
(Ei,j) = πEr,s

∆(Ei,j) = πEr,s

( n∑
k=1

Ei,k ⊗ Ek,j

)

=

n∑
k=1

〈Er,s, Ek,j〉Ei,k =

n∑
k=1

δr,kδs,jEi,k = δs,jEi,r.

So, CEr,s
(Ei,j) is either zero or another basis element.

Another sesqui-linear form is given by 〈Ei,j , Er,s〉 := w(i+ s) δi−j,r−s with a
weight function w : N→ (0,∞). Then

CEr,s
(Ei,j) = πEr,s

∆(Ei,j) = πEr,s

( n∑
k=1

Ei,k ⊗ Ek,j

)

=
n∑

k=1

〈Er,s, Ek,j〉Ei,k =
n∑

k=1

w(r + j)δr−s,k−j Ei,k = w(r + j)Ei,j+r−s,

where we put Ei,j = 0 if j ≤ 0 or j > n. If we define degEi,j := i+ j, then we see
that CEr,s

changes degree by r − s. So, CEr,s
is a creation operator if r > s, it is

an annihilation operator if r < s and finally it is a preservation operator if r = s.
Using the adjoint operation of matrices as motivation, we also define a ∗-

operation by E∗
i,j := Ej,i. We also say that Ei,j is holomorphic if i < j (‘upper

triangular’) and is anti-holomorphic if i > j (‘lower triangular’). As previously,
the anti-holomorphic Ei,j are the symbols of (degree increasing) creation oper-
ators and, on the other hand, the holomorphic Ei,j are the symbols of (degree
decreasing) annihilation operators. Also the ‘diagonal’ elements Ei,i, which are
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self-adjoint (or real) with respect to the ∗-operation, are symbols of (degree pre-
serving) preservation operators.

6. Concluding Remarks
The quantization of co-algebras is a new field of research with co-Toeplitz quantiza-
tion being the first theory that achieves this. It is remarkable that any sesqui-linear
form defined on a co-algebra C is sufficient extra structure to give us a co-Toeplitz
quantization of C. It is noteworthy that in some of these examples a ∗-operation
can be defined thereby giving holomorphic and anti-holomorphic elements, which
are symbols whose co-Toeplitz operators are annihilation and creation operators,
respectively.
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On the quantum flag manifold SUq(3)/T2

Tomasz Brzeziński and Wojciech Szymański

Abstract. The structure of the C∗-algebra of functions on the quantum flag
manifold SUq(3)/T2 is investigated. Building on the representation theory
of C

(
SUq(3)

)
, we analyze irreducible representations and the primitive ideal

space of C
(
SUq(3)/T2

)
, with a view towards unearthing the “quantum sphere

bundle” CP 1
q → SUq(3)/T2 → CP 2

q .

Mathematics Subject Classification (2000). 46L65, 81R60.
Keywords. Quantum flag manifold, quantum fibre bundle, quantum SU(3)
group.

1. Introduction
The theory of principal and associated fibre bundles lies at the heart of geometry
and underpins important applications to physics. Due to combined effort of many
researchers, see e.g. [2, 3, 6], this theory has been successfully incorporated into
noncommutative geometry. In the noncommutative setting, spaces are replaced
by (noncommutative) algebras of functions, typically C∗-algebras or their dense
∗-subalgebras, and quantum groups (or Hopf algebras) play the role of structure
groups. By contrast, precious little is known about noncommutative analogs of
more general fibre bundles, in which the fibre does not correspond to a group.

This short note is intended as a first step towards a case study of noncom-
mutative sphere bundles. More specifically, the classical flag manifold SU(3)/T2

has a natural structure of the sphere bundle
CP 1 → SU(3)/T2 → CP 2.

The research of the first named author was partially supported by the Polish National Science
Centre grant 2016/21/B/ST1/02438. The second named author was supported by the DFF-
Research Project 2, ‘Automorphisms and invariants of operator algebras’, Nr. 7014–00145B,
2017–2021.
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We intend to analyze the structure of the quantum analog of this flag manifold,
corresponding to the C∗-algebra C

(
SUq(3)/T2

)
playing the role of the total space.

Here SUq(3) denotes the Woronowicz quantum SU(3) group, and C
(
SUq(3)/T2

)
itself is the C∗-algebra of fixed points for the action of T2 on C

(
SUq(3)

)
coming

from its maximal torus.
The quantum flag manifold SUq(3)/T2 is just one of the large family of (gener-

alised) quantum flag manifolds, whose structure has been studied and described in
full generality in [12] and [9]. However, in order to be able to understand SUq(3)/T2

as the total space of a quantum sphere bundle from the analytic point of view, it is
necessary to have a detailed and explicit information about the internal structure
of the C∗-algebra C

(
SUq(3)/T2

)
readily accessible. This is the main aim of the

present note. In particular, we carefully describe the primitive ideal space of this
AF -algebra, building on the explicit description of irreducible representations of
C
(
SUq(3)

)
, calculated originally by K. Brągiel in his PhD dissertation [1].

In the final section of this note we show how to construct a faithful conditional
expectation from C

(
SUq(3)/T2

)
onto its subalgebra C

(
CP 2

q

)
, using integration

over the quantum group Uq(2) (realised as a quantum subgroup of SUq(3)). More
detailed, algebraic description of the noncommutative sphere bundle

CP 1
q → SU(3)/T2 → CP 2

q

and its K-theory is deferred to the forthcoming paper [4].

2. The quantum flag manifold
2.1. The algebra of functions on the quantum SU(3) group
For q ∈ (0, 1), the C∗-algebra C

(
SUq(3)

)
of ‘continuous functions’ on the quan-

tum SU(3) group is defined by Woronowicz [15, 16] as the universal C∗-algebra
generated by elements {uij : i, j = 1, 2, 3} such that the matrix u = (uij)

3
i,j=1 is

unitary and

3∑
i1=1

3∑
i2=1

3∑
i3=1

Ei1i2i3uj1i1uj2i2uj3i3 = Ej1j2j3 , ∀(j1, j2, j3) ∈ {1, 2, 3},

where

Ei1i2i3 =

{
(−q)I(i1,i2,i3) if ir 6= is for r 6= s,

0 otherwise,

and I(i1, i2, i3) denotes the number of inversed pairs in the sequence i1, i2, i3. As
pointed out by Brągiel [1], {uij} are coordinate functions of a quantum matrix



On the quantum flag manifold SUq(3)/T2 131

[5, 10,11]. That is, the following relations are also satisfied
uijuik = quikuij , j < k, (1a)
ujiuki = qukiuji, j < k, (1b)
uijukm = ukmuij , i < k, j > m, (1c)

uijukm − ukmuij = (q − q−1)uimukj , i < k, j < m, (1d)
with i, j, k,m ∈ {1, 2, 3}. The comultiplication

∆ : C
(
SUq(3)

)
−→ C

(
SUq(3)

)
⊗ C

(
SUq(3)

)
is a unital C∗-algebra homomorphism such that

∆(uij) =
n∑
k=1

uik ⊗ ukj .

We denote by O
(
SUq(3)

)
the ∗-subalgebra of C

(
SUq(3)

)
generated by the

uij , i, j = 1, 2, 3. Thus O
(
SUq(3)

)
, the polynomial algebra of SUq(3), is a dense

∗-subalgebra of C
(
SUq(3)

)
.

In [1], Brągiel described explicitly all irreducible representations of the alge-
bra C

(
SUq(3)

)
. There are six families of these representations, each indexed by

elements (ϕ, ψ) of the 2-torus. We denote them by πϕ,ψ0 , πϕ,ψ11 , πϕ,ψ12 , πϕ,ψ21 , πϕ,ψ22 and
πϕ,ψ3 . Each of the representations πϕ,ψ∗ acts on the Hilbert space H∗, where

H0 = C, H11 = H12 = ℓ2(N), H21 = H22 = ℓ2
(
N2

)
and H3 = ℓ2

(
N3

)
.

Each of the πϕ,ψ∗ contains compact operators of H∗ in its image [1], and thus
C
(
SUq(3)

)
is a type I algebra. The kernels of these irreducible representations are

primitive ideals of C
(
SUq(3)

)
with the following generators:

ker
(
πϕ,ψ3

)
=

⟨
ϕu31 − |u31|, ψu13 − |u13|

⟩
, (2a)

ker
(
πϕ,ψ21

)
=

⟨
u31, ϕu21 − |u21|, ψu13 − |u13|

⟩
, (2b)

ker
(
πϕ,ψ22

)
=

⟨
u13, ϕu31 − |u31|, ψu12 − |u12|

⟩
, (2c)

ker
(
πϕ,ψ11

)
=

⟨
u13, u31, u23, ϕu12 − |u12|, ψu21 − |u21|

⟩
, (2d)

ker
(
πϕ,ψ12

)
=

⟨
u13, u31, u12, ϕψu32 − |u32|, ψu23 − |u23|

⟩
, (2e)

ker
(
πϕ,ψ0

)
=

⟨
u13, u31, u12, u23, ϕu11 − 1, ψu22 − 1

⟩
. (2f)

2.2. The gauge action and its fixed point algebra
The family of 1-dimensional irreducible representations πϕ,ψ0 of C

(
SUq(3)

)
pro-

duces a surjective morphism of compact quantum groups
π̂0 : C

(
SUq(3)

)
−→ C

(
T2

)
(the diagonal imbedding of T2 into SUq(3)), which gives rise to a gauge coaction
of coordinate algebras

µ̂ : O
(
SUq(3)

)
→ O

(
SUq(3)

)
⊗O

(
T2

)
, µ̂ = (id⊗π̂0) ◦∆SUq(3).
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Explicitly, on the polynomial algebra O(SUq(3)), π̂0 is a Hopf ∗-algebra epimor-
phism,

π̂0 : O
(
SUq(3)

)
−→ O(T2), u 7→

U1 0 0
0 U2 0
0 0 U∗

1U
∗
2

 ,

where U1, U2 are unitary, group-like generators of the Hopf algebra O(T2) of poly-
nomials on T2 (the algebra of Laurent polynomials in two indeterminates). Hence
the coaction comes out as

µ̂ : O
(
SUq(3)

)
→ O

(
SUq(3)

)
⊗O

(
T2

)
, uij 7→

{
uij ⊗Uj if j = 1, 2,

uij ⊗(U1U2)
−1 if j = 3.

Equivalently, µ : T2 −→ Aut
(
C
(
SUq(3)

))
is given by

z 7−→ µz, µz(uij) =

{
zjuij if j = 1, 2,

(z1z2)
−1uij if j = 3.

Here z = (z1, z2) ∈ T2 and each zi is a complex number of modulus 1. Let
C(SUq(3)/T2) be the fixed point algebra of this gauge action, and let

O
(
SUq(3)/T2

)
= O

(
SUq(3)

)
∩ C

(
SUq(3)/T2

)
be its polynomial ∗-subalgebra, i.e. the subalgebra of coinvariants of µ̂,

O
(
SUq(3)/T2

)
= O

(
SUq(3)

)coO(T2)
=

{
f ∈ O

(
SUq(3)

)
: µ̂(f) = f ⊗ 1

}
.

Integration with respect to the Haar measure over T2 gives rise to a faithful
conditional expectation Φ : C

(
SUq(3)

)
→ C

(
SUq(3)/T2

)
, namely

Φ(x) =

∫
z∈T2

µz(x)dz.

If w is a monomial in {uij} then Φ(w) is either 0 or w. Thus we have
Φ
(
O
(
SUq(3)

))
= O

(
SUq(3)/T2

)
,

and whence O
(
SUq(3)/T2

)
is a dense ∗-subalgebra of C

(
SUq(3)/T2

)
.

There is a third equivalent way of understanding the gauge action, which
is particularly useful in determining the freeness of the action (alas we will not
employ this point of view in this note): O(SUq(3)) is a Z2-graded algebra with the
degrees of the generators given by

deg (ui1) = (1, 0), deg (ui2) = (0, 1), deg (ui3) = (−1,−1), i = 1, 2, 3.

From this point of view, O
(
SUq(3)/T2

)
is the (0, 0)-degree part of O

(
SUq(3)

)
.

In what follows, we denote
wijk = ui1uj2uk3, i, j, k = 1, 2, 3. (3)

Clearly, elements wijk are contained in the polynomial algebra O
(
SUq(3)/T2

)
.

Let ρϕ,ψ∗ be the restriction to C
(
SUq(3)/T2

)
of the representation πϕ,ψ∗ of

C
(
SUq(3)

)
.
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Lemma 1. For each (ϕ, ψ) ∈ T2, the representation ρϕ,ψ∗ is unitarily equivalent to
ρ1,1∗ .

Proof. It follows immediately from formulae (2a)–(2f) that the gauge action µ on
the primitive ideal space is transitive on each of the six families. Since C

(
SUq(3)

)
is

of type I, irreducible representations with identical kernels are unitarily equivalent.
Thus, for each (ϕ, ψ) there exist (z1, z2) such that πϕ,ψ∗ is unitarily equivalent to
π1,1
∗ ◦µz1,z2 . But ρ

1,1
∗ ◦µz1,z2 = ρ1,1∗ , and so ρϕ,ψ∗ is unitarily equivalent to ρ1,1∗ . �

In what follows we use the simplified notation ρ∗ = ρ1,1∗ .

Lemma 2. The image of ρ∗ contains all the compact operators K(H∗) on its space
H∗, and thus each ρ∗ is irreducible.

Proof. Representation ρ0 is 1-dimensional and there is nothing to prove in this
case.

Considering ρ12, given by formulae (14) of [1], we have

ρ12(w132)|N〉 = −q2N+1|N〉.
Thus the image of ρ12 contains one-dimensional projections corresponding to the
basis {|N〉 : N ∈ N} of H12. Since

ρ12(w133)|N〉 = scalar|N + 1〉
(in the course of the proof of this lemma we denote by ‘scalar’ a non-zero constant
which may depend on N,M,L), it follows that the image of ρ12 contains all the
compact operators on H12. In the case of ρ11 the same argument works, since
ρ11(w213) = ρ12(w132) and ρ11(w223)|N〉 = scalar|N + 1〉.

By formulae (12) of [1], ρ22(w312)|N,M〉 = q2(N+M+1)|N,M〉 and

ρ22(w132)|N,M〉 = −q2M+1(1− q2(N+1))|N,M〉.
It follows that the image of ρ22 contains all one-dimensional projections corre-
sponding to the basis {|N,M〉 : N,M ∈ N} of H22. We also find that
ρ22(w112)|N,M〉 = scalar|N − 1,M〉 and ρ22(w212)|N,M〉 = scalar|N,M − 1〉,
and it follows that the image of ρ22 contains all the compact operators on H22.
The argument for ρ21 is similar and based on the identities:

ρ21(w231) = ρ22(w312), ρ21(w132) = ρ22(w132),

ρ21(w131)|N,M〉 = scalar|N − 1,M〉, ρ21(w211)|N,M〉 = scalar|N,M − 1〉.

Finally, considering ρ3, given by formulae (10) of [1], we have

ρ3
(
|w311|2

)
|N,M,L〉 = q2(3N+M+L+3)

(
1− q2M

)
|N,M,L〉, (4a)

ρ3(w111)|N,M,L〉 = scalar|N − 1,M − 1, L〉, (4b)
ρ3(w211)|N,M,L〉 = scalar|N,M − 1, L− 1〉, (4c)
ρ3(w311)|N,M,L〉 = scalar|N,M − 1, L〉. (4d)
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By (4a), the operator ρ3
(
|w311|2

)
is compact and its spectral subspace correspond-

ing to the maximal eigenvalue is spanned by vectors |0,M, 0〉 for which M is a
positive integer such that q2M

(
1 − q2M

)
is maximal. This space is either one or

two-dimensional. In the former case, the image of ρ3 contains the one-dimensional
projection onto |0,M0, 0〉, and formulae (4b)–(4d) imply that it contains all the
compact operators on H3. In the latter case, the image of ρ3 contains the two-
dimensional projection Q onto the span of |0,M0, 0〉 and |0,M0 + 1, 0〉. Then
Qρ3(w311)Q is a rank one operator, and just as above it follows from formulae
(4b)–(4d) that the image of ρ3 contains all the compact operators on H3. �

We define J∗ = ρ−1
∗ (K(H∗)), closed ideals of C

(
SUq(3)/T2

)
.

Lemma 3. The following properties hold:
(i) Representation ρ3 of C

(
SUq(3)/T2

)
is faithful.

(ii) J3 = ker (ρ21) ∩ ker (ρ22).
(iii) J21 = J22 = ker (ρ21) + ker (ρ22) = ker (ρ11) ∩ ker (ρ12).
(iv) J11 = J12 = ker (ρ11) + ker (ρ12) = ker (ρ0).

Proof. We have

ker (ρ∗) = C
(
SUq(3)/T2

)
∩
∩
ϕ,ψ

ker
(
πϕ,ψ∗

)
.

Using formulae (2a)–(2f) we see that ∩ϕ,ψ ker
(
πϕ,ψ∗

)
are ideals of C

(
SUq(3)

)
with

the following sets of generators:∩
ϕ,ψ

ker
(
πϕ,ψ3

)
= 〈0〉, (5a)

∩
ϕ,ψ

ker
(
πϕ,ψ21

)
= 〈u31〉,

∩
ϕ,ψ

ker
(
πϕ,ψ22

)
= 〈u13〉, (5b)

∩
ϕ,ψ

ker
(
πϕ,ψ11

)
= 〈u13, u31, u23〉, (5c)

∩
ϕ,ψ

ker
(
πϕ,ψ12

)
= 〈u13, u31, u12〉, (5d)

On the other hand, J∗ = ker
(
ρ∗
)
∩ 〈x∗〉, where 〈x∗〉 is the ideal of C

(
SUq(3)

)
generated by x∗ such that πϕ,ψ∗ (x∗) is a non-zero element of K(H∗) for all ϕ, ψ.
For example, we can take x3 = u31u13, x21 = u13, x22 = u31, x11 = u12 and
x12 = u23.

Now (i) follows from formula (5a). Claim (ii) follows from (5b) and the iden-
tity 〈u31〉 ∩ 〈u13〉 = 〈u31u13〉. The latter follows from the fact that both u13 and
u31 either commute or q-commute with every generator of C

(
SUq(3)

)
.

The identity J21 = J22 = ker (ρ21) + ker (ρ22) follows from (5b). For the
remaining part of claim (iii), it suffices to show that

〈u13, u31〉 = 〈u13, u31, u12〉 ∩ 〈u13, u31, u23〉.
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To this end, we first note that modulo the ideal 〈u13, u31〉 both u12 and u23 either
commute or q-commute with every generator of C

(
SUq(3)

)
. Thus

〈u13, u31, u12〉 ∩ 〈u13, u31, u23〉 = 〈u13, u31, u12u23〉,

and it suffices to verify that u12u23 ∈ 〈u13, u31〉. By formulae (11) of [1], we have
πϕ,ψ21 (u12u23) ∈ K(H21) for all ϕ, ψ, and the claim follows.

The identity J11 = J12 = ker (ρ11)+ ker (ρ12) follows from (5c) and (5d). For
the remaining part of claim (iv), we must prove that

ker (ρ0) = C
(
SUq(3)/T2

)
∩ 〈u13, u31, u23, u12〉.

However, as shown in [1], ⊕ϕ,ψπϕ,ψ0 is faithful on the quotient of C
(
SUq(3)

)
by

〈u13, u31, u23, u12〉, and the claim follows. �

In the following corollary we summarise properties of the algebra of contin-
uous functions on the quantum flag manifold SUq(3)/T2.

Corollary 4. The C∗-algebra C
(
SUq(3)/T2

)
has the following properties:

1. It has a composition series with factors: K, K ⊕K, K ⊕K, C.
2. It is AF and of type I.
3. Its K-groups are K0

∼= Z6 and K1 = 0.
4. {ρ∗} is a complete set of representatives (up to unitary equivalence) of its

irreducible representations.
5. Each irreducible representation of C

(
SUq(3)/T2

)
extends to an irreducible

representation of C
(
SUq(3)

)
acting on the same Hilbert space.

6. Its primitive ideal space consists of six elements {ker (ρ∗)}, with topology
determined by the following closure operation.
(a) The point ker (ρ3) is dense in the entire space.
(b) The closures of ker (ρ21) and ker (ρ22), respectively, consist of the union

of itself and {ker (ρ0), ker (ρ11), ker (ρ12)}.
(c) The closures of ker (ρ11) and ker (ρ12), respectively, consist of the union

of itself and ker (ρ0).
(d) The point ker (ρ0) is closed.

3. Towards a noncommutative sphere bundle
The classical flag manifold SU(3)/T2 has the structure of a fibre bundle with the
base space CP 2 and the fibre CP 1 ∼= S2. Therefore, it is natural to expect that
the quantum flag manifold SUq(3)/T2 should have an analogous structure of a
noncommutative ‘fibre bundle’

CP 1
q −→ SUq(3)/T2 −→ CP 2

q . (6)

It is not entirely clear how to reinterpret the “bundle” from (6) in the noncom-
mutative setting. However, as a minimum, we should have a projection (conditional
expectation) from the algebra of “functions on the total space” C

(
SUq(3)/T2

)
onto
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the algebra of “functions on the base space” C
(
CP 2

q

)
. So we begin by constructing

such a conditional expectation.
The algebra C

(
CP 2

q

)
is a C∗-subalgebra of C

(
SUq(3)/T2

)
in a natural way as

follows (cf. [13]). The C∗-subalgebra of C
(
SUq(3)

)
generated by the first column

matrix elements of u, i.e. u11, u21 and u31, may be identified with the C∗-algebra
C
(
S5
q

)
of continuous functions on the quantum 5-sphere. This C∗-subalgebra is

invariant under the gauge action µ of T2 on C
(
SUq(3)

)
. When restricted to C

(
S5
q

)
,

µ reduces to the generator-rescaling circle action uj1 7→ zuj1, z ∈ T, whose fixed
point algebra is C

(
CP 2

q

)
(cf. [7,13]). Thus, in the setting of the present article, we

have
C
(
CP 2

q

)
= C

(
SUq(3)/T2

)
∩ C∗(u11, u21, u31).

In order to construct the desired conditional expectation

E : C
(
SUq(3)/T2

)
→ C

(
CP 2

q

)
,

we will use integration over a quantum subgroup of SUq(3) isomorphic to the
quantum unitary group Uq(2). Indeed, recall from [10] or [6] that Uq(2) is a com-
pact matrix quantum group with the C∗-algebra of continuous functions C

(
Uq(2)

)
generated densely by three elements u, α, γ, organised into a fundamental unitary
matrix

v =

u 0 0
0 α −qγ∗u∗
0 γ α∗u∗

 .

The generator u is central, while αγ = qγα, γγ∗ = γ∗γ.
The unitarity of v implies that u is unitary, while α and γ satisfy the remain-

ing SUq(2) (cf. [14]) q-commutation rules

αγ∗ = qγ∗α, α∗α+ γγ∗ = 1, αα∗ + q2γγ∗ = 1.

As shown in [4], the ∗-homomorphism

π : O
(
SUq(3)

)
−→ O

(
Uq(2)

)
, u 7→ v,

is an epimorphism of Hopf algebras, and thus we obtain a right coaction

ϱSUq(3) : C
(
SUq(3)

)
−→ C

(
SUq(3)

)
⊗C

(
Uq(2)

)
, ϱSUq(3) = (id⊗π)◦∆SUq(3). (7)

One immediately checks that

ϱSUq(3) ◦ µz = (µz ⊗ id) ◦ ϱSUq(3),

for all z ∈ T2, and this implies that the restriction of ϱSUq(3) to C
(
SUq(3)/T2

)
yields the coaction

ϱSUq(3)/T2 : C
(
SUq(3)/T2

)
−→ C

(
SUq(3)/T2

)
⊗ C

(
Uq(2)

)
.

Consequently,

(id⊗h) ◦ ϱSUq(3)/T2 : C
(
SUq(3)/T2

)
→ C

(
SUq(3)/T2

)coUq(2)
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is a faithful conditional expectation. Here h denotes the Haar state on C
(
Uq(2)

)
and

C(SUq(3)/T2)coUq(2) =
{
a ∈ C

(
SUq(3)/T2

)
: ϱSUq(3)/T2(a) = a⊗ 1

}
is the C∗-subalgebra of coinvariants. It is shown in [4] that

C
(
SUq(3)/T2

)coUq(2)
= C

(
SUq(3)

)
∩ C∗(u11, u21, u31),

and thus
E = (id⊗h) ◦ ϱSUq(3)/T2 (8)

is the desired faithful conditional expectation from the algebra C
(
SUq(3)/T2

)
onto

C
(
CP 2

q

)
.

In order to compute the conditional expectation value (8) it is useful or, in-
deed necessary, to have an explicit description of the Haar state on C

(
Uq(2)

)
. In

fact, it is sufficient to have such a description on the dense subalgebra O
(
Uq(2)

)
of

C
(
Uq(2)

)
. One way of obtaining the Haar measure is first to realise that O

(
Uq(2)

)
is a right O

(
SUq(2)

)
-comodule algebra (i.e. the quantum group SUq(2) acts on

Uq(2)) with fixed points equal to O
(
U(1)

)
and then to compose the Haar inte-

grals on O
(
SUq(2)

)
and O

(
U(1)

)
(both well-known, the first one described by

Woronowicz in [15]).
The coaction ϱUq(2) of O(SUq(2)) on O(Uq(2)) is induced from the Hopf-

algebra projection

O
(
Uq(2)

) p−−→→ O
(
SUq(2)

)
,

u 0 0
0 α −qγ∗u∗
0 γ α∗u∗

 7−→

1 0 0
0 α −qγ∗
0 γ α∗

,
by

ϱUq(2) = (id⊗p) ◦∆Uq(2) : O
(
Uq(2)

)
−→ O

(
Uq(2)

)
⊗O

(
SUq(2)

)
. (9)

As ∗-algebra the coinvariants of this coaction are generated by the unitary u,
and hence are isomorphic to O

(
U(1)

)
. The Haar functional h on O

(
Uq(2)

)
(and,

consequently, on C
(
Uq(2)

)
) is the composite

h : O
(
Uq(2)

) ϱUq(2)

O
(
Uq(2)

)
⊗O

(
SUq(2)

) id⊗ hSUq(2)

O
(
U(1)

) hU(1)

C.

Here hSUq(2) is the Haar measure on the quantum group SUq(2) given on the
standard basis of O

(
Uq(2)

)
as

hSUq(2)

(
αkγmγ∗n

)
= δk0 δmn

q2 − 1

q2n+2 − 1
, for all k ∈ Z, m,n ∈ N, (10)

where we use the convention that, for k < 0, xk = (x∗)−k; see [15, Appendix A1].
The Haar functional hU(1) on the standard basis of O(U(1)) is given by

hU(1)

(
uk

)
= δk0, for all k ∈ Z. (11)
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Combining formulae (9)–(11) we thus obtain an explicit expression for the Haar
functional on O(Uq(2)),

h
(
αkulγmγ∗n

)
= δk0 δl0 δmn

q2 − 1

q2n+2 − 1
, for all k, l ∈ Z, m,n ∈ N. (12)

With the explicit formula (12) at hand we can now compute the value of
the conditional expectation (8) on the elements (3) of the quantum flag variety
algebra O

(
SUq(3)/T2

)
densely included in the C∗-algebra of continuous functions

C
(
SUq(3)/T2

)
. In view of the fact that the coaction ϱSUq(3)/T2 is the restriction

of the map (7) one easily finds that
ϱSUq(3) (wijk) = wijk ⊗ 1 + ui1uj2uk2 ⊗uv22v23

+ ui1 (uj3uk2 + quj2uk3)⊗uv32v23 + ui1uj3uk3 ⊗uv32v33

= wijk ⊗ 1− qui1uj2uk2 ⊗αγ∗

− qui1 (uj3uk2 + quj2uk3)⊗ γγ∗ + ui1uj3uk3 ⊗ γα∗.

Now, the application of id⊗ h together with the commutation rules (1) yield

E(wijk) =
wijk − wikj

1 + q2
.

4. Conclusions
In this short note we have studied representations and the structure of the algebra
of continuous functions on the quantum flag manifold SUq(3)/T2 obtained as the
fixed points of the gauge action of the classical two-torus on the quantum SU(3)-
group. We have also indicated that the quantum flag manifold SUq(3)/T2 can
be interpreted as the total space of a quantum sphere bundle over the quantum
projective space CP 2

q , and we have presented an explicit formula for a faithful
conditional expectation from C

(
SUq(3)/T2

)
onto C

(
CP 2

q

)
. The detailed analysis

of this bundle is presented in [4].

References
1. K. Brągiel, The twisted SU(3) group. Irreducible ∗-representations of the C∗-algebra

C(SµU(3)), Lett. Math. Phys. 17 (1989), 37–44.
2. T. Brzeziński and P. M. Hajac, The Chern–Galois character, C. R. Math. Acad. Sci.

Paris 338 (2004), 113–116
3. T. Brzeziński and S. Majid, Quantum group gauge theory on quantum spaces, Com-

mun. Math. Phys. 157 (1993), 591–638. Erratum: 167 (1995), 235.
4. T. Brzeziński and W. Szymański, The quantum flag manifold SUq(3)/T2 as an ex-

ample of a noncommutative sphere bundle, in preparation.
5. V. G. Drinfeld, Quantum groups. Proceedings of the International Congress of Math-

ematicians, Vol. 1, 2 (Berkeley, 1986), 798–820, Amer. Math. Soc., Providence, 1987.



On the quantum flag manifold SUq(3)/T2 139

6. P. M. Hajac, Strong connections on quantum principal bundles, Commun. Math. Phys.
182 (1996), 579–617.

7. J. H. Hong and W. Szymański, Quantum spheres and projective spaces as graph
algebras, Commun. Math. Phys. 232 (2002), 157–188.

8. A. Klimyk and K. Schmüdgen, Quantum groups and their representations, Springer,
Berlin, 1997.

9. S. Neshveyev and L. Tuset, Quantized algebras of functions on homogeneous spaces
with Poisson stabilizers, Comm. Math. Phys. 312 (2012), 223–250.

10. N. Reshetikhin, L. Takhtajan and L. Faddeev, Quantization of Lie groups and Lie
algebras, Leningrad Math. J. 1 (1990), 193–226.

11. Y. S. Soibelman, Irreducible representations of the algebra of functions on the quan-
tum group SU(n) and Schubert cells, Dokl. Akad. Nauk SSSR 307 (1989), 41–45.

12. J. V. Stokman and M. S. Dijkhuizen, Quantized flag manifolds and irreducible ∗-
representations, Comm. Math. Phys. 203 (1999), 297–324.

13. L. L. Vaksman and Y. S. Soibelman, Algebra of functions on quantum SU(n + 1)
group and odd dimensional quantum spheres, Algebra i Analiz 2 (1990), 101–120.

14. S. L. Woronowicz, Twisted SU(2) group. An example of a non-commutative differen-
tial calculus, Publ. Res. Inst. Math. Sci. 23 (1987), 117–181.

15. S. L. Woronowicz, Compact matrix pseudogroups, Commun. Math. Phys. 111 (1987),
613–665.

16. S. L. Woronowicz, Tannaka–Krein duality for compact matrix pseudogroups. Twisted
SU(N) groups, Invent. Math. 93 (1988), 35–76.

Tomasz Brzeziński
Department of Mathematics, Swansea University
Swansea University Bay Campus
Fabian Way, Swansea SA1 8EN, U.K.
and
Department of Mathematics
University of Białystok
K. Ciołkowskiego 1M
15–245 Białystok, Poland
e-mail: T.Brzezinski@swansea.ac.uk

Wojciech Szymański
Department of Mathematics and Computer Science
University of Southern Denmark
Campusvej 55
5230 Odense M, Denmark
e-mail: szymanski@imada.sdu.dk



Geometric Methods in Physics. XXXVII Workshop 2018
Trends in Mathematics, 140–142

A Hopf algebra without a modular pair
in involution
Sebastian Halbig and Ulrich Krähmer

Abstract. The aim of this short note is to communicate an example of a finite-
dimensional Hopf algebra that does not admit a modular pair in involution
in the sense of Connes and Moscovici.

Mathematics Subject Classification (2000). Primary 16T05; Secondary 57T05.
Keywords. Hopf algebra, modular pair in involution, ribbon element, Drinfel’d
double.

1. Introduction
The concept of a modular pair in involution has been introduced by Connes and
Moscovici [2] in order to define the Hopf-cyclic cohomology of a Hopf algebra H
over a field k. In the following we freely use standard notation from Hopf algebra
theory e.g. as in [5,6]. In particular, H◦ is the Hopf dual of H and β−1 = β ◦ S is
the convolution inverse of a group-like β ∈ H◦ (i.e. a character β : H → k).

Definition. Let H be a Hopf algebra. A pair (l, β) of group-like elements l ∈ H,β ∈
H◦ is a modular pair in involution if β(l) = 1 and

S2(h) = β(h(1))lh(2)l
−1β−1(h(3)) (1)

holds for all h ∈ H.

Hajac et al. extended this notion to that of stable anti Yetter–Drinfel’d mod-
ules over Hopf algebras [3]. It is also related to earlier work by Kauffman and Rad-
ford [4] who classified the ribbon elements in Drinfel’d doubles of finite-dimensional
Hopf algebras. Among their results they showed that if dimk H is odd and S2 has

We thank P.M. Hajac for pointing us to the question answered here.

c© Switzerland AG 2019Springer Nature
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odd order, then there is always a pair (l, β) implementing S2 as in (1). The ques-
tion arises whether there are also always pairs (l, β) that additionally satisfy the
stability condition β(l) = 1. The aim of the present note is to point out that this
is not the case in general:

Theorem. Let p be a prime number, s ∈ Zp \{0}, q ∈ k be a primitive pth root of
unity, and H be the Hopf algebra with generators g, x, y and defining algebra and
coalgebra relations

gx = qxg, gy = q−syg, gp = 1, xp = yp = 0, xy = q−syx,

∆(g) = g ⊗ g, ∆(x) = 1⊗ x+ x⊗ g, ∆(y) = 1⊗ y + y ⊗ gs.

Its antipode is determined by
S(g) = g−1, S(x) = −xg−1, S(y) = −yg−s,

and H has a modular pair in involution if and only if s ∈ {1, p− 1}.

The Hopf algebra H appears naturally in several contexts. In particular, it
is referred to as the book Hopf algebra in [1].

2. Proof
It is immediately verified that the group-likes in H are the elements of the form
l = gi for some i. Furthermore, a character β : H → k has to vanish on x, y and is
determined by its value β(g) which can be any pth root of unity in k (including 1,
in which case β = ε is the counit of H). It follows that

T : H → H, h 7→ β(h(1))lh(2)l
−1β−1(h(3))

is the Hopf algebra automorphism of H determined by
T (g) = g, T (x) = qiβ(g)−1x, T (y) = q−isβ(g)−sy.

Comparing this with

S2(g) = g, S2(x) = gxg−1 = qx, S2(y) = gsyg−s = q−s2y

shows that S2 = T if and only if
β(g) = qi−1, β(g)s = q(s−i)s.

Assuming β(g) = qi−1, we obtain

β(l) = β(g)i = qi(i−1)

and the condition β(g)s = q(s−i)s reduces to q(1−2i+s)s = 1. Thus S2 = T holds if
and only if we have

(1− 2i+ s)s = 0 ∈ Zp.

As s 6= 0, this is equivalent to
s = 2i− 1 ∈ Zp.
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In total we see that (l, β) is a modular pair in involution if and only if
s = 2i− 1, i(i− 1) = 0 ∈ Zp.

For i = 0 this means s = −1 = p−1 and for i = 1 it means s = 1 in Zp. The claim
follows. �
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Hopf–Rinow theorem
in Grassmann manifolds of C∗-algebras
Eduardo Chiumiento

Abstract. We survey several results on the problem of finding a geodesic of
minimal length joining two given endpoints in Grassmann manifolds of C∗-
algebras.
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1. Introduction
In the context of finite-dimensional Riemannian manifolds, the Hopf–Rinow the-
orem is the main result establishing sufficient conditions to find a geodesic of
minimal length joining two given points in the manifold. It is stated as follows:

Theorem (Hopf–Rinow). Let X be a finite-dimensional connected Riemannian
manifold, and denote by d the associated geodesic distance. If (X, d) is a complete
metric space, then there exists a geodesic of minimal length joining any two points
in X.

We refer to Lang’s book [18] for a proof, as well other equivalent conditions
to geodesic completeness. It turns out that the Hopf–Rinow theorem carries over
to finite-dimensional Finsler manifolds [7], where the metric is given by a norm
on each tangent space, which does not necessarily come from an inner product.
Further, it was also generalized to locally compact metric spaces by S. Cohn-
Vossen [10,15]. At this point, let us mention that local compactness is the crucial
hypothesis in all of these versions. This is explicitly assumed in metric spaces,
while in the other cases is deduced from the fact that the manifolds considered are
finite dimensional.

c© Switzerland AG 2019Springer Nature
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In this work we are interested in infinite dimensional manifolds, where as one
might expect by the lack of local compactness, the situation completely changes.
Even for Hilbert–Riemannian manifolds, that is, manifolds modeled on a Hilbert
space, Hopf–Rinow theorem is false. More precisely, there are examples of complete
Hilbert–Riemannian manifolds such that there exist two points that cannot be
joined by a minimal geodesic [15,20], or even worse, cannot be joined by a geodesic
[6]. A local result still holds true in this setting: any two points inside a normal
neighborhood can be joined by a minimal geodesic.

The aim of this work is to present the main results on the minimality of
geodesics in Grassmann manifolds of C∗-algebras. The Grassmann manifold of a
unital C∗-algebra A is defined as the set of all orthogonal projections in A. Thus,
there is a natural norm at hand, given by the spectral norm of bounded opera-
tors, to put on tangent spaces. An obvious fact, but worth to remark, is that this
defines a non-Riemannian metric. It is not difficult to show that geodesic distance
associated to the metric gives a complete metric space. The question is then to
know if the Hopf–Rinow theorem holds in this setting. Since our Grassmann man-
ifolds are homogeneous spaces, the results exhibited here can be seen as examples
of a more general topic, the metric geometry of infinite dimensional homogeneous
spaces arising in operator theory (see [13,14,19]).

2. The Grassmann manifold of a C∗-algebra
Throughout, A denotes a unital C∗-algebra. We shall think that A is contained
in the algebra of bounded operators of some Hilbert space; thus the norm ∥ · ∥
of the algebra A is the spectral norm of operators. This section is dedicated to
explaining general geometric features of Grassmann manifolds of C∗-algebras.

Definition 1. The Grassmann manifold of A is given by
Gr(A) = {P ∈ A : P = P ∗ = P 2 }.

Remark 2. It’ll be important to remember that ∥P −Q∥ ≤ 1, when P,Q ∈ Gr(A).

The unitary group UA of A acts on Gr(A) as follows: U · P = UPU∗, U ∈
UA, P ∈ Gr(A). This action has the following properties:

(i) It is locally transitive: if ∥P −Q∥ < 1, then there is a unitary U ∈ UA such
that UPU∗ = Q.

(ii) The isotropy group at P ∈ Gr(A), i.e. IP = {U ∈ UA : UP = PU } is a
Banach–Lie subgroup of UA.

(iii) The orbit of P ∈ Gr(A), namely OP = {UPU∗ : U ∈ UA } contains the
connected components of Gr(A).
In fact, the third item can be derived from the first. For we shall use that the

orbits have manifold structure endowed with the ambient topology (this is inde-
pendently discussed below), and that path components and connected components
coincide for manifolds. We take a continuous curve γ : [0, 1] → Gr(A) such that
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γ(0) = P and γ(1) = Q. Then there exist points 0 = t0 < t1 < · · · < tn = 1
satisfying ∥γ(ti) − γ(ti−1)∥ < 1, so that γ(ti) = Uiγ(ti−1)U

∗
i for some Ui ∈ UA.

Then Q = Un · · ·U1P (Un · · ·U1)
∗. In the case where A = B(H), i.e. the bounded

operators on a Hilbert space H, it holds that connected components coincide with
orbits. Moreover, they are parameterized by the rank and corank of the projections.

On the other hand, the second item above is the sufficient condition to guar-
antee the following result (see e.g. [8, Thm. 4.9]).

Proposition 3. The orbit OP ≃ UA/IP is a real analytic manifold endowed with
the quotient topology, and the map πP : UA → OP , πP (U) = UPU∗, is a real
analytic submersion.

Noting that Gr(A) can be expressed as a disjoint union of orbits, we then
have that Gr(A) endowed with the quotient topology has manifold structure. Let
Asa be the self-adjoint operators in A. H. Porta and L. Recht proved:

Proposition 4 ([21]). Gr(A) is a real analytic submanifold of Asa.

This means that there is an adapted coordinate chart around each projection
in Gr(A), or equivalently by a criterion in [9], that the quotient topology on
Gr(A) coincides with topology inherited from Asa, and tangent spaces are closed
and complemented in Asa. It is worth pointing out that the differential structures
given in Proposition 3 and 4 coincide in Gr(A).

Remark 5. The tangent space at P ∈ Gr(A) can be computed as(
TGr(A)

)
P
= {XP − PX : X∗ = −X ∈ A}.

To see this, just take the derivative of the curve γ(t) = etXPe−tX at t = 0 to prove
one inclusion. For the reversed inclusion, let γ : (−ϵ, ϵ) → Gr(A) be a smooth curve
satisfying γ(0) = P , and set Y = γ̇(0) ∈ Asa. Using that γ(t)2 = γ(t), and taking
the derivative at t = 0, we find that Y P + PY = Y . This implies that Y is P-
codiagonal, i.e. PY P = (I − P )Y (I − P ) = 0. Now set X = Y P − PY , which
satisfies Y = XP − PX.

Remark 6. From the previous remark, it is straightforward to give a (continuous)
projection onto each tangent space. Using a block decomposition in terms of the
projection P , we can rewrite the tangent space as

(
TGr(A)

)
P
=

{(
0 x12

x∗
12 0

)
: x12 ∈ PA(I − P )

}
.

Then we can define the projection

EP : Asa →
(
TGr(A)

)
P
, EP

((
x11 x12

x∗
12 x22

))
=

(
0 x12

x∗
12 0

)
.
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3. Geodesics of minimal length
Following [21], we now define a linear connection using the projection onto tangent
spaces introduced in the previous section. Let X be a smooth tangent field along
a curve γ in Gr(A), then the linear connection is

DX

Dt
= Eγ(t)(γ̇(t)).

Remark 7. The unique geodesic δ satisfying the initial conditions γ(0) = P , γ̇(0) =(
0 x12

x∗
12 0

)
, can be explicitly computed:

δ(t) = e
t

(
0 −x12

x∗
12 0

)
Pe

−t

(
0 −x12

x∗
12 0

)
.

Now given a curve smooth γ : [0, 1] → Gr(A), we define its length by

L(γ) =

∫ 1

0

∥γ̇(t)∥ dt.

Note that this norm is not smooth or strictly convex. Thus, the tools of calculus
of variations cannot be used to find the extremals of the length functional. The
geodesic distance between points P,Q in the same connected component is defined
by d(P,Q) = inf{L(γ) : γ piecewise smooth curve joining P and Q }. A curve
γ ⊆ Gr(A) joining P and Q has minimal length if L(γ) = d(P,Q). Geodesic
completeness is not difficult to prove.

Lemma 8. (Gr(A), d) is a complete metric space.

Proof. Pick a sequence (Pn) ⊆ Gr(A) such that d(Pn, Pm) → 0. Using that
straight lines are shortest paths in any vector space, we have the estimate ∥Pn −
Pm∥ ≤ d(Pn, Pm). Then there is a projection P0 ∈ Gr(A) satisfying ∥Pn−P0∥ → 0.
Recalling that the action is locally transitive, we can write Pn = UnP0U

∗
n for some

unitaries Un and n ≥ 1 large enough. By Proposition 3, the map πP0
is a sub-

mersion, thus in particular has continuous local cross sections. Since the quotient
topology and the ambient topology coincide, we obtain that ∥Un − I∥ → 0. Next
put Un = eXn for some Xn ∈ A, Xn = −X∗

n. Therefore d(Pn, P0) ≤ L(γn) =
∥XnP0 − P0Xn∥ → 0, where γn(t) = etXP0e

−tXn . �
The rest of this section is devoted to analyze the validity of the Hopf–Rinow

theorem, or equivalently, to find geodesics of minimal length. We first state the
following local result.

Theorem 9 ([21]). Let P,Q ∈ Gr(A) such that ∥P −Q∥ < 1. Then there exists a
unique geodesic of minimal length joining P and Q.

Let us mention that the proof relies on a beautiful geometric idea: compare
the length of curves in the Grassmann manifold with curves in the sphere of a
Hilbert space. Now we outline some ideas in the proof. The estimate ∥P −Q∥ < 1
is used to find a P -codiagonal operator such that X ∈ A, X = −X∗, ∥X∥ < π/2
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and eXPe−X = Q. Moreover, the operator X depends analytically on P . It is
found by passing from the projections P , Q to the symmetries ϵP = 2P − I,
ϵQ = 2Q− I, and using the property that the exponential map

exp : {X ∈ A : X = −X∗, ∥X∥ < π } → {U ∈ UA : ∥U − I∥ < 2 }

is an (analytic) diffeomorphism. An application of the GNS representation yields a
length-reducing map F : Gr(A) → SH, where SH is the sphere of a Hilbert space
H. This map also satisfies the condition that the geodesic δ(t) = etXPe−tX is
mapped isometrically onto a geodesic of SH. Now take γ a curve in Gr(A) joining
P and Q, we have the following estimates:

L(δ) = L(Fδ) ≤ L(Fγ) ≤ L(γ),

where in the second inequality we have used the fact that geodesics in the sphere
are minimizing up to π.

In the case in which A = B(H), we simple write Gr(H) = Gr(B(H)). For
this case, E. Andruchow proved the following equivalent conditions.

Theorem 10 ([1]). Given P,Q ∈ Gr(H), the following are equivalent:
(i) There is a minimal geodesic joining P and Q.
(ii) There is a geodesic joining P and Q.
(iii) dim (ran (P ) ∩ ker (Q)) = dim (ker (P ) ∩ ran (Q)).
Moreover, there is unique minimal geodesic if and only if the above dimensions are
zero.

The proof depends on ideas of P. Halmos [17], J. Dixmier [12] and C. Davis
[11]. They independently proposed that to understand the geometry of two sub-
spaces S = ran (P ), T = ran (Q) (S⊥ = ker (P ), T ⊥ = ker (Q)), one needs to
decompose the Hilbert space as

H = (S ∩ T )⊕ (S⊥ ∩ T ⊥)⊕ (S⊥ ∩ T )⊕ (S ∩ T ⊥)⊕H0 ,

where H0 is defined as the orthogonal complement to the first four summands, and
it is known as the generic part of the two subspaces. For instance, the key step
to prove the implication (iii) =⇒ (i) is to find a P -codiagonal operator X such
that X = −X∗, ∥X∥ ≤ π/2 and eXPe−X = Q. Once this is obtained, the proof
follows the same argument as in Theorem 9. To find an operator X satisfying the
mentioned conditions, one notes that each of the five subspaces is invariant for
both P and Q. It is then possible to use a special representation of the projections
on H0 given by Halmos to find X on H0; on the first and second summands the
problem is trivial since P and Q act as the identity and zero, respectively; and
the existence of X restricted to third and fourth summands is deduced from the
hypothesis on the dimensions.

Our last results concern the Grassmann manifold of a particular C∗-algebra
studied in collaboration with E. Andruchow and M.E. Di Iorio y Lucero [2]. Let H
be a separable Hilbert space such that H = H+⊕H−, where H+ and H− are both
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infinite dimensional closed subspaces. Denote by E+ (resp. E−) the orthogonal
projection onto H+ (resp. H−). Let K(H) be the algebra of compact operators on
H. Next we consider the C∗-algebra of operators with compact commutator, i.e.

Bcc = {X ∈ B(H) : XE+ − E+X ∈ K(H) }.

Writing an operator

X =

(
x11 x12

x21 x22

)
as a block operator in terms of the projections E+ and E−, shows that X ∈ Bcc if
and only if x12, x21 are compact. We denote by Ucc the unitary group of Acc. For
a unitary

U =

(
u11 u12

u21 u22

)
∈ Ucc ,

u11, u22 are Fredholm operators, their indices are related by ind (u11) = −ind (u22),
and they determine the connected components of Ucc. The elements of the corre-
sponding Grassmann manifold Gr(Bcc) will be called essentially commuting pro-
jections (with respect to the decomposition H = H+ ⊕H−).

We denote by π : B(H) → B(H)/K(H) := C(H) the projection onto the
Calkin algebra, and set e± = π(E±). Then there are exactly nine classes of es-
sentially commuting projections, which can be defined by means of the matrix
representation in terms of e+ and e− of the images of the projections under π. On
the one hand, the discrete classes Di, i = 1, . . . , 4, are given by

0, 1,

(
1 0
0 0

)
,

(
0 0
0 1

)
On the other hand, the essential classes Ei, i = 1, . . . , 5, are(

p+ 0
0 0

)
,

(
p+ 0
0 1

)
,

(
0 0
0 p−

)
,

(
1 0
0 p−

)
,

(
p+ 0
0 p−

)
,

where p+, p− are proper projections in C(H).
A projection P belongs to D1 if and only if π(P ) = 0. This means that P

is compact, so it must have finite rank. Similarly, projections in D2 have finite
corank. The connected components of the class D1 (resp. D2) are parameterized
by the rank (resp. corank). For the other two discrete classes, we need to recall
the following:

Definition 11. An orthogonal projection P belongs to the restricted Grassmannian
Grres(H+) if

(i) E+P |ran(P ) : ran (P ) → H+ is Fredholm,
(ii) E−P |ran(P ) : ran (P ) → H− is compact.

This Grassmann manifold was first studied due to its connections with KdV
equations and loop groups [22, 23]. It turns out that class D3 coincides with
Grres(H+), while class D4 is given by Grres(H−). It is a well-known fact that
the index of the operator E+P |ran(P ) gives the connected component where P lies.
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Theorem 12 ( [2]). Let P,Q two projections in the same connected component
of a discrete class Di, i = 1, . . . , 4. Then there is a geodesic of minimal length
joining P and Q. Furthermore, it is unique if and only if ker (P ) ∩ ran (Q) =
ran (P ) ∩ ker (Q) = { 0 }.

Remark 13. The proof idea for classes D3 and D4 follows the method of Theo-
rem 10, and also the main minimality result in [4], where the restricted Grass-
mannian associated to the Hilbert–Schmidt operators was studied instead of the
compact operators. It is surprising that, using a completely different technique, the
minimality of geodesics also holds for any other symmetrically-normed ideal [5].
For the ideal of compact operators, it gives our result for the classes D3 and D4.

In contrast, essential classes behave completely different.

Theorem 14 ([2]). The following assertions hold:
(i) The sets Ei, i = 1, . . . , 5, are connected, and the action of (Ucc)0, the connected

component of the identity, is transitive on each Ei.
(ii) The Hopf–Rinow theorem is not valid on each Ei, i = 1, . . . , 5.

It is not difficult to construct an example for (ii). We give it for class E1;
similar examples can be given for the other classes. Take the following projections
in E1:

P =

(
p+ 0
0 0

)
and Q =

(
q+ 0
0 0

)
,

such that dim (ran (q+) ∩ ker (p+)) ̸= dim (ran (p+) ∩ ker (q+)). By Theorem 10,
we find that there is no minimal geodesic in Gr(H). Using the particular form of
the geodesics, this clearly implies that there is no minimal geodesic in Gr(Bcc).

Remark 15. Concrete examples of essentially commuting projections onto shift-
invariant subspaces are given in [3].

Acknowledgment. I thank Esteban Andruchow for helpful comments.
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Short geodesics for Ad invariant metrics
in locally exponential Lie groups
Gabriel Larotonda

Abstract. We study the geodesic structure of Lie groups K that admit bi-
invariant metrics: the main results concern the fact that one-parameter groups
are short paths for those metrics, as in the Riemannian case.
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1. Introduction
The purpose of this paper is to present a systematic framework to the theory of
intrinsic distances derived from tangent metrics, in the setting of Lie groups with
bi-invariant metrics. The emphasis is on infinite-dimensional Lie groups, modeled
by locally convex topological vector spaces, and metrics defined as continuous
tangent Finsler norms (all the metrics considered in this paper are non-negative).

There are technical and fundamental differences with the classical theory of
metrics on Lie groups, coming from two directions: the first one is going from
finite-dimensional manifolds to infinite-dimensional manifolds, and the second one
is going from Riemannian (or classical Finsler metrics, which are smooth and
have an auxiliary Riemannian metric given in terms of the Hessian of the metric)
to only continuous tangent metrics. However, it is more often than not that both
difficulties arise simultaneously, since infinite-dimensional vector spaces come with
intrinsic and interesting continuous norms or semi-norms.

When the metric is not Riemannian, and there is no connection or distribu-
tion: which is the right notion of geodesic, in the absence of Euler’s equations? We

c© Switzerland AG 2019Springer Nature
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have taken the approach of the metric geometry (or length spaces, see Burago-
Burago and Ivanov [7]): a path in a manifold is a geodesic if it is minimizing, that
is, if its length equals the distance among the endpoints. The distance, of course,
is defined as the infimum of the lengths of paths joining given endpoints (usually
called the rectifiable distance).

If a group G admits a bi-invariant Riemannian metric g, it is well-known that
geodesics δ of (G, g) are left-translations of one-parameter groups: δ(t) = uetv

(cf. [10, 2.90]). If the metric is not Riemannian, it is also expected that one-
parameter groups will be short paths for the rectifiable distance, and this is the
theorem stated in Section 2 of the paper. We also claim that when the norm is
strictly convex, those are the unique possible short paths. The main results are
then Theorems 13 and 16.

1.1. Lie groups and rectifiable metrics
Let us present in this section some general definitions and considerations that will
be used throughout the paper.

Manifolds in this paper will be modeled with charts in a Hausdorff locally con-
vex topological vector space (shortly l.c.s.). The differential of a map f : M → N
among smooth manifolds will be denoted by f∗ : TM → TN and its specialization
by f∗p : TpM → Tf(p)N , p ∈ M .

In this paper, a Lie group G is a manifold such that the operation (x, y) 7→
xy−1 is smooth (at least C2) as a map G × G → G. If g ∈ G and Lg : h 7→ gh
denotes the left multiplication in G, with some abuse of notation we denote

gv = Lgv = (Lg)∗hv ∈ TghG

for h ∈ G, v ∈ ThG. We denote 1 ∈ G the identity of the group and Lie (G) = T1G
its Lie algebra. The Lie bracket in Lie (G) will be denoted by [·, ·]: it is always a
bi-linear, anti-symmetric and continuous map. If cg(h) = ghg−1 is the conjugation
automorphism, i.e. cg = LgR

−1
g for g ∈ G, we follow the standard notation Adg =

(cg)∗1 with Ad : G → GL(Lie (G)) a group homomorphism.
If Lie (G) is not a Banach space then GL(Lie (G)) is not necessarily a Lie

group, but it is a subgroup of the space of diffeomorphisms of Lie (G) therefore
there is a natural notion of smoothness. We denote

ad = (Ad)∗1 : Lie (G) → L(Lie (G))

which is a linear Lie algebra morphism, and in fact ad(v)(w) = [v, w] for any
v, w ∈ Lie (G) (see Neeb [17, Section II.3]).

1.1.1. Finsler metrics. In this section we define continuous Finsler metrics in Lie
groups. For a more radical approach that drops the smoothness assumption on
the manifolds, see Andreev [1]. See also Berestovskii [4, 5] for a systematic ac-
count of finite-dimensional homogeneous manifolds with Finsler metrics defined
by distributions in the fiber bundle.
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Definition 1 (Finsler norms and semi-norms). Let E be a l.c.s., µ = | · | : E → R≥0

a continuous function. Then µ is a Finsler norm if it is sub-additive and positively
homogeneous: |v + w| ≤ |v| + |w| and |λv| = λ|v| for v, w ∈ E and λ ∈ R≥0, and
|v| = 0 implies v = 0.

If |tv| = |t| |v| for all t ∈ R, we obtain the standard notion of continuous
vector space norm.

A word of caution: as discussed in the introduction, our definition of Finsler met-
ric is far more general than the standard one; we are not assuming smoothness,
therefore the usual machinery of Riemann–Finsler geometry [3] is not at hand.

Remark 2 (Left-invariant and bi-invariant metrics). If we fix | · | a Finsler norm
in Lie (G) and define |v|g =

∣∣(Lg)
−1
∗1 v

∣∣ for v ∈ TgG, then the group G has a left-
invariant Finsler metric | · |g : TgG → R≥0, because if g, h ∈ G then |hv|gh =∣∣(gh)−1hv

∣∣ = ∣∣g−1v
∣∣ = |v|g for v ∈ TgG, and the map (g, v) 7→ |v|g =

∣∣g−1v
∣∣ is

continuous as a map from TG to R. Any left-invariant Finsler metric in G can be
obtained with this procedure. Note also that

∣∣Adg v
∣∣
1
=

∣∣vg−1
∣∣
g 1 = |v|1 when the

metric is also right-invariant. In that case we say that the metric is bi-invariant.
These are the only metrics we will consider in this paper.

Definition 3 (Rectifiable paths and length). We say that a curve α : [a, b] → G
is rectifiable if α is differentiable a.e. in some chart of G and t 7→

∣∣α̇(t)∣∣
α(t)

is
Lebesgue integrable. For piecewise smooth or rectifiable arcs α : [a, b] → G, define
the length of α as

Lengthµ(α) =

∫ b

a

∣∣α̇(t)∣∣
α(t)

dt.

Definition 4. For g, h ∈ G, consider the infimum of the lengths of such arcs joining
g, h in G,
distµ(g, h) = inf

{
Lengthµ(α) : α : [0, 1] → G rectifiable, α(0) = g, α(1) = h

}
.

Then distµ : G × G → R≥0 is a p.s.d. (pseudo-quasi-distance): it is finite in each
arc-wise connected component of G, it obeys the triangle inequality, and it is
reversible if and only if | · |g is homogeneous (if it is a norm) for each g ∈ G. More
details on asymmetric distances can be found in [14] and the references therein.

Remark 5. Whether distµ(x, y) = 0 implies x = y in G is more subtle. There are
examples when this fails, see Michor and Mumford [15] for such an example; see
also the paper by Clarke [8].

A sufficient condition to obtain the non-degeneracy of distµ (for left invariant
metrics) is given by asking | · | to induce in Lie (G) its original l.c.s topology. In
particular, if G is a finite-dimensional Lie group, distµ is non-degenerate for any
chosen norm in Lie (G).

Definition 6. We will denote with (G, distµ) the underlying (pseudo-quasi) metric
space. Nevertheless, this distance or quasi-distance induces a topology in G, and we
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will refer to the topology induced as τµ when needed; otherwise the topology of G
will always be the manifold topology denoted by τG. Clearly, τµ will be Hausdorff if
and only if distµ is non-degenerate. It is apparent that distµ : (G, τG)×(G, τG) → R
is continuous, and τµ is finer than τG.

Remark 7. If G carries a smooth exponential function, then its derivative can be
computed explicitly: for v, w ∈ Lie (G),

exp∗w(v) = ew
∫ 1

0

Ade sw v ds = ew
∫ 1

0

e−s adwv ds.

2. Main results
In this section we establish the main results of the paper, with some background
and context. For proofs, see [13]. These results extend those obtained for groups
of compact operators [2] with symmetric norms.

We assume that the Lie group K has a smooth (at least C2) exponential
map. Thus for fixed v ∈ Lie (K), w ∈ Lie (K), the path f(s) = es adwv = Adesw v
is smooth.

The next lemma contains essentially the same information as the Gauss’
Lemma of Riemannian geometry: the differential of the exponential map along a
geodesic preserves angles with the geodesic speed vector.

Lemma 8 (Gauss’ Lemma). Let v, w ∈ Lie (K) and φ be a norming functional for
w, φ(w) = |w|. Then

1. φ(eλ adwv) = φ(v) for all λ ∈ R,
2. φ(e−w exp∗w v) = φ(v).

Since they will play a fundamental role in bi-invariant metrics, let’s define
segments and polygonal paths:

Definition 9. A path δ in K is a segment if it is a left translation of a one-
parameter group, i.e. δ(t) = uetz. We say that δ polygonal path if it is a continuous
concatenation of segments.

This is the main result of this section, that follows from Gauss lemma:

Lemma 10. Let w : [a, b] → Lie (K) be a piecewise C1 path, let γ = ew. Then

|w(b)| − |w(a)| ≤
∫ b

a

∣∣γ−1
t γ̇t

∣∣ dt = Lengthµ(γ).

Thus when w starts at 0 (equivalently, when γ starts at 1), the path γ is
larger than the path δ(t) = etw(b), which has length |w(b)|.
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2.1. Locally exponential Lie groups
We will assume that the exponential map of K is a local diffeomorphism for some
open ball of the given Finsler semi-norm µ. Adapting the technique from Riemann-
ian geometry we obtain local minimality of segments.

Definition 11. Let K be a Lie group, µ = | · | a bi-invariant Finsler semi-norm
in Lie (K), and for r > 0 let Br = {v ∈ Lie (K) : |v| < r}, VR = exp (BR). We
assume in this section that there exists R > 0 such that VR is τK open in K, and
exp : BR → VR is a diffeomorphism.

Remark 12. The straightforward example of our definition is given by a Banach–
Lie group K and a bi-invariant norm µ = | · | that is equivalent to the original
norm modeling the Banach space Lie (K). Then the radius R > 0 is given by the
fact that exp is a local diffeomorphism.

Theorem 13 (Local minimality of segments). Let u0, u1 = u0e
z ∈ K with |z| < R.

1. Let γ be a piecewise C1 path joining u0 and u1. If γ leaves u0VR, then
Lengthµ(γ) ≥ R.

2. If δ(t) = u0e
tz, t ∈ [0, 1], then δ is shorter that any other piecewise C1 path

γ in K joining u0, u1 and distµ(u0, u1) = |z|.

By a standard approximation argument, we get

Corollary 14. If u1 = u0e
z with |z| ≤ R, the path δ(t) = u0e

tz is shorter than any
other piecewise smooth path in K joining them.

Corollary 15. If u0, u ∈ K and distµ(u0, u1) < R, then there exists z ∈ Lie (K) with
|z| < R so that u = u0e

z, therefore |z| = distµ(u0, u) = Lengthµ(δ), where δ is the
segment generated by z. In particular, exp(Br) = Vr =

{
u ∈ K : distµ(u, 1) < r

}
holds for all r ≤ R.

2.1.1. Uniqueness and the EMD property. For strictly convex Finsler norms we
now establish the uniqueness of segments as minimizing paths when the metric is
strictly convex.

Theorem 16 (Uniqueness for strictly convex norms). Assume that µ = |·| is strictly
convex. Let u0, u1 ∈ K and γ : [a, b] → K be a short rectifiable path joining u0, u1.
Then there exists z ∈ Lie (K) such that u1 = u0e

z and γ is a reparameterization
of the segment δ(t) = u0e

tz. If distµ(u0, u1) < R, then this segment is unique.

Remark 17. The previous theorem shows than in the case of strictly convex Finsler
norms, there exists a short path γ joining 1, u in K only if u = ez is in the range
of the exponential map, and γ is then a segment. Moreover, if u is close to 1, this
segment is unique. It is unclear however what is the maximal neighborhood of
0 ∈ Lie (K) where the segments are short paths, though one would expect that
this would be the case when the exponential map is a diffeomorphism along the
segment (a set which can be much larger than the µ-ball of radius R).
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We now compare the distance in the manifold with the tangent distance and
give criteria for equality to hold.

Theorem 18 (The Exponential Metric Decreasing (EMD) property). If v, w ∈
Lie (K) then distµ(e

v, ew) ≤ |w − v|.
1. If w, v commute and |w − v| ≤ R, then equality holds.
2. If equality holds and the norm is strictly convex, then w, v commute.

Remark 19. For manifolds of non-positive curvature, one obtains a reversed in-
equality known as the EMI (exponential metric increasing property). See [9, Sec-
tions 3 and 4.1.4] and the references therein. Therefore our EMD speaks of the
non-negative nature of the curvature of bi-invariant metrics on Lie groups.

At the Lie algebra level, the EMD property indicates a contraction property
for the local Lie group structure product:

Corollary 20 (The BCH contraction property). If v, w ∈ Lie (K) are such that
evew ∈ VR (for instance, if |v + w| < R), then |v ⋆ w| =

∣∣ exp−1(evew)
∣∣ ≤ |v + w|.

Proof. The hypothesis tells us that z = exp−1(evew) is in BR therefore by the min-
imality of segments and the EMD property |z| = distµ(1, e

z) = distµ(e
v, e−w) ≤

|v + w|. �

Unit spheres with faces. We will now establish some facts for semi-norms that are
not strictly convex.

The following two corollaries tells us that, at least locally, for γ(1) = ez with
z not lying in the intersection of maximal faces of the sphere of the normed space
Eµ, a short path γ in K is lifted to an also short path Γ in Lie (K) ' Eµ with
the same length, thus characterizing these last paths suffices to characterize γ.
This is related to the results obtained by Bialy and Polterovich et al. [6,11,12] for
the Hofer metric ingroups of symplectomorphisms. However, we remark that the
Weinstein chart is what is used in that context to prove that symplectomorphisms
are locally flat for the Hofer metric.

Corollary 21. Let γ : [a, b] → K be a short rectifiable path joining 1 and u = ez

with |z| < R and z |z|−1 in the interior a maximal face of the unit sphere of Eµ.
Then γ = eΓ for a short rectifiable path Γ joining 0, z in Eµ with the same length.
Moreover, if γ is regular, then after normalizing, the speed γ−1

t γ̇ stays inside the
same maximal face than z, for all t ∈ [a, b].

Assume that φ is a unit norm functional such that φ(w− v) = |w− v| and φ
vanishes in each other term of the BCH formula of w,−v. Then

0 ≥ |w − v| − distµ(e
v, ew) = |w − v| − |BCH(w,−v)|

≥ φ(w − v)− φ(w − v + z) = 0,

thus distµ(e
v, ew) = |w − v| and the EMD inequality turns into inequality. Using

the previous results we can prove:
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Corollary 22. If v, w ∈ Lie (K) are such that distµ(e
v, ew) = |w − v| < R, and

ewe−v = ez with z in a maximal face of the sphere, then there exists a unit norm
functional such that φ(w − v) = |w − v| and φ = 0 in every term of the the BCH
expansion of eve−w.

§ Is the above condition equivalent to the assertion: φ gives the norm of w − v,
and φ vanishes on the Lie ideal generated by v, w? That is, φ vanishes on each
z = [v, x] + [w, y] for x, y in the Lie algebra generated by v, w?
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Abstract. The problem of inner vs outer conjugacy of subalgebras of cer-
tain graph C∗-algebras is investigated. For a large class of finite graphs E,
we show that whenever α is a vertex-fixing quasi-free automorphism of the
corresponding graph C∗-algebra C∗(E) such that α(DE) ̸= DE , where DE

is the canonical MASA in C∗(E), then α(DE) ̸= wDEw
∗ for all unitaries

w ∈ C∗(E). That is, the two MASAs DE and α(DE) of C∗(E) are outer but
not inner conjugate. For the Cuntz algebras On, we find a criterion which
guarantees that a polynomial automorphism moves the canonical UHF sub-
algebra to a non-inner conjugate UHF subalgebra. The criterion is phrased in
terms of rescaling of trace on diagonal projections.
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1. Introduction
Maximal abelian subalgebras (MASAs) have played very important role in the
study of von Neumann algebras from the very beginning, and their theory is quite
well developed by now. Theory of MASAs of C∗-algebras is somewhat less ad-
vanced, several nice attempts in this direction notwithstanding. Our particular
interest lies in classification of MASAs in purely infinite simple C∗-algebras, and
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especially in Kirchberg algebras. In addition to its intrinsic interest, better un-
derstanding of MASAs in Kirchberg algebras could have significant consequences
for the classification of automorphisms and group actions on these algebras. In
this context, we would like to single out the recent work of Barlak and Li [2],
where a connection between the outstanding UCT problem for crossed products
and existence of invariant Cartan subalgebras is investigated.

It is a very difficult problem if two outer conjugate MASAs (that is, two
MASAs A and B for which there exists an automorphism σ of the ambient algebra
such that σ(A) = B) of a purely infinite simple C∗-algebra are inner conjugate as
well (that is, if there exists a unitary w such that wAw∗ = B). This question was
answered to the negative in [7, Theorem 3.7] for quasi-free automorphisms of the
Cuntz algebras On.

In the present paper, we extend the main result of [7] to the case of purely
infinite simple graph C∗-algebras C∗(E) corresponding to finite graphs E. Namely,
we show in Theorem 2 below that every quasi-free automorphism of C∗(E) either
leaves the canonical MASA DE globally invariant or moves it to another MASA
of C∗(E) which is not inner conjugate to DE . Although our Theorem 2 is stated
for quasi-free automorphisms only, it is in fact applicable to some other automor-
phisms as well. This is due to the fact that passing from one graph E to another F
with the isomorphic algebra C∗(F ) ∼= C∗(E) will often not preserve the property
of an automorphism to be quasi-free. To make the present paper self-contained, we
recall the necessary background on graph C∗-algebras and their endomorphisms
in the preliminaries.

The problem of conjugacy of subalgebras has been mostly investigated in the
context of MASAs. However, it is very interesting for other types of subalgebras
as well. In the present paper, we initiate systematic investigations of the outer vs
inner conjugacy for the canonical UHF-subalgebra Fn of the Cuntz algebra On.
More specifically, we address the question if Fn may be inner conjugate to λu(Fn),
where λu is a polynomial automorphism of On, building on the first observations
in this direction made in [5]. Our results have clear potential for shedding more
light on the mysterious structure of the outer automorphism group of On.

2. Preliminaries
2.1. Finite directed graphs and their C∗-algebras
Let E = (E0, E1, r, s) be a directed graph, where E0 and E1 are finite sets of
vertices and edges, respectively, and r, s : E1 → E0 are range and source maps,
respectively. A path µ of length |µ| = k ≥ 1 is a sequence µ = (µ1, . . . , µk) of k
edges µj such that r(µj) = s(µj+1) for j = 1, . . . , k − 1. We view the vertices as
paths of length 0. The set of all paths of length k is denoted Ek, and E∗ denotes
the collection of all finite paths (including paths of length zero). The range and
source maps naturally extend from edges E1 to paths Ek. A sink is a vertex v
which emits no edges, i.e. s−1(v) = ∅. By a cycle we mean a path µ of length
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|µ| ≥ 1 such that s(µ) = r(µ). A cycle µ = (µ1, . . . , µk) has an exit if there is a j
such that s(µj) emits at least two distinct edges. Graph E is transitive if for any
two vertices v, w there exists a path µ ∈ E∗ from v to w of non-zero length. Thus
a transitive graph does not contain any sinks or sources. Given a graph E, we will
denote by A = [A(v, w)]v,w∈E0 its adjacency matrix. That is, A is a matrix with
rows and columns indexed by the vertices of E, such that A(v, w) is the number
of edges with source v and range w.

The C∗-algebra C∗(E) corresponding to a graph E is by definition, [16] and
[15], the universal C∗-algebra generated by mutually orthogonal projections Pv,
v ∈ E0, and partial isometries Se, e ∈ E1, subject to the following two relations:

(GA1) S∗
eSe = Pr(e),

(GA2) Pv =
∑

s(e)=v SeS
∗
e if v ∈ E0 emits at least one edge.

For a path µ = (µ1, . . . , µk) we denote by Sµ = Sµ1
· · ·Sµk

the corresponding
partial isometry in C∗(E). We agree to write Sv = Pv for a v ∈ E0. Each Sµ

is non-zero with the domain projection Pr(µ). Then C∗(E) is the closed span of
{SµS

∗
ν : µ, ν ∈ E∗}. Note that SµS

∗
ν is non-zero if and only if r(µ) = r(ν). In that

case, SµS
∗
ν is a partial isometry with domain and range projections equal to SνS

∗
ν

and SµS
∗
µ, respectively.

The range projections Pµ = SµS
∗
µ of all partial isometries Sµ mutually com-

mute, and the abelian C∗-subalgebra of C∗(E) generated by all of them is called
the diagonal subalgebra and denoted DE . We set D0

E = span {Pv : v ∈ E0} and,
more generally, Dk

E = span {Pµ : µ ∈ Ek} for k ≥ 0. C∗-algebra DE coincides with
the closed linear span of

⋃∞
k=0 Dk

E . If E does not contain sinks and all cycles have
exits then DE is a MASA (maximal abelian subalgebra) in C∗(E) by [14, Theo-
rem 5.2]. Throughout this paper, we make the following

Standing assumption: all graphs we consider are transitive and all cycles in these
graphs admit exits.

There exists a strongly continuous action γ of the circle group U(1) on C∗(E),
called the gauge action, such that γz(Se) = zSe and γz(Pv) = Pv for all e ∈ E1,
v ∈ E0 and z ∈ U(1) ⊆ C. The fixed-point algebra C∗(E)γ for the gauge action
is an AF-algebra, denoted FE and called the core AF-subalgebra of C∗(E). FE

is the closed span of {SµS
∗
ν : µ, ν ∈ E∗, |µ| = |ν|}. For k ∈ N = {0, 1, 2, . . .} we

denote by Fk
E the linear span of {SµS

∗
ν : µ, ν ∈ E∗, |µ| = |ν| = k}. C∗-algebra FE

coincides with the norm closure of
⋃∞

k=0 Fk
E .

We consider the usual shift on C∗(E), [13], given by

φ(x) =
∑
e∈E1

SexS
∗
e , x ∈ C∗(E). (1)

In general, for finite graphs without sinks and sources, the shift is a unital, com-
pletely positive map. However, it is an injective ∗-homomorphism when restricted
to the relative commutant (D0

E)
′ ∩ C∗(E).
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We observe that for each v ∈ E0 projection φk(Pv) is minimal in the center
of Fk

E . The C∗-algebra Fk
Eφ

k(Pv) is the linear span of partial isometries SµS
∗
ν

with |µ| = |ν| = k and r(µ) = r(ν) = v. It is isomorphic to the full matrix
algebra of size

∑
w∈E0 Ak(w, v). The multiplicity of Fk

Eφ
k(Pv) in Fk+1

E φk+1(Pw)
is A(v, w), so the Bratteli diagram for FE is induced from the graph E, see [13], [16]
or [3]. We also note that the relative commutant of Fk

E in Fk+1
E is isomorphic to⊕

v,w∈E0 MA(v,w)(C).
For an integer m ∈ Z, we denote by C∗(E)(m) the spectral subspace of the

gauge action corresponding to m. That is,
C∗(E)(m) := {x ∈ C∗(E) | γz(x) = zmx, ∀z ∈ U(1)}.

In particular, C∗(E)(0) = C∗(E)γ . There exist faithful conditional expectations
ΦF : C∗(E) → FE and ΦD : C∗(E) → DE such that ΦF (SµS

∗
ν ) = 0 for |µ| 6=

|ν| and ΦD(SµS
∗
ν ) = 0 for µ 6= ν. Combining ΦF with a faithful conditional

expectation from FE onto Fk
E , we obtain a faithful conditional expectation Φk

F :
C∗(E) → Fk

E . Furthermore, for each m ∈ Z there is a unital, contractive and
completely bounded map Φm : C∗(E) → C∗(E)(m) given by

Φm(x) =

∫
z∈U(1)

z−mγz(x)dz. (2)

In particular, Φ0 = ΦF . We have Φm(x) = x for all x ∈ C∗(E)(m). If x ∈ C∗(E)
and Φm(x) = 0 for all m ∈ Z then x = 0.

2.2. Endomorphisms determined by unitaries
Cuntz’s classical approach to the study of endomorphisms of On, [12], has recently
been extended to graph C∗-algebras in [7] and [1]. In this subsection, we recall a
few most essential definitions and facts about such endomorphisms.

We denote by UE the collection of all those unitaries in C∗(E) which commute
with all vertex projections Pv, v ∈ E0. That is

UE := U
(
(D0

E)
′ ∩ C∗(E)

)
. (3)

If u ∈ UE then uSe, e ∈ E1, are partial isometries in C∗(E) which together with
projections Pv, v ∈ E0, satisfy (GA1) and (GA2). Thus, by the universality of
C∗(E), there exists a unital ∗-homomorphism λu : C∗(E) → C∗(E) such that1

λu(Se) = uSe and λu(Pv) = Pv, for e ∈ E1, v ∈ E0. (4)
The mapping u 7→ λu establishes a bijective correspondence between UE and the
semigroup of those unital endomomorphisms of C∗(E) which fix all Pv, v ∈ E0. As
observed in [6, Proposition 2.1], if u ∈ UE ∩FE then λu is automatically injective.
We say λu is invertible if λu is an automorphism of C∗(E). We denote

B := (D0
E)

′ ∩ F1
E . (5)

1The reader should be aware that in some papers (e.g. in [12]) a different convention is used,
namely λu(Se) = u∗Se.
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That is, B is the linear span of elements SeS
∗
f , e, f ∈ E1, with s(e) = s(f) and

r(e) = r(f). We note that B is contained in the multiplicative domain of φ and we
have D1

E ⊆ B ⊆ F1
E . If u ∈ U(B) then λu is automatically invertible with inverse

λu∗ and the map
U(B) 3 u 7→ λu ∈ Aut (C∗(E)) (6)

is a group homomorphism with range inside the subgroup of quasi-free automor-
phisms of C∗(E), see [17]. Note that this group is almost never trivial and it is
non-commutative if graph E contains two edges e, f ∈ E1 such that s(e) = s(f)
and r(e) = r(f).

The shift φ globally preserves UE , FE and DE . For k ≥ 1 we denote
uk := uφ(u) · · ·φk−1(u). (7)

For each u ∈ UE and all e ∈ E1 we have Seu = φ(u)Se, and thus
λu(SµS

∗
ν ) = u|µ|SµS

∗
νu

∗
|ν| (8)

for any two paths µ, ν ∈ E∗.

3. Quasi-free automorphisms
In this section, we extend the main result of [7], applicable to the Cuntz algebras,
to a much wider class of graph C∗-algebras.

For the proof of Lemma 1, below, we recall from Lemma 3.2 and Remark 3.3
in [7] that if x ∈ C∗(E), x ≥ 0, and xDE = DEx then x ∈ DE .

Lemma 1. Let u ∈ U(B) be such that uD1
Eu

∗ 6= D1
E, and let x ∈ FE be arbitrary.

If xλu(DE) = DEx then x = 0.

Proof. Suppose x ∈ FE is such that ‖x‖ = 1 and xλu(DE) = DEx. From this we
will derive a contradiction.

Since uD1
Eu

∗ 6= D1
E , there exists a vertex v ∈ E0 such that uD1

Eu
∗Pv 6=

D1
EPv. Thus, since uD1

EPvu
∗ = uD1

Eu
∗Pv, we can take a projection p ∈ D1

EPv

satisfying δ := inf
{
‖upu∗ − q‖ | q ∈ D1

E

}
> 0. Since Φ1

F (q
′) ∈ D1

E , for all q′ ∈ DE

we get
‖upu∗ − q′‖ ≥ ‖Φ1

F (upu
∗ − q′)‖ = ‖upu∗ − Φ1

F (q
′)‖ ≥ δ.

By assumption, for each k ∈ N there is a qk ∈ DE such that
xλu(φ

k(p)) = qkx. (9)
Since uk ∈ Fk

E and φk(upu∗) ∈ φk(B) = (Fk
E)

′ ∩ Fk+1
E , we have

λu(φ
k(p)) = ukφ

k(λu(p))u
∗
k = ukφ

k(upu∗)u∗
k = φk(upu∗). (10)

Identities (9) and (10) combined yield 0 = xλu(φ
k(p)) − qkx = xφk(upu∗)− qkx.

Since upu∗ ∈ B, the sequence
{
φk(upu∗)

}∞
k=1

is central in FE . Therefore we
have limk→∞(φk(upu∗) − qk)xx

∗ = 0. It follows from the assumption on x that
xx∗DE = DExx

∗, and thus we may conclude that xx∗ ∈ DE .
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Now, take an arbitrary 0 < ϵ < 1. For a sufficiently large m ∈ N, we have
lim sup
k→∞

∥∥(φk(upu∗)− qk)Φ
m
F (xx∗)

∥∥ ≤ ϵ and
∥∥Φm

F (xx∗)
∥∥ ≥ 1− ϵ.

Thus we can find a projection d ∈ Dm
E such that

lim sup
k→∞

∥∥(φk(upu∗)− qk)d
∥∥ ≤ ϵ

1− ϵ
.

Since graph E is transitive, for a sufficiently large k ∈ N we can find a path
µ ∈ Ek such that r(µ) = v and SµS

∗
µ ≤ d. But now we see that

3ϵ ≥
∥∥(φk(upu∗)− qk)d

∥∥ ≥
∥∥(φk(upu∗)− qk)SµS

∗
µ

∥∥ =
∥∥upu∗Pv − S∗

µqkSµ

∥∥ ≥ δ.

Since ϵ can be arbitrarily small, this is the desired contradiction. �
Now, we are ready to prove our main result.

Theorem 2. Let u ∈ U(B) be such that uD1
Eu

∗ 6= D1
E. Then there is no non-zero

element x ∈ C∗(E) satisfying xλu(DE) = DEx. In particular, there is no unitary
w ∈ C∗(E) such that wDEw

∗ = λu(DE).

Proof. Let x ∈ C∗(E) be such that xλu(DE) = DEx. To verify that x = 0, it
suffices to show that Φm(x) = 0 for all m ∈ Z.

We have S∗
µDESµ = Pr(µ)DE for each µ ∈ E∗. Thus Pr(µ)xλu(DE) =

Pr(µ)DEx = S∗
µDESµx, and hence Sµxλu(DE) = DESµx. Therefore by Lemma 1,

we get
ΦF (Sµx) = 0 for all µ ∈ E∗.

Let m ∈ N. For a vertex v ∈ E0 take a path µ ∈ Em with r(µ) = v. Then
0 = ΦF (Sµx) = SµΦ

−m(x). Thus PvΦ
−m(x) = 0, and summing over all v ∈ E0

we see that Φ−m(x) = 0 for all m ∈ N.
Now, taking adjoints of both sides of the identity xλu(DE) = DEx and then

applying λu∗ = λ−1
u , we get λu∗(x∗)λu∗(DE) = DEλu∗(x∗). Since u∗ ∈ U(B) and

u∗D1
Eu 6= D1

E , applying the preceding argument, we get Φ−m
(
λu∗(x∗)

)
= 0 for all

m ∈ N. But Φ−m
(
λu∗(x∗)

)
= λu∗

(
Φ−m(x∗)

)
= λu∗

(
Φm(x)

)
. Thus Φm(x) = 0 for

all m ∈ N, and the proof is complete. �
Corollary 3. Let u, v ∈ U(B) be such that uD1

Eu
∗ 6= vD1

Ev
∗. Then there is no

unitary w ∈ C∗(E) such that wλu(DE)w
∗ = λv(DE).

4. Conjugacy by polynomial automorphisms of the
UHF-subalgebra of the Cuntz algebra

In this section we give a condition for inner conjugacy by polynomial automorphism
of the core UHF-subalgebra of the Cuntz algebra On, using the unique normalized
trace on Fn which will be denoted by τ .

Let W k
n be the set of tuples µ = (µ1, . . . , µk) where µi ∈ {1, . . . , n}, and

define Wn =
⋃∞

k=0 W
k
n where W 0

n = {0}. We denote by Sn the group of unitaries
in On which can be written as finite sums of words. Hence an element u ∈ Sn is
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of the form u =
∑

(α,β)∈J SαS
∗
β , where J is a finite collection of pairs (α, β) with

α, β ∈ Wn. In the following we denote by P (Dn) the set of projections in Dn.

Theorem 4. Let u ∈ Sn with λu ∈ Aut (On). If there exists a sequence {Pn} in
P (Dn) such that

τ
(
λu(Pn)

)
τ(Pn)

→ ∞ or 0, (11)

then for all w ∈ U(On) and v ∈ U(Fn) we have λu 6= Adwλv. This implies in
particular that Fn and λu(Fn) are not inner conjugate.

For the proof of Theorem 4 we need the following result.

Lemma 5. If u ∈ U(On) such that uDnu
∗ ⊆ Fn then u has a finite Fourier series.

Proof. Let u have the Fourier series
∑

k∈Z uk, uk := Φk(u). Let P ∈ Dn and fix
k ∈ Z then

uPu∗uk =

∫
U(1)

z−kγz(uPu∗u)dz =

∫
U(1)

z−kγz(uP )dt = ukP.

Here we have used that uDnu
∗ ⊆ Fn to write uPu∗γz(u) = γz(uPu∗u).

It follows that P (u∗uk) = (u∗uk)P for P ∈ Dn. Hence u∗uk ∈ D′
n ∩ On and

since Dn is a MASA there exists a dk ∈ Dn such that uk = udk. Now we have

uk =

∫
U(1)

z−kγz(uk)dz =

∫
U(1)

z−kγz(udk)dz = ukdk.

Hence udk = udkdk and dk = d2k, which shows that dk is a projection in Dn. For
k,m ∈ Z with k 6= m we have

0 =

∫
U(1)

γz(u
∗
kum)dz =

∫
U(1)

γz(d
∗
kdm)dz = dkdm.

Hence {dk} are mutually orthogonal projections in Dn.
There exists an element of the form w =

∑
j tjSαj

S∗
βj

(finite sum), tj ∈ C,
such that ‖u − w‖ < ϵ. Also, there exists N ∈ Z such that for k > N we have
Φk(w) = 0, since w has a finite Fourier series. Then

‖uk‖ = ‖Φk(u)‖ = ‖Φk(u− w)‖ ≤ ‖u− w‖ < ϵ, for k > N.

Hence ‖uk‖ → 0 and thus ‖dk‖ → 0. Since dk are all projections the series {dk} is
finite, concluding that u has a finite Fourier series since uk = udk. �

Proof of Theorem 4. We recall that if α ∈ Aut (On) then Fn and α(Fn) are inner
conjugate if and only if there exists w ∈ U(On) such that α(Fn) = Adw(Fn).
This is equivalent to that Ad (w∗)α(Fn) = Fn. If we have an automorphism
which globally preserves Fn then Ad (w∗)α is equal λv for some v ∈ U(Fn) [12,
Proposition 1.2(b)], [10, Proposition 3.3] therefore α = Adwλv. Hence Fn and
α(Fn) are inner conjugate if and only if there exist w ∈ U(On) and v ∈ U(Fn) s.t.
α = Adwλv.
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Assume that λu = Adwλv for w ∈ U(On) and v ∈ U(Fn). We will assume
w /∈ Fn otherwise Adw is trace preserving which contradicts (11) since λv is also
trace preserving. We wish to prove that there are no sequences of projections such
that we get (11).

Since λu ∈ Aut (On) we have λv ∈ Aut (On) and Adw∗ = λvλ
−1
u . Therefore

Adw∗(Dn) ⊆ Fn [10, Proposition 3.3]. We wish to show that there exists M > 0
such that

τ(w∗Pw)

τ(P )
≤ M, for P ∈ P (Dn). (12)

By Lemma 5, w∗ has a finite Fourier series and we can write

w∗ =

k∑
j=1

S∗
v
jx−j + x0 +

k∑
j=1

xjS
j
v,

with v ∈ {1, 2, . . . , n} and x0, x±j ∈ Fn.
For any word µ with |µ| > k and 1 ≤ j ≤ k, we can write µ = νjµj such that

|νj | = j. Then
τ(Pµ) =

1

n|µ| =
1

nj
τ(Pµj ) ≥

1

nk
τ(Pµj ).

The only parts contributing to τ(w∗Pw) are
k∑

j=1

S∗
v
jx−jPx∗

−jS
j
v,

k∑
j=1

xjS
j
vPS∗

v
jx∗

j , x0Px∗
0.

We have S∗
v
jx−jSνj ∈ Fn because |vj | = j. Hence

τ
(
S∗
v
jx−jPµx

∗
−jS

j
v

)
= τ

((
S∗
νj
x∗
−jS

j
vS

∗
v
jx−jSνj

)
Pµj

)
.

Note that Sj
v
∗
x−j is contractive since Φ−j(w∗) = Sj

v
∗
x−j and Φj is contractive. By

the Cauchy–Schwarz inequality, we get τ
(
S∗
v
jx−jPµx

∗
−jS

j
v

)
≤ τ

(
Pµj

)
≤ nkτ

(
Pµ

)
.

On the other hand, using that Φj(w∗) = xjS
j
v is contractive and the Cauchy–

Schwarz inequality we have
τ
(
xjS

j
vPµS

∗
v
jx∗

j

)
= τ

((
xjS

j
vS

j
v

∗)(
Sj
vPµS

∗
v
j)(Sj

vS
j
v

∗
x∗
j

))
≤ τ

(
Sj
vPµS

∗
v
j) ≤ τ

(
Pµ

)
.

We also have τ
(
x∗
0Pµx0

)
= τ

(
x0x

∗
0Pµ

)
≤ τ

(
Pµ

)
since Φ0(w∗) = x0 which is

contractive. Hence there exists a constant M > 0 satisfying τ
(
w∗Pµw

)
≤ Mτ

(
Pµ

)
for any word µ with |µ| > k. If |µ| ≤ k we can extend the length until it is greater
than k using that

∑n
i=1 SiS

∗
i = 1. Hence τ(w∗Pw) ≤ Mτ(P ) for any P ∈ P (Dn).

Since λv is trace preserving we have
τ
(
Adw∗λu(P )

)
τ(P )

=
τ
(
λv(P )

)
τ(P )

= 1, for P ∈ P (Dn). (13)

Hence
1

M
≤

τ
(
λu(P )

)
τ(P )

for P ∈ P (Dn)
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since
τ(P )

τ
(
λu(P )

) =
τ
(
Adw∗(λu(P )

)
τ
(
λu(P )

) ≤ M for P ∈ P (Dn).

Then there are no sequence of projections {Pn} such that
τ
(
λu(Pn)

)
τ(Pn)

tends to
0. To show that there is no sequence of projections such that the limit is infinite, we
use that λu(Fn) is inner conjugate to Fn if and only if λ−1

u (Fn) is inner conjugate
to Fn. Indeed, if λu(Fn) = wFnw

∗ then Fn = λ−1
u (w)λ−1

u (Fn)λ
−1
u (w∗).

Now, assume that there exists a sequence {Pn} such that
τ
(
λu(Pn)

)
τ(Pn)

→ ∞,

then τ(Qn)

τ
(
λ−1
u (Qn)

) → ∞ where Qn = λu(Pn). But then {Qn} is a sequence of

projections such that
τ
(
λ−1
u (Qn)

)
τ(Qn)

→ 0. Since for u ∈ Sn we have λ−1
u = λv for

some v ∈ Sn, [9, Theorem 2.1], we can use the same argument as above to show
that there exists M ′ > 0 such that

1

M ′ ≤
τ
(
λ−1
u (P )

)
τ(P )

for P ∈ P (Dn).

The claim follows. �

Example 6. Let w = S22S
∗
212 + S212S

∗
22 + P211 + P1 ∈ S2 then

λw(S1) = S1, λw(S2) = S2(S2S
∗
12 + S12S

∗
2 + P11).

Let u = S2S
∗
12+S12S

∗
2 +P11 ∈ S2, note that u ∈ U

(
C∗(S1)

)
. Let αu be defined by

αu(S1) = S1 and αu(S2) = S2u, then αu is an automorphism with inverse αu∗ and
λw = αu. Hence λw is an automorphism of O2. Consider βk = (22 . . . 2), which
is a word of length k only containing 2′s and let γk = (21212 . . . 12) be a word of
length 2k − 1 then

λw(Pβk
) = S2uS2uS2u · · ·S2uu

∗S∗
2u

∗S∗
2 · · ·u∗S∗

2 = Pγk

since uS2 = S12. We then have
τ
(
λw(Pβk

)
)

τ(Pλk
)

=
1

2k−1

which tends to 0 as k → ∞. Hence F2 and λw(F2) are not inner conjugate by
Theorem 4 using the sequence

{
Pβk

}
.

References
1. J. E. Avery, R. Johansen and W. Szymański, Visualizing automorphisms of graph

algebras, Proc. Edinburgh Math. Soc. 61 (2018), 215–249.
2. S. Barlak and X. Li, Cartan subalgebras and the UCT problem, Adv. Math. 316 (2017),

748–769.



172 T. Hayashi, J.H. Hong, S.E. Mikkelsen and W. Szymański

3. T. Bates, D. Pask, I. Raeburn and W. Szymański, The C∗-algebras of row-finite
graphs, New York J. Math. 6 (2000), 307–324.

4. B. Brenken, C∗-algebras of infinite graphs and Cuntz–Krieger algebras, Canad. Math.
Bull. 45 (2002), 321–336.

5. R. Conti, J. H. Hong and W. Szymański, The Weyl group of the Cuntz algebra, Adv.
Math. 231 (2012), 3147–3161.

6. R. Conti, J. H. Hong and W. Szymański, Endomorphisms of graph algebras, J. Funct.
Anal. 263 (2012), 2529–2554.

7. R. Conti, J. H. Hong and W. Szymański, On conjugacy of MASAs and the outer
automorphism group of the Cuntz algebra, Proc. Royal Soc. Edinburgh 145 (2015),
269–279.

8. R. Conti and C. Pinzari, Remarks on the index of endomorphisms of Cuntz algebras,
J. Funct. Anal. 142 (1996), 369–405.

9. R. Conti and W. Szymański, Labeled trees and localized automorphisms of the Cuntz
algebras. Trans. Amer. Math. Soc. 363 (2011), 5847–5870.

10. R. Conti and W. Szymański, Automorphisms of the Cuntz algebras, Progress in op-
erator algebras, noncommutative geometry and their applications, 1–15, Theta Ser.
Adv. Math., 15, Theta, Bucharest, 2012, 46-02.

11. J. Cuntz, Simple C∗-algebras generated by isometries, Comm. Math. Phys. 57 (1977),
173–185.

12. J. Cuntz, Automorphisms of certain simple C∗-algebras, In: Quantum fields–algebras–
processes (Bielefield, 1978), pp. 187–196, ed. L. Streit, Springer, Vienna, 1980.

13. J. Cuntz and W. Krieger, A class of C∗-algebras and topological Markov chains,
Invent. Math. 56 (1980), 251–268.

14. A. Hopenwasser, J. R. Peters and S. C. Power, Subalgebras of graph C∗-algebras, New
York J. Math. 11 (2005), 351–386.

15. A. Kumjian, D. Pask and I. Raeburn, Cuntz–Krieger algebras of directed graphs,
Pacific J. Math. 184 (1998), 161–174.

16. A. Kumjian, D. Pask, I. Raeburn and J. Renault, Graphs, groupoids, and Cuntz–
Krieger algebras, J. Funct. Anal. 144 (1997), 505–541.

17. J. Zacharias, Quasi-free automorphisms of Cuntz–Krieger–Pimsner algebras, In: C∗-
algebras (Münster, 1999), 262–272, Springer, Berlin, 2000.

Tomohiro Hayashi
Nagoya Institute of Technology
Gokiso-cho, Showa-k, Nagoya 466–8555, Japan
e-mail: hayashi.tomohiro@nitech.ac.jp

Jeong Hee Hong
Department of Mathematics and Computer Science
University of Southern Denmark
Campusvej 55
Odense M - DK-5230
e-mail: hongjh@imada.sdu.dk



On Conjugacy of Subalgebras of Graph C∗-Algebras 173

Sophie Emma Mikkelsen and Wojciech Szymański
Department of Mathematics and Computer Science
The University of Southern Denmark
Campusvej 55, DK–5230 Odense M, Denmark
e-mail: mikkelsen@imada.sdu.dk

szymanski@imada.sdu.dk



Geometric Methods in Physics. XXXVII Workshop 2018
Trends in Mathematics, 174–180

A Direct Proof for an Eigenvalue Problem
by Counting Lagrangian Submanifolds

Tomoyo Kanazawa

Abstract. We focus on one of the Schrödinger operators called the Bochner–
Laplacian. Using Jensen’s Formula and Vandermonde convolution, we show
directly that for each k = 0, 1, 2, . . . , the number of Lagrangian submanifolds
which satisfy the Maslov quantization condition is just equal to the multiplic-
ity of the kth eigenvalue of the operator.
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1. Introduction
In this paper, we prove precisely that the following two numerical expressions given
by R. Kuwabara [4] and A. Yoshioka [1] are quite identical.

The Bochner–Laplacian is a Schrödinger operator which operates on the space
of C∞ sections of Em, Hermitian line bundle over the complex projective space
CPn. That is to say, on each line bundle Em where m ∈ Z is called the Chern
number, there is a unique harmonic connection denoted by d̃m . Kuwabara com-
puted the following spectrum of the Bochner–Laplacian associated with d̃m (see [4],
204p).

Proposition 1 ([4, Proposition 2.3]). The eigenvalues of the Bochner–Laplacian
associated with d̃m are

λ(k)
m =

(
k +

|m|
2

)(
k +

|m|
2

+ n

)
− m2

4
, k = 0, 1, 2, . . .

and the multiplicity of λ(k)
m is(

k + |m|+ n

k + |m|

)(
k + n

k

)
−
(
k + |m|+ n− 1

k + |m| − 1

)(
k + n− 1

k − 1

)
, (1)

c© Switzerland AG 2019Springer Nature
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where n ∈ N is the dimension of the complex projective space CPn.

On the other hand, Yoshioka also computed them in a different way called
quasi-classical calculation of eigenvalues. From this viewpoint, in the cotangent
bundle T ∗CPn called the phase space of CPn, they determined Lagrangian sub-
manifolds which satisfy the Maslov quantization condition. Eigenvalues are invari-
ants on each submanifold, and multiplicities are interpreted as the numbers of La-
grangian submanifolds which have the same eigenvalue. With this formulation, the
quasi-classical eigenvalues of the Bochner–Laplacian are as follows (see [1, p. 55]).

Theorem 2 ([1, Theorem 4.4 & Lemma 4.3]). The quasi-classical eigenvalues of
the Bochner–Laplacian are

λ̃(k)
m =

(
k +

|m|
2

)(
k +

|m|
2

+ n

)
− m2

4
+

n2

4
= λ(k)

m +
n2

4
,

and for each k = 0, 1, 2, . . ., the number of Lagrangian submanifolds satisfying
the Maslov quantization condition is equal to the combinatorial number of tuples
composed of (2n+ 1) integers (γ1, . . . , γn, p0, p1, . . . , pn) such that

n∑
l=0

pl = m, k = γn ≥ γn−1 ≥ · · · ≥ γ1 ≥ 1

2

(
n∑

l=0

|pl| − |m|

)
.

Regarding its eigenvalues, there is a slight difference between λ
(k)
m and λ̃

(k)
m

by n2/4, but this is constant under the change of k and m. Therefore, the gap of
eigenvalues caused by the change of k, its quantum number, is equal to each other.
It is more important that multiplicity is exactly equal to each other because if any
difference is, that numbers could be out of sense.

That is why we would like to verify that each solution method having per-
formed by Kuwabara and Yoshioka is equivalent to each other on computing a
spectrum which leads to the concept of quantization. For the purpose of this, we
actually check that the combinatorial number of tuples composed of (2n+1) inte-
gers (γ1, . . . , γn, p0, p1, . . . , pn) coincides completely with the expression for multi-
plicity of λ(k)

m in the Proposition 1.
In Section 2, we just do mathematics of counting to obtain the combinatorial

number of tuples. Then in Section 3, we prove the combinatorial number equals
the expression for the multiplicity of λ(k)

m .

2. Problems of Counting Lattice Points
In this section, we count up the combinatorial number of tuples composed of
(2n+ 1) integers (γ1, . . . , γn, p0, p1, . . . , pn) shown in Theorem 2.

First, it should be noted that we apply the following definition throughout
this paper.
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Definition 3. (
a

b

)
:= 0 if a < b or b < 0

Then we obtain the following formulas to count the number of lattice points
composed of (n+ 1) integers (x1, . . . , xn+1).

Lemma 4. Let n be a natural number. The number of integer lattices (x1, . . . , xn+1)
satisfying the following equations: for m, i ∈ Z,

n+1∑
j=1

xj = m,
1

2
(|x1|+ · · ·+ |xn+1| − |m|) = i,

is given by the following expressions:

(
|m|+ n

|m|

)
, i = 0,

min {i, n}∑
t=1

(
n+ 1

t

)(
i− 1

i− t

)(
|m|+ i+ n− t

|m|+ i

)
, i > 0,

0, i < 0.

Next, we consider the number of integer lattices (γ1, . . . , γn, p0, p1, . . . , pn)
satisfying the following equations for m ∈ Z and k = 0, 1, 2, . . . ,

n∑
l=0

pl = m,
1

2
(|p0|+ · · ·+ |pn| − |m|) ≤ γ1 ≤ · · · ≤ γn = k. (2)

When we fix the integer 1
2 (|p0|+ · · ·+ |pn| − |m|) at i ≥ 0, we have the number of

integer lattices (γ1, . . . , γn) satisfying the inequality i ≤ γ1 ≤ · · · ≤ γn−1 ≤ γn = k
as follows, because it is equivalent to distribute (n − 1) things among (k − i + 1)
people under the condition that there may be some people who can receive nothing:

k−i+1Hn−1 = k−i+n−1Cn−1 =

(
k − i+ n− 1

n− 1

)
=

(
k − i+ n− 1

k − i

)
.

Then we replace the integer pl with xj (j = l + 1). By the previous Lemma 4,
the number of integer lattices (p0, . . . , pn) satisfying the following equations: for
m ∈ Z and i = 0, 1, 2, . . . ,

n∑
l=0

pl = x1 + · · ·+ xn+1 = m,

1

2
(|p0|+ · · ·+ |pn| − |m|) = 1

2
(|x1|+ · · ·+ |xn+1| − |m|) = i
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is given by 

(
|m|+ n

|m|

)
, i = 0,

min {i, n}∑
t=1

(
n+ 1

t

)(
i− 1

i− t

)(
|m|+ i+ n− t

|m|+ i

)
, i > 0.

Thus we obtain the number of integer lattices (γ1, . . . , γn, p0, p1, . . . , pn) satisfying
(2) as follows:

(
k + n− 1

k

)(
|m|+ n

|m|

)
, i = 0,

(
k − i+ n− 1

k − i

)min {i, n}∑
t=1

(
n+ 1

t

)(
i− 1

i− t

)(
|m|+ i+ n− t

|m|+ i

)
, 1 ≤ i ≤ k.

(3)

When k is equal to 0, i is obviously equal to 0. Its converse proposition is, however,
untrue. Namely, k = 0 ⇒ i = 0 is true. But when k ̸= 0, i is not necessarily a
natural number, that is, i = 0, 1, . . . , k. As a result of using (3), we can write the
number of integer lattices (γ1, . . . , γn, p0, p1, . . . , pn) satisfying (2) by the following
proposition.

Proposition 5. Let n be a natural number. Then the number of integer lattices
(γ1, . . . , γn, p0, p1, . . . , pn) satisfying the following equations: for m ∈ Z and k =
0, 1, 2, . . . ,

n∑
l=0

pl = m,
1

2
(|p0|+ · · ·+ |pn| − |m|) ≤ γ1 ≤ · · · ≤ γn = k

is given by the following expressions:

(
|m|+ n

|m|

)
, k = 0,(

k + n− 1

k

)(
|m|+ n

|m|

)

+

k∑
i=1

(
k − i+ n− 1

k − i

)
min {i, n}∑

t=1

(
n+ 1

t

)(
i− 1

i− t

)(
|m|+ i+ n− t

|m|+ i

)
, k ∈ N.

(4)

3. A Proof of the Equality between Two Numbers
In this section, we show that the number of lattice points obtained in Proposition 4
is equivalent to the expression (1) which is for the multiplicity given by Kuwabara.

In the case of k = 0, (1) gives the same number as (4) as follows:(
|m|+ n

|m|

)(
n

0

)
−
(
|m|+ n− 1

|m| − 1

)(
n− 1

−1

)
=

(
|m|+ n

|m|

)
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because
(
n−1
−1

)
:= 0 due to Definition 3. Then the case where k ∈ N remains, and

we obtain the following proposition.

Proposition 6. For n, k ∈ N and m ∈ Z,(
k + |m|+ n

k + |m|

)(
k + n

k

)
−
(
k + |m|+ n− 1

k + |m| − 1

)(
k + n− 1

k − 1

)
=

(
k + n− 1

k

)(
|m|+ n

|m|

)

+
k∑

i=1

(
k − i+ n− 1

k − i

)min {i, n}∑
t=1

(
n+ 1

t

)(
i− 1

i− t

)(
|m|+ i+ n− t

|m|+ i

)
.

Proof. We intend to find the function of k (k ∈ N) denoted by F (k) which satisfies
the following simultaneous equations:

lF (k + 1)− F (k) =

(
k + n− 1

k

)(
|m|+ n

|m|

)
+

k∑
i=1

(
k − i+ n− 1

k − i

)
Ci,n,

F (1) =

(
|m|+ n

|m|

)
,

where Ci,n is the constant with regard to k (depending on i and n) defined by

Ci,n :=

min {i, n}∑
t=1

(
n+ 1

t

)(
i− 1

i− t

)(
|m|+ i+ n− t

|m|+ i

)
. (5)

Then we find

F (k + 1) =

(
k + n

n

)(
|m|+ n

|m|

)
+

k∑
i=1

(
k + n− i

n

)
Ci,n . (6)

On the other hand, we certainly imply that F (k) is equal to(
k + |m|+ n− 1

k + |m| − 1

)(
k + n− 1

k − 1

)
,

then using the following formula (Vandermonde convolution, see [2]):

(
N1 +N2

n

)
=

min {n,N1}∑
ν=0

(
N1

ν

)(
N2

n− ν

)
,
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we consider the following product of binomial coefficients:

F (k + 1) =

(
(k + 1) + |m|+ n− 1

(k + 1) + |m| − 1

)(
(k + 1) + n− 1

(k + 1)− 1

)
=

(
k + n

n

)(
k + |m|+ n

n

)

=

(
k + n

n

)min {n, k}∑
ν=0

(
k

ν

)(
|m|+ n

n− ν

)

=

(
|m|+ n

|m|

)(
k + n

n

)
+

(
k + n

n

)min {n, k}∑
ν=1

(
k

ν

)(
|m|+ n

n− ν

)
.

(7)

Comparing (7) with (6), the following lemma arises, that is, this proof should be
complete with this lemma.

Lemma 7 (Main Result).
k∑

i=1

(
k + n− i

n

)
Ci,n =

(
k + n

n

)min {n, k}∑
ν=1

(
k

ν

)(
|m|+ n

n− ν

)
, (8)

where Ci,n is defined by (5).

We are sorry to only give an idea of the proof for this lemma because of a
space restriction. Making use of Vandermonde convolution and Jensen’s Formula
(see [3, Vol. 5.PDF 19p (4.1)]):

N∑
z=0

(
x+ yz

z

)(
r − yz

N − z

)
=

N∑
z=0

(
x+ r − z

N − z

)
yz,

we can show that both sides of (8) are equal to
k∑

ν=1

(
|m|+ n

n− ν

)(
n+ ν

n

)(
k + n

k − ν

)
.

Thus, Lemma 7 and Proposition 6 are proved simultaneously. �
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Applications of the Fundamental Theorems
of Projective and Affine Geometry in Physics
Patrick Moylan

Dedicated to Daniel Sternheimer on the occasion of his 80th birthday in 2018

Abstract. The closely related fundamental theorems of projective and affine
geometry are keys to understanding some important but seemingly unrelated
topics in mathematical physics. Specifically, they can be used in proofs of
Wigner’s theorem on ray correspondences in quantum mechanics and also to
establish the scale extended Poincaré group as the basic causality preserving
symmetry group of special relativity. We describe these two theorems and
show their roles in establishing the just mentioned results.

Mathematics Subject Classification (2000). Primary 51N10, 51N15; Secondary
83A05, 81Pxx.
Keywords. Wigner’s theorem, Alexandrov–Zeeman Theorem.

1. Introduction
The fundamental theorem of affine geometry, a proof of which can be found in [1],
states that any isomorphism of an affine space over a skew field K which takes
lines to lines and preserves parallelism is, up to a translation, necessarily a linear
transformation. The fundamental theorem of projective geometry asserts that ev-
ery collineation of a projective space P(V ) is induced by a semilinear map of the
associated vector space V . A proof of this theorem for finite dimensions is given
in [2]. These theorems have important applications to physics. The latter has been
used to obtain proofs of Wigner’s theorem in quantum mechanics [3–5] and the
former can be used to show how causality implies that the scale-extended Poincaŕe
group is the basic symmetry group of special relativity [6–9]. In this article we de-
scribe these important theorems and show their central importance in establishing
the just stated applications to mathematical physics.

c© Switzerland AG 2019Springer Nature
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2. The Fundamental Theorems of Affine Geometry and Projective
Geometry

These two theorems hold in a very general setting. The number field over which the
affine or projective space is defined can be a skew field F such as the quaternions.
The dimension of the affine space or projective space can even be infinite. An
affine space is a set A on which a vector space V acts freely and transitively.
The dimension of an affine space A is defined to be the same as the dimension of
the vector space which acts on A. We denote the action of V on A by addition:
a → a+ v = v+ a ∈ A if a ∈ A and v ∈ V . Given two points a, b in A, the unique
vector −→

ab specified by a +
−→
ab = b is called the displacement vector from a to b.

If we choose a reference point 0 (called the origin) in A, then A can be identified
with V by the correspondence v → 0 + v. Thus a vector space V is itself an affine
space under translation of vectors.

By an affine map from an affine space A into another affine space A′ we mean
a map φ : A → A′ for which the correspondence

−→
ab 7→

−−−−−−→
φ(a)φ(b)

gives a well-defined linear map f of V into V ′. If φ is bijective, it is called an
isomorphism of affine spaces and two affine spaces are said to be isomorphic.
When relevant affine spaces are furnished with reference points (origins), an affine
map φ takes the form

V 3 v 7→ 0 + v 7→ φ(0 + v)− 0′ = f(v) + φ(0)− 0′ ∈ V ′

which can be viewed as the composition of the linear map f which takes v to f(v)
followed by a translation by φ(0)−0′ ∈ V ′. Two affine spaces are isomorphic if and
only if they have the same dimension. Consequently any finite-dimensional affine
space A is isomorphic to Kn where n = dimA.

A mapping f : V → V ′ is additive if f(v + w) = f(v) + f(w). An additive
mapping f : V → V ′ is said to be semilinear if there is an automorphism φ : K → K
of K, which fixes the identity element in K (i.e. φ(1) = 1), so that f(ℓv) = φ(ℓ)f(v)
for ℓ ∈ K and v ∈ V . In the mathematical physics literature, φ is frequently called
a twist.

Theorem 1 (The Fundamental Theorem of Affine Geometry). Let γ be a 1 → 1
transformation of an affine space A over a skew field K onto itself which maps
straight lines onto straight lines and preserves parallelism. (Preserving parallelism
means that if two lines are parallel then their image under γ again consists of two
parallel lines with all points on one of the image lines necessarily being images of
just one of the parallel lines in the domain, since γ takes lines to lines.) Let γ0 be
the corresponding 1 → 1 transformation of V . Then γ0 is of the form

γ0 : Σλivi → Σφ(λi)Λ(vi)
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where Λ : V → V is additive (i.e. a linear mapping) and φ is an automorphism of
K. (vi is a base of V .) In other words, γ0 is a semilinear bijective mapping of the
associated vector space V .

Now to the fundamental theorem of projective geometry: the projective space
P(V ) associated to a K-vector space V over a field (or more generally skew-field,
i.e. non-commutative field such as the quaternions) is the set of one-dimensional
subspaces of V . Let 0 denote the zero vector (origin) in V . There is a surjective
mapping V × = V \ 0 3 v → [v] = Kv ∈ P(V ) and P(V ) is identified as the
quotient space V ×/K×. Now let X be another vector space. If f : X → V is a
linear mapping which is injective, then it induces an injective map [f ] on P(X) by
P(X) 3 Kx → Kf(x) ∈ P(V ). In particular, if X is a subspace of V , P(X) ⊂ P(V ).
A subset of the form P(X) with X ⊂ V is called a projective subspace of P(V ) with
the dimension of P(X) defined to be dimX − 1. Projective subspaces of dimension
one and two are referred to as projective lines and projective planes, respectively.

K× is a group under multiplication and V is a K× module, a left or right K×

module, if K = Q. Working in C we have a representation of C× on V , and we
can consider orbits of points in V under the action of the group K× = Cx . Let us
define a ray to be an orbit of the form v → eiαv on V ×. In other words, a ray is
the set

[v] = {eiαv |α ∈ C , 0 6= v ∈ V }.

Clearly, ray space is just complex projective space, P(V ).
When V is a Hilbert space over C, we can define a unit ray. It is a ray with

norm one, which means ‖v‖ = 1 and also α ∈ R so that eiα is a phase factor, i.e.
|eiα| = 1. The set of all rays is called ray space. (Technically what we called a ray
in the previous paragraph should probably be called a generalized ray, since in
physics a ray is usually defined as an orbit of a unit vector whose representatives
all have norm one.)

Given two points [a] and [b] of a projective space P(V ), we denote by [a]∨ [b]
the subspace generated by [a] and [b]. If [a] 6= [b] this is the line containing [a] and
[b]. Specifically,

[a] ∨ [b] := {a+ b ∈ V |a ∈ [a], b ∈ [b]}.

Three points [a], [b] and [c] ∈ P(V ) are called collinear if [c] ∈ [a] ∨ [b].
A bijective map T : P(V ) → P(W ) is called a collineation if T preserves

collinearity, i.e. ∀ [a], [b] ∈ P(V ), we have

T([a] ∨ [b]) = T([a] ∨ T([b]).

Theorem 2 (The Fundamental Theorem of Projective Geometry). Let P(V ) and
P(W ) be projective spaces of dimension n ≥ 2 and let T : P(V ) → P(W ) be a
collineation. Then T is of the form [T ] where T : V → W is a (unique up to
scalar multiplication) semilinear, bijective mapping from V to W compatible with
T. (A map T : V → W is compatible with T provided [Tv] = T([v]) for all v ∈ V ).
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3. Applications
Wigner’s theorem is usually formulated as follows:

Theorem 3 (Wigner). Let H be a Hilbert space over C with inner product ( ·, ·).
Let S : H → H be a bijective map such that

|(Sx, Sy)| = |(x, y)| (1)

for all x, y ∈ H. Then S is phase-equivalent to either to a unitary or antiunitary
operator.

(By phase equivalent we mean the following: two bijective maps S : V → V
and T : V → V of a complex vector space V are phase-equivalent if there exists
a scalar valued function ρ(x) on V such that 1) |ρ(x)| = 1 for all x ∈ V and 2)
Tx = ρ(x)Sx for all x ∈ V . By antiunitary operator we mean an antilinear map
T of H onto H such that Tλv = λ̄Tv.)

Clearly the S of Wigner’s theorem specifies a unique bijection S on the pro-
jective space P(H) defined by S([v]) = [Sv] for v ∈ H. Since, from Eq. (1), S
takes orthonormal bases to orthonormal bases, it is not difficult to see that S is a
collineation. Now apply the fundamental theorem of projective geometry to obtain
a semilinear operator S̃ on H which is phase-equivalent to S. Finally use Eq. (1) to
show that S̃ is a unitary or antiunitary operator. We refer the reader to especially
Keller [3] for the details (cf. also [4, 5]).

Now to the applications to special relativity. We assume our space-time is
an affine space A. An inertial transformation is a 1 → 1 transformation γ of A
onto itself which takes one inertial frame into another. We require that γ and γ−1

map straight lines onto straight lines and preserves parallelism. The reason for
the requirement of parallelism can be seen as follows: according to the principle
of relativity, we cannot distinguish two different inertial frames from one another
in any absolute sense, i.e. no one inertial frame can have any preferred property
distinguishing it from any other. Thus, if two straight lines, describing the world
lines of two moving or stationary particles, are judged parallel according to any
one inertial observer, then they must also be judged parallel to all other inertial
observers.

From the previous paragraph, it is clear that an inertial transformation γ
satisfies the hypotheses of the fundamental theorem of affine geometry. Thus γ is,
up to a translation, a semilinear bijective mapping of space-time onto itself. Fur-
thermore, since the only field automorphism of R is the identity, we have, in fact,
shown that any inertial transformation must necessarily be, up to a translation,
a linear transformation of the underlying vector space V of space-time. Addition-
ally, since all finite dimensional vector spaces are isomorphic, we have proven for
n dimensional space-time that:

Theorem 4. Any inertial transformation of n dimensional space-time must neces-
sarily be, up to a translation, a linear transformation of Rn onto itself.
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Our Theorem 4 simplifies the proofs in such papers as [7, 9] and [10] estab-
lishing the scale-extended Poincaré group as the maximal transformation group of
space-time connecting different inertial observers to one another and preserving
causality. We now illustrate an approach leading to this result in the case in which
space-time is assumed to be two dimensional and making use of Theorem 4. Proper
linear transformations of R2 are elements of GL+(2,R). Also gl(2,R) is a trivial
central extension of sl(2,R) with the (commutative) center of the extension being
just infinitesimal scale transformations. Thus, according to Theorem 4, we have,
up to scale transformations and translations in space-time, both of which preserve
causality (see below), that the admissible transformations from one inertial frame
to another are precisely the elements of SL(2,R). We have the following:
Proposition 1. A continuous one-parameter subgroup of SL(2,R) is conjugate un-

der GL+(2,R) to one of the following subgroups [11]:
(
Ω =

1√
2

(
1 1
1 −1

))
A =

{
a(s) =

(
ch s sh s
sh s ch s

)∣∣∣∣t ∈ R
}

=

{
Ωexp

(
s 0
0 −s

)
Ω−1

∣∣∣∣s ∈ R
}
,

N =

{(
1 + v

2
v
2

− v
2 1− v

2

)∣∣∣∣t ∈ R
}

=

{
Ωexp

(
0 0
v 0

)
Ω−1

∣∣∣∣v ∈ R
}
,

K =

{(
cos θ − sin θ
sin θ cos θ

)∣∣∣∣θ ∈ R
}

=

{
Ωexp

(
0 θ
−θ 0

)
Ω−1

∣∣∣∣θ ∈ [0, 2π)

}
.

Furthermore, any element g of SL(2,R) can be uniquely written as g = kan with
k ∈ K, a ∈ A and n ∈ N (Iwasawa decomposition) [12].

Space-time should be endowed with a causal structure. In Rn (n− 1 spatial
dimensions) causality is defined as follows: an event (t, x) can influence an event
(t′, x′) (with t′ > t) ⇐⇒ the two points are connected by a straight world line,

the speed of which can never be infinite, i.e.
∥∥∥∥x′ − x

t′ − t

∥∥∥∥ < ∞. If we insist that there
is some finite limiting speed c, then we have:

(t, x) ≺ (t′, x′) ⇐⇒ c · (t′ − t) ≥ ‖x′ − x‖. (2)
This causality relation (≺) endows Rn with a family of convex cones and defines
a causal structure. Clearly, ≺ is preserved under scale transformations, transla-
tions in both space and time and rotations and Lorentz transformations. The
Alexandrov–Zeeman theorem states that the inverse is also true: the set of all
possible bijections of Rn which preserves the causality relation is precisely the
scale-extended Poincaré group. The Alexandrov–Zeeman theorem is quite general
and independent of our assumptions regarding inertial transformations.

Now to finish our proof of the Alexandrov–Zeeman result for two dimensional
space-time. We stress that ours is a simpler proof than Alexandrov’s and Zeeman’s,
but it involves more assumptions: we demand, in addition to preservation of the
causality relation, that our transformations also satisfy the hypothesis of Theo-
rem 1. These additional assumptions immediately lead us, in the two dimensional
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case, to GL+(2,R) and hence to the subgroups of Proposition 1. It is easy to see
that of the subgroups listed in Proposition 1 only the elements of A are causal-
ity preserving transformations according to the definition of causality specified in
Eq. (2) (with c = 1).

The parabolic subgroup Ω−1NΩ is the limit of the subgroup A under conju-
gation. It is obtained from A by conjugation with C =

(
c 0
0 1

)
(c ∈ R+) followed

by taking appropriate limits. Specifically, we take a(s) → C−1a(s)C followed by
taking the limits c → ∞, s → 0 in such a way that c sinh(s) → v. With Eq. (2)
having the limiting value c = ∞, elements of this conjugacy limit, i.e. of Ω−1NΩ,
preserves Eq. (2). It leads to Galilean relativity. A and its conjugates under C leads
to special relativity. Thus we obtain special relativity or Galilean relativity solely
from the requirement of causality and reasonable assumptions about invariance
properties of world lines under transformations between inertial frames together
with considerations about limiting cases.
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Modeling the dynamics of a charged drop
of a viscous liquid
Bakyt S. Shalabayeva, Nurbulat Zh. Jaichibekov,
Zarina A. Kutpanova and Victor N. Kireev

Abstract. We consider a mathematical model of motion, conducting drops
of a viscous fluid, immersed in a dielectric viscous fluid of infinite length
and changing under the influence of capillarity and electrostatic repulsion.
Using the equations of hydrodynamics and electromagnetism and a number
of physically realistic assumptions, the problem is reduced to a system of
partial differential equations. The solution of such a system of equations is
particularly difficult. Computer simulation in the COMSOL Multiphysics en-
vironment allowed us to obtain changes of the shape the charged of drop with
time.
Mathematics Subject Classification (2000). Primary PACS: 47.55.Ca; Secondary
76T10.
Keywords. conductive liquid drop, dielectric viscous, capillarity, electrostatic
force, computer simulation.

1. Introduction
The modern interest in electro hydrodynamics and, in particular, in the evolution
of charged droplets of liquids, the formation of the stability of these droplets
and the formation of finite-time features on the free surface are associated with
many applications of science and technology. The tasks of electro hydrodynamics
of micro and nano-scales attract great attention of researchers in connection with
a wide field of application, mainly in nano- and biotechnologies. In particular, fuel
spraying, coating, inkjet printing, drip cooling, chemical treatment of plants and
many other industries [1]. Simulation of Stokes flows in various areas, as well as
laboratory studies on the dynamics of emulsion droplets in microchannels in a
wide range of values of various parameters affecting the physical properties of the
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entire system as a whole, have a very limited number of solutions to such problems,
costly and difficult. Computer simulation allows one to plan, partially replace and
significantly complement the experiments [2]. In this paper, we study the evolution
of electrically charged liquid droplets moving under the action of surface tension
and electrostatic forces. We are especially interested in the stability of these drops
and the formation of features on the free surface. These features have the form of
conical tips on the surface of a drop, where the curvature of the surface and the
velocity field of the liquid diverge at a certain time.

2. The mathematical model of the motion of a charged drop of
liquid

Consider a drop of liquid D with a viscosity µin suspended in an infinite liquid with
viscosity µout (Fig. 1). Suppose the drop size is on the order of a few micrometers.
Then we can assume that the Reynolds number

Re =
ρu0R

µ
= 1,

where u0 is the characteristic velocity of the fluid, R is the characteristic size of
the drop, ρ is the density of the liquid, and µ is the viscosity of the liquid.

Figure 1. Charged drop of liquid

On the other hand, the size of the drop is large enough to ensure the ful-
fillment of the continuity hypothesis, in accordance with which the aggregate of
motion of fluid molecules can be considered as a continuum. Note also that the
effect of evaporation on the evolution of a drop is not taken into account. The time
scale of the movement of the free border is of the order of milliseconds, which is
clearly not enough for significant mass loss due to evaporation. The liquid inside
the drop is the ideal electrical conductor, while the liquid outside the drop is the
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ideal electrical insulator. In addition, the drop has an electric charge Q. The mo-
tion of both internal and external fluid we write in accordance with the Stokes
approximation of the Navier–Stokes equations [3]:

• The equation of conservation of motion of the liquid in the droplet

µin∇2u⃗(x⃗, t) = ∇p(x⃗, t), x⃗ ∈ D; (1)

• The equation of conservation of motion of fluid outside a drop

µout∇2u⃗(x⃗, t) = ∇p(x⃗, t), x⃗ ̸∈ D; (2)

• The continuity equation
∇u⃗(x⃗, t) = 0, (3)

where ur– is the velocity field, p is the pressure in the fluid.
From equations (1)–(3) it follows that the pressure p is a harmonic function outside
the drop boundary:

∇2p(x⃗, t) = 0, x⃗ ̸∈ ∂D. (4)
The movement of the most free drop boundary depends on time and is determined
by the kinematic condition:

dx⃗

dt
= u⃗(x⃗, t), x⃗ ∈ ∂D. (5)

Since the fluid inside the droplet is conductive, the charges in it repel each other
and move toward the free boundary, and since they cannot penetrate the non-
conductive external fluid, they are ultimately distributed along the free D bound-
ary with a surface charge density σ and create electric field with electric potential
V . The electric potential inside the drop is constant, i.e.,

V (x⃗, t) = V0, x⃗ ∈ D, (6)

and satisfies the Laplace equation outside the drop D.
At the free boundary, the electric potential V is

∇2V (x⃗, t) = 0, x⃗ ̸∈ D, (7)

which is continuous, but the normal derivative ∂V
∂n suffers a discontinuity. The jump

of the normal derivative and the surface charge density σ on the free boundary
fulfills the relation: [

∂V

∂n

]
∂D

= − σ

ε0
, (8)

where ε0 is the dielectric constant of the environment. The density of surface
charge σ also satisfies the condition∫

∂D

σds = Q (9)
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and by virtue of the law of conservation of electric charge Q is constant in time. For
the velocity field, we write the following boundary condition on the free boundary:

[Sn⃗]∂D =

(
2γH − ε0

2

(
∂V

∂n

)2
)
n⃗ or [Sn⃗]∂D =

(
2γH − σ2

2ε0

)
n⃗, (10)

where γ surface tension coefficient, H average curvature, nr outer normal vector
to the free boundary, S stress tensor, which is defined as follows:

Sij = −pδij + µ

(
∂ui

∂xj
+

∂uj

∂xi

)
, i = 1, 2, 3. (11)

Note that this boundary condition relates the fluid velocity field to the electrostatic
field (through the density of surface charge σ). An interesting dynamics arises due
to the interaction of two opposite forces acting at the interface between two liquids:
capillary forces and electrostatic forces in the expression (10). While the capillary
forces tend to make the drop as smooth and spherical as possible, the electric
forces tend to increase any disturbance in the shape of the drop, as the charges
accumulate in parts of the free border with high curvature and strongly deform
the surface at these points (Fig. 2).

Figure 2. The change of the drop’s border

3. Simulation of a charged drop of liquid in COMSOL Multiphysics
Computer simulation in the COMSOL Multiphysics environment allows you to
explore physical phenomena that can be characterized as electromagnetism, struc-
tural mechanics, acoustics, hydrodynamics, thermal and chemical reactions, as well
as partial differential equations. The COMSOL Multiphysics software module was
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selected to study and analyze the dynamics of a charged drop. The package in-
terface is selected taking into account the considered mathematical model of the
movement of the border of a charged liquid drop and defined above by the follow-
ing equations: (1)–(3) and (5)–(7). But at the ∂D boundary (Fig. 3), the normal
derivative of the electric potential ∂V

∂n is a discontinuous function. The jump of
the normal derivative of the electric potential and the density of surface charge σ
on the free boundary are related and are represented by the expressions (8) and
(10).

Figure 3. Geometric parameters of the form of a charged drop
and the external environment of oil.

Using the COMSOL Multiphysics package, we will model the dynamics of
changes in the shape of a charged drop in oil, in a medium with a more viscous
fluid. As an example, consider the change in the shape of a charged droplet with
a charge of 5 kW, placed in oil. The initial speed of the movement of the oil is
zero. At the initial moment, a laminar two-phase flow is specified, the interfaces
of the phase field are set by the equations of fluid motion in accordance with the
Navier–Stokes equations:

p∂u

∂t
+ p(u∇)u = ∇[−pl + µ(∇u+ (∇u)T )] + Fst + pg + F, ∇u = 0.

Here u is the velocity, ρ density, µ viscosity, p pressure, I unit vector, g acceleration,
Fst surface stress, and F additional force. The electrostatic interface is set by the
equation for V (electrostatic potential): −∇(ϵ0ϵr∇V ) = 0, where ϵ0 is vacuum
permeability, ϵr relative conductivity.

The program allows you to automatically set the equations described earlier.
For a two-phase flow, you must specify the power. Electric power is determined by
F = ∇T where the Maxwell tensor: T = EDT − 1

2 (ED)I. Here, E is the electric
field, D the electric shift: E = ∇V,D = ε0εrE. In this example, the stress tensor
is two-dimensional 2D, therefore:

T =

[
Txx Txy

Tyx Tyy

]
=

[
ε0εrE

2
x − 1

2ε0εr(E
2
x + E2

y) ε0εrExEy

ε0εrEyEx ε0εrE
2
y − 1

2ε0εr(E
2
x + E2

y)

]
.
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The components of the electric field are calculated using an electrostatic interface.
To determine the viscosity of a fluid, when a charged drop of water spreads in a
more viscous medium in oil, the following formula can be used: µ = gD2(pBpM )

18u . As
we know, pB = 0.98 g/cm3, pM = 0.89 g/cm3. The results of computer simulation
in Fig. 4 showed that, using the COMSOL Multiphysics package, in all tests there
is a gradual change in the shape of a charged drop in oil. The program code
adequately models the position of the phase interface.

Figure 4. Dynamics of change of the free boundary of the drop
at t = 0.01 s, t = 0.2 s, t = 0.35 s, t = 0.43 s, t = 0.47 s.

4. Conclusion
The linear stability of a family of solutions arising due to the perturbation of a
sphere of radius R (which is an equilibrium solution) was analyzed [3–5]. According
to the results of the work, one can see how the stability of a drop depends on the
values of charge, volume, surface tension and viscosity, as well as on the shape of
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the drop. As a result, a computer model of a charged drop of liquid based on the
COMSOL Multiphysics software module was created on the basis of the presented
mathematical model. Computer and mathematical models adequately reflect the
dynamics of changes in the boundary of a charged drop of liquid and show the
position of the phase boundary.
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The orthogonal systems of functions on
lattices of SU(n + 1), n < ∞

Mariia Myronova and Marzena Szajewska

Abstract. The definitions of orbit functions, their orthogonality relations, con-
gruence classes and decomposition matrices are recalled. The orthogonality
of the symmetric C- and antisymmetric S-orbit functions, which are given
on the fundamental region FM of the weight lattice, for simple Lie group
SU(n+ 1) of any rank n is defined. The splitting of the weight lattice of An

into congruence classes is shown.

Mathematics Subject Classification (2000). 20F40,22E70,42B05.
Keywords. C-functions, S-functions, orthogonality, congruence classes, de-
composition matrices.

1. Introduction
A simple Lie group of type SU(n + 1) is generally used to describe continuous
symmetry operations such as rotations about the axes. In general, generators of
rotation about different axes do not commute, but they can form a Lie algebra
which closes under the commutation.

There are two types of orthogonal functions (symmetric and antisymmetric
orbit functions, also refereed as C- and S-functions) that are investigated in this
paper [3,4]. Due to their remarkable properties, these functions can be treated as
special functions. We define C- and S-functions for a simple Lie algebra of type
An. Both systems of functions are orthogonal on the fundamental region FM of
the weight lattice of SU(n + 1), or, equivalently, on the weight lattice of the Lie
algebra whose root system is An. Here the region FM is a simplex in Rn. However,
the weight lattice of An can be split into (n+1) congruence classes of points, hence
we can obtain the orthogonality of the special functions.

c© Switzerland AG 2019Springer Nature
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In this paper we also present a structure of decomposition matrices for the
Fourier transforms of some data sampled on the lattices. These matrices are the
square matrices of the size determined by a number of lattice points in FM (6)
which is fixed by our choice of some positive integer M . We arrange the data of the
lattice points of FM in a column. The result of the multiplication of the decompo-
sition matrix by a column of data gives the Fourier coefficients in the expansion.
The most valuable property of decomposition matrices is their independence of
any particular data. Moreover, such matrices can be calculated once and then can
be reused when some data on the same set of points of the fundamental domain
FM is considered.

2. An lattice and its refinement
Let Rn be the n-dimensional real Euclidean space endowed with the scalar product
⟨ , ⟩. Let rα be the reflection applied to the simple root αj of An and

Pα = {αi ∈ Rn : ⟨αi, αj ⟩ = 0, i, j = 1, . . . , n}
be the corresponding reflecting hyperplane in Rn. Therefore, the reflection is de-
fined by

rjx = x− 2⟨x, αj⟩
⟨αj , αj⟩

αj , where j = 1, 2, . . . , n and x ∈ Rn. (1)

A linear combination of the simple roots of An forms the root system ∆An =
{α1, . . . , αn} that represents a non-orthogonal basis in Rn. The finite reflections
applied to ∆An

generate a finite reflection group WAn
(or Weyl group) of order

|WAn
| = (n + 1)!. The characteristic property for the reflections is the equality

r2j = 1. Every reflection rj can be attached to the jth node (that stands for a
simple root) of the corresponding Coxeter–Dynkin diagram (Fig. 1).

An
1 2 3 n

0

n ≥ 1

Figure 1. Extended Coxeter–Dynkin diagram for the Lie algebra of type An.

The set of ωk (k = 1, . . . , n) is called the set of fundamental weights. The α-
and ω-bases are not orthogonal, but they are dual to each other in the following
sense:

2⟨αj , ωk⟩
⟨αj , αj⟩

= δjk, where j, k ∈ 1, . . . , n. (2)

The link between α- and ω-bases is given by the Cartan matrix C and its
inverse C−1:

αj =
n∑

k=1

Cjkωk, ωj =
n∑

k=1

(
C−1
jk

)
αk. (3)
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All linear combinations of the simple roots of An form the root lattice QAn

which has the following form:

QAn
=

{ n∑
i=1

aiαi | ai ∈ Z
}

≡
⊕
i

Zαi ≡ Zα1 + · · ·+ Zαn. (4)

Thus, we can introduce the weight lattice PAn of An which is denoted as

PAn =

{ n∑
j=1

bjωj | bj ∈ Z
}

≡
⊕
j

Zωj ≡ Zω1 + · · ·+ Zωn. (5)

Let F be the fundamental region of PAn
. We can refine the basic tile F to the

smaller tiles FM of the same shape. The number of lattice points of FM inside F
(including points on its boundary) is given as the function of M , where M stands
for any positive integer [2]:

|FM | =
(
M + n

n

)
. (6)

If FM is used to tile entire Rn, then the points of FM form a refined infinite
lattice L(FM ) with a density fixed by M . The greater the value of M , the finer
the obtained lattice is. Geometrically it is the same lattice as L(F ), with distances
scaled down by a factor of 1/M . Finding all points of FM amounts to finding all
distinct (n+1) non-negative integers [s0, s1, s2, . . . , sn] (called barycentric coordi-
nates) that add up to M :

M =
n∑

i=0

si, si ∈ Z≥0, i ∈ {0, 1, . . . , n}. (7)

Then the set of discrete points FM is given by

FM =
{ s1
M

ω1 + · · ·+ sn
M

ωn

∣∣ [s0, s1, s2, . . . , sn] ∈ IM

}
, (8)

where the basis vectors ωi, i ∈ {1, 2, . . . , n} are the sides of simplex F (An), and is
labeled by the index set

IM =

{
[s0, s1, . . . , sn] ∈

(
Z≥0

)n+1 ∣∣∣ n∑
i=0

si = M

}
. (9)

Example. Here we present just two special cases for the lower case A2:

M = 1 : [1, 0, 0], [0, 1, 0], [0, 0, 1] ,

M = 3 : [3, 0, 0], [0, 3, 0], [0, 0, 3], [1, 1, 1], [0, 2, 1],

[2, 1, 0], [1, 0, 2], [2, 0, 1], [1, 2, 0], [0, 1, 2] .

Starting from any point of R2 we can generate the two lattices, namely F1(A2)
and F3(A2), by application of repeated reflections as shown in Fig. 2.
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M = 1 M = 3

Figure 2. Fragments of the infinite lattices L(F1(A2)) and L(F3(A2)).
The mirrors r1, r2 are marked by the dashed lines. The points of the
generated lattices are marked by black dots. The vertices of the basic
tile F (A2) = F1(A2) are marked as 0, ω1 and ω2. The normal vectors
to the reflection mirrors are denoted as α1 and α2. The shaded triangle
corresponds to the basic tile F (A2).

3. The congruence classes of points of FM

We introduce the congruence classes as an extension of the triality for An mod-
ules [5, 6]. This is a powerful tool in calculations of the decomposition matrices.
The general idea is to consider a quotient of two components: the integral lattice
of fundamental weights and the integral lattice of simple roots. Since the weight
spaces of any finite dimensional highest weight representation are clearly contained
in a set consisting of a highest weight of the representation (i.e. an element in an
integral lattice of fundamental weights) and the integral lattice of simple roots, we
can simply associate some element of the quotient with this representation.

Any point of the lattice x ∈ L(An) can be split into n+1 congruence classes
by using the following rule:

x =
n∑

i=1

aiωi ∈ Kk, where
n∑

i=1

i · ai = k mod (n+ 1). (10)

Example. Consider A2 case. Any point x ∈ L(A2) can be split into three mutually
congruence classes. The general rule is the following:

x = a1ω1 + a2ω2 ∈ Kk, where a1 + 2a2 = k mod 3.

4. C- and S-functions
In this section we consider two special functions, C- and S- orbit functions, of
a simple Lie algebra An. They are defined by means of a finite reflection group
W [3, 4]. Both the S- and C-functions (multidimensional cosine and sine func-
tions, respectively) are the linear combination of exponential expressions and the
difference between them is the presence or absence of negative signs in front of the
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sums of the exponential terms. For the C-function all terms have a positive sign,
hence, we call it a symmetric orbit function. Thus, we define a C-orbit function as

Cλ(x) =
∑

ω∈W(λ)

e2πi⟨ω(λ),x⟩, (11)

where λ stands for the dominant weight and x stands for n parameters of the
element of the Lie algebra An. All the elements of the same orbit are equidistant
from the origin and x can take any value from Rn. An S-function, also referred as
antisymmetric orbit function, has the following form:

Sλ(x) =
∑

ω∈W(λ)

(detω)e2πi⟨ω(λ),x⟩. (12)

The number of terms in the expressions for the special functions does not exceed
the order of the corresponding Weyl group. The summation proceeds over the
whole orbit W and the number of the summands correspond to the size of the
orbit |W(λ)|.

4.1. Orthogonality of the orbit functions
The orthogonality of the C- and S-orbit functions for the simple Lie algebra An

is defined by the following formulas [2, 3]:

⟨Cλ(x), Cλ′(x)⟩ =
∑
j∈IM

|W|
|Wx|

Cλ(xj)Cλ′(xj) = det C|W|Mn|Wλ|δλ,λ′ , (13)

⟨Sλ(x), Sλ′(x)⟩ =
∑
j∈IM

Sλ(xj)Sλ′(xj) = det CMnδλ,λ′ , xj ∈ FM , (14)

where |Wx| and |Wλ| are the orders of the stabilizers of elements x and λ, respec-
tively [2].

Let us take the extended Dynkin diagram of the Lie algebra An (Fig. 4.1).
Each node corresponds to the si coordinate, i ∈ {0, 1, . . . , n}. Let’s choose a point
x ∈ FM for any M and its barycentric coordinates [s0, s1, . . . , sn] such as:
1. If si > 0 for all i ∈ {0, 1, . . . , n}, then |Wx| = 1,
2. If there is si = 0 for any i ∈ {0, 1, . . . , n}, then the extended Dynkin diagram

decomposes to several non-extended subdiagrams of Al. The order of the
stabilizer of x we calculated by the formula |Wx| =

∏
l

|Wl|, where Wl is a

Weyl group of Al.

Example. Consider a point with the coordinates [s0, 0, s2, 0, s4, . . . , sn]. The cor-
responding diagram is the following

An
1 2 3 n

0

n ≥ 1
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This Dynkin diagram decomposes into two Dynkin diagrams of A1 and An−2.
Then

|Wx| = |W(A1)| · |W(An−2)| = 2 · (n− 1).

5. Products of orbit functions
C-orbit functions are called symmetric, because they are invariant with respect to
the action of the Weyl group of An. Since the product also has to be invariant under
the Weyl group it necessarily decomposes into a sum of several C-functions. The
product of two S-functions is also invariant under the action of the Weyl group.
Therefore, it also decomposes into a sum of several C-functions. The product of a
C- and S-function is skew-invariant with respect to Weyl group and, therefore, it
decomposes into a sum of several S-functions.

Example. Let one consider the group SU(3). Then the product of C-functions has
the following form:

Ca,0(x) · C0,b(x) =4Ca,b(x) + 2Ca−b,0(x), b ≤ a,

Ca,0(x) · C0,b(x) =4Ca,b(x) + 2C0,b−a(x), a ≤ b,

Ca,b(x) · Cc,0(x) =2Ca+c,b(x) + 2Cc−a,a+b(x) + 2Ca,b−c(x), a ≤ c ≤ b,

Ca,b(x) · Sa,b(x) =C2a,2b(x)− 2Cb,a(x), a ≤ b,

Cc,0(x) · Sa,b(x) =2Sa+c,b(x) + 2Sc−a,a+b(x)− 2Sa,b−c(x), a ≤ c ≤ b.

6. Decomposition matrices
A decomposition matrix is a useful tool for calculating Fourier expansions of digital
data sampled on the points of the given lattice fragment FM [1]. Moreover, a
technique of finding fast Fourier transforms also involves decomposition matrices
[7].

The Fourier transform on FM is an exact equality between some data function
sampled on the points of FM and the finite series of coefficients multiplied by orbit
functions

F (x) =
∑
λ

fλΦλ(x) , x ∈ FM , λ ∈ ΛM , (15)

where Φλ is any of the C- or S-functions defined in Section 4. The number of
terms in the sum doesn’t exceed the number of points in FM . The orthogonality of
orbit functions allows one to express the coefficients of the expansion as a product
of the decomposition matrix D[M ] multiplied by the column of values of the data
sampled on the points of FM

fλ =
∑

x∈FM

D
[M ]
(λ)(x)F (x), (16)
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where

D[M ] =
(
D

[M ]
(λ)(x)

)
=

 |W|
|Wx|Φλ(x)

det C|W|Mn|Wλ|

 . (17)

The main property of a decomposition matrix is its independence of any
data function. This matrix can be calculated only once and later can be used for
different data sets sampled on the same set of points of FM .

Example. Let us consider a function f(x, y) = ln cos sin(π(x+ 2y)) (Fig. 3). We
use the decomposition matrix D[2] for M = 2 of the group SU(3) to approximate
the function f(x, y). Therefore, we obtain the matrix that has the following form:

D[2] =



− 1
144

− i

48
√
3

1
24

− 1
144

+ i

48
√
3

− 1
48

+ i

16
√
3

− 1
48

− i

16
√
3

1
72

1
24

− 1
24

1
24

− 1
24

− 1
24

1
24

− 1
144

+ i

48
√
3

1
24

− 1
144

− i

48
√
3

− 1
48

− i

16
√
3

− 1
48

+ i

16
√
3

1
72

− 1
48

+ i

16
√
3

− 1
24

− 1
48

− i

16
√
3

1
48

+ i

16
√
3

1
48

− i

16
√
3

1
24

− 1
48

− i

16
√
3

− 1
24

− 1
48

+ i

16
√
3

1
48

− i

16
√
3

1
48

+ i

16
√
3

1
24

1
72

1
24

1
72

1
24

1
24

1
72


.

Values of the function f(x, y) on the lattice points are presented in the table
below.

(x, y) (0, 1) ( 1
2
, 1
2
) (1, 0) (0, 1

2
) ( 1

2
, 0) (0, 0)

f(x, y) 0 ln cos 1 0 0 ln cos 1 0

Figure 3. The function f(x, y) = ln cos sin(π(x+ 2y)) plotted over
the domain F of A2.

Multiplying the matrix D[2] by the column of values of the function f(x, y)
we get the coefficients of the Fourier expansion of this function. Thus, the Fourier
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decomposition can be written explicitly as follows:

f(x, y) ≈ 1

12
ln cos(1)

(
−

√
3 sin

(2
3
π(2x+ y)

)
−

√
3 sin

(4
3
π(2x+ y)

)
+

√
3 sin

(2
3
π(x− y)

)
+

√
3 sin

(4
3
π(x− y)

)
+

√
3 sin

(2
3
π(x+ 2y)

)
+

√
3 sin

(4
3
π(x+ 2y)

)
− cos

(2
3
π(x− y)

)
+ cos

(4
3
π(x− y)

)
− 2 cos(2π(x+ y))− cos

(2
3
π(2x+ y)

)
+ cos

(4
3
π(2x+ y)

)
− cos

(2
3
π(x+ 2y)

)
+ cos

(4
3
π(x+ 2y)

)
− 2 cos(2πx)− 2 cos(2πy) + 6

)
.

It is easy to verify that the decomposed one has the same values on the lattice
points of FM as the original f(x, y). In Fig. 4 we present plots of the approximation
function f(x, y) for M = 2 and M = 4. The higher the value of M , the better
approximation of f(x, y) is.

M = 2 M = 4

Figure 4. Plots of the interpolating functions for M = 2 and M = 4
with number of points 6 and 15, respectively.
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The Super Orbit Challenge

Gijs M. Tuynman

Abstract. When using the generally adopted definition of a super unitary
representation, there are lots of super Lie groups for which the regular repre-
sentation is not super unitary. I propose a new definition of a super unitary
representation for which all regular representations are super unitary. I then
choose a particular super Lie group (of Heisenberg type) for which I provide a
list of super unitary representations in my new sense, obtained by a heuristic
super orbit method. The super orbit challenge is to find a well defined super
orbit method that will provide (for a suitable category of super Lie groups)
the full super-unitary dual and that reproduces the list of my super unitary
representations (or explains why they should not appear).

Mathematics Subject Classification (2000). 58A50, 22E99, 57S20.
Keywords. Super unitary representation, super orbit method.

1. Introduction
In order to make this paper as easily accessible as possible, I will interpret a super
Lie group as a super Harish-Chandra pair (Go, g), even though I prefer to interpret
them as a supermanifold G with a compatible group structure (in the sense of A-
manifolds [5]). In a super Harish-Chandra pair (Go, g), g = g0 ⊕ g1 is a super Lie
algebra (over R) and Go an ordinary Lie group acting on g such that:
A1. The Lie algebra of Go is (isomorphic to) g0;
A2. The action of Go preserves each gα (the action is “even”);
A3. The restriction of the Go action to g0 is (isomorphic to) the adjoint action of

Go on it Lie algebra.
The generally accepted definition of a super unitary representation of a super Lie
group (Go, g) is the one that can be found (among others) in [3, Def. 2, §2.3]
and [1]. One defines a super Hilbert space (H, 〈·, ·〉,S ), as a graded Hilbert space

This work was supported in part by the Labex CEMPI (ANR-11-LABX-0007-01).

c© Switzerland AG 2019Springer Nature
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H = H0 ⊕ H1 with scalar product 〈·, ·〉 and super scalar product S (a graded
symmetric non-degenerate sesquilinear form) satisfying the following conditions:
B1. 〈H0,H1〉 = 0;
B2. For all homogeneous x, y ∈ H we have S (x, y) = i|x| · 〈x, y〉.
With these ingredients a super unitary representation of (Go, g) on the super
Hilbert space (H, 〈·, ·〉,S ) then is a couple (ρo, τ) in which ρo is an ordinary
unitary representation of Go on the Hilbert space H and τ : g → End

(
C∞(ρo)

)
an

even super Lie algebra representation of g on C∞(ρo), the space of smooth vectors
for ρo defined by

C∞(ρo) = {ψ ∈ H | g 7→ ρ(g)ψ is a smooth map G→ H},

satisfying the conditions:
C1. For each g ∈ Go the map ρo(g) preserves each Hα (the representation is

“even”);
C2. For each X ∈ g0 (the Lie algebra of Go!) the map τ(X) is the restriction of

the infinitesimal generator of ρo
(
exp(tX)

)
to C∞(ρo);

C3. For each X ∈ gα the map τ(X) is graded skew-symmetric with respect to S ;
C4. For all g ∈ Go and all X ∈ g1 we have

τ(g ·X) = ρo(g) ◦ τ(X) ◦ ρo(g
−1),

where on the left we denote by g ·X the action of Go on g.
Unfortunately, already for the simplest super Lie group R0|1, the 0|1-dimensional
abelian super Lie group for which the super Harish-Chandra pair is ({e}, {0}⊕R),
the (left-) regular representation is not super unitary in the above sense. The
representation space is the space of (smooth) functions C∞(R0|1) of a single odd
variable, i.e., isomorphic to C2 via f(ξ) = a0 + a1ξ and the infinitesimal action
is given by the operator ∂ξ, i.e., by the matrix ( 0 1

0 0 ). As C2 = C ⊕ C is 1|1-
dimensional, there is no possible choice for a super Hilbert space structure on C2

for which the regular representation is super unitary.
In [9],1 I proposed to change the definition of a super Hilbert space to a triple

(H, 〈·, ·〉,S ) by changing the condition B2 to
B’2. S is continuous with respect to the topology of H defined by 〈·, ·〉.
But remember, S is just a non-degenerate graded symmetric sesquilinear form,
not necessarily even nor homogeneous. Associated to this new definition of a super
Hilbert space, I changed the definition of a super unitary representation on a super
Hilbert space (H, 〈·, ·〉,S ) as a triple (ρo,D, τ) in which ρo is an ordinary unitary
representation of Go on the Hilbert space H and τ : g → End

(
D
)
an even super

Lie algebra representation of g on D ⊂ C∞(ρo) ⊂ H, a dense graded subspace of H
contained in the set of smooth vectors of the unitary representation ρo, satisfying
the conditions:

1As [9] was too long for most journals, a shortened version without the sections on Berezin–
Fourier decomposition will appear as [10].
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C’1. for each g ∈ Go the map ρo(g) preserves each Hα (the representation is
“even”);

C’2. For each X ∈ g0 (the Lie algebra of Go!) the map τ(X) is the restriction of
the infinitesimal generator of ρo

(
exp(tX)

)
to D;

C’3. For each X ∈ gα the map τ(X) is graded skew-symmetric with respect to S ;
C’4. For all g ∈ Go and all X ∈ g1 we have

τ(g ·X) = ρo(g) ◦ τ(X) ◦ ρo(g
−1);

C’5. D ⊂ H is maximal with respect to the four conditions above.
Using these changed definitions, I was able to show that the left-regular represen-
tation of any connected super Lie group is super unitary in this new sense.2 In
particular for the simplest example of the 0|1-dimensional super Lie group cited
above, it suffices to take an odd super scalar product S instead of an even one as
imposed by the standard definition.

Now I think that rendering all regular representations super unitary is suffi-
cient reason to justify my change of the definition of a super unitary representa-
tion, but my initial motivation comes from a heuristic super version of the orbit
method. In [8],3 I introduced the notion of a mixed symplectic form and I showed
that coadjoint orbits of a super Lie group carry in a natural way such a mixed
symplectic form. In [6] (see also [7]) I then showed that representations associated
to orbits with a non-homogeneous symplectic form appear in the (Fourier–Berezin)
decomposition of the regular representation of an explicit example of dimension
4|4, justifying the introduction of non-homogeneous symplectic forms.4 Now there
seems to be a certain reluctance to accept the notion of non-even symplectic forms
(see, for instance, [2]) and my “justifying” paper [6] has a serious drawback: half
of the used procedure is heuristic and no (super) Hilbert spaces are mentioned.

I still have no satisfactory way to produce (by means of super geometric quan-
tization of super symplectic manifolds with a non-even symplectic form) structures
that might lead to super Hilbert spaces; for super Lie groups, I only have a sys-
tematic way to produce representations (essentially on spaces of smooth functions)
associated to coadjoint orbits and polarizations, and then I have to invent by hand
the (super) Hilbert space structure adapted to such a representation and I have to
adapt by hand the dependence on odd parameters linked to the specific orbit. But
now that I have a convenient notion of a super unitary representation, I will give,
for a particular (Heisenberg like) super Lie group of dimension 3|3, a list of super
unitary representations in my new sense. I am convinced this will be the complete
list of all inequivalent irreducible super unitary representations of this group, but
(of course) I have no proof and I might be wrong. And then the challenge is to find

2A slightly less far going modification of the notion of a super Hilbert space and an associated
notion of a super unitary representation is proposed in [4].
3The timeline of the official publications is different from the production timeline as can be seen
from the arXiv dates.
4The same Fourier–Berezin decomposition technique was used in [2] to decompose the regular
representation of the 0|1-dimensional super Lie group described above.
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a systematic way to obtain them via a well-defined orbit method. The interested
reader will find another example in [6] (for which I have the same conviction) to
test any super orbit method, although in that example no mention is made of any
kind of notion of super unitary representation.

2. A super Lie group and a list of super unitary representations
As a super Lie group of dimension 3|3 our example G “is” R3|3 with three global
even coordinates a, b, c and three global odd coordinates α, β, γ and group law
given by the multiplication

(a, b, α, β, c, γ) · (â, b̂, α̂, β̂, ĉ, γ̂) =
(
a+ â, b+ b̂, α+ α̂, β + β̂,

c+ ĉ+ 1
2 (ab̂− bâ− αβ̂ − βα̂), γ + γ̂ + 1

2 (aβ̂ − βâ+ bα̂− αb̂)
)
.

As a super Harish-Chandra pair (Go, g) it is given by the standard Heisenberg
group Go = R3 of dimension 3 with group law

(a, b, c) · (â, b̂, ĉ) =
(
a+ â, b+ b̂, c+ ĉ+ 1

2 (ab̂− bâ)
)
.

The super Lie algebra g = g0 ⊕ g1 of dimension 3|3 with three even basis vectors
e0, e1, e2 and three odd basis vectors f0, f1, f2 is described by the commutators

[e1, e2] = e0 = [f1, f2], [e1, f2] = f0 = [e2, f1],

all others either 0 or determined by graded skew-symmetry. It is a central extension
of the abelian super group of dimension 2|2 by a 1|1-dimensional center; at the
algebra level the center is generated by the vectors e0, f0. And finally the (adjoint)
action of Go on g is given by

(a, b, c) · e0 = e0, (a, b, c) · e1 = e1 − b e0, (a, b, c) · e2 = e2 + a e0,

(a, b, c) · f0 = f0, (a, b, c) · f1 = f1 + b f0, (a, b, c) · f2 = f2 + a f0.

Once we have the description of our super Lie group, we can provide our list of
seven families of super unitary representations. However, instead of providing the
unitary representation ρo of Go and the infinitesimal representation τ , I will give
the integrated version ρ, which is a bona fide representation of the full super group
G. The unitary representation ρo is directly obtained by putting α = β = γ = 0
in the expression for ρ, and τ is obtained by computing the derivatives of ρ with
respect to the six variables a, b, c, α, β, γ at the point (a, b, c, α, β, γ) = 0. For the
third family this will be done explicitly.
Family 1. We start with a family of 1-dimensional representations depending on
two real parameters k, ℓ and two odd parameters κ, λ. Our graded Hilbert space
is given by H = C⊕{0} with scalar product and super scalar product S (χ, ψ) =

〈χ, ψ〉 = χ · ψ. And then the representation ρ(1)k,ℓ,κ,λ is given by

ρ
(1)
k,ℓ,κ,λ(a, b, c, α, β, γ)ψ = ei(ak+bℓ+ακ+βλ) ψ.
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Family 2. For this family the Hilbert space is H = L2(R2)⊕{0} with its standard
scalar product and super scalar product given by

〈χ, ψ〉 = S (χ, ψ) =

∫
χ(x, y)ψ(x, y) dx dy.

On this Hilbert space we define a one-parameter family of representations ρ(2)κ

depending on a nonzero odd parameter κ by(
ρ(2)κ (a, b, c, α, β, γ)ψ

)
(x, y) = ψ(x+ b, y + a) eiακx eiβκy ei(γ+

1
2 (βa+bα))κ.

Family 3. Here the graded Hilbert space is H is given byH = L2(R)⊕L2(R), which
I interpret as functions of one even variable x and one odd variable ξ according to

(ψ0, ψ1) ∈ L2(R)⊕ L2(R) ∼= ψ(x, ξ) = ψ0(x) + ξψ1(x).

The scalar product 〈·, ·〉 and the (odd) super scalar product are given by

〈χ, ψ〉 =
∫
χ0(x)ψ0(x) + χ1(x)ψ1(x) dx,

S (χ, ψ) =

∫
χ0(x)ψ1(x) + χ1(x)ψ0(x) dx.

On this Hilbert space we define a one-parameter family of representations ρ(3)k

depending on a nonzero real parameter k by(
ρ
(3)
k (a, b, c, α, β, γ)ψ

)
(x, ξ) = ψ(x+ ka, ξ − kα) eibx e−iβξ eik(c+

1
2 (ab−αβ)).

This means that the unitary representation ρo is given by(
ρo(a, b, c)ψ

)
(x, ξ) = ψ(x+ ka, ξ) eixb ei(c+

1
2ab)k

and the super Lie algebra representation is given by

τ(e0)ψ = ik ψ, τ(e1)ψ = k
∂ψ

∂x
, τ(e2)ψ = ixψ,

τ(f0)ψ = 0, τ(f1)ψ = −k ∂ψ
∂ξ
, τ(f2)ψ = −iξ ψ.

Family 4. For this family the Hilbert space is the same as for the third family. On
it we define a two-parameter family of representations ρ(4)k,κ depending on a real
parameter k and a nonzero odd parameter κ by(

ρ
(4)
k,κ(a, b, c, α, β, γ)ψ

)
(x, ξ) = ψ(x+ a, ξ − α) eib(k+ξκ) eiβκx ei(γ+

1
2 (βa−bα))κ.

Family 5. For this family the Hilbert space is again the same as for the third
family. On it we define a two-parameter family of representations ρ(5)k,κ depending
on a nonzero real parameter k and a nonzero odd parameter κ by(

ρ
(5)
k,κ(a, b, c, α, β, γ)ψ

)
(x, ξ)

= ψ(x+ a, ξ − α) eib(xk+ξκ) eiβ(xκ−ξk)ei(γ+
1
2 (βa−bα))κ ei(c+

1
2 (ab+βα))k.
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Family 6. Here the graded Hilbert space is H = C2 ⊕ C2, which I interpret as
functions of two odd variables ξ and η according to(

(ψ0, ψ12)⊕ (ψ1, ψ2)
)
∈ C2 ⊕C2 ∼= ψ(ξ, η) = ψ0 + ξ ψ1 + η ψ2 + ξη ψ12.

The standard scalar product 〈·, ·〉 and the super scalar product S are given by

〈χ, ψ〉 = χ0 ψ0 + χ12 ψ12 + χ1 ψ1 + χ2 ψ2,

S (χ, ψ) = χ0 ψ12 + χ12 ψ0 + χ1 ψ2 − χ2 ψ1.

On this Hilbert space we define a three-parameter family of representations ρ(6)k,ℓ,κ

depending on two real parameters k, ℓ and a nonzero odd parameter κ by(
ρ
(6)
k,ℓ,κ(a, b, c, α, β, γ)ψ

)
(ξ, η)

= ψ(ξ − β, η − α) eia(ξκ+k) eib(ηκ+ℓ) ei(γ−
1
2 (βa+bα))κ.

Family 7. For this family the Hilbert space is given by H = L2(R)2 ⊕ L2(R)2,
which I interpret as functions of one even variable x and two odd variables ξ, η
according to(

(ψ0, ψ12)⊕ (ψ1, ψ2)
)
∈ L2(R)2 ⊕ L2(R)2

∼= ψ(x, ξ, η) = ψ0(x) + ξ ψ1(x) + η ψ2(x) + ξη ψ12(x).

The scalar product 〈·, ·〉 and the super scalar product S are given by

〈χ, ψ〉 =
∫
χ0(x)ψ0(x) + χ12(x)ψ12(x) + χ1(x)ψ1(x) + χ2(x)ψ2(x) dx,

S (χ, ψ) =

∫
χ0(x)ψ12(x) + χ12(x)ψ0(x) + χ1(x)ψ2(x)− χ2(x)ψ1(x) dx.

On this Hilbert space we define a three-parameter family of representations ρ(7)k,p,κ

depending on two nonzero real parameters k, p and a nonzero odd parameter κ by(
ρ
(7)
k,p,κ(a, b, c, α, β, γ)ψ

)
(x, ξ, η) = ψ(x+ a− pb, ξ − α, η − β)

× eib(xk+ξκ+pηκ) eiβ(xκ−ξk) ei(γ−pbβ+ 1
2 (βa−bα))κ ei(c+

1
2 (ab+βα−pb2))k.

3. Concluding remarks
• All (super) Hilbert spaces are interpreted as spaces of functions on super spaces
of the form Rp|q, or more precisely as spaces that we can interpret as H =
C∞(

R0|q;L2(Rp)
)
, i.e., (smooth) functions of q odd variables with values in the

space of square integrable functions of p real variables. It then turns out that in
all cases the super scalar product S (χ, ψ) is realized as the (translation invariant)
Berezin–Lebesgue integral

∫
Rp|q χ(m)ψ(m) dm.
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• All (infinitesimal) representations τ act by differentiation or multiplication, and
as such these operators act on the space of smooth functions C∞(Rp|q). In all
cases the unmentioned dense subspace D then is given by

D =
{
ψ ∈ C∞(Rp|q) | ∀k ∈ N ∀X1, . . . , Xk ∈ g : τ(X1) ◦ · · · ◦ τ(Xk)ψ ∈ H

}
.

• In my way of thinking, the first family is associated to (coadjoint) orbits of
dimension 0|0, the third family is associated to orbits of dimension 2|2 with an
even symplectic form, the families 2, 4 and 6 are associated to orbits of dimension
2|2 with an odd symplectic form, and the families 5 and 7 are associated to orbits
of dimension 2|2 with a non-homogeneous symplectic form. The seventh family is
atypical as it is obtained by a polarization that is not of “maximal” dimension.
For p = 0 we recover (apart from the term ∂η in τ(f2) ) the fifth family with the
additional variable η.
• In most of the families of representations we have required some of the parameters
to be nonzero. Not because these representations do not exist when they take the
value zero, but because in those cases the representation will certainly not be
irreducible.
• The attentive reader will have noticed that I have not been completely honest,
as the families 4–7 do not fit my description of a super unitary representation. In
particular ρo is not an ordinary unitary representation of the ordinary Lie group
Go, due to the presence of the (supposedly nonzero) odd parameter κ. On the
other hand, apart from the fact that some of the parameters are odd, all these
representations definitely have a “unitary” look, especially when one realizes that
the super scalar product is defined by integration of the product χψ with respect to
a translation invariant “measure.” As moreover all these families are obtained in the
same way, I am sorely tempted to want to enlarge the definition of a super unitary
representation even more in order to include all these families. Unfortunately, I
have not (as yet) a satisfactory way to do so.
• And last but not least: all feedback will be appreciated.
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Weighted generalization of the Szegö kernel
and how it can be used to prove
general theorems of complex analysis
Tomasz Łukasz Żynda

Abstract. We consider weighted generalization of the Szegö kernel. We show
which conditions must a weight of integration satisfy in order for weighted
Szegö kernel to exist. Then we show some properties of weighted Szegö kernel,
including a direct formula for particular cases. At the end, we show how
weighted Szegö kernel can be used to prove general theorems of complex
analysis.
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1. Definitions and admissible weights
Let Ω ⊂ CN be a bounded domain with a boundary of class C2. For µ : ∂Ω → R
measurable and almost everywhere greater than 0 (which we will call a weight) by
L2(∂Ω, µ) we will denote a set of functions f : ∂Ω → C, square-integrable in the
sense

‖ f ‖2µ:=
∫
∂Ω

|f(w)|2µ(w)dS <∞, (1)

where the integral is understood as an integral of a scalar field with surface mea-
sure. The set L2(∂Ω, µ) with an inner product given by

〈f |g〉µ :=

∫
∂Ω

f(w)g(w)µ(w)dS (2)

is a Hilbert space. Now let us consider the space A(Ω) of continuous functions
f : Ω → C, such that f|Ω is holomorphic. Let us denote

B(Ω, µ) :=
{
f|∂Ω : f ∈ A(Ω)

}
∩ L2(∂Ω, µ).

c© Switzerland AG 2019Springer Nature
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By L2H(∂Ω, µ) we will understand the closure of B(Ω, µ) in L2(∂Ω, µ) topology.
We will name space L2H(∂Ω, µ) a weighted Szegö space. For µ ≡ 1 it is a

classical Szegö space.
Of course, L2H(∂Ω, µ) can change as a set with a change of µ. However,

Theorem 1. If µ1, µ2 are weights and there exist m,M > 0, such that

mµ1(z) ≤ µ2(z) ≤Mµ1(z) a.e., (3)

then L2H(∂Ω, µ1) = L2H(∂Ω, µ2) as a set.
In particular, if 0 < m < µ < M < ∞, then L2H(∂Ω, µ) = L2H(∂Ω, 1) as a

set.

For the proof look into [3].
Each element of L2H(∂Ω, 1) has a unique holomorphic prolongation to Ω

(see [1] for more details), so it is also true for any element from B(Ω, µ), because
B(Ω, µ) ⊂ L2H(∂Ω, 1) for any µ. We will denote the set of all such prolongations
by B̃(Ω, µ) (where B̃(Ω, µ) ⊂ A(Ω)). However, a good question to ask is how to
find a holomorphic prolongation of functions from L2H(∂Ω, µ) \ B(Ω, µ) for an
arbitrary µ? We will answer this question in a moment.

We will use the same symbol for a function and its prolongation, which should
not cause confusion.

Let µ be a weight with the following property:
(CB) For any compact set X ⊂ Ω there exists CX > 0, such that for any f ∈
B̃(Ω, µ) and z ∈ X

|f(z)| ≤ CX ‖ f ‖µ .
Then for functions from L2H(∂Ω, µ) \B(Ω, µ) we can define their prolongation to
Ω in the following way:
Let fn be a sequence of functions from B̃(Ω, µ). Let f ∈ L2H(∂Ω, µ) be the limit
of this sequence. Since by (CB) the sequence of functions (fn|Ω) fulfills the Cauchy
condition locally uniformly on Ω, the function

f(z) := lim
n→∞

fn(z), z ∈ Ω

is well defined and holomorphic on Ω.

From now on, if µ fulfills (CB), we will interpret L2H(∂Ω, µ) as a set of
functions on Ω.

Let µ be a weight satisfying (CB). A function (if it exists) Sµ : Ω× Ω → C,
such that for any z ∈ Ω, Sµ(z, ·) ∈ L2H(∂Ω, µ) and for any f ∈ L2H(∂Ω, µ)
(reproducing property)

f(z) =
〈
Sµ(z, ·)|f(·)

〉
µ
, (4)

will be called Szegö kernel of L2H(∂Ω, µ).
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It is true (as for any reproducing kernel Hilbert space) that if Sµ and S′
µ are

Szegö kernels of the same space, then Sµ = S′
µ and if the Szegö kernel exists, then

it is given uniquely by a formula

Sµ(z, w) =
∑
i∈I

φi(z)φi(w), (5)

where {φi}i∈I is an arbitrary complete orthonormal system of L2H(∂Ω, µ).
Sµ is real analytic on Ω×Ω and by the Hartogs theorem on separate analyt-

icity holomorphic with respect to the first n variables and antiholomorphic with
respect to the last n variables.

It is a natural question to ask, which conditions must µ satisfy in order for
L2H(∂Ω, µ) to be a reproducing kernel Hilbert space.

Definition 2. We will say that a weight µ is Szegö admissible (S-admissible for
short) if there exists Szegö kernel of L2H(∂Ω, µ) space.

Theorem 3. µ is an S-admissible weight if and only if the condition (CB) is
satisfied.

Proof. =⇒ comes directly from the definition.
⇐= (CB) means that functionals of evaluation, i.e., functionals

Ẽz : B̃(Ω, µ) 3 f 7→ f(z) ∈ C

are continuous. Since B(Ω, µ) is dense in L2H(∂Ω, µ) we can prolong Ẽz to the
functional Ez ∈ L2H(∂Ω, µ)∗ with the same majoring constant CX for any z ∈ Ω.
By Riesz representation theorem, it means that for any Ez, where z ∈ Ω, there
exists ez ∈ L2H(∂Ω, µ), such that for any f ∈ L2H(∂Ω, µ)

f(z) = 〈ez|f〉

and the function
ez(w), (z, w) ∈ Ω× Ω

is the Szegö kernel of L2H(∂Ω, µ). �

Theorem 4. Let µ be a weight on a bounded domain Ω with ∂Ω of class C2, such
that ∫

∂Ω

1

µ(w)
dS <∞. (6)

Then µ is an S-admissible weight.

In order to prove the theorem we are going to use the following lemma:

Lemma 5. Let Ω1,Ω2 be bounded domains with C2-smooth boundaries, such that
Ω1 ⊂ Ω2. Then there exists C > 0, such that for any f ∈ L2H(∂Ω2) = L2H(∂Ω2, 1)
we have ∫

∂Ω1

|f(w)|dS ≤ C

∫
∂Ω2

|f(w)|dS
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It is a particular case of Lemma 2.1 from [2], which was proven for p > 1. It
remains true, however, for p = 1, since authors of [2] follow the proof of Theorem 1
from [4] and in the case of p = 1 we just need to change f(y)dσ(y) to finite Borel
measure on ∂Ω.

Moreover, since Ω is a bounded domain with ∂Ω of class C2, therefore ∂Ω
has finite measure and f ∈ L2(∂Ω, µ) implies that f ∈ L1(∂Ω, µ).

Proof. Let z0 ∈ Ω and let r be sufficiently small for

K0 := K(z0, 2r) := {w ∈ CN : |z0 − w| < 2r}

to lie with its boundary in Ω. Then by mean value theorem for harmonic functions
we have for f ∈ B̃(Ω, µ), z ∈ K(z0, r) and K := K(z, r)

|f(z)| = C1

∣∣∣∣∫
∂K

f(w)dS

∣∣∣∣ ≤ C1

∫
∂K

|f(w)|dS,

where 1
C1

is a measure of ∂K. By Lemma 5, we have∫
∂K

|f(w)|dS ≤ C0

∫
∂K0

|f(w)|dS ≤ C0C2

∫
∂Ω

|f(w)|dS.

By Schwarz inequality,∫
∂Ω

|f(w)|dS =

∫
∂Ω

|f(w)|
√
µ(w)√
µ(w)

dS

≤

√∫
∂Ω

|f(w)|2µ(w)dS

√∫
∂Ω

1

µ(w)
dS.

Finally,

|f(z)| ≤ C0C1C2

√∫
∂Ω

1

µ(w)
dS

√∫
∂Ω

|f(w)|2µ(w)dS

≤ C0C1C2C3 ‖ f ‖µ≤ C ‖ f ‖µ,

where C does not depend on z ∈ K(z0, r). Hence µ satisfies (CB). �

Corollary 6. If Ω is a bounded domain with a boundary of class C2, then a weight
µ defined on ∂Ω such that µ(z) ≥ c > 0 is an S-admissible weight.

2. Properties of weighted Szegö kernel
Theorem 7. Let Ω be a bounded domain with C2-smooth boundary and µ be an
S-admissible weight on ∂Ω. Let

L(∂Ω, µ) :=

∫
∂Ω

µ(w)dS. (7)



216 T.Ł. Żynda

Then for z ∈ Ω,

Sµ(z, z) ≥
1

L(∂Ω, µ)
.

In particular, if L(∂Ω, µ) <∞, then Sµ(z, z) > 0.

Proof. If L(∂Ω, µ) <∞, then 1 ∈ L2H(∂Ω, µ) and

1 =

∫
∂Ω

Sµ(z, w)µ(w)dS

≤

√∫
∂Ω

|Sµ(z, w)|2µ(w)dS

√∫
∂Ω

µ(w)dS =
√
Sµ(z, z)

√
L(∂Ω, µ),

by reproducing property and Schwarz inequality. Taking square of both sides and
dividing by L(∂Ω, µ) we obtain the thesis of the theorem.

If L(∂Ω, µ) = ∞, then 1
L(∂Ω,µ) = 0 and Sµ(z, z) ≥ 0 is always fulfilled. �

Theorem 8. Let Ω be a bounded domain with a boundary of class C2. If f ∈ H(Ω)
is a function such that f(z) 6= 0 for any z ∈ Ω, then µ(z) := |f(z)|2 is an S-
admissible weight on ∂Ω, L2H(∂Ω, µ) = L2H(∂Ω, 1) as a set and the Szegö kernel
Sµ of L2H(∂Ω, µ) is equal to

Sµ(z, w) =
1

f(z)f(w)
S1(z, w), (8)

where S1 is the Szegö kernel of L2H(∂Ω, 1).

Proof. Because f is a continuous function on a compact set and f(z) 6= 0, |f(z)| >
c > 0, on ∂Ω, which means that µ(z) = |f(z)|2 is an S-admissible weight by
Corollary 6. Since f is a continuous function on a compact set, we also have
|f(z)| < C <∞, so L2H(∂Ω, 1) and L2H(∂Ω, µ) are equal as sets, by Theorem 1.

Now let {φj}j∈J be a complete orthonormal system of L2H(∂Ω, 1). Then
{ψj}j∈J defined in the following way:

ψj(z) =
1

f(z)
φj(z)

is an element of L2H(∂Ω, µ), because L2H(∂Ω, µ) = L2H(∂Ω, 1) as a set. {ψj}j∈J

is a complete orthonormal system in L2H(∂Ω, µ), because

〈ψj , ψk〉µ =

∫
∂Ω

1

f(z)
φj(z)

1

f(z)
φk(z)|f(z)|2dS

=

∫
∂Ω

φj(z)φk(z)dS = 〈φj , φk〉1.
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Finally

Sµ(z, w) =
∑
j

1

f(z)
φj(z)

1

f(w)
φj(w)

=
1

f(z)f(w)

∑
j

φj(z)φj(w) =
1

f(z)f(w)
S1(z, w). �

3. How weighted Szegö kernel can be used to prove general
theorems of complex analysis

Maximum modulus principle allows us to show that if two holomorphic functions
are equal on a boundary of some bounded domain, then they are equal on the
whole domain. In this section we will use the concept of weighted Szegö kernel to
prove more general theorem:

Theorem 9. Let Ω be a bounded domain with a boundary of class C2. Let f, g :
Ω → C, holomorphic on Ω be functions such that |f(z)| = |g(z)| on ∂Ω and
f(z), g(z) 6= 0 for z ∈ Ω. Then |f(z)| = |g(z)| for z ∈ Ω.

Assumption that f(z), g(z) 6= 0 for z ∈ Ω is necessary, because e.g. functions
zk and zl for k 6= l have the same modulus on ∂K(0, 1), but their modulus is not
the same on whole K(0, 1) := {z ∈ C : |z| < 1}.

Proof. By Theorem 8 Szegö kernel of L2H(∂Ω, µ) for µ = |f |2 is equal to

Sµ(z, z) =
1

|f(z)|2
S1(z, z)

and at once
Sµ(z, z) =

1

|g(z)|2
S1(z, z),

where S1 is Szegö kernel of L2H(∂Ω, 1). So we have
1

|f(z)|2
S1(z, z) =

1

|g(z)|2
S1(z, z).

S1(z, z) is given for any z ∈ Ω, so that equality must be true on whole Ω. By
Theorem 7, S1(z, z) > 0, so we can divide both sides of the equation by S1(z, z)
to get |f(z)| = |g(z)| on whole Ω. �

Corollary 10. Let Ω be a bounded domain with a boundary of class C2. If f : Ω → C
is holomorphic on Ω and |f(z)| = c for z ∈ ∂Ω and f(z) 6= 0 for z ∈ Ω, then f is
constant on Ω.

Proof. Function g equal to c on whole Ω satisfies assumptions of the corollary. By
theorem 9, |f(z)| = |g(z)| for any z ∈ Ω, so |f(z)| = c on whole Ω. By Riemann–
Cauchy equations, if a holomorphic function f has constant modulus on some open
domain, then it is constant on the whole domain. �
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My aim is to present some main ideas of the branch of the theory of algebras
in functional analysis which is called homology theory of these algebras. I think,
a good way to speak about this theory is to present some of its comparatively
sound results with fine interplay of algebra and analysis, to formulate it, explain
its ingredients and then to show how such a result is proved. Since we choose a
really synthetic result, we have to discuss many basic things of the area.

Main Theorem. Let G be continuous (= non-discrete) locally compact group. Then
its Banach measure algebra M(G) is not amenable.

Combining this theorem with a known result of Johnson, which will be for-
mulated later, we obtain

Corollary. Let G be an arbitrary locally compact group. Then its (Banach) measure
algebra M(G) is amenable if and only if G is discrete and amenable in the group-
theoretic sense.

Recall that the measure algebra M(G) consists of all finite complex regu-
lar Borel measures on G with the norm “variation”. The multiplication, called
convolution, is as follows: for µ, ν ∈M(G) and a Borel subset E ⊆ G we put

µ ∗ ν(E) :=

∫
G

∫
G

χE(st)dµ(s)dν(t) =

∫
G

ν(s−1E)dµ(s),

where χ denotes the characteristic function of a subset.
This algebra has an important two-sided ideal Mc(G), consisting of the so-

called continuous measures, that is measures, equal to zero in one-point sets. As a
subspace in M(G),Mc(G) has a Banach complement, which is the closure of the
linear span of Dirac measures in different points. This fact will have a crucial role
in our proof.

c© Switzerland AG 2019Springer Nature
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As to the amenability, it has a lot of equivalent definitions, but two ap-
proaches are basic. One of them has appeared in the West, and it is based on the
notion of derivation, another one in the East, and it is based on the notion of a
flat module. It is the latter approach that has led to a proof of the formulated
theorem.

Let A be a Banach algebra, always supposed to have an identity, say e. A
Banach spaceX is called left Banach A-module, right Banach A-module or Banach
A-bimodule, if it is a module of a respective class in algebraic sense, and the outer
multiplication(s) (denoted by the dot “·”) are continuous.

There are obviously defined notions of a Banach submodule of a given Banach
module of every type, as well as of a quotient Banach module. An outstanding role
in our proof will belong to the right quotient M(G)-module M(G)/Mc(G), where
the algebra and its ideal both are considered as right Banach M(G)-modules. The
class of left, right A-modules and A-bimodules will be denoted by A-mod, mod-A
and A-mod-A, respectively. Class of Banach spaces, that is C-modules of every
type, will be denoted by Ban.

Speaking about operators between Banach spaces, we always suppose that
they are bounded. For given Banach spaces E and F we shall denote, as usually, by
B(E,F ) the Banach space of all operators from E into F with the operator norm.
It is easy to check that, if X and Y are left Banach A-modules, then B(X,Y ) is a
Banach A-bimodule with outer multiplication well defined by (a ·φ)(x) = a ·(φ(x))
and (φ · a)(x) = φ(a · x).

Suppose we have a Banach A-bimodule X.

Definition 1. Let X ∈ A-mod-A. An operator D : A → X is called derivation
of the algebra A with values in X, if it satisfies the “Leibnitz identity” D(ab) =
D(a) · b+ a ·D(b).

The question about the structure of derivations is very important for many
reasons. For example, derivations are intimately connected with automorphisms
of Banach algebras, and the latter, as physicists claim, have a physical sense.

Every x ∈ X gives rise to the derivation Dx : a 7→ a ·x−x ·a. Such derivations
are called inner. A typical question: for given A, X, is it true that an arbitrary
derivation of A with values in X is inner?

The closed subspace in the space B(A,X), consisting of derivations, is de-
noted by Z1(A,X), and its (not necessarily closed) subspace, consisting of inner
derivations, by B1(A,X). The quotient linear space Z1(A,X)/B1(A,X) is de-
noted by H1(A,X), and solemnly called 1-dimensional, cohomology group of A
with coefficients in X.

A natural question arises: what is the structure of such an algebra that all its
derivations with arbitrary coefficients are inner, that is H1(A,X) = 0 for all X?
Such a condition happened to be extremely rigid; we omit respective details. But
Barry Johnson, a famous English mathematician, suggested the class of algebras
that has, so to say, an optimal size; these are our amenable algebras. To define
them, let us observe the following. If X is a left Banach A-module, then its dual
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Banach space is a right Banach A-module with (f · a)(x) := f(a · x). Similarly,
the dual space to a right module is a left module. Thus we see that the dual space
to a bimodule is itself a bimodule. Of course, there are much less dual bimodules,
than arbitrary bimodules.

Definition 2. A Banach algebra A is called amenable, if its every derivation with
values in an arbitrary dual A-bimodule is inner.

Why “amenable”? The very word means something like complaisant or oblig-
ing. But the main motivation is connected with the following, now classical theo-
rem.

Johnson’s Theorem. Let G be a locally compact group. The standard group Banach
algebra of G, that is, (L1(G), ∗), is amenable if and only if the group G is amenable
as a locally compact group.

After this theorem and the appearance of different approaches to the concept
of the amenability it became clear that it is an exceptionally important class. For
many concrete classes of Banach algebras that serve in various branches of analysis,
the question of the description of amenable algebras within the class in question
usually obtained a beautiful answer in terms of that area; I omit examples.

But one well known algebra stubbornly resisted. It was just our measure
algebra M(G). Earlier it was only known what happens in the case of an Abelian
group. Using the Gel’fand representation of M(G), Brown and Moran (1976) has
shown that in the case of a continuous (= non-discrete) Abelian group M(G) can
not be amenable. But is it true if G is not Abelian, that is where is no Gel’fand
representation? The question was open many years. It turned out that the problem
was solved with the help of quite different considerations, based on homology.

When Johnson was studying his amenability, there was some activity in
Moscow, outwardly without any relationship with what he was doing. There was
an attempt to create a functional-analytic version of the homological theory of
pure algebras. One of practical aims was to obtain new methods to compute the
so-called Banach cohomology. We turn to the respective definition.

For Banach spaces E1, . . . , En, F we denote by B(E1×· · ·×En, X) the Banach
space of all bounded n-linear operators from E1 × · · · × En into X with the n-
operator norm.

LetX ∈ A-mod-A. For every n ∈ N consider the space B(A×· · ·×A,X) (with
n copies of A), and denote it, for brevity, by Cn(A,X). Then consider the operator
δn : Cn(A,X) → Cn+1(A,X) : f 7→ δnf (“coboundary operator”), where, for all
ak ∈ A, we have

δnf(a1, . . . , an+1) = a1 · f(a2, . . . , an+1)

+

n∑
k=1

(−1)kf(a1, . . . , ak−1, akak+1, . . . , an+1)

+ (−1)n−1f(a1, . . . , an) · an+1.
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Also we set C0(A,X) := X and δ0 : C0(A,X) → C1(A,X) with [δ0(x)](a) :=
a · x− x · a.

The sequence 0 → C0(A,X)
δ0−→ C1(A,X)

δ1−→ · · · is evidently a complex,
called the standard cohomology complex for A and X.

Definition 3. The n-dimensional cohomology space of this complex, that is the
quotient space Ker δn+1/Im δn, is called (according to the algebraic tradition)
n-dimensional cohomology group of A with coefficients in X. We denote it by
Hn(A,X).

We immediately see that 1-dimensional cohomology group is exactlyH1(A,X)
in its previous meaning (“all derivations modulo inner derivations”). Other coho-
mology groups are also important; here I omit details. The computation of coho-
mology groups is an old typical problem, inherited from algebra.

For our needs the most important case is that of A-bimodules of the form
B(X,Y ) (cf. above). In this case the standard cohomology complex acquires some
specific form. Namely, when we identify Cn(A,B(X,Y )) with the space B(A ×
· · · × A×X,Y ), briefly denoted by Bn(A,X, Y ), we obtain the complex

0→ B(X,Y )
δ0−→ B1(A,X, Y )

δ1−→ · · · , (B(A,X, Y ))

where new operators δn;n = 0, 1, . . . act as
δnf(a1, . . . , an+1, x) = a1 · f(a2, . . . , an+1, x)

+
n∑

k=1

(−1)kf(a1, . . . , ak−1, akak+1, . . . , an+1, x)

+ (−1)n−1f(a1, . . . , an, an+1 · x)

for n > 0, and [δ0f ](a, x) := a · f(x)− f(a · x). Thus, the space Hn(A,B(X,Y )) is
the nth cohomology space of the complex B(A,X, Y ).

To compute the cohomology groups with the help of the standard complex
is often a technical and tiresome task. But in algebra there are powerful methods
that permit to avoid standard complexes. They are based on three main notions
of homological algebra, that of projective, injective and flat module. So, if we
wish that such methods would work in functional analysis, we must give right
functional-analytic versions of these notions.

1. Preparing the stage
Now, for a time, we shall speak about left modules. But analogical definitions and
constructions are valid for right modules and bimodules.

Let X,Y ∈ A-mod. The set of (bounded) morphisms between X and Y is
denoted by h(X,Y ). It is a closed subspace of B(X,Y ). Of course, in the complex
B(A,X, Y ) the space Ker (δ1) is not other thing that h(X,Y ).
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Let φ ∈ h(X,Y ) and Z ∈ A-mod. Then we have two (bounded) operators
φ• : h(Z,X)→ h(Z, Y ) : ψ 7→ φψ and φ• : h(Z, Y )→ h(Z, Y ) : ψ 7→ ψφ.

A complex · · · ← Xn
dn←− Xn+1 ← · · · (X ) in A-mod is called splitting, if

it has the so-called contracting homotopy; the latter is a sequence of morphisms
sn : Xn → Xn+1 such that sndn + dn+1sn+1 = 1, where 1 denotes the relevant
identity operator.

There is another, wider class of complexes, playing an outstanding role in
Banach homology.

Definition 4. A complex of modules is called admissible, if it has a contracting
homotopy in Ban (that is, consisting of operators that are not bound to be
morphisms.)

We easily obtain

Proposition 1. Every admissible, in particular, splitting complex is exact.

Now take a complex X and one more module, say Y . Then two complexes in
Ban appear, namely

· · ·h(Y,Xn)
dn•←− h(Y,Xn+1) · · · (h(Y,X ))

and
· · ·h(Xn, Y )

d•
n−→ (Xn+1, Y ) · · · . (h(X , Y ))

Proposition 2. If X splits, then for every Y the complexes h(Y,X ) and h(X , Y )
are splitting (or, which is now the same, admissible) in Ban and hence exact.

But if X is only admissible and does not split in A-mod, the previous assertion
is no more true. Let

0←−X ′′ j←− X i←− X ′←−0 (S)
be a short complex in A-mod. Then the short complex h(Y,S) is always exact in
the right and in the middle terms whereas the short complex h(S, Y ) is always
exact in the left and in the middle term. However, the first complex is not bound
to be exact in the left term, whereas the second one is not bound to be exact in
the right term. In other words, the respective operators, denoted by j• and i•, are
not bound to be surjective.

We came to our principal triple definition.

Definition 5. (i) A left Banach A-module Y is called projective, respectively, in-
jective, if for every short admissible complex S the complex h(Y,S), respectively
h(S, Y ), is exact. A right Banach A-module Y is called flat, if the left Banach
A-module Y ∗ is injective.

Remark. If in this definition we would not consider only admissible short complex,
we would obtain much less projective, injective and flat modules, and we could not
create sufficiently rich homology theory.
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Proposition 3. If Y is projective, respectively injective, then for every “long” ad-
missible complex X the complex h(Y,X ), respectively, h(X , Y ) is exact.

It is important that every projective module is flat. As to examples and coun-
terexamples, every closed ideal in C(Ω) with a metrizable compact space Ω is
projective. One-dimensional modules over the same C(Ω) are flat, but not projec-
tive if Ω is connected. For the disk algebra A the complex plane C, consider as an
A-module with a · λ := a(t)λ, where |t| < 1, is not flat.

Remark. The difference between the rather rigid property of projectivity and much
more widespread and flexible property of flatness is a very important phenome-
non in functional analysis, inherited from algebra. In different areas of analysis it
acquires quite different images. But I have no space to discuss it.

Now it is time to open my cards. The proof of our main theorem consists
of three parts, roughly speaking, belonging to functional analysis, homology and
harmonic analysis. Namely, we shall establish the following facts:

Theorem 1. Let I be a closed right ideal in A, having a Banach complement sub-
space in A, or, equivalently, such that the short exact complex

0←−A/I j←− A i←− I←−0 (I)
in A-mod is admissible. Suppose that the right A-module A/I is flat. Then I has
a left bounded approximate identity.

Theorem 2. For a right Banach A-module F the following properties are equivalent:
(a) Extn(X,F ∗) = 0 for all left Banach A-modules X and n > 0;
(b) Ext1(X,F ∗) = 0 for all left Banach A-modules X;
(c) F is flat.

As a corollary, all right Banach modules over an amenable Banach algebra are
flat.

(Thus, to disprove the amenability of a given algebra it suffices to display at
least one non-flat right module. . . )

Theorem 3. The ideal Mc(G) in M(G) not only does not have the indicated ap-
proximate identity, but even does not coincide with its topological square Mc(G)

2

(that is, with the closure of the linear span of the set {µ ∗ ν;µ, ν ∈Mc(G)}.)

To prove this, we shall find in G special measurable subsets of rather exotic
nature.

2. Outline of the proof of Theorem 1
Consider the dual complex I∗ in A-mod. By our assumption, the short complex
h(I∗, (A/I)∗ is exact, and thus the operator j∗• : φ 7→ φj∗ is surjective. Hence,
taking the identity operator on (A/I)∗), we see that j∗ has a left inverse morphism,
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or, equivalently, i∗ has a right inverse morphism, say ρ : I∗ → A∗. Consider
the adjoint morphism ρ∗ : A∗∗ → I∗∗. Since A ⊆ A∗∗, we can speak about the
element ê := ρ∗(e). The classical theorem of Goldstein provides a bounded net in
I, converging to ê in the weak ∗ topology on I∗∗. Denote it by eν ; ν ∈ Λ.

It easy to show that for every a ∈ A the operator Sa : I∗∗ → I∗∗ : α 7→ α ·a is
weak∗-continuous. Thus for every a ∈ I the net eνa = Sa(eν) is weak∗-convergent
to ê · a, that is to ρ∗(a). Therefore, since I ⊆ I∗∗ and A ⊆ A∗∗, we have i∗∗(a) =
i(a) = a. Hence ρ∗(a) = 1∗(a) = a. This implies that the net eνa in I converges
to a in the weak topology in I. It is known that the existence of such a net is
equivalent to the existence of a left bound approximate identity.

Remark. This result, apart from being one of principal tools to prove our main
theorem, has application to another area, the geometry of Banach spaces. In par-
ticular, it implies that the known Malliavin ideals in the Banach algebra L1(G),
where G is Abelian, have no Banach complement.

3. Outline of the proof of Theorem 2
Let E be a Banach space. Consider the Banach space A⊗̂E, where ⊗̂ denotes the
projective tensor product of Banach spaces. It is a left Banach A-module with
the outer multiplication well defined by a · (b ⊗ x) = (ab) · x. It is called free left
Banach module with the base space E. The universal property of ⊗̂ implies

Proposition 4. For every X ∈ A-mod there is a topological isomorphism
I : h(A⊗̂E,X)→ B(E,X),

well defined by taking φ to ψ : x 7→ φ(e⊗ x).

Proposition 5. Every free module is projective.

If a bounded operator φ : E → F between Banach spaces is given, we can
assign to it the operator, denoted by 1 ⊗ φ : A⊗̂E → A⊗̂F and well defined by
a⊗ x 7→ a⊗ φ(x). Obviously, 1⊗ φ is a morphism of left modules.

Proposition 6. If E is a splitting complex of Banach spaces, then the complex A⊗̂E
(defined in an obvious way) is a splitting complex of Banach modules.

For a given X and n = 0, 1, . . . we set Bn(X) := A⊗̂(A⊗̂ · · · ⊗̂A⊗̂X),
with n copies of A in brackets. We consider it as a free module with the base
A⊗̂ · · · ⊗̂A⊗̂X. Further, for every n we consider the operator dn : Bn+1(X) →
Bn(X), well defined by

dn(a⊗ a1 ⊗ · · · ⊗ an+1 ⊗ x) = aa1 ⊗ a2 ⊗ · · · ⊗ an+1 ⊗ x

+
n∑

k=1

(−1)ka⊗a1⊗· · ·⊗akak+1⊗· · ·⊗an+1⊗x+(−1)n+1a⊗a1⊗· · ·⊗an⊗an+1 ·x.

Obviously, we obtain the complex 0←− B0(X)
d0←− B1(X)

d1←− · · · (B(X)).
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Proposition 7. The complex

0←−X π←− B0(X)
d0←− · · · , (0←−X←−B(X))

where π : B0(X)→ X is well defined by a⊗ x 7→ a · x, is admissible.

We came to one of main notions of Banach homology, which has, as particular
cases, the cohomology groups H(·) and much more.

Let X,Y ∈ A-mod. Consider the complex h(B(X), Y ).

Definition 6. The nth cohomology space of this complex is denoted by Extn(X,Y ).

It turns out that we obtain our old acquaintances:

Theorem 4. The space Extn(X,Y ) coincides, up to a linear isomorphism, with
Hn(A,B(X,Y )).

Indeed, it is easy to show, using the universal property of the projective tensor
product, that the complex h(B(X), Y ) can be identified with B(A,X, Y ).

Now observe that Theorem 2 is a direct corollary of the following theorem.

Theorem 5. For a left Banach A-module Y the following properties are equivalent:
(a) Extn(X,Y ) = 0 for all left Banach A-modules X and n > 0;
(b) Ext1(X,Y ) = 0 for all modules X;
(c) Y is injective.

Proof. Thus, it remains to prove this theorem. Here the only not obvious impli-
cation is (b) ⇐= (c). Therefore we must show that for an arbitrary admissible
complex S in A-mod (cf. Section 1), the operator i• : h(X,Y ) → h(X ′, Y ) is
surjective. Why it is so?

For every n consider the sequence

0←−Bn(X
′′)

jn←− Bn(X)
in←− Bn(X

′)←−0 (Bn(X ))
with jn := 1 ⊗ j, and in := 1 ⊗ i. It is a splitting complex in A-mod. Therefore
the complex h(Bn(X ), Y ) is exact.

Now consider the commutative diagram
0 0 0x x x

0 −−−−−−→ h(B0(X
′), Y )

d•0
′

−−−−−−→ h(B1(X
′), Y )

d•1
′

−−−−−−→ h(B2(X
′), Y ) −−−−−−→ . . .xi•0

xi•1

xi•2

0 −−−−−−→ h(B0(X), Y )
d•0−−−−−−→ h(B1(X), Y )

d•1−−−−−−→ h(B2(X), Y ) −−−−−−→ . . .xj•0

xj•1

xj•2

0 −−−−−−→ h(B0(X
′′), Y )

d•0
′′

−−−−−−→ h(B1(X
′′), Y )

d•1
′′

−−−−−−→ h(B2(X
′′), Y ) −−−−−−→ . . .x x x

0 0 0
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We want to show that Ker (d•0
′) = i•0(Ker (d•0)). Our argument is an in-

structive (especially for non-algebraic audience) example of the so-called “diagram
chase”, used when people work with big diagrams. Look: since our “vertical” com-
plexes are exact, there exists g0 ∈ h(B0(X), Y ) with i•0(g0) = f . We have i•1d•0(g0) =
d•0i

•
0(g0) = d•0(f) = 0. Therefore d•0(g0) = j•1 (h) for some h ∈ h(B1(X

′′), Y ). Fur-
ther, j•2d∗1(h) = d•1j

•
1 (h) = d•1d

∗
0(g0) = 0. Since j•2 is injective, we have d•1(h) = 0.

But Ext1(X ′′, Y ) = 0, that is the lower horizontal complex is exact in term
h(B1(X

′′), Y ). Therefore there is l ∈ h(B0(X
′′), Y ) with d∗0(l) = h. Now set g :=

g0 − j∗0 (l). We easily see that i•0(g) = f. At the same time
d•0(g) = d•0(g0)− d•0j•0 (l) = d•0(g0)− j•1d•0(l)

= d•0(g0)− j•1 (h) = d•0(g0)− d•0(g0) = 0,

and we are done.
Identifying h(A⊗̂X ′, Y ) with B(X ′, Y ) and h(A⊗̂X,Y ) with B(X,Y ) (Propo-

sition 4), we see that the operator i•0 transforms to i• : B(X,Y )→ B(X ′, Y ) which
is an extension of i∗ : h(X,Y ) = Ker (d•0) → h(X ′, Y ) = Ker (d•0

′). Thus the
desired surjectivity of i∗ is obtained. �

4. Outline of the proof of Theorem 3
Let G be a non-discrete locally compact group with the unit e. From now on
we suppose that it is metrizable, since the general case can be reduced to the
“metrizable” case.

Proposition 8. There exists in G a decreasing sequence of subsets K1 ⊇ K2 ⊇
K3 ⊇ · · · with the following properties. Every Kn is a union of disjoint 4n+1 sets
Kki1...in ; 1 ≤ k, i1, . . . , in ≤ 4, referred as sets of level n. Each of summands is
compact, has non-empty interior and diameter < 1/(n + 1). Further, we always
have Kki1...in,in+1

⊂ Kki1...in . Finally, for every points x1, . . . , x4, belonging to
different sets of the same level, we have x1x−1

2 x3x
−1
4 6= e.

Theorem 6. There exists a compact subset K in G (called exotic) with the following
two properties:
(i) there is a positive measure Υ ∈Mc(G) with V ar(Υ) = Υ(K) = 1 (“K is not

so small”)
(ii) for every s, t ∈ G; s 6= t the set sK ∩ tK has no more than 3 points (“K is

not large”).

The desired set is K := ∩∞n=1Kn. The proof of (i) uses that M(G) is a dual
Banach space, and hence we can apply Banach–Alaoglu Theorem.

Proposition 9. Let K ⊂ G be exotic. Then for all µ, ν ∈Mc(G), µ ∗ ν(K) = 0.

Showing this, we use the following claim: the number |ν|(sK) > 0, where |ν|
is the total variation of µ, is not zero only for at most countable set of s in G.
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Proposition 7 implies that the nonzero functional f :Mc(G)→ C : µ 7→ µ(K)
vanishes on Mc(G)

2. Theorem 3 immediately follows.
Combining this with Theorem 1, that is with already accomplished Part 2 of

our plan, we see that the quotient right M(G)-module M(G)/Mc(G) is not flat.
So, to complete the proof of our main theorem, we must do two things: (1) to show
that amenability implies flatness of modules, that is, do Part 1 of our plan, and
(2) to show that sets K with described properties indeed exist, that is to complete
Part 3. At first let us return to Banach homology.

Armed with this proposition, we proceed to construct a special compact set
in G. As the first step, take in that proposition N := 4, ε = 1/2 and consider the
respective sets U1, . . . , U4. We obtain 42 open sets Uki with indicated properties
and diameters < 1/2. Set Kki := Uki and call them sets of level 1. Also set
K1 := ∪kiKki. Then, as the second step, take N := 42 and Uki as given sets. Then
the previous proposition provides us with 43 open sets Uki1i2 ; k, i1, i2 ∈ {1, . . . , 4}
with indicated properties and diameters < 1/3. Set Kki1i2 := Uki1i2 and call them
sets of level 2. Also set K2 := ∪ki1i2Kki1i2 . Then, as the third step, take N := 43

and Uki1i2 as given sets, and so on.
Thus we obtain the decreasing sequence of sets K1 ⊇ K2 ⊇ K3 ⊇ ... Every

Kn is a union of disjoint 4n+1 sets Kki1...in “of level n”. Each of summands is
compact, has non-empty interior and diameter < 1/(n + 1). Set K := ∩∞n=1Kn.
Being the intersection of a decreasing sequence of non-empty compact sets, K is
itself compact and non-empty. (Prove, as an exercise, that its cardinality is at least
continuum).

Proposition 10. For every 4 distinct points x1, . . . , x4 ∈ K, we have

x1x
−1
2 x3x

−1
4 6= e.

Proof. Take xk : k ∈ {1, . . . , 4} and consider the decreasing sequence of sets of
level n = 1, 2, . . . , containing xk. Denote these sets, for brevity, by K(k, n). Since
diameters of sets K(k, n);n = 1, 2, . . . converges to 0, xk is the only point, be-
longing to all K(k, n). It follows that for every distinct k, l ∈ {1, ...4} we have
K(k, nk,l) 6= K(l, nk,l) for some natural nk,l: otherwise xk and xl would coincide.
Taking n := max{nk,l}, we see that our xk belong to different sets of level n. It
remains to apply Proposition 8. �

Now, taking into account what was said in §3, see that in order to complete
the proof of the main theorem, we must show that the constructed set K is indeed
of middle size. To begin with, we must construct the measure Υ, mentioned in the
respective definition.

Denote by m the Haar measure on G, to be definite, left-invariant. Choose an
arbitrary set L of level n ∈ N. Since it has non-empty interior, we have m(L) > 0.
Introduce the measure ΥL on G, setting, for a Borel set M ⊆ G,

ΥL(M) := m(M ∩ L)/4n+1m(L).
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Further, introduce the measure Υn on G as a sum of measures ΥL, taken for all
(pairwise disjoint, as we remember) sets L of level n. Obviously, we have Υn(Kn) =
1 and Υn(G \Kn) = 0.

We see that the measures Υn;n ∈ N belong to the unit sphere of M(G). But
the latter is a dual space, namely, M(G) = C0(G)

∗ and hence it can be considered
with the weak∗ topology. By the Banach–Alaoglu Theorem, the sequence Υn has
in the latter topology an accumulation point. Denote it by Υ; of course, it is a
positive measure, and V arΥ, that is, Υ(G) or ‖Υ‖, is ≤ 1.

The following proposition provides the property (i) of sets of “middle size”,
that is, exotic.

Proposition 11. (i) The measure Υ is continuous.
(ii) Υ(K) = 1, and Υ(G \K) = 0.

Proof. (i) We must show that Υ({x}) = 0 for all x ∈ G. Suppose that x ∈ K; the
easier case, when x ∈ G\K, I leave to the listeners. Then for every n our x belongs
to some set, say K(x, n) of level n. Fix some n and consider fn ∈ C0(G) with
range [0, 1] such that fn(x) = 1 and fn = 0 outside K(x, n). We have, of course,
Υ({x} ≤

∫
G
fn(t)dΥ(t). By the choice of Υ,

∫
G
fn(t)dΥ(t) is an accumulation point

of numbers
∫
G
fn(t)dΥm(t);m ∈ N. For each m ≥ n we obviously have that the

latter integral is the sum of numbers
∫
L
fn(t)dΥm(t), taken for all sets L of level

m, contained in K(x, n). But there are 4m/4n of such summands, and each of
them is ≤ 1/4m. Hence for all m ∈ N we have

∫
G
fn(t)dΥm(t) ≤ 1/n4, and the

same is true to the respectively accumulation point of these numbers, that is for∫
G
fn(t)dΥ(t). Therefore Υ({x} ≤ 1/4n for all n, and thus Υ({x}) = 0.

Now suppose that x /∈ K. Then x /∈ Km for allm ≥ some n. Take fn ∈ C0(G)
with the range [0, 1] and such that fn(x) = 1 and fn = 0 on Kn and hence for all
Km;m ≥ n. Then for all m ≥ n we have∫

G

fn(t)dΥm(t) ≤
∫
Km

fn(t)dΥm(t) = 0,

hence the same is true, when we replace Υm by Υ. Thus

Υ({x}) ≤
∫
G

fn(t)dΥ(t) = 0.

(ii) Since V arΥ(G) ≤ 1, we have Υ(K) ≤ 1 and Υ(G \ K) ≤ (1 − Υ(K).
Therefore it is sufficient to show that Υ(K) ≥ 1. Since K = ∩∞n=1Kn, we have
Υ(K) = limn→∞ Υ(Kn), and therefore it suffices to show that Υ(Kn) ≥ 1 for all
n.

Fix, for a moment, n. We remember that for all f ∈ C0(G) the integral∫
G
f(t)dΥ(t) is accumulation point of numbers

∫
G
f(t)dΥm(t);m ∈ N. Take an

arbitrary non-negative f ∈ C0(G) with f = 1 on Kn and hence f = 1 on all
Km;m ≥ n. For all thesem we have

∫
G
f(t)dΥm(t) ≥ Υm(Km) = 1. Consequently,∫

G
f(t)dΥ(t), being an accumulation point of these numbers, is also ≥ 1. It remains
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to remind that Υ(Kn) is the infimum of all numbers
∫
G
f(t) ∈ C0(G) with f ≥ 0

and f = 1 on Kn. �

Thus all what we still have to do is to show that K satisfied the property (ii)
of sets of middle size.

Proposition 12. For every s, t ∈ G; s 6= t, the set sK ∩ tK has no more than three
points.

Proof. Of course, it suffices to show that sK ∩K; s 6= e has no more than three
points. Let x ∈ sK ∩K; then x = sy for some y ∈ K. We shall show that every
point in sK ∩ K must coincide with one of points x, y, sx. Suppose that, on the
contrary, there is z ∈ K ∩ sK, different from indicated three points. We have
z = su for some u ∈ K. Observe that yx−1zu−1 = yy−1s−1suu−1 = e. Hence, by
Proposition 10, some of points x, y, z, u coincide. But we have x, y 6= z, x 6= y and
z 6= u since s 6= e, x 6= u because otherwise sx = su = z, and finally y 6= u because
otherwise x = sy = su = z. We came to a contradiction. �

The proof of our main theorem is completed.

Summing up
Theorems 3 and 1 combined show that the right M(G) module M(G)/Mc(G) is
not flat. By Theorem 2, this implies that M(G) is not amenable, that is our main
theorem is true.
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We give an introduction on the main subjects of metric geometry, derived (con-
ceptually) from the Riemannian theory, in the setting of Lie groups groups G
modeled by locally convex spaces, and admitting continuous Finsler metrics. The
focus is put in the functional analysis techniques, since such norms are usually
not differentiable and the variational calculus is not at hand. These techniques,
however, allow us to retain some of the fine results of the tensor calculus, and even
in the absence of linear connections, we show in the setting of Lie groups with
a bi-invariant metric, how some results such as the minimality of one-parameter
groups, can be recovered using such techniques.

1. Introduction
We begin this abstract by recalling some general definitions in the setting of smooth
manifolds: manifolds in these notes are modeled with charts in a Hausdorff lo-
cally convex topological vector space (shortly l.c.s.). The differential of a map
f : M → N among smooth manifolds will be denoted by f∗ : TM → TN and its
specialization by f∗p : TpM → Tf(p)N , p ∈ M .

A Lie group G is a manifold such that the operation (x, y) 7→ xy−1 is smooth
(at least C2) as a map G × G → G. If g ∈ G and Lg : h 7→ gh denotes the
left multiplication in G, we denote gv = (Lg)∗hv ∈ TghG for h ∈ G, v ∈ ThG.
We denote 1 ∈ G the identity of the group and Lie(G) = T1G its Lie algebra.
The Lie bracket in Lie(G) will be denoted by [·, ·]: it is always a bi-linear, anti-
symmetric and continuous map. If cg(h) = ghg−1 is the conjugation automor-
phism, i.e. cg = LgR

−1
g for g ∈ G, we follow the standard notation Adg = (cg)∗1

c© Switzerland AG 2019Springer Nature

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34072-8_25&domain=pdf
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with Ad : G → GL
(
Lie(G)

)
a group homomorphism. If Lie(G) is not a Banach

space then GL
(
Lie(G)

)
is not necessarily a Lie group, but it is a subgroup of the

space of diffeomorphisms of Lie(G) therefore there is a natural notion of smooth-
ness. We denote ad = (Ad)∗1 : Lie(G) → L

(
Lie(G)

)
which is a linear Lie algebra

morphism, and in fact ad(v)(w) = [v, w] for any v, w ∈ Lie(G) (see Neeb [11, Sec-
tion II.3]).

Definition 1 (Finsler norms and semi-norms). Let E be a l.c.s., µ = | · | : E → R≥0

a continuous function. Then µ is a Finsler norm if it is sub-additive and positively
homogeneous: |v + w| ≤ |v| + |w| and |λv| = λ|v| for v, w ∈ E and λ ∈ R≥0, and
|v| = 0 implies v = 0. If |tv| = |t| |v| for all t ∈ R, we obtain the standard notion
of continuous vector space norm.

Definition 2 (Finsler metrics for TM). Let M be a manifold modeled by a l.c.s
E. Let µ : TM → R≥0 be a selection of a tangent Finsler semi-norm µp = | · |p :
TpM → R≥0, for each p ∈ M , such that µ : TM → R is a continuous map.

Definition 3 (Rectifiable paths and length). We say that a curve α : [a, b] → M
is rectifiable if α is differentiable a.e. in some chart of M and t 7→ |α̇(t)|α(t) is
Lebesgue integrable. For piecewise smooth or rectifiable arcs α : [a, b] → M , define
the length of α as

Lengthµ(α) =

∫ b

a

|α̇(t)|α(t)dt.

Definition 4. For x, y ∈ M , consider the infimum of the lengths of such arcs joining
x, y in M ,

distµ(g, h) = inf
{
Lengthµ(α) : α : [0, 1] → M rectifiable, α(0) = x, α(1) = y

}
.

Then distµ : M × M → R≥0 is a p.s.d. (pseudo-quasi-distance): it is finite in
each arc-wise connected component of M , it obeys the triangle inequality, and it
is reversible. This gives place of what is called an inner length space, a metric
space where the distance can be recovered by means of the infimum of the paths
joining the given endpoints. A good reference on the subject is the book by Burago,
Burago and Ivanov [2].

Remark 5. The matter of whether distµ(x, y) = 0 implies x = y in M is more
subtle. There are examples when this fails, see Michor and Mumford [9] for such
an example; see also the paper by Clarke [3].

Definition 6. We will denote with (M, distµ) the underlying (pseudo-quasi) met-
ric space. Nevertheless, this distance or quasi-distance induces a topology in M ,
and we will refer to the topology induced as τµ when needed; otherwise the
topology of M will always be the manifold topology denoted by τM . Clearly,
τµ will be Hausdorff if and only if distµ is non-degenerate. It is apparent that
distµ : (M, τM )× (M, τM ) → R is continuous, and τµ is finer than τM .
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2. Metrics, connections, exponential map
For a given variation ν : (−ε, ε) × [a, b] → M of a fixed path γ : [a, b] → M , we
say that the variation has fixed endpoints if ν(s, a) = x and ν(s, b) = y for all
|s| < ε; for such variations the path γ is an extremal of the length functional if the
function

f(s) = Lengthµ(νs) =

∫ b

a

∣∣ν̇(s, t)∣∣
ν(s,t)

dt

has zero derivative (or one sided derivative) for s = 0. Here and in what follows
we denote by d

dt = ( )· the time derivative.
It is well-known that when the metric | · | = g is Riemannian, extremal paths

obey Euler differential equation, ∇γ̇ γ̇ = 0. Here ∇ is the Levi-Civita connection
of the Riemannian metric, which is the unique operator defined in vector fields of
X(M), that is ∇ : X(M)× X(M) → X(M) such that ∇ is R-bilinear,

1. ∇fXY = f∇XY for all f ∈ C∞(M),
2. ∇X(fY ) = X(f)Y + f∇XY , where X(f)(p) = f∗p(Xp),
3. ∇XY −∇Y X = [X,Y ],
4. Z(〈X,Y 〉) = 〈∇ZX,Y 〉+ 〈X,∇ZY 〉.

Usually, in a chart (φ,U) of M , the connection is given by a bilinear operator Γ
such that ∇XY = Y∗X − Γ(X,Y ). In the finite dimensional setting, for a given
orthonormal basis (ei)i of TM (defined locally), the coefficients of this bilinear
operator Γ(ei, ej)k = Γk

ij are just the Christoffel symbols of second kind of the
given Riemannian metric. The details on these standard considerations can be
found, for instance, in Lang’s book [7].

Solutions of Euler’s equations are called geodesics of the Riemannian manifold
(M, g); in Banach manifolds, and by the theorem of existence and uniqueness of
ordinary differential equations, for each pair (p, v) ∈ TM there exists a uniquely
determined geodesic γ(p,v) : (−ε, ε) → M defined in a neighborhood of t = 0, such
that γ(0) = p and γ̇(0) = v. By virtue of Euler’s equation and the properties
of the connections, geodesics have nice reparameterization properties, γ(p,sv)(t) =
γ(p,v)(t) for all s, t where both sides make sense. This enables the definition of
Riemannian exponential exp : TM → M (in fact, only defined in a neighborhood
of the zero section of the fiber tangent bundle TM), such that

exp(p, tv) = γ(p,v)(t) := expp(tv),

where expp : TpM → M denotes the restriction of exp to TpM (again with the
precaution that in principle it is only defined in a neighborhood of 0 ∈ TpM). By
virtue of the smoothness of the solutions with respect to the initial conditions, and
the reparameterization property, it is clear that (expp)∗0 = idTpM , hence in the
setting of Banach manifolds expp gives a diffeomorphism of a neighborhood Br of
0 ∈ TpM (usually taken as some ball of radius r), and an open neighborhood Vr

of p ∈ M . Its inverse φp is called an exponential chart (φp, Vr) of M around p.
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§ We remark that general smooth manifolds (modeled by locally convex spaces)
may admit Riemannian metrics (usually called weak, because they are only con-
tinuous bilinear maps in each tangent space, and do not give the original topol-
ogy of TpM), but whether there exists a Levi-Civita connection for such met-
ric, or an exponential map for that metric, depends on each particular case and
must be obtained (if they exist) with ad-hoc methods. When there exists a Rie-
mannian exponential, but outside the setting of Banach manifolds, the fact that
(expp)∗0 = idTpM does not indicate the existence of an exponential chart, since
the inverse mapping theorem does not apply.

2.1. Lie groups
As usual left invariant vector fields on a Lie group induce the Lie bracket of the Lie
algebra, by means of [v, w] = [Xv, Xw](1), where 1 ∈ G is the identity of G and the
bracket on the right-side is the usual Lie bracket of vector fields on manifolds. As
mentioned in the introduction, the Lie bracket can also be computed differentiating
the adjoint representation Ad at the identity of G.

Again, outside the realm of Banach–Lie groups, solution of the flow equation
for left invariant vector fields Xv(g) = gv (= (Lg)∗1v) does not necessarily exist;
however by means of standard logarithmic derivative techniques, if it exists, it is
unique (and gives place to the one-parameter group γv : R → G, usually written as
γv(t) = etv). The exponential map of the group is defined in this case by means of
exp(v) = ev = γv(1), and clearly exp : Lie(G) → G. By means of the flow equation
Xv(γ(t)) = γ̇(t) with initial condition γ(0) = 1, it follows that if exp is defined
for all v ∈ Lie(G), and it is smooth, then (exp)∗0 = idT1G. Again, for Banach-Lie
groups this shows that (inverse of) the exponential can be used as a chart for G,
but this is no longer true for a locally convex group; such groups with smooth
exponential which is a local diffeomorphism are called exponential.

Remark 7. If G carries a smooth exponential function, then its derivative can be
computed explicitly: for v, w ∈ Lie(G),

exp∗w(v) = ew
∫ 1

0

Ade sw v ds = ew
∫ 1

0

e−s adwv ds.

Remark 8 (Left-invariant and bi-invariant metrics). Let G be a Lie group, we fix
| · | a Finsler norm in Lie(G) and define |v|g = |(Lg)

−1
∗1 v| for v ∈ TgG, then the

group G has a left-invariant Finsler metric | · |g : TgG → R≥0, because if g, h ∈ G
then

|hv|gh =
∣∣(gh)−1hv

∣∣ = ∣∣g−1v
∣∣ = |v|g for v ∈ TgG,

and the map (g, v) 7→ |v|g = |g−1v| is continuous as a map from TG to R. Any
left-invariant Finsler metric in G can be obtained with this procedure. Note also
that

∣∣Adg v
∣∣
1
=

∣∣vg−1
∣∣
g 1 = |v|1 when the metric is also right-invariant. In that

case we say that the metric is bi-invariant.
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3. Unitary groups of Hilbert space operators
If a group G admits a bi-invariant Riemannian metric g, it is well-known that
geodesics δ of (G, g) are left-translations of one-parameter groups: δ(t) = uetv

(cf. [4, 2.90]).
If the metric is not Riemannian, it is also expected that one-parameter groups

will be short paths for the rectifiable distance. This was established using spectral
theory and certain functional analysis techniques in [1] for special groups of unitary
operators acting on a Hilbert space H, i.e. for a given Banach ideal I ⊂ K(H) of
compact operators, with norm | · |I , we consider the skew-adjoint part of I denoted
Isa, and the special unitary group

UI(H) = {u∗ = u−1 ∈ U(H) : u− 1 ∈ I} = exp(Isa),

following P. de la Harpe [6]. The main theorem there is that the one-parameter
group δ(t) = etz, with z ∈ Isa and ‖z‖∞ ≤ π, is shorter than any other piecewise
smooth map joining 1, u = ez in UI(H), therefore distI(1, u) = |z|I . To obtain
those results, the formula in Remark 7 is of great relevance, but the key functional
analytic tool is the knowledge of certain properties of the spectrum of the product
of two unitary operators (in relation with the spectrum of both of them separately).
These ideas are connected to the conjecture of Horn on the spectra of the sum of
two hermitian operators, and what is called the honeycomb conjecture (see [5] and
the references therein).

As mentioned, this result extends what is well-known for bi-invariant Rie-
mannian metrics on Lie groups. But it also extends a result on the group U of
unitary operators of a C∗-algebra, equipped with the Finsler norm obtained by
putting the uniform norm (the spectral norm of the algebra) in each tangent space.
This was obtained by Porta and Recht in [13], using a technique that involves rep-
resenting paths in U as paths in the unit sphere S of a Hilbert space H (usually,
the space where the C∗-algebra is represented as a subset of B(H). In this con-
struction, one-parameter groups in U are mapped isometrically onto great arcs in
the unit sphere S, which is a Riemannian manifold with well-known geodesics: its
great arcs. Therefore the minimality of geodesics in the (highly non-Riemannian)
Finsler manifold U is obtained by means of knowing the Riemannian geometry of
the Hilbert space sphere, and some standard results on representation theory of
bounded operators.

To end this paper, we remark that similar results for any exponential Lie
group with a continuous bi-invariant Finsler metric, were recently obtained in [8].
In this case, the techniques used for the proof are closely related to the theory of
dissipative operators in a Banach space.
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In our course we have presented the basics of twistor theory and its applications to
the solution of Yang–Mills duality equations. The first part describes the twistor
correspondence between geometric objects in Minkowski space and their counter-
parts in twistor space. In the second part we apply twistor theory to the study
of Yang–Mills duality equations on R4. We include a list of references for further
study.

1. Twistor model of Minkowski space
We start with the geometry of Minkowski space M provided with the action of
the Lorentz group. The main geometric objects are the light lines (light rays) and
light cones together with their complex analogues. Complexified Minkowski space
CM contains both M and its Euclidean counterpart E. We also make use of the
future tube CM+ = M + iV+ (V+ is the future light cone) which is an open subset
in CM .

The Pauli map associating with a vector x = (x0, x1, x2, x3) ∈ M the Her-
mitian matrix

X :=

3∑
µ=0

xµσµ,

where σ0 = I, σi, i = 1, 2, 3, are Pauli matrices, realizes M as the space Herm(2) of
Hermitian 2×2-matrices and CM as the space C[2×2] of complex 2×2-matrices.
Under this map the Lorentz norm of x ∈M is sent to detX. The group SL(2,C)
acts naturally on Herm(2) and is a double cover of the Lorentz group.

This work was partially supported by the RFBR grants 16-01-00117, 16-52-12012 and Program
of Presidium of RAS "Nonlinear Dynamics" .
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The future tube CM+ under Pauli map is transformed into the matrix upper
halfplane

H+ =
{
Z ∈ C[2× 2] : Im Z :=

1

2i
(Z − Z∗) > 0

}
where the inequality Im Z > 0 means that the Hermitian matrix Im Z is positive
definite. The space C2, provided with the action of the group SL(2,C), is called
the spinor space.

The twistor space T is the 4-dimensional complex vector space with coor-
dinates written in the form ζ = (ω, π) with ω, π ∈ C2. Associate with a matrix
Z ∈ C[2× 2] the 2-dimensional complex subspace in T determined by the system
of two complex homogeneous equations: ω = Zπ. This map defines an embedding
of the space C[2 × 2] into the Grassmann manifold G2(T) of 2-dimensional com-
plex subspaces in T. Taking its composition with the Pauli map we obtain the
embedding

CM −→ C[2× 2] −→ G2(T)

of the complexified Minkowski space CM into the Grassmannian G2(T). Since
G2(T) is compact it is natural to consider it as a model of compactified complexified
Minkowski space CM. The projectivization PT of the twistor space T is called the
space of projective twistors. We can also consider the Grassmannian manifold
G2(T) as the space G1(PT) of projective lines in PT. The composite map CM →
G2(T) = G1(PT) is called the twistor transform or Penrose correspondence.

2. Twistor correspondence
Consider first the properties of twistor correspondence in the case of complex
Minkowski space. By twistor transform a point of CM is sent to a projective line
in PT. On the other hand, a point in PT corresponds to a light plane in CM called
α-plane (light plane is the plane generated by the pair of light lines). In dual way, a
projective plane in PT corresponds to a light plane in CM called β-plane. It implies
that a complex light line (which is the complexification of light line) is sent to a
(0, 2)-flag in PT consisting of a point in PT and projective plane containing this
point.

Switch now to the case of real Minkowski space M . Denote by Φ(ζ) the norm
of a twistor ζ = (ω, π) ∈ T given by Φ(ζ) = Im < ω, π > where < ω, π > is the
Hermitian product of vectors ω, π ∈ C2. Denote by N the quadric in T given by the
equation N = {ζ ∈ T : Φ(ζ) = 0} and by PN the associated projective quadric.
The points of M under twistor transform are sent to the projective lines lying in
PN. On the other hand, a light line in M corresponds to a point of PN. So in the
case of M we have the following duality: points of M correspond to projective
lines in PN and light lines in M correspond to points of PN. We see that the light
lines, which can intersect in M , split into separate points of PN. This fact is of
fundamental importance for the twistor theory.
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The quadric N divides the twistor space T into two parts. Denote them by
T± = {ζ ∈ T : (±1)Φ(ζ) > 0} and by PT± the corresponding projective subsets.
A point of the future tube CM+ under twistor transform is sent to a projective line
contained in PT+. The quadric N has the signature (2,2) and the group SU(2, 2) of
linear transformations of T, preserving this quadric, is a 4:1 covering of the group
of conformal transformations of M .

We turn now to the case of Euclidean space E. A point of E under twistor
transform is sent to the projective line in PT which is invariant under the map
j : [ζ1 : ζ2 : ζ3 : ζ4] 7−→ [−ζ2 : ζ1 : −ζ4 : ζ3]. In the Euclidean case the twistor
transform coincides with the Hopf bundle

π : CP3 CP1

−→ E

where E is the compactified Euclidean space equal to the sphere S4 and the fibers
of π are precisely the j-invariant projective lines.

The main idea of Penrose twistor program is that under twistor transform
solutions of conformally invariant equations of field theory in M should correspond
to the objects of complex algebraic geometry in PN.

3. Instantons and Yang–Mills fields
Let X be a compact oriented Riemannian 4-manifold and G is the gauge group
being a compact Lie group (e.g. G = SU(2)) with Lie algebra g. Let P → X
is a principal G-bundle on X and A is a gauge potential on X given a 1-form
A ∈ Ω1(X, adP ) with values in the adjoint bundle adP = P ×G g. Denote by D
the exterior covariant derivative associated with A. Then F = DA is the gauge
field generated by A.

The Yang–Mills action is given by the formula

S(A) =
1

2

∫
X

‖F‖2vol

where the norm ‖ · ‖2 is the inner product on differential forms with values in g,
generated by the Riemannian metric on X and an invariant inner product on g,
vol is the volume element on X. The Yang–Mills field is a critical point of the
functional S being a solution of the Euler–Lagrange equations. They have the
form D∗F = 0 (D∗ is the adjoint operator of D) and are called the Yang–Mills
equations. They can be also written in the form D(⋆F ) = 0, where ⋆ is the Hodge
⋆-operator.

A gauge field F is called selfdual (resp. anti-selfdual) if ∗F = F (resp. ∗F =
−F ). Due to Bianchi identity DF = 0, solutions of the duality equations ∗F =
±F satisfy automatically the Yang–Mills equations. By writing F in the form
F = F+ + F− where F± = 1

2 (∗F ± F ) we can rewrite Yang–Mills functional as

S(A) =
1

2

∫
X

‖F+‖2 + ‖F−‖2)vol.
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The topological charge of F is given by the formula

S(A) =
1

8π2

∫
X

‖F+‖2 − ‖F−‖2)vol.

Comparing the last two formulas we see that
S(A) ≥ 4π2|k|

and the equality here is attained precisely on solutions of the duality equations. In
other words, solutions of the duality equations yield local minima of S. Instantons
(resp. anti-instantons) are anti-selfdual (ASD)(resp. selfdual) solutions of duality
equations with finite Yang–Mills action. The moduli space of instantons is the
quotient of the space of instantons modulo gauge transformations.

4. Atiyah–Ward theorem
We specify now to the case when X = S4 and G = SU(2). We have a principal
SU(2)-bundle P → S4 and associated complex vector bundle E → S4 of rank 2.
Consider an instanton given by an ASD solution A of the duality equations and
denote by ∇ = ∇A the covariant derivative associated with A.

Consider the twistor bundle π : CP3 → S4 and denote by Ẽ := π∗E the
pull-back of the bundle E to CP3 via the map π. The anti-selfduality of A implies
that its pullback Ã to the bundle Ẽ defines a holomorphic structure on Ẽ. The
obtained holomorphic bundle Ẽ → CP3 is by construction holomorphically trivial
on j-invariant projective lines in CP3 being the fibers of the map π.

Atiyah–Ward theorem. There exists a bijective correspondence between{moduli space of
instantons on S4

}
←→

{holomorphic vector bundles over CP3

which are holomorphically trivial on π-
fibers

}
.

There is also a purely complex version of this theorem. Consider it first for
the future tube CM+. Let E be a holomorphic vector bundle over CM+ and
∇ = ∇A is the holomorphic covariant derivative acting on sections of E generated
by a holomorphic connection A. This connection is called anti-selfdual (ASD) if its
curvature vanishes on all α-planes. The complex variant of Atiyah–Ward theorem
asserts that there exists a bijective correspondence between{

moduli space of holomorphic
ASD-connections on CM+

}
←→

{holomorphic vector bundles on
PT+ holomorphically trivial on
projective lines lying in PT+

}
.

This theorem is based on the following Ward construction. Let Ẽ be a holo-
morphic vector bundle over PT+ which is holomorphically trivial on projective lines
in PT+. The fiber Ez of the corresponding holomorphic vector bundle E → CM+

at z ∈ CM+ consists by definition of holomorphic sections of Ẽ over the projective
line CP1

z corresponding to the point z. If two projective lines CP1
z and CP1

z′ inter-
sect, i.e. the points z and z′ lie on the same complex light line, we can identify the
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fibers Ez and Ez′ . In this way we define a parallel transport on E along complex
light lines in CM+ generating a holomorphic connection in E. By construction this
connection is anti-selfdual.

For the inverse construction (from E to Ẽ) it is convenient to use the double
diagram

F+

µ

}}

ν

""
PT+ CM+

where F+ is the space of (0, 1)-flags in PT+, i.e. pairs (point of PT+, projective line
in PT+ containing this point). The space CM+ is identified with the Grassmann
manifoldG1(PT+) of projective lines lying in PT+, and µ, ν are natural projections.
Denote by E′ the pull-back of E to a bundle over F+ via the map ν and by ∇′

the pull-back of the connection ∇ to the bundle E′. Define the fibre of the bundle
Ẽ → PT+ at ζ ∈ PT+ as the space of holomorphic sections s′ ∈ Γ(µ−1(ζ), E′)
satisfying the equation ∇′

µs
′ = 0 (∇′

µ is the component of ∇′ acting along the
fibers of µ). In other words, the fibre Ẽζ consists of horizontal holomorphic sections
of E′ over µ−1(ζ). This definition is correct due to the anti-selfduality of ∇.

The given complex version of Atiyah–Ward theorem remains true if we replace
PT+ by a domain D̃ in CP3 such that projective lines in D̃ correspond to the points
of some domainD in CM . This domain should have an additional property that the
intersection of any complex light line with D is connected and simply connected.
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We discuss the notion of classical Dirichlet forms, quadratic forms giving rise to
Markov semigroups on the spaces of the form L2(X,µ), and its quantum gen-
eralisations, defined in terms of von Neumann algebras. Recent applications of
quantum Dirichlet forms in the framework of locally compact quantum groups are
also outlined.

The originating idea of the classical theory of operator semigroups comes from
the desire to describe physical evolutions which are in some sense ‘time-invariant’,
in the sense that what happens to the system between time t and t + s depends
only on the time distance s (and the state of the system at time t). In probability
such behaviour is usually called the Markov property.
Definition 1. Let X be a Banach space. A C0-semigroup of operators is a family
(Pt)t≥0 of bounded linear operators on X such that
(i) P0 = idX ;
(ii) Pt+s = Pt ◦ Ps, s, t ≥ 0;
(iii) limt→0+ Ptx = x, x ∈ X.

The last property is usually called the strong continuity or point-norm con-
tinuity. Sometimes we need to talk about C∗

0 -semigroups: if Y is a Banach space
then (Pt)t≥0 is called a C∗

0 -semigroup on X = Y ∗ if it is a family of linear weak∗-
continuous (so also bounded) operators on Y ∗ such that

lim
t→0+

(Ptx)(y) = x(y), x ∈ X, y ∈ Y.

Definition 2. Given a C0-semigroup of operators (Pt)t≥0 on X define

Dom(L) :=

{
x ∈ X : lim

t→0+

Ptx− x

t
exists

}

c© Switzerland AG 2019Springer Nature
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and further L : Dom(L) → X by the obvious formula

Lx = lim
t→0+

Ptx− x

t
, x ∈ Dom(L).

We have the following fundamental result (see, for example, [6]).

Theorem 3. Let (Pt)t≥0 be a C0-semigroup of operators on a Banach space X.
The map L : Dom(L) → X defined above, called the generator of the semigroup
(Pt)t≥0, is a densely defined, closed, linear operator, determining the semigroup
uniquely. Further the following conditions are equivalent:
(i) Dom(L) = X;
(ii) L is bounded;
(iii) (Pt)t≥0 is norm continuous (or uniformly continuous), i.e. limt→0+ ‖Pt −

P0‖ = 0.
In the latter case,

Ptx = exp(tL)(x) =

∞∑
n=0

(tL)nx

n!
, x ∈ X.

In general the following question is difficult: when is a closed densely defined
operator L the generator of a C0-semigroup?

Theorem 4 (Hille–Yosida). Let L : Dom(L) → X be a linear operator (Dom(L) ⊂
X). The following are equivalent:
(i) L is the generator of a C0-semigroup of contractions (i.e. ‖Pt‖ ≤ 1, t ≥ 0);
(ii) L is closed, densely defined, and for all λ > 0 we have that the operator

λidX − L is invertible and
‖λ(λidX − L)−1‖ ≤ 1.

Replace now X by a Hilbert space H and for each ξ, η ∈ H ask about the
limits of the form

lim
t→0+

〈
ξ,
η − Ptη

t

〉
(which obviously exist for η ∈ Dom(L)). If further all the operators Pt are self-
adjoint, then the usual polarisation identity implies that it suffices to study the
densely defined quadratic form

Q(ξ) := lim
t→0+

〈
ξ,
ξ − Ptξ

t

〉
.

Note that then Q : Dom(Q) → R. For the results below we refer to [8] and [13].

Theorem 5. Let H be a Hilbert space. There is a 1–1 correspondence between the
following three classes of objects:
(i) C0-semigroups (Pt)t≥0 of self-adjoint contractions on H;
(ii) (unbounded) positive self-adjoint operators A on H;
(iii) closed, densely defined quadratic forms Q on H.
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Very roughly speaking, the correspondences are as follows: −A is the generator
of (Pt)t≥0; we have Pt = exp(−tA) (in the sense of the functional calculus for
self-adjoint operators), and Q(·) = ‖A 1

2 · ‖2.

Definition 6. Let (Ω, µ) be a space with a (non-negative) measure. A Markov
semigroup on L∞(Ω, µ) is a C∗

0 -semigroup (Pt)t≥0 on L∞(Ω, µ) = L1(Ω, µ)∗ such
that
(i) Pt1 ≤ 1, Ptf ≥ 0, f ∈ L∞(Ω, µ)+, t ≥ 0;
(ii)

∫
Ω
fdµ =

∫
Ω
Ptfdµ, f ∈ L∞(Ω, µ)+, t ≥ 0.

Such a semigroup is called symmetric if for all bounded f, g ∈ L2(Ω, µ)∫
Ω

f̄Ptgdµ =

∫
Ω

Ptfgdµ.

It is called conservative if Pt1 = 1, t ≥ 0.

All such semigroups restrict/extend to C0-semigroups of (positivity preserv-
ing) contractions on each of the Lp(Ω, µ)-spaces for p ∈ [1,∞).

Example 7. Consider the Euclidean space with the Lebesgue measure: (Rn, λ) and
define for each t ≥ 0, f ∈ L∞(Rn, λ)

(Ptf)(s) = (4πt)−
n
2

∫
Rn

exp(−‖s− r‖2

4t
)f(r)dr, s ∈ Rn.

This defines a Markov semigroup – the so-called heat semigroup on Rn. In fact, it
is a translation invariant conservative Markov semigroup, i.e. one of the form

Ptf = µt ⋆ f, t ≥ 0, f ∈ L∞(Rn, λ),

where µt is a probability measure on Rn.
The generator of the corresponding L2-semigroup is the Laplace operator : the

closure of the map −∆, where

(∆f)(s) =
n∑

i=1

∂2

∂s2i
f(s1, . . . , sn)

for f in the Schwarz space S(Rn) ⊂ L2(Rn, λ). The corresponding quadratic form
is

Qf =

n∑
i=1

∫
Rn

∣∣∣∣ ∂f∂si
∣∣∣∣2 ds

for f ∈ H1(Rn) = {f ∈ L2(Rn) : ∂f
∂si

∈ L2(Rn), i = 1, . . . , n}.

Definition 8. Let (Ω, µ) be a space with a (non-negative) measure. Denote by P∧
the orthogonal projection onto the closed convex set {f ∈ L2(Ω, µ) : 0 ≤ f ≤ 1}. A
densely defined closed quadratic form Q on L2(Ω, µ) is called Dirichlet if for every
f ∈ L2(Ω, µ)R we have

f ∈ Dom(Q) =⇒ P∧f ∈ Dom(Q) and Q(P∧f) ≤ Q(f).
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Theorem 9 (Beurling–Deny). Let (Ω, µ) be a space with a (non-negative) measure.
There is a 1–1 correspondence between:
(i) symmetric Markov semigroups on L∞(Ω, µ);
(ii) Dirichlet forms on L2(Ω, µ),
If the measure µ is finite, then the Markov semigroup in question is conservative
if and only if Q(1Ω) = 0.

We can choose whether we prefer to work with real or complex L2(Ω, µ).
The closedness condition can be replaced by lower semicontinuity, and with forms
defined everywhere, but sometimes taking value +∞.

Let G be a locally compact group. A family of probability measures (µt)t≥0

on G is called a convolution semigroup if we have µ0 = δe, µt+s = µt ⋆ µs, s, t ≥ 0

and
∫
G
fdµt

t→0+−→ f(e) for all f ∈ Cb(G).

Theorem 10. Let G be a locally compact group (with a fixed left Haar measure
denoted dg). Then there is a 1–1 correspondence between the following classes of
objects:
(i) translation invariant symmetric conservative Markov semigroups on the mea-

sure space (G, dg);
(ii) translation invariant Dirichlet forms on L2(G, dg) (modulo a scalar pertur-

bation);
(iii) convolution semigroups of symmetric probability measures on G;
(iv) symmetric Lévy processes on G, that is G-valued stochastic processes in-

dexed by R+ with independent, symmetrically and identically distributed in-
crements.

Everywhere above we work with left translations (one can of course consider
the right-handed version of the result). Note that the maps Pt as above, given by
the prescription

(Ptf)(s) =

∫
G

f(r−1s)dµt(r),

map continuous bounded functions into continuous bounded functions: this is usu-
ally called the Feller property and is of big importance in classical probability.

We will now present some of the earlier ideas in the quantum setting. We will
first replace the space (Ω, µ) by the algebra L∞(Ω, µ), and then consider general,
not necessarily commutative algebras which ‘look like’ L∞(Ω, µ) – namely the
von Neumann algebras.

Definition 11. A von Neumann algebra M is a weak*-closed unital *-subalgebra
of the algebra B(H) for some Hilbert space H (equivalently: a ∗-subalgebra M ⊂
B(H) such that M = M′′ – the algebra is equal to its bicommutant). We say that
φ : M+ → [0,∞] is a normal semifinite faithful weight on M, where M+ denotes
the positive cone of M, if φ is a homogeneous, additive map such that
(i) nφ = {x ∈ M : φ(x∗x) <∞} is weak*-dense in M (semifiniteness);
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(ii) when xi ↗ x, then φ(x) ≤ lim supi∈I φ(xi) (lower semicontinuity/norma-
lity);

(iii) φ(x∗x) = 0 implies x = 0 (faithfulness).
We call such a weight a state if φ(1) = 1. Weights extend to linear functionals on
mφ = span{x ∈ M+ : φ(x) < ∞}; so normal faithful states can be viewed as a
subclass of usual bounded functionals on M. Finally, φ as above is called tracial if
for all x, y ∈ nφ we have φ(xy) = φ(yx).
Example 12. Consider the following examples:
(i) M = L∞(Ω, µ) ⊂ B(L2(Ω, µ)), φ(f) =

∫
fdµ;

(ii) M = Mn = B(Cn) (the algebra of n by n complex matrices), φ = 1
nTr

(tracial state), or φ(·) = Tr (D·), where D is a density matrix, that is a
positive-definite matrix of trace 1;

(iii) M = B(ℓ2), φ(·) = Tr (D·), where D is a density matrix (a positive trace
class operator of trace 1), which yields a non-tracial state; or φ = Tr – which
yields a tracial weight;

(iv) G-discrete group, H = ℓ2(G). For g ∈ G let λg ∈ B(ℓ2(G)) be a (left) shift
operator: λg(δh) = δgh, h ∈ G. Then define M = VN(G) = {λg : g ∈
G}′′ ⊂ B(ℓ2(G)). The canonical tracial state on VN(G) is φ = ωδe , i.e.
φ(x) = 〈δe, xδe〉, x ∈ VN(G). The construction of VN(G) generalises to the
situation where G is an arbitrary locally compact group, with φ becoming
the so-called Plancherel weight. If G is abelian, we have VN(G) = L∞(Ĝ) and
the Plancherel weight of G is simply a Haar measure of Ĝ.
Given a map Φ : M → M and n ∈ N we can always define ‘entrywise’ a map

Φ(n) : M⊗Mn → M⊗Mn, where M⊗Mn is the von Neumann algebra identified
as the algebra of n by n matrices with entries in M. A map Φ as above is called
positive if Φ(M+) ⊂ M+, and completely positive if each Φ(n) is positive.
Definition 13. Let (M, φ) be as above. A quantum Markov semigroup is a C∗

0 -
semigroup of normal maps (Pt)t≥0 on M = (M∗)

∗ such that
(i) Pt1 ≤ 1, and each Pt is completely positive (t ≥ 0);
(ii) φ(f) = φ(Ptf), f ∈ M+, t ≥ 0.

The symmetry condition becomes in general more complicated! We can as-
sociate to a pair (M, φ) non-commutative Lp-spaces, but the way of doing this is
non-trivial.

If φ is tracial, the procedure is simpler. We can just consider
m(p) := {x ∈ M : φ(|x|p) <∞}, p ∈ [1,∞),

so that for example nφ = m(2), and complete it with respect to the norm

‖x‖p = φ(|x|p)
1
p .

However, when φ is not tracial, this is not a norm!
There are several constructions in the non-tracial case, we will use the one due

to Haagerup (see [11] and [15]), based on the Tomita–Takesaki theory, concerning
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the behaviour of the non-tracial states or weights. We will just list some properties
of the resulting Banach spaces:

• Lp(M, φ) are certain spaces of (unbounded) operators on a larger Hilbert
space H, closed under taking adjoints and positive parts;

• we have natural isomorphisms L∞(M, φ) ≈ M, L1(M, φ) ≈ M∗;
• different spaces have trivial intersections, for example
L∞(M, φ) ∩ L2(M, φ) = {0};

• there are different ways of getting from M into L2(M, φ). Tomita–Takesaki
theory allows us in a sense to write always φ(·) = Tr(D·), where D is a certain
‘density-like’ operator. Symbolically we may describe the GNS-embedding
x 7→ xD

1
2 and the KMS-embedding as x 7→ D

1
4xD

1
4 . We will denote the

latter by ι(2) : nφ → L2(M, φ).
All that originates from the automorphism group (σt)t∈R acting on M, the

so-called modular automorphism group, ruling the non-traciality of φ:

φ(xy) = φ(yσi(x)),

for ‘good’ x, y ∈ M; σi(x) is defined via a suitable holomorphic extension of the
function t 7→ σt(x). We have in fact (viewing all the operators as acting on the
large Hilbert space H)

σt(x) = DitxD−it, x ∈ M, t ∈ R.

Indeed, consider the following informal computation:

φ(xy) = Tr (Dxy) = Tr (yDx) = Tr (y(DxD−1)D) = Tr (Dy(D−1xD))

= φ(y(D−1xD)) = φ(yσi(x))

Definition 14. A quantum Markov semigroup (Pt)t≥0 on (M, φ) is said to be KMS-
symmetric if for each t ≥ 0 the prescription

P
(2)
t (ι(2)(x)) = ι(2)(Ptx), x ∈ nφ,

is well-defined and yields a bounded self-adjoint operator on L2(M, φ).

Example 15. If (M, φ) = (L∞(Ω, µ),
∫
·dµ), then quantum Markov semigroups on

(M, φ) are precisely the Markov semigroups on (Ω, µ) discussed above.

Example 16. Let G be again a discrete group, M = VN(G), φ–canonical trace.
Suppose that ψ : G → R is a conditionally negative definite symmetric function,
i.e. a function such that
(i) ∀g∈G ψ(g) = ψ(g−1);
(ii) ∀n∈N∀λ1,...,λn∈C∀g1,...,gn∈G

∑n
i=1 λi = 0 =⇒

∑n
i,j=1 λiλjψ(g

−1
i gj) ≤ 0.

Then the family of maps (Pt)t≥0 on VN(G) given by the formulas

Pt(λg) = exp(−tψ)λg, g ∈ G, t ≥ 0,

forms a quantum Markov semigroup of Herz–Schur multipliers.
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Example 17. If (M, φ) = (Mn, tr), then every quantum Markov semigroup on
(M, φ) is norm continuous and we can in fact characterise the generators (see [5]):

Ptx = exp(tL)x, x ∈Mn, t ≥ 0,

with L of the Lindblad or Gorini–Kossakowski–Sudarshan form:

Lx = −i[H,x] + 1

2

∑
α

([Vαx, V
∗
α ] + [Vα, xV

∗
α ]) , x ∈Mn.

Here H = H∗ ∈Mn, Vα ∈Mn,
∑

α[Vα, V
∗
α ] = 0, and [A,B] := AB −BA are

the commutators.

We are ready to discuss the Dirichlet forms in the quantum context.

Definition 18. Let (M, φ) be as above. Denote by P∧ the orthogonal projection
onto the closed convex set

{
f ∈ L2(M, φ) : 0 ≤ f ≤ D

1
2

}
. A densely defined closed

quadratic form Q on L2(M, φ) is called Dirichlet if for every f ∈ L2(M, φ)R we have
f ∈ Dom(Q) =⇒ P∧f ∈ Dom(Q) and Q(P∧f) ≤ Q(f).

The form Q as above is called completely Dirichlet if for every n ∈ N the natural
associated quadratic form on L2(M⊗Mn, φ⊗ trn) is Dirichlet.

Theorem 19 ([3, 9, 10, 14]). Let (M, φ) be as above. There is a 1–1 correspondence
between:
(i) quantum KMS-symmetric Markov semigroups on (M, φ);
(ii) completely Dirichlet forms on L2(M, φ).
If φ is a state, then the quantum Markov semigroup in question is conservative if
and only if its corresponding completely Dirichlet form Q satisfies Q(D

1
2 ) = 0.

We finally connect the latter results to the world of locally compact quantum
groups. A locally compact quantum group G (à la Kustermans–Vaes, see [12]) is
a virtual object, studied via a von Neumann algebra L∞(G), equipped with the
coproduct (carrying all the information about G)

∆ : L∞(G) → L∞(G)⊗L∞(G)

and a canonical right Haar weight ϕ. We can also study the associated (reduced)
C∗-object C0(G) and its universal version Cu

0 (G), with the counit: a character
ϵ : Cu

0 (G) → C. By the analogy with the classical situation we write L2(G) for the
GNS Hilbert space of the right invariant Haar weight ϕ on L∞(G).

Each LCQG G admits the dual LCQG Ĝ, and we have a canonical isomor-
phism L2(G) ≈ L2(Ĝ). In particular for a standard locally compact group G we
have

L∞(Ĝ) = VN(G), C0(Ĝ) = C∗
r(G), Cu

0 (Ĝ) = C∗(G).

Definition 20. A family (µt)t≥0+ of states on Cu
0 (G) is called a convolution semi-

group of states if
(i) µt+s = µt ⋆ µs := (µt ⊗ µs) ◦∆, t, s ≥ 0;
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(ii) µt(a)
t→0+−→ µ0(a) := ϵ(a), a ∈ Cu

0 (G).

The algebra Cu
0 (G) admits a canonical involutive operator Ru, so called uni-

versal unitary antipode (playing the role of the inverse operation). The two next
theorems come from [14]; for compact quantum groups they were proved in [4].

Theorem 21. Let µ ∈ S(Cu
0 (G)). The associated operator Rµ : L∞(G) → L∞(G)

(which can be informally thought of as the map (µ⊗ id) ◦∆) is unital, completely
positive, ϕ-preserving. The map Rµ is KMS-symmetric iff µ = µ ◦ Ru. Its KMS
implementation (acting on L2(G)) is always bounded and belongs to L∞(Ĝ).

We are ready to present the main result connecting the notions presented
earlier.

Theorem 22. Let G be a locally compact quantum group. There exist 1–1 corre-
spondences between:
(i) convolution semigroups (µt)t≥0 of Ru-invariant states of Cu

0 (G);
(ii) C∗

0 -semigroups (Tt)t≥0 of normal, unital, completely positive maps on L∞(G)

that are KMS-symmetric with respect to ϕ and satisfy ∆ ◦ Tt = (Tt ⊗ id) ◦∆
for every t ≥ 0;

(iii) completely Dirichlet forms Q on L2(G) with respect to ϕ that are invariant
under U(L∞(Ĝ)′) (modulo a scalar perturbation).

We finish by stating two applications of the above to geometric properties
of quantum groups, also proved in [14]. Relevant definitions can be found in [1, 2]
and [7].

Theorem 23. Let G be a second countable locally compact quantum group. Then Ĝ
has Property (T) if and only if every convolution semigroup of Ru-invariant states
on Cu

0 (G) has a bounded generator.

Theorem 24. Let G be a second countable locally compact quantum group. Then
Ĝ has the Haagerup property if and only if there exists a convolution semigroup of
Ru-invariant states on Cu

0 (G) such that the L2-implementations of the associated
convolution operators, acting on L2(G), in fact belong to C0(Ĝ).
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The Lagrangian approach to Geometric Quantization is based on realizing La-
grangian submanifolds of a given classical phase space as quantum states. Geo-
metrically it is clear how the corresponding quantum dynamics can be derived, but
the necessary measurement process cannot be defined unless one introduces some
additional data (e.g. half-weights on Lagrangian submanifolds). Here we sketch a
possible way to do so, when special Bohr–Sommerfeld geometry can be exploited.
Geometric Quantization. Every symplectic manifold (M,ω) can be regarded as
the phase space of some classical mechanical system, see [1]. Namely the points
of M are understood as the classical states, and any real smooth function f on
M is an observable of the system. The Poisson algebra P = (C∞(M,R), {·, ·}ω)
determines our symplectic manifold (M,ω) uniquely.

Quantization is a procedure which presents a representation of the Poisson
algebra P in the Lie algebra of self adjoint operators on a Hilbert space H; from
the geometric viewpoint it is given by a functor q : (M,ω) → H such that a
classical observable f ∈ C∞(M,R) goes to a self-adjoint operator q(f) ∈ Op(H)
in such a way that (1) the correspondence is linear, (2) the Poisson brackets go to
the commutator, and (3) the representation is irreducible.

There are many approaches to the Problem of Quantization, but we are
mostly interested in the approaches where the geometry of the phase space gives
the ingredients of the quantization. This is called Geometric Quantization, see [2].
Geometric formulation of Quantum Mechanics. Every Hilbert space H can be
projectivized H 7→ PH; the hermitian scalar product on H generates the standard
Kähler structure of Hodge type on the projective space PH, and all axioms of
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QM can be reformulated in the language of Kähler geometry, see [3, 4]. Every
self-adjoint operator F̂ is transformed into a smooth function f(F̂ ) ∈ C∞(PH,R)
which satisfies the following condition: its Hamiltonian vector field preserves the
Kähler structure. Such functions are called Berezin symbols after F. Berezin.
Algebraic–geometric quantization. Combining a Geometric formulation of
Quantum Mechanics and the Quantization problem we can propose the following
generalization of the latter, see [4]. Let (M,ω) be a symplectic manifold under-
stood as the phase space of certain classical mechanical system. We would like to
find a Kähler manifold K endowed with Kähler structure (Ω, I, G) such that Ω is a
symplectic form, I is a compatible integrable complex structure and G is the corre-
sponding Riemann metric, together with a linear map q : C∞(M,R) → C∞

q (K,R)
such that q(1) = 1 and q({f1, f2})ω = {q(f1), q(f2)}Ω.

As an example we can present the Berezin quantization method, when (M,ω)
itself is a Kähler manifold, and one quantizes only the functions which are Berezin
symbols.
Lagrangian approach to Geometric Quantization. In the Lagrangian approach one
studies Lagrangian submanifolds of the phase space (M,ω) understood as quan-
tum states. The starting point is given by the WKB method to get solutions of
the Schrödinger equation for a given density. In the generic situation when (M,ω)
is topologically non trivial, one has the following interesting parallel to the stan-
dard QM. Namely each smooth function f on (M,ω) induces the corresponding
Hamiltonian flow φt

Xf
which preserves the Lagrangian condition, so if S ⊂ M is

a Lagrangian submanifold then φt
Xf

(S) is Lagrangian as well. Therefore for the
space of all Lagrangian submanifolds L every smooth function can be regarded as
an operator which generates certain dynamics. Moreover, we have the following
alternative: this operator can be measured on a state S if and only if S is a sta-
tionary point of this action. Indeed, it is a simple fact: the Hamiltonian vector field
Xf is tangent to the Lagrangian submanifold S if and only if f is constant when
restricted to S (thus this constant can be taken as the result of the measurement
process). It is similar to the basic fact from the standard QM: a quantum state is
an eigenstate of a self-adjoint operator if and only if it is a stationary point of the
corresponding evolution generated by this operator.
Bohr–Sommerfeld geometry. A Hamiltonian flow preserves the periods of any
Lagrangian submanifold S ⊂ M therefore, instead of the space L of all La-
grangian submanifolds, it is much more convenient to consider the subspace of
Bohr–Sommerfeld Lagrangian submanifolds. Suppose first that our given sym-
plectic manifold (M,ω) is simply connected and that the symplectic form ω is
integer, so the cohomology class [ω] belongs to the lattice H2(M,Z). In the lit-
erature one often says that then (M,ω) satisfies the Bohr–Sommerfeld condition
for manifolds. In this case one says that a Lagrangian submanifold S ⊂ M is
Bohr–Sommerfeld if for any loop γ ⊂ S and any discB2 ⊂ M such that ∂B2 = γ
one has

∫
B2

ω ∈ Z. In [5] we constructed BS – moduli space of Bohr–Sommerfeld
Lagrangian submanifolds of fixed topological type: it is an infinite-dimensional real
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smooth Fréchet manifold. For any function f ∈ C∞(M,R) the induced Hamilton-
ian flow φt

Xf
gives a one-parameter family of automorphisms of BS , and we have

a description of the corresponding tangent vector Θ(f) ∈ TSBS for each point
S ∈ BS .
ALAG – program. Problems. Thus as we have seen the moduli space BS is a good
and natural candidate to be a space of “quantized states” but dynamically only.
In QM we must have an appropriate measurement process, see [6], and to restore
this part of the QM setting one has to “complexify” the moduli space BS since in
the Algebraic–Geometric Quantization problem we need a Kähler manifold. In [5]
exactly this problem was partially solved: we constructed a “half-weighted” ver-
sion of the moduli space BS . Namely as the result of the ALAG procedure applied
to a simply connected compact symplectic manifold (M,ω) with integer symplec-
tic form one gets the moduli space of half-weighted Bohr–Sommerfeld Lagrangian
submanifolds of fixed topological type and volume Bhw,r

S – an infinite-dimensional
almost-Kähler smooth manifold fibered over BS . The main problem of the con-
struction is that the complex structure constructed on Bhw,r

S is not integrable, and
the so called BPU map is not holomorphic. However a realization of Algebraic–
Geometric Quantization was given in this set up: for any function f ∈ C∞(M,R)
the corresponding smooth Berezin symbol q(f) ∈ C∞(Bhw,r

S ,R) is presented by
the very simple formula q(f)(S, θ) = τ

∫
S
f |Sθ2, see [4].

Complexification. Now we can pose the “problem of complexification” for the
“pure” moduli space BS : we would like to find a Kähler manifold K such that
(1) BS is a “real part” of K, (2) the natural action of a real smooth f ∈ C∞(M,R)
on BS described above can be “lifted” to a Hamiltonian action on this K by Kähler
isometries, and it should imply the existence of correspondence q : C∞(M,R) →
C∞

q (K,R) thus this “complexification” should lead to a solution to the Algebraic–
Geometric Quantization problem. “Real part” means that either BS is embedded
into K as a totally real submanifold or it is fibered over BS with Lagrangian fibers.
Special Bohr–Sommerfeld geometry. The new construction presented in [7] can be
exploited in the “complexification problem”: for a given simply connected compact
symplectic manifold (M,ω) with integer symplectic form we construct a certain
cycle USBS in the direct product BS × PΓ(M,L) where Γ(M,L) is the space of
smooth sections of the prequantization line bundle L → M uniquely determined by
the condition c1(L) = [ω]. A pair (S, p) belongs to USBS if the Bohr–Sommerfeld
Lagrangian submanifold S ⊂ M is special with respect to the smooth section α, at
the point p ∈ PΓ(M,L) (the definitions can be found in [7]). On the other hand, we
proved that USBS is weakly Kähler in [7]. But the whole space USBS is too big to
be a “complexification” of BS ; however it is fibered over BS by its very definition.
A natural idea arises: to find an appropriate subspace K ⊂ USBS such that (1) K
is a complex subspace, (2) the natural projection q : USBS → BS is reduced to a
nice projection q̃ : K → BS with Lagrangian fibers.
Possible solution: first step. In the recent preprint [8] we present several remarks
that could lead to the construction of an appropriate K ⊂ USBS . Namely, the
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canonical projection q : USBS → BS splits as a combination of the following
two maps. The first map is given by the representation of smooth sections from
Γ(M,L) by complex 1-forms on the complement M\D where D is the zero set
of the sections, see [7, 8]. If α ∈ Γ(M,L) then the 1-form is given by the formula
ρ(α) = 1

2π
∇aα
α , and the main properties are the following: 1) the real part Reρ(α)

is an exact form, 2) if S is α-special Bohr–Sommerfeld then Im ρ(α)|S ≡ 0. This
implies that any pair (S, p) ∈ USBS can be naturally sent to a point in the tangent
bundle TBS , namely one takes the restriction ρ(α)|S and since it is a real exact
1-form then it represents a tangent vector from TSBS . Denoting this map as τ :
USBS → TBS one easily deduces that the canonical projection q splits as π ◦ τ
where π : TBS → BS is the canonical projection to the base. Thus if we find an
appropriate complex section σ : TBS ↪→ USBS of the fibration τ : USBS → TBS

then the image K = σ(TBS) would be the desired complex Kähler manifold fibered
over BS .
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