
Modernisation of a 12Years
Old Digital Archive: Experiences

and Lessons Learned

Ilvio Bruder1(B), Martin Düffer2, and Andreas Heuer3

1 University Library Rostock, Rostock, Germany
2 Hanse Softwarehaus, Rostock, Germany

3 Database Research Group, University of Rostock, Rostock, Germany
{ilvio.bruder,martin.dueffer,andreas.heuer}@uni-rostock.de

Abstract. Sustainability became a very important requirement in
research projects, especially in digitalisation projects and their informa-
tion systems. The problem in planning sustainability of data and systems
is the unknown future of technical and organisational conditions for run-
ning these systems and services. In this paper, we want to look at a
digital archive project about digitised historical music sheets which was
built from 2003 till 2005 and generally modernised in 2017/2018. We
want to present the challenges in rebuilding a 12 years old digital archive
and discuss the lessons learned.

Keywords: Software evolution · Digital archive · Long-term
preservation · Software monitoring

1 Motivation

Su-Shing Chen already described the suitable “Paradox of Digital Preservation”
in 2001 [3]:

Traditionally, preserving things meant keeping them unchanged; however,
our digital environment has fundamentally changed our concept of preser-
vation requirements. If we hold on to digital information without modifi-
cations, accessing the information will become increasingly more difficult,
if not impossible.

The digital preservation is also often described as the “Tamagotchi effect”. This
means for a digital library or a digital archive project, that we have to main-
tain our system regularly. This requires a relatively big amount of resources,
e.g. financial and personnel costs. Early digitalisation projects did not plan for
later maintenance of their systems. Therefore, many funding authorities have
extended their funding criteria to include sustainable solutions. Unfortunately,
these criteria do not require, how this sustainability can be achieved practically.

c© Springer Nature Switzerland AG 2019
A. Jatowt et al. (Eds.): ICADL 2019, LNCS 11853, pp. 139–150, 2019.
https://doi.org/10.1007/978-3-030-34058-2_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34058-2_14&domain=pdf
https://doi.org/10.1007/978-3-030-34058-2_14


140 I. Bruder et al.

Hence, preserving data as well as knowledge, e.g. described in [6], and preserv-
ing technical systems are different problems. Another problem is the economic
sustainability which is explicitly addressed by digital libraries [7].

A good overview of different perceptions regarding sustainability in articles of
recent years is given by [5]. Many aspects of sustainability were discussed, mostly
technology, management, sharing and backups as well as costs and revenue. Many
articles describe concepts which are important for planning digital archives. In
this paper we want to discuss the real effects of weak maintenance of a digital
archive running for 12 years.

The example we want to show, is a project of a digital archive of digitised
handwritten music sheets. This archive is more a tool for analysing note scribes
than a platform for sharing and exhibiting digital documents. Thus, the paper
focusses on the problems migrating the functionality of the analysing tool on new
hard- and software. The archive was built in 2003 and 2004 and had been con-
stantly used over the years, but barely maintained. After over 12 years of usage,
the system was very slow, crashed often, and the software included critical secu-
rity risks. In 2017, we had to decide to either update this archive or shut down
the service. We decided to rebuild the system and challenged many expectable
and non-expectable issues. In the following sections, we want to give an overview
of the old and the new system, of our problems rebuilding the system and of
the lessons learned. The aspect of monitoring the system in the future will be
discussed in particular.

2 Starting Point: The eNoteHistory Project

In 2002, about 1000 handwritten music sheets from the 17th and 18th century
were digitised at the University of Rostock. After the digitalisation, a research
archive for analysing such sheets was built in the eNoteHistory project [1,2]. The
project had the aim to build a digital archive, integrating knowledge components
and specialised functions for writer identification in historical music scores.

Handwritten music scores were a way to record, copy and disseminate music
during the late 17th century until the beginning of the 19th century. The infor-
mation encoded in these music sheets, such as melody, title, time and place of
origin, composer and scribe is of great interest to musicologists. Some of these
data are seldom found in alphanumeric form in manuscripts, but have to be
derived analysing other document features. Complex typographic and visual fea-
tures such as handwriting characteristics, water marks etc. are used in practice
for the analysis.

The archive consists of digitised sheets, metadata, as well as analysis tools
and results. These data could be accessed in a web-based client at http://www.
enotehistory.de. It was also possible to analyse new sheets with the help of feature
trees or using an automatic analysis. In the manual analysis, specific features
of the unknown music sheet are chosen from the feature trees, e.g. a specific
handwriting of the treble clef.

http://www.enotehistory.de
http://www.enotehistory.de


Modernisation of a 12 years old Digital Archive 141

Fig. 1. Software components of the original and the modernised system.

The automatic analysis is based on the recognition of features like lines and
their direction as well as the spatial arrangement of lines and points of the note
heads and stems.

The system was built in a Windows 2000 Server environment on a sepa-
rate server system. The programming language was mainly Java on server-side
with Java Servlets for the web sites. There existed two storage solutions, first a
realisation on an IBM DB2 database and second a realisation on an IBM Con-
tent Manager [4] installation with a digital library frontend based on MyCoRe1.
The DB2-realisation included the whole analysis and access possibilities. The
MyCoRe-realisation only provided simple access and browsing functionality.

3 Working Steps for Modernisation

After over 10 years of minimum maintenance, the first step was an extensive and
time-consuming analysis of the system because nobody of the original develop-
ment team has been working at the institution anymore. One of the developers
was contacted, but could not remember much of the design. In a second step,
modernisation decisions had to be made about:

– what system (hard- and software) will be used,
– which components are left as old implementation, which components have to

be reimplemented (see Fig. 1),
– which functions are essential, which functions could be switched inactive to

reduce the effort, and
– how to migrate the data, metadata as well as user data.

In a third step, the new system was designed and implemented. After that, the
data had to be transformed and migrated into the new system. The last step
was the evaluation of the system.
1 MyCoRe is a framework for building digital libraries: http://www.mycore.de.

http://www.mycore.de


142 I. Bruder et al.

3.1 Analysing the Old Implementation

The analysis was the most important step, before taking any implementation and
modernisation decisions. The analysis consisted of examining hard- and software,
testing the functionality as well as studying the original project and reading the
documentations.

As mentioned above, the eNoteHistory archive was a Java implementation
on a Windows 2000 Server. The last implementation and administration steps
were done over 10 years ago. There were two different implementations: based
on an IBM DB2 database (version 8) and based on IBM Content Manager with
a MyCoRe frontend. The DB2-based version has been running the last 10 years.
The Content Manager version was available, but was obvious fragmentary and
could not be reactivated without massive effort.

The executable version using IBM DB2 database was somewhat broken,
too. Functionalities like search, navigation, and analysis were not accessible.
Moreover, the Windows 2000 Server was a virtual server and was working very
unstable.

Documentation and source code were available in different versions and it
was not clear which one described the last version. Furthermore, the source
code was partly incomplete. The material was overall large, but inappropriately
structured for long-time maintenance. After analysing all of the eNoteHistory
code variants, we decided to use the IBM DB2 version as the initial point for
the restoration. Contrary to IBM DB2, the IBM Content Manager is a database
and information system software, which is not further available in this form at
IBM.

The Windows 2000 Server is obviously not up to date and a potential secu-
rity risk. It is important to update the underlying operating system before the
restoration of the eNoteHistory software itself. The plan was to use a Linux-
based operating system (CentOS) in the future for a better integration into
the institutes hardware environment. This means, we had to check all software
components of eNoteHistory for compatibility within a Linux environment. In
several cases, it was necessary to find similar software or software libraries for
the Linux operating system.

Besides the database system itself, there were used extensions of the DB2
database, such as the netSearchExtender which are not available for cur-
rent versions of IBM DB2. Furthermore, the eNoteHistory software used self-
implemented extensions, e.g., User Defined Types and User Defined Functions.
These extensions are implemented in Java with version 1.2 and corresponding
Java libraries. Such extensions are not executable in modern environments with
Java version 8 or 112 and above.

The web site as a frontend was implemented using Java Servlets. These Java
Servlets were executed and content was delivered by a Tomcat web server. The
version of the Tomcat-Server was 5.5 with Java 1.2. This Tomcat-Server is not
supported anymore. Some of the used functions in the Servlets are not available

2 Java version 8 and 11 are long-term support (LTS) versions.



Modernisation of a 12 years old Digital Archive 143

in current versions of Tomcat anymore. Therefore, we needed new functions and
a migration or transformation of the old functions.

3.2 Upgrading the Database from DB2 to PostgreSQL

One major task in modernising the eNoteHistory system was the upgrade of
the database system. Sustainability, expenses and spread of current database
systems are important criteria for the decision, which database will be used in
the future. We decided to use the open source database system PostgreSQL
which is the university-wide deployed and supported database solution.

In a first step, the database schema, the special user-defined types, and user-
defined functions were analysed. The SQL standard evolved over the years and
the database manufacturer have often implemented special language adapta-
tions of SQL. The schema had to be adapted, so that some DB2-specific data
types were mapped onto PostgreSQL-specific data types. For instance, the DB2
data type DATALINK is not available in PostgreSQL. These changes were made
before implementing the software. Some of the problems occurred and were
solved during the implementation and transfer of the data. Such problems are
sizes of data types, special formats or functional differences between the database
systems. Due to the significant differences between the old and new database sys-
tem, a simple export from the old system and import into the new system was
not possible. The original database migration tools provided by IBM for DB2
version 8 were tested, but were not applicable. Therefore, we implemented an
own migration tool for the schema and data transformation, which goes through
the data step by step and repeats steps on failure. For instance, if an error, that
a value is out of range of a domain, is produced, the step is undone, the schema
is manually adapted, and the step is repeated. A failure can occur in every row
of a table. The developed tool uses an old DB2 database driver in combination
with a current database driver for PostgreSQL. The transformation of schema
and data with this tool was a trial and error approach.

The eNoteHistory application and clients needed access to the database. The
old DB2 driver was replaced by the new PostgreSQL driver in these implemen-
tations too. Furthermore, all of the SQL-queries in the implementations had
to be checked, whether they were functioning as intended or they had to be
transformed and adapted into a new SQL-query for the new system.

Particularly complex were user-defined functions in the DB2 system because
they use special mechanics of this old database system. No user-defined function
was applicable in current database systems due to the outdated and proprietary
implementation. The solution was to analyse the source code of a particular
function and reimplementing the function in the new database, reimplementing
the function in the application or client outside of the database, or trying to
use standard queries to achieve the same functionality. A specific problem at the
eNoteHistory project was, that some functions did not work correctly anymore,
which increased the complexity of the analysis significantly.

ENoteHistory used two kinds of user-defined functions: user-defined functions
based on SQL and user-defined functions implemented in Java. User-defined



144 I. Bruder et al.

functions based on SQL had to be translated to the current SQL dialect of Post-
greSQL and had to consider the made schema changes if needed. User-defined
functions based on Java could not be transferred to PostgreSQL, firstly, due to
the used outdated Java version and secondly, due to the lack of Java support
in user-defined functions in PostgreSQL. Indeed, there is an open source add-on
for Java user-defined functions in PostgreSQL, however, installation, configura-
tion, as well as administration and updating is complicated and a significant
source of failures and security issues. We decided to reimplement these Java
user-defined functions within the application code of eNoteHistory outside of
the database environment. This is not less complicated, but we have a better
separation of database and the functionality which is more maintenance-friendly.
The main advantage of user-defined functions, the performance of database-near
implementation could be neglected regarding the average visitor numbers of the
eNoteHistory service.

One of these Java user-defined functions was the calculation of the most simi-
lar scribes of a given music handwriting. The user-defined functions was reimple-
mented as a normal Java function within the eNoteHistory application (not as a
user-defined function in the database). With this changes, such function was not
more available within an SQL statement, but can be called within the program
code. This means, that we needed new so called side tables for intermediate data,
which were created automatically by the database before. Furthermore, we had
to check all SQL statements, whether they used this user-defined function and
possibly changed the SQL statement and the function calls.

3.3 Upgrading the Web Server and the Web Site

The original implementation of the eNoteHistory web service was based on Win-
dows 2000, a DB2 V8 database, an Apache Tomcat Server v5.5 and Sun Java
v1.2. The Windows 2000 server is replaced by a modern Linux distribution, Cen-
tOS in a current, long-term supported version. The DB2 V8 database system is
replaced by PostgreSQL version 9.6 and Sun Java 1.2 by Oracle Java version 8.
The Tomcat Server is used in version 8.5 with a current servlet specification.

All these updates and upgrades are significant modifications of the eNote-
History application. Hence, many functionalities did not work anymore. Nearly
every function had to be analysed and adapted, repaired or reimplemented step
by step. For instance, the search functionality was implemented using the IBM
DB2 Net Search Extender which is not supported anymore and was replaced by
IBM DB2 Text Search. All programming code related to the Net Search Extender
had to be found, analysed, and adapted to a search functionality, PostgreSQL
as the new database system provides. Similar problems arose by using the cur-
rent Java version due to missing some older, in eNoteHistory used code libraries.
Some of these missing libraries could be replaced by current ones. Unfortunately,
for few libraries, there were no current alternatives and we had to reimplement
the functionality. We paid special attention to not use programs or software
libraries from third party developers due to the uncertain sustainability.



Modernisation of a 12 years old Digital Archive 145

Tomcat is used as the web server and contains the framework of the eNote-
History application. The framework consist of Java components. The source code
was available in different versions, but no version management was used. The
code structure was barely described, but there were source code comments. The
main problem was the first compilation of the source code after all these years.
Unfortunately, it was not possible to compile the source code due to too many
failures with outdated Java libraries and database interfaces. It took time and
was difficult to eliminate all the failures getting a first compilation. Afterwards,
reimplementation and corrections could be made.

It made sense to review every line of the source code. However, the given
resources allowed only the most important and broken components to be anal-
ysed and possibly reimplemented. Further maintenance cycles may concentrate
on other source code components.

3.4 Changes in Addition to the Old Application

During the rework of the eNoteHistory application, it made sense to overview
other aspects of the system too. We have simply altered some textual informa-
tion, corrected dead web links and provided new contact information.

Furthermore, we changed the procedure, how the files for the digitised notes
are handled. In IBM DB2, the files are handled by the database using a DB2-
specific functionality. In PostgreSQL, this particular functionality is not avail-
able, but a different one. Nevertheless, we decided to use a simpler way: handling
the files by the operation system in the file system and using file locators as
strings in PostgreSQL. This is not the recommended way, but it is less complex
to maintain and is possibly better sustained. Moreover, the eNoteHistory server
is dedicated only to this application and should not interfere with others.

Another aspect of the eNoteHistory application was the user management.
The old user management required an authentication for some special search and
analysis functionality. Nowadays, it is common to provide such functionality
without any authentication. Only the altering of data should be possible for
particular user. Therefore, we changed the user management significantly.

4 Lessons Learned and Measures

4.1 Lessons Learned

In the area of software evolution, there are many approaches, guidelines, infor-
mation, and lessons learned about sustainability. However, most of them are
from a software design (e.g. [11]) or an architectural (e.g. [8]) point of view.
After finishing this work, we have learned few lessons, especially from a practi-
cal modernisation point of view:

Diversity of Failures: After running a public software over 14 years, you can find
logical and content-based failures beside software errors, too.



146 I. Bruder et al.

Hard- and Software Provider: Using software, operation system, etc. you should
pay attention to providers history (bigger and traditional companies are often
more sustained) and to available long-term supported versions.

Standards: If possible, standards should be used, but not always the newest.
For instance, SQL: no database manufacturer fulfils the newest version of SQL.
Modernising eNoteHistory, we had to disable most of the newer SQL concepts like
special user defined functions and the file handle concept. Sometimes, it makes
sense to not extensively use available software libraries due to the dynamic and
constant further development.

Maintenance Strategy: It is necessary, not only to maintain a system, but also
to modernise it and maybe to reimplement some aspects from time to time.

Documentation: Not only the system needs to be documented, but also the
software versions needs to be organised and described. This is also relevant for
the technical organisation and technical information (which server, ports, file
systems are used for what functionality).

Maintenance Plans: It is important to plan the maintenance for a minimum
period of 5 to 10 years or expect severe failures after a couple of years.

Sustainability vs. Performance: From a technical point of view, the optimi-
sation of a system regarding sustainability is more important than regarding
performance.

Resources for Sustainability: Sustainability requires much resources. Projects
which take into account sustainability and needed resources early, get a signif-
icant advantage. Resources like maintenance costs, hard- and software costs as
well as working time and costs should be considered.

Maintenance Schedule: Hard- and software systems have to be updated regularly.
A maintenance schedule depends on the planned system lifetime. Based on the
experiences in eNoteHistory, the following maintenance schedule can be derived:

– system lifetime till 5 years: least effort, existing hard- and software should last
the lifetime;

– lifetime 5–10 years: intermediate effort, the virtualisation of the hardware
might be necessary, software and security issues might arise;

– lifetime more than 10 years: system has to be fundamentally updated (regu-
larly, every 2–3 years on average). The longer the maintenance intervals are,
the higher is the particular effort.

Monitoring the System: Moreover, the system has to be observed regularly.
Failures and unavailability are bad for the user experience. It is even worse, if
unavailability of services is unperceived by the operator. Nowadays, automatic
tools are available for software monitoring.



Modernisation of a 12 years old Digital Archive 147

4.2 Measures for Monitoring the System

Establishing a permanent observation of the eNoteHistory system was the first
measure taken. Due to the software analysis of eNoteHistory, we were aware
of the problems and requirements on an adequate monitoring. Besides, we had
to notice that the system became more and more unstable and a permanent
observation by a person was not possible. Service unavailability is caused by
program failures, directory problems or missing program libraries (e.g., due to
systems software updates) as well as failure of components (e.g., after a restart
due to a power failure). Another problem is the reaction time until the service
is available again.

Based on the experiences over the years, the following requirements emerge:

– automatic monitoring routines and reactions, as much as possible;
– periodic availability test of all web pages;
– periodic test of main functionality: login, search, and analysis steps;
– check of all web links;
– alerting per email or messenger post;
– reaction possibilities, e.g., set a maintenance status on the website or restart-

ing the system.

The information whether the service is running or something is wrong, is
very important for such a system. Therefore, we investigated in software sys-
tems for the monitoring of provided services. There are a couple of systems
to be considered. Three systems are closely analysed: Selenium (https://www.
seleniumhq.org), Cypress (https://www.cypress.io), and Scrapy (https://scrapy.
org). Selenium and Cypress are tools explicitly for testing web sites. Scrapy is a
web scraping tool for extracting data from web pages.

All of the three tools provide the functionality for checking web sites. Scrapy
has rich concepts for getting data, information, and content out of a web page,
but lacks features for testing and checking web sites periodically. Selenium
and Cypress provide very similar, general functionality, but pursue different
approaches. Selenium uses the interface of different browsers for accessing and
interacting with web sites. Cypress uses a browser add-on which interacts directly
with web pages. The disadvantage of Cypress is that it supports currently only
the browser Chrome. The browser interface approach of Selenium is more flex-
ible, but less powerful. Selenium is the older and technically more mature tool,
which was the major reason to use it.

4.3 Website Tests Using Selenium

Selenium [9,10] provides many different test procedures. It is primarily designed
as an enhancement for software tests, especially web applications. Supporting
periodic tests, Selenium is also appropriate for monitoring web sites. It uses so
called WebDrivers to interact with browsers. Selenium supports several browsers
and is suitable for cross browser testing. The architecture is based on a Client/
Server approach. Hence, it is possible to manage and operate a couple of test

https://www.seleniumhq.org
https://www.seleniumhq.org
https://www.cypress.io
https://scrapy.org
https://scrapy.org


148 I. Bruder et al.

browsers by one Selenium host and one test script parallelly (e.g., for stress
tests). Due to the exclusive usage of browser interfaces, Selenium can not directly
handle events appearing within the browser.

The following tests are provided:

– Responsiveness and adaptability test regarding screen sizes, element sizes,
and element visibility;

– Tests on elements: availability, visibility of elements; interference of elements,
clickability; arrangement of elements (e.g. in a grid);

– Special media tests: size of images, correct scaling;
– Tests on interacting with elements, especially form elements: buttons, radio

buttons, selection elements, input elements, result checking;
– Link tests: clickability, accessibility of links (URL checks);
– Cookie tests: check of stored data.

All of these tests and checks are described by test scripts, which can be imple-
mented using a programming language. Selenium supports a couple of different
programming languages. The analysis of the test results have to be explicitly
implemented as well. Furthermore, Selenium provides different alerting and reac-
tion possibilities, e.g., posting a message on twitter or altering the web server
showing a maintenance site to users.

4.4 Selenium Example

Due to many different test possibilities of Selenium, we want to discuss one
specific test example. Based on a series of clicks and checks, the manual analysis
shall be tested. Selenium acts like a user by choosing features and checking the
results. There are two reasonable test categories: First, specific features are given
and the result is checked against the expected one. Second, features are randomly
chosen by Selenium and the clickability as well as availability are checked.

Figure 2 shows the web page for analysing scribes of notes manually. The
analysis consists of choosing properties of the notes to be analysed. On the left
side, there is a tree representation of the upper three or four level of features.
In the middle respective on the right side, the tree can be further explored and
particular features can be chosen. After describing the available features, similar
scribes can be searched. The picture shows the selection of a treble clef notation.
The three upper levels of the feature tree is chosen on the left side (red circles
in Fig. 2) and the other twelve levels to the final treble clef notation is chosen in
the middle representation. The whole path is displayed above the choosing area
(red rectangle). Besides the treble clef, the tilt of a quarter note and the note
flag notation of an eighth note (visualised by a green square behind a specified
feature in the tree) are specified.

In the test, a couple of features and the result is predefined. Selenium accesses
the analysis web page and clicks on the topmost level of the first feature. The
result is checked and should be unfolding the subtree of this element. The check
also consists of the correct representation of the small feature images. After



Modernisation of a 12 years old Digital Archive 149

Fig. 2. Test the eNoteHistory manual analysis. (Color figure online)

unfolding all the levels of the regarding feature on the left side, the next feature
levels are clicked in the middle area of the page until the given feature value is
shown and chosen. Again, the result of every step is checked. If any given feature
is looked up and chosen, the button “identify writer” is pressed by Selenium.
Following, the results are compared with the expected. In case they differ, the
administrator gets an e-mail with the precise error message.

5 Conclusions

The eNoteHistory application built from 2003 till 2005 was not maintained since
then and has been modernised in 2017 and 2018. After 12 years, there existed
many problems running such an old application. The problems were primarily



150 I. Bruder et al.

instabilities of the software, data and system security issues, and the increase of
service failures and malfunctions.

The eNoteHistory system was based on Windows 2000, IBM DB2 v8, Sun
Java 1.2, and Tomcat v5.5. After an analysis of the components, we decided to
use a current Linux CentOS, PostgreSQL, Oracle Java, and Tomcat for the new
eNoteHistory server. Thus, some fundamental, complex, and extensive changes
were necessary.

Overall, the effort for modernisation of such a system after 12 years is tremen-
dous. The question whether updating and upgrading or reimplementing is highly
eligible and is difficult to decide. The eNoteHistory software system is running
sufficently stable and secure at the moment. An important task after the mod-
ernisation is a permanent and automatic monitoring of the services. We used the
web software test suite Selenium for the monitoring and defined a couple of test
procedures for checking the services, the correctness of the web pages, the web
links, and the special analysis functions.

References

1. Bruder, I., Finger, A., Heuer, A., Ignatova, T.: Towards a digital document archive
for historical handwritten music scores. In: Sembok, T.M.T., Zaman, H.B., Chen,
H., Urs, S.R., Myaeng, S.-H. (eds.) ICADL 2003. LNCS, vol. 2911, pp. 411–414.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-24594-0 41

2. Bruder, I., Ignatova, T., Milewski, L.: Knowledge-based scribe recognition in histor-
ical music archives. In: Heery, R., Lyon, L. (eds.) ECDL 2004. LNCS, vol. 3232, pp.
304–316. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30230-
8 28

3. Chen, S.: The paradox of digital preservation. IEEE Comput. 34(3), 24–28 (2001)
4. Choy, D.M.: Integration of structured and unstructured data in IBM content man-

ager. In: Proceedings of the 2005 ACM SIGMOD International Conference on
Management of Data. ACM (2005)

5. Eschenfelder, K.R., Shankar, K., Williams, R., Lanham, A., Salo, D., Zhang, M.:
What are we talking about when we talk about sustainability of digital archives,
repositories and libraries? In: Proceedings of the 79th ASIS&T Annual Meeting:
Creating Knowledge, Enhancing Lives Through Information & Technology. Amer-
ican Society for Information Science (2016)

6. Giaretta, D.: Advanced Digital Preservation. Springer, Berlin (2011)
7. Hamilton, V.: Sustainability for digital libraries. Library Rev. 53(8), 392–395

(2004)
8. Koziolek, H.: Sustainability evaluation of software architectures: a systematic

review. In: Proceedings of the Joint ACM SIGSOFT Conference on QoSA and
ACM SIGSOFT Symposium ISARCS. ACM (2011)

9. Sirotkin, A.: Web application testing with selenium. Linux J. 2010(192) (2010)
10. Vila, E., Novakova, G., Todorova, D.: Automation testing framework for web appli-

cations with selenium webdriver: opportunities and threats. In: Proceedings of the
International Conference on Advances in Image Processing, ICAIP 2017, pp. 144–
150. ACM (2017)

11. Zdun, U., Capilla, R., Tran, H., Zimmermann, O.: Sustainable architectural design
decisions. IEEE Softw. 30(6), 46–53 (2013)

https://doi.org/10.1007/978-3-540-24594-0_41
https://doi.org/10.1007/978-3-540-30230-8_28
https://doi.org/10.1007/978-3-540-30230-8_28

	Modernisation of a 12Years Old Digital Archive: Experiences and Lessons Learned
	1 Motivation
	2 Starting Point: The eNoteHistory Project
	3 Working Steps for Modernisation
	3.1 Analysing the Old Implementation
	3.2 Upgrading the Database from DB2 to PostgreSQL
	3.3 Upgrading the Web Server and the Web Site
	3.4 Changes in Addition to the Old Application

	4 Lessons Learned and Measures
	4.1 Lessons Learned
	4.2 Measures for Monitoring the System
	4.3 Website Tests Using Selenium
	4.4 Selenium Example

	5 Conclusions
	References




