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Abstract In recent years, due to increasing rate of electricity demand and power
system restructuringwith a limited investment in transmission expansion, large power
systems may closely be operated at their stability margins. Meanwhile, uncertain
and intermittent nature of electricity demand with traditional load forecasting error
seriously effects on operation and planning of bulk power grids. Hence, this chapter
aims to present a novel approach based on dynamic feed-forward back-propagation
artificial neural network (FBP-ANN) for long-term forecasting of total electricity
demand. A feed-forward back-propagation time series neural network consists of an
input layer, hidden layers, and an output layer and is trained in three steps: (a) Forward
the input load data, (b) Compute and propagate the error backward, (c) Update the
weights. First, all examples of the training set are entered into the input nodes. The
activation values of the input nodes are weighted and accumulated at each node in
the hidden layer and transformed by an activation function into the node’s activation
value. Hence, it becomes an input into the nodes in the next layer, until eventually
the output activation values are found. The training algorithm is used to find the
weights that minimize mean squared error. The main characteristics of FBP-TSNN
are the self-learning and self-organizing. The proposed algorithm is implemented
on Canada’s power network to prove its accuracy along with effectiveness, and then
compared with real historical data.
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1 Introduction

Nowadays, interconnected power systems have been developed from reliability and
stability aspects. Studies indicate that increasing rate of population all around the
world leads to a growth in electricity consumption [1].Meanwhile, uncertain nature of
electrical demand and renewable energy sources such as solar and wind adds some
limitations to dynamic stability of large electricity grids [2]. Hence, forecasting
of electrical demand becomes more and more critical for assisting power system
operators in electricity grid management, whether for short-term analysis or long-
term applications such as economic emission dispatch, unit commitment, optimal
scheduling, etc. [3–5].

Recently, many scholars have proposed different short and long-term load fore-
casting algorithms. In this context, authors of [6] have simulated a specific aggregated
state prediction for electrical consumption of interconnected power networks with
1% error in 700 h. In [7], combination of genetic algorithm and neural network is an
illustrative example with accuracy of 98.95% for expanding a feed backward neural
network for forecasting of heterogeneous demand time series in very-short and short
time intervals. Application of support vector machine (SVM) has been presented in
[8] for one hour ahead demand forecasting. In addition, this two-phase technique
consisting of artificial neural network (ANN) and SVM has demonstrated the reso-
lution of speed and accuracy through precise experiment on real historical data of
4th July 2012. Son et al. [9] has evaluated the application of support vector regres-
sion (SVR), fuzzy logic, and particle swarm optimization (PSO) with mean demand
scaling of 149.28754 kW for short-term electrical demand forecasting. Guo et al.
[10] has introduced a self-learning algorithm for load forecasting process which
benefits from economic factors. This approach inserts some economic elements in
searching process to reduce computational error. According to overall implementa-
tion of automation system in residential consumption as demand response strategies,
it is found that modified algorithms, which made up SVR, can fix the intermittent
nature of internal loads (i.e. cooling, heating, and ventilation). Thereby, poly-phase
prediction can practically actualize the demand response strategies in such program-
ming. In addition, Le Cam et al. [11] has aimed to forecast total electricity cost of
automation system in a benchmark building by providing a poly-stage prediction
model that 14.2–22.5% optimum absolute error has been observed. Li et al. [12] has
combined a wavelet decomposition technique with ANN to diminish the negative
impacts of volatile load data. Plus, in the noted study, it can be given as advanced
intelligent algorithm with 2.4% mean absolute percentage error (MAPE). Effective-
ness of ANNs in Poland’s natural gas consumption forecasting has been described
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in [13]. This approach has been investigated on historical time series of Szczecin city
with characteristics of 22 input, 36 hidden layer and 1 output and 8%MAPE.Authors
of [14] have used ANNs for hour ahead prediction of universal solar radiation with
7.86% RMSE through filtering the low frequency of input data set. Reference [15]
runs two different learning rules on ANNs. Therefore, it is observed that integration
of back propagation (BP) and extreme learning method (ELM) for decoding the fluc-
tuation of wind speed prediction leads to 1.33% and 1.1965% RMSE, respectively.
In a similar standpoint, conducting PSO and genetic algorithm for optimal selecting
of weight vectors of ANN in solar irradiance estimation system can be found in [16].
It indicates that the combination of BP-ANN and PSO technique has demonstrated
correlated results as 0.78 RMSE and 0.685 mean absolute error (MAE). Authors of
[17] have aimed to apply a proper orthogonal decomposition (POD) to ANNs for
wind and demand forecasting of high altitude towers. It is found that such complex
algorithm can reaches RMSE and mean error of 4% and 0.98%, respectively. As
mentioned, ANNs support both regression based and computational methods under
various prediction scales. Ramasamy et al. [18] has formed a unique wind power
forecasting with respect to ANNs through speed estimation experiment in western
Himalayan. To prove its robustness, output series have compared with real historical
set considering some environmental and geographical factors such as temperature, air
pressure, latitude, and longitude. Resiliency of this method against the time variant
nature of ANN’s input parameters has been revealed by 6.489% as MAPE. Yadav
and Chandel [19] have identified relevant input variables for predicting of 1-min
time-step photovoltaic module power using ANNs and multiple linear regression
models with 2.15–2.55% MAPE. da Silva et al. [20] has reached to important point
that using Bayesian Regularization (BR) and Levenberg Marquardt (LM) as training
of ANNs has real time result in comparison with others for solar power estimation
in a way that MAPE and RMSE are equal to 0.02%, 0.11% (BR), and 0.31%, 0.74%
(LM), respectively.

This chapter aims to present a dynamic feed-forward back-propagation ANNs
based method for long-term forecasting of electrical demand. In addition, the highly
features of compatibility and accuracy of the proposed algorithm is revealed using
a comparison between the forecasted and the actual electrical demands of Canada’s,
Ontario independent electricity operator system (IESO), low voltage grid. The
remainder of this chapter can be organized as follows: Sect. 2 presents the prob-
lem formulation. Simulation result and discussions are provided in Sect. 3. Finally,
concluding remarks appear in Sect. 4.
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2 Problem Formulation

2.1 Artificial Neural Network (ANN)

Artificial neural network (ANN) is a powerful and extensive tool for engineering
applications such as fitting, pattern recognition, clustering, and prediction. The per-
formance of this algorithm is that, by applying weigh matrix and bias vectors to the
input vectors and mathematical operations, we can reach the desired output which
is demand consumption as in Fig. 1. The aim is to learn our ANN for obtaining the
desired output, and also updating the error vectors in any steps. Then, after several
iterations, we can regain the optimal weight values for the input vectors. The type of
learning in our ANN is supervised learning rule which it benefits from three dynamic
training techniques. Hence, the learning rule will be discussed in the next section.
During learning, we update the weight matrix to determine the best error as well as
observing a tolerable output dependency. Then, ANN will initiate with parameter
load and time series for the network as an input, and then variables would have mul-
tiplied by weight matrix. Finally, they would have added by bias vectors. The next
step begins in such order that, a specific mathematical function is presented to start
the calculation as in Fig. 2.

INPUT 
VECTORS

APPLYING 
WEIGHT 

AND BIAS 
VECTORS

APPLYING 
SPECIFIC 

FUNCTION

APPLYING 
ANN

OUTPUT 
VECTORS

(LOAD)

Fig. 1 The block diagram of proposed algorithm

ACTIVATION 
FUNCTIONXi Y

Wi 

Bi

Fig. 2 The operation of the proposed algorithm



Long-Term Load Forecasting Approach Using … 237

Where, xi , wi , Bi are the input vectors, weight matrixes and bias vectors respec-
tively and Y is the output of neural network as is depicted in Eq. (1).

yi = F(xi × wi + bi ) (1)

In order to satisfy the convergence condition, the algorithm is constructed based
on supervised learning rule. In supervised learning at any moment in time K input
x(k) is applied to the network. Network desired response Ŷ (k) is given and Couples
(x(k), Ŷ (k)) belong to a given set of learning that are pre-selected. The x(i) and
Ŷ (i), i = 1 . . . ,N(N is number of neurons) are used in supervised learning rulewhen
Ŷ (k) = Ŷ (i), x(k) = x(i). Our desired network is Multi-Layer Perceptron (MLP)
which has a group of vectors like input, output (validation), and network response
(Y (k)). MLP is a computational unit in the ANN architecture that is consisted of
input layer, hidden layer, and one output layer. After the combination of this input,
calculation process will begun as in Fig. 3.

Fig. 3 Different layers of MLP



238 A. Masoumi et al.

2.2 Dynamic Artificial Neural Network (DANN)

Dynamic artificial neural network is a computational operating system in which the
continuous integration between its elements and the training processes improves the
power of prediction. As it is depicted in Fig. 3, the conventional neural network has
been made up of one input layer, one hidden layer and, one output layer. In addi-
tion, the relation among the parameters, layers, and also the training steps, leads to
the prediction purpose. According to the nonlinear feature of input data set, using
effective learning rules which they will define in the following section, can help the
propagation procedure to be more dependable in comparison with individual learn-
ing network. Plus, the volume of calculation is a very critical point that must be
considered if the number of sample data is notable for the convergence application.
From this view point, overall conformity of forecasting algorithm will lead to the
better understanding of estimated output. As it is clear in Eq. (1), the weight matrix
and bias vectors are the stimulation parameters of ANN that are needed to gener-
alize the diversity of input vectors. They simply interconnect the intermittent based
inputs which are electric demand in this case, into the correcting steps of predict-
ing. The activation function F is the operator of the net that is accommodated with
both correcting and training processes. In another word, the F will demonstrate the
predicting based on the termination of gradient process. The connectors, which are
neurons, transfer the optimized values of weight and bias to the output layer in spe-
cific order. Moreover, dynamic neural network is defined as the combination of three
regression based learning method which are Levenberg Marquardt (LM), Bayesian
Regulation (BR), and Scaled Conjugated Gradient (SCG). First of all, the learning
system operator will initiate with LM to train the portion of input data set (70%) and
will allocate primary weight and bias vectors. After the generalization, the output
trained is employed to the second propagation network (BR) to be normalize and
filter the white noises of set with respect to the error performance (MSE) of the early
neural network with 70% as training ratio. The next view is to conjugate the perfor-
mance of two aforementioned learnings techniques to scale the searching process of
optimal weight and bias vectors selecting in the hypothesis space. In another word,
scaled conjugated will find the specific vectors for minimizing the error (MSE). Plus,
this algorithm uses desired values of weight matrix at each stage to change them so
that, the downward slope of the error curve is going to be descent. The flowchart of
proposed algorithm for load forecasting is depicted as in Fig. 4.

2.3 Back Propagation Technique (BP)

Back propagation is a learning and adjusting method which conveys several partial
derivatives from the basic parameter of neural network. In this method, we try to
minimize the objective function and obtain mean square error (MSE) between the
output of net and the desired output of electrical demand using dynamic algorithm. It
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Fig. 4 The proposed algorithm

is observed that the hypothesis searching space is a large space that defines all possible
values of the weights. The ANN tries to optimize the error to achieve reasonable
states. However, there is no guarantee that it will reach to the absolute minimum.
Therefore, the training algorithm (DANN) is used to find the weights that minimize
mean squared error (MSE). Broadly, the mechanism of BP is based on the operating
of tansigmoid as a sigmoid function for the hidden layer aswell as pure linear function
for the output layer. In this context, Eqs. (1) and (2) are the illustrative of hidden and
output structure, respectively. As the same manner, the predicted output of the net
can be achieved through the Eqs. (3) and (4) and algorithms were trained in three
steps:

1. Forward the input data
2. Compute and propagate error backward
3. Update the weights

x j =
t−n∑

i=t−1

h∑

j=1

ωi j × yi + b j (2)

y j = 1

1 + exp(−x j )
j = 1, 2, . . . , h (3)

xt =
h∑

j=1

ω j t × y j + at t = 1, . . . , T (4)
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yt = xt t = 1, . . . , T (5)

where,

x j , y j Input and output of the jth node of the hidden layer
ωi j Weight between ith input layer neuron and jth hidden layer neuron
b j , a j Bias of the input and the hidden layers which are within the range of [−1,

1]
n, h, T Number of input, hidden, and output layer nodes
xt , yt Input and output values of the output layer at time horizon t
ω j t Connection weights of the jth hidden and output layers.

The mean square error of per cycle or epoch (Total square error for all learning
models) and the norm of the gradient error is less than a predetermined value. The
BP’s view rest on the assumption of error gradient technique in the weight space.
Hence, there is possibility to catch in Local minimum. To avoid such obstacle, we
can use stochastic gradient with different values for weights. Considering the afore-
mentioned concept, the weight adjustment rule in ith iteration depends on the size
of the weight in the previous iteration as in Eq. (6).

MSE = 1

2

T∑

t=1

(ŷt − yt )
2 (6)

where, ŷt and yt are the predicted results and expected output of the neural network,
respectively. As a result, trapping in local minimum and placing on flat surfaces can
be avoided, however, the search speed increases with gradual increase of step modi-
fication. It is observed from BP’s properties that it can show undetected features of
input data in hidden layer of network. Hence, the adjusting procedure is initiated by
Eqs. (7) and (8) to propagate the weights of hidden and input neurons as follows:

�ω j t ∝ −∂MSE

∂ω j t
(7)

�ω j t = −η

(
∂MSE

∂yt

)(
∂yt
∂xt

)(
∂xt
∂ω j t

)
= η(ŷt − yt )

(
∂
(
(1 + exp(−xt ))−1

)

∂xt

)
y j

= η(ŷt − yt )yt (1 − yt )y j
for j = 1, . . . , h, t = 1, . . . , T (8)

In which,

�ω j t Weights of hidden neurons
η Learning rate
∂MSE
∂yt

Derivative of the error with respect to the activation
∂yt
∂xt

Derivative of the activation with respect to the net input
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∂xt
∂ω j t

Derivative of the net input with respect to a weight.

According to the association of error (MSE) in each step of iteration, if the algo-
rithm continues until the error is less than a certain amount, BP will terminate which
can lead us to over-fitting. Over-fitting is caused by the weight adjusting that may’ve
not a conformity with overall distribution data. By increasing the number of itera-
tion, the complexity of the hypothesis space learned by the algorithm becomes more
and more comprehendible until it can able to evaluate noise and rare example of a
network in the training set properly. The solution is to import approved collection
called validation set to stop learning when the error is small enough in this series
and also to network for simpler hypothesis spaces. Then, the amount of weight in
each iteration can be reduced. After determining the optimized values of weights,
the error in all nodes can participate as follows:

�ωi j ∝ −∂MSE

∂ωi j
(9)

Consequently,

�ωi j = −
T∑

t=1

[(
∂MSE

∂yt

)(
∂yt
∂xt

)(
∂xt
∂y j

)](
∂y j
∂x j

)(
∂x j

∂ωi j

)

= η

T∑

t=1

[
(ŷt − yt )yt (1 − yt )ωi t

]
y j (1 − y j )yi

i = t − n, . . . , t − 1 j = 1, . . . , h (10)

2.4 Levenberg Marquardt Algorithm (LM)

The LM is a computational approach for data mining problems of NN which include
uncertain parameter structure. In this premise, LM categorize the input data set by
learning the NN algorithm to adapt with the previous state of parameter through
the error expected (MSE). This method is basically drowned out by the popular
Gaussi-Newton technique [21] in non-singularity functions (tansig) as in Eqs. (11)
and (12):

xk+1 = xk + �x k = 1, . . . , N (11)

In which, xk+1, xk and �x represent the current state, historical recent state, and
the deviationwith time step of time series, respectively. The deviation can bemodeled
in the LM concept in which the Jacobians of errors train each node of neural network
as follows:
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�x = [
J T J + ηI

]−1
J T MSE (12)

where, the J, η and MSE represent the first derivative of errors with respect to the
back propagation process, learning rate (70%) and the mean square error, respec-
tively. Themerit of LM is the speed of convergence that aims to escape from the local
minima for the sake of prediction [22]. According to the abovementioned equation,
LMmethod has been conducted a correcting system on error (MSE) instead of using
Hessian matrix. It is noted that the main point in the weight adjusting of NN is the
propagation of neurons of hidden layer which over fitting may have been occurred,
if the covariance of data set is contaminated with heterogeneous pattern [23]. Hence,
the propagation search is described as Eqs. (13) and (14):

ωk+1
i j = ωk

i j + �ωi j k = 1, . . . , N (13)

�ωi j = [
J T J + ηI

]−1
J T MSE (14)

2.5 Bayesian Regularization (BR)

After considering the standardizing steps of LM in the propagation process, Bayesian
Regularization (BR) is applied for the over-fitting problem of weight allocation in
NN [24, 25]. Meanwhile, BR detects the unregulated weights considering their error
(MSE) as well as accelerates the search speed for classifying the weights by the help
of reducing their possibility from the state space. In another word, BR filters out the
unbiased weights which are selected randomly. Plus, by determining such weight
that are the white noises of NN, the optimum values can be more achievable than its
former state. Then, by adding the extra term to the propagation equations as the sum
of all weights of net, the decision function for the learning is described as follows
[26]:

Min �ωi j = αE(w) + βMSE
α, β> 0

(15)

E(w) = 1

2

N∑

i=1

ω2
i (16)

In which, MSE, E(w), α and β are the mean square error of NN, total sum of all
weights, and filtering variables, respectively [27, 28]. Hence, when the possibility of
unbiased weights decreases, the convergence of forecasting increases till it is turned
to a resistant computational unit against the local optimums. According to the volume
of input data as well as the learning interactions, the training rate of BR technique has
been set to 70%. As it can be inferred from the Eq. (15), the propagation procedure is
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converted to the quadratic equation optimization which the filtering variables play a
regularization role in this problem. By solving this equation and finding theminimum
point for the feasible solution of variables, the propagation process will be improved
as follows [29]:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

αop = γ

2Eω(ωop)

βop = N−γ

2MSE
γ = K − αTrace(A)−1

α = 1
σ 2

ω

(17)

The cooperation ofγ that is the optimumdiagnostic number of regularizedweights
with the covariance factor of input data set leads to the refinement of feasible solutions
of quadratic problem. In this equation, K is the weight matrix of neural network and
A is the Hessian matrix of the quadratic problem which acts as variance operator to
determine the error deviation as well as α has an inverse relation with diversity of
weights. It is noted that, the effective number of γ can vary from 0 to K because of
the priority of input data set. Hence, the suitable set of solutions which are the best-
fitted in the quadratic problem enhance the propagation modelling by diminishing
the noises from the Eq. (15).

2.6 Scaled Conjugated Gradient (SCG)

In this step, the conjugate scope is used to maximize the optimization feature of
dynamic technique. The concept of SCG is based on the arrangement of overall
minima of quadratic problem which aims to decrease the slop of errors. In this
category, we consider a gradient operator for both errors and gradient of errors. After
conducting the two aforementioned techniques, SCG initialize with x0 as the primary
point of linear searching algorithm for weights in accordance to Eq. (18) [30]. The
combinatory gradient can be checked with Eq. (19).

x0 ∈ R, f (x) ≤ f (x0) (18)

‖∇ f (x) − ∇ f (y)‖ ≤ L‖x − y‖
y = gk+1 − gk
gk = ∇ f (xk) (19)

In which∇ f (x),∇ f (y) and L are the error gradient, gradient of error gradient of
weight matrixes as well as x and y are the demonstration of input weights, and error
gradient, respectively [31]. It has to be noted that the procedure can be achieved under
the differentiability of objective function (15). In this assumptions, the propagating
process of SCG can be expressed as follows (20) [32]:



244 A. Masoumi et al.

xk+1 = xk + αkdk → (ωk+1 = ωk + αkdk)

dk+1 = −θk+1gk+1 + βksk

θk+1 = sTk sk
yksk

sk = xk+1 − xk (20)

In which dk and αk are the direction and step counter of searching technique [33].
According to the quasi-newton theorem, if βk = 1 then the possibility of θk for
being a positive definite matrix increases. Therefore, we can call the first step to be
innervated as:

g0 = ∇ f (x0), d0 = −g0, α0 = 1

‖g0‖ (21)

In addition, the searching algorithm updates every iteration until the Eq. (19) can
be satisfied. Hence, the Eq. (20) indicates us that the propagating process of SCG
is completely depends on the optimal selecting of dk land αk [34]. This premises
imposes us that the step counter (αk) must be determined originally for accelerating
the computation search. Thereby, theWolf condition is implemented on the objective
function for this specific purpose as in Eq. (22) [35]:

f (xk + αkdk) − f (xk) ≤ σ1αkg
T
k dk

∇ f (xk + αkdk)
T ≥ σ2g

T
k dk (22)

where σ1 and σ2 are the positive constant considering 0 < σ1 ≤ σ2< 1. At last, the
configuration of three strong computational units which compensate the propagating
search that is depicted in the following section.

3 Numerical Result and Discussions

3.1 Resiliency of Hybrid Proposed Strategy

In the conducted survey, the set of electrical load demand are assembled by three
steps as: the training, the validation, and the testing that are valued by a tentative
options 70%, 15%, and 15%, respectively. In order to fit the assumption of proposed
technique byNN, theMSE criterion serves as the best identification of error distance.
This criteria is defined for each stages of DANN to reach the constraints satisfaction.
Moreover, after aforementioned scaling standardize the output, the analogy between
the real historical demand data set and the linearized prediction set is obtained to
verify the compatibility of algorithm as shown in Fig. 5.
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Fig. 5 The flowchart of the proposed strategy

3.2 Robustness and Scalability

The forecasting operatory system is made by main body of NN which benefits from
three learning technique that are LM, BR, and SCG. The selection of 4344 net
input is allocated from the Canada, Ontario independent electricity operator sys-
tem (IESO), during 1/1/2001 to 6/30/2001 till 1/1/2009 to 6/30/2009 in six month
time horizons as well as 9 years which have been imported to DANN. The con-
figuration of abovementioned structure are set as 10 hidden layer within 24 hid-
den neurons for each stage as well as 4320 output set iteratively. Furthermore, the
comparison of predetermined and forecasted outputs in association with error func-
tionality (MSE) are denoted as in Figs. 6, 7, 8, and 9. According to the Figs. 8
and 9, the result is accommodated with the actual historical data set. To qualify the
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Fig. 6 Actual value of the power consumption from 1/1/2010 to 6/30/2010

Fig. 7 The demonstration of predicted set of input

Fig. 8 The comparison of actual and estimated power consumption from 1/1/2010 to 6/30/2010
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Fig. 9 The comparison of actual and estimated power consumption from 1/1/2010 to 2/1/2010

Fig. 10 The actual value of input data set for the last week during 6/24/2010 to 6/30/2010

Fig. 11 The comparison of actual and estimated power consumption 6/24/2010 to 6/30/2010

contribution of simulation, the symmetric resolution of compared output of net-
work are presented in Figs. 10 and 11 which convey the participation of measured
dataset with forecasted output, respectively. As it is obvious, the blue line consid-
ered as the actual selection of measured data from IESO. In addition the red curve is
defined to output value of simulated approach coherently. According to the identifi-
cation of error trials of our correlatedmethod, after 1000 epoch, theMSE is decreased
to 8.803 × 10−3 (ε) which enables the conformity of strategy. The appraisal of NN
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construction incorporated with performance of NN are depicted in Figs. 12 and 13,
respectively. Moreover Figs. 14 and 15 attached to clarify the feasibility of algorithm
substantially. It is worth mentioning that, Fig. 16 is represented as linear regression
view of simulated structure to fit all data set simultaneously.

Fig. 12 The configuration of LM method
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Fig. 13 The performance of LM-DANN

Fig. 14 The autocorrelation of error
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Fig. 15 The error histogram of proposed architecture

4 Conclusion

All in all, we have assumed the advantage of ANN for the long term forecasting
of electrical consumption as well as to predict the desired data set using the error
criterion. In this paper, the intermittent nature of our problem has been depicted us
that implementing proposed method is applicable for the uncertain frequency data
sets. Thereby, the historical sets is reported by IESO, Canada’s power network, for
the purpose of estimating . Plus, after determining the composition of DANN, the
regulating steps which is guided by training progress of demand curve are applied to
gain dependable results. Consequently, the simulation performance of DANN covers
the sensitivity and practicable operating of proposed architecture which is obtained
as tolerable minimum MSE.
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Fig. 16 The regression criterion for proposed architecture

MATLAB Code

Note that sheets 1 and 2 are the historical data and the time series data set of input,
respectively. In addition, the training progress should be applied after each stages
met their termination condition and gained acceptable performance. The dash sign
is separated all training slops in order.
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% Import the file which is the historical data set with 
respect to month/day/year in Excel format

function [newData1] = importfile3(fileToRead1)
sheetName='Sheet1'; 
[numbers, strings] = xlsread(fileToRead1, sheetName);
if ~isempty(numbers)

newData1.data =  numbers;
end
if ~isempty(strings)

newData1.textdata =  strings;
end
function [newData1] = importfile3(fileToRead1)

% Import the file which is the actual data in Excel 
format.

sheetName='Sheet2'; 
[numbers, strings] = xlsread(fileToRead1, sheetName);
if ~isempty(numbers)

newData1.data =  numbers;
end
if ~isempty(strings)

newData1.textdata =  strings;
end

% Construct the main body of NN and adjust the hidden 
layer size and its neurons in another Matlab file.

inputSeries = tonndata(data,false,false);
targetSeries = tonndata(data,false,false);
inputDelays = 0:24;
hiddenLayerSize = 10;
net = timedelaynet(inputDelays,hiddenLayerSize);
[inputs,inputStates,layerStates,targets] = pre-
parets(net,inputSeries,targetSeries);

% set the primary values of training, validation and 
testing stages.
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net.divideParam.trainRatio = 70/100;
net.divideParam.valRatio = 15/100;
net.divideParam.testRatio = 15/100;

% Determine the training approach.
net.trainFcn = 'trainlm'
[net,tr] = 
train(net,inputs,targets,inputStates,layerStates);

% Check the validation in accord with the flowchart.

outputs = net(inputs,inputStates,layerStates);
errors = gsubtract(targets,outputs);
performance = perform(net,targets,outputs)

% Plot the forecasted output.

figure, plotperform(tr)
figure, plottrainstate(tr)
figure, plotresponse(targets,outputs)
figure, ploterrcorr(errors)
figure, plotinerrcorr(inputs,errors)

nets = removedelay(net);
[xs,xis,ais,ts] = pre-
parets(nets,inputSeries,targetSeries);
ys = nets(xs,xis,ais);
earlyPredictPerformance = perform(net,tc,yc) 
% Make another Matlab files and apply the code for both 
BRNN and SCGNN.

% Construct the main body of NN and adjust the hidden 
layer size and its neurons in another Matlab file.

inputSeries = tonndata(data,false,false);
targetSeries = tonndata(data,false,false);
inputDelays = 0:24;
hiddenLayerSize = 10;
net = timedelaynet(inputDelays,hiddenLayerSize);
[inputs,inputStates,layerStates,targets] = 
preparets(net,inputSeries,targetSeries);

% set the primary values of training, validation and 
testing stages.

net.divideParam.trainRatio = 70/100;
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net.divideParam.valRatio = 15/100;
net.divideParam.testRatio = 15/100;

% Determine the training approach.
net.trainFcn = 'trainbr'
[net,tr] = 
train(net,inputs,targets,inputStates,layerStates);

% Check the validation in accord with the flowchart.
outputs = net(inputs,inputStates,layerStates);
errors = gsubtract(targets,outputs);
performance = perform(net,targets,outputs)

% Plot the forecasted output.

figure, plotperform(tr)
figure, plottrainstate(tr)
figure, plotresponse(targets,outputs)
figure, ploterrcorr(errors)
figure, plotinerrcorr(inputs,errors)

nets = removedelay(net);
[xs,xis,ais,ts] = pre-
parets(nets,inputSeries,targetSeries);
ys = nets(xs,xis,ais);
earlyPredictPerformance = perform(net,tc,yc)

% Construct the main body of NN and adjust the hidden 
layer size and its neurons in another Matlab file.

inputSeries = tonndata(data,false,false);
targetSeries = tonndata(data,false,false);
inputDelays = 0:24;
hiddenLayerSize = 10;
net = timedelaynet(inputDelays,hiddenLayerSize);
[inputs,inputStates,layerStates,targets] =
 preparets(net,inputSeries,targetSeries);

% set the primary values of training, validation and 
testing stages.

net.divideParam.trainRatio = 70/100;
net.divideParam.valRatio = 15/100;
net.divideParam.testRatio = 15/100;

% Determine the training approach.
net.trainFcn = 'trainscg'
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[net,tr] = 
train(net,inputs,targets,inputStates,layerStates);

% Check the validation in accord with the flowchart.
outputs = net(inputs,inputStates,layerStates);
errors = gsubtract(targets,outputs);
performance = perform(net,targets,outputs)

% Plot the forecasted output.

figure, plotperform(tr)
figure, plottrainstate(tr)
figure, plotresponse(targets,outputs)
figure, ploterrcorr(errors)
figure, plotinerrcorr(inputs,errors)

nets = removedelay(net);
[xs,xis,ais,ts] = pre-
parets(nets,inputSeries,targetSeries);
ys = nets(xs,xis,ais);
earlyPredictPerformance = perform(net,tc,yc)
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