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Introduction

Motivation

Providing a reliable and secure power and energy system is one of the main
challenges of the new era. The efficient operation of power systems contributes to
decrease in fuel consumption and gas emission, conservation of natural resources,
ensuring sustainability with better planning, and providing cleaner energy. The
evolving modern optimization methods lead to more effective solutions and are
promising for the continuously changing power system management, planning, and
operation. One of the most favored tools of researchers and electric system
developers for power system optimization is MATLAB software. Therefore, there
has been an increased call for sharing the properly developed codes for power
system optimization.

A Brief Overview of the Book Covered Topics

The book is suitable for dedicated and general audiences that include power system
professionals, as well as researchers and developers from electrical power engi-
neering and power system planning communities. It is expected that readers to be
graduates of energy and power engineering degree programs having a basic
mathematical background.

The Book Organization

The book is organized under two main sub-topics, comprising of power system
optimal planning and configuration and power system optimal operation. Brief
description of chapters’ content is presented in the following paragraphs.
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Chapter “Modelling for Composite Load Model Including Participation of Static
and Dynamic Load” focuses on modeling for composite load model including
participation of static and dynamic load. It is well recognized that voltage problems
in power system are much affected through the connected loads. Different types of
load can be modeled on their characteristic basis for computation of power system
problems effectively. For different power system studies, especially in the area of
power system optimization problems that includes voltage control with reactive
power compensation, transfer function ΔQ ⁄ΔV of composite load is required. This
chapter gives a detailed mathematical modeling to compute the reactive power
response with small voltage perturbation for composite load. Composite load is
defined as a combination of static and dynamic load model. To develop this
composite load model, the exponential load is used as a static load model and
induction motors are used as a dynamic load model in this chapter. To analyze the
dynamics of induction motor load, fifth-, third-, and first-order models of induction
motor are formulated and compared using differential equation solver in MATLAB
coding. Since the decentralized areas have many small consumers which may
consist large numbers of induction motors of small rating, it is not realistic to model
either a single large rating unit or all small rating induction motors together that are
placed in the system. In place of using single large rating induction motor, a group
of motors are being considered, then aggregate model of induction motor is
developed using law of energy conservation, and this aggregate model is used as a
dynamic load model. Transfer function of composite load is derived in this chapter
by successive derivation for exponential model of static load and for fifth- and
third-order induction motor dynamic load models using state-space model.

Chapter “A Novel Forward-Backward Sweep Based Optimal DG Placement
Approach in Radial Distribution Systems” presents a novel forward–backward
sweep-based optimal DG placement approach in radial distribution systems. This
chapter proposes a novel backward–forward sweep (BFS)-based methodology for
optimal allocation of DG micro-plants in radial distribution systems aiming to
minimize total real power losses. Voltage-permitted range limit and feeder capacity
criterion are considered as optimization constraints. Simulation of BFS-based DG
placement method is conducted on 33-bus distribution network to demonstrate its
robustness and effectiveness in comparison with other procedures.

Chapter “Optimal Capacitor Placement in Distribution Systems Using a
Backward-Forward Sweep Based Load Flow Method” investigates optimal
capacitor placement in distribution systems using backward–forward sweep-based
load flow method. This chapter aims to present a backward–forward sweep (BFS)-
based algorithm for optimal allocation of shunt capacitors in distribution networks.
Minimum value of real power losses is selected as objective function. Moreover,
feeder current capacity and bus voltage magnitude limits are considered as opti-
mization constraints. In addition, it is assumed that sizes of capacitors are known
parameters. First capacitor is considered to be located at first bus of test system.
Then, BFS load flow is run and objective function is saved as first row and first
column component of a loss matrix. Secondly, first capacitor is assumed to be
installed at bus 2 and BFS load flow is run to obtain objective function as second
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row and first column component of loss matrix. When all buses are assessed for
installation of capacitor 1 and losses are calculated in each scenario, similar anal-
yses are carried out and objectives are saved as second column of loss matrix. Same
strategy is applied on other capacitors. Finally, a loss matrix is formed with a
number of rows and columns equal to a number of buses and shunt capacitors,
respectively. Best places for installation of capacitors are determined based on
components of loss matrix. Simulation of BFS-based capacitor placement problem
is conducted on 33-bus distribution network to demonstrate its robustness and
effectiveness in comparison with other procedures.

Chapter “Optimal Capacitor Placement and Sizing in Distribution Networks”
discusses optimal capacitor placement and sizing in distribution networks. Utilizing
capacitor banks in order for local compensation of load reactive power is common
in distribution networks. Using capacitors has positive effects on networks such as
power and energy loss reduction, voltage deviation, and network harmonic
reduction as well as improvement in network power factor. Capacitor placement is
applied on the network in the form of single or multi-objective problems.
Decreasing the total network loss is often the main reason for using capacitors in
distribution networks. Capacitor placement approach involves the identification of
location for capacitor placement and the size of the capacitor to be installed at the
identified location. An optimization algorithm decides the location of the nodes
where the capacitors should be placed. As we know, the capacitors are categorized
into two main types of fixed and switchable capacitors. Selecting an appropriate
type of capacitor is related to the topology of network, load value, and economic
situation. They are also different from coding point of view. In this section, the
model of coding is presented at first, and then, the approach of applying is described
based on optimization algorithm. The capacitors are often used for peak loads, but
they may be present in the network in off-peak due to the switching issues. The
network voltage may be increased in off-peak with the presence of capacitors.
Therefore, it is very important to consider both peak and off-peak in the capacitor
sizing and placement problem. The proposed model is applied on IEEE 10 and
33-bus standard test cases in order to demonstrate the efficiency of the proposed
model.

Chapter “Binary Group Search Optimization for Distribution Network
Reconfiguration” studies binary group search optimization for distribution net-
work reconfiguration. Total loss minimization is considered as the objective which
is solved subject to system radial operation and power flow constraints. Here, the
basics of GSO algorithm is presented first and then necessary modification for
developing BGSO is discussed. The main part of this chapter deals with a source
code, which expresses step-by-step implementation of BGSO method to optimal
network reconfiguration problem. Needless to emphasize that the BGSO and
associated source code presented in this chapter is a general engine that can be
easily adjusted to any optimization problem with binary variables. In addition, the
source code associated with the developed forward–backward sweep-based load
flow study is also provided. The simulation studies are performed on different
distribution networks to examine the scheme at various conditions and problem
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complexities. Comprehensive simulation studies conducted in this chapter verify
effectiveness of the BGSO and developed source code for solving optimal distri-
bution network reconfiguration problem.

Chapters “Combined Heat and Power Economic Dispatch Using Particle Swarm
Optimization,” “Combined Heat and Power Stochastic Dynamic Economic
Dispatch Using Particle Swarm Optimization Considering Load and Wind Power
Uncertainties,” and “Economic Dispatch of Multiple-Chiller Plants Using Wild
Goats Algorithm” exercises the combined heat and power economic dispatch using
particle swarm optimization, the combined heat and power stochastic dynamic
economic dispatch using particle swarm optimization considering load and wind
power uncertainties, and the economic dispatch of multiple-chiller plants using wild
goats algorithm, respectively.

Chapter “Optimization of Tilt Angle for Intercepting Maximum Solar Radiation
for Power Generation” investigates the optimization of tilt angle for intercepting
maximum solar radiation for power generation. The novelty is determination of
optimum tilt angles (b_opt) for photovoltaic system at 11 different sites for Gujarat
in India. The b_opt is searched for maximum incident solar radiation (SR). For
calculation, SR values given by National Aeronautics and Space Administration
(NASA) are utilized. It was found that the optimum tilt angle varies between 1° and
57° throughout the year in Gujarat, India. The monthly optimum tilt angle is
maximum in December for different sites in Gujarat, India. This study is useful for
industry and researcher to install PV system in India to generate maximum power.

Chapter “Probabilistic Power Flow Analysis of Distribution Systems Using
Monte Carlo Simulations” analyzes the probabilistic power flow analysis of dis-
tribution systems using Monte Carlo simulations. This chapter aims to present a
Monte Carlo simulation-based probabilistic power flow method for finding all
critical buses against variations of active and reactive loads. In this approach,
backward–forward sweep-based load flow is used to find optimal operating point of
benchmark distribution grid in each scenario. The number of scenarios with bus
voltage magnitude violation probability is used to cluster nodes into two critical and
non-critical categories. Robustness and effectiveness of Monte Carlo-based prob-
abilistic power flow algorithm are revealed by simulations on 33-bus radial dis-
tribution system.

Chapter “Long-Term Load Forecasting Approach Using Dynamic Feed-Forward
Back-Propagation Artificial Neural Network” implements the long-term load
forecasting approach using dynamic feed-forward back-propagation artificial neural
network. This chapter presents a novel approach based on dynamic feed-forward
back-propagation artificial neural network (FBP-ANN) for long-term forecasting of
total electricity demand. A feed-forward back-propagation time series neural net-
work consists of an input layer, hidden layers, and an output layer and is trained in
three steps: a) Forward the input load data, b) compute and propagate the error
backward, and c) update the weights. First, all examples of the training set are
entered into the input nodes. The activation values of the input nodes are weighted
and accumulated at each node in the hidden layer and transformed by an activation
function into the node’s activation value. It becomes an input into the nodes in the
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next layer, until eventually the output activation values are found. The training
algorithm is used to find the weights that minimize mean squared error. The main
characteristics of FBP-TSNN are the self-learning and self-organizing. The pro-
posed algorithm is implemented on Iran’s power network to prove its accuracy and
effectiveness and compare with real historical data.

Chapter “Multi-objective Economic and Emission Dispatch Using MOICA: A
Competitive Study” applies MOICA on multi-objective economic and emission
dispatch using. The application of multi-objective imperialist competitive algorithm
is investigated for solving economic and emission dispatch problem. It is aimed to
minimize two conflicting objectives, economic and environmental, while satisfying
the problem constraints. In addition, nonlinear characteristics of generators such as
prohibited zone and ramp up/down limits are considered. To check applicability
of the MOICA, it is applied to 12 h of IEEE 30-bus test system. Then, results of
MOICA are compared with those derived by non-dominated sorting genetic algo-
rithm and multi-objective particle swarm optimizer. The finding indicates that
MOICA exhibits better performance.

Chapter “Voltage Control by Optimized Participation of Reactive Power
Compensation Using Fixed Capacitor and STATCOM” integrates fixed capacitor
and STATCOM to control voltage by optimized participation of reactive power
compensation. Finally, chapter “Backward-Forward Sweep Based Power Flow
Algorithm in Distribution Systems” employs backward–forward sweep-based
power flow algorithm in distribution systems. To solve this problem, backward–
forward sweep (BFS) load flow algorithm is presented by scholars. This chapter
aims to present MATLAB codes of BFS power flow method in a benchmark
distribution grid. Feeder capacity and voltage magnitude limit are considered in
finding a good operating point for test grid. Input data such as bus and line
information matrices are presented in MATLAB codes. Simulations are conducted
on IEEE 33-bus radial distribution system. Feeder current, bus voltage magnitude,
active and reactive power flowing in or out of buses, and total real power loss
system are found as outputs of BFS load flow approach.
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Modelling for Composite Load Model
Including Participation of Static
and Dynamic Load

Nitin Kumar Saxena and Ashwani Kumar

Abstract It is well recognized that voltage problems in power system is much
affected through the connected loads. Different types of load can be modeled on
their characteristics basis for computation of power system problems effectively. For
different power system studies especially in the area of power system optimization
problems that includes voltage control with reactive power compensation, trans-
fer function �Q/�V of composite load is required. This chapter gives a detailed
mathematical modelling to compute the reactive power response with small voltage
perturbation for composite load. Composite load is defined as a combination of static
and dynamic loadmodel. To develop this composite loadmodel, the exponential load
is used as a static load model and induction motors are used as a dynamic load model
in this chapter. To analyze the dynamics of induction motor load, fifth, third and
first order model of induction motor are formulated and compared using differential
equations solver inMATLAB coding. Since the decentralized areas have many small
consumers which may consist large numbers of induction motors of small rating, it
is not realistic to model either a single large rating unit or all small rating induction
motors together that are placed in the system. In place of using single large rating
induction motor a group of motors are being considered and then aggregate model
of induction motor is developed using law of energy conservation and this aggre-
gate model is used as a dynamic load model. Transfer function of composite load is
derived in this chapter by successive derivation for exponential model of static load
and for fifth and third order induction motor dynamic load model using state space
model.

Keywords Static load · Dynamic load · Composite load · Aggregate load · ZIP
load model · Exponential load model · Induction motor load

N. K. Saxena (B)
Electrical and Electronics Engineering, KIET Group of Institutions, Ghaziabad, India
e-mail: nitinsaxena.iitd@gmail.com

A. Kumar
Electrical Engineering Department, National Institute of Technology, Kurukshetra, India
e-mail: ashwa_ks@yahoo.co.in

© Springer Nature Switzerland AG 2020
M. Pesaran Hajiabbas and B. Mohammadi-Ivatloo (eds.),
Optimization of Power System Problems, Studies in Systems, Decision and Control 262,
https://doi.org/10.1007/978-3-030-34050-6_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34050-6_1&domain=pdf
mailto:nitinsaxena.iitd@gmail.com
mailto:ashwa_ks@yahoo.co.in
https://doi.org/10.1007/978-3-030-34050-6_1


2 N. K. Saxena and A. Kumar

1 Introduction

Power system problems involve how the systems behave at generation, transmission
and distribution side for varieties of changes in load, input and faults. The power
system based problems can be classified into a broad range, depending on the interest
of individual researchers and power engineers and hence every research has their own
domain of interests depending on the available state, control and disturbance vectors.
But the main task of every study is to establish secure, reliable, continuous, efficient,
stable and economic power flow in power system. Many researchers and power
engineers have carried out their researches in the area of optimization for power
system problems too. Further, these studies can broadly be classified into the power
systems problems associated with voltage stability, ancillary service, power quality,
load forecasting, electricity pricing and many more depending on the researchers
and power engineers’ domain of interest.

Load characteristics have also significant impacts on the power system problems.
When the load demand fluctuates, the voltage level also changes. Referring to ‘Prin-
cipal of Decoupling’ in power system which states that real power has more affinity
towards power angle or frequency while reactive power has more affinity toward
voltage, impact of voltage can be better correlate with load reactive power change
and can almost be neglectedwith load real power change. Hence, to control the power
system voltage, an adequate reactive power must be available at load end. This ade-
quate reactive power control in power system at load is termed as reactive power
compensation. Without any compensation this voltage variation may go beyond the
voltage permissible range and therefore such power would not be acceptable for the
end users [1]. Reference [2] explains how the power system voltage and choice of
compensation techniques significantly depends on selection of the load model and
its parameters. In order to effectively analyze the power system problems, the loads
need to be modeled accurately along with the other power system elements like
transformers, transmission lines, generators etc. Power system planners and opera-
tors attempt to accurately model loads in order to analyze their systems. However,
it is very difficult to exactly describe the loads in a mathematical model because
loads consist several components and have very different dynamic characteristics
[3]. The information/knowledge about load model parameters, that properly depict
load behaviour during electric power system disturbances, enables proper power sys-
tem planning, reliable prediction of prospective operating scenarios and provides for
adequate control actions to be chosen in order to prevent undesired system behaviour
and ultimately system instability. Accurate load modelling is important to correctly
predict the response of the system to disturbances. With a poor load model we would
need to operate the system with a higher safety margin [4]. Load models, which
quantify real and reactive power responses to voltage and frequency disturbances,
are generally divided in two groups—static load models (SLM) and dynamic load
models (DLM). These SLM and DLM are classified according to the effect of the
voltage on the load. If the load variation depends only on the instantaneous voltage
input and is unrelated to the preceding voltage inputs, the static load model is used.
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However, if the load characteristics are affected by all of the voltage inputs over time,
the dynamic load model needs to be used [3].

Since the static and dynamic load their own existence in power system so a com-
bine load model must be developed for power system studies. The model consisting
static and dynamic both the load chrematistics together are called composite load.
Since the distribution areas have many consumers which may consist large numbers
of induction motors, it is not realistic to model every induction motor that is in the
system. However, it is impractical to accurately represent each individual load due
to the intense computation process involved. Hence, aggregate models or single unit
models with minimum order of induction motor are needed to represent a group of
motors. Appropriate dynamic load model aggregation reduces the computation time
and provides a faster and efficient model derivation and parameters identification. It
is found that the small-scale aggregationmodel gives acceptably accurate results than
the large-scale aggregationmodel and is good for power system stability analysis [5].
Hence, in place of using single large rating induction motor a group of motors are
being considered and then aggregate model of induction motor is developed using
law of energy conservation [6].

Summarizing the all facts discussed above the outline of this chapter is to elaborate
the detailed mathematics for composite load which includes static, dynamic and
aggregation of load model. Since, the Principle of Decoupling in power system
explains that the load reactive power is more influence with voltage compares to
load real power; therefore, modeling of composite load is focused for direct coupling
between reactive power and voltage only in this chapter. Hence, a transfer function
of voltage changes with reactive power change is derived using state space equations
for induction motor and then same is derived for the composite load.

2 Classification of Load Model

Distribution system has the most uncertain behaviour due to the different existing
load characteristics. The load can be classified by different category as in Table 1.

The characteristics of each type of load is different depending on the participation
of lighting load, small motor loads, large motor loads, transformer loads and other
miscellaneous loads. A composite load can be developed by knowing the percentage
of different types of load participation at substation. Table 1 explains the different
classification of possible load in distribution system; still load characteristics are too
diversified to define load behaviour. Power engineers also explain the load on the
basis of diversity in which load curve and load duration curve are developed for a
specified time on the basis of available statistical data. Load pattern of consumers
defines by following terms irrespective of the Category of load.
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Table 1 Classification of load on the basis of different category

Sr. No. Category of load Remarks for category

1 On the basis of circuit element available
in load

Resistive load
Capacitive load
Inductive load

2 On the basis of voltage current relation in
load: linear or non-linear load

Linear load
Non-linear load

3 On the basis of load consumer category Residential electrical loads
Commercial electrical loads
Industrial electrical loads
Municipal/governmental electrical loads

4 On the basis of load group Individual loads
Area load

5 On the basis of load operation time Continuous electrical loads
Non-continuous electrical loads
Intermittent duty electrical loads
Periodic duty electrical loads
Short time duty electrical loads
Varying duty electrical loads

6 On the basis of electrical load number of
phase

Single phase electrical loads
Three phase electrical loads

7 On the basis of unit of rating of the load Electrical loads in KVA
Electrical loads in KW
Electrical loads in HP

2.1 Connected Load

A part of the total load of specified region/area that is in operation for a particular
instant is called connected load.

2.2 Demand Load

Total load either operational or non-operational of specified region or area for a
particular instant is called demand load.

2.3 Base Load

In a specified area, the entire electrical appliance might be either operational or non-
operational. The reason is that the connected loads are switched on and off regularly.
Even for the loads those are switched on, they are not properly operating with their
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full ratings too. But every instant of time some load always remain presents and this
load is called base load.

2.4 Peak Load

In a specified area, the entire electrical appliance might be either operational or non-
operational. The reason is that the connected loads are switched on and off regularly.
Even for the loads those are switched on, they are not properly operating with their
full ratings too. But for a particular time interval, a maximum load can occur at any
instant of time this load is called peak load.

2.5 Average Load

The average demand or average load of specified area for particular time interval is
defined as the total energy delivered in a certain period divided by the time interval.
Average load can be calculated as a daily average load, weekly average load, monthly
average load and yearly (annual) average load.

These all terns are useful for statistical approach to forecast the load demand. But
for time dependent study of loads dynamic behaviour, mathematical models for load
are required.

3 Structure of Loads Model

For power system studies like load forecasting, planning for new power plant instal-
lation, load scheduling etc., definitions given in previous section are required. A
demand can be planned for the upcoming days, weeks or even for the years using
statistical approach but for dynamic studies, the load characteristics are very impor-
tant in power system studies. This understanding of load characteristics is useful to
formulate the load model which is required for real time mathematical based studies
in power system. The loads may be classified in several groups but they have some
important parameters that must be understood to define the load model.

1. Loads real and reactive power depends on the system voltage.
2. Loads real and reactive power depends on the system frequency.
3. Load characteristics affect the dynamic of power system.
4. Large number of loads of different characteristics.
5. Different loads clubbed together for individual area to develop an aggregate load.

Loads can be modeled for steady state analysis problems or transient state problems
in power system. These all five parameters must be validated for developing the
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load model and therefore, achievement of loads characteristic means to know how
the overall load real and reactive power behaves for the variation of voltage and
frequency in power system.

Power system planners and operators attempt to accurately model the loads in
order to analyze their systems. The information or knowledge about load model
parameters, that properly depict load behaviour during electric power system dis-
turbances, enables proper power system planning, reliable prediction of prospective
operating scenarios and provides for adequate control actions to be chosen in order
to prevent undesired system behaviour and ultimately system instability. With a poor
load model we would need to operate the system with a higher safety margin [4] and
therefore system becomes uneconomic.

A load model represents mathematical expression active and reactive power
changes to power system voltage and frequency [7]. A load consists of several com-
ponents that have very different dynamic characteristics [3]. However, it is very
difficult to exactly describe the loads in a mathematical model due to several factors;

1. A large number of diverse load components.
2. Continuous changes in load demand.
3. Lack of precise information regarding composition of load.
4. Uncertainty regarding the characteristic of loads due to sudden disturbances.

Therefore, to identify actual load pattern for any power system study, a load model
must be design including the factors as mentioned above. Influence of these factors
may be accompanied with using static load, dynamic load and aggregate load model
simultaneously. Such load models are called composite load model [8]. Traditionally
loads are classified into two categories, static load and dynamic load. An aggregate
load model can be developed by collecting all similar type loads together. Figure 1
shows a structure of composite loadwhich include static load andnumber of induction
motors connected in parallel to form a dynamic load by aggregate load modelling in
power system.

Fig. 1 Structure of
composite load in power
system
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3.1 Structure for Static Load Model

In static load model, the load variation depends only on the instantaneous voltage
or frequency input and is unrelated to the preceding inputs of voltage or frequency.
Static load model are generally used for the calculation of steady state conditions
and in steady state simulation study of power system.

Static load model is widely used to represent the load characteristics where real
and reactive power depends on the present values of voltage and frequency. The
active power, P and the reactive power,Q are being considered separately. The static
load model can be represented in two ways, polynomial model or exponential model.

3.1.1 Polynomial Type Static Load Model

The load characteristics in terms of voltage are represented by the polynomial model
[9];

P = P0

[
k1 + k2

(
V

V0

)
+ k3

(
V

V0

)2
]

(1)

Q = Q0

[
k4 + k5

(
V

V0

)
+ k6

(
V

V0

)2
]

(2)

whereP andQ are the real and reactive power respectively at any instant when the bus
voltage magnitude is V. The subscript 0 is used to represent the values of respective
variables at initial operating conditions.

The real power expression given in Eq. (1) consists three terms as represented
below in Eq. (3);

P = k1P0 + k2

(
V

V0

)
P0 + k3

(
V

V0

)2

P0 (3)

Considering the all three terms individually,

P =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

k1P0 Ist term
+
k2

(
V
V0

)
P0 IInd term

+
k3

(
V
V0

)2
P0 IIIrd term

(4)

In Ist term, P = constant , it denotes constant power (P) load component.
In IInd term, P

V = constant , it denotes constant current (I ) load component.
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In IIIrd term, P
V 2 = constant , it denotes constant impedance (Z) load component.

This polynomial type static load model, given in Eqs. (1) and (2) for real and
reactive power respectively, consist three components namely constant impedance
(Z) load component, constant current (I) load component and constant power (P)
load component, therefore it is commonly known as ZIP model. The parameters k1,
k2 and k3 denote the proportional coefficients of real and reactive power. This static
load can be generalized individually as constant power, constant current or constant
impedance depending on the value of k1, k2 and k3.

For constant impedance (Z) load model,

P =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

k1P0 = 0 if k1 = 0
+
k2

(
V
V0

)
P0 = 0 if k2 = 0

+
k3

(
V
V0

)2
P0 =

(
V
V0

)2
P0 if k3 = 1

(5)

So,

P =
(
V

V0

)2

P0 (6)

For constant current (I) load model,

P =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

k1P0 = 0 if k1 = 0
+
k2

(
V
V0

)
P0 =

(
V
V0

)
P0 if k2 = 1

+
k3

(
V
V0

)2
P0 = 0 if k3 = 0

(7)

So,

P =
(
V

V0

)
P0 (8)

For constant power (P) load model,

P =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

k1P0 = P0 if k1 = 1
+
k2

(
V
V0

)
P0 if k2 = 0

+
k3

(
V
V0

)2
P0 = 0 if k3 = 0

(9)
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So,

P = P0 (10)

All models explained above are derived for real power expressions only. The same
concept can also be applied for getting the reactive power ZIP load model, Z load
model, I load model and P load model.

The ZIP load model expression for reactive power,

Q = Q0

[
k4 + k5

(
V

V0

)
+ k6

(
V

V0

)2
]

(11)

The constant impedance (Z) load model expression for reactive power,

Q =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

k4Q0 = 0 if k4 = 0
+
k5

(
V
V0

)
Q0 = 0 if k5 = 0

+
k6

(
V
V0

)2
Q0 =

(
V
V0

)2
Q0 if k6 = 1

(12)

So,

Q =
(
V

V0

)2

Q0 (13)

The constant current (I) load model expression for reactive power,

Q =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

k4Q0 = 0 if k4 = 0
+
k5

(
V
V0

)
Q0 =

(
V
V0

)
Q0 if k5 = 1

+
k6

(
V
V0

)2
Q0 = 0 if k6 = 0

(14)

So,

Q =
(
V

V0

)
Q0 (15)

The constant power (P) load model expression for reactive power,
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Q =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

k4Q0 = Q0 if k4 = 1
+
k5

(
V
V0

)
Q0 = 0 if k5 = 0

+
k6

(
V
V0

)2
Q0 = 0 if k6 = 0

(16)

So,

Q = Q0 (17)

These all models given in Eqs. 1–17 are voltage dependent only. To make these
models frequency dependent, expressions explained above can be multiplied with
the factor denoting the frequency dependency of load real and reactive power. Since
the permissible variation of frequency is very less so it can be considered as linear
and therefore factor would be [10];

P = P(V ) × {1 + k7( f − f0)} (18)

Q = Q(V ) × {1 + k8( f − f0)} (19)

where P(V ) and Q(V ) are the expressions for voltage dependant real and reactive
power respectively as explained in Eqs. 1–17 depending on the model type. k7 and
k8 are the proportionality factors for real and reactive power expressions. P and Q
are the real and reactive power respectively at any instant when the bus frequency
is f. The subscript 0 is used to represent the values of respective variables at initial
operating conditions.

3.1.2 Exponential Type Static Load Model

Polynomial load model explains the characteristic of load as ZIPmodel or individual
load model like constant impedance (Z), constant power (P) or constant current (I)
load only. But the actual load is more volatile in nature and even it cannot be possible
to identify it in either of the form of ZIP load model. In such case, exponential type
model contribute to identify the actual static load model. The load characteristics in
terms of voltage are represented by the exponential model [11];

P = P0

(
V

V0

)np

(20)

Q = Q0

(
V

V0

)nq

(21)
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whereP andQ are the real and reactive power respectively at any instant when the bus
voltage magnitude is V. The subscript 0 is used to represent the values of respective
variables at initial operating conditions.

The parameters np and nq denote the exponent coefficients of real and reactive
power. This static load can also be generalized as constant power, constant current
or constant impedance depending on the value of np and nq.

Values of np and nq are considered to be zero for constant power load and this
model is used in load flow studies.

Values of np and nq are considered to be 1 for constant current load and this model
is used for system having large percentage of small rating induction motor.

Values of np and nq are considered to be 2 for constant impedance load and this
model is used for transient studies.

Mathematically,

P = P0

(
V

V0

)np
⎧⎨
⎩
np = 0 constant power load
np = 1 constant current load
np = 2 constant impedance load

(22)

Q = Q0

(
V

V0

)nq
⎧⎨
⎩
nq = 0 constant power load
nq = 1 constant current load
nq = 2 constant impedance load

(23)

For frequency dependent models, expressions explained above can be multiplied
with the factor denoting the frequency dependency of load real and reactive power.
Since the permissible variation of frequency is very less so it can be considered as
linear and therefore factor would be [10];

P = P0

(
V

V0

)np

× {1 + k9( f − f0)} (24)

Q = Q0

(
V

V0

)nq

× {1 + k10( f − f0)} (25)

where k9 and k10 are the proportionality factors for real and reactive power expres-
sions.P andQ are the real and reactive power respectively at any instant when the bus
frequency is f. The subscript 0 is used to represent the values of respective variables
at initial operating conditions.

The static load may have the aggregate characteristics that cannot be analyzed
through either form of the ZIP load model. A composite load may have different
exponent factors for steady state and transient sate analysis of load. References
[12–17] gives a typical range for the Values of np and nq.

0 ≤ np ≤ 3

0 ≤ nq ≤ 7
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3.2 Structure of Dynamic Load

Dynamic load models are such for which load characteristics are affected by all of
the voltage inputs over time used [18]. Motors consume 60–70% of energy from
the power system; therefore, the dynamic characteristics of motors are critical for
dynamic load modelling. In most of studies, induction motors as a load reduce sys-
tem stability and is considered as the main dynamic load in their study system [19].
A basic paper for induction machine has been reported by H. C. Stanley in 1938
[20]. The analysis made by H. C. Stanley is based on the direct three-phase model
using phase variables and its presentation in shifted reference axis. The most popular
induction motor model is presented by P. C. Krause in 1986 and popularly known
as Krause’s model. This model is derived from direct-quadrature model or dynamic
equivalent circuit model [21]. Reference [22] suggests that for most of the analysis,
d–q model with currents as state variables is found most suitable, and the analy-
sis can be carried out in any (stationary, rotor, synchronous or arbitrary) reference
frame. Induction motor behaviour especially during transient conditions is investi-
gated using MATLAB Simulink model in [23]. The simulink implementation based
study for induction machine model appears to be black-boxes and therefore is not
more suitable for researchers. While programming based approach for any system
hasmuch potential for the researchers to analyze the real time dependence of different
parameters in system. In programming based approaches, mathematical expressions
can be formulated for numbers of different system parameters, implemented depend-
ing on the individual real time problems for the individual system and analyzed for
individual system conditions.

Normally, the induction motor parameters; mutual inductance, stator inductance,
rotor inductance, stator resistance, rotor resistance, inertia of the rotor and load
torque can be identified by experimental set up using no load and blocked rotor test.
This experimental method is not suitable for simulation studies or on line testing of
machines. Reference [24] suggests nonlinear least squares approach to identify the
parameters of induction motor. In Ref. [17], the measured real and reactive power
responses to voltage step are used as the input to parameter identification procedure
based on curve fitting using least squares method and load model parameters are
determined. Fuzzy logic controller, followed by initial reference parameters, is used
for the parameter estimation of induction motor model [25].

Since, inductionmotors are themost vastly used dynamic load of inductive nature.
Hence, knowledge of induction motor responses is essential for dynamic load mod-
elling [26]. The induction motor is modeled using its dynamic equations. In ref. [8],
the induction motor is modeled with the help of five dynamic equations but to sim-
plify the induction motor’s mathematical studies sometimes these five differential
equations can be reduced to either three or one differential equations. On the basis
of numbers of differential equations through which induction motor is being repre-
sented mathematically, model of induction motors are called fifth, third or first order
model.



Modelling for Composite Load Model Including … 13

The fifth order model is very close to the real motor while third and first order
model are the simple mathematical version of motor model. In third order model
stator flux is considered constant while in first order model both stator and rotor
fluxes are considered to be constant.

3.2.1 Manufacturer Data for Induction Motor

Commonly, the induction motor is defined by the output parameters, given in the
catalogues as manufacturer data. For the mathematical analysis of induction motor
like any other machine, an equivalent circuit is required. This equivalent circuit pro-
vides a platform for researchers for applying several fundamental theorems available
in electrical engineering like network theorems, Kirchhoff’s law, power flow equa-
tion etc. Once induction motor is ready to represent through its equivalent circuit by
including all the inductionmotor parameters in its equivalent circuit, these parameters
contribute in analyzing the induction motor’s dynamics and performances in the sys-
tem. Equivalent circuit showing the parameters for induction motor is given in Fig. 2.
Table 2 shows the list of manufacturer data that are specified by the manufacturer
with induction motor supply to buyers.

Fig. 2 Equivalent circuit for induction motor

Table 2 Manufacturer data
for an induction motor

S. No. Symbol Description

1 Pim Rating of induction motor in kW

2 V Line voltage in Volt

3 f Frequency of system in Hz

4 P Number of poles

5 cos(∅im) Power factor of induction motor

6 ηim Efficiency of induction motor

7 sim Slip of induction motor
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3.2.2 Estimation of Induction Motor Parameters Using Manufacture
Data

As discussed in previous section, equivalent circuit parameters formulate a real
time induction motor in the form of a network circuit. This network circuit helps
researchers or engineers in performing several studies on motor with the help of
its circuit parameters. Since the operating characteristics of induction motor is very
dynamic in nature and therefore, most of the time induction motor performances,
behaviors and dynamics are much influenced by these circuit parameters. Two types
of studies can be followed for estimating these parameters; experimental type and
analytical type. DC test, no load test and block rotor test are the popular experimental
type methods to evaluate the electrical parameters of induction machine.

Analytical approach is most suitable for programming and simulation based stud-
ies and same is discussed in this chapter. To evaluate parameters, initial reference
parameters are used as documented in Ref. [25]. Calculation of induction motor is
being limited for squirrel cage inductionmotor in this chapter. In squirrel cage induc-
tion motor, rotor is short circuited and therefore Vr = 0. Induction motor parameters
presented here can be estimated with the help manufacturer data given in Table 2
followed by the mathematical expressions as given in Eqs. (26)–(42).

If motor’s pole pair is represented by pp, synchronous speedωs of inductionmotor
can be expressed as in Eq. (26),

ωs = 2π f

pp
(26)

Equation (27) represents expression of rotor speed for induction motor in terms
of synchronous speed ωs and slip sim .

ωr = ωs(1 − sim) (27)

Figure 2 represents per phase equivalent circuit for induction motor. For line
voltage V, per phase voltage is,

VP = V√
3

(28)

Input current I1 as in Fig. 2 can be formulated with Pim rating, cos(∅im) power
factor and ηim efficiency and it is given in Eq. (29).

I1 = Pim√
3V cos(∅im)ηim

(29)

For input terminal shown in Fig. 2, equivalent impedance, equivalent resistance
and equivalent reactance can be expressed with the Eq. (30)–(32). All these values
are referred to stator side as shown in Fig. 2.
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Z = VP

I1
(30)

R
′
eq = Z cos(∅im) (31)

X
′
eq = Z sin(∅im) (32)

For calculation purpose, rotational losses in induction motor are being neglected.
Since the rating of the induction motor is the shaft input power. This can be used
equal to the mechanical power of induction motor. Neglecting the rotational losses
in induction motor, mechanical torque Tm in terms of shaft power (rating of motor)
Pim and rotor speed for induction motor ωr is expressed in Eq. (33).

Tm = Pim
ωr

(33)

Resistance RP in Fig. 2 represents mechanical power output or useful power in
electrical terms. The power dissipated in that resistor is the useful power output or
shaft power. Equation (34) shows the value of RP in terms of rotor resistance and slip.
Using this shaft power, value of rotor resistance Rr can be expressed as in Eq. (35).

RP = 1 − sim
sim

Rr (34)

Rr = sim
1 − sim

(Pim/3)

I 21
(35)

To evaluate initial reference parameters, following expression available in liter-
ature are used for flux leakage coefficient σ , Mutual inductance of motor Lm and
Stator self inductance Ls . It is also assumed that both stator self inductance Ls and
rotor self inductance Lr are equal for calculation purposes. According to Ref. [25],
Eq. (36)–(39) presents their mathematical expression.

σ = 1 − cos(∅im)

1 + cos(∅im)
(36)

Lm = VP

2π f I1
√

σ
(37)

Ls = 0.3σ Lm (38)

Lr = Ls (39)

All the parameters except stator resistance Rs for induction motor, as shown in
Fig. 2, have been calculated above. To estimate the value of Rs , concept of equiva-
lent circuit impedance is elaborated here. At input terminal equivalent impedance,
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equivalent resistance and equivalent reactance can be expressed as,

Z = R
′
eq + j X

′
eq (40)

The value of impedance at input terminal can be expressed as,

Z = (Rs + j Xs) + (RP + Rr + j Xr )( j Xm)

(RP + Rr + j Xr ) + ( j Xm)
(41)

Putting the values of Z and RP in Eq. (41),

R
′
eq + j X

′
eq = (Rs + j Xs) +

(
Rr
sim

+ j Xr

)
( j Xm)(

Rr
sim

+ j Xr

)
+ ( j Xm)

(42)

Using Eq. (42) and comparing the real parts of this expression in both the side,
RS can be calculated.

3.2.3 Voltage Estimation in d-q Model for Induction Motor

Equations (26)–(42) can be used to estimate the circuit parameters of inductionmotor
with the help of manufacturer data as described in Table 2. Since the induction motor
is a rotating machine and for any rotating machine, a reference frame is required to
estimate the parameters. Reference [22] suggests that for most of the analysis, d–q
model with currents as state variables is found most suitable, and the analysis can
be carried out in any (stationary, rotor, synchronous or arbitrary) reference frame.
Before carrying induction motor analysis in much detail, knowledge of stator and
rotor voltage in d-qmodel is required andmethod to evaluate these values is presented
in this section. Expressions for converting three phase voltage into d and q axis
values are summarized here as in Ref. [27]. For the balanced operation of squirrel
cage induction motor, the most widely used reference frame is synchronous rotating
reference frame and same is used in this chapter [28].

For a balanced three phase system, phase values of stator voltages are

Vsa = √
2VPcos(ωbt) (43)

Vsb = √
2VPcos

(
ωbt − 2π

3

)
(44)

Vsc = √
2VPcos

(
ωbt + 2π

3

)
(45)

ωb is a base frequency and is defined as represented in Eq. (46).
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ωb = 2π f (46)

Using Park Transformation, stator voltage in d-q model can be written for stator
phase voltages given in Eqs. (43)–(45) with a constant a = e− j 2π3 .

Vs = 2

3

{
Vsa + aVsb + a2Vsc

}
(47)

The value of stator voltage in d-q model given in Eq. (47) is still in stator coor-
dinates. This stator voltage in stator coordinated can be converted into synchronous
rotating reference frame as expressed in Eq. (48).

Vst = Vse
− jωs t (48)

The complex variables may be decomposed in plane along two orthogonal d and
q axes rotating at speed ωb to obtain the separate d–q (Park) model. So, direct axis
stator voltage Vds and quadrature axis stator voltage Vqs are,

Vds = real(Vst ) (49)

Vqs = imag(Vst ) (50)

For squirrel cage induction motor the rotor side is short circuited so rotor direct
and quadrature axis values Vdr and Vqr are zero.

Vdr = 0 (51)

Vqr = 0 (52)

3.2.4 Dynamic Equation of Induction Motor

In Ref. [8], mathematics for induction motor dynamic is explained in the detail. The
induction motor can be expressed by five differential equations given in Eqs. (53)–
(57). In these equations, the direct and quadrature axis voltages are the independent
variables and fluxes and rotor speed are the dependent variables. For direct axis stator
flux (ϕqs), quadrature axis stator flux (ϕds), quadrature axis rotor flux (ϕqr ), direct
axis rotor flux (ϕdr ) and rotor speed (ωr ) dynamic equations for induction motor are,

dϕqs

dt
= ωb

[
Vqs − ωs

ωb
ϕds − Rs Iqs

]
(53)

dϕds

dt
= ωb

[
Vds + ωs

ωb
ϕqs − Rs Ids

]
(54)
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dϕqr

dt
= ωb

[
Vqr − ωs − ωr

ωs
ϕdr − Rr Iqr

]
(55)

dϕdr

dt
= ωb

[
Vdr + ωs − ωr

ωs
ϕqr − Rr Idr

]
(56)

dωr

dt
= ωb

2H
(Te − TL) (57)

In these equations, dependent variable canbe estimatedusing input supply voltage.
The expression of direct and quadrature axis stator and rotor currents (i.e. Ids , Iqs Idr
and Iqr ) in terms of inductionmotor parameters andfluxes are given inEqs. (58)–(61).

ϕqs = Lss Iqs + Lm Iqr (58)

ϕds = Lss Ids + Lm Idr (59)

ϕqr = Lrr Iqr + Lm Iqs (60)

ϕdr = Lrr Idr + Lm Ids (61)

The term Lss and Lrr are used to define the value as in Eqs. (62) and (63).

Lss = Ls + Lm (62)

Lrr = Lr + Lm (63)

In Eq. (57), Te and TL denotes the electro-magnetic torque and load torque for
induction motor. Expressions for Te and TL are elaborated in Eqs. (64) and (65).

Te = ϕqr Idr − ϕdr Iqr (64)

Expression for per unit expression is;

TL = B
ωr

ωb
(65)

In Eq. (57), H is themachine inertia and in Eq. (65), B is the torque damping factor
for induction motor. The induction motor dynamics are largely characterized by H
and B along with J (moment of inertia for induction motor). These three parameters
are popularly known as mechanical parameters of induction motor.
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3.2.5 Method to Obtain Mechanical Parameters for Induction Motor

Equations (53)–(57) represents the dynamic model of induction motor. Fifth order
model of induction motor can be represented by these equations while mathemat-
ical model can also be made simplified by making assumption of stator and rotor
fluxes as discussed in starting of Sect. 3.2. To understand the operating character-
istics of induction motor, one has to solve ordinary differential equations as given
in last section. Electrical parameters can be estimated with the help of procedure
as explained in Sect. 3.2.2 while method of estimating mechanical parameters (B,
H and J) is not discussed yet in this chapter. The methods for calculating mechan-
ical parameters are even not available much in literature. Some researchers have
presented experimental procedure like retardation test [29–31] for estimating the
mechanical parameters. But for programming and simulation based studies, param-
eters may directly be required in software coding using manufacturer data and so,
analytical approach is more preferable to estimate these parameters directly by using
manufacturer data as mentioned by the machine suppliers [32].

This section presents an analytical approach for estimatingmechanical parameters
of induction machine using induction motor dynamic response parameters. This
section explains a software based approach for getting B, H and J values by run and
trial method using rotor speed and slip responses. The value of B, H and J must be
selected that satisfies the following operating constraints for rotor speed and slip.

(i) Slow varying speed with lower overshoots,
(ii) Slip should reach to its steady state value maintaining positive value of slip at

all instants of response, and
(iii) Minimumvalue of J forwhich rotor speed should be equal to synchronous speed

keeping continuous and differentiable step response for transfer function.

Example 1 For the manufacturer data given for induction motor as below, find its
electrical parameters.

kW rating of inductionmotor, Pim = 50 kW

Line voltage, V = 400V

Frequency of system, f = 50Hz

Number of poles = 2

Power factor of induction motor, cos(∅im) = 0.9

Efficiency of induction motor,ηim = 90%

slip of inductionmotor, sim = 4%

Solution For the data given above and using mathematical syntaxes in MATLAB
command window for Eqs. 26–42, electrical parameters are estimated in this exam-
ple. TheMATLABcodes are also given just after this example. The variables selected
in program are almost similar to the variables represented in chapter text. Still some
parameters are changed due to the limitations ofMATLAB parameter nomenclatures
pattern and the parameters so chosen can easily be understand by the readers.
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Pim = 50 × 103;
f = 50;
s = 0.04;
V = 400;
VP = V√

3 = 230.9401;
cos(∅im) = 0.9;
ηim = 90%;
I1 = Pim√

3V cos(∅im )ηim
= 89.0973;

S = Pim
cos(∅im )

= 55.5556 × 103;
ωb = 2 × 3.14 × f = 314;
ωs = 2×3.14× f

2/2 = 314;
ωr = ωs(1 − sim) = 301.44;
Z = VP

I1
= 230.9401

89.0973 = 2.5920;
R

′
eq = Z cos(∅im) = 2.3328;

X
′
eq = Z sin(∅im) = 1.1298;

Rr = sim
1−sim

(Pim/3)
I 21

= 0.0875;
σ = 1−cos(∅im )

1+cos(∅im )
= 0.0526;

Lm = VP

2π f I1
√

σ
= 0.0360;

Ls = 0.3σ Lm = 5.6808 × 10−4;
Lr = Ls = 5.6808 × 10−4;
Xm = 2π f Lm = 11.3097
Xs = 2π f Ls = 0.1785
Xr = 2π f Lr = 0.1785

To find the value of Rs , compare the real part of Eq. (42) both the sides after
rearranging the terms as,

Rs + j Xs = R
′
eq + j X

′
eq −

(
Rr
sim

+ j Xr

)
( j Xm)(

Rr
sim

+ j Xr

)
+ ( j Xm)

Hence, for the 50 kW induction motor electrical parameters are,

Rs = 0.2875 �

Rr = 0.0875 �

Xs = 0.1785 �

Xr = 0.1785 �

Xm = 11.3097�

%%%% MATLAB codes for Example 1%%%%%
� P_im = 50e3;
� f = 50;
� pp = 2/2; %% pole pair which is pole divided by 2
� s = 0.04;
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� V = 400;
� powerfactor_im = 0.9;
� eff_im = 90/100;
� vp = v/sqrt(3);
� i1 = P_im/(sqrt(3)*v* Powerfactor_im *eff);
� ob = 2*pi*f; %base speed in rad per sec
� os = 2*pi*f/pp; % synchronous speed in rad per sec
� or = 2*pi*f*(1-s)/pp; % rotor speed in rad per sec
� z = vp/i1;
� Req_dash = z*powerfactor_im;
� Xeq_dash = z*sind(acosd(powerfactor_im));
� Rr = P_im*s/(3*(1-s)*i1ˆ2);
� sigma = (1-igpf)/(1 + igpf);
� Lm = vp/(2*pi*f*i1*sqrt(sigma));
� Ls = 0.3*sigma*Lm;
� Lr = Ls;
� Xm = ob*Lm;
� Xs = ob*Ls;
� Xr = ob*Lr;
%% to find Rs, using the concept to equivalent circuit in next three steps
� a1 = ((Rr/s) + 1i*Xr)*(1i*Xm)/((Rr/s) + 1i*(Xr + Xm));
� b = Req_dash + 1i*Xeq_dash-a1;
� Rs = real(b);
%% Final results for example 1
Rs
Rr
Xs
Xr
Xm

Example 2 For the 50 kW induction motor given in last example, find mechanical
parameters for induction motor.

Solution TheMATLAB codes are not presented in this Example 2 because the same
code will repeat again in Example 3. So only explanation is given here the program
can be used for getting the solution of this Example 2 from the next Example 3.

Using the five differential equations given in Eqs. (53–57), induction motor rotor
speed and slip responses can be plotted. Since the rotor speed or slip response depends
on the selecting value of H and B while J can directly be calculated by the value of
H. The values of H and B are selected by run and trial method here. Five differential
equations of induction motor are solved using ODE45 in MATLAB program. The
B and H values are estimated by analyzing rotor speed and slip responses with two
constraints;
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(i) Slow varying speed with lower overshoots, and
(ii) Slip should reach to its steady state value maintaining positive value of slip at

all instants of its response.

This can be achieved by following these steps, (i) Set value of torque coefficient B
such that the machine may run at ωr, and (ii) for chosen value of B, set value of H
keeping transients in specified range and limitations. It must also be noted that step
response also helps to choose the best value of mechanical parameters and minimum
value of H for which rotor speed should be equal to synchronous speed keeping
continuous and differentiable step response for transfer function of reactive power
to voltage change for induction motor load. The detail discussion about developing
transfer function of reactive power to voltage change for induction motor load is
explained in this chapter later on.

Since the above said method to define B, H and J use five differential equations
of induction motor so, this is called fifth order model of induction motor. Once
mechanical parameters are achieved using fifth order model, same electrical and
mechanical parameters can be used for developing third order and first model of
induction motor load.

For, 50 kW induction motor estimated mechanical parameters are,
B = 0.5815 N m s

J = 0.09 kg m2

H = 0.0799
Table 3 represents the mechanical parameters for numbers of induction motor

that are achieved by following the same procedure as explained in Example 2. It is
assumed that all the manufacturer data for all the induction motors in Table 2 are
same except their ratings in kW and equal to values as given in Example 1.

Example 3 For the induction motor of 50 kW rating given in previous example,
draw the responses of output quantities (electro magnetic torque, slip and speed) and
input quantities (active and reactive powers) for fifth, third and first order model of
induction motor.

Solution After estimating the parameters for induction motor as discussed in pre-
vious examples, differential equations for induction motor are solved in MATLAB
using ODE45 solver as explained below in this example. All the parameters used in
MATLAB coding are same as discussed in this chapter during the theory discussion.

% Syntaxes for differential equation solver using ode45 is presented below
% state variables of inductionmotor five differential equations are..%…..represented
by x
% all the parameters in MATLAB coding are written in per unit
% some parameters that can be written in MATLAB editor window directly
% therefore these are being changed with new variable
% but their equivalent parameters are also being mentioned
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Table 3 Mechanical parameters estimated for different induction motor

S. No. Pim (kW) J (kg m2) H B (N m s)

1 3 0.00104 0.0154 0.03489

2 7.5 0.0025 0.0148 0.08720

3 10 0.007 0.0311 0.1163

4 11 0.0072 0.0291 0.1279

5 18.5 0.02 0.0480 0.21515

6 50 0.0900 0.0799 0.58150

7 55 0.2 0.1615 0.6395

8 75 0.3500 0.2073 0.8720

9 90 0.40 0.1974 1.0465

10 100 0.47 0.2087 1.1625

11 110 0.61 0.2463 1.2790

12 150 0.65 0.1925 1.744

13 160 0.79 0.2193 1.86

14 200 1.1 0.2443 2.325

15 500 2.0 0.2576 5.8135

16 1000 6.2 0.2754 11.625

17 1500 8.2 0.2428 17.44

18 2000 10.6 0.2354 23.25

� x00 = [0 0 0 0 0]; % reset the initial conditions for 5 states variable
� [t, x] = ode45(@order5, [0T check], x00) % Syntax for ODE solver
� f unction xdot = order5(t, x) % function for ode

% Estimation of d and q axis stator and rotor voltage
� vo = v p/vbase; % vbase is a base value chosen
� Va = vo ∗ (cosd(0) + 1i ∗ sind(0));
� Vb = vo ∗ (cosd(−120) + 1i ∗ sind(−120));
� Vc = vo ∗ (cosd(120) + 1i ∗ sind(120));
� V sabc = [Va; Vb; Vc];
� V s1 = abs(Va) ∗ sqrt(2);
� V s2 = abs(Vb) ∗ sqrt(2);
� V s3 = abs(Vc) ∗ sqrt(2);
� V sa = V s1 ∗ cos(ob ∗ t);
� V sb = V s2 ∗ cos(ob ∗ t − (2 ∗ pi/3));
� V sc = V s3 ∗ cos(ob ∗ t + (2 ∗ pi/3));
� a = exp(1i ∗ 2 ∗ pi/3);
� V s = (2/3) ∗ (

V sa + a ∗ V sb + a∧2 ∗ V sc
); % in stator coordinates � V st =

V s ∗ exp(−1i ∗ (os) ∗ t); % in synchronous reference frame
� Vds = real(V st);
� Vqs = imag(V st);
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� Vdr = 0;
� Vqr = 0;
% Coding for ODE Solver
� xdot = zeros(5, 1);
� T l = B ∗x(5)/wbase;%wbase denotesωb� xa = (Lm ∗ Lm)−(Lss ∗ Lrr);
� I qs = ((Lm ∗ x(3)) − (Lrr ∗ x(1)))/xa;
� I ds = ((Lm ∗ x(4)) − (Lrr ∗ x(2)))/xa;
� I qr = ((Lm ∗ x(1)) − (Lss ∗ x(3)))/xa;
� I dr = ((Lm ∗ x(2)) − (Lss ∗ x(4)))/xa;
� T e = (x(3) ∗ I dr) − (x(4) ∗ I qr);
%ob denotes ωb

� xdot(1) = ob ∗ (Vqs − ((os/ob) ∗ (x(2))) − (Rs ∗ I qs));
� xdot(2) = ob ∗ (Vds + ((os/ob) ∗ (x(1))) − (Rs ∗ I ds));
� xdot(3) = ob ∗ (Vqr − (((os − x(5))/ob) ∗ (x(4))) − (Rr ∗ I qr));
� xdot(4) = ob ∗ (Vdr + (((os − x(5))/ob) ∗ (x(3))) − (Rr ∗ I dr));
� xdot(5) = (ob/(2 ∗ H)) ∗ (T e − T l);
� xdot = [xdot(1); xdot(2); xdot(3); xdot(4); xdot(5)];
� end
� t;
� x; % this command delivers an array of all five states

The array obtained for five state variables from five differential equations of
induction motor is stored in x variable and time array is stored in t variable.

Parameters for fifth order induction motor model can be estimated by coding
following MATLAB syntaxes,

% parameters estimation after getting the results of ODE45 solver
� ϕds = x(:, 1);
� ϕqs = x(:, 2);
� ϕdr = x(:, 3);
� ϕqr = x(:, 4);
� ωr = x(:, 5);
� I qs = ((Lm ∗ x(:, 3)) − (Lrr ∗ x(:, 1)))/xa;
� I ds = (Lm∗x(:,4))−(Lrr∗x(:,2))

xa ;
� I qr = ((Lm ∗ x(:, 1)) − (Lss ∗ x(:, 3)))/xa;
� I dr = (Lm∗x(:,2))−(Lss∗x(:,4))

xa ;
% tbase denotes base value of Te
� T e = tbase ∗ (x(:, 3). ∗ I dr5) − (x(:, 4). ∗ I qr5);
� T l = B. ∗ x(:, 5)/wbase;
� sli p = (os − x(:, 5))/os; % slip denotes sim
% Syntax for estimating real and reactive power responses in kW and kVAR
% tbase denotes base value of Te
% sbase denotes the base power
� P = sbase ∗ (Vds. ∗ I ds + Vqs. ∗ I qs)/1000;
� Q = sbase ∗ (Vqs. ∗ I ds − Vds. ∗ I qs)/1000;
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After getting the array of each parameter with respect to time individually,
responses can be developed using syntax ‘ plot’.

The above explained program can be reused to third and first order models of
induction motor. Since, in third order model stator fluxes are assumed to be constant
and in first order model both stator and rotor fluxes are assumed to be constant. The
steady state value of these stator and rotor fluxes can be chosen as constant value
from the array developed above for the same.

For third order model, three differential equations given in Eqs. (55)–(57) are
used in ODE45 solver while for first order model, single differential equations given
in Eq. 57 is only used in ODE45 solver. Rest explanations are same as for the fifth
order model discussed above. Therefore, responses can be obtained for third and first
order model of induction motor similar to its fifth order model.

The responses of output quantities (electromagnetic torque, slip and speed) and
input quantities (active and reactive powers) are being compared for fifth, third and
first order behaviour of induction motor in Figs. 3, 4, 5, 6 and 7.

Example 4 Conclude the responses obtained for 50 kW induction motor in Figs. 3,
4, 5, 6 and 7.

Solution Responses for fifth, third and first order model of 50 kW induction motor
are shown above in Figs. 3, 4, 5, 6 and 7. Figures 3, 4 and 5 give rotor speed, slip
and electromagnetic torque responses respectively and Figs. 6 and 7 give real and
reactive responses for 50 kW induction motor. The steady state active and reactive
power demand, shown in Figs. 6 and 7, is 41.93 kW and 13.34 kVAR respectively.
The remaining power is being lost in the motor. Fifth order model of induction motor
has more transients in its characteristics. It can be concluded that the behaviour of the
third order model is quite similar to fifth order model while the first order model is

Fig. 3 Rotor speed for 50 kW induction motor
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Fig. 4 Slip for 50 kW induction motor

Fig. 5 Electro-magnetic torque for 50 kW induction motor

out of context. So it is obvious to use either fifth or third order model of the induction
motor to get the equivalent mathematical model of induction motor.

3.3 Structure of Aggregate Load

Distribution systemhaving large varieties of consumers is themost complex structure
of the power system. For this study, we are considering only induction motor loads
at distributing ends. Since the decentralized areas have many consumers which may
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Fig. 6 Active power characteristics for 50 kW induction motor

Fig. 7 Reactive power characteristics for 50 kW induction motor

consist large numbers of induction motors, it is not realistic to model every induction
motor that is in the system because it is impractical to accurately represent each
individual load due to the intense computation process involved. However, to analyze
diversified load pattern in distribution systems, a group of motors can be considered
in place of using a single large rating induction motor and then an aggregate load
model of the induction motor can be developed for this distribution system.

The appropriate dynamic load model aggregation reduces the computation time
and provides a faster and efficient model derivation and parameter identification. It is
found that the small scale aggregation model gives acceptably accurate results than
the large-scale aggregationmodel and is good for power system stability analysis [5].
Hence, aggregate models or single unit models with a minimum order of induction
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motor are needed to represent a group of motors [6]. Measurement based method
to find aggregate model is presented in [33]. Reference [19] suggests two methods;
weighted average of impedance and weighted average of admittance for finding
aggregate model.

In this chapter, an aggregate model of the induction motor is developed using the
law of energy conservation. According to energy conservation law, “Power absorbed
by the aggregate motor model is equal to the sum of the individual motor’s power
absorbed”.

For a system having n number of induction motor, if kVA rating of kth motor is
denoted by Sk . For aggregate motor model, the aggregate kVA Sagg is,

Sagg =
n∑

k=1

Sk (66)

Similarly, aggregate stator and rotor current can be defined as,

−−→
I aggs =

n∑
k=1

−→
Is,k (67)

−−→
I aggr =

n∑
k=1

−→
Ir,k (68)

The aggregate motor load equivalent circuit parameters are;

Rqgg
s =

∑n
k=1

{∣∣∣−→Is,k∣∣∣2Rs,k

}
∣∣∣−−→I qggr

∣∣∣2 (69)

Rqgg
r =

∑n
k=1

{∣∣∣−→Ir,k∣∣∣2Rr,k

}
∣∣∣−−→I qggr

∣∣∣2 (70)

Xqgg
s =

∑n
k=1

{∣∣∣−→Is,k∣∣∣2Xs,k

}
∣∣∣−−→I qggr

∣∣∣2 (71)

Xqgg
r =

∑n
k=1

{∣∣∣−→Ir,k∣∣∣2Xr,k

}
∣∣∣−−→I qggr

∣∣∣2 (72)
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Xqgg
m =

∑n
k=1

{∣∣∣−→Is,k − −→
Ir,k

∣∣∣2Xm,k

}
∣∣∣−−→I qggs − −−→

I qggr

∣∣∣2 (73)

The air gap power of the aggregate motor load is expressed as;

Pagg
airgap =

n∑
k=1

(
Re

(
V Is,k

) − I 2s,k Rsk
)

(74)

The slip and inertia of the aggregate motor can be then computed by,

sli pagg =
∣∣∣−−→I aggr

∣∣∣2Ragg
r

Pagg
airgap

(75)

Hagg =
∑n

k=1 HkSk
Sagg

(76)

The moment of inertia and inertia constant of the motor follows relation as;

HkSk = 1

2
Jkω

2
sk (77)

Therefore, the aggregate motor model can be estimated for the given set of several
motors. The power system consist numbers of consumers with different rating induc-
tion motors, the overall dynamic load may be represented by an aggregate induction
motor load.

Example 5 Manufacturer data for five induction motors of rating 3, 7.5, 10, 110
and 18.5 kW are given in Table 4. Find the aggregate motor model for these five
induction motors and compare the results find for 50 kW induction motor as given
in Examples 1 and 2.

Table 4 Manufacturer data for induction motors for 50 kW aggregate model

Motor specifications Group of IMs for aggregate model

(IM1) (IM2) (IM3) (IM4) (IM5)

Induction motor rating (in kW) 18.5 11 10 7.5 3

Supply Voltage (in Volt) 400 400 400 400 400

Supply frequency (in Hz) 50 50 50 50 50

Power factor at full load (lagging) 0.9 0.9 0.9 0.9 0.9

Efficiency at full load 0.9 0.9 0.9 0.9 0.9

Slip at full load 0.04 0.04 0.04 0.04 0.04

Pole pair 1 1 1 1 1
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Solution 50 kW aggregate model of induction motor is developed by clubbing
five different ratings induction motor (IM1-IM5). All the specifications of induc-
tion motors are kept equal to 50 kW single unit of induction motor as in Table 4
except their rating, for simplifying the calculations. Equations 66–77 show the math-
ematical expressions for calculating the parameters of aggregate model of induction
motor. Using mathematical syntaxes in MATLAB command window, electrical and
mechanical parameters are estimated first for individual induction motors and then
for aggregate model of 50 kW. The results found for 50 kW single unit of induction
motor in Examples 2 and 3 are also listed in Table 5 for comparing with the results
found in this example.

The circuit parameters of aggregate model are same as that of 50 kW single induc-
tionmotor except the value ofmoment of inertia, inertia constant and torque-damping
factor which denotes that the aggregate model will also behave like induction motor
model but at different dynamics.

4 Modelling for Composite Load Model

In previous section structure of load is illustrated in detail. It has been explained that a
load in distribution systemmay be any combination of static, dynamic and aggregate
load. These loads can be classified according to the effect of the voltage on the load.
Static loads are generally used for the calculation of steady state conditions and in
steady state simulations of power systemwhile dynamic loads are therefore necessary
for analyzing power system behaviour following small or large disturbances [34].
Therefore a composite load can be developed for system by combining the entire
available load in system together. Many papers have been published about composite
load modelling which includes composite load as a combination of SLM and DLM.

Since, in distribution system, most of the connected load is inductive in nature
and therefore the overall behaviour of the load will be similar to the induction motor
behaviour. This nature of load will be discussed in this chapter later on. It can also
be expressed here that induction motor is a machine that is more influenced by the
action of reactive power compare to real power and this nature for induction motor
can easily be illustrated with the support of following explanations;

(i) Reactive power influences are more dominated in induction machine because
rotating magnetic field is the main process of transforming energy and this
rotating magnetic field is developed by reactive magnetizing current in field
winding.

(ii) Reactive magnetizing current id directly concerned with machine power factor
and therefore, physical parameters (B,H and J) are highly dependent on reactive
power structure of the induction motor.

(iii) Law of Decoupling explains the close relation of reactive power with voltage,
moreover the response time of reactive power voltage control (Q-V loop) is
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very less compare to active power frequency control (P-f loop) in any rotating
machines.

(iv) Voltage stability problems are the most prominent problems in power system
that requires exact load modelling and suitable excitation system.

Hence, influence of reactive power on voltage control studies are more prominent
compare to real power and frequency control. The reactive power voltage loop is
prominently explained in this chapter for developing composite load model and so,
the studies are limited to developing the transfer functions of change in reactive
power with voltage change. This transfer function of change in reactive power with
voltage change is developed for composite load model. This composite load model
can be estimated by adding static and dynamic load model. Mathematically [8],

(Dv)CLM = (Dv)SLM + (Dv)DLM (78)

Parameters used in Eq. (78) are defined as,

(Dv)CLM : Transfer functionof reactive power change to voltage change for composite
load
(Dv)SLM : Transfer function of reactive power change to voltage change for static
load
(Dv)DLM : Transfer function of reactive power change to voltage change for dynamic
load

Transfer function of reactive power change to voltage change for static and dynamic
load are discussed in successive sub sectionsfirst and then transfer function of reactive
power change to voltage change is also elaborated later on.

4.1 Development of Mathematical Model for Static Load

Exponential type load structure as explained in Sect. 3.1.2 is used for defining the
static loadmodel. This load can be represented by an exponential function of bus volt-
agemagnitude as given inEq. (21). In proportionality term, reactive power expression
with load voltage can be represented as in Eq. (79).

Qs
L ∝ V nq (79)

For any instant of time; differentiating and solving Eq. (80),

�Q = nq
Qs

L

V
�V (80)

nq defines the exponential constant for reactive power and voltage relation. Qs
L

is defined as the reactive power for static load at the instant of load voltage V in
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system. Since, all the three parameters are constant so they can be replaced with a
single parameter as in Eq. (81) and therefore,

nq
Qs

L

V
= (Dv)SLM (81)

Therefore, transfer function for change in reactive power with voltage change for
static load model can be represented as in Eq. (82).

(Dv)SLM = �Q

�V
= nq

Qs
L

V
(82)

Example 6 In a distribution system, an exponential type static load of 250 kW rating
with load power factor is taken 0.9 lagging and exponential constant 3 is connected
with a 400V three phase system. For base voltage 400V and base power 250 kW, find
the expression for transfer function showing change in reactive power with voltage
change.

Solution First mention all the given data,

Base power = 250 kW
Base voltage = 400 V
Exponential constant = nq = 3
Static load Real power at the instant of load voltage V, Ps

L = 250 kW
Power factor = 0.9 lagging
Reactive power for static load at the instant of load voltage V,
Qs

L = Ps
L × tan

(
cos−1(0.9)

) = 121.0805 kVAR
Per phase value, Qs

L(pu) = (121.0805/3)
250 = 0.1614

V(pu) = 400
400 = 1(Assuming that load is delta connected)

Therefore,
(Dv)SLM = �Q

�V = nq Qs
L

V = 3×0.1614
1 = 0.4842

Example 7 Repeat the example 6 and draw the step response for (Dv)SLM using
MATLAB for (i) 50 kW, (ii) 100 kW, (iii) 150 kW, (iv) 200 kW, and (v) 250 kW
together.

Solution (Dv)SLM for 50, 100, 150, 200 and 250 kWcan be calculated as in Example
6. The MATLAB command for getting step response is,

� num = nq ∗ Qs
L� den = V

� t f (num, den)

These expressions in MATLAB command window execute a figure window for step
response. All the step responses as asked in example can be presented on same figure
window by writing syntax “� hold on” on command window. Therefore, the step
responses as asked in this example are shown in Fig. 8.
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Fig. 8 Step response of (Dv)SLM for Example 7

4.2 Development of Mathematical Model for Dynamic Load

It has already been explained that induction motor is the most prominent dynamic
load used in distribution system. There may be large numbers of induction motor
available in system but they can be represented as aggregate model. For dynamic
load (induction motor), (Dv)DLM is developed through its five differential equations
using state space equations. The state space equations are being developed for fifth,
third and first order models of induction motor.

To develop state space equations, control variable, disturbance variable and state
variables are required. Since these studies are limited to developing the transfer
functions of change in reactive power with voltage change, change in voltage �V is
used as control vector, change in reactive power �Q is used as disturbance vector
and five states of induction motor shown in five differential equations are used as
state variable. Figure 9 represents a generalized block diagram for state space model
of induction motor.

Fig. 9 State space model representation for induction motor



Modelling for Composite Load Model Including … 35

The solution can be obtained by estimating ABCD parameters from state space
equations. Mathematically, generalized value of ABCD parameters can be repre-
sented as in Eqs. (82)–(86). If ε notation is used for state vectors and k notation is used
for denoting the model order. For single input single output system the generalized
values of matrices A B C and D can be formulated as;

Aqk =

⎡
⎢⎢⎢⎣

∂
·

ε1
∂ε1

∂
·

ε1
∂ε2

. . ∂
·

ε1
∂εk

. . . . .

. . . . .
∂

·
εk

∂ε1

∂
·

εk
∂ε2

. . ∂
·

εk
∂εk

⎤
⎥⎥⎥⎦

k×k

(83)

Bqk =

⎡
⎢⎢⎢⎣

∂
·

ε1
∂V
.

.
∂

·
εk

∂V

⎤
⎥⎥⎥⎦

k×1

(84)

Cqk =
[

∂Q
∂ε1

. . ∂Q
∂εk

]
1×k

(85)

Dqk =
[
∂Q

∂V

]
1×1

(86)

Reactive power of Induction motor load QIM
L in terms of voltage can be

represented as in Ref. [35],

QIM
L = Vqs Ids − Vds Iqs (87)

Since Vqs is very close to zero (from the basic knowledge of three phase voltage),
QIM

L can be rewritten as,

QIM
L = −Vds Iqs (88)

By using Eqs. 58–61, currents can be obtained as;

Iqs = Lmϕqr − Lrrϕqs

L2
m − Lss Lrr

(89)

Ids = Lmϕdr − Lrrϕds

L2
m − Lss Lrr

(90)

Iqr = Lmϕqs − Lssϕqr

L2
m − Lss Lrr

(91)

Idr = Lmϕds − Lssϕdr

L2
m − Lss Lrr

(92)
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The used constants are denoted by new variables as;

xa = L2
m − Lss Lrr (93)

X1 = Lm

xa
(94)

X2 = Lss

xa
(95)

X3 = Lrr

xa
(96)

Substituting these constants value, equations for currents can be rewritten as,

Iqs = X1ϕqr − X3ϕqs (97)

Ids = X1ϕdr − X3ϕds (98)

Iqr = X1ϕqs − X2ϕqr (99)

Idr = X1ϕds − X2ϕdr (100)

And per unit electro-magnetic torque equation;

Te = X1
(
ϕqrϕds − ϕdrϕqs

)
(101)

The steady state values of fluxes, rotor speed and stator voltage are assumed to
be;

ϕqs at steady state = x1ss (102)

ϕds at steady state = x2ss (103)

ϕqr at steady state = x3ss (104)

ϕdr at steady state = x4ss (105)

ωr at steady state = ωr (106)

Vds at steady state = Vss (107)
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With the help of five differential equation of induction motor and the equations
given in this section, state space model of fifth, third and first order induction motor
can be developed. Detail procedures to develop state spacemodel (i.e. ABCD param-
eters) are discussed in successive subsections. These ABCD parameters are used for
developing (Dv)DLM using the MATLAB syntax as,

� [num_q, den_q] = ss2t f (A, B,C, D); (108)

� t f q5 = t f (num_q, den_q); (109)

4.2.1 State Space Model for Fifth Order Model of Induction Motor

To develop state space model for fifth order model of induction motor, substitute
all constant values of Sects. 4.2 and 3.2.4 in five differential equations of induction
motor presented in Eqs. (53)–(57). Rewrite the expressions in state space equations
format;

ϕ̇qs = [RsωbX3]ϕqs + [−ωs]ϕds + [−RsωbX1]ϕqr + [0]ϕdr

+ [0]ωr + [0]Vds (110)

ϕ̇ds = [ωs]ϕqs + [RsωbX3]ϕds + [0]ϕqr + [−RsωbX1]ϕdr

+ [0]ωr + [ωb]Vds (111)

ϕ̇qr = [−RrωbX1]ϕqs + [0]ϕds + [RrωbX2]ϕqr + [−ωb + ωr ]ϕdr

+ [x4ss]ωr + [0]Vds (112)

ϕ̇dr = [0]ϕqs + [−RrωbX1]ϕds + [ωb − ωr ]ϕqr + [RrωbX2]ϕdr

+ [−x3ss]ωr + [0]Vds (113)

·
ωr =

[−ωbX1

2H

]
ϕqsϕdr +

[
ωbX1

2H

]
ϕdsϕqr +

[−B

2H

]
ωr + [0]Vds (114)

Reactive power expression in terms of these constants;

QIM
L = Vds X3ϕqs − Vds X1ϕqr (115)

For small perturbations in system, Eqs. (110)–(115) can be rewritten in terms of
incremental change in state, control and disturbance vectors. For five state vectors
�ϕqs�ϕds�ϕqr�ϕdr and �ωr state space equations for fifth order model are;
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[
�ϕ̇qs

·
�ϕ ds

·
�ϕ qr�ϕ̇dr�ω̇r

]T

= Aq5
[
�ϕqs�ϕds�ϕqr�ϕdr�ωr

]T
+ Bq5�V (116)

�QIM
L = Cq5

[
�ϕqs�ϕds�ϕqr�ϕdr�ωr

]T + Dq5�V (117)

Aq5, Bq5, Cq5 and Dq5 are the constant matrices of the appropriate dimensions
associated with the above control, state and disturbances vectors for fifth order model
of induction motor.

Hence,

Aq5 =

⎡
⎢⎢⎢⎢⎢⎣

RsωbX3 −ωs −RsωbX1 0 0
ωs RsωbX3 0 −RsωbX1 0

−RrωbX1 0 RrωbX2 −ωb + ωr x4ss
0 −RrωbX1 ωb − ωr RrωbX2 −x3ss

−ωb X1
2H x4ss

ωb X1
2H x3ss

ωb X1
2H x2ss

−ωb X1
2H x1ss

−B
2H

⎤
⎥⎥⎥⎥⎥⎦ (118)

Bq5 =

⎡
⎢⎢⎢⎢⎢⎣

0
ωb

0
0
0

⎤
⎥⎥⎥⎥⎥⎦ (119)

Cq5 = [
Vss X3 0 −Vss X1 0 0

]
(120)

Dq5 = [−X1x3ss + X3x1ss] (121)

4.2.2 State Space Model for Third Order Model of Induction Motor

To derive state spacemodel for third ordermodel of inductionmotor, stator direct and
quadrature axis flux differential equations are considered to be zero. So, substituting
ϕ̇qs = 0 and ϕ̇ds = 0 in Eqs. 110 and 111 and writing both equations in matrix form,

[
0
0

]
=

[
RsωbX3 −ωs

ωs RsωbX3

][
ϕqs

ϕds

]
+

[−RsωbX1 0
0 −RsωbX1

][
ϕqr

ϕdr

]

+
[
0
ωb

][
Vds

Vds

]
(122)
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Let the constant As and Bs such that,

As = J−1

[
RsωbX1 0

0 RsωbX1

]
(123)

Bs = J−1

[
0

−ωb

]
(124)

where,

J =
[
RsωbX3 −ωs

ωs RsωbX3

]
(125)

So,

[
ϕqs

ϕds

]
= As

[
ϕqr

ϕdr

]
+ Bs

[
Vds

Vds

]
(126)

ϕqs = As(1, 1)ϕqr + As(1, 2)ϕdr + Bs(1, 1)Vds (127)

ϕds = As(2, 1)ϕqr + As(2, 2)ϕdr + Bs(2, 1)Vds (128)

Further, writing Eqs. 112 and 113 in matrix form,

[
ϕ̇qr

ϕ̇dr

]
= (Ar As + Br )

[
ϕqr

ϕdr

]
+ Ar Bs

[
Vds

Vds

]
+

[
ϕdrωr

−ϕqrωr

]
(129)

where,

Ar =
[−RrωbX1 0

0 −RrωbX1

]
(130)

Br =
[
RrωbX2 −ωb

ωb RrωbX2

]
(131)

Let,

Dr = Ar As + Br (132)

Er = Ar Bs (133)

[
ϕ̇qr

ϕ̇dr

]
= Dr

[
ϕqr

ϕdr

]
+ Er

[
Vds

Vds

]
+

[
ϕdrωr

−ϕqrωr

]
(134)
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Extracting ϕ̇qr and ϕ̇dr form Eq. (134),

ϕ̇qr = Dr (1, 1)ϕqr + Dr (1, 2)ϕdr + ϕdrωr + Er (1, 1)Vds (135)

ϕ̇dr = Dr (2, 1)ϕqr + Dr (2, 2)ϕdr − ϕqrωr + Er (2, 1)Vds (136)

Substituting values of Eqs. (127) and (128) in Eq. (114),

·
ωr = [

Fr As(2, 1)ϕ
2
qr + Fr Bs(2, 1)Vdsϕqr

] + [−Fr As(1, 2)ϕ
2
dr − Fr Bs(1, 1)Vdsϕdr

]
− Fr As(1, 1)ϕdrϕqr + Fr As(2, 2)ϕdrϕqr +

[−B

2H

]
ωr (137)

where,

Fr = ωbX1

2H
(138)

Also, substituting values of Eqs. (127) and (128) in Eq. (16) of reactive power,

QIM
L = Vds X3

[
As(1, 1)ϕqr + As(1, 2)ϕdr + Bs(1, 1)Vds

] − Vds X1ϕqr (139)

For small perturbations in system, Eqs. (135), (136), (137) and (139) can be re-
written in terms of incremental change in state control and disturbance vectors. For
three state vectors �ϕqr�ϕdr and�ωr , state space equations for third order model
are;

[
�ϕ̇qr�ϕ̇dr�ω̇r

]T = Aq3
[
�ϕqr�ϕdr�ωr

]T + Bq3�V (140)

�Q = Cq3
[
�ϕqr�ϕdr�ωr

]T + Dq3�V (141)

Aq3, Bq3, Cq3 and Dq3 are the constant matrices of the appropriate dimensions
associatedwith the above control, state and disturbances vectors for third ordermodel
of induction motor.

Hence,

Aq3 =
⎡
⎣ Dr (1, 1) Dr (1, 2) + ωr x4ss
Dr (2, 1) − ωr Dr (2, 2) −x3ss
Aq3(3, 1) Aq3(3, 2) −B

2H

⎤
⎦ (142)

Bq3 =
⎡
⎣ Er (1, 1)

Er (2, 1)
Fr Bs(2, 1)x3ss − Fr Bs(1, 1)x4ss

⎤
⎦ (143)

Cq3 = [ {X3As(1, 1) − X1}Vss X3As(1, 2)Vss 0
]

(144)
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Dq3 = X3As(1, 1)x3ss + X3As(1, 2)x4ss + 2X3Bs(1, 1)Vss − X1x3ss (145)

where,

Aq3(3, 1) = 2Fr As(2, 1)x3ss + Fr Bs(2, 1)Vss − Fr As(1, 1)x4ss
+ Fr As(2, 2)x4ss (146)

Aq3(3, 2) = −2Fr As(1, 2)x4ss − Fr Bs(1, 1)Vss − Fr As(1, 1)x3ss
+ Fr As(2, 2)x3ss (147)

4.2.3 State Space Model for First Order Model of Induction Motor

To derive state space model of first order model of induction motor, stator and rotor
direct andquadrature axis fluxdifferential equations are considered tobe zero.Results
obtained from third order model are used for obtaining first order model of induction
by substituting ϕ̇qr = 0 and ϕ̇dr = 0 in Eq. 134,

Dr

[
ϕqr

ϕdr

]
+ Er

[
Vds

Vds

]
+

[
ϕdrωr

−ϕqrωr

]
= 0 (148)

Splitting matrix of Eq. (148) into equations,

Dr (1, 1)ϕqr + {Dr (1, 2) + ωr }ϕdr + Er (1, 1)Vds = 0 (149)

{Dr (2, 1) − ωr }ϕqr + Dr (2, 2)ϕdr + Er (2, 1)Vds = 0 (150)

Recollecting ϕqr and ϕdr again in terms of constants,

[
ϕqr

ϕdr

]
= Hr

[
Vds

Vds

]
(151)

where,

Hr = G−1
r (−Er ) (152)

Gr =
[

Dr (1, 1) Dr (1, 2) + ωr

Dr (2, 1) − ωr Dr (2, 2)

]
(153)
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So, values of ϕqr and ϕdr are,

ϕqr = Hr (1, 1)Vds (154)

ϕdr = Hr (2, 1)Vds (155)

In Eq. (137), substituting values of ϕqr and ϕdr ,

·
ωr = [{

Fr As(2, 1)H
2
r (1, 1)

} + {Fr Bs(2, 1)Hr (1, 1)} + {−Fr As(1, 2)H
2
r (2, 1)

}
+ {−Fr Bs(1, 1)Hr (2, 1)} + {−Fr As(1, 1)Hr (2, 1)Hr (1, 1)}
+{Fr As(2, 2)Hr (2, 1)Hr (1, 1)}]V 2

ds +
[−B

2H

]
ωr (156)

Let,

{
Fr As(2, 1)H

2
r (1, 1)

} + {Fr Bs(2, 1)Hr (1, 1)} + {−Fr As(1, 2)H
2
r (2, 1)

}
+ {−Fr Bs(1, 1)Hr (2, 1)} + {−Fr As(1, 1)Hr (2, 1)Hr (1, 1)}
+ {Fr As(2, 2)Hr (2, 1)Hr (1, 1)} = Jr (157)

ω̇r = Jr V
2
ds +

[−B

2H

]
ωr (158)

Similarly, solving Eq. (139) for QIM
L

QIM
L = X3As(1, 1)Hr (1, 1)V

2
ds − X1Hr (1, 1)V

2
ds + X3As(1, 2)Hr (2, 1)V

2
ds

+ X3Bs(1, 1)V
2
ds (159)

Let,

Kr = X3As(1, 1)Hr (1, 1) − X1Hr (1, 1) + X3As(1, 2)Hr (2, 1) + X3Bs(1, 1)
(160)

QIM
L = KrV

2
ds (161)

For small perturbations in system, Eqs. (158) and (161) can be rewritten in terms
of incremental change in state control and disturbance vectors. For single state vector
�ωr , state space equation for first order model;

�ω̇r = Aq1�ωr + Bq1�V (162)

�Q = Cq1�ωr + Dq1�V (163)
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Aq1, Bq1, Cq1 and Dq1 are the constant matrices of the appropriate dimensions
associated with the above control, state and disturbances vectors for first order model
of induction motor.

Hence,

Aq1 = − B

2H
(164)

Bq1 = 2Jr Vss (165)

Cq1 = 0 (166)

Dq1 = 2KrVss (167)

Example 8 Draw the step responses for (Dv)DLM (fifth order type induction motor
load) of ratings (i) 50 kW, (ii) 100 kW, (iii) 150 kW, and (iv) 200 kW usingMATLAB
coding. Use the same manufacturer data for all rating motors as in Example 1.

Solution To find the step response for (Dv)DLM following steps are followed;

1. For an induction motor manufacturer data first find electrical and mechanical
parameters.

2. Develop the state space model for induction motor and find ABCD parameter.
3. Find transfer function (Dv)DLM from ABCD parameters.
4. Plot step response for (Dv)DLM .
5. Repeat the same steps for all four ratings.

The results are shown in Fig. 10.

Example 9 Consider a composite load of 250 kW that includes 200 kW exponential
type static load and 50 kW fifth order induction motor dynamic load participation.
Draw the step response for (Dv)CLM for this load using MATLAB coding. All the
required parameters for static and dynamic loads are same as in previous examples.

Solution To find the step response for (Dv)CLM , find transfer function for 200 kW
exponential type static load and 50 kW fifth order induction motor dynamic load as
estimated in previous respective examples. Use Eq. (78) to find the (Dv)CLM through
(Dv)SLM and (Dv)DLM expressions. Finally, plot step response for (Dv)CLM . The
results are shown in Fig. 11. Zoom view of plot is also shown in Fig. 12 for better
understating.

For a composite load of 250 kW consisting 200 kW SLM and 50 kW DLM,
transfer functions have been obtained. Actual view for this system shown in Fig. 11
represents that systemwill settle down at around 3 s. Zoom view of step responses for
this composite loadmodel, demonstrated in Fig. 12, show that the dynamic behaviour
of load pattern is due to the participation of dynamic load. Static load will increase
the magnitude of overall reactive power demand due to change in voltage.
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Fig. 10 Step responses for (Dv)DLM of fifth order model induction motor loads

Fig. 11 Actual view of step responses for composite load of 250 kW having 200 kW static and
50 kW dynamic load

Example 10 For a composite load including participation of static and dynamic load
as given in Table 6, draw the step response for (Dv)CLM using MATLAB coding. All
the parameters are same as in previous examples.

Solution To find the step response for (Dv)CLM , find transfer function for static load
(Dv)SLM and dynamic load (Dv)DLM as estimated in Example 6 and 8. Use Eq. (78)
to find the (Dv)CLM through (Dv)SLM and (Dv)DLM expressions. Finally, plot step
response for (Dv)CLM . The results are shown in Fig. 13.
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Fig. 12 Zoom view of step responses for composite load of 250 kW having 200 kW static and
50 kW dynamic load

Table 6 List of 250 kW composite load patterns based on participation of dynamic load

Title Pattern 1
(kW)

Pattern 2
(kW)

Pattern 3
(kW)

Pattern 4
(kW)

Pattern 5
(kW)

Static load
component

250 200 150 100 50

Dynamic
load
component

0 50 100 150 200

Total rating
of composite
load

250 250 250 250 250

Step responses for all five patterns given in Table 6 are compared in Fig. 13. This
figure depicts that dynamic behaviour of composite load is due to the presence of
induction motor as the dynamic load. It has also been observed that load with high
participation of dynamic load attains stability in maximum time.

5 Conclusion

In this chapter, a detail discussion is focused on load model identification in power
system. It has been concluded that variety of loads exist at load end due to which
decision of choosing correct load model is very difficult for system. Static load
model alone cannot be correctly quantified the load behaviour in system which was
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Fig. 13 Step responses for (Dv)CLM of fifth order model induction motor loads

reported by most of the authors in their work and therefore, a composite load is
suitable for load modelling. This composite load comprises static as well as dynamic
load compositions. Thus, a composite load model is designed by clubbing static and
dynamic loads.

Static load can be modeled either as polynomial type or as exponential type.
Exponential typemodel is themost generalizedmodel to specify static load because it
covers awide range of load varieties depending on the exponential factor as described
in the chapter.

Induction motor is the most versatile load and thus defines as the most commonly
used dynamic load in power system. Induction motor’s electrical and mechanical
parameters are estimated in this chapter but more advance work can be done for
investing these parameters in future. It has been observed that dynamic behaviour of
composite load depends in proportion to participating factor of dynamic load.

Key Terms and Their Definitions

Static Load: A load that depends only on the instantaneous voltage input and is
unrelated to the preceding voltage inputs.
Dynamic Load: A load that depends not only on the instantaneous voltage input but
also it is related to the preceding voltage inputs.
Composite Load: A load that includes the participation of static and dynamic load.
Aggregate Load: A load that develops by collecting all loads together.
ZIP Load model: A polynomial type static load model having properties of constant
power, constant impedance and constant current load individually or for any of their
combinations.
Exponential Load model: A generalized static load model that can express any type
of static load through its exponential factor.
Induction motor load: Most commonly used dynamic load in distribution system.
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MATLAB Code

MATLAB Codes are given within the chapter with examples.
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A Novel Forward-Backward Sweep
Based Optimal DG Placement Approach
in Radial Distribution Systems

Farkhondeh Jabari, Somayeh Asadi and Sahar Seyed-barhagh

Abstract The huge value of the electricity consumption in different residential,
commercial, industrial and agricultural sectors lead to the load-generationmismatch,
voltage drops, cascading failures, and wide area blackouts. Therefore, the use of
renewable energy resources based distributed generation (DG) units is rapidly grow-
ing in order to satisfy not-supplied electrical demand and reduce greenhouse gas
emissions. Meanwhile, optimal placement of DG units in radial grids is crucial for
minimization of the total active power losses and the voltage drops. This chapter
proposes a novel backward-forward sweep (BFS) based methodology for optimal
allocation of DG micro-plants in radial distribution systems aiming to minimize
total real power losses of the whole system. Voltage permitted range limit and feeder
capacity criterion are considered as optimization constraints. Simulation of BFS
based DG placement method is conducted on the 33-bus distribution network to
investigate its performance under different scenarios.
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Nomenclature

J̇ k+1
D,i The current of the load i in scenario (k + 1)

V̇ k
i The voltage of the bus i in iteration k

Ṡi , ṠD,i Power injected to node/load i
ṖD,i , Q̇D,i The active and reactive power utilizations in node i
İ k+1
m,i Current of branch m-i in scenario (k + 1)
Zm,i The impedance of the line m-i
Floss The real power losses as the objective function
gi, j The conductance of the branch i to j
θi , θ j The voltage angles of the buses i and j
ṖDG,i , Q̇DG,i The active and reactive power productions of the DG unit in bus i
ε Convergence coefficient
Vmin
i , Vmax

i Lower and upper bounds of voltage magnitude for node i
Ib The current of the branch b
Imax
b The current capacity of the line b

1 Motivation and Literature Review

Nowadays, the penetration level of distributed generators (DGs) in power systems
is increasing due to power system restructuring, deregulation of electricity markets,
global warming, and energy crisis [1]. Moreover, integration of DGs with power
systems provides several benefits such as voltage profile improvement, ancillary
services, power quality, and reliability enhancement, energy saving, loss and feeder
congestion reduction [2].

Many types of research focused on the optimal allocation of DGs in distribution
systems. For example, Gkaidatzis et al. [3] presented a particle swarm optimization
(PSO) algorithm for siting and sizing of DGs considering load variations. In this
study, total active power losses are minimized while satisfying the feeder capacity
limit and the voltage permitted range constraint. In [4], simultaneous allocation of
DGs and capacitors is optimized using a genetic algorithm to minimize their capital
investment and maintenance costs, energy losses, and risk of not-supplied demand.
In [5], sequential quadratic programming (SQP) and branch and bound method are
integrated to solve a non-convex mixed integer non-linear programming problem for
achieving better solutions in less calculation time than exhaustive load flow (ELF),
improved analytical (IA) and PSO algorithms. Poornazaryan et al. [6] combined
Cuckoo search method with a binary imperialistic competitive algorithm for mini-
mization of real power losses and enhancement of voltage stability considering 50%
variations in active and reactive loads. In [7], optimum places and capacities of
DGs are determined by triangle number technique and multi-objective hybrid big-
bang crunch to minimize the operation cost, power losses, pollutant emissions of
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greenhouse gases and maximize the voltage stability security margin. Reference [8]
proposed a teaching learning algorithm for optimal placement of DGs in radial distri-
bution systems in a way that voltage profile is improved in comparison with genetic
and PSO algorithms. Reference [9] aims to mitigate feeder congestion and maximize
energy saving by interrupting both active and reactive power consumptions of flexible
loads considering their interruption costs using a genetic algorithm. In [10], imple-
menting backward-forward sweep load flow algorithm coupled genetic algorithm,
DGs are efficiently allocated and sized subject to voltage stability constraint. In [11],
genetic, PSOandgravitational search algorithms are examined to find a good scenario
withminimumDGs installation costs. In [12], optimal capacities of non-dispatchable
photovoltaic (PV) power generation technology is determined to gain an interchange
betweenminimum loss andmaximum voltage stability by using a weighted rank sum
ratio method. Kayal and Chanda [13] used a PSO algorithm for selection of optimum
places and sizes of solar photovoltaic arrays and wind turbines in three 12, 15 and
33 bus radial distribution systems. In this research, reduction of grid power losses
and enhancement of voltage stability index of the whole system are considered as
optimization objectives. It is found that solar PV farms and wind turbines in lagging
power factor operating mode lead to more voltage stability improvement in all buses.
It is obvious that the voltage magnitude of all buses increases with the participation
of DGs in active and reactive power compensations. In [14], non-dispatchable DGs
such as solar PV panels and wind turbines and dispatchable energy sources such as
biomass and biogas fueled gas turbine power generation cycle is optimally placed
in the 51-bus radial distribution grid. Analytic hierarchy process (AHP) is employed
in the PSO algorithm for solving a multi objective optimization problem including
energy losses, feeder current capacity limit, voltage stability, and emission reduction
aspects. In [15], it is revealed that symbiotic organisms search algorithm, which is
based on the symbiotic relationship between different biological species, is more
computationally efficient and fast than PSO, teaching-learning algorithm, cuckoo
search optimization, artificial bee colony method, gravitational and stochastic frac-
tal search approaches. Monte Carlo simulation (MCS) is developed by Sadeghi and
Kalantar [16] to model variable outputs of solar and wind farms in dynamic planning
of 9-bus radial distribution network. Covariancematrix adaptation evolutionary strat-
egy determines the optimum planning scenario withmaximum revenue using penalty
and incentive factors. In [17], long-term forecasts of loads and yearly variations of
renewable energy resources based power generation plants is incorporated in opti-
mal reconfiguration and DG placement studies. Objectives of optimization problem
includes the cost of line switching, power losses, investment and maintenance costs
of DGs, and emission cost of DGs and upstream power system. Table 1 summarizes
a taxonomy of different algorithms presented for optimal siting and sizing of DGs
in distribution feeders.

As reviewed, different optimization algorithms have been implemented on distri-
bution systems to find good places and optimal sizes of DGs and improve voltage
stability and reduce system power losses. But, a search method with less calculation
time and computational burden, no need tomembership function of fuzzy logic, huge
search space of MCS, cross over and mutation processes of genetic algorithm, and
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Table 1 Comparison between different algorithms proposed for solving optimal DG placement
problem

References Search algorithm Objective functions Advantages

[18] Point estimation method
and genetic algorithm
for probabilistic load
flow and optimal
allocation of DGs
considering uncertainties
of load, wind, electricity
rate, solar, fuel price

Power loss minimization Faster convergence than
MCS based genetic
algorithm

[19] Cuckoo search algorithm Power loss minimization
and voltage profile
improvement

Better objective
functions than genetic
and PSO algorithms

[20] Non-dominated sorting
genetic algorithm-II

Minimization of feeder
losses, capital
investment, and
maintenance costs and
voltage deviations

Improved cross over and
mutation in comparison
with genetic algorithm

[21] Harmony search
algorithm

Energy loss
minimization and
voltage stability
enhancement

More accurate and faster
than non-dominated
Sorting Genetic
Algorithm II

[22] Plant growth simulation
method

Minimum number of
DGs, maximum voltage
stability and minimum
power losses

No need to cross over
and mutation factors of
genetic algorithm and
membership function of
fuzzy logic

[23] Ant colony and artificial
bee colony search
algorithms

Loss and emission
reduction

Less computational
burden than point
estimation method

[24] Kalman filter model Minimum power losses More accurate than
Gaussian linear
optimizer

[25] Continuous load flow
analysis

Minimum losses and
maximum loading
margin

The accurate and
computationally friendly
approach in comparison
with MCS

initial population of metaheuristic algorithms has not been proposed by scholars.
This chapter aims to present a novel forward-backward sweep (BFS) based optimal
DG placement strategy for radial distribution networks. In this method, the number
and capacity of DGs are considered as known parameters. Total active power losses
are considered as the objective function. Firstly, one of DGs is selected. Its active
and reactive power generations are added to second (related to active power con-
sumption) and third (related to reactive power consumption) columns of the bus data
matrix. Then, BFS load flow is solved and total real power losses are calculated as
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a component of loss matrix in the 1st raw and 1st column. In loss matrix, a number
of rows and columns are equal to the number of buses and DGs. Afterward, 1st DG
is assumed to be installed on bus 2. A similar analysis is carried out and energy
losses are computed as 2nd row and 1st column of loss matrix. When all buses are
evaluated for placement of the 1st unit, 2nd DG is assumed to be located at buses 1 to
N, respectively. where N refers to a number of nodes in the test distribution system.
This process is repeated for all DGs and loss matrix is formed. Finally, the minimum
values of columns are determined. If the minimum value of column i occurred in the
jth row of loss matrix, bus j will be selected as a good place for installation of ith
DG.

Other sections of this chapter are organized as follows: The BFS based DG allo-
cation approach is mathematically modeled in Sect. 2. Simulations and results are
then provided in Sect. 3. Afterward, Sect. 4 presents the conclusion.

2 Optimal DG allocation problem

2.1 FBS power flow

The single line diagram of the typical radial distribution system is depicted in Fig. 1.
It is supposed that the power injection to the bus i is equal to Ṡi . As obvious from
Fig. 1 and given by (1), the value of the active/reactive power injected to the bus i
is equal to the real/reactive load of this bus plus the sum of the power transmitted
through the node i to other adjacent buses.

Ṡi = ṠD,i +
∑

j

Ṡ j (1)

By considering the negative active (−ṖDG,i ) and reactive (Q̇DG,i ) power con-
sumptions of the DG unit in bus i, its net demand can be calculated as (2).

Fig. 1 The installation of
the DGs in radial distribution
systems
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ṠD,i = (
ṖD,i − ṖDG,i

) + j (Q̇D,i − Q̇DG,i ) (2)

The current injected to the load i at iteration k+1 can be calculated based on
its appearance power (ṠD,i ) and voltage magnitude at iteration k (V̇ k

i ), as stated in
equation (3). where, J̇ k+1

D,i is the current injected to the bus i in iteration k+1. The
voltage of the node i at scenario k is stated as V̇ k

i .

J̇ k+1
D,i =

(
ṠD,i

V̇ k
i

)∗
(3)

In the backward sweep of the load flow analysis, the current in the line m-i at
iteration k+1 is calculated as (20.4).

İ k+1
m,i = J̇ k+1

i +
∑

j

İ k+1
i, j (4)

In the forward sweep, the voltage of the up-stream busm at iteration k+1 depends
on the value of the voltage drop in the transmission line, which connects the buses i
and m to each other, as well as the voltage of the down-stream node i, as formulated
by (5).

V̇ k+1
m = V̇ k+1

i − İ k+1
m,i × Zm,i (5)

If the convergence constraint (6) is satisfied for all buses, the backward and forward
sweeps will be stopped. Therefore, the voltage of the bus j will be equal to V k+1

j and

the current of the branch i to j will be equal to İ k+1
i, j .

∣∣∣V k+1
j − V k

j

∣∣∣ ≤ ε (6)

2.2 Total active power loss, bus voltage limit, and feeder
current capacity

The total real power loss of the distribution grid, Floss , is calculated from (7). In
which, gi, j is the conductance of branch i to j. In addition, nl refers to the number of
the transmission lines. The voltage angle of the bus i is defined as θi . According to
(8), the lower (Vmin

i ) and upper (Vmax
i ) bounds of the bus voltage magnitude are

considered as 0.9 and 1.05 per unit, respectively. Similarly, the current of the line b
is limited by the maximum flow Imax

b , as formulated by the inequality constraint
(9).
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Floss = Min
nl∑

i, j=1
i �= j

gi, j
[
V 2
i + V 2

j − 2ViVj cos(θi − θ j )
]

(7)

Vmin
i ≤ Vi ≤ Vmax

i (8)

Ib ≤ Imax
b (9)

3 Proposed Algorithm and Illustrative Example

The BFS based strategy is used for optimal allocation of DGs in radial distribution
systems and described based on MATLAB codes. The number and sizes of the DGs
are known. As obvious from Fig. 2, “P_DG” and “Q_DG” refer to active and reactive
capacities of DGs, respectively. The BFS based optimization algorithm finds the
suitable places for installation of three distributed generation units andminimizes the
real power loss,while satisfying the voltage limit and the feeder current capacity as (8)
and (9). In theMATLAB codes, IEEE 33-bus radial distribution system [26] is tested
to allocate three distribution generation units with active and reactive generation
capacities of 70, 240, 545 kW and 36, 63, 250 kVAr, respectively. The single line
diagram of the test network is illustrated in Fig. 3. The “bdata.not.per.unit” and
“ldata.not.per.unit” are the bus and line data matrices, respectively. The 1st column
of the node informationmatrix represents the bus number. The 2nd and 3rd ones refer
to the real and reactive demands of the buses in terms of kW and kVAr, respectively.
In the matrix “ldata.not.per.unit”, the first and second columns show the starting and
ending points of the branches. The 3rd and 4th columns report the resistance and
reactance of the lines, respectively. In the first iteration of the proposed approach,
the DG unit 1 is located at bus 1. The BFS power flow calculation is implemented
on the updated node information matrix. The active power loss is then computed and
saved as the 1st row and 1st column of the loss matrix. The loss matrix is defined as
“Active_loss”. In the 2nd iteration, the DG unit 1 is located at node 2 and the power
flow calculation is performed. The active loss of the benchmark system is calculated
and saved as the 2nd row and 1st column of the loss matrix. The same method
is considered for the 2nd and 3rd DGs. As obvious from the loss matrix, which is
shown in Fig. 4, if 1st DG unit is installed at bus 18, the total active power loss will be
minimumand equal to 166.3765kW.Moreover, 17th and32ndbuses are good choices
for installation of 2nd and 3rd DGs. The voltage profile before and after installation
of DGs under the best scenario and two other scenarios are depicted in Fig. 5. As
expected, optimal placement of DGs using the forwardbackward sweep based search
algorithm leads to a significant reduction in active power losses and improvement
in bus voltage magnitude. Moreover, number of scenarios in search space of BFS
based DG allocation method is reduced to 99 (number of buses × number of DGs).
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Fig. 2 MATLAB codes of
forward-backward sweep
based optimal DG placement
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Fig. 3 Single line diagram of IEEE 33-bus radial distribution system

In other words, BFS based optimal DG placement strategy is a computationally
friendly approach in achieving a global optimal solution in lower iterations and less
calculation time. Total amounts of active power losses in three mentioned cases
before installation of DGs, after optimal and non-optimal allocation of DGs can be
summarized as Table 2. Figure 5 and Table 2 reveal that BFS search algorithm can
find a global optimal solution vector after solving 99 (number of bus × number of
DGs) load flow problems. The applicability of the proposed algorithm in finding the
best DG places is compared with other recently published methods such as intersect
mutation differential evolution (IMDE) [27], analytical [28], fuzzy genetic algorithm
(FGA) [29], and bacterial foraging optimization algorithm (BFOA) [30]. Table 3
summarizes the optimal scenarios and the total real power losses obtained from the
BFS load flow basedDGplacement approach and the other ones. It is obvious that the
proposed methodology reduces the active power losses, significantly. Moreover, the
minimum value of the bus voltage magnitude is more than that of other algorithms.
In other words, if we consider that n and N respectively refer to the number of buses
andDGs, BFS basedDG allocation strategy not only reduces the number of scenarios
from 2 to n×N, but also improves the voltage profile and decreases the energy losses
in comparison with other introduced methods.
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Fig. 4 4 Loss matrix obtained from solving backward forward sweep algorithm with 33×3 itera-
tions (33=number of buses, 3=number of DGs)
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Table 2 Comparison of
different cases with and
without DGs

Case study Total real power losses (kW)

Without DGs 176.3658

With DGs (Best scenario) 86.7679

With DGs (1st DG at bus 12,
2nd DG at bus 20, 3rd DG at
bus 4)

144.0289

Table 3 Comparison between the proposed approach and the other recently published algorithms

DG size (kW) 840,
1130

1000 600, 1100 633,
90,
947

Algorithms IMDE
[27]

BFS Analytical
[28]

BFS FGA
[29]

BFS BFOA
[30]

BFS

Total energy
losses (kW)

84.28 80.54 142.34 114.74 119.7 82.7 98.3 82

Minimum
voltage
magnitude in
per unit (Bus
number)

0.971
(33)

0.97
5(33)

0.931 (33) 0.933
(18)

0.935
(18)

0.963
(18)

0.964
(33)

0.965
(33)

Best places
(Bus number)

14, 30 13, 30 18 30 7, 32 14, 30 7, 18,
33

14,
18, 30

Fig. 5 Voltage profile in three cases: Without DGs (black), best scenario (blue), another scenario
for installation of DGs (1st DG at bus 12, 2nd DG at bus 20, 3rd DG at bus 4, red)
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4 Conclusions

In this chapter, the forward-backward load flow calculation was used for find-ing
the optimum places for installing the DG units. At each iteration, one DG unit is
considered to be located at one of buses. The BFS power flow algorithm is then run
according to the line and updated bus data matrices. The active power loss is obtained
and reported in the loss matrix. Finally, the good places are selected based on the loss
matrix. For the nth DG unit, if the mth row of the loss matric is minimum, this DG
unit should be installed at bus n. The numerical results revealed that the proposed DG
allocating algorithm is more fast and accurate than other recently published methods
because of its lower iterations and less ac-tive power losses.
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Optimal Capacitor Placement
in Distribution Systems Using
a Backward-Forward Sweep Based Load
Flow Method

Farkhondeh Jabari, Khezr Sanjani and Somayeh Asadi

Abstract Nowadays, the non-optimal placement of the shunt capacitors in dis-
tributed electricity systems may increase the total active power loss and lead to
the voltage instability. Therefore, many researchers have recently focused on opti-
mization of capacitor placement problem in radial and meshed distribution grids
aiming to minimize transmission losses and improve the overall efficiency of the
power delivery process. This chapter aims to present a backward-forward sweep
(BFS) based algorithm for optimal allocation of shunt capacitors in distribution net-
works. The total real power loss of the whole system is minimized as the objective
function. Moreover, the feeder current capacity and the bus voltage magnitude limits
are considered as the optimization constraints. In addition, it is assumed that the sizes
of capacitors are the known scalars. The 1st capacitor is considered to be located
at the 1st bus of the test system. Then, the BFS load flow is run and the objective
function is saved as 1st row and 1st column component of a loss matrix. Secondly,
the 1st capacitor is assumed to be installed at bus 2 and the BFS load flow is run to
obtain objective function as 2nd row and 1st column component of lossmatrix.When
all buses are assessed for installation of capacitor 1 and losses are calculated in each
scenario, similar analyses are carried out for the 2nd capacitor bank and the values
of the active power loss are saved as the 2nd column of the loss matrix. The same
strategy is applied to other capacitors. Finally, a loss matrix is formed with number
of rows and columns equal to the number of buses and shunt capacitors, respectively.
The best places for installation of capacitors are determined based on the compo-
nents of the loss matrix. Simulation of BFS based capacitor placement problem
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is conducted on the 33-bus distribution network to demonstrate its robustness and
effectiveness in comparison with other procedures.

Keywords Optimal capacitor placement · Distribution system · Voltage
improvement · Loss minimization · Feeder capacity

Nomenclature

J̇ k+1
i The current injected to the load i in iteration (k + 1)
V̇ k
i The voltage of the node i in iteration k

ṠD,i The appearance power consumption of the load i
nl The number of lines
İ k+1
h,i The current of the feeder h-i in iteration (k + 1)
Ib The current of the line b
Zh,i The impedance of the feeder h-i
V̇ k+1
h The voltage of the bus h in iteration (k + 1)

I max
b Maximum current of line b
Floss The real power loss of the distribution grid
gi, j The conductance of the line i-j
Vm The voltage magnitude of the node m
θm The voltage angle of the node m
Ṡi The appearance power injected to the bus i
Q̇C,i The reactive power of the capacitor located at bus i
ṖD,i The real power consumption at bus i
Vmin
i , Vmax

i Minimum and maximum values of voltage magnitude for node i
Q̇D,i The reactive power consumption at bus i

1 Introduction

Recently, optimization of capacitor placement problem in distribution systems has
attracted more attention because of increased electricity demand and voltage drop,
which may lead to load-generation mismatch and uncontrolled islanding of radial
and meshed grids [1]. In [2], Gaussian and Cauchy probability distribution func-
tions based particle swarm optimization (PSO) algorithm are employed for finding
optimum places of capacitor banks, voltage profile improvement and energy loss
reduction considering feeder loading capacity and voltage limits. Non-dominated
sorting genetic algorithm (NSGA-II) is used in [3, 4] to investigate power losses,
voltage stability and total harmonic distortion (THD). A clustering method is intro-
duced in [5] for discrete optimization of capacitor places and sizes to minimize the
sum of energy losses and capacitor costs. It is revealed that the clustering algorithm
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is computationally friendly and fast in comparison with fuzzy genetic algorithm
[6, 7], direct search method [8], intersect mutation differential evolution strategy
[9], teaching learning-based optimization [10], cuckoo search approach [11], self-
adaptive harmony search algorithm [12] and artificial bee colony [13, 14]. In [15],
cost of energy losses, capacitor installation cost, and voltage penalty factor are con-
sidered as main objectives of optimal capacitor allocation problem. In [16], a flower
pollination algorithm (FPA) is presented for optimal allocating and sizing of capac-
itors in various distribution systems. Firstly, they suggested a set of candidate buses
for installing capacitors using loss sensitivity factor. Secondly, FPA is employed to
find the best scenario. In [17], artificial bee colony and artificial immune system are
integrated for optimal co-placement of distributed generators and shunt capacitors.
Authors of [18] proposed a shark smell optimization algorithm for determining suit-
able capacitor installation places usingmomentum gradient and rotational movement
search strategies. Enhanced bacterial foraging optimization algorithm [19] is applied
on sub-transmission systems to find the best sites and sizes of capacitors considering
thermal loading of cables under the normal operating condition and different single
line outage contingencies. Bacterial foraging optimization algorithm with loss sen-
sitivity factor and voltage stability index is developed in [20] to find sizes and places
of capacitor banks under all possible demand variations.

As reviewed, different optimization algorithms have been implemented on distri-
bution systems to find good places and optimal sizes of shunt capacitors and improve
voltage stability and reduce system power losses. But, a search method with less cal-
culation time and computational burden, no need to membership function of fuzzy
logic, huge search space of Monte Carlo simulations, cross over and mutation pro-
cesses of genetic algorithm, and initial population ofmetaheuristic algorithms has not
been proposed by scholars. This chapter aims to present a novel forward-backward
sweep (BFS) based optimal capacitor placement strategy for radial distribution net-
works. In this method, the number and sizes of capacitors are considered as known
parameters. Total active power losses are considered as the objective function. Firstly,
oneof the capacitors is selected. Its reactive power generation is added to third (related
to reactive power consumption) column of the bus data matrix. Then, BFS load flow
is solved and total real power losses are calculated as a component of loss matrix in
the 1st raw and 1st column. In loss matrix, a number of rows and columns are equal
to the number of buses and capacitors. Afterward, the 1st capacitor is assumed to be
installed on bus 2. A similar analysis is carried out and energy losses are computed as
2nd row and 1st column of loss matrix. When all buses are evaluated for placement
of the 1st unit, 2nd one is assumed to be located at buses 1 to N, respectively. where
N refers to a number of nodes in the test distribution system. This process is repeated
for all capacitors and loss matrix is formed. Finally, the minimum values of columns
are determined. If the minimum value of column i occurred in the jth row of loss
matrix, bus j will be selected as a good place for installation of the ith unit.

The remainder of the present chapter is organized as follows: The optimal
capacitor placement strategy is formulated in Sect. 2. The illustrative example and
discussions are provided in Sect. 3. Section 4 concludes the chapter.
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2 Mathematical modeling of load flow based optimization
problem

2.1 Forward-backward load flow

Figure 1 shows the sample radial distribution grid. As illustrated in this figure, the
current injected to the load i in iteration k+1, J̇ k+1

i , can be given by Eq. (1). In which,
V̇ k
i represents the voltage magnitude of the node i in iteration k.Moreover, Ṡi refers

to the appearance power of the node i. Equation (2) demonstrates the power balance
criterion for each bus i. The appearance power injected to the bus i is equal to the
power consumed by the load i plus the power transmitted from the node i to the
adjacent bus j.

J̇ k+1
i =

(
ṠD,i

V̇ k
i

)∗
(1)

Ṡi = ṠD,i +
∑
j

Ṡ j (2)

where,

ṠD,i The active and reactive power consumption in bus i
Ṡ j The complex power flowing in node j

It is assumed that the reactive power injected by the capacitor units to the bus i is
the negative reactive load, as expressed by Eq. (3). If the capacitor bank is installed
in bus i, its reactive power, Q̇C,i , will be modeled as the negative reactive power
consumption in this node. Note that ṖD,i and Q̇D,i are the active and reactive power
consumptions of the node i, respectively.

ṠD,i = ṖD,i + j (Q̇D,i − Q̇C,i ) (3)

In the backward sweep, the current of the branch h-i in iteration k+1, İ k+1
h,i , is

calculated as (4).

Fig. 1 A simple radial
distribution network
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İ k+1
h,i = J̇ k+1

i +
∑
j

İ k+1
j (4)

In the forward sweep, the current of the branch h to i, İ k+1
h,i , is used for calculating

the voltage of the node h in iteration k+1, as fulfilled by (5). where, Zh,i is the
impedance of the branch j.

V̇ k+1
h = V̇ k+1

i − İ k+1
h,i × Zh,i (5)

When the convergence criterion (6) is satisfied for all buses, the forward-backward
sweep based power flow algorithm will be finished. The scalar ε is the convergence
factor. If it is not satisfied for at least one bus, the equations (1)–(6) will be performed
in the next iteration. ∣∣∣V k+1

j − V k
j

∣∣∣ ≤ ε (6)

2.2 Optimal places for installation of capacitor banks

Equation (7) demonstrates that the minimum total real power loss is considered for
optimization of capacitor placement problem.

Floss = Min
nl∑

i, j=1
i �= j

gi, j
[
V 2
i + V 2

j − 2ViVj cos(θi − θ j )
]

(7)

where,

Floss The active power loss of the whole system
gi, j The conductance of the line i-j
θi and θ j The voltage angle of the nodes i and j
nl The number of branches

Subject to:

• Voltage permitted range constraints

Vmin
i ≤ Vi ≤ Vmax

i (8)

• Feeder capacity constraint

Ib ≤ Imax
b (9)
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In which,

Vmin
i and Vmax

i Minimum andmaximum voltagemagnitude of bus i, respectively
Ib The current of the branch b
Imax
b The maximum current of the branch b

3 Illustrative Example

The backward-forward sweep based strategy is proposed for optimum allocation of
shunt capacitors in radial distribution grids and comprehensively described based
on MATLAB codes. In this research, it is assumed that the number and sizes of
the capacitor banks are known parameters. As obvious from Fig. 2, “Q_cap” refer
to the reactive capacities of the units. The BFS based optimization algorithm finds
the good places for installation of three capacitor banks andminimizes the total active
power losses while satisfying the voltage permitted range constraint and the feeder
current limit as stated by (8) and (9), respectively. According to MATLAB codes, a
33-bus radial distribution system [21] is considered to allocate three capacitor units
with reactive generation capacities of 50, 740, 260 kVAr, respectively. The single
line diagram of IEEE 33-bus radial distribution system is illustrated in Fig. 3. The
bus data matrix is defined as “bdata.not.per.unit”. The first column of this matrix
refers to the number of nodes. Active and reactive power consumptions in each bus
are presented at the second and third columns of the bus data matrix in kW and kVAr,
respectively. Similarly, “ldata.not.per.unit” is the line data matrix of the 33-bus radial
benchmark network. In each row of the branch information matrix, the number of
starting and ending points of each line is determined using the bus numbers. The third
and fourth columns of the line data matrix represent the resistance and reactance of
each branch in Ohm, respectively. Firstly, the capacitor unit 1 is considered to be
installed at bus 1. Then, the backward-forward sweep algorithm is implemented
on the updated bus data matrix. The total active power loss is then calculated and
considered as the 1st row and 1st column of a loss matrix, which is defined as
“Active_loss”. In other words, the loss matrix has 33 rows (number of buses) and 3
columns (number of shunt capacitors). In the second iteration, the capacitor unit 1 is
assumed to be located at bus 2 and the optimal power flow is run. The real power loss
is obtained as the 2nd row and 1st column of the loss matrix. when the 1st capacitor
bank is located at all buses, the 1st column of the loss matrix will be finished.
The similar strategy will be repeated for the 2nd and 3rd units. Finally, the loss
matrix will be formed as Fig. 4. According to this matrix, if the 1st reactive power
bank is installed at bus 33, the total real power loss will be minimum and equal to
172.4784 kW. In the same manner, buses 30 and 32 are good choices for installation
of the 2nd and 3rd units. The voltage before and after installation of capacitors are
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Fig. 2 MATLAB codes of
forward-backward sweep
based optimal capacitor
placement
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Fig. 3 Single line diagram of IEEE 33-bus radial distribution system

depicted in Fig. 5. As expected, the optimal placement of the capacitors using the
forward-backward sweep based search algorithm leads to a significant reduction
in active power losses and improvement in bus voltage magnitude. Moreover, the
number of scenarios in search space of BFS based capacitor allocation method is
reduced to 99 (number of buses × number of capacitors). In other words, the BFS
based optimal capacitor placement strategy is a computationally efficient approach in
achieving a global optimal solution in lower iterations and less calculation time. The
total active power loss in two cases, before and after installation of capacitors, can be
summarized as Table 1. Figure 5 and Table 1 reveal that the BFS search algorithm can
find a global optimal solution vector after solving 99 (number of bus × number of
capacitors) load flow problems.The applicability of the proposed algorithm in finding
the best capacitor places is compared with other recently published methods such as
intersect mutation differential evolution (IMDE) [9], analytical [22], fuzzy genetic
algorithm (FGA) [23], and bacterial foraging optimization algorithm (BFOA) [24].
Table 2 summarizes the optimal scenarios and the total real power losses obtained
from the BFS load flow based capacitor placement approach and the other ones. It is
obvious that the proposedmethodology reduces the active power losses, significantly.
Moreover, the minimum value of the bus voltagemagnitude is more than that of other
algorithms. In otherwords, ifwe consider that n andN respectively refer to the number
of buses and capacitors, BFS based capacitor allocation strategy not only reduces
the number of scenarios from 2n to n×N, but also improves the voltage profile and
decreases the energy losses in comparison with other introduced methods.
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Fig. 4 Loss matrix obtained
from solving backward
forward sweep algorithm
with 33×3 iterations
(33=number of buses,
3=number of capacitors)
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Fig. 5 Voltage profile in two cases: without capacitors (red), with capacitors (best scenario: blue)

Table 1 Comparison
between two cases with and
without installation of
capacitor units

Case study Total real power losses (kW)

Without capacitors 253.9667

With capacitors (Best scenario) 130.2507

Table 2 Comparison between the proposed approach and the other recently published algorithms

Capacitor
sizes
(kVAr)

475, 1037 1000 950, 700 350, 820, 277

Algorithms IMDE
[9]

BFS Analytical
[22]

BFS FGA
[23]

BFS BFOA
[24]

BFS

Total
energy
losses
(kW)

139.7 125.3 164.6 136.8 139.7
141.3

131.5 144.04 123.9

Minimum
voltage
magnitude
in per unit
(Bus
number)

0.942
(18)

0.943
(18)

0.916 (18) 0.928
(18)

0.929
(18)

0.939
(18)

0.936
(18)

0.944
(18)

Best places
(Bus
number)

14, 30 9, 30 33 27 18, 30 8, 28 18, 30,
33

16, 30,
32
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4 Conclusions

This chapter introduced a novel forward-backward sweep based capacitor place-
ment strategy and used a loss matrix to determine the optimum places for
installing the shunt capacitors. In this approach, each capacitor unit is considered
to be located at one of the buses. Then, a backward-forward sweep based load flow
analysis is implemented on test distribution system according to the line and updated
bus data matrices. Total active power loss is calculated and reported as a component
of lossmatrix.When all buses are evaluated for installation of one capacitor, a similar
strategy will be repeated for others. In summary, a loss matrix with a number of rows
equals the number of buses and number of columns equals the number of capaci-
tors is formed. Therefore, the optimum scenario for installation of the ith capacitor
is a bus with a minimum value of power losses in the ith column. Robustness and
effectiveness of BFS approach in finding global optimal places for installation of
capacitors are proved using MATLAB codes and simulations on the 33-bus standard
test system.
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Optimal Capacitor Placement and Sizing
in Distribution Networks

Arsalan Najafi, Ali Masoudian and Behnam Mohammadi-Ivatloo

Abstract Utilizing capacitor banks in order for local compensation of loads reac-
tive power is common in distribution networks. Using capacitors has positive effects
on networks such as power and energy loss reduction, voltage deviation and net-
work harmonic reduction as well as improvement in network power factor. Capacitor
placement is applied on the network in a form of single or multi-objective problems.
Decreasing the total network loss is often the main reason for using capacitors in
distribution networks. Capacitor placement approach involves the identification of
location for capacitor placement and the size of the capacitor to be installed at the
identified location. An optimization algorithm decides the location of the nodes
where the capacitors should be placed. As we know, the capacitors are categorized
in two main types of fixed and switchable capacitors. Selecting an appropriate type
of capacitor is related to the topology of network, load value and economic situa-
tion. They are also different from coding point of view. In this section, the model of
coding is presented at first, and then, the approach of applying is described based on
optimization algorithm. The capacitors are often used for peak loads but they may be
present in the network in off-peak due to the switching issues. The network voltage
may be increased in off-peak with the presence of capacitors. Therefore, it is very
important to consider both peak and off-peak in the capacitor sizing and placement
problem. The proposed model is applied on IEEE 10 and 33-bus standard test cases
in order to demonstrate the efficiency of the proposed model.

Keywords Capacitor placement · Teaching learning based optimization
algorithm · Capacitor sizing
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1 Introduction

Today, with the advent of science and technology, the use of electrical energy has
grown dramatically. On the other hand, further flourishing needs a more powerful
electricity grid. Power grid consists of three parts: production, transmission and dis-
tribution. Of course, distribution networks are important in the final section of the net-
work. Due to lower voltage levels and higher currents, losses in distribution systems
are higher than in transmission systems. The issue of reducing losses and improving
the efficiency of electric energy supply to the power system is mainly addressed to
the distribution network. Reducing the electric power losses is a way to increase the
capacity of the production, transmission and distribution network without investing
in production. Examples of such loss reduction solutions are reactive power control,
cross-sectional variation of conductors, voltage level change, transformer load man-
agement, load management, over-distribution network topology change, and so on.
The reactive power flow in the network increases the losses and reduces the useful
capacity of the lines and transformers. The use of a capacitor as a reactive power gen-
erator is very common in order to regulate and control the voltage, preventing voltage
fluctuations in the network and correcting the power factor due to the simplicity and
low cost of the system. Installed capacitors reduce the network current and losses
by reducing the reactive power flow of line from the main substation to the location
of capacitor. The absorption and injection of reactive power should be carried out
in such a way as to minimize the losses, and thus the capacitor optimal placement
problem is discussed. The objective function of the capacitor optimal placement in
distribution networks is the cost of installed capacitors, installation costs, etc., and
the cost of power and energy losses. By minimizing the cost function along with the
constraint, i.e., the permitted bus voltages and line currents, the optimal capacitor
size and the location can be determined. Optimal capacitor placement problem can
be formulated as a non-linear optimization problem with a series of equality and
inequality constraints. Therefore, most of conventional optimization techniques are
not able to solve this complex problem, thus evolutionary optimizationmethods need
to be used to solve the problem.

Studies show that 13% of the total energy produced by power plants is dissipated
as distribution losses [1], which caused by reactive power flow. However, losses
due to reactive current can be reduced by shunt capacitor placement. In addition to
reducing power and energy losses in load peak, optimal capacitor placement can
free up distribution equipment capacity and improve the voltage profile. Hence, over
the past decades, the optimal capacitor placement has been widely studied. Optimal
capacitor placement involves determining the location, size and number of capacitors
installed in the distribution system, so that the most benefit is obtained at different
load levels.
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2 Reactive Power Compensation

Reactive power compensation is known as a very important issue in a power sys-
tem. Consuming load (residential, commercial, industrial, etc.) imposes active and
reactive demands on the network. Active powers are converted into other forms of
energies such as light, heat and rotational movement. Reactive power should be com-
pensated for warranting the provision of active energies. Capacitor banks are used
in a wide area in order to loss reduction, freeing up system capacity and improving
the voltage profile. In the last 30 years, power capacitors have recovered greatly by
improvement of dielectricmaterials and theirmanufacturing techniques. Capacitance
sizes have increased from about 15 kVar to about 200 kVAR (Capacitor banks are in
the range of about 300–1800 kVAR) [2]. Nowadays, power capacitors available to
distribution companies are more efficient and less costly than 30 years ago. Under
some conditions, even replacement of older capacitors is justified due to the lower
losses of new ones. As a result, distribution companies can make their choices based
on the economic evaluation of existing capacitor technology [2]. Shunt capacitors,
i.e., capacitors connected in parallel to the grid, are used extensively in distribution
systems. Shunt capacitors provide reactive power or reactive current to compensate
for the out of phase component of the inductive load current. In addition, shunt capac-
itors correct lag characteristics of inductive loads by drowning the lead current that
provides part or all of their lag component current. Therefore, a parallel capacitor
has the same effect as a synchronous condenser, that is, an overexcited generator or
synchronous motor. By using a shunt capacitor in the distribution feeder, the load
current can be reduced and the line power factor can be improved. As a result, the
voltage drop between the substation and the load decreases. The amount and quality
of advantages are related to the number, type of shunt capacitors and their regulations.
Therefore, an optimal way for capacitor placement is the main aspect in installing
capacitors [3].

2.1 Benefit of Reactive Power Compensation

The installed shunt capacitors in the endof power system feeder for supplying reactive
power have some advantages. In this section some of these advantages are investi-
gated. Different methods are used by different companies to calculate the economic
benefits of installing reactive power devices. In summary, the economic benefits of
installing reactive compensators can be summarized as follows:

• Freeing up production capacity
• Reducing voltage drop, and consequently, obtaining an improved voltage profile
• Releasing feeder capacity and related equipment
• Delaying or removing investments for system reform and development
• Reducing power and energy losses.
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2.1.1 Improving Voltage Profile

The feeders with large loads have a weak voltage profile and they face with voltage
variations by loads changing. In a power system, voltage regulation in a small interval
(5% of nominal voltage) and having a balance situation are proposed. By the way, the
amounts of loads fluctuation and as a result, the voltage deviation will be more than
allowable amount. The shunt capacitors are one of the main solutions to improve the
voltage deviations. On the other hand, by keeping the voltage near to the nominal
value, it is not required to use expensive regulators [3]. In addition, the revenue
of distribution companies rises due to voltage increment by capacitors, which in
turn increases energy consumption. This is especially true for domestic consumers.
Increasing energy consumption depends on the nature of the equipment used; for
example, the energy consumption of bulbs increases with the square of the voltage
magnitude.

2.1.2 Loss Reduction by Capacitors

Delivering the reactive power at the load point leads to reduction in line current
and losses. Within a determined study period, the amount of energy losses is also
calculated. Now, taking into account the cost per kilowatt hour of energy production,
the energy loss reduction benefit due to the capacitor placement can be calculated.
Reducing losses at the peak load of the network has good benefits. By reducing the
losses at the peak load, the power stations depart from their nominal values, thus
reducing the need for production. Meanwhile, with the increase of new customers,
the construction of new power plants is postponed. Modifying power factor can
significantly reduce the network loss. This can lead to 15% rate of return in the
network [4]. Modifying the power factor should be done near the customers in order
to maximize the profit. Note that, installing capacitors in LV networks are more
expensive in comparison with the MV and HV networks. In the many industrial
places, the losses are about 2.5–7.5%, which is related to the states of operation,
length of lines and feeder. Capacitors can only decrease a part of losses related to
the reactive current [4].

2.1.3 Freeing up Power System Capacity

One of the other important advantages of capacitor placement in distribution network
is to free up the capacity of feeders and related equipment, delaying or eliminating
investment costs for improving or developing the system, and to free up the dis-
tribution transformers capacity. In addition, capacitor placement also frees up the
capacity of production and transmission system. This leads to a better performance
of operation and makes it possible for a larger number of customers to connect to
the network and it does not require a new feeder to connect new customers.
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In short, capacitors are very effective tools for reducing the costs of the electric
power industry due to continuous increase in fuel and power costs. Power compa-
nies make profit whenever they are able to postpone or eliminate new power plant
investments and reduce energy requirements. Therefore, capacitors help minimize
operating costs and make it feasible for new consumers to invest as little as possible
in the system. Today, American distribution companies have installed almost 1 kVAR
capacitor per 2 kilowatt of installed power generation capacity to use from economic
benefits of capacitor placement [5].

In addition, by using capacitors, a reactive current is supplied for transformers,
motors and other devices. This action increases the power factor. It means, by a
lower current (or apparent power) more active power usage is occurred. Therefore,
capacitor banks can be utilized in order to decrease the load or give more flexibility
to the network for increasing load.

2.1.4 Postponing Investment

By using the capacitors and freeing up the capacity, the cost of network expansion
will be postponed. This snooze is started from distribution feeder to the substation
and transmission networks [3]. It means more economic opportunities for network
expansion planning.

2.2 Disadvantages of Reactive Power Compensation

Capacitor banks certainly have many benefits for the network. However, there are
various states in which the capacitors make the system situation worse. In this section
some bugs are investigated.

2.2.1 Resonance

Resonance is a situation in which capacitor and inductance reactance eliminates the
effects of each other. As a result, the resistive impedance will be available in the
network. The resulted frequency of this situation is called resonance frequency. The
resonance increases extremely the current and voltage magnitude. This damages not
only the capacitor but also the entire network.

2.2.2 Harmonic Resonance

If the resonance is occurred with the harmonic source (for example non-linear
loads) simultaneously, the voltage and currentwill be increased extremely.Moreover,
harmonic resonance will affect the performance of the capacitor.
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2.2.3 Transient Switching of Capacitors

The transient mode of capacitor is occurred when a capacitor in high voltage is
committed in the system.

2.2.4 Over-Voltage

The voltage of the system is varied in a predefined interval in the power system.
Using capacitors can make over voltage in off-peak hours. It may exert unfavorable
effects on the system [3].

3 Literature Review

Problem solving methods can be divided into four categories: analytical, numerical
programming, evolutionary, and artificial intelligence. The next section summarizes
the methods of each category and their advantages and disadvantages.

3.1 Analytical Approaches

In all of the early works on optimal capacitor placement, analytical methods have
been used. These algorithms are used when powerful computing resources (high-
capacity computers) are not available or expensive. Analytical methods include the
use of algebra and calculus to determine the highest value of the saving function.
This saving function is often provided as follows:

S = KE�E + KP�P − KCC (1)

where KE�E and KP�P are respectively the cost and energy reduction caused by
capacitor placement, and KCC is the cost of capacitor placement.

Capacitor placement pioneers have used all analytical methods to solve this prob-
lem [6–9]. Although these methods can solve the problem in a simple form, they are
based on unrealistic assumptions for feeders such as constant conductor size and uni-
form loading. From these studies, the famous two-thirds method is extracted. In the
two-thirds method, for minimizing losses, a capacitor with a capacity of two-thirds
of the reactive load of the feeder is placed at about two-thirds of the feeder length.

These early analytical methods were easy to understand and implement. Despite
the disadvantages, some industries still use these methods for capacitor placement
and some companies argue the rule as a guide. To improve the results, the feeder
model is improved. References [8, 10, 11] have formulated the non-uniformity of the
load and the different sizes of the conductor. Moreover, Refs. [12–14] have included
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the switching capacitors in the program, and further improved the situation by con-
sidering the location of the capacitor regulators. Another problem with analytical
methods is to model the location and size of capacitors as continuous variables. Con-
sequently, the calculated size capacitor may not correspond to the standard sizes,
and also the location obtained does not match the allowed nodes for capacitor place-
ment. Therefore, the results should be rounded to the nearest high or low standard;
this results in over-voltage status or savings below the calculated value. Of course,
most of the recent analytical methods are more accurate but require a lot of system
information and longer time to run.

3.2 Numerical Computation Algorithms

Since access to computers became easier and computermemorywas reduced, numer-
ical programming algorithms were used to solve optimization problems. Numerical
programmingmethods are repetitive techniquesmaximizingorminimizing the objec-
tive function of decision variables. The values of decision variables should also be
constrained by a number of limits. The objective function is the cost saving for opti-
mal location, size and number of capacitors. Voltage and currents can be decision
variables that should satisfy all constraints. Numerical programming methods allow
a more complex cost function to be optimized for the capacitor placement problem.
The objective function can include all voltage constants, line loading, discrete capac-
itor sizes and physical locations of the nodes. Numerical programming can be used
to formulate capacitor placement problem as follows:

MaxS = KL�L − KCC (2)

Subjected to:

�V ≤ �VMax (3)

In this regard, KL�L is cost savings that may include power and energy losses
reduction at peak load as well as freeing up the system capacity. The parameter KCC
is the cost of capacitor placement andV is the voltage variation that should not exceed
�VMax .

Reference [15] was the first to use dynamic programming to solve a capacitor
placement problem, which considered only energy losses reduction with a discrete
set of capacitor sizes. By examining all numerical programming methods, it can be
seen that the level of growth and complexity of the models has progressed over time.
This trend was due to increased computing capacity. Today, heavy calculations are
relatively inexpensive, and many numerical optimization packages are available for
each of the above algorithms. Some numerical programming methods consider the
location of nodes and capacitor sizes as discrete variables; this has a good advantage
over analytical methods. However, the preparation of data and the growth of the
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process for numerical techniques may require more time than analytical methods.
To illustrate whether the answer obtained by numerical optimization planning meth-
ods are local or original, the convexity of capacitor placement problem should be
determined. Considering the economic value of freed capacity and the effect of load
growth in these methods may be very difficult.

3.3 Artificial Intelligent Algorithms

The recent popularity of artificial intelligence has led researchers to explore their uses
in power engineering applications. In [16], a method based on GA is used for optimal
capacitor placement. The size and location of the capacitors are encoded in the binary
strings and the intersect operator is used to generate new populations. The problem
formulation includes only the cost of capacitors and the reduction of peak power
losses. References [17] and [18] are other studies that have used genetic algorithm to
solve capacitor placement problem. In [19], the simulated annealing method is used
to solve this problem. In recent years, the use of evolutionary algorithms has been
increasing; some of these algorithms are: multi-objective algorithm of the immune
system [20], differential evolution algorithm [21], firefly algorithm [22], inclusion
and interchange of variables algorithm [23], particle swarm optimization [24], shark
smell optimization algorithm [25], enhanced bacterial foraging optimization [26].
Moreover, [27] and [28], respectively, use neural networks and fuzzy logic to solve
this problem.

4 Problem Formulation

The optimal capacitance problem has many variables and parameters, such as capac-
itor size and optimal capacitor location. In addition, constraints such as bus voltages
are also involved. In this paper, objectives and constraints are considered as follows:

4.1 Objective Function

Different objectives in the case of capacitor placement can be considered. The
following objective is considered here.

The objective function f shows the total cost of the loss and the cost of the capacitor
[29]:

f = KP P
peak
loss +

Nc∑

j=1

KCQ
j
C +

Nl∑

l=1

KETl P
l
loss (4)
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where P peak
loss represents the losses in the peak, QC the cost of the capacitor j, Nc the

number of capacitor points, KP the power loss into cost conversion factor, KC the
cost of the capacitor per kilovar and KE the cost per kilowatt of energy losses.

It should be noted that losses in the distribution network include both power and
energy loss. Power loss is related to peak loading and energy loss is related to loading
during the year and can be calculated from power loss according to the loss factor.

4.2 Constraints

In addition to minimizing voltage deviation as an objective, the voltage deviation of
individual buses should not exceed the limits and must be between the maximum
and minimum values [29].

VMin ≤ Vi ≤ VMax (5)

Furthermore, due to economic and technical considerations, the capacitor place-
ment in distribution networks is usually done in such a way that the total capacitance
in the network does not exceed a certain limit of

Nc∑

j=1

Q j
C ≤ QMax (6)

5 Modeling and Optimization Algorithm

5.1 Teaching and Learning Based Optimization Algorithm

Teaching and learning based optimization (TLBO) is an algorithm inspired by the
teacher’s influence on the students. This algorithm is based on the transfer of knowl-
edge from the teacher to the students. This algorithm has two phases of knowledge
transfer; the first phase is teacher phase in which the knowledge is transferred from
teacher to class and the second phase is the student phase. In the student phase, infor-
mation is exchanged between students themselves. In this phase, knowledge transfer
is from the side of students with the higher knowledge to their cohorts [30].
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• Teacher phase

The first part of the TLBO algorithm is teacher training. The main goal of the
teacher is to transfer knowledge and increase the positive output of knowledge in the
class. Efficiency in this area dates back to the teacher. Mathematically, this phase is
expressed as [30]:

Xi,new = Xi + r1.(XTeacher + TFXMean) (7)

In this regard, Xi is a solution (a student) of the set of problem solutions, XTeacher

the best answer to the problem that plays the role of the teacher, XMean the mean
value of the answers to the problem and TF the teacher factor, which is obtained
from relation 8:

TF = round(1 + r2) (8)

In this case, r2 is a random number between zero and one. Using round, the factor
value is rounded.

In the process of answer generation, if the generated answer is better than the
previous one, it replaces the previous answer.

• Student phase

In this phase, students increase their knowledge through the exchange of informa-
tion, in which there is no stable process, and as a result, each student can exchange
knowledge with another student. These cases are mathematically motivated. Two
random answers i and j are selected. Note that the two answers are not the same.
Then, the student phase is completed using the following formula:

If the ith answer is better than the jth answer

Xi,new = Xi + r3.
(
Xi − Xj

)
(9)

If the ith answer is worse than the jth answer

Xi,new = Xi + r3.
(
Xj − Xi

)
(10)

where r3 is a vector of random numbers between zero and one. In this case, r3 is a
vector of random numbers between zero and one.

After the answers are made, the new answer would replace the previous answer
if the newly generated random answer is better than the previous one. In summary,
the TLBO algorithm can be seen in the flowchart of Fig. 1.
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Fig. 1 Flowchart of TLBO algorithm
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Fig. 2 Proposed model for
codding

5.2 Matching TLBO with Capacitor Placement Problem

In this case, each answer represents the optimal location and size of the capacitor.
Figure 2 shows a coding of an answer to the algorithm. This code is such that each
of the elements of this code is assigned to a bus. A number between zero and the
maximum number of types of capacitors can be placed in these elements. The value
zero means that the bus is not allocated to the capacitor and the value 1 means type
1 capacitor and the rest numbers obey the same order.

5.3 Load Model

Choosing a suitable location for capacitors is highly dependent on the system load.
Therefore, the loading information of all load points is required to be known. On the
other hand, in order to reduce the calculation, the total load of the system is estimated
as a step. Figure 3 shows the load model used in this problem [31]. These load levels
are usually expressed as a percentage of peak load. Additionally, the number of
surfaces considered for the load is not limited and the capacitor placement problem
can be solved easily without any need for modification of the model for several load
levels as well as different loading levels for different load points.

Fig. 3 Proposed load model
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6 Numerical Results

6.1 Test Cases

In order to perform simulations, two IEEE 10 [32] and 33-bus test cases have been
used [33]. In the 10-bus system, the primary power and energy losses are 7070.16 kW
and 6,371,219 kWh, respectively. The initial active and reactive power of the system
are also 12,368 and 4186 kW, respectively. In the 33-bus system, the power and
energy losses are 40.15 kW and 387,058 kWh, respectively. In both systems the
objective is to reduce the losses and capacitor placement cost. The schematic of
these two systems is shown in Figs. 4 and 5, respectively. The load and network lines
specifications are given in Tables 1 and 2, respectively. We will continue to introduce
each of these test cases individually.

Fig. 4 Schematic of 10-bus test case

Fig. 5 Schematic of 33-bus test case
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Table 1 Characteristics of 10-bus test case

From bus i To bus j R (Ohm) X (Ohm) P (kW) Q (kVar)

1 2 0.1233 0.4127 1840 460

2 3 0.014 0.6051 980 340

3 4 0.7463 1.2050 1790 446

4 5 0.6984 0.6084 1598 1840

5 6 1.9831 1.7276 1610 600

6 7 0.9053 0.7886 780 110

7 8 2.0552 1.1640 1150 60

8 9 4.7953 2.716 980 130

9 10 5.3434 3.0264 1640 200

6.2 10-Bus Test Case

In this system, in all three modes, low, medium and peak load, voltages at the ending
buses are lower than the limit. The acceptable range of voltage is between 0.9 and
4.1, but the voltage drop in initial conditions is about 0.84, which is less than the
limit. After optimization, according to Fig. 6, the worst voltage that is again at the
end of the network is about 0.91, which is above the lower limit. Moreover, the power
loss is up to 704.64, which is dropped to acceptable levels of casualties. The energy
loss reaches 6,100,342.29 (see Table 3). The optimum locations are buses 3, 5, 7,
and 9. Figure 7 shows rapid convergence of the algorithm with a acceptable rate of
200 iterations (Table 4).

6.3 33-Bus Test Case

In this system, the power and energy losses are 57.48 kW and 387,058.9721 kWh,
respectively. The permitted voltage range is also 0.95 to 1.05. After performing
the simulations, Table 5 shows the power loss rate decreased to 43.41. Meanwhile,
the energy losses have dropped to 348,408.4 kWh. Voltage profiles are shown in
Fig. 8 before and after simulation. In cases, low, medium and peak load, the voltage
profile is improved and voltage deviation is reduced. However, while capacitors
where allowed to be assigned to all buses, only a capacitor of 450 kV is assigned
to bus 29, and all positive effects are only due to this capacitor. This indicates the
importance of selecting the correct location for capacitor placement. Figure 9 also
depicts the convergence graph of the TLBO algorithm. The final cost of the case is
3421.6.
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Table 2 Characteristics of 33-bus test case

From bus i To bus j R (Ohm) X (Ohm) P (kW) Q (kVar)

1 2 0.0922 0.0477 100 60

2 3 0.493 0.2511 90 40

3 4 0.366 0.1864 120 80

4 5 0.3811 0.1941 60 30

5 6 0.819 0.707 60 20

6 7 0.1872 0.6188 200 100

7 8 1.7114 1.2351 200 100

8 9 1.03 0.74 60 20

9 10 1.04 0.74 60 20

10 11 0.1966 0.065 45 30

11 12 0.3744 0.1238 60 35

12 13 1.468 1.155 60 35

13 14 0.5416 0.7129 120 80

14 15 0.591 0.526 60 10

15 16 0.7463 0.545 60 20

16 17 1.289 1.721 60 20

17 18 0.732 0.574 90 40

2 19 0.164 0.1565 90 40

19 20 1.5042 1.3554 90 40

20 21 0.4095 0.4784 90 40

21 22 0.7089 0.9373 90 40

3 23 0.4512 0.3083 90 50

23 24 0.898 0.7091 420 200

24 25 0.896 0.7011 420 200

6 26 0.203 0.1034 60 25

26 27 0.2842 0.1447 60 25

27 28 1.059 0.9337 60 20

28 29 0.8042 0.7006 120 70

29 30 0.5075 0.2585 200 600

30 31 0.9744 0.963 150 70

31 32 0.3105 0.3619 210 100

32 33 0.341 0.5302 60 40
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Fig. 6 Voltage profile of
10-bus test case

Table 3 Results of 10-bus
test case

Output Initial Optimized

Loss (kW) 783.7763 704.64

Energy Loss (kwh) 6,371,219.877 6,100,342.29

Fig. 7 Convergence of
10-bus test case

Table 4 Place and size of optimal capacitors

Bus Bus 2 Bus 3 Bus 4 Bus 5 Bus 6 Bus 7 Bus 8 Bus 9 Bus 10

Value 0 4800 0 1800 0 600 0 600 0

Table 5 Results of 10-bus
test case

Output Initial Optimized

Loss (kw) 57.489 43.41

Energy Loss (kwh) 387,058.972 348,408.4
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Fig. 8 Voltage profile of
33-bus test case

Fig. 9 Convergence of
33-bus test case

7 Conclusion

In this chapter, the optimal location and sizing of capacitors in a distribution network
were investigated using the TLBO optimization algorithm. Each answer (student)
in the TLBO algorithm was considered to be the location and optimal size of the
capacitors. The goal was to reduce the power and energy losses and the cost of
locating the capacitors. In order to consider the energy losses, a three-level model
of loads, including off-peak, medium and peak load was used. Simulations were
implemented in two standard 10 and 33-bus systems. The results showed that there
is a voltage drop problem at the end of the system in the 10-bus system, and this
voltage drop can be improved by capacitor placement. In addition, network losses
can be reduced. In the 33-bus system, network loss reduction and voltage profile
improvement can be seen.

Acknowledgements This book chapter is gratefully dedicated to my beloved wife, Samira, who
taught me how to be a better man.
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MATLAB Code

In this part the MATLAB codes of optimal capacitor placement for the 10-bus test
case is presented. The code of 33-bus test case is similar. Therefore only one of test
cases is presented here. The code is separated to the some functions. Each function
should be copied in a separate MATLABm-file and then the first code should be run.

%% Main mfile should be run
clc
clear all
definParameters();
global No_Cap_Type NBus No_pop Iter Cap_Price Ke 
Loaddata Strdata T_OffPeak T_Medium T_Peak NLoadLevel 
Kp
tic
PLoss = zeros(No_pop,1);f = 
zeros(No_pop,1);LoadDataBase = Loaddata(:,3); 
LoadOffPeak = 0.3*LoadDataBase;LoadMedium = 
0.6*LoadDataBase;LoadPeak = LoadDataBase;
Loaddata(:,3) = LoadOffPeak; %%%% Evaluating Initial 
conditions 
[PLossOutOffPeak0,VbusOutOffPeak0,IsecOut0]=DLF(Strdata
,Loaddata); Loaddata(:,3) = LoadMedium; 
[PLossOutMedium0,VbusOutMedium0,IsecOut0]=DLF(Strdata,L
oaddata); Loaddata(:,3) = LoadPeak; 
[PLossOutPeak0,VbusOutPeak0,Isec0]=DLF(Strdata,Loaddata
);
EnergyLossIni = T_OffPeak*PLossOutOffPeak0 + 
T_Medium*PLossOutMedium0 +...
T_Peak*PLossOutPeak0; Loaddata(:,3) = LoadDataBase;

%%%
p = ceil(rand(No_pop,NBus-1)*No_Cap_Type);%%% Initial 
popoulation
pop = Cap_Mvar_determine(p); %%% Allocation MVAr to the 
generated population
for i = 1:size(p,1)

pop(i,:) = Cap_Mvar_determine(p(i,:));
Load(:,1) = LoadOffPeak - (pop(i,:))';Load(:,2) = 
LoadMedium - (pop(i,:))';
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Load(:,3) = LoadPeak - 
(pop(i,:))';Total_Cap_Price 
=sum(Cap_Price((p(i,:))));
for il=1:NLoadLevel

Loaddata(:,3) = Load(:,il); 
[PLoss(i,il),Vbus,Isec(i,il,:)]=DLF(Strdata
,Loaddata);%%% Running load flow
PenaltyVoltageL(i,il)= PenV(Vbus); %%% 
Calculating amount of penalties

end
PenaltyVoltage(i) = sum(PenaltyVoltageL(i,:),2);
f(i) = Ke*(T_OffPeak*PLoss(i,1) + 
T_Medium*PLoss(i,2) + T_Peak*PLoss(i,3)) + 
Kp*PLoss(i,1) + Total_Cap_Price;%%% Calculating 
objective function
f(i) = f(i) + PenaltyVoltage(i);

end
PBest = p;PBestValue = f;[GTeacherValue, index] = 
min(f); GTeacher = PBest(index,:); %%% The best 
solution
Xmean = mean(p);
for k = 1:Iter

k
[f,p,GTeacher, GTeacherValue, Xmean,
PenaltyVoltage, PenaltyVoltageBest] =
UpdateSolutions(GTeacher, p, Xmean, f,
PenaltyVoltage, LoadOffPeak, LoadMedium,
LoadPeak);
%%% Generating new solutions
fff(k) = GTeacherValue;

end
toc
ij = 1:Iter;
hold on
plot(ij,fff,'r') 

%% Function of defining input parameters
function definParameters()
global No_Cap_Type Cap_MVar NBus No_pop Iter Cap_Price 
VLoadMax VLoadMin PF Loaddata Strdata pMax pMin Ke Kp T 
Kl T_OffPeak T_Medium T_Peak NLoadLevel
No_Cap_Type = 7; %%% Number of capacitor types
Cap_MVar = 4*[0 150 300 450 600 900 1200];%%% MVar of 
capacitors
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Cap_Price =4*[0 750 975 1140 1320 1650 2040];%%% Price 
of capacitors
No_pop =100; %%% Number of population
Iter = 200; %%% Iteration number
VLoadMax = 1.1; %%% Upper voltage bound
VLoadMin = 0.9; %%% Lower voltage bound
PF = 5000; %%% Penalty factor
%%% Bus P Q
Loaddata= [2 1840 460

3 980 340
4 1790 446
5 1598 1840
6 1610 600
7 780 110
8 1150 60
9 980 130
10 1640 200
];

%%% From Bus To Bus Length R X Imax
Cap

Strdata = [1 2 1 0.1233 0.4126 0 0 
2 3 1 0.014 0.6051 0 0
3 4 1 0.7463 1.205 0 0
4 5 1 0.6984 0.6084 0 0
5 6 1 1.9831 1.7276 0 0
6 7 1 0.9053 0.7886 0 0
7 8 1 2.0552 1.164 0 0
8 9 1 4.7953 2.716 0 0
9 10 1 5.3434 3.0264 0 0
];

NBus = size(Loaddata,1) + 1; %%% Number of buses
pMax = No_Cap_Type; %%% Maxiumum bound of populations
pMin = 1; %%% Minimum bound of populations
Ke = 0.06; %%% Coefficent of energy loss
Kp = 300;  %%% coefficent of power loss
T = 8760; %%% time period
Kl = 168; %%%
T_OffPeak = 3000; %%% Off peak hours 
T_Medium = 5300; %%% Medium load hours
T_Peak = 460; %%% Peak hours
NLoadLevel = 3; %%% Number of load levels

%% Function of updating solutions
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function [f,p,GTeacher, GTeacherValue, Xmean,
PenaltyVoltage, PenaltyVoltageBest] = 
UpdateSolutions(GTeacher, p, Xmean, f,
PenaltyVoltage, LoadOffPeak, LoadMedium, LoadPeak)
global Cap_Price Ke Kp Strdata Loaddata T_OffPeak 
T_Medium T_Peak NLoadLevel No_Cap_Type
for i = 1:size(p,1) %%%%%%%%%%%%%%% Teacher phase 
%%%%%%%%%%%%%%%

TF = round(1+rand);pnew(i,:) = p(i,:) +
rand(1,size(p,2)) .* (GTeacher - TF*Xmean);
pnew(i,:) = round(pnew(i,:));
for k = 1:size(p,2)

if pnew(i,k)>No_Cap_Type
pnew(i,k) = No_Cap_Type;
elseif pnew(i,k)<1

pnew(i,k)= 1;
end

end
pop(i,:) = Cap_Mvar_determine(pnew(i,:));
Load(:,1) = LoadOffPeak - (pop(i,:))';
Load(:,2) = LoadMedium - (pop(i,:))';
Load(:,3) = LoadPeak - (pop(i,:))'; 
Total_Cap_Price 
=sum(Cap_Price((pnew(i,:))));
for il=1:NLoadLevel

Loaddata(:,3) = Load(:,il);
[PLoss(i,il),Vbus,Isec(i,il,:)] = 
DLF(Strdata,Loaddata);
PenaltyVoltageL(i,il)= PenV(Vbus);

end
PenaltyVoltageNew(i) = 
sum(PenaltyVoltageL(i,:),2);
fnew(i) = Ke*(T_OffPeak*PLoss(i,1) + 
T_Medium*PLoss(i,2) + T_Peak*PLoss(i,3)) + 
Kp*PLoss(i,1) + Total_Cap_Price;
fnew(i) = fnew(i) + PenaltyVoltageNew(i);
if fnew(i)<f(i)

p(i,:) = pnew(i,:);f(i)=fnew(i);
PenaltyVoltage(i) = 
PenaltyVoltageNew(i);

end
j = round(1 + rand*(i-1)); %%%%%%%%%%% 
Student phase %%%%%%%%%%%%%%%%%%%%%
if j~=i
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if f(i)<f(j)
pnew(i,:) = p(i,:) + 
rand(1,size(p,2)).*(p(i,:) - 
p(j,:));

else
pnew(i,:) = p(i,:) + 
rand(1,size(p,2)).*(p(j,:) - 
p(i,:));

end
pnew(i,:) = round(pnew(i,:));
for k = 1:size(p,2)

if pnew(i,k)>No_Cap_Type
pnew(i,k)= No_Cap_Type;

elseif pnew(i,k)<1
pnew(i,k)= 1;

end
end
pop(i,:) = 
Cap_Mvar_determine(pnew(i,:));
Load(:,1) = LoadOffPeak - (pop(i,:))';
Load(:,2) = LoadMedium - (pop(i,:))';
Load(:,3) = LoadPeak - (pop(i,:))';
Total_Cap_Price
=sum(Cap_Price((pnew(i,:))));
for il=1:NLoadLevel

Loaddata(:,3) = Load(:,il); 
[PLoss(i,il),Vbus,Isec(i,il,:)] = 
DLF(Strdata,Loaddata);
PenaltyVoltageL(i,il)= 
PenV(Vbus);

end
PenaltyVoltageNew(i) = 
sum(PenaltyVoltageL(i,:),2);
fnew(i) = Ke*(T_OffPeak*PLoss(i,1) + 
T_Medium*PLoss(i,2) + 
T_Peak*PLoss(i,3)) + Kp*PLoss(i,1) + 
Total_Cap_Price;
fnew(i) = fnew(i) + 
PenaltyVoltageNew(i);
if fnew(i)<f(i)

p(i,:) = pnew(i,:);
f(i)=fnew(i);
PenaltyVoltage(i) = 
PenaltyVoltageNew(i);
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end
end

end
[GTeacherValue, index] = min(f);
GTeacher = p(index,:);
PenaltyVoltageBest = PenaltyVoltage(index(1));
Xmean = mean(p);

%% Function of backward forward load flow
function [PLoss,Vbus,Isec]=DLF(Strdata,Loaddata)
% Strdata->> 1-from/2-to/3-Length(km)/4-R(ohm/km)/5-
X(ohm/km)/6-Imax(Amp)/7-Capacitor (kvar)
% Loaddata->> 1-bus/2-P(kw)/3-Q(kw)
PLoss = [];

Nsec=length(Strdata(:,1)); %Number of sections (or to 
buses)
Vbase=23000; %V base of the system (v) 
Isec=zeros(Nsec,1);
Vbus=Vbase*ones(Nsec,1);
Cbus=zeros(Nsec,1);
Sbus=zeros(Nsec,1);
Rsec=Strdata(:,4).*Strdata(:,3);
Xsec=Strdata(:,5).*Strdata(:,3);
Zsec= Rsec + i*Xsec;
%=============================Algorithm================
===
BI=zeros(Nsec,Nsec+1);
BI(1,1)=1;
BV=BI;
for k=1:Nsec

BI(:,Strdata(k,2))=BI(:,Strdata(k,1));
BI(k,Strdata(k,2))=1;
BV(:,Strdata(k,2))=BV(:,Strdata(k,1));
BV(k,Strdata(k,2))=Zsec(k);

end
BI(:,1)=[];
BV(:,1)=[];
BV=BV.';
Cbus(Strdata(:,2))=Strdata(:,7)*1000; 
Sbus(Loaddata(:,1))=(Loaddata(:,2)+i*Loaddata(:,3))*100
0; Cbus(1,:)=[];
Sbus(1,:)=[];
Iter=0;
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NERROR=1;
S_bus=Sbus-i*(Cbus.*(Vbus/Vbase).^2); %for P 
constant Ibus=conj(S_bus./(sqrt(3)*Vbus));
while ((Iter<100)&&(NERROR>1e-5))

Iter=Iter+1;
OldIbus=Ibus;
VD=sqrt(3)*(BV*BI)*Ibus;
Isec=BI*Ibus;
Vbus=Vbase-VD;
S_bus=Sbus-i*(Cbus.*(Vbus/Vbase).^2); %for P 
constant Ibus=conj(S_bus./(sqrt(3)*Vbus));
NERROR=max(max(abs(Ibus-OldIbus)));

end
%======================================================
===
LossSec=3*abs(Isec).^2.*(Rsec)/1000;
PLoss=sum(LossSec);
Vbus=abs(Vbus)/Vbase; % voltage of to buses
return

%% Function of allocating MVAr to the generated 
population function pop = Cap_Mvar_determine(p)
global Cap_MVar NBus
for i = 1:size(p,1)

pop_row = p(i,:);
pop_row_MVar = zeros(1,NBus-1);
for j=1:NBus-1 

pop_row_MVar(j) = Cap_MVar(pop_row(j));
end
pop(i,:) = pop_row_MVar;

end

%% Function of applying upper and lower bounds of
population
function p = ApplyingConstraint(p)
global No_Cap_Type
for i=1:size(p,1)

for j=1:size(p,2)
if p(i,j)>No_Cap_Type

p(i,j) = No_Cap_Type;
elseif p(i,j)<1

p(i,j) = 1;
end

end
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end

%% Function of penalizing infeasible solutions
function PenaltyVoltage = PenV(Vbus)
global VLoadMax VLoadMin PF

for i=1:size(Vbus,1)
if (Vbus(i)>VLoadMax) || (Vbus(i)<VLoadMin)

Penalty(i) = PF;
else

Penalty(i) = 0;
end

end
PenaltyVoltage = sum(Penalty);

%% Function of initializing population
function p= Initialazation()
global No_pop VgMin VgMax No_generator NTrans 
NTransStep TransTap  NQComp  QCompMin QCompMax

V = VgMin + rand(No_pop,No_generator)*(VgMax-VgMin);
TT = ceil(NTransStep*rand(No_pop,NTrans));
T = TransTap(TT);
tic
for ii = 1:No_pop

for jj=1:NQComp
QComp(ii,jj) = QCompMin(jj) + rand*
(QCompMax(jj) - QCompMin(jj));

end
end

QCompValue = ceil(1 + rand(No_pop,NQComp)*
(length(QComp) - 1));
p = [V TT QComp]; 
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Abstract In this chapter, the binary group search optimization algorithm (BGSO)
is proposed to tackle with optimal network reconfiguration problem in distribution
systems. Here, total loss minimization is considered as the objective which is solved
subject to system radial operation and power flow constraints. Here, the basics of
GSO algorithm is presented first and then, necessary modification for developing
BGSO is discussed. The main part of this chapter deals with a source code, which
expresses step by step implementation of BGSO method to optimal network recon-
figuration problem.Needless to emphasize that theBGSOand associated source code
presented in this chapter is a general engine that can be easily adjusted to any opti-
mization problem with binary variables. In addition, the source code associated with
the developed forward-backward sweep-based load flow study is also provided. The
simulation studies are performed on different distribution networks to examine the
scheme at various conditions and problem complexities. Comprehensive simulation
studies conducted in this chapter verifies effectiveness of the BGSO and developed
source code for solving optimal distribution network reconfiguration problem.
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1 Literature Review

Distribution network reconfiguration (DNR) is themanner of system topology adjust-
ment through varying on/off state of switches and while preserving radial operat-
ing structure of the network. In distribution systems, DNR is a common practice
for reducing system losses, satisfying operating constrictions, balancing the load,
improving voltage quality and augmenting system security [1]. DNs are commonly
running in a radial arrangement. These systems also implemented by the large quan-
tity of sectionalizing switches and some of tie switches [2].

Various researchers discussed the DNR problems employing different methods
[2–4]. The DNR problem has been solved in [2], implementing the algorithm which
is based on the blending of a novel fuzzy adaptive PSO and Nelder–mead sim-
plex search algorithm named NFAPSO–NM. In [4], DNR problem has been solved
implementing genetic algorithm (GA) with the objective of power losses reduction.
In [1], the DNR problem has been defined for load balancing and loss reduction as
an integer programming problem. A heuristic method for reconfiguration has been
introduced in [5] that presents a subsequent switch opening based on the branch
power flow. Fuzzy multi-objective approach along with heuristic based method has
been presented in [6], in order to optimize network configuration. In [7], a novel
non-revisiting genetic algorithm has been introduced for solving the reconfiguration
problem. The binary group search optimization algorithm (BGSO) is presented in [8]
for solving the optimal DNR problem for loss minimization. In [9] , harmony search
algorithm has been presented in order to solve the reconfiguration of the unbalanced
distribution network problem.

In this chapter, at first, a small summary of the general GSO is displayed. The
searching space mode of the general GSO method is in continues. However, a bi-
nary searching device is needed to solve the DNR problem. The main part of this
chapter deals with a source code which expresses step by step implementation of
BGSO method to optimal network reconfiguration problem. To this end, the source
code for each step is also provided after each part of the implementation discussed.
Then, the BGSO algorithm is performed for the distribution system re-configuration
problem. Simulations are conducted on 69-node and 119-node distribution test sys-
tems to prove the performance of the BGSO algorithm and developed source code
in comparison with other procedures.

2 Group Search Optimization Algorithm (GSO)

In this part, at first, a summary on the basics of the GSO algorithm is presented.
Thereafter, the BGSO algorithm is discussed in details that is efficient for handling
problems containing binary variables.
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2.1 Basics of GSO

The principal design of the GSO is encouraged by animal group-living principles.
Group living is a general event in the animal behavioral environment which has
been severely analyzed. One result of living collectively is that group searching
lets each of the members to increase spot gaining speeds as well as to decrease
the difference of hunt success. The authors in [10] observed that the searching area
of white crappie might be cones or set of wedges, which were identified by most
hunt height, most hunt distance, and most hunt angle. The top of any cone is the
spot at which the fish stops and looks for hunt. Deployment of natural phenomena
and animal behavior is common practice to devise heuristic algorithms [11, 12].
This has regularly attended to the selection of two tactics for foraging in groups: 1)
producing, e.g., food seeking; and 2) scrounging, e.g., meeting sources unsealed by
other members [13]. Joining is a universal feature observed in most social animals
such as spiders, lions, fish, and birds. People in a community that are successful at
sources hunting give sources at their cost to less successful ones [14]. Producer–
scrounger (PS) [15] and information sharing (IS) [16] are two types that have been
introduced to investigate the optimal strategy for joining. Foragers in the PS type
are supposed to do joining or producing tactics individually. On the other hand, the
IS type supposes that foragers seek synchronously for their individual source while
seeking for chances to join. At least for the joining procedure of ground-feeding
birds, current researches recommend that the PS type is more credible than IS type
[14]. The GSO is a heuristic algorithm and based on population which named the
group [17]. In this theory, the members of the group are categorized as follows:

– Producer: The one which maintains the most suitable location in comparison to
other ones and implemented by vision ability.

– Scroungers: Members which follow the producer to join it.
– Rangers: Rangers perform random walking in the search space.

The producer examines the nearness of its existing location to find the best one.
This searching technique is named vision ability and relates to a process of testing
some specific point in the vicinity of the producer member. Scroungers define their
searching path with respect to the producer member. Eventually, scrounger members
try to be in the closest location relative to the producer member. Moreover, in order
to avoid getting stuck in local minima, rangers are committed as random walkers
to perform random search. The continuous, binary and integer searching spaces
have different features. Therefore, the mathematical formulation for modeling the
behavior of GSO group members should be different in each space. In the following
sections, appropriate mathematical formulation for modeling GSO group members
in continuous and binary searching space, are presented. The population of GSO
algorithm is called a group and each individual in the population is called a member.
In n-dimensional search space, the ith member in kth searching iteration has a current

position Xk
i ∈ Rn and a head angle ϕk

i =
(
ϕk
i1, . . . , ϕ

k
i(n−1)

)
∈ Rn−1. Where, R is the

set of real numbers and ϕik is polar angle of ith member relative to the kth dimension.
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The search direction of ith member, Dk
i (ϕ

k
i ) could be calculated from ϕk

i via a polar
to Cartesian coordinate transformation [18]:

dk
i1 =

n−1∏
q=1

cos(ϕk
iq) (1)

dk
i j = sin

(
ϕk
i( j−1)

) n−1∏
q= j

cos
(
ϕk
iq

)
j = 2, . . . , n − 1 (2)

dk
in = sin

(
ϕk
i(n−1)

)
(3)

Dk
i (ϕ

k
i ) = (

dk
i1, d

k
i2, . . . , d

k
in

)
(4)

Scroungers define their searching path with respect to the location of producer
member and try to reach the producer member as much as possible. To avoid getting
stuck in local minima in the optimization process, rangers are deployed to perform
random walk in the search space.

At the k-th iteration the producer X p behaves as follows:

1. The producer will scan at zero degree and then scan laterally by randomly sam-
pling three points in the scanning field as follow:

Xz = Xk
p + r1lmaxD

k
p(ϕ

k) (5)

Xr = Xk
p + r1lmaxD

k
p(ϕ

k + r2θmax/2) (6)

Xl = Xk
p + r1lmaxD

k
p(ϕ

k − r2θmax/2) (7)

where, r1 ∈ R1 is a normally distributed random number with zero mean and one
standard deviation and r2 ∈ Rn−1 is a uniformly distributed randomnumber sequence
in the range of (0, 1).

2. Once the zero, right and left points are defined, these points should be evaluated.
The producer will then find the new point. If the new point has a better value in
comparison with its current position, producer flies to the new point. If not, it
will stay in its current position and turn its head using Eq. (8)

ϕk+1 = ϕk + r2amax (8)

where, amax ∈ R1 is the maximum turning angle.
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If the producer cannot find a better area after a iterations, it will turn its head back
to zero degree as follows:

ϕk+a = ϕk (9)

where, a is a constant.
During each searching bout, a number of group members are selected as

scroungers. The scroungerswill keep searching for opportunities to join the resources
found by the producer. At the kth iteration, the area copying behavior of the ith
scrounger can be modeled as a random walk toward the producer.

Xk+1
i = Xk

i + r3 ◦ (Xk
p − Xk

i ) (10)

where, r3 ∈ Rn is a uniform random sequence in the range (0, 1). Operator “◦” is
the Hadamard product or the Schur product, which calculates the entry-wise product
of two vectors. During scrounging, the ith scrounger will keep searching for other
opportunities to join the producer. The rest of the group members will be dispersed
from their current positions. Randomwalks,which are thought to be themost efficient
searching method for randomly distributed resources are employed by the rangers.
At the kth iteration, a ranger generates a random head angle ϕi using (8), and then it
chooses a random distance from (11) and moves to the new point using (12).

li = ar1lmax (11)

Xk+1
i = Xk

i + li D
k
i (ϕ

k+1) (12)

More details on GSO could be found in [19].

2.2 Binary Group Search Optimization (BGSO)

2.2.1 Producer

In binary searching space, all the members of GSO group are either 0 or 1. According
to (5–7), the zero, right and left points are defined using the term r1lmax as a random
length. To simulate the producer searching ability, a random part of producer array
should be chosen. In BGSO, random length selection is performed using two random
pointers. The sub array between the two pointers is the search space that producing
process could be performed on the selected sub array. In Fig. 1, the random length
selection for the producer member is illustrated. According to Fig. 1 for (1 × n)

array, r4 is a random pointer in the range of (1, n) and r5 is also a random pointer in
the range (r4, n).
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Fig. 1 Searching process of producer in binary space

Fig. 2 a Choosing three
new test points for sample
sub-array, b Producing at
second step of head angle

After simulating the random length, zero, right and left points should be discrimi-
nated similar to (5–7). For the selected sub array, each two sequential columns could
be defined as one step of head angle revising procedure. Since there are 2 binary
variables in each step, four states are possible. One of them is the initial condition
and other three states should be checked by the producer member as zero, right and
left points. Each of these test points forms a new sub-array and the new sub-array
should be inserted to the conventional producer array. Therefore, (5–7) are simulated
by generating three new arrays. If the generated new sub-array has better fitness value
in comparison with that of the older producer, the new array is chosen as a producer
member. On the contrary, if better solution is not achieved, producer should change
its head angle and performs producing. The scanning process for a sample sub-array
along with producing action at second step of head angle are depicted in Fig. 2a and
b, respectively.
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The source code associated with producer at binary search space is developed as
follows:

%% Producer
producer=pupMAT(1,:);
k=1;
for k=1:teta-1 

PMAT=producer(1,length(Sec)+1:end);
testmat=PMAT(k:k+1);
counter=0;
stateMAT=[0 0;0 1;1 0;1 1];
for kk=1:4

if (stateMAT(kk,1)==testmat(1,1) && 
stateMAT(kk,2)==testmat(1,2))

else
counter=counter+1;
newPMAT(counter,:)=stateMAT(kk,:);

end
end
PMATr=PMAT;
PMATr(k:k+1)=newPMAT(1,:);
PMATz=PMAT;
PMATz(k:k+1)=newPMAT(2,:);
PMATl=PMAT;
PMATl(k:k+1)=newPMAT(3,:);
Xr=[producer(1,1:length(Sec)),PMATr];
Xz=[producer(1,1:length(Sec)),PMATz];
Psign=0;
Pcount=0;
while (Psign~=1 && Pcount<10)

producer2=producer(1,1:length(Sec));
OsecP=ceil(brch.*rand+1);
if (producer2(1,OsecP)==0)

OsecP=ceil(brch.*rand+1);
end
if (producer2(1,OsecP)==0)

OsecP=ceil(brch.*rand+1);
end
if (producer2(1,OsecP)==0)

OsecP=ceil(brch.*rand+1);
end
producer2(1,OsecP)=0;
Xl=[producer2,PMATl];
InMAT=Xl;
[newlinedata]=NewDataMake(InMAT,linedata);
[radial]=radialChek(newlinedata,nbus);
if (radial == 1)
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[Tloss V 
IL]=powerflow(newlinedata,busdata,nbus,Vbase);

Psign=1;
if (Tloss < LossMAT(1,1))

Psign=1;
pupMAT(1,:)=Xl;
LossMAT(1,1)=Tloss;
producer=Xl;

end
end
Pcount=Pcount+1;

end
InMAT=Xz;
[newlinedata]=NewDataMake(InMAT,linedata);
[radial]=radialChek(newlinedata,nbus);
if (radial == 1)

[Tloss V 
IL]=powerflow(newlinedata,busdata,nbus,Vbase);

if (Tloss < LossMAT(1,1))
pupMAT(1,:)=Xz;
LossMAT(1,1)=Tloss;
producer=Xz;

end
end
InMAT=Xr;
[newlinedata]=NewDataMake(InMAT,linedata);
[radial]=radialChek(newlinedata,nbus);
if (radial == 1)

[Tloss V 
IL]=powerflow(newlinedata,busdata,nbus,Vbase);

if (Tloss < LossMAT(1,1))
pupMAT(1,:)=Xr;
LossMAT(1,1)=Tloss;
producer=Xr;

end
end

end
[LossMAT index]=sort(LossMAT);
pupMAT=pupMAT(index,:);
Fin=[Fin LossMAT(1,1)];

2.2.2 Scrounger

In order to simulate area copying behavior of scroungers, the position of ith scrounger
should be subtracted from producer member position. However, for the binary array,
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Fig. 3 The scrounging process in the binary space

this function is not possible. Hence, the XOR function is proposed, which can be
efficient in binary search space. In binary space, random length selection is performed
using two random pointers and the sub array between the two pointers is considered
as the search space. Scrounging at binary space can be formulated as follow:

�Xk
i = XOR(Xk

p, X
k
i ) (13)

where, Xk
p is producer member position at kth iteration and Xk

i is ith scrounger
member at kth iteration. After computing the term �Xk

i , a random length using
pointers r6 and r7 should be selected (see Fig. 3). In Fig. 3, for (1 × n) array, r6
is a random number in the range of (1, n) and r7 is another random number in the
range of (r6, n). Components of the sub-array which are equal to 1, represent the
difference. Therefore, the state of corresponding components in the Xk

i should be
changed. Doing so, a new scrounger member is generated and scrounging process is
realized.

The source code associated with scrounger at binary search space is developed as
follows:

%% Scroungers
ScrPercent=0.4;
ScrSize=round(ScrPercent*size(pupMAT,1));
Randpop=randperm(size(pupMAT,1));
pro=find(Randpop==1);
Randpop(pro)=[];
Xp=pupMAT(1,:);
for k=1:ScrSize

ScrMAT(k,:)=pupMAT(Randpop(k),:);
end
Scounter=0;
for k=1:ScrSize

Xsc=ScrMAT(k,:);
DEl=xor(Xp,Xsc);
r3=ceil((brch/2).*rand+1);
r4=r3+ceil((brch/2).*rand+1);
m=Xsc;
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for kk=r3:r4
if (DEl(kk)==1)

m(kk)=Xp(kk);
end

end
radial=0;
[newlinedata]=NewDataMake(m,linedata);
[radial]=radialChek(newlinedata,nbus);
mm=m;
kkk=0;
while (radial~=1 && kkk<length(m))

mm=m;
kkk=kkk+1;
if (mm(kkk)==0)

mm(kkk)=1;
[newlinedata]=NewDataMake(m,linedata);
[radial]=radialChek(newlinedata,nbus);

end
end
if (radial==1)

Scounter=Scounter+1;
ScrPop(Scounter,:)=mm(1,:);

end
end

2.2.3 Ranger

In (12), ranging process is performed using a random length and head angle. Similar
to the producer and scroungers, random length is accomplished by using two random
pointers for binary ranger members. First, a random length using pointers r8 and r9
should be generated in which, r8 is a random number in the range of (1, n) and r9 is
a random number in the range of (r9, n). Next, the random direction is generated as:

�Xi = rand int (1, l) (14)

where, �Xi is the selected sub-array using r8 and. r9 randint (1, x) is an operator
which provides a random binary array with length of x, and l is the generated random
length. The source code associated with ranger at binary search space is developed
as follows:
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%% Ranger
RangPercent=0.6;
RangSize=round(RangPercent*popsize)-1;
RangCounter=0;
for k=ScrSize+1:length(Randpop)

RangCounter=RangCounter+1;
RangMAT(RangCounter,:)=pupMAT(Randpop(k),:);

end
RangRand=randint(RangSize,length(tie));
Rcounter=0;
for k=1:RangSize

RangMAT(k,length(Sec)+1:end)=RangRand(k,:);
Zcounter=0;
for kk=1:length(tie)

if (RangMAT(k,kk)==1)
Zcounter=Zcounter+1;

end
end
Ycounter=0;
for kk=1:length(Sec)

if (RangMAT(k,kk)==0)
Ycounter=Ycounter+1;

end
end
if (Zcounter>Ycounter)

radial=0;
xo=0;
while (radial~=1 && xo<25)

RangMAT2=RangMAT;
for kk=1:(Zcounter-Ycounter)

uu(kk)=ceil(brch.*rand+1);
end
RangMAT2(k,uu)=0;
InMAT=RangMAT2(k,:);
[newlinedata]=NewDataMake(InMAT,linedata);
[radial]=radialChek(newlinedata,nbus); 
xo=xo+1;

end
if (radial==1)

Rcounter=Rcounter+1;
Rangpop(Rcounter,:)=RangMAT2(k,:);

end
end

end
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3 Problem Formulation

The reconfiguration of distribution network is the process of changing the topology
of distribution systems by altering the open/closed status of tie and sectionalizing
switches. This maneuver is efficient to fulfill operational requirements such as min-
imization of system total loss. In this chapter, the objective is to minimize total
system active power loss while satisfying load flow and other operating constraints
of distribution network. The problem could be formulated as follows:

Min : Z =
L∑

i=1

ri
P2
i + Q2

i

V 2
i

(15)

where, Z is the objective function, ri is the resistance of ith branch and L is the total
number of branches. The Pi and Qi are active and reactive power at the end bus of
ith branch, respectively.

Moreover, the power flow analysis should be derived. For each configuration, the
power flow analysis should be carried out to compute the nodal voltage, system total
loss and current of each branch. It is clear that, for the proposed configuration, the
computed voltages and currents should be in their premising range. Additionally,
the proposed configuration should be a radial network and all load points should be
supplied.

Radial Check: Distribution system should operate in radial configuration and all
loads should be supplied. These constraints are considered using Kirchhoff algebraic
method based on bus incidence matrix [20]. For the proposed configuration, the
incidence matrix, Â, should be set up as follow:

ai j = 0 if branch i is not conneced to node j (16)

ai j = −1 if branch i is directed toward node j (17)

ai j = 1 if branch i is directed away node j (18)

After setting the incidence matrix up, the reference node should be eliminated.
Afterwards, the reference node should be eliminated. The obtained sub-matrix is
called A. If |det(A)| = 1, the system is radial and all loads are being supplied. The
source code associated with radial check is developed as follows:
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%%radialChek
function [radial]=radialChek(newlinedata,nbus)
B(:,1)=newlinedata(:,2);
B(:,2)=newlinedata(:,3);
nedge = size(B,1);
A = zeros(nedge,nbus);
for i=1:nedge,
A(i,B(i,1)) = 1;
A(i,B(i,2)) = -1;

end

sizeA=size(A);
sutun=sizeA(2);
for k=2:sutun

AA(:,(k-1))=A(:,k); 
end
AAsize=size(AA);
if (AAsize(1)~=AAsize(2))

radial=0;
return

end
if (AAsize(1)==AAsize(2))

if (abs(det(AA))==1)
radial=1;
return

elseif (det(AA)==0)
radial=0;
return

end
end

The source code associated with power flow is developed as follows:
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%%powerflow
function [Tloss V 
IL]=powerflow(newlinedata,busdata,nbus,Vbase);
linedata=newlinedata;
for k=1:nbus

P(k)=busdata(k,2);
Q(k)=busdata(k,3);

end
V=zeros(1,nbus);
V(1,:)=1;
delta=100;
A=linedata(:,2:3);
A(:,3)=A(:,2);
A(:,4)=A(:,1);
A(:,5)=linedata(:,4);
A(:,6)=linedata(:,5);
n=0;
m=A(1,1);
while (length(m)<nbus)

z=m;
for u=z 

for k=1:length(A)
if (A(k,1)==u && A(k,1)~=0)

n=n+1;
B(n,1:2)=A(k,1:2);
B(n,3:4)=A(k,5:6);
f=A(k,2);
m=[m f];
A(k,:)=0;

end
if (A(k,3)==u && A(k,1)~=0)

n=n+1;
B(n,1:2)=A(k,3:4);
B(n,3:4)=A(k,5:6);
f=A(k,4);
m=[m f];
A(k,:)=0;

end
end

end
end
for k=1:length(B)

num(k,1)=k;
end
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BB=[num B];
sizeLinedata=size(BB);
bran=sizeLinedata(1,1);
pathMAT=zeros(bran,nbus);
for k=1:bran

pathMAT(:,BB(k,3))=pathMAT(:,BB(k,2));
pathMAT(k,BB(k,3))=1;

end
linedata=BB;
iter=0;
dd=0.1;
while (delta>=dd)

iter=iter+1;
for k=1:nbus

Ibus(k,1)=(P(k)-j*Q(k))./(conj(V(k)));
end
IL=pathMAT*Ibus;

V2(1)=1;
for k=1:length(linedata)

V2(linedata(k,3))=V(linedata(k,2))-
(((linedata(k,4)+j*linedata(k,5))*(IL(k))));
end

IL=abs(IL);
for k=1:length(linedata)

Loss(k)=((linedata(k,4))).*((IL(k)).^2);
end
Tloss=sum(Loss);

delta=max(abs(V2-V));
V=V2;
end

Ibase=(100000)./((sqrt(3)).*Vbase);
IL=IL.*Ibase;
Tloss=Tloss.*100000;
end

4 Developed Source Code

In this section, the BGSO algorithm is comprehensively described based on MAT-
LAB codes. The simulation comparisons are given by utilizing applying the BGSO
algorithm to the 69-node and 119-node networks. The BGSO based methodology
is produced by MATLAB 7.6 in 4 GHz, i7, pc. The outset amount of power flow
division is 0.008. In this chapter, the highest amount of iterations is fixed to 200
and the community capacity is 20. The population size has direct bearings on the
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solution as well as computational burden of optimization process. If the population
is assumed too large, slight better solution might be found while sacrificing compu-
tation efficiency of the optimization algorithm. On the contrary if the population is
considered too small, a solution far from the optimal solutionmight be attained. Thus,
a compromised decision should be made on the population size. In this chapter, the
population size is attained based on a trial-and-error process in the simulation studies.
The same discussion are valid regarding the value of maximum iterations number is
identified based on a trial-and-error process in the simulation studies. Moreover, the
upper and lower voltage ranges are assumed to be 1 p.u. and 0.9 p.u., respectively. In
the following a source code which expresses step by step implementation of BGSO
method to optimal network reconfiguration problem is provided.

clear
clc
linedata=xlsread('Blinedata.xlsx');
busdata=xlsread('Bbusdata.xlsx');
linedata(:,4)=linedata(:,4)./(1.602756);
linedata(:,5)=linedata(:,5)./(1.602756);
busdata(:,2)=busdata(:,2)./(100000);
busdata(:,3)=busdata(:,3)./(100000);
nbus=length(busdata);
Vbase=12.66; % In kv
Kleng=length(linedata);
secttionlizer=[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1;];
tie=[0 0 0 0 0];
baseTop=[sectionlizer,tie];
InMAT=baseTop;
[newlinedata]=NewDataMake(InMAT,linedata);
[radial]=radialChek(newlinedata,nbus);
[Tloss V IL]=powerflow(newlinedata,busdata,nbus,Vbase);
baseTLoss=Tloss;
Fin=[baseTLoss];
Open=length(tie);
brch=nbus-2;
%% Making Population
pup=0;
Osave=0;
popsize=15;
lim=round(popsize/Open);
for k=1:length(tie)

npup=0;
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pup=pup+1;
npup=npup+1;
pupMAT(pup,:)=InMAT(1,:);

end
end

end
%% Power flow
for k=1:popsize

InMAT=pupMAT(k,:);

[newlinedata]=NewDataMake(InMAT,linedata);
[Tloss V 

IL]=powerflow(newlinedata,busdata,nbus,Vbase);
LossMAT(k,1)=Tloss;

end
[LossMAT index]=sort(LossMAT);
pupMAT=pupMAT(index,:);
Fin=[Fin LossMAT(1,1)];
iter=0;
teta=length(Ti);
maxiter=50;
tic
while (iter<maxiter)

iter=iter+1;

while (npup<lim)
Sec=sectionlizer;
Ti=tie;
Ti(k)=1;
Osec=ceil(brch.*rand+1);
if (Osec==Osave)

Osec=ceil(brch.*rand+1);
end
Osave=Osec;
Sec(Osec)=0;
InMAT=[Sec,Ti];
[newlinedata]=NewDataMake(InMAT,linedata);
[radial]=radialChek(newlinedata,nbus);
if (radial==1)

The source code associatedwith power flow is developed as the code in Sect. 3 and
then, the source code associated with producer at binary search space is developed
as the code presented in Sect. 2.2.1. The source code associated with scrounger at
binary search space is developed as presented in Sect. 2.2.2. Finally, the source code
associated with ranger at binary search space is developed as Sect. 2.2.3
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%% Combine
for k=1:size(ScrPop,1)

[newlinedata]=NewDataMake(ScrPop(k,:),linedata);
[Tloss V 

L]=powerflow(newlinedata,busdata,nbus,Vbas);
SCLossMAT(k,1)=Tloss;

end
for k=1:size(Rangpop,1)

[newlinedata]=NewDataMake(Rangpop(k,:),linedata);
[Tloss V 

IL]=powerflow(newlinedata,busdata,nbus,Vbase);
RANGLossMAT(k,1)=Tloss;

end
pupMAT22=[pupMAT;ScrPop;Rangpop];
LossMAT22=[LossMAT;SCLossMAT;RANGLossMAT];
[LossMAT22 index]=sort(LossMAT22);
pupMAT22=pupMAT22(index,:);
pupMAT=pupMAT22(1:popsize,:);
LossMAT=LossMAT22(1:popsize,:);
Fin=[Fin LossMAT(1,1)];
plot(Fin,'r','Linewidth',2.5)
title(['Total Loss = ',num2str(min(Fin))]);
grid on
xlabel('Iteration') 
ylabel('Loss [Kw]') 
pause(0.0001)
end
%%NewDataMake
function [newlinedata]=NewDataMake(InMAT,linedata)
n=0;
for k=1:length(linedata)

if (InMAT(k)==1)
n=n+1;
newlinedata(n,:)=linedata(k,:);

end
end
for k=1:length(newlinedata)
nline(k,1)=k;
end
newlinedata(:,1)=nline;
end

The source code associated with radial check is developed as the source code in
Sect. 3.
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Table 1 69-node system
reconfiguration results

State Power loss (kW) Vmin Tie switches

Before
reconfiguration

221.98 kW 0.9082 42-11, 13-21

15-46, 50-59

27-65

Before
reconfiguration

96.82 kW 0.9395 42-11, 13-21

13-14, 55-56

61-62

Table 2 Comparative result for 69-node distribution system

Method Power loss (kW) Vmin Vmax

HPSO [2] 99.67 0.9427 1

FEBE [5] 101.01 0.927 1

TS [6] 103.86 0.948 1

DP [5] 99.06 0.93 1

SPSO [7] 99.59 0.943 1

BGSO 97.998 0.9365 1

5 Test Results

5.1 69-Node System

This system involves 73 branches and 69 nodes. There are 68 sectionalizing switches
and 5 tie switches [18]. Table 1 displays the simulation outcomes. According to Table
2, the power loss is decreased by 58% of its primary value. Moreover, comparison
outcomes are listed in Table 2.

As can be seen from Table 2 the BGSO algorithm has a more reliable appearance
in comparison with other introduced algorithms. Furthermore, the voltage profile is
presented in Fig. 4 which is related to after and before reconfiguration. It is obvious
that after reconfiguration the voltage profile is developed. The computational for this
test system is 9.32 s.

5.2 119-Node System

Here, the 119-node test standard system is examined.This system is an11kVdistribu-
tion system which includes 118 and 15 sectionalizing and tie switches, respectively.
The complete data is accessible in [35]. The primary whole active power failure
of the system is 1294.3 kW. Table 3 displays the simulation and comparison out-
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Fig. 4 Comparison of voltage profile for 69-node system before and after reconfiguration using
BGSO method

comes which shows that after reconfiguration the active power failure is decreased
by 37.71% of its primary value.

It can be understood from Table 3 that the BGSO algorithm has a more reliable
appearance in comparison with other presented algorithms. Furthermore, in Fig. 5
the comparison of voltage profile, before and after reconfiguration, is displayed.

The minimum nodal voltage, before and after reconfiguration are 0.9825 and
0.9711, respectively. Additionally, the convergence characteristic of the BGSO
method is depicted in Fig. 6. The computational for the 119-node test system is
18.34 s.

6 Conclusion

In this chapter, aBGSOmethod is introduced for determining the distributionnetwork
reconfiguration problem. The minimization of active power loss is the main purpose.
A source codewhich expresses step by step implementation of BGSOmethod to opti-
mal network reconfiguration problem is provided. The scientific outcomes confirm
that the BGSOmethod is proficient of obtaining an optimal or near-optimal answer of
two examined cases. Based on the whole simulation experience it could be assumed
that the BGSOmethod looks to be a strong and secure binary optimization procedure.
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Fig. 5 Comparison of voltage profile for 119-node system before and after reconfiguration using
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Fig. 6 The convergence curve of the BGSO method

MATLAB Code

MATLAB Codes are given within the chapter.
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Combined Heat and Power Economic
Dispatch Using Particle Swarm
Optimization

Farnaz Sohrabi, Farkhondeh Jabari, Pouya Pourghasem
and Behnam Mohammadi-Ivatloo

Abstract Due to increased energy cost and limitations of fossil fuel energy sources,
systemswith higher efficiency such as combined heat and power (CHP) have become
more popular. Optimal operation of the power system in the presence of CHP units
which have non-linear and non-convex characteristics is getting more complicated.
Difficulties of mentioned problem lead us to use heuristic and evolutionary methods.
In this chapter, particle swarm optimization (PSO) is implemented in economic
dispatch (ED) of CHP units. The main objective of ED problem is to obtain optimal
output power and heat of each unit while the total generating cost is minimized and
system operational constraints are satisfied. The results show the capability of this
algorithm in solving CHP economic dispatch (CHPED) problem.

Keywords Combined heat and power · Economic dispatch · Particle swarm
optimization

Nomenclature

Ci (P
p
i ) Operation cost of ith power-only unit for producing P p

i
MW

C j (Pc
j , H

c
j ) Operation cost for jth co-generation unit for producing

Pc
j MW electricity power and Hc

j MWth heat power
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Ck(Ph
k ) Operation cost of heat-only unit while producing Hh

k
MWth heat power

Np, Nc, Nh Total number of power-only, CHP and heat-only units,
respectively

i , j , k Indices for power-only, CHP and heat-only units,
respectively

αi , βi , γi Constant cost coefficients for ith power-only unit
a j , b j , c j , d j , e j , f j Coefficients of cost function related to jth CHP unit
ak , bk , ck Coefficients for calculating the operation cost of heat-

only units
Pd , Hd Electrical and heat power demands
Ploss Power system transmission loss
P pmin
i , P pmax

i Lower andupper generation limits for power-only units,
respectively

Pcmin
j ,Hcmin

j , Pcmax
j , Hcmax

j Minimum and maximum electric and heat powers out-
puts for CHP units, respectively

Hhmin
k , Hhmax

k Limits for heat-only units
N Total number of decision variables in the problem
ω The inertia weight for PSO
rn1 , r

n
2 Random numbers in the interval [0, 1]

piter−1
besti,n

, giter−1
best,n Best position of ith particle in previous iteration and

best position of entire swarm
C1, C2 Learning factors
xmax
n , xmin

n Maximum and minimum limits of variables
r Parameter to control the amount of change in velocity

1 Introduction

Lack of the conventional energy sources and high cost of energy production lead us
to utilize power system in an optimized way. The optimal condition is achieved when
the generation cost is minimized by considering system constraints. The purpose of
economic dispatch (ED) is determining outputs of the units in the optimal condition.
Hence, many authors investigated different methods to solve economic dispatch
problem. One of the challenging optimization problems is the ED of CHP units due
to non-linear and non-convex characteristics of these units and dual dependency
between power and heat production.
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2 Background

Recently, combined heat and power (CHP) units play an important role in producing
energy because of their higher efficiency. The efficiency of CHP units is around 90%
at best, while this amount is less than 60% for other combined cycle plants [1]. ED is
applied to determine power and heat output of units while minimizing the operation
cost. Heat-only, power-only and CHP units are three types of generating units in
a cogeneration system. In combined heat and power economic dispatch (CHPED)
problem, two types of demands are satisfied comprising power and heat demands.
The generated power in CHP units depends on the produced heat and vice versa
which makes the CHPED problem more complicated [2].

CHPED problem is solved using different mathematical and heuristic methods in
the previous literature. In [3], CHPEDproblem is decomposed into two sub-problems
that are connected using heat-power operation region constraints. Lagrangianmethod
is used to solve optimization problem in this paper. Various heuristic methods are
introduced and implemented into CHPED problem. Improved penalty function for-
mulation for genetic algorithm (GA) is proposed in [4]. Firefly algorithm (FA) is
applied in [5] which is inspired by behavior of fireflies in attracting each other using
their luminosity. Group search optimization (GSO) as another heuristic optimization
method that is based on searching behavior of animals, is implemented into CHPED
[6].

In this chapter particle swarm optimization (PSO) is applied to solve CHPED
problem. Results show that the implemented method is able to find optimum solution
of the problem.

3 Problem Formulation

In CHPED problem, there are three types of units comprising power-only, CHP and
heat-only units. The objective function of CHPED is to minimize the operation cost
of the system while satisfying the constraints.

3.1 Objective Function

The formulation of CHPED problem is given in [7]. The objective function is defined
as:

OF =
Np∑

i=1

Ci (P
p
i ) +

Nc∑

j=1

C j (P
c
j , H

c
j )+

Nh∑

k=1

Ck(H
h
k ) (1)
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where Ci (P
p
i ) is the operation cost of ith power-only unit for producing P p

i MW.
Operation cost for jth co-generation unit for producing Pc

j MWelectricity power and
Hc

j MWth heat power is denoted by C j (Pc
j , H

c
j ). Ck(Ph

k ) is defined as the operation
cost of heat-only unit while producing Hh

k MWth heat power. Np, Nc and Nh are
the total numbers of power-only, CHP and heat-only units, respectively. i, j and
k are indices for above mentioned units, respectively. Cost functions of units are
formulated as [8]:

Ci (P
p
i ) = αi (P

p
i )2 + βi P

p
i + γi ($/h) (2)

C j (P
c
j , H

c
j ) = a j (P

c
j )

2 + b j P
c
j + c j + d j (H

c
j )

2 + e j H
c
j + f j P

c
j H

c
j ($/h) (3)

Ck(H
h
k ) = ak(H

h
k )2 + bkH

h
k + ck ($/h) (4)

In (2), αi , βi and γi are constant cost coefficients for ith power-only unit. In (3),
a j , b j , c j , d j , e j and f j are coefficients of cost function related to jth CHP unit. ak ,
bk and ck are coefficients for calculating the operation cost of kth heat-only units as
mentioned in (4).

3.2 Constraints

The sum of produced power and heat should meet the power and heat demands,
respectively [9]:

Np∑

i=1

P p
i +

Nc∑

j=1

Pc
j = Pd + Ploss (5)

Nc∑

j=1

Hc
j +

Nh∑

k=1

Hh
k = Hd (6)

where Pd and Hd are power and heat demands, respectively. Ploss is power system
transmission loss. The produced electric and heat powers should be in the acceptable
range for each unit:

P pmin
i ≤ P p

i ≤ P pmax
i i = 1, 2, 3, . . . , Np (7)

Pcmin
j (Hc

j ) ≤ Pc
j ≤ Pcmax

j (Hc
j ) j = 1, 2, 3, . . . , Nc (8)

Hcmin
j (Pc

j ) ≤ Hc
j ≤ Hcmax

j (Pc
j ) j = 1, 2, 3, . . . , Nc (9)
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Hhmin
k ≤ Hh

k ≤ Hhmax
k k = 1, 2, 3, . . . , Nh (10)

where P pmin
i and P pmax

i are lower and upper generation limits for power-only units,
respectively. Pcmin

j , Hcmin
j , Pcmax

j and Hcmax
j are minimum and maximum electric

and heat powers outputs for CHP units, respectively. Also, the limits for heat-only
units are denoted by Hhmin

k and Hhmax
k .

3.3 Particle Swarm Optimization

PSO that has been introduced for the first time by Kennedy and Eberhart in 1995
[10], is an optimization algorithm based on swarm intelligence which is inspired
by swarm behaviors of animals such as birds. PSO and PSO-based algorithms are
widely used in the literature for solving different power systems problems [11–15].
The process of all evolutionary algorithms is based on producing random numbers
and leading the numbers to those that have better fitness values according to goals of
the problem. In PSO, positions of particles are considered as decision variables. Each
particle i has a position vector X and a velocity vector V in each iteration number
iter that can be formulated as:

Xiter
i = [xiteri,1 , xiteri,2 , . . . , xiteri,N ] (11)

V iter
i = [viteri,1 , viteri,2 , . . . , viteri,N ] (12)

where N is the total number of decision variables in the problem. Each of particles
in each iteration is willing to have better positions using its current velocity, its own
experience of previous iterations and other particles’ experiences. The mathematical
formulations of this procedure are as follows:

viteri,n = ω × viter−1
i,n + C1 × rn1 × (piter−1

besti,n
− xiter−1

i,n ) + C2 × rn2 × (giter−1
best,n − xiter−1

i,n ) (13)

xiteri,n = xiter−1
i,n + viteri,n (14)

where ω is the inertia weight, rn1 and rn2 are random numbers in the interval [0, 1].
piter−1
besti,n

and giter−1
best,n are the best positions of ith particle in previous iteration and the

best position of entire swarm, respectively. C1 and C2 are learning factors that are
usually equal. The updated velocities should be in a predefined range:

−vmax
n ≤ vi,n ≤ vmax

n (15)

vmax
n = (xmax

n − xmin
n )/r (16)



132 F. Sohrabi et al.

where xmax
n , xmin

n are the maximum and minimum limits of variables as mentioned
in (7–10). r is a parameter to control the amount of change in velocity.

In this chapter, a simple and basic PSO algorithm is applied onCHPEDproblem in
order to show the principles of evolutionary algorithms and investigate effectiveness
of these methods in solving power system problems. The flowchart of implemented
method is illustrated in Fig. 1.

4 Simulation, Results and Discussion

In this part of the chapter, a simple test system is taken from [2] and the discussed
method is implemented into it. This test system consists of one power-only unit,
two CHP units and one heat-only unit. The power system transmission losses are
ignored in order to simplify the process. Power and heat demands are 200 MW and
115 MWth, respectively. The cost functions for power-only (17) and heat-only (18)
units are considered to be linear:

C1(P1) = 50P1 ; 0 ≤ P1 ≤ 150 (17)

C4(H4) = 23.4H4 ; 0 ≤ H4 ≤ 2695.2 (18)

The cost coefficients for CHP units are provided in Table 1. Also, the heat-power
feasible operation regions for co-generation units are depicted in Fig. 2 and Fig. 3.

In order to investigate the random nature of evolutionary algorithms, the proposed
method is performed for 100 times and the variations of solutions are shown in Fig. 4.
It should be noted that 40.41 s elapsed for 100 runs of the program. The best solution
and variance of all solutions are reported in Table 2. Also, the convergence of method
for the best solution is depicted in Fig. 5.

5 Conclusion

By extending the microgrid concept in power systems and increasing the number
of distributed energy sources in power networks, the calculations are getting more
complicated. Thus, evolutionary algorithms becomemore popular due to their higher
speed and better results. In this chapter the combined heat and power economic dis-
patchproblem, as a simple applicationof evolutionary algorithms inpower systems, is
solved using PSO inMATLAB software. Results show the performance and speed of
this algorithm in solving non-linear CHPED problem. As future works, the dynamic
and stochastic economic dispatch problems considering different objectives can be
studied.
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Fig. 1 Flowchart of implementing PSO into CHPED problem
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Table 1 Cost coefficients for CHP units

Unit a b c d e f

2 0.0345 14.5 2650 0.03 4.2 0.031

3 0.0435 36 1250 0.027 0.6 0.011

Fig. 2 Heat-power feasible operation region for unit 2

Fig. 3 Heat-power feasible operation region for unit 3
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Fig. 4 Variations of solutions for different runs of program

Table 2 Best solution and
variance of all solutions

Outputs

P1 (MW) 0

P2 (MW) 160

P3 (MW) 40

H1 (MWth) 40

H2 (MWth) 75

H3 (MWth) 0

Total cost ($) 9257.07

Variance of solutions 1921.9

Fig. 5 Convergence of PSO for the best solution



136 F. Sohrabi et al.

MATLAB Codes

clc;
clear;
close all;

N=100;  %Number of iterations of the proposed method 

%% Variables limits
bounds=[150     247     125.8   180     135.6   2695.2
        0       81      40      0       0       0]; 
%According to eq.(17), eq.(18), figure 2 and figure 3 

%% PSO Parameters
particles=100;  %Number of particles
iterations=500; %Number of iterations for PSO
phi1=2.05;      %Adjustable parameter of PSO
phi2=2.05;      %Adjustable parameter of PSO
phi=phi1+phi2;  %Adjustable parameter of PSO
w=2/(phi-2+sqrt(phi^2-4*phi));  %Adjustable parameter 
of PSO
c1=phi1*w;  %Adjustable parameter of PSO
c2=phi2*w;  %Adjustable parameter of PSO
r=10;       %Parameter for adjusting maximum variations 
in positions

%% Main loop of the program
for z=1:N
    clc;
    display(z); %Display current iteration of the main 
program

    %% PSO
    VarSize=size(bounds,2);                     %Ob-
taining number of variables
    x=zeros(particles,VarSize);
    v=zeros(particles,VarSize);
    VelocityMax=(bounds(1,:)-bounds(2,:))./r;   %Maxi-
mum variations in positions
    VelocityMin=-VelocityMax;                   %Mini-
mum variations in positions

    %% Initialize Positions
for i = 1:particles

for j = 1:VarSize
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x(i,j)=unifrnd(bounds(2,j),bounds(1,j));    %Creating 
initial positions for particles

end
end

    %% Evaluate First Particles
for k=1:size(x,1)

        p1=x(k,1);  %Generated active power of the 1st 
unit
        p2=x(k,2);  %Generated active power of the 2nd 
unit
        p3=x(k,3);  %Generated active power of the 3rd 
unit
        h2=x(k,4);  %Generated heat of the 2nd unit
        h3=x(k,5);  %Generated heat of the 3rd unit
        h4=x(k,6);  %Generated heat of the 4th unit
        F1=50*p1;   %Cost function of the 1st unit

F2=0.0345*(p2^2)+14.5*p2+2650+0.03*(h2^2)+4.2*h2+0.031*
p2*h2; %Cost function of the 2nd unit

F3=0.0435*(p3^2)+36*p3+1250+0.027*(h3^2)+0.6*h3+0.011*p
3*h3; %Cost function of the 3rd unit
        F4=23.4*h4;         %Cost function of the 4th 
unit

if (p1+p2+p3)<200   %According to eq.(5)
            pen1=4000;

else
            pen1=0;

end
if (h2+h3+h4)<115   %According to eq.(6)

            pen2=4000;
else

            pen2=0;
end

if (p2-247-((247-215)/(0-180))*(h2-0)>0)||(p2-
81-((215-81)/(180-104.8))*(h2-104.8)<0)||(p2-98.8-
((98.8-81)/(0-104.8))*(h2-0)<0) %According to figure 2
            pen3 = 4000;

else
            pen3 = 0;

end
if (p3-110.2-((125.8-110.2)/(32.4-135.6))*(h3-

135.6)>0)||(p3-40-((40-110.2)/(75-135.6))*(h3-75)<0)  
%According to figure 3
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            pen4 = 4000;
else

            pen4 = 0;
end

        cost(k,1)=(F1+F2+F3+F4)+pen1+pen2+pen3+pen4; 
%Fitness value of the particles 

end

    ParticlesBest.Cost=cost;            %Updating 
ParticlesBest.Cost
    ParticlesBest.Position=x;           %Updating 
ParticlesBest.Position
    [GlobalBest.Cost,index]=min(cost);  %Updating 
GlobalBest.Cost by writing minimum cost of particles in 
it 
    GlobalBest.Position=x(index,:);     %Updating 
GlobalBest.Position by writing positions with minimum 
cost 

    %% PSO Loop
for iter = 1:iterations

        %% Update Velocity
for i=1:particles

v(i,:)=w*v(i,:)+c1*rand(1,VarSize).*(ParticlesBest.Posi
tion(i,:)...
                -
x(i,:))+c2*rand(1,VarSize).*(GlobalBest.Position-
x(i,:));  %Calculating velocities

v(i,:)=min(max(v(i,:),VelocityMin(1,:)),VelocityMax(1,:
));      %Applying velocity constraints

end
        x=x+v;  %Updating current positions

        %% Apply Constraints
for i = 1:size(x, 1)

x(i,:)=min(max(x(i,:),bounds(2,:)),bounds(1,:));    
%Applying variables limits

end

        %% Evaluate Particles
for k=1:size(x,1)
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            p1=x(k,1);  %Generated active power of the 
1st unit
            p2=x(k,2);  %Generated active power of the 
2nd unit
            p3=x(k,3);  %Generated active power of the 
3rd unit
            h2=x(k,4);  %Generated heat of the 2nd unit
            h3=x(k,5);  %Generated heat of the 3rd unit
            h4=x(k,6);  %Generated heat of the 4th unit
            F1=50*p1;   %Cost function of the 1st unit

F2=0.0345*(p2^2)+14.5*p2+2650+0.03*(h2^2)+4.2*h2+0.031*
p2*h2; %Cost function of the 2nd unit

F3=0.0435*(p3^2)+36*p3+1250+0.027*(h3^2)+0.6*h3+0.011*p
3*h3; %Cost function of the 3rd unit
            F4=23.4*h4;         %Cost function of the 
4th unit

if (p1+p2+p3)<200   %According to eq.(5)
                pen1=4000;

else
                pen1=0;

end
if (h2+h3+h4)<115   %According to eq.(6)

                pen2=4000;
else

                pen2=0;
end

if (p2-247-((247-215)/(0-180))*(h2-
0)>0)||(p2-81-((215-81)/(180-104.8))*(h2-
104.8)<0)||(p2-98.8-((98.8-81)/(0-104.8))*(h2-0)<0) 
%According to figure 2
                pen3 = 4000;

else
                pen3 = 0;

end
if (p3-110.2-((125.8-110.2)/(32.4-

135.6))*(h3-135.6)>0)||(p3-40-((40-110.2)/(75-
135.6))*(h3-75)<0)  %According to figure 3
                pen4 = 4000;

else
                pen4 = 0;

end
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cost(k,1)=(F1+F2+F3+F4)+pen1+pen2+pen3+pen4; %Fitness 
value of the particles 

end

for i = 1:length(cost)
if cost(i)<ParticlesBest.Cost(i)        

%Comparing current fitness values with previous values
                ParticlesBest.Cost(i)=cost(i);          
%updating ParticlesBest.Cost 
                ParticlesBest.Position(i,:)=x(i, :);    
%updating ParticlesBest.Position    

end
end
if min(cost)<GlobalBest.Cost

                [GlobalBest.Cost,index]=min(cost);      
%updating GlobalBest.Cost 
                GlobalBest.Position=x(index,:);         
%Updating GlobalBest.Position

end
        BEST_COST_iterations(z,iter) = GlobalBest.Cost; 
%Updating BEST_COST_iterations 

end

    %% Results
    BestCost(z,1) = GlobalBest.Cost;            %Best 
costs in each iteration of the main program 
    BestParticles(z,:) = GlobalBest.Position;   %Best 
Particles in each iteration of the main program 
end

[optimal_cost index]=min(BestCost); %Searching for the 
best solution

figure(1)   %Plotting figure 5
plot(BEST_COST_iterations(index,:));

figure(2)   %Plotting figure 4
plot(BestCost,'x');
hold on
plot(optimal_cost*ones(1,N));

%% variance
var(BestCost)   %Calculating variance using var func-
tion of the MATLAB
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Particle Swarm Optimization
Considering Load and Wind Power
Uncertainties
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Behnam Mohammadi-Ivatloo and Somayeh Asadi

Abstract Due to the increased cost of energy sources and related environmental
problems, systems with higher efficiency such as combined heat and power (CHP)
units are getting more popular. Renewable energy sources can be another alternative
solution for the above mentioned problems. Scheduling of renewable-based systems
are getting more complicated due to the intermittent behavior of these sources. In
this chapter, a stochastic programming framework is utilized to model uncertainties
in dynamic economic dispatch (DED) problem of CHP based systems integrating
wind energy. Forecast errors of electrical load and wind power are assumed as the
two sources of uncertainty. A heuristic method called particle swarm optimization
(PSO) is used to attain optimal solution of the problem due to non-linearity, non-
convexity, and complexity of the problem. The stochastic programming provides
more comprehensive and realistic viewpoint about dispatch problem by considering
a variety of most probable scenarios compared to a single scenario.
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Nomenclature

Pd,t,s , Pw,t,s Electrical load demand and output power ofwth wind
unit at time t in scenario s, respectively

P f orecasted
d,t , P f orecasted

w,t Forecasted values for electrical load demand and out-
put wind units at time t, respectively

�Pd,t,s , �Pw,t,s Forecast errors related to electrical load demand and
output power of wind unit w at time t in scenario s,
respectively

Ns Total number of scenarios
BL

(interval,t,s), B
W
(interval,t,s) Binary parameters of intervals at time t in scenario s

for electrical load demand and wind power, respec-
tively

πs Probability of scenario s
αi,t , β j,t Probabilities of electrical load demand and wind

power for intervals i and j at time t, respectively
Ci (P

p
i ) Operation cost of ith power-only unit for producing

P p
i MW

C j (Pc
j , H

c
j ) Operation cost for jth co-generation unit for produc-

ing Pc
j MW electricity power and Hc

j MWth heat
power

Ck(Ph
k ) Operation cost of heat-only unit while producing Hh

k
MWth heat power

Np, Nc, Nh Total number of power-only, CHP and heat-only
units, respectively

i , j , k Indices for power-only, CHP and heat-only units,
respectively

αi , βi , γi , λi , ρi Constant cost coefficients for ith power-only unit
a j , b j , c j , d j , e j , f j Coefficients of cost function related to jth CHP unit
ak , bk , ck Coefficients for calculating the operation cost of heat-

only units
Pd,t,s Electrical power demand at time t in scenario s
Hd,t Heat power demand at time t
P p,min
i , P p,max

i Lower and upper generation limits for power-only
units, respectively

Pc,min
j ,Hc,min

j , Pc,max
j , Hc,max

j Minimum and maximum electric and heat powers
outputs for CHP units, respectively

Hh,min
k , Hh,max

k Limits for heat-only units
VCO , VCI , V R Cut-off, cut-in and rated speed of wind turbine
Pmax Rated power of the wind turbine
Vt Forecasted wind speed at time t
N Total number of decision variables in the problem
ω The inertia weight for PSO
rn1 , r

n
2 Random numbers in the interval [0, 1]
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piter−1
besti,n

, giter−1
best,n Best position of ith particle in previous iteration and

best position of entire swarm
C1, C2 Learning factors of PSO
xmax
n , xmin

n Maximum and minimum limits of variables
r Parameter to control the amount of change in velocity

in PSO

1 Introduction

The energy crisis is getting more important due to the limited sources of fossil
fuels and environmental problems. As a result, renewable energy sources and high-
efficiency power production units, such as combined heat and power (CHP) units,
are increasing significantly. The intermittent nature of the systems with renewable
energy sources makes the scheduling problem more complicated. Also, the methods
used for load forecasting are not able to predict the exact amount of load demand.
Thus, the stochastic programming is applied to dynamic economic dispatch (DED)
problem in order to deal with uncertainties related to electrical load demand andwind
power generation. The application of the stochastic framework in economic dispatch
(ED) problem provides more actual solutions for different possible scenarios.

2 Background

Combined heat and power (CHP) dispatch problem has been investigated in many
previous studies.Differentmethods have been used to solve combined heat and power
economic dispatch (CHPED). Due to non-linearity, non-convexity and complexity
of CHPED problem, evolutionary and heuristic algorithms have been widely used to
solve this problem in the literature. In [1], an optimization algorithm that is based on
particle swarmoptimization (PSO) and society civilization algorithm (SCA) is used to
solve CHPED problem. The proposed method in this reference uses civilized swarm
optimization (CSO) as a global search technique and Powell’s pattern search (PPS) as
a local search technique. Cuckoo optimization algorithmwhich is based on egg laying
and lifestyle of a bird family is implemented into the CHPED problem considering
valve-point effects in [2]. A modified version of the conventional cuckoo search
algorithm (CSA) namely effective cuckoo search algorithm (ECSA) is proposed in
[3] to find optimum outputs of the units in a CHP system. Modified group search
optimizer (MGSO) algorithm that is another population-based method is proposed
in [4] which is inspired by animal behavior.

Stochastic programming is implemented into different power system’s issues. In
[5], stochastic scheduling of a micro-grid comprised of CHP units, wind turbine, fuel
cell, and energy storage devices in the presence of demand response programs (DRPs)
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in proposed. A multi-objective economic and environmental dynamic dispatch prob-
lem by consideration of forecasted load demand and wind power uncertainties is
solved using a scenario-based method in [6]. An enhanced PSO method is used in
[7] to solve multi-objective and stochastic dispatch problem and deal with load and
wind uncertainties. The roulette wheel mechanism is applied in this reference for the
scenario generation process.

In this chapter, the PSO algorithm is used to solve stochastic dynamic economic
dispatch (SDED) problem. Valve point effects and non-convexity are taken into
account to model the economic dispatch problem more precisely and PSO is used as
an optimization algorithm.A scenario-based approach is selected tomodel uncertain-
ties related to electrical load demand and wind power. Roulette wheel mechanism is
applied in the scenario generation process. In order to reduce the number of generated
scenarios, the backward scenario reduction method is utilized.

3 Uncertainty Modeling

In order to model uncertainties in the problem, scenario-based model is selected.
Scenario generation and scenario reduction processes are discussed in the following.

3.1 Scenario Generation

The electrical load demand and wind power are assumed to be uncertain in this
problem. In order to model uncertainties, the forecast errors related to load demand
and wind power are considered as random variables with known probability density
function (PDF). Roulette wheel mechanism is applied to generate scenarios [8]. The
electrical load demand and wind power for each scenario s are obtained as follows:

Pd,t,s = P f orecasted
d,t + �Pd,t,s t = 1, . . . , 24; s = 1, . . . , Ns (1)

Pw,t,s = P f orecasted
w,t + �Pw,t,s t = 1, . . . , 24; s = 1, . . . , Ns (2)

where Pd,t,s and Pw,t,s are electrical load demand and output power of wind units
at time t in scenario s, respectively. P f orecasted

d,t and P f orecasted
w,t are forecasted values

for electrical load demand and output of wind units at time t, respectively. �Pd,t,s

and �Pw,t,s are forecast errors related to electrical load demand and output power
of wind units at time t in scenario s, respectively. Ns is a total number of scenarios.

To generate scenarios for load and wind power, the PDF of each random variable
must be discretized as depicted in Fig. 1. As shown in this figure, seven intervals
are considered that are centered on zero mean and width of each interval is equal
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Fig. 1 Discretized probability density function of load forecast error

Fig. 2 Accumulated and normalized probabilities of intervals

to standard deviation of forecast error (σ ) which is equal to 10% of the forecasted
value. The probability of each interval at time t is denoted by αinterval,t in this figure.

Afterward, the probabilities of intervals are normalized in such a way that the sum
of probabilities becomes unity. In the next step, as shown in Fig. 2, the accumulated
probabilities of intervals are calculated.

To create a scenario, a random number in the interval [0, 1] is generated and
comparedwith accumulated probabilities of intervals beginning from the last interval.
The first interval with accumulated probability equal or less than the random number
is selected and the binary parameter related to this interval becomes equal to 1. So
there is a binary vector for each scenario that shows the binary parameters of electrical
load demand and wind power intervals as shown in (3).

scenario (s) = [BL
(1,t,s), . . . , B

L
(7,t,s), B

W
(1,t,s), . . . , B

W
(7,t,s)] t=1,...,24 (3)

where BL
(interval,t,s) and BW

(interval,t,s) are binary parameters of intervals at time t in
scenario s for electrical load demand and wind power, respectively. The probability
of each scenario is calculated using:

πs =
∏24

t=1

(∑7
i=1 (BL

i,t,s × αi,t ) × ∑7
j=1 (BW

j,t,s × β j,t )
)

∑Ns
s=1

(∏24
t=1

(∑7
i=1 (BL

i,t,s × αi,t ) × ∑7
j=1 (BW

j,t,s × β j,t )
)) (4)
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where πs is the probability of scenario s. αi,t and β j,t are probabilities of electrical
load demand and wind power for intervals i and j at time t, respectively that are
extracted from Fig. 1.

3.2 Scenario Reduction

A large number of scenarios are needed to model the uncertainties more precisely.
Thus, the computational time and needed memory will be increased significantly.
In order to overcome these problems, the number of scenarios should be reduced
after the scenario generation process using scenario reduction techniques. Different
algorithms are proposed for scenario reduction purpose in the literature [6–11]. In
this chapter, the fast forward algorithm is applied to reduce the number of generated
scenarios [11]. Consider the original scenario set � with Ns scenarios and selected
scenario set �S and final selected scenario set �∗

S with N ∗
s scenarios. The steps of

the algorithm are as follows:
Step 1: Calculate the distance between each pair of scenarios using:

v(ω, ω′) =
∑

load&wind

|Pω − Pω′ | (5)

Step 2: Calculate the average distance between each scenario and the other scenarios.
The scenario with minimum distance is selected in this step as the first selected
scenario and the selected scenario set �S and non-selected scenario set �J will be
updated:

ω1 = arg{min
ω′∈�

∑

ω∈�

πωv(ω, ω′)} (6)

�S = �S ∪ {ω1} (7)

�J = �\{ω1} (8)

Step i: Calculate the distance between each non-selected scenario and selected sce-
narios. The scenario that minimizes this distance is the next selected scenario and
the selected and non-selected scenario sets will be updated:

ωi = arg{ min
ω′∈�J

∑

ω∈�J \{ω′}
πω min

ω′′∈�S∪{ω} v(ω, ω′′)} (9)

�S = �S ∪ {ωi } (10)

�J = �J\{ωi } (11)
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Last step: In the last step, the probability of each non-selected scenario is added to
its closest selected scenario probability:

π∗
ω = πω +

∑

ω′∈J (ω)

πω′ (12)

where J (ω) is the closest non-selected scenario set to the selected scenario ω:

ω = arg{ min
ω′′∈�S

v(ω′′, ω′)} ;ω′ ∈ �J (13)

4 Stochastic Dynamic Economic Dispatch

The main goal of the SDED problem is to find the optimal output of each generating
unit at each hour and in each scenario while electrical and heat load demands are
satisfied and other operational constraints are met. The studied system consists of
power-only, CHP, heat-only units and wind turbines. The mathematical formulation
of the SDED problem will be presented in this section.

4.1 Objective Function

The objective function of the SDED problem is defined as

OF =
Ns∑

s=1

πs

24∑

t=1

⎛

⎝
Np∑

i=1

Ci
(
P p
i,t,s

) +
Nc∑

j=1

C j
(
Pc
j,t,s, H

c
j,t,s

)+
Nh∑

k=1

Ck
(
Hh

k,t,s

)
⎞

⎠ (14)

where Ci (P
p
i ) is the generation cost of the ith power-only unit while producing P p

i
MWelectric power. Generation cost for jth co-generation unit for producing Pc

j MW
electrical power and Hc

j MWth heat power is shown by C j (Pc
j , H

c
j ). Ck(Ph

k ) is the
generation cost of the heat-only unit while producing Hh

k MWth heat power. Np, Nc

and Nh are the total numbers of power-only, CHP and heat-only units, respectively.
i, j and k are indices for above-mentioned units, respectively. Ns is the total number
of scenarios and s is the scenario number index. Cost functions of mentioned units
are as follows [4]:

Ci (P
p
i,t,s) = αi (P

p
i,t,s)

2 + βi P
p
i,t,s + γi +

∣
∣
∣λi sin(ρi (P

p,min
i − P p

i,t,s))

∣
∣
∣ ($/h) (15)

C j (P
c
j,t,s, H

c
j,t,s) = a j (P

c
j,t,s)

2 + b j P
c
j,t,s + c j + d j (H

c
j,t,s)

2
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+ e j H
c
j,t,s + f j P

c
j,t,s H

c
j,t,s ($/h) (16)

Ck(H
h
k,t,s) = ak(H

h
k,t,s)

2 + bkH
h
k,t,s + ck ($/h) (17)

where αi , βi , γi , λi and ρi are cost coefficients of power-only units. a j , b j , c j , d j ,
e j and f j are cost coefficients for CHP units. ak , bk and ck are coefficients of cost
function related to heat-only units.

4.2 Constraints

The electrical and heat demands balance equations are the only equality constraints
in the SDED problem [12]:

Np∑

i=1

P p
i,t,s +

Nc∑

j=1

Pc
j,t,s = Pd,t,s ∀t,∀s (18)

Nc∑

j=1

Hc
j,t,s +

Nh∑

k=1

Hh
k,t,s = Hd,t ∀t,∀s (19)

where Pd,t,s and Hd,t are electrical and heat power demands at time t in scenario s,
respectively. The production of each unit must be in the acceptable range as follows:

P p,min
i ≤ P p

i,t,s ≤ P p,max
i ∀i, ∀t,∀s (20)

Pc,min
j (Hc

j ) ≤ Pc
j,t,s ≤ Pc,max

j (Hc
j ) ∀ j, ∀t,∀s (21)

Hc,min
j (Pc

j ) ≤ Hc
j,t,s ≤ Hc,max

j (Pc
j ) ∀ j, ∀t,∀s (22)

Hh,min
k ≤ Hh

k,t,s ≤ Hh,max
k ∀k, ∀t,∀s (23)

where P p,min
i and P p,max

i are minimum and maximum limits for output of power-
only units, respectively. Pc,min

j and Pc,max
j areminimumandmaximumelectric power

output for CHP units. Hc,min
j and Hc,max

j are the limits for the heat output of CHP

units. The upper and lower limits for heat-only units are denoted by Hh,min
k and

Hh,max
k , respectively.
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4.3 Wind Turbine Formulation

The generated power of a wind turbine is a function of current wind speed and
characteristics of the wind turbine which can be formulated as follows:

P f orecasted
w,t =

⎧
⎪⎨

⎪⎩

0 Vt > VCO , Vt < VCI

Pmax × ( Vt−VCI

V R−VCI ) VCI ≤ Vt < V R

Pmax V R ≤ Vt ≤ VCO

⎫
⎪⎬

⎪⎭
(24)

where P f orecasted
w,t is the forecasted output of the wind turbine at time t. VCO , VCI

and V R are the cut-off, cut-in and rated speed of wind turbine. Also, the rated power
of the wind turbine is denoted by Pmax and Vt is the forecasted wind speed at time t.

4.4 Particle Swarm Optimization

PSO is a population-based optimization algorithm that is inspired by the social behav-
ior of animals, such as birds and fishes. In this algorithm, each population member,
called particle, changes its position with respect to its experience and the best parti-
cle’s experience in a multi-dimensional space [13]. The values of random variables
are assumed as positions of the particles. Hence, the positions of an ith particle in each
iteration is represented as Xiter

i = (xiteri,1 , xiteri,2 , . . . , xiteri,N ) and the speed of particles
are stated as V iter

i = (viteri,1 , viteri,2 , . . . , viteri,N ). It should be noted that the total number
of decision variables in the optimization problem is denoted by N. The changing in
velocity and position of each particle can be formulated as:

viteri,n = ω × viter−1
i,n + C1 × rn1 × (piter−1

besti,n
− xiter−1

i,n ) + C2 × rn2 × (giter−1
best,n − xiter−1

i,n ) (25)

xiteri,n = xiter−1
i,n + viteri,n (26)

whereω is the inertia weight, rn1 and r
n
2 are random numbers between 0 and 1. piter−1

best,i,n

and giter−1
best,n are the best positions of particle i in the previous iteration and the best

position of all particles in all iterations, respectively. C1 and C2 are learning factors
that are usually equal. The updated velocity must be in the acceptable range as in
(27).

−vmax
n ≤ vi,n ≤ vmax

n (27)

vmax
n = (xmax

n − xmin
n )/r (28)

where xmax
n , xmin

n are the maximum and minimum limits of variables. r is a parameter
to control the amount of change in velocity.
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Fig. 3 Flowchart of implementing PSO into SDED problem

In this chapter, the SDEDproblem is solved using a simple PSO algorithm to show
the principles of the method. The flowchart of the implemented method is illustrated
in Fig. 3.

5 Simulation, Results, and Discussion

In this part of the chapter, the proposed method is implemented into a test system that
is taken from [14] and modified. This test system consists of four power-only units,
two CHP units, one heat-only unit, and 55×2-MWwind turbines. Valve point effects
are considered to show the capability of the proposed method. Electrical power and
heat demand profiles as forecasted values are taken from [15] and scaled to 600 MW
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and 150 MWth, respectively. Wind speed profile for calculating the forecasted wind
power can be found in [16]. The coefficients of the cost function for power-only units
are provided in Table 1. The cost coefficients of CHP units are tabulated in Table 2
and coefficients of the heat-only unit is presented in Table 3. Also, the heat-power
feasible operation regions for co-generation units are depicted in Figs. 4 and 5. The
parameters related to wind turbines are provided in Table 4.

First, the deterministic dynamic economic dispatch problem is solved for ten times
and results are reported in Table 5. Next, the stochastic problem is solved. In order to
solve the SDED problem, 1000 scenarios are generated and reduced to 10 scenarios
using fast forward algorithm. The generated scenarios for electrical load demand and
wind power are depicted in Figs. 6 and 7, respectively. The best case, mean and worst
case results for different scenarios of SDED problem are presented in Table 6. It can
be seen that the total cost for stochastic problem increases in all cases by taking into
account the system uncertainties due to consideration of different scenarios that can
happen in the actual situations. For example, the difference between the worst value
of the deterministic problem and the objective function of the stochastic problem is
$201,732.8 that increased by 77.98%. The contribution of different scenarios with
uncertainties in the value of the objective function in the stochastic problem causes
this increase in comparison with a deterministic problem that relies on a single
scenario. Thus, the results of the stochastic problem are more realistic and more
reliable than the deterministic problem.

Table 1 Cost coefficients for power-only units

Unit α β γ λ ρ P p,min P p,max

1 0.008 2 25 100 0.042 10 75

2 0.003 1.8 60 140 0.04 20 125

3 0.0012 2.1 100 160 0.038 30 175

4 0.001 2 120 180 0.037 40 250

Table 2 Cost coefficients for CHP units

Unit a b c d e f

5 0.0345 14.5 2650 0.03 4.2 0.031

6 0.0435 36 1250 0.027 0.6 0.011

Table 3 Cost coefficients for heat-only unit

Unit a b c Hmin Hmax

7 0.038 2.0109 950 0 2695.2
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Fig. 4 Heat-power feasible
operation region for unit 5

Fig. 5 Heat-power feasible
operation region for unit 6

Table 4 Wind turbines
parameters

Rated power
(MW)

Cut-in speed
(m/s)

Rated speed
(m/s)

Cut-off
speed (m/s)

2 3 13 25

Table 5 Results for
deterministic dynamic
economic dispatch problem

Total cost ($)

Best value Mean value Worst value

241,992.4 249,720.6 258,711.7
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Fig. 6 Generated scenarios for electrical load demand

Fig. 7 Generated scenarios for wind power

Table 6 Results for
stochastic dynamic economic
dispatch problem

Total cost ($)

Objective function
value

Best case Mean Worst case

460,444.5 385,919.2 467,275.3 614,446.5

6 Conclusions

This chapter presents a stochastic framework for solving economic dispatch of
CHP systems in the presence of wind power. The uncertainties related to electri-
cal load demand and generation of wind turbines are included in this framework.
Non-convexity and valve-point effects are considered that increase the complexity
of the problem. To overcome the complexities of this problem, the PSO algorithm is
used as the heuristic optimization method. By applying the scenario-based method
to model the uncertainties related to electrical load demand and wind power fore-
casts errors, more realistic and reliable results are provided for SDEED problem. The
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stochastic framework provides better information for the dispatcher to use energy
resources in an optimal way. As future work, the other objectives such as emission
reduction can be added to SDEDproblemand themulti-objective stochastic problems
can be solved.

MATLAB Codes

The main m-file of the program is as follows:

clc; 
clear; 
close all; 
global demand_e demand_h power_wind Ns Nt particles 
scenario_prob; 
particles=150; 
iterations=2000; 
[~,demand_h]=demand( ); 
Ns=10; 
Nt=24; 
load('Reduced Scenarios (fast)'); 
demand_e=Reduced_Scenarios(:,1); 
power_wind=Reduced_Scenarios(:,2); 
scenario_prob=Probability; 
[BestCost,BestParticles,BEST_COST]=PSO(particles, it-
erations); 

The function of PSO algorithm that is used for optimization procedure is provided
in the following. The number of particles and total number of iterations are inputs
of this function, while the optimal cost, best solutions and best cost of each iteration
are outputs of this function:
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function [Best-
Cost,BestParticles,BEST_COST]=PSO(particles, itera-
tions) 
global Ns Nt VarSize; 
%% PSO Parameters
phi1=2.05; 
phi2=2.05; 
phi=phi1+phi2; 
w=2/(phi-2+sqrt(phi^2-4*phi)); 
c1=phi1*w; 
c2=phi2*w; 
r=10; 
%% Problem Definition
[bounds]=unit_data(); 
VarSize=size(bounds,2); 
x=zeros(particles,VarSize); 
x=repmat(x,1,Nt); 
x=repmat(x,Ns,1); 
v=zeros(particles,VarSize); 
v=repmat(v,1,Nt); 
v=repmat(v,Ns,1); 
VelocityMax=(bounds(1,:)-bounds(2,:))./r; 
VelocityMin=-VelocityMax; 
%% Initialize Positions
for s=1:Ns 
for t=1:Nt 
x_temp=x(particles*(s-1)+1:particles*s,VarSize*(t-
1)+1:VarSize*t); 
for i=1:particles 
for j=1:VarSize 
x_temp(i,j)=unifrnd(bounds(2,j),bounds(1,j)); 
end
end
x(particles*(s-1)+1:particles*s,VarSize*(t-
1)+1:VarSize*t)=x_temp; 
end
end
%% Evaluate First Particles
[cost]=Fitness(x); 
ParticlesBest.Cost=cost; 
ParticlesBest.Position=x; 
[GlobalBest.Cost,index]=min(cost); 
for s=1:Ns 
x_temp=x(particles*(s-1)+1:particles*s,:); 
GlobalBest.Position(s,:)=x_temp(index,:);  
end
%% PSO Loop
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for iter=1:iterations 
%% Update Velocity
for s=1:Ns 
for t=1:Nt 
v_temp=v(particles*(s-1)+1:particles*s,VarSize*(t-
1)+1:VarSize*t); 
ParticlesBest_temp=ParticlesBest.Position(particles*(s-
1)+1:particles*s,VarSize*(t-1)+1:VarSize*t); 
GlobalBest_temp=GlobalBest.Position(s,VarSize*(t-
1)+1:VarSize*t); 
x_temp=x(particles*(s-1)+1:particles*s,VarSize*(t-
1)+1:VarSize*t); 
for i=1:particles 
v_temp(i,:)=w*v_temp(i,:)+c1*rand(1,VarSize).*(Particle
sBest_temp(i,:)x_temp(i,:))+c2*rand(1,VarSize).*(Global
Best_temp-x_temp(i,:)); 
v_temp(i,:)=min(max(v_temp(i,:),VelocityMin(1,:)),Veloc
ityMax(1,:)); 
end
x_temp=x_temp+v_temp; 
x(particles*(s-1)+1:particles*s,VarSize*(t-
1)+1:VarSize*t)=x_temp; 
v(particles*(s-1)+1:particles*s,VarSize*(t-
1)+1:VarSize*t)=v_temp; 
end
end
%% Apply Constraints
for s=1:Ns 
for t=1:Nt 
x_temp=x(particles*(s-1)+1:particles*s,VarSize*(t-
1)+1:VarSize*t); 
for i=1:size(x_temp, 1) 
x_temp(i,:)=min(max(x_temp(i,:),bounds(2,:)),bounds(1,:
)); 
end
x(particles*(s-1)+1:particles*s,VarSize*(t-
1)+1:VarSize*t)=x_temp; 
end
end
%% Evaluate Particles
cost=Fitness(x); 
for i=1:length(cost) 
if cost(i)<ParticlesBest.Cost(i) 
ParticlesBest.Cost(i)=cost(i); 
for s=1:Ns 
x_temp=x(particles*(s-1)+1:particles*s,:); 
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ParticlesBest_temp=ParticlesBest.Position(particles*(s-
1)+1:particles*s,:); 
ParticlesBest_temp(i,:)=x_temp(i,:); 
ParticlesBest.Position(particles*(s1)+1:particles*s,:)= 
ParticlesBest_temp; 
end
end
end
if min(cost)<GlobalBest.Cost 
[GlobalBest.Cost,index]=min(cost); 
for s=1:Ns 
x_temp=x(particles*(s-1)+1:particles*s,:); 
GlobalBest.Position(s,:)=x_temp(index,:);  
end
end 
BEST_COST(iter)=GlobalBest.Cost; 
end
%% Results
BestCost=GlobalBest.Cost; 
BestParticles=GlobalBest.Position; 
plot(BEST_COST); 
end

Fitness function for calculating the objective function that receives particles as
input and returns total cost as output is as follows:

function [cost]=Fitness(x) 
global demand_e demand_h Ns Nt particles power_wind 
scenario_prob VarSize; 
for i=1:particles     
for s=1:Ns 
for t=1:Nt 
x_temp=x(particles*(s-1)+1:particles*s,VarSize*(t-
1)+1:VarSize*t); 
p1=x_temp(i,1); 
p2=x_temp(i,2); 
p3=x_temp(i,3); 
p4=x_temp(i,4); 
p5=x_temp(i,5); 
p6=x_temp(i,6); 
h5=x_temp(i,7); 
h6=x_temp(i,8); 
h7=x_temp(i,9); 
F1=25+2*p1+0.008*p1^2+abs(100*sin(0.042*(p1-10))); 
F2=60+1.8*p2+0.003*p2^2+abs(140*sin(0.04*(p2-20))); 



160 P. Pourghasem et al.

F3=100+2.1*p3+0.0012*p3^2+abs(160*sin(0.038*(p3-30))); 
F4=120+2*p4+0.001*p4^2+abs(180*sin(0.037*(p4-40))); 
F5=2650+14.5*p5+0.0345*p5^2+4.2*h5+0.03*h5^2+0.031*p5*h
5; 
F6=1250+36*p6+0.0435*p6^2+0.6*h6+0.027*h6^2+0.011*p6*h6
; 
F7=950+2.0109*h7+0.038*h7^2; 
pen=0; 
if (p1+p2+p3+p4+p5+p6)<(demand_e(Nt*(s-1)+t,1)-
power_wind(Nt*(s-1)+t,1)) 
pen(1)=1e+15; 
else
pen(1)=0; 
end
if (h5+h6+h7)<demand_h(t,1) 
pen(2)=1e+15; 
else
pen(2)=0; 
end
if (p5-247-((247-215)/(0-180))*(h5-0)>0)||(p5-81-((215-
81)/(180-104.8))*(h5-104.8)<0)||(p5-98.8-((98.8-81)/(0-
104.8))*(h5-0)<0) 
pen(3)=1e+15; 
else
pen(3)=0; 
end
if (p6-110.2-((125.8-110.2)/(32.4-135.6))*(h6-
135.6)>0)||(p6-40-((40-110.2)/(75-135.6))*(h6-75)<0) 
pen(4)=1e+15; 
else
pen(4)=0; 
end
cost_temp(s,t)=F1+F2+F3+F4+F5+F6+F7+sum(pen); 
end
end
cost_scen=sum(cost_temp,2); 
cost_weighted=cost_scen.*scenario_prob; 
cost(i,1)=sum(cost_weighted); 
end
end 

The MATLAB code for scenario generation process is as follows:



Combined Heat and Power Stochastic Dynamic … 161

clear; 
clc; 
close all; 
Ns=1000; 
Nvariables=2; 
Nt=24; 
Nsigma=7;  
[scenario,prob_scen]=BinaryScenarios( 
Ns,Nvariables,Nt,Nsigma ); 
[demand_e,demand_h,power_wind,Scenario_All,SA] 
=scenario_analyze(scenario,Nsigma,Nvariables,Nt); 
save('Non-Reduced Scenarios'); 

The function that is used for producing binary scenarios is provided in the fol-
lowing:

function [sce-
nario,prob_scen]=BinaryScenarios(Ns,Nvariables, 
Nt,Nsigma) 
down=0; 
[demand_e,demand_h]=demand(); 
[power_wind]=wind_data(); 
sigma_L=0.1.*demand_e; 
sigma_W=0.1.*power_wind; 
for t=1:Nt 
alpha(1,t)=(1/sigma_L(t,1))*(2*pi)^(-0.5)*exp(0); 
alpha(2,t)=(1/sigma_L(t,1))*(2*pi)^(-0.5)*exp(-0.5); 
alpha(3,t)=(1/sigma_L(t,1))*(2*pi)^(-0.5)*exp(-0.5); 
alpha(4,t)=(1/sigma_L(t,1))*(2*pi)^(-0.5)*exp(-0.5*4); 
alpha(5,t)=(1/sigma_L(t,1))*(2*pi)^(-0.5)*exp(-0.5*4); 
alpha(6,t)=(1/sigma_L(t,1))*(2*pi)^(-0.5)*exp(-0.5*9); 
alpha(7,t)=(1/sigma_L(t,1))*(2*pi)^(-0.5)*exp(-0.5*9); 
beta(1,t)=(1/sigma_W(t,1))*(2*pi)^(-0.5)*exp(0); 
beta(2,t)=(1/sigma_W(t,1))*(2*pi)^(-0.5)*exp(-0.5); 
beta(3,t)=(1/sigma_W(t,1))*(2*pi)^(-0.5)*exp(-0.5); 
beta(4,t)=(1/sigma_W(t,1))*(2*pi)^(-0.5)*exp(-0.5*4); 
beta(5,t)=(1/sigma_W(t,1))*(2*pi)^(-0.5)*exp(-0.5*4); 
beta(6,t)=(1/sigma_W(t,1))*(2*pi)^(-0.5)*exp(-0.5*9); 
beta(7,t)=(1/sigma_W(t,1))*(2*pi)^(-0.5)*exp(-0.5*9); 
alpha(:,t)=alpha(:,t)/sum(alpha(:,t)); % Normalize to 
one
beta(:,t)=beta(:,t)/sum(beta(:,t)); 
Intervals_L(1,t)=0; 
Intervals_W(1,t)=0; 
for k=1:Nsigma 



162 P. Pourghasem et al.

Intervals_L(k+1,t)=alpha(k,t)+Intervals_L(k,t); 
end
for k=1:Nsigma 
Intervals_W(k+1,t)=beta(k,t)+Intervals_W(k,t); 
end
end
for s=1:Ns 
index=0; 
w=zeros(Nvariables*Nsigma,Nt); 
w_L=zeros(Nsigma,Nt); 
w_W=zeros(Nsigma,Nt); 
top=1; 
for t=1:Nt 
sumAlphaW=0; 
sumBetaW=0; 
r1=rand; 
r2=rand; 
for j=1:Nsigma 
if r1>Intervals_L(j,t) && r1<Intervals_L(j+1,t) 
w_L(j,t)=1; 
end
end
for j=1:Nsigma 
if r2>Intervals_W(j,t)&&r2<Intervals_W(j+1,t) 
w_W(j,t)=1; 
end
end
w=[w_L;w_W]; 
scenario(s,index+1:index+Nvariables*Nsigma)=w(:,t)'; 
index=index+Nvariables*Nsigma; 
AlphaW=alpha(:,t).*w_L(:,t); 
sumAlphaW=sum(AlphaW); 
BetaW=beta(:,t).*w_W(:,t); 
sumBetaW=sum(BetaW);   
multiply=sumAlphaW*sumBetaW; 
top=top*multiply;        
end
prob_scen(s,1)=top; 
down=down+top; 
end
prob_scen=prob_scen./down; 
end 
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The function for converting binary scenarios to scenarios with real values is as
follows:

function [demand_e,demand_h,power_wind,Scenario_All,SA] 
=scenario_analyze( scenario,Nsigma,Nvariables,Nt ) 
kk=1; 
[demand_e_all,demand_h_all]=demand(); 
[power_wind_all]=wind_data(); 
demand_h=demand_h_all'; 
for s=1:size(scenario,1) 
for t=1:Nt 
w_s_t_load=scenario(s,(t-1)*Nsigma+1:(t-
1)*Nsigma+Nsigma); 
w_s_t_wind=scenario(s,(t-1)*Nsigma+Nsigma+1:(t-1)* 
Nsigma+Nvariables*Nsigma); 
for j=1:Nsigma 
if w_s_t_load(1,j)==1 
break; 
end
end
if j==1 
demand_e(s,t)=demand_e_all(t,1); 
elseif j==2 
demand_e(s,t)=demand_e_all(t,1)+0.1*demand_e_all(t,1); 
elseif j==3 
demand_e(s,t)=demand_e_all(t,1)-0.1*demand_e_all(t,1); 
elseif j==4 
demand_e(s,t)=demand_e_all(t,1)+0.2*demand_e_all(t,1); 
elseif j==5 
demand_e(s,t)=demand_e_all(t,1)-0.2*demand_e_all(t,1); 
elseif j==6 
demand_e(s,t)=demand_e_all(t,1)+0.3*demand_e_all(t,1); 
elseif j==7 
demand_e(s,t)=demand_e_all(t,1)-0.3*demand_e_all(t,1); 
end
for i=1:Nsigma 
if w_s_t_wind(1,i)==1 
break; 
end
end
if i==1 
power_wind(s,t)=power_wind_all(t,1); 
elseif i==2 
power_wind(s,t)=power_wind_all(t,1)+0.1*power_wind_all(
t,1); 
elseif i==3 
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power_wind(s,t)=power_wind_all(t,1)-
0.1*power_wind_all(t,1); 
elseif i==4 
power_wind(s,t)=power_wind_all(t,1)+0.2*power_wind_all(
t,1); 
elseif i==5 
power_wind(s,t)=power_wind_all(t,1)-
0.2*power_wind_all(t,1); 
elseif i==6 
power_wind(s,t)=power_wind_all(t,1)+0.3*power_wind_all(
t,1); 
elseif i==7 
power_wind(s,t)=power_wind_all(t,1)-
0.3*power_wind_all(t,1); 
end
Scenario_All(s,(2*t)-1)=demand_e(s,t); 
Scenario_All(s,2*t)=power_wind(s,t); 
SA(kk,:)=[demand_e(s,t),power_wind(s,t)]; 
kk=kk+1; 
end
end
end 

The fast forward scenario reduction MATLAB code is as follows:

clear; 
clc; 
load('Non-Reduced Scenarios'); 
Ns=1000; 
Nt=24; 
N_desired=10;  
for i=1:Ns   
x=sum(SA(Nt*i-(Nt-1):Nt*i,:)); 
w_j(i,:)=sum(x);  
end
for i=1:Ns 
for j=1:Ns   
v_main(i,j)=abs(w_j(i,1)-w_j(j,1)); 
end
end
for i=1:Ns 
d(i,1)=sum(prob_scen.*v_main(:,i)); 
end
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[min_d,index]=min(d); 
w_s(1,1)=index; 
w_j_main=w_j; 
w_j(index,:)=[]; 
prob_scen_main=prob_scen; 
prob_scen(index,:)=[]; 
v=v_main; 
for i=2:N_desired 
d=0; 
x=0; 
v_new=0; 
for m=1:size(w_j,1)+1 
if ~sum(m==w_s(i-1,1)) 
x=x+1; 
y=0; 
for n=1:size(w_j,1)+1 
if ~sum(n==w_s(i-1,1)) 
y=y+1; 
v_new(x,y)=min(v(m,n),v(m,index)); 
end
end
end
end
v=v_new; 
for m=1:size(v_new,2) 
d(m,1)=sum(v_new(:,m).*prob_scen); 
end
[min_d,index]=min(d); 
x=find(w_j_main==w_j(index)); 
w_s(i,1)=x; 
w_j(index,:)=[]; 
prob_scen(index,:)=[]; 
end
for i=1:N_desired 
Reduced_Scenarios(Nt*i-(Nt-1):Nt*i,:)=SA(Nt*w_s(i,1)-
(Nt-1):Nt*w_s(i,1),:); 
end
for i=1:size(w_j,1) 
x=find(w_j_main==w_j(i)); 
for j=1:size(w_s,1) 
v_prob(i,j)=v_main(x,w_s(j,1)); 
end
end
for i=1:size(w_s,1) 
Probability(i,1)=prob_scen_main(w_s(i,1)); 
end
for i=1:size(w_j,1) 
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[~,index]=min(v_prob(i,:)); 
x=find(w_j_main==w_j(i)); 
Probabil-
ity(index,1)=Probability(index,1)+prob_scen_main(x,1); 
end
save('Reduced Scenarios 
(fast)','Reduced_Scenarios','Probability')  

The function for creating electrical and heat demands as forecasted values is coded
as:

function [demand_e,demand_h]=demand() 
scale_e = 600; 
scale_h = 150; 
%% electrical demand
demand_e=[ 
0.579741 
0.75 
0.428879 
0.219828 
0.318966 
0.450431 
0.599138 
0.700431 
0.75 
0.818966 
0.829741 
0.769397 
0.739224 
0.659483 
0.818966 
0.859914 
0.799569 
0.838362 
0.900862 
0.950431 
1 
0.859914 
0.838362 
0.75];   
%% heat demand      
demand_h=[ 
0.509091 
0.539394 
0.421212 
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0.230303 
0.330303 
0.639394 
0.690909 
0.760606 
0.660606 
0.678788 
0.830303 
0.639394 
0.790909 
0.6 
0.878788 
0.939394 
0.7 
0.890909 
0.778788 
0.9 
1 
1 
0.821212 
0.639394]; 
%% demand scaling        
demand_e=scale_e .*demand_e; 
demand_h=scale_h .*demand_h; 
end 

The function to model the wind turbine and forecasted wind speed can be coded
as:

function [power_wind]=wind_data() 
v_cut_in=3;     %Cut-in speed of the wind turbine (m/s)
v_cut_out=25;   %Cut-out speed of the wind turbine 
(m/s)
v_rated=13;     %Rated wind speed of the wind turbine 
(m/s)
p_rated=2;      %Rated power of the wind turbine (MW)
wind_speed=[ 
1   7.95 
2   8.8 
3   9.65 
4   10.55 
5   9.45 
6   8.45 
7   7.15 
8   6.4 
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9   6.45 
10  5.1 
11  4.35 
12  4.7 
13  5.1 
14  6.2 
15  7.2 
16  8 
17  9.35 
18  10 
19  9 
20  8.5 
21  7.4 
22  7 
23  6.75 
24  7.15 
]; 
for time=1:24 
if
(wind_speed(time,2)>v_cut_out)&&(wind_speed(time,2)<v_c
ut_in) 
power_wind(time,1)=0; 
elseif
(v_cut_in<wind_speed(time,2))&&(wind_speed(time,2)<v_ra
ted) 
power_wind(time,1)=p_rated*((wind_speed(time,2)-
v_cut_in)/(v_rated-v_cut_in)); 
elseif
(v_rated<wind_speed(time,2))&&(wind_speed(time,2)<v_cut
_out) 
power_wind(time,1)=p_rated; 
end
end
power_wind=power_wind.*55; 
end 
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Economic Dispatch of Multiple-Chiller
Plants Using Wild Goats Algorithm

Farkhondeh Jabari, Alireza Akbari Dibavar
and Behnam Mohammadi-Ivatloo

Abstract Use of multiple-chiller systems in air-conditioning applications is known
as a major factor in increasing electricity consumption. To obtain a significant energy
saving in building space cooling, optimal operation of chillers as an energy-efficient
manner is necessary. Therefore, this chapter aims to obtain the best performance
of the multi-chiller systems, which can be attained by minimizing the total power
consumption of chillers considering their partial load ratios (PLRs) as decision vari-
ables. In this chapter, optimal chiller loading (OCL) problem is implemented on
three different case studies using a novel evolutionary algorithm, called wild goats
algorithm (WGA). This algorithm is inspired from wild goats’ climbing, living in
groups and based on cooperation between members of groups. Numerical results
show the effectiveness of the WGA to solve the OCL problem.

Keywords Economic dispatch · Optimal chiller loading (OCL) · Non-linear
optimization problem · Electricity consumption
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Symbols

Pt
i Power consumption of chiller i (kW)

PLRt
i Partial load ratio of unit i

uti Binary variable that is 1 if unit i is on, else it is 0
RTi Capacity of chiller i (Refrigeration ton)
CLt Cooling demand (kW)
f Fitness function
Nwg Number of wild goats
Nvar Dimension of optimization problem
W Weight of each wg
Vi Movement vector of wild goats

1 Motivation and Literature Review

Under warm climate, multiple-chiller systems usually consume high electricity to
generate cool. Therefore, 30% of summer peak-electrical demand is associated with
these systems. If a mixed-integer non-linear optimization program is developed for
multiple-chiller plants, on or off status and refrigeration outputs of chillers will be
found in a way that their energy consumption is minimized as low as possible [1]. In
[2], the branch and bound method based Lagrangian algorithm is introduced, that is
able to determine the partial load ratios (PLRs) of the chillers. The objective function
of the optimization problem is the hourly electrical power consumption of the chillers.
Reference [3] presented the gradient method (GM) with less calculation time and
better objective functions than those of found by Lagrangian approach. Simulated
annealing (SA) is capable to solve find more accurate PLRs than Lagrangian prob-
lem [4]. Gaussian distribution based firefly algorithm [5], differential cuckoo search
algorithm (DCSA) [6], evolution strategy (ES) [7], differential evolution algorithm
[8], BONMINoptimization process [9], teaching and learning optimization approach
[10], genetic algorithm (GA) [11, 12], ripple bee swarm optimization (RBSO) [13],
invasive weed optimization (IWO) [14] are some search strategies, which have been
proposed by researches to solve the optimal chiller loading (OCL) problem. In these
works, the refrigeration production of the chillers is equal to the cooling demand. In
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addition, the refrigeration capability of each chiller is less than or equal to its cooling
capacity. A binary decision variable is used for modeling the on/off status of each
chiller. Then, the refrigeration produced by chiller is computed based on its binary
variable. If some of refrigeration productions of chillers is equal to cooling load as
well as the refrigeration capacity constraint is satisfied for all units, the hourly energy
consumption of the plant will be calculated until its minimum value is found. This
chapter applies wild goats algorithm (WGA) on OCL problem to find good operating
scenarios for 3 standard systems, while satisfying balance and capacity criteria.

The remainder of the present chapter are as follows: WGA based OCL problem
is described in Sect. 2. Case study and analysis are provided in Sect. 3. Conclusion
is presented in Sect. 4.

2 Problem Formulation

2.1 Economic Dispatch of Multiple-Chiller Systems

In OCL problem, sum of electrical power consumption of N chillers is minimized as
objective function (1). where, Pt

i is the electrical power consumed by ith unit at time
t and is obtained from (2)–(4). In (2), uti is a binary variable that is 1 if unit i is on,
else it is 0. The refrigeration capacity constraint is modeled as (3). It is obvious that
a random variable, which belongs to [0,1], is generated as PLR of chiller i. Then, the
cooling load of this unit is calculated based on its random number and refrigeration
capacity. Obviously, the cooling capability of the chiller i is less than (if random
number is less than 1) or equal to (if rand= 1) its refrigeration capacity. Relation (4)
indicates that if chiller i is on at time horizon t , its power consumption depends on
coefficients ai , bi , ci and di and cooling demand satisfied by this chiller, else, it will
be 0. Load-generation balance constraint is investigated by Eq. (5). The parameters
CLt and RTi are the cooling load at time t and the refrigeration capacity of the chiller
i , respectively.

Objective function =
N∑

i=1

Pt
i (1)

uti =
{
0 if chiller i is off
1 if chiller i is on

(2)

PLRt
i =

{
0 if unit i is off
cooling load of unit i at time t
Refrigeration capacity of unit i = rand; if unit i is on (3)
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Pt
i =

{
0; if uti = 0

ai + bi PLRt
i + ci

(
PLRt

i

)2 + di
(
PLRt

i

)3; if uti = 1

}
(4)

CLt =
N∑

i=1

PLRt
i × RTi (5)

2.2 Proposed Optimization Algorithm

In this research, wild goats algorithm (WGA) is applied to solve the OCL problem.
The WGA is recently introduced and is founded based on group life of wild goats
which are widespread species of goats and ancestor of domestic goats. Wild goats
often have group life and the herds live in the mountains. Each herd usually has an
older and strong leader. The wild goats reside mountainous areas and usually feed
on mountain plants and shrubs. Members of each group follow their leader, these
members called as “Followers”. In first step, movement of leader is in direction of
its personal experiences but in later steps, in addition to personal experiences, it will
track the movement of other successful leaders. The first step of the iterative process
of a population-based algorithm is initialization of all population members.

wgi =
[
xi,1, . . . , xi,Nvar

]
, i = 1, . . . , Nwg (6)

In this algorithm, after initialization, fitness values of each “wgi”, which is an
optimal solution candidate, must be evaluated respect to objective function.

f (wgi ) = f
([
xi,1, . . . , xi,Nvar

])
, i = 1, . . . , Nwg (7)

In order to have a better comparison between wgs, a weight is defined for each wg
as (8), and the solutions with highest weight are selected as leaders of groups. The
high weighted leaders absorb more followers. The number of groups determination
and groups’ formation process is described more in [15].

Wi = exp

⎛

⎜⎜⎜⎝−Nvar

f (wgi )− min
j

{ f (wgi )}
∑Nwg

j=1

(
f
(
wgj

) − min
j

{ f (wgi )}
)

⎞

⎟⎟⎟⎠, i = 1, . . . , Nwg (8)

The leader and followers of each group travel towards the best point of the search
space (feasible region in optimization problems). This adapt with the attempt of wild
goats to climbing the mountain. The initial movement vectors of all population is
zero at the first time. The best leader which has the highest weight, proceeds only
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in the direction of its movement vector. The other leaders in addition to pursuing
of the best leader’s direction, proceed in the direction of the leaders who have a
higher weight than them. The other goats move like the leaders. Here, followers in
addition to moving towards their movement vector and their best attempt, pursue
group’s leader and all other goats in their groups which have a higher weight than
those. After these, the weight of each wg evaluated compared to the other members
of the group; if its weight reduced, then it follows other followers with high weight,
vice versa if its weight gets rise, other members follow it. Like PSO algorithm, the
position of eachwgi, is determined by its previous position and the current iteration’s
movement vector, as (9).

wgi (t + 1) = wgi (t)+ vi (t + 1), i = 1, . . . , Nwg (9)

Like the other heuristic algorithms, WGA also has mutation and cooperation
concepts. The wild goats’ groups reach together in the slopes of mountain while they
go to summit or come down to the foothills and exchange their experiences with
together and the leaders of different groups will confer together about the direction
and quality of routing, which creates the cooperation concept. The groups which
have the better experience about the path, attract followers of poor groups who have
not traveled the path properly. Finally, the leader of the weaker group also joins into
a stronger herd. New groups will be created if young goats exhibit their ability in
climbing, which creates mutation in algorithm, otherwise they turn back to one of
the groups. It is notable that the number of mutated wild goat(s) should be less than
the number of groups for each iteration. At the end of the algorithm, only one group
is endured, and the leader of that group, will be reach to the best point and in fact,
is the optimum solution. More information and explanation about this algorithm can
be found in [15]. The developed MATLAB codes for WGA based optimal chiller
loading problem is presented in the final section.

3 Case Studies and Discussions

In order to demonstrate the speed and accuracy of the proposed strategy in solving
OCL problem and compare the obtained numerical results with the best solutions
of other approaches, three test systems with six, four and three compression chillers
have been studied. In the next subsection, the specifications of the benchmark chiller
plants and the simulation results achieved from WGA and recently published works
have been presented.
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Table 1 Constant factors of chillers in case 1

Chiller ai bi ci RTi

1 399.345 −122.12 770.46 1280

2 287.116 80.04 700.48 1280

3 −120.505 1525.99 −502.14 1280

4 −19.121 898.76 −98.15 1280

5 −95.029 1202.39 −352.16 1280

6 191.750 224.86 524.04 1280

Case 1

In the first case study, six 1280 RT electric chillers are considered for supplying
the cooling demand. Table 1 represents the constant power consumption factors
of the chillers [14]. The optimization problem (1)–(5) is solved using the WGA
under MATLAB software to minimize the hourly electricity consumption of the air
conditioner and determine the optimum values of the partial load ratios, when the
cooling load-generation balance constraint is satisfied. In Table 2, the partial load
ratio of each chiller and the objective function in different cooling load scenarios
found by WGA algorithm is compared with SA [4], PSO [16], ES [7], DCSA [6],
and IWO [14]. It is obvious that total electrical power consumed by chillers in all
hours of this test system is lower than that of mentioned optimization algorithms.

Case 2

A four-unit plant [14] with power consumption coefficients and cooling capacity
reported in Table 3 is studied in this case. The optimum operating point of the system
under variable cooling load are reported in Table 4. Obviously, WGA reaches a good
solution vector with total power consumption lower than or equal to that of above
mentioned procedures.

Case 3

According to Table 5, three 800 RT chillers [14] is considered in case study 3. The
optimization problem is conducted on test system for generating 2160, 1920, 1680,
1440, 1200 and 960 RT cool. Economic solutions of GA [11, 12], DE [8], PSO [16],
DCSA [6], IWO [14], and WGA are provided in Table 6. It is shown that WGA
is able to find solutions with objective functions equal to or less than that of other
algorithms.
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Table 2 (a) PLRs and objective functions found by SA, PSO and ES in case 1. (b) PLRs and
objective functions found by DCSA, IWO and WGA in case 1

(a)

CLt Chiller SA [4] PSO [16] ES [7]

i PLRt
i Pttotal PLRt

i Pttotal PLRt
i Pttotal

6858 (90%) 1 0.7789 4777.03 0.8026 4739.53 0.82 4738.76

2 0.7587 0.7799 0.75

3 0.9791 0.9996 1

4 0.9781 0.9998 1

5 0.9820 0.9999 1

6 0.9265 0.8183 0.83

6477 (85%) 1 0.8051 4453.67 0.7606 4423.04 0.74 4422.06

2 0.6056 0.6555 0.64

3 0.9689 1 1

4 0.9941 1 1

5 0.9866 1 1

6 0.7432 0.6835 0.72

6096 (80%) 1 0.5635 4178.73 0.6591 4147.69 0.64 4144.12

2 0.5743 0.5798 0.55

3 0.9675 0.9991 1

4 0.9798 0.9979 0.998

5 0.9845 0.9921 1

6 0.7338 0.5710 0.61

5717 (75%) 1 0.6140 3925.51 0.7713 3921.07 0.57 3906.19

2 0.4429 0.7177 0.46

3 0.9891 0.3 1

4 0.8867 0.9991 1

5 0.9841 1 1

6 0.5878 0.7187 0.47

5334 (70%) 1 0.6265 3675.34 0.6418 3642.55 0.63 3627.46

2 0.7403 0.6621 0.6

3 0.3093 0.3301 0.3

4 0.9546 0.9906 1

5 0.9511 0.999 1

6 0.6250 0.5806 0.67

(continued)
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Table 2 (continued)

(b)

CLt Chiller DCSA [6] IWO [14] WGA

i PLRt
i Pttotal PLRt

i Pttotal PLRt
i Pttotal

6858
(90%)

1 0.812726 4738.575 0.8127 4738.575 0.7936 4690.546

2 0.749619 0.7492 0.7284

3 1 1 1

4 1 1 0.9999

5 1 1 1

6 0.838559 0.8390 0.8357

6477
(85%)

1 0.727731 4421.649 0.7275 4421.649 0.7101 4382.03

2 0.656132 0.6563 0.6368

3 1 1 1

4 1 1 0.9999

5 1 1 1

6 0.716524 0.7166 0.7131

6096
(80%)

1 0.642735 4143.706 0.6427 4143.706 0.6268 4111.756

2 0.562645 0.5628 0.5450

3 1 1 1

4 1 1 1

5 1 1 1

6 0.59449 0.5944 0.5906

5717
(75%)

1 0.843697 3840.055 0 3842.553 0.8236 3788.772

2 0.783794 0.7151 0.7622

3 0.000001 1 0

4 1 1 1

5 1 1 1

6 0.883049 0.7933 0.8805

5334
(70%)

1 0.749969 3507.27 0 3546.438 0.7402 3464.713

2 0.682477 0.5834 0.6698

3 0.000012 1 0

4 1 1 1

5 1 1 1

6 0.776363 0.6218 0.7572
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Table 3 Constant parameters of chillers in case 2

Chiller ai bi ci di RTi

1 104.09 166.57 −430.13 512.53 450

2 −67.15 1177.79 −2174.53 1456.53 450

3 384.71 −779.13 1151.42 −63.2 1000

4 541.63 413.48 −3626.5 4021.41 1000

Table 4 (a) PLRs and objective functions found by GA, DE and PSO in case 2. (b) PLRs and
objective functions found by DCSA, IWO and WGA in case 2

(a)

CLt Chiller GA [11, 12] DE [8] PSO [16]

i PLRt
i Pttotal PLRt

i Pttotal PLRt
i Pttotal

2610 (90%) 1 0.99 1862.18 0.99 1857.3 0.99 1857.3

2 0.95 0.91 0.91

3 1 1 1

4 0.74 0.76 0.76

2320 (80%) 1 0.86 1457.23 0.83 1455.66 0.83 1455.66

2 0.81 0.81 0.81

3 0.88 0.90 0.90

4 0.69 0.69 0.69

2030 (70%) 1 0.66 1183.8 0.73 1178.14 0.73 1178.14

2 0.76 0.74 0.74

3 0.76 0.72 0.72

4 0.64 0.65 0.65

1740 (60%) 1 0.6 1001.62 0.60 998.53 0.60 998.53

2 0.7 0.66 0.66

3 0.57 0.56 0.56

4 0.59 0.61 0.61

1450 (50%) 1 0.6 907.72 0.61 820.07 0.61 820.07

2 0.36 0 0

3 0.44 0.57 0.57

4 0.58 0.61 0.61

1160 (40%) 1 0.33 856.3 0 651.07 0 651.07

2 0.32 0 0

3 0.32 0.56 0.56

4 0.54 0.6 0.6

(continued)
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Table 4 (continued)

(b)

CLt Chiller DCSA [6] IWO [14] WGA

i PLRt
i Pttotal PLRt

i Pttotal PLRt
i Pttotal

2610
(90%)

1 0.990988 1857.3 0.9913 1857.3 0.9930 1857.343

2 0.905473 0.9059 0.9084

3 1 1 1

4 0.756593 0.7563 0.7544

2320
(80%)

1 0.828756 1455.665 0.8287 1455.665 0.8290 1455.672

2 0.805457 0.8054 0.8055

3 0.896722 0.8967 0.8965

4 0.687883 0.6880 0.6878

2030
(70%)

1 0.773478 1178.137 0.7261 1178.14 0.7264 1178.139

2 0.739801 0.7400 0.7402

3 0.721146 0.7217 0.7209

4 0.627878 0.6486 0.6490

1740
(60%)

1 0.767678 942.183 0.6036 998.53 0.7412 942.110

2 0.004531 0.6577 0.000039

3 0.746317 0.5647 0.7506

4 0.646189 0.6077 0.6558

1450
(50%)

1 0.515832 753.004 0.6070 820.07 0.6067 752.928

2 0.000001 0 0.00003

3 0.610547 0.5683 0.5683

4 0.607328 0.6086 0.6086

1160
(40%)

1 0 583.923 0 651.07 0 583.922

2 0.000014 0 0.000001

3 0.570369 0.5551 0.5551

4 0.589625 0.6049 0.6048

Table 5 Constant factors of chillers in case 3

Chiller ai bi ci di RTi

1 100.95 818.61 −973.43 788.55 800

2 66.598 606.34 −380.58 275.95 800

3 130.09 304.5 14.377 99.8 800
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Table 6 (a) PLRs and objective functions found by GA, DE and PSO in case 3. (b) PLRs and
objective functions found by DCSA, IWO and WGA in case 3

(a)

CLt Chiller GA [11, 12] DE [8] PSO [16]

i PLRt
i Pttotal PLRt

i Pttotal PLRt
i Pttotal

2160 (90%) 1 0.81 1590.96 0.73 1583.81 0.73 1583.81

2 0.93 0.97 0.97

3 0.96 1 1

1920 (80%) 1 0.7 1406.02 0.66 1403.2 0.66 1403.2

2 0.8 0.86 0.86

3 0.9 0.88 0.88

1680 (70%) 1 0.69 1250.06 0.6 1244.32 0.6 1244.32

2 0.68 0.74 0.74

3 0.73 0.76 0.76

1440 (60%) 1 0.52 1107.75 0 993.6 0 993.6

2 0.74 0.89 0.89

3 0.54 0.91 0.91

1200 (50%) 1 0.49 971.21 0 832.33 0 832.33

2 0.44 0.74 0.74

3 0.57 0.76 0.76

960 (40%) 1 0.31 842.18 0 692.25 0 692.25

2 0.32 0.57 0.57

3 0.58 0.63 0.63

(b)

CLt Chiller DCSA [6] IWO [14] WGA

i PLRt
i Pttotal PLRt

i Pttotal PLRt
i Pttotal

2160
(90%)

1 0.725258 1583.807 0.7254 1583.81 0.725093 1583.806

2 0.974742 0.9746 0.974906

3 1 1 1

1920
(80%)

1 0.659065 1403.196 0.6588 1403.20 0.658172 1403.196

2 0.858458 0.8589 0.858771

3 0.882477 0.8823 0.883057

1680
(70%)

1 0.6 1244.32 0.5959 1244.32 0.597557 1244.327

(continued)
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Table 6 (continued)

(b)

CLt Chiller DCSA [6] IWO [14] WGA

i PLRt
i Pttotal PLRt

i Pttotal PLRt
i Pttotal

2 0.74 0.7453 0.745451

3 0.76 0.7588 0.756992

1440
(60%)

1 0 993.602 0 993.60 0 993.602

2 0.896314 0.8854 0.885634

3 0.903686 0.9146 0.914366

1200
(50%)

1 0 832.325 0 832.33 0 832.325

2 0.743026 0.7431 0.743055

3 0.756974 0.7569 0.756945

960 (40%) 1 0 692.251 0 692.25 0 692.251

2 0.536846 0.57 0.570018

3 0.663154 0.63 0.629982

4 Conclusion

Multiple-chiller systems are used more recently as a central part of heating, ventilat-
ing, and air-conditioning (HVAC) systems. Optimal combination of partial load ratio
of each chiller can result the minimum energy consumption in air-conditioning units.
By properly controlling of chiller load distribution, the multiple-chiller plants can
provide more flexibility and standby capacity leading to less disruption and mainte-
nance cost. In this chapter,WildGoats algorithmwas used to solve theOLC problem.
Theminimum energy consumption of the chillers is considered as the objective func-
tion and the partial load ratio of each chiller is considered as the decision variable.
Simulation results, which obtained in three different case studies, compared with
solutions of other algorithms and proved the competence of WGA in deal with the
OLC problem. The obtained optimum results are better or equal to the other existing
optimization methods. It is concluded that WGA has well convergence and is robust,
stable and also fast enough, so it is an efficient algorithm to solve other optimal
problems. Other trends which readers can concentrate on, is applying this algorithm
on a multi-objective OLC problem in large-scale multiple-chiller systems.
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MATLAB Codes
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Optimization of Tilt Angle
for Intercepting Maximum Solar
Radiation for Power Generation

Amit Kumar Yadav and Hasmat Malik

Abstract In this study the novelty is determination of optimum tilt angles (βopt) for
photovoltaic system at 11 different sites for Gujarat in India. The βopt is searched for
maximum incident solar radiation (SR). For calculation SR values given by National
Aeronautics and Space Administration (NASA) is utilized. It was found that the
optimum tilt angle varies between 1° and 57° throughout the year in Gujarat, India.
The monthly optimum tilt angle is maximum in December for different sites in
Gujarat India. This study is useful for industry and researcher to install PV system
in India to generate maximum power.

Keywords Solar photovoltaic system · Optimum tilt angle · Power generation

1 Introduction

Due to depleting fossil fuels and environmental concern utilization of renewable
energy increases during recent years [1]. Especially solar energy based photovoltaic
(PV) generation is used to meet energy need [2].

For development and design of PV systems, incident SR over PV panel is needed.
As measured SR data are not existing for most of the sites so it can be estimated
[3]. On horizontal surface different methods are used to estimate SR [4]. Incident
SR on PV panel is affected by tilt angle and orientation [5]. As per rule PV panel
face towards north, south at southern, northern hemisphere respectively. The SR
variation depending on meteorological conditions affect PV optimum tilt angles for
the different sites.
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The maximum power from PV system can be obtained by using tracking system
that consist of mechanical part and follow sun trajectory continuously [6]. The track-
ers are costly, require power for operation and complex operation and maintenance
procedures. Therefore orientation of PV system at optimum tilt angle (βopt) is most
easy implementation. For calculating βopt several authors presented different studies
[7]. In this study βopt is calculated by varying tilt angle from 0° to 90° at steps of 1°
and βopt is selected at which incident SR on PV panel is maximum.

This chapter is organized as follows: methodology is presented in Sect. 2. The
results and discussion are given in Sect. 3 and conclusion in Sect. 4.

2 Methodology

2.1 Optimum Tilt Angle Determination

The extraterrestrial radiation is the solar radiation received outside earth’s surface
and its intensity varies throughout the year. The average value of extraterrestrial
radiation i.e. the solar constant is S0 = 1367 W/m2. The extraterrestrial radiation H0

for nth day of the year is given by following equation:

H0 = 24

π
S0

(
1 + 0.033 cos

360n

365

)
(1)

The polar axis of earth is inclined at an angle of 66.55° to the elliptical plane
and by 23.45° from perpendicular to elliptical plane. The rotation of the earth on its
inclined polar axis with respect to elliptic plane is responsible for different seasons on
earth. It causes lengthy days in summer and shorter days in winter. The angle made
by the lines joining the centre of the earth to centre of the sun with its projection
on the equatorial plane of the earth is called the declination angle. It varies due to
the inclination of the earth’s polar axis and its revolution around the sun. It varies
between −23.45° and 23.45°. The declination angle (δ) is as follows [8]:

σ = 23.45 × sin

(
2π(248 + n)

365

)
(2)

The angular displacement of the sun about east or west of local meridian due
to the rotary motion of earth on axis is called hour angle (w). It is an expression
explaining the variation between local solar time and solar noon. After solar noon
the hour angle measures time in duration of 1° for each 4 min or 15° per hour. The
hour angle is positive after solar noon and it is negative before solar noon. The hour
angle is given by following equation.

w = cos−1(− tan φ tan δ) (3)
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The incident radiation reaches the earth’s surface without being absorbed or scat-
tered, is called beam radiation. Some of the radiation from the sun is scattered back to
the atmosphere and a part of it is scattered to earth, this scattered radiation reaching
the earth’s surface is called diffuse radiation (Hd). The Hd is given by Eqs. 4 and 5
for monthly average clearness index (Kt ) and the Kt is

Hg

H0

Hd = Hg(1.391 − 3.560Kt + 4.189K 2
t − 2.137K 3

t ) if w < 81.4◦ (4)

Hd = Hg(1.311 − 3.022Kt + 3.427K 2
t − 1.821K 3

t ) if w > 81.4◦ (5)

When the solar radiation reaches the earth’s surface, some of it is reflected by the
ground and other objects on the ground. This radiation is called reflected radiation
(Hr ). The total solar radiation on a horizontal surface is called global radiation
(Hg) which is the sum of the beam, diffused and reflected radiations. For maximum
utilization of solar radiation on PV panel the tilt angle (β) is used which lies between
0° and 90° [8]. The angle between the plane of the PV panel surface and horizontal
is called tilt angle (β). Thus for a surface tilted at a tilt angle (β) from the horizontal,
the incident total global solar radiation on tilted surface (HT ) incorporating isotropic
model [9] is given by the relation:

HT = (Hg − Hd)Rb + Hgρ
(1 − cosβ)

2
+ Hd

(1 + cosβ)

2
(6)

For the surface in the northern hemisphere sloped toward the equator Liu and
Jordan [10] is used to calculate Rb given by following equation.

Rb = cos(φ − β) cos δ sinwss + wss sin(φ − β) sin δ

cosφ cos δ sinwss + wss sin φ sin δ
(7)

where sunset hour angle at tilted surface (wss) is given by following relation

wss = min
[
cos−1(− tan φ tan δ), cos−1(− tan(φ + β) tan δ)

]
(8)

The optimum tilt angle formaximizing incident solar radiation (βopt ) is calculated
by changing β between 0° to 90° at step of 1° for which HT is maximum. The
optimum tilt angle is required to maximize photovoltaic (PV) array output and hence
to minimize PV array capacity (CPV ) in SAPV system as shown below [11].

CPV = ηPV AHT

L
(9)

whereA is PV array area (m2), ηPV is efficiency of PV array, L is daily load consump-
tion. Therefore CPV is dependent on HT and hence on (βopt ) i.e. CPV = f (βopt ).
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3 Results and Discussion

This section presents the results of the study. First, the optimum tilt angle (βopt ) are
calculated using developed program in MATLAB (R2011a). This program utilizes
monthly average solar radiation and for obtaining monthly optimum tilt angle, β is
changed from 0° to 90° at interval of 1°. In order to obtain HT for each β the program
incorporates Eqs. (1)–(5) and (7)–(8) to calculate each term of Eq. 6. In the end β

which cause the maximum value of HT is selected by the program as the optimum tilt
angle βopt for that month. The monthly βopt and its corresponding HT for 11 sites of
Gujarat namelyKhambada (22.3° N, 72.62° E), Lamba (21.9° N, 69.31° E),Mahidad
(22.27° N, 71.18° E), Roimal (22.0° N, 71.48° E), Sadodar (22.06° N, 70.21° E),
Sangasar (22.19° N, 72.10° E), Sinugra (23.09° N, 69.96° E), Suvarda (22.38° N,
70.15° E), Vadgam (24.07° N, 72.48° E), Vandhya (23.24° N, 70.61° E), Lodhrani
(23.88° N, 70.64° E) are shown Tables 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and 11 in which HL
represents maximum SR at tilt angle equal to latitude and HY is yearly optimum tilt
angle. Table 12 present increase in maximum solar radiation.

4 Conclusions

In this study optimum tilt angle (βopt ) of 26 different Indian cities are calculated by
changing tilt angle (β) from 0° to 90° at step of 1°. Based on results and discussions
the following conclusions are drawn:

• It is found that the optimum tilt angle changes between 1° (May, June, July) and
57° (December) throughout the year in Gujarat, India. The optimum tilt angle is
maximum in December. The months in which βopt is 1° for different locations in
Gujarat, India are April, May, June, July and August (21.9° N ≤ φ ≤ 22.30° N);
May, June, July (22.38°N≤φ ≤24.07°N). This angles is closed to angle suggested
by Soulayman and Sabbagh [12].

• The average global solar radiation on monthly optimum tilted surface varies from
4.42 to 8.274 kWh/m2/day throughout Gujarat India.

• The maximum incident solar radiation at monthly optimum tilt angle is more in
comparison to yearly and latitude based tilt angle.

• The increase in maximum solar radiation at monthly optimum tilt angle in com-
parison to latitude based tilt angle and yearly optimum tilt angle varies from 7.13%
to 7.30% and 4.60% to 5.51%, respectively, showing monthly optimum tilt angle
is beneficial for maximum power generation for different sites in Gujarat, India.



Optimization of Tilt Angle for Intercepting … 199

Ta
bl
e
1

E
xt
ra
te
rr
es
tr
ia
lS

R
,c
le
ar
ne
ss

in
de
x,

op
tim

um
til
t-
an
gl
e
an
d
m
on

th
ly

av
er
ag
e
da
ily

gl
ob

al
ra
di
at
io
n
on

op
tim

um
til
te
d
su
rf
ac
e
fo
r
K
ha
m
ba
da

Ja
n

Fe
b

M
ar

A
pr
il

M
ay

Ju
ne

Ju
ly

A
ug

Se
p

O
ct

N
ov

D
ec

H
g

4.
65

5.
28

6.
14

6.
61

6.
63

5.
7

4.
52

4.
42

5.
11

5.
21

4.
68

4.
25

H
0

8.
76

9.
15

9.
69

9.
19

9.
16

8.
49

9.
15

9.
42

9.
33

9.
58

9.
30

9.
04

K
t

0.
53

0.
57

0.
63

0.
71

0.
72

0.
67

0.
49

0.
46

0.
54

0.
54

0.
50

0.
47

β
op

t
54

42
27

8
1

1
1

1
20

38
50

56

H
T

7.
28

6.
66

6.
69

6.
64

6.
63

5.
7

4.
52

4.
42

5.
34

6.
25

6.
63

6.
93

H
L

6.
35

6.
36

6.
68

6.
47

6.
01

4.
98

3.
99

4.
18

5.
33

6.
08

6.
03

5.
93

H
Y

6.
70

6.
56

6.
80

6.
50

5.
99

4.
95

3.
97

4.
18

5.
40

6.
26

6.
54

6.
28



200 A. K. Yadav and H. Malik

Ta
bl
e
2

E
xt
ra
te
rr
es
tr
ia
lS

R
,c
le
ar
ne
ss

in
de
x,

op
tim

um
til
t-
an
gl
e
an
d
m
on

th
ly

av
er
ag
e
da
ily

gl
ob

al
ra
di
at
io
n
on

op
tim

um
til
te
d
su
rf
ac
e
fo
r
L
am

ba

Ja
n

Fe
b

M
ar

A
pr
il

M
ay

Ju
ne

Ju
ly

A
ug

Se
p

O
ct

N
ov

D
ec

H
g

5.
27

6.
18

6.
92

7.
5

7.
45

6.
42

5.
37

5.
4

6.
16

5.
97

5.
32

4.
95

H
0

8.
79

9.
17

9.
72

9.
22

9.
19

8.
52

9.
18

9.
45

9.
36

9.
61

9.
33

9.
07

K
t

0.
59

0.
67

0.
71

0.
81

0.
81

0.
75

0.
58

0.
57

0.
65

0.
62

0.
56

0.
54

β
op

t
54

41
26

8
1

1
1

1
19

37
49

56

H
T

8.
27

7.
69

7.
49

7.
53

7.
45

6.
42

5.
37

5.
4

6.
41

7.
11

7.
47

8.
13

H
L

7.
19

7.
36

7.
48

7.
33

6.
78

5.
65

4.
75

5.
10

6.
40

6.
92

6.
80

6.
92

H
Y

7.
59

7.
59

7.
61

7.
36

6.
76

5.
61

4.
73

5.
11

6.
48

7.
11

7.
43

7.
32



Optimization of Tilt Angle for Intercepting … 201

Ta
bl
e
3

E
xt
ra
te
rr
es
tr
ia
lS

R
,c
le
ar
ne
ss

in
de
x,

op
tim

um
til
t-
an
gl
e
an
d
m
on

th
ly

av
er
ag
e
da
ily

gl
ob

al
ra
di
at
io
n
on

op
tim

um
til
te
d
su
rf
ac
e
fo
r
M
ah
id
ad

Ja
n

Fe
b

M
ar

A
pr
il

M
ay

Ju
ne

Ju
ly

A
ug

Se
p

O
ct

N
ov

D
ec

H
g

4.
65

5.
3

6.
19

6.
65

6.
68

5.
77

4.
71

4.
5

5.
24

5.
21

4.
68

4.
31

H
0

8.
77

9.
15

9.
70

9.
20

9.
16

8.
50

9.
15

9.
43

9.
33

9.
58

9.
31

9.
04

K
t

0.
53

0.
57

0.
63

0.
72

0.
72

0.
67

0.
51

0.
47

0.
56

0.
54

0.
50

0.
47

β
op

t
54

42
27

8
1

1
1

1
20

38
50

56

H
T

7.
27

6.
68

6.
74

6.
68

6.
68

5.
77

4.
71

4.
5

5.
47

6.
25

6.
62

7.
03

H
L

6.
35

6.
38

6.
73

6.
51

6.
06

5.
05

4.
16

4.
25

5.
47

6.
08

6.
02

6.
02

H
Y

6.
70

6.
59

6.
85

6.
53

6.
03

5.
01

4.
13

4.
26

5.
54

6.
26

6.
54

6.
37



202 A. K. Yadav and H. Malik

Ta
bl
e
4

E
xt
ra
te
rr
es
tr
ia
lS

R
,c
le
ar
ne
ss

in
de
x,

op
tim

um
til
t-
an
gl
e
an
d
m
on

th
ly

av
er
ag
e
da
ily

gl
ob

al
ra
di
at
io
n
on

op
tim

um
til
te
d
su
rf
ac
e
fo
r
R
oi
m
al
2

Ja
n

Fe
b

M
ar

A
pr
il

M
ay

Ju
ne

Ju
ly

A
ug

Se
p

O
ct

N
ov

D
ec

H
g

4.
65

5.
3

6.
19

6.
65

6.
68

5.
77

4.
71

4.
5

5.
24

5.
21

4.
68

4.
31

H
0

8.
78

9.
17

9.
71

9.
21

9.
18

8.
51

9.
17

9.
44

9.
35

9.
60

9.
33

9.
06

K
t

0.
52

0.
57

0.
63

0.
72

0.
72

0.
67

0.
51

0.
47

0.
56

0.
54

0.
50

0.
47

β
op

t
54

42
27

8
1

1
1

1
20

38
50

56

H
T

7.
24

6.
66

6.
73

6.
68

6.
68

5.
77

4.
71

4.
5

5.
47

6.
23

6.
60

7.
00

H
L

6.
32

6.
36

6.
72

6.
50

6.
06

5.
05

4.
16

4.
25

5.
46

6.
07

6.
00

5.
99

H
Y

6.
70

6.
59

6.
85

6.
53

6.
03

5.
01

4.
13

4.
26

5.
54

6.
26

6.
54

6.
37



Optimization of Tilt Angle for Intercepting … 203

Ta
bl
e
5

E
xt
ra
te
rr
es
tr
ia
lS

R
,c
le
ar
ne
ss

in
de
x,

op
tim

um
til
t-
an
gl
e
an
d
m
on

th
ly

av
er
ag
e
da
ily

gl
ob

al
ra
di
at
io
n
on

op
tim

um
til
te
d
su
rf
ac
e
fo
r
Sa
do

da
r

Ja
n

Fe
b

M
ar

A
pr
il

M
ay

Ju
ne

Ju
ly

A
ug

Se
p

O
ct

N
ov

D
ec

H
g

4.
64

5.
34

6.
17

6.
7

6.
67

5.
8

4.
77

4.
58

5.
2

5.
22

4.
66

4.
31

H
0

8.
78

9.
16

9.
71

9.
21

9.
18

8.
51

9.
16

9.
44

9.
35

9.
60

9.
32

9.
06

K
t

0.
52

0.
58

0.
63

0.
72

0.
72

0.
68

0.
52

0.
48

0.
55

0.
54

0.
49

0.
47

β
op

t
54

42
27

8
1

1
1

1
20

38
50

56

H
T

7.
23

6.
71

6.
71

6.
73

6.
67

5.
8

4.
77

4.
58

5.
43

6.
25

6.
58

7.
00

H
L

6.
31

6.
41

6.
70

6.
55

6.
05

5.
08

4.
22

4.
33

5.
42

6.
08

5.
98

5.
99

H
Y

6.
69

6.
64

6.
83

6.
58

6.
03

5.
04

4.
19

4.
33

5.
50

6.
27

6.
51

6.
37



204 A. K. Yadav and H. Malik

Ta
bl
e
6

E
xt
ra
te
rr
es
tr
ia
lS

R
,c
le
ar
ne
ss

in
de
x,

op
tim

um
til
t-
an
gl
e
an
d
m
on

th
ly

av
er
ag
e
da
ily

gl
ob

al
ra
di
at
io
n
on

op
tim

um
til
te
d
su
rf
ac
e
fo
r
Sa
ng
as
ar

Ja
n

Fe
b

M
ar

A
pr
il

M
ay

Ju
ne

Ju
ly

A
ug

Se
p

O
ct

N
ov

D
ec

H
g

4.
65

5.
28

6.
14

6.
61

6.
63

5.
7

4.
52

4.
42

5.
11

5.
21

4.
68

4.
25

H
0

8.
77

9.
15

9.
70

9.
20

9.
17

8.
50

9.
15

9.
43

9.
34

9.
59

9.
31

9.
05

K
t

0.
52

0.
57

0.
63

0.
71

0.
72

0.
67

0.
49

0.
46

0.
54

0.
54

0.
50

0.
46

β
op

t
54

42
27

8
1

1
1

1
20

38
50

56

H
T

7.
26

6.
65

6.
69

6.
64

6.
63

5.
7

4.
52

4.
42

5.
34

6.
24

6.
62

6.
91

H
L

6.
34

6.
35

6.
67
8

6.
47

6.
01

4.
98

3.
99

4.
18

5.
33

6.
08

6.
02

5.
92

H
Y

6.
70

6.
56

6.
80

6.
50

5.
99

4.
95

3.
97

4.
18

5.
40

6.
26

6.
54

6.
28



Optimization of Tilt Angle for Intercepting … 205

Ta
bl
e
7

E
xt
ra
te
rr
es
tr
ia
lS

R
,c
le
ar
ne
ss

in
de
x,

op
tim

um
til
t-
an
gl
e
an
d
m
on

th
ly

av
er
ag
e
da
ily

gl
ob

al
ra
di
at
io
n
on

op
tim

um
til
te
d
su
rf
ac
e
fo
r
Si
nu

gr
a

Ja
n

Fe
b

M
ar

A
pr
il

M
ay

Ju
ne

Ju
ly

A
ug

Se
p

O
ct

N
ov

D
ec

H
g

4.
24

4.
95

5.
67

6.
31

6.
47

6.
18

5.
24

4.
96

5.
28

4.
94

4.
33

3.
99

H
0

8.
71

9.
09

9.
64

9.
14

9.
10

8.
44

9.
08

9.
37

9.
28

9.
52

9.
24

8.
97

K
t

0.
48

0.
54

0.
58

0.
69

0.
71

0.
73

0.
57

0.
52

0.
56

0.
51

0.
46

0.
44

β
op

t
54

43
28

9
1

1
1

2
21

39
50

56

H
T

6.
67

6.
31

6.
22

6.
35

6.
47

6.
18

5.
24

4.
96

5.
54

5.
98

6.
20

6.
55

H
L

5.
85

6.
03

6.
21

6.
18

5.
85

5.
41

4.
62

4.
62

5.
53

5.
82

5.
64

5.
63

H
Y

6.
14

6.
20

6.
31

6.
21

5.
84

5.
38

4.
60

4.
69

5.
59

5.
97

6.
08

5.
93



206 A. K. Yadav and H. Malik

Ta
bl
e
8

E
xt
ra
te
rr
es
tr
ia
lS

R
,c
le
ar
ne
ss

in
de
x,

op
tim

um
til
t-
an
gl
e
an
d
m
on

th
ly

av
er
ag
e
da
ily

gl
ob

al
ra
di
at
io
n
on

op
tim

um
til
te
d
su
rf
ac
e
fo
r
Su

va
rd
a

Ja
n

Fe
b

M
ar

A
pr
il

M
ay

Ju
ne

Ju
ly

A
ug

Se
p

O
ct

N
ov

D
ec

H
g

4.
64

5.
34

6.
17

6.
7

6.
67

5.
8

4.
77

4.
58

5.
2

5.
22

4.
66

4.
31

H
0

8.
76

9.
14

9.
69

9.
19

9.
15

8.
49

9.
14

9.
42

9.
32

9.
57

9.
30

9.
03

K
t

0.
52

0.
58

0.
63

0.
72

0.
72

0.
68

0.
52

0.
48

0.
55

0.
54

0.
50

0.
47

β
op

t
54

42
27

8
1

1
1

2
20

38
50

56

H
T

7.
27

6.
74

6.
73

6.
73

6.
67

5.
8

4.
77

4.
58

5.
43

6.
27

6.
61

7.
05

H
L

6.
35

6.
43

6.
71

6.
56

6.
05

5.
07

4.
21

4.
33

5.
43

6.
10

6.
01

6.
03

H
Y

6.
70

6.
64

6.
84

6.
58

6.
03

5.
04

4.
19

4.
33

5.
50

6.
27

6.
52

6.
39



Optimization of Tilt Angle for Intercepting … 207

Ta
bl
e
9

E
xt
ra
te
rr
es
tr
ia
lS

R
,c
le
ar
ne
ss

in
de
x,

op
tim

um
til
t-
an
gl
e
an
d
m
on

th
ly

av
er
ag
e
da
ily

gl
ob

al
ra
di
at
io
n
on

op
tim

um
til
te
d
su
rf
ac
e
fo
r
V
ad
ga
m

Ja
n

Fe
b

M
ar

A
pr
il

M
ay

Ju
ne

Ju
ly

A
ug

Se
p

O
ct

N
ov

D
ec

H
g

4.
33

4.
93

5.
77

6.
27

6.
54

6.
13

4.
83

4.
56

5.
2

4.
97

4.
34

3.
96

H
0

8.
63

9.
02

9.
57

9.
07

9.
02

8.
36

9.
00

9.
29

9.
21

9.
45

9.
17

8.
89

K
t

0.
50

0.
54

0.
60

0.
69

0.
72

0.
73

0.
53

0.
49

0.
56

0.
52

0.
47

0.
44

β
op

t
55

44
29

10
1

1
1

3
22

39
53

57

H
T

6.
96

6.
36

6.
37

6.
32

6.
54

6.
13

4.
83

4.
56

5.
48

6.
08

6.
63

6.
63

H
L

6.
10

6.
07

6.
36

6.
15

5.
91

5.
35

4.
25

4.
31

5.
47

5.
92

5.
94

5.
71

H
Y

6.
39

6.
25

6.
46

6.
18

5.
90

5.
32

4.
23

4.
32

5.
54

6.
06

6.
20

6.
00



208 A. K. Yadav and H. Malik

Ta
bl
e
10

E
xt
ra
te
rr
es
tr
ia
lS

R
,c
le
ar
ne
ss

in
de
x,

op
tim

um
til
t-
an
gl
e
an
d
m
on
th
ly

av
er
ag
e
da
ily

gl
ob
al
ra
di
at
io
n
on

op
tim

um
til
te
d
su
rf
ac
e
fo
r
V
an
dh
ya

Ja
n

Fe
b

M
ar

A
pr
il

M
ay

Ju
ne

Ju
ly

A
ug

Se
p

O
ct

N
ov

D
ec

H
g

4.
22

4.
88

5.
63

6.
35

6.
67

6.
27

5.
16

4.
88

5.
18

4.
81

4.
23

3.
96

H
0

8.
69

9.
08

9.
63

9.
13

9.
09

8.
42

9.
07

9.
35

9.
27

9.
51

9.
23

8.
96

K
t

0.
48

0.
53

0.
58

0.
69

0.
73

0.
74

0.
56

0.
52

0.
55

0.
50

0.
45

0.
44

β
op

t
54

43
28

9
1

1
1

2
21

39
51

57

H
T

6.
66

6.
23

6.
18

6.
39

6.
67

6.
27

5.
16

4.
88

5.
44

5.
83

6.
07

6.
52

H
L

5.
84

5.
95

6.
17

6.
22

6.
04

5.
49

4.
55

4.
61

5.
43

5.
67

5.
52

5.
60

H
Y

6.
13

6.
13

6.
28

6.
25

6.
02

5.
46

4.
53

4.
62

5.
49

5.
83

5.
95

5.
90



Optimization of Tilt Angle for Intercepting … 209

Ta
bl
e
11

E
xt
ra
te
rr
es
tr
ia
lS

R
,c
le
ar
ne
ss

in
de
x,

op
tim

um
til
t-
an
gl
e
an
d
m
on
th
ly

av
er
ag
e
da
ily

gl
ob
al
ra
di
at
io
n
on

op
tim

um
til
te
d
su
rf
ac
e
fo
r
L
od
hr
an
i

Ja
n

Fe
b

M
ar

A
pr
il

M
ay

Ju
ne

Ju
ly

A
ug

Se
p

O
ct

N
ov

D
ec

H
g

4.
22

4.
88

5.
63

6.
35

6.
67

6.
27

5.
16

4.
88

5.
18

4.
81

4.
23

3.
96

H
0

8.
64

9.
03

9.
58

9.
08

9.
04

8.
37

9.
02

9.
31

9.
22

9.
46

9.
18

8.
91

K
t

0.
48

0.
53

0.
58

0.
69

0.
73

0.
74

0.
57

0.
52

0.
56

0.
50

0.
46

0.
44

β
op

t
55

44
29

10
1

1
1

3
21

39
53

57

H
T

6.
74

6.
28

6.
21

6.
40

6.
67

6.
27

5.
16

4.
88

5.
45

5.
87

6.
42

6.
61

H
L

5.
91

6.
00

6.
20

6.
23

6.
03

5.
48

4.
54

4.
61

5.
45

5.
71

5.
75

5.
68

H
Y

6.
21

6.
18

6.
31

6.
26

6.
02

5.
45

4.
52

4.
62

5.
51

5.
87

6.
02

5.
98



210 A. K. Yadav and H. Malik

Table 12 Increase in SR at monthly OPTA in comparison to latitude and annual optimum based
tilt angle

S. No. Cities Sum of SR
at monthly
optimum
tilt angle

Sum of SR
at yearly
optimum
tilt angle

Average SR
at latitude
based tilt
angle

% increase
in SR in
comparison
to yearly
optimum

% increase
in SR in
comparison
to latitude
based tilt
angle

1 Khambada 73.71 70.18 68.44 4.7890 7.1411

2 Lamba 84.78 80.73 78.63 4.7771 7.2511

3 Mahidad 74.45 70.88 69.12 4.7952 7.1530

4 Roimal 74.30 70.88 68.99 4.6030 7.1343

5 Sadodar 74.49 71.03 69.16 4.6449 7.1474

6 Sangasar 73.65 70.18 68.38 4.7115 7.1435

7 Sinugra 72.71 69.00 67.51 5.1025 7.1390

8 Suvarda 74.68 71.08 69.33 4.8206 7.1587

9 Vadgam 72.93 68.91 67.59 5.5121 7.3089

10 Vandhya 72.34 68.64 67.16 5.1147 7.1562

11 Lodhrani 73.00 69 67.66 5.4795 7.3033

MATLAB Code

clc
clear all; close all
for n=1:1:12

% Latitude
    y=[22.3; 21.9; 22.27; 22.03; 22.06; 22.19; 23.09; 
22.38; 24.07; 23.24; 23.88];

% Global Solar Radiation
    Hg=[4.65 5.28 6.14 6.61 6.63 5.7 4.52 4.42 5.11 
5.21 4.68 4.25;
        5.27 6.18 6.92 7.5 7.45 6.42 5.37 5.4 6.16 5.97 
5.32 4.95;
        4.65 5.3 6.19 6.65 6.68 5.77 4.71 4.5 5.24 5.21 
4.68 4.31;
        4.65 5.3 6.19 6.65 6.68 5.77 4.71 4.5 5.24 5.21 
4.68 4.31;
        4.64 5.34 6.17 6.7 6.67 5.8 4.77 4.58 5.2 5.22 
4.66 4.31;
        4.65 5.28 6.14 6.61 6.63 5.7 4.52 4.42 5.11 
5.21 4.68 4.25;
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        4.64 5.34 6.17 6.7 6.67 5.8 4.77 4.58 5.2 5.22 
4.66 4.31;
        4.33 4.93 5.77 6.27 6.54 6.13 4.83 4.56 5.2 
4.97 4.34 3.96;
        4.22 4.88 5.63 6.35 6.67 6.27 5.16 4.88 5.18 
4.81 4.23 3.96;
        4.22 4.88 5.63 6.35 6.67 6.27 5.16 4.88 5.18 
4.81 4.23 3.96];

% Julian Day
    N=[17 47 75 105 135 163 198 228 258 288 318 344];
    i=1;
    x=11;

% T=0:1:90;
    T=y(:,x);
    lat=y(:,x);

% Declination Angle
    delta=[-20.92 -12.95 -2.42 9.41 18.79 23.15 21.18 
13.45 2.22 -9.59 -18.91 -23.05];

% Sunshine Hour Angle
    ws=(acosd(-tand(delta).*tand(lat)));

% ws=[76.3550 81.8417 88.5055 95.8702 102.1205 
105.2995 103.8347 98.4873 91.3708 84.0149 77.7949 
74.7761]

% Extraterrestial Radiation
Ho=[((24*3600)/pi)*1367.*(1+0.033.*cos((360.*N)/365)).*
cosd(lat).*cosd(delta).*sind(ws)+0.0175.*ws.*sind(lat).
*sind(delta)]./3600000;

% Ho=[7.9366 8.3698 8.9185 8.4354 8.3233 7.6595 
8.2782 8.6192 8.5849 8.7888 8.4533 8.1509]

% H=[2.44 2.87 4.80 5.22 6.14 4.95 4.07 3.48 3.98 
4.22 3.16 2.85]
    H=Hg(x,:);

% Clearness Index
    Kt=H./Ho;

% Kt=[0.3074 0.3429 0.5382 0.6188 0.7377 0.6463 
0.4917 0.4037 0.4636 0.4802 0.3738 0.3497]

% Kt=[0.3074 0.3738 0.3497]% for ?<81.40
% Kt1=[0.3429 0.5382 0.6188 0.7377 0.6463 0.4917 

0.4037 0.4636 0.4802]% for ?>81.4
% Hd=1.391-3.560.*Kt+4.184.*(Kt.^2)-2.137.*(Kt.^3)
% Hd1=1.311-

3.022.*Kt1+3.427.*(Kt1.^2)+1.821.*(Kt1.^3)
% Hd=[0.6299 0.7511 0.9611 1.1847 1.6777 1.2810 

0.8701 0.7693 0.8280 0.8517 0.5333 0.5663]
% Calculation of Diffuse Radiation, Beam Radiation
if ws(:,n)<81.4

        4.24 4.95 5.67 6.31 6.47 6.18 5.24 4.96 5.28 
4.94 4.33 3.99; 
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        Hd=((1.391-3.560*(Kt(:,n))+4.189.*(Kt(:,n))^2)-
2.137*(Kt(:,n))^3);

else
        Hd=((1.311-3.022*Kt(:,n)+ 3.427.* (Kt(:,n).^2)+ 
1.821*Kt(:,n).^3));

end
    Hb=H(:,n)-Hd;

% Hb=[1.8101 2.1189 3.8389 4.0353 4.4623 3.6690 
3.1999 2.7107 3.1520 3.3683 2.6267 2.2837]
    wss=acosd(-tand(lat-T(i,:)).*tand(delta(:,n)));
    wts=min(ws(:,n),wss);
    Rb=((((wts.*pi)./180).*sind(delta(:,n)).*sind(lat-
T(i,:))+cosd(delta(:,n)).*sind(abs(wts)).* cosd(lat-
T(i,:)))./(((ws(:,n)*pi)./180).* 
sind(delta(:,n))*sind(lat(i,:))+ 
cosd(delta(:,n)).*sind(ws(:,n))* cosd(lat(i,:))));
    Rd=(1+cosd(T))./2;
    ref=0.2;
    Rr=ref.*((1-cosd(T(i,:)))./2);
    Ht=Hb*Rb+Hd*Rd+H(:,n).*Rr;
    [m,y]=max(Ht);
end
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Probabilistic Power Flow Analysis
of Distribution Systems Using Monte
Carlo Simulations
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Abstract Nowadays, population growth has led to increased electricity consump-
tion in different residential, commercial and industrial district levels. This may leads
to load-generation imbalance, voltage drop, cascaded failure and catastrophic black-
out of interconnected power networks. To prevent from wide spread outages and
uncontrolled islanding of large-scale and distributed grids, uncertainties associated
with loads are considered in steady-state voltage stability analysis and reliability
assessment. Therefore, this chapter aims to present a Monte Carlo simulations based
probabilistic power flow method for finding all critical buses against variations of
active and reactive loads. In this approach, backward-forward sweep based load
flow is used to find optimal operating point of benchmark distribution grid in each
scenario. Number of scenarios with bus voltage magnitude violation probability is
used to cluster nodes into two critical and non-critical categories. Robustness and
effectiveness of Monte Carlo based probabilistic power flow algorithm is revealed
by simulations on 33-bus radial distribution system.
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Nomenclature

J̇ k+1
i Injected current to node i in (k + 1)th iteration
V̇ (k) Voltage of node i in kth iteration
Ṡ Power injected to node i
Ẏ Parallel admittance of node i
İ k+1
i Current of branch i in (k + 1)th iteration
İ k+1
j Current of branch j in (k + 1)th iteration
Z j Impedance of branch j
V .k+1
j Voltage of bus i in (k + 1)th iteration

V .k+1
j Voltage of bus j in (k + 1)th iteration

Floss Total real power losses as objective function
gi, j Conductance of branch i to j
Vi Voltage magnitude of bus i
Vj Voltage magnitude of bus j
θi Voltage angle of bus i
θ j Voltage angle of bus j
nl Total number of branches
Vmin
i , Vmax

i Minimum and maximum values of voltage magnitude for bus i
Ib Current of branch b
Imax
b Maximum current of branch b

μPLi
, σPLi

Mean and standard deviation of active power of i th load
μQLi

, σQLi
Mean and standard deviation of reactive power of i th load

PLi (s|μPLi
, σPLi

) Active power of i th load in sth scenario
QLi (s|μQLi

, σQLi
) Reactive power of i th load in sth scenario

1 Introduction

In recent years, variable nature of electricity demand and uncertain productions of
renewable energy resources based power generation facilities influence on stability
and reliability of radial and meshed distribution systems. Hence, optimization of
power system performance under uncertain operating conditions has attracted more
attention.

Some scholars have focused on probabilistic optimal power flow (OPF) prob-
lem. Jabari et al. [1, 2] developed a forward-selection backward-elimination method
based optimal power flow algorithm for defensive splitting of faulted power sys-
tems. Monte Carlo simulations (MCS) [3] and point estimation method (PEM) [4]
based stochastic contingency analysis are applied on interconnected electricity sys-
tems for finding all critical buses while occurring different single transmission line
outages. A wide variety of optimization techniques are implemented on power flow
problems, such as nonlinear programming (NLP) [5–8], linear programming (LP)
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[9–11] and quadratic programming (QP) [12]. Generally, nonlinear programming
approaches have many drawbacks such as insecure convergence. Moreover, linear
and quadratic programming methods have some disadvantages associated with cost
approximation. OPF analysis uses different advanced optimization processes such
as genetic algorithm, interior point method, simulated annealing, decomposition and
Newton’s method to find a good operating point for interconnected electricity grids
and determine bus voltage angle and magnitude, output active and reactive powers
of generator and transmission congestion. Interior point method is presented as com-
putationally efficient scheme, but it suffers from bad initial, termination and in some
cases is unable to solve nonlinear and quadratic objective function [13]. In [14], a sim-
ple genetic algorithm is used for OPF solution. Active power output of generators,
voltages and transformer taps have been selected as control variables. Transmis-
sion capacity criterion, voltage permitted range and generation limits are considered
as optimization constraints. Some scholars have considered Karush–Kuhn–Tucker
(KKT) optimality conditions instead of solving OPF original problem. For equality-
constrained optimization problems, KKT conditions are a set of nonlinear equations,
which can be solved using a Newton algorithm. In Newton algorithm based OPF
problem [15], inequality constraints are added as quadratic penalty terms to objec-
tive function. Probabilistic optimal power flow [16] is developed to estimate all steady
state characteristics of power systems and solve optimal power flow problem with
uncertain loads and variable renewable energy sources based power production pro-
cesses. There is overwhelming agreement among scholars that Monte-Carlo based
stochastic programming methods are more capable and accurate in comparison with
other uncertainty modeling techniques. Besides, this approach requires much more
deterministic Newton-Raphson power flow calculations to converge. To improve effi-
ciency and speed of stochastic power system analysis, K-point estimation method
[17–19] with computational burden less than Monte Carlo simulations is widely
used to solve OPF problem under uncertain operating condition. Popular power flow
algorithms such as Newton-Raphson and fast decoupled load flow method generally
fail to converge when analyzing radial distribution systems with high R/X ratio [20].
In [21], an interval arithmetic based backward-forward sweep algorithm is used to
model both lower and upper bounds of uncertain loads for balanced radial distribution
system power flow analysis. However, upper and lower ranges estimated by interval
arithmetic approach tend to be large especially in long iterative computations [22].
A quadratic convex approximation strategy is introduced in [23] for OPF in power
distribution systems. This algorithm is based on linear formulation of power flow
presented by Garces [24]. Different consideration are made ending at a non-iterative
analytical solution for relaxed problem.Both, quadratic convex and analytical relaxed
models are extensible to three-phase unbalanced distribution systems.

As reviewed, different probabilistic power flow algorithms have been imple-
mented on distribution systems to model fluctuations of renewable energy resources
based power generation processes and electrical loads. This chapter aims to present
a novel backward-forward sweep (BFS) based probabilistic power flow strategy for
radial distribution networks. In this method, number of Monte Carlo iterations is
considered as known parameter. A random number between 0 and 1 is generated as
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probability of load value of each bus. Mean, standard deviation and probability of
each load level are then used to determine an uncertain value for active or reactive
power of demand of each bus. Afterward, BFS load flow is solved, total real power
losses is calculated and voltage magnitude of each bus and current of each branch
are obtained in each stochastic scenario. When all iterations of MCS are run, prob-
ability of voltage magnitude violation is computed for each node and critical buses
are marked based on this index. To prove applicability of MCS based BFS load flow
analysis in finding critical buses, a 33-bus radial distribution system is studied.

Other sections of this chapter are organized as follows: A comprehensive prob-
lem formulation on backward-forward sweep load flow analysis and Monte Carlo
based uncertainty modeling technique is presented in Sect. 2. Simulation results and
discussions are provided in Sect. 3. Finally, concluding remarks appear in Sect. 4.

2 Problem Formulation

2.1 Forward-Backward Sweep Algorithm

In this section, backward forward approach is introduced. By considering a sample
distribution system as shown in Fig. 1, the injected current to the ith node can be
calculated as Eq. (1).

J̇ k+1
i =

(
Ṡi

V̇ (k)
i

)∗
− Ẏi V̇

(k)
i (1)

where,

J̇ k+1
i : Injected current to node i in (k + 1)th iteration
V̇ (k)
i : Voltage of node i in kth iteration

Ṡi : Power injection of node i
Ẏi : Parallel admittance of node i
Backward sweep

In this step, sum of all currents injecting to branch i is obtained from Eq. (2).

Fig. 1 A simple radial distribution network
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İ k+1
i = − J̇ k+1

i +
∑
j∈Ci

İ k+1
j (2)

where,

İ k+1
i : Current of branch i in (k + 1)th iteration
İ k+1
j : Current of branch j in (k + 1)th iteration

Forward sweep

In this process, according to obtained current in backward process, new value of
bus voltage is formulated by Eq. (3).

V̇ k+1
j = V̇ k+1

i − İ k+1
j × Z j (3)

In which,

Z j : Impedance of branch j
V̇ k+1
i : Voltage of bus i in (k + 1)th iteration

V̇ k+1
j : Voltage of bus j in (k + 1)th iteration

Finally, in order to finalize power flow calculations, limitation (4) should be sat-
isfied; otherwise, Eqs. (2) and (3) will be repeated.

2.2 Monte Carlo Simulations

As mentioned in Sect. 1, Monte-Carlo simulation based stochastic programming
methods are accurate in comparison with other uncertainty modeling techniques. In
this research, it is used to generate numerous stochastic scenarios for modeling load
uncertainties and finding all critical nodes of a radial distribution system. LetU1,U2,
and U3 denote three uniform random numbers on (0, 1). Hence, active and reactive
powers (as two independent normal variables) of i th load in s th scenario can be
obtained from Eqs. (4) and (5), respectively.

PLi (s|μPLi
, σPLi

) = F−1
PLi

(‘Normal’,U1(s), μPLi
, σPLi

) (4)

QLi (s|μQLi
, σQLi

) = F−1
QLi

(‘Normal’,U2(s), μQLi
, σQLi

) (5)

where,

μPLi
, σPLi

: Mean and standard deviation of active power of i th load
μQLi

, σQLi
: Mean and standard deviation of reactive power of i th load.
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3 Proposed Approach and Case Study

In this section, a backward-forward sweep based probabilistic power flow method
is proposed for finding all critical buses of IEEE 33-bus radial distribution system
[25] against uncertainties of loads, as illustrated in Fig. 2. As shown in Matlab Code
section, the bus data matrix is defined as “bdata.not.per.unit”. The first column of
this matrix refer to number of nodes. Active and reactive power consumptions in
each bus are presented at second and third columns of bus data matrix in kW and
kVAr, respectively. Similarly, “ldata.not.per.unit” is line data matrix of 33-bus radial
benchmark network. In each row of branch information matrix, number of starting
and ending point of each line is determined using bus numbers. The third and fourth
columns of the line data matrix represent the resistance and reactance of each branch
in Ohm. In this research, it is assumed that number of Monte Carlo iterations is
known. As obvious from this figure, “MCS” and “mcs” refer to number of Monte
Carlo simulations and iteration index, respectively. While, index “mcs” is not more
than Monte Carlo iterations (MCS), both active and reactive powers of each bus are
updated using two inverse transform functions (4) and (5) with average values equal
to those of reported in primary bus data matrix and standard deviations 35 (for active
power) and 15 (for reactive power). The probability of each scenario is randomly
generated using variable “u(i)= rand”. In this research, normal distribution function
is used to generate stochastic values for active and reactive loads. Afterward, bus data
matrix is updated according to random values generated for active and reactive loads.
The backward-forward sweep based load flow analysis is then implemented using
updated bus data matrix. In each iteration, if voltage magnitude of bus i is less than
0.9, it will be considered as an unstable state for this node. Finally, the probability
of voltage drop for each bus can be calculated by dividing the number of unstable
scenarios to total number of Monte Carlo iterations. Figure 3 illustrates the voltage
profile in two cases “Deterministic backward-forward sweep based load flow” and
“Monte Carlo based probabilistic load flow with 1000 iterations”. As obvious from
this figure, the voltage magnitude is less than 0.9 per unit in buses 13–18 and 31–33.
Moreover, probability of voltage drop for mentioned buses is reported by Fig. 4.
According to Fig. 4, buses 14–18 with higher probability of voltage instability are
critical under uncertain operating conditions.
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Fig. 2 Single line diagram
of IEEE 33-bus radial
distribution system
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Fig. 3 Voltage profile in two cases: deterministic load flow (blue) and probabilistic load flow (red)

Fig. 4 Probability of voltage instability in 1000 Monte Carlo iterations
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4 Conclusion

In this chapter, a novel Monte Carlo integrated backward-forward load flow algo-
rithmwas presented. Uncertain nature of active and reactive loadswasmodeled using
inverse transform of normal distribution functions. By implementing 1000 iterations
of MCS based BFS power flow scenarios on updated bus data matrix, voltage mag-
nitude and probability of instability for each node were found. If voltage magnitude
of bus i at scenario j is either smaller than 0.9 per unit or larger than 1.05 per unit,
it will be marked as unstable node against given active and reactive powers. More-
over, probability of voltage instability is calculated based on number of unstable
conditions of each bus and total number of Monte Carlo iterations. Simulations were
carried out on IEEE 33-bus radial distribution system. Actual active and reactive
powers reported in 2nd and 3rd columns of bus data matrix are used as mean values
of inverse transform functions of Monte Carlo scenarios. Moreover, standard devi-
ations of power variations are considered to be equal to 35 and 15 for active and
reactive loads, respectively. It is found that buses 14–18 with higher probability of
voltage instability are critical nodes against demand variations.
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MATLAB Code

clear all
close all
clc
MCS=input(Enter number of Monte Carlo iterations:');
mcs=1;
while mcs<MCS+1
bdata.not.per.unit=[%Bus  P(Kw)  Q(Kvar)

1     0      0
2     120    72
3     108    48
4     144    96
5     72     36
6     72     24
7     240    120
8     240    120
9     72     24
10    72     24
11    54     36
12    72   42
13    72     42
14    144    96
15    72     12
16    72     24
17    72     24
18    108    48
19    108    48
20    108    48
21    108    48
22    108    48
23    108    60
24    504    240
25    504    240
26 72     30
27    72     30
28    72     24
29    144    84
30    240    720
31    180    84
32    252    120
33    72 48 ];

for i=2:33
u(i)=rand;
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bdata.not.per.unit(i,2)=icdf('normal',u(i),bdata.not.pe
r.unit(i,2),35);

bdata.not.per.unit(i,3)=icdf('normal',u(i),bdata.not.pe
r.unit(i,3),15);
end
ldata.not.per.unit=[
%        Inbus  Outbus Resistance(ohm) Reactance(ohm)

1       2       0.0922        0.0470
2       3       0.4930        0.2511
3       4       0.3660        0.1864
4       5       0.3811        0.1941
5       6       0.8191        0.7070
6       7       0.1872        0.6188
7       8       0.7114        0.2351
8       9       1.0300        0.7400
9       10      1.0440        0.7400
10      11      0.1966        0.0650
11      12      0.3744        0.1238
12      13      1.4680        1.1550
13      14      0.5416        0.7129
14      15      0.5910        0.5260
15      16      0.7463        0.5450
16      17 1.2890        1.7210
17      18      0.7320        0.5740
2       19      0.1640        0.1565
19      20      1.5042        1.3554
20      21      0.4095        0.4784
21      22      0.7089        0.9373
3       23      0.4512        0.3083
23      24      0.8980        0.7091
24      25      0.8960        0.7011
6       26      0.2030        0.1034
26      27      0.2842        0.1447
27    28      1.0590        0.9377
28      29      0.8042        0.7006
29      30      0.5075        0.2585
30      31      0.9744        0.9630
31      32      0.3105        0.3619
32      33      0.3410     0.5302];

sizbdata=size(bdata.not.per.unit);
busnum=sizbdata(1,1);
sizldata=size(ldata.not.per.unit);
branchnum=sizldata(1,1);
%per unit calculation:
Sbase=10^3;
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Vbase=12.66*10^3;
Zbase=Vbase^2/Sbase;
bdata=bdata.not.per.unit;
ldata=ldata.not.per.unit;
for n=1:busnum

bdata(n,2)=(bdata(n,2)*1000)/Sbase;
bdata(n,3)=(bdata(n,3)*1000)/Sbase;

end
for n=1:branchnum

ldata(n,3)=ldata(n,3)/Zbase;
ldata(n,4)=ldata(n,4)/Zbase;

end
%per unit calculation finished
terminatebus=zeros(busnum,1);
intermediatebus=zeros(busnum,1);
junctionbus=zeros(busnum,1);
junctionnum=zeros(busnum,1); 
refbus=0;
busI=zeros(busnum,1);
v=ones(1,busnum);
I=zeros(busnum,busnum);
for k=1:busnum

co=0;
l=0;
for n=1:branchnum

if ldata(n,1)==k
co=co+1;

end
end
if co==0

terminatebus(k,1)=k;
elseif co>=2

junctionbus(k,1)=k;
junctionnum(k,1)=co;

elseif co==1
for m=1:branchnum

l=l+1;
if ldata(m,2)==k

intermediatebus(k,1)=k;
break

elseif l==branchnum
refbus=k;

end
end

end
end
junctionbus;
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intermediatebus;
terminatebus;
refbus;
junctionnum;
tempterminatebus=terminatebus;
controljunctionnum=zeros(busnum,1);
k=0;
c=0;
itecount=0;
for s=1:15 %iteration

itecount=itecount+1;
%backward sweep
while c==0

k=k+1;
juncnum=0;
n=0;
stop=0;
previousI=0;
if tempterminatebus(k,1)==k

while(n<branchnum)&&(stop==0)
n=n+1;
if ldata(n,2)==k

a=ldata(n,1);
if a==refbus

c=1;
end

I(a,k)=busI(k)+(bdata(k,2)-
1i*bdata(k,3))/conj(v(k))+previousI;

previousI=I(a,k);
tempterminatebus(k,1)=0;
if junctionbus(a,1)==a

busI(a)=busI(a)+I(a,k);
controljunctionnum(a,1)=controljunctionnum(a,1)+1;
if controljunctionnum(a,1)==junctionnum(a,1)
tempterminatebus(a,1)=a;

end
break

end
k=a;
n=0;

end
end
k=0;

end
end
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%end of backward sweep
%forward sweep
count=0;
beforev=v;
newldata=ldata;
stop1=0;
forwardbus=zeros(busnum,1);
c=0;
stopif=0;
while stop1==0

for k=1:branchnum
if(newldata(k,1)==refbus)&&(stopif==0)

c=refbus;
if junctionbus(refbus,1)==refbus

forwardbus(refbus,1)=1;
end
stop2=0;
while 1

a=newldata(k,2);
z=newldata(k,3)+1i*newldata(k,4);
v(a)=v(c)-z*I(c,a);
newldata(k,:)=0;
if junctionbus(a,1)==a

forwardbus(a,1)=1;
end
if terminatebus(a,1)==a

stopif=1 ;
stop1=1;
break

end
for n=1:branchnum

if ldata(n,1)==a
c=a;
k=n;
break

end
end

end
end

end
end
stop3=0;
while stop3==0

stopif1=0;
for k=1:busnum

if (forwardbus(k,1)==1)&& (stopif1==0)
stop4=0;
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while stop4==0
stopif2=0;
hhh=0;
counter=0;
for n=1:branchnum

counter=counter+1;
if (newldata(n,1)==k)&& (stopif2==0)

hhh=1;
c=k;
a=newldata(n,2);

z=newldata(n,3)+1i*newldata(n,4);
v(a)=v(c)-z*I(c,a);
newldata(n,:)=0;
if junctionbus(a,1)==a

forwardbus(a,1)=1;
end
if terminatebus(a,1)==a

if newldata==0
stopif1=1;
stop3=1;
stopif2=1;
stop4=1;
break

end
stopif2=1;
stop4=1;

end
k=a;
stopif2=1;

end
if (counter==branchnum) && (hhh==0)

stop4=1;
end

end
end

end
end

end
%end of forward sweep
for p=2:busnum

if abs(v(p)-beforev(p))<=0.000001
count=count+1;

end
end
if count==(busnum-1)

break
end
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end
%data display
voldisp=zeros(busnum,3);
curdisp=zeros(branchnum,3);
co=0;
for n=1:busnum

for k=1:busnum
if I(n,k)~=0

co=co+1;
curdisp(co,1)=n;
curdisp(co,2)=k;
curdisp(co,3)=I(n,k);

end
end

end
for n=1:busnum

voldisp(n,1)=n;
voldisp(n,2)=abs(v(n));
voldisp(n,3)=angle(v(n))*180;

end
co=0;
W=zeros(1,branchnum);
a=zeros(1,branchnum);
b=zeros(1,branchnum);
for n=1:busnum

for k=1:busnum
if I(n,k)~=0

co=co+1;
a(co)=n;
b(co)=k;

end
end

end
DG = sparse(a,b,true,busnum,busnum);
Ploss=0; Qloss=0;
for k=1:branchnum

z=curdisp(k,1);
y=curdisp(k,2);
for g=1:branchnum

if ldata(g,1)==z && ldata(g,2)==y

Ploss=Ploss+abs(curdisp(k,3))^2*ldata(g,3); 
%ploss=r*|I|^2
Qloss=Qloss+abs(curdisp(k,3))^2*ldata(g,4); 
%qloss=x*|I|^2

break
end
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end
end
Inew=zeros(busnum,1);
for l=1:busnum
Inew(l,1)=(bdata(l,2)-1i*bdata(l,3))/conj(v(l));

end
%Outputs
P_loss=abs(Ploss);
Q_loss=abs(Qloss);
Loss(mcs)=P_loss;
for i=1:33
voltage(i,mcs)=abs(v(i));
end

for i=1:33
n(i)=0;

end
for i=1:33

for j=1:MCS
if voltage(i,j)<0.9
n(i)=n(i)+1;

end
end

end
P_instability=n/MCS %Probability of voltage instability
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Long-Term Load Forecasting Approach
Using Dynamic Feed-Forward
Back-Propagation Artificial Neural
Network

Amin Masoumi, Farkhondeh Jabari, Saeid Ghassem Zadeh
and Behnam Mohammadi-Ivatloo

Abstract In recent years, due to increasing rate of electricity demand and power
system restructuringwith a limited investment in transmission expansion, large power
systems may closely be operated at their stability margins. Meanwhile, uncertain
and intermittent nature of electricity demand with traditional load forecasting error
seriously effects on operation and planning of bulk power grids. Hence, this chapter
aims to present a novel approach based on dynamic feed-forward back-propagation
artificial neural network (FBP-ANN) for long-term forecasting of total electricity
demand. A feed-forward back-propagation time series neural network consists of an
input layer, hidden layers, and an output layer and is trained in three steps: (a) Forward
the input load data, (b) Compute and propagate the error backward, (c) Update the
weights. First, all examples of the training set are entered into the input nodes. The
activation values of the input nodes are weighted and accumulated at each node in
the hidden layer and transformed by an activation function into the node’s activation
value. Hence, it becomes an input into the nodes in the next layer, until eventually
the output activation values are found. The training algorithm is used to find the
weights that minimize mean squared error. The main characteristics of FBP-TSNN
are the self-learning and self-organizing. The proposed algorithm is implemented
on Canada’s power network to prove its accuracy along with effectiveness, and then
compared with real historical data.
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1 Introduction

Nowadays, interconnected power systems have been developed from reliability and
stability aspects. Studies indicate that increasing rate of population all around the
world leads to a growth in electricity consumption [1].Meanwhile, uncertain nature of
electrical demand and renewable energy sources such as solar and wind adds some
limitations to dynamic stability of large electricity grids [2]. Hence, forecasting
of electrical demand becomes more and more critical for assisting power system
operators in electricity grid management, whether for short-term analysis or long-
term applications such as economic emission dispatch, unit commitment, optimal
scheduling, etc. [3–5].

Recently, many scholars have proposed different short and long-term load fore-
casting algorithms. In this context, authors of [6] have simulated a specific aggregated
state prediction for electrical consumption of interconnected power networks with
1% error in 700 h. In [7], combination of genetic algorithm and neural network is an
illustrative example with accuracy of 98.95% for expanding a feed backward neural
network for forecasting of heterogeneous demand time series in very-short and short
time intervals. Application of support vector machine (SVM) has been presented in
[8] for one hour ahead demand forecasting. In addition, this two-phase technique
consisting of artificial neural network (ANN) and SVM has demonstrated the reso-
lution of speed and accuracy through precise experiment on real historical data of
4th July 2012. Son et al. [9] has evaluated the application of support vector regres-
sion (SVR), fuzzy logic, and particle swarm optimization (PSO) with mean demand
scaling of 149.28754 kW for short-term electrical demand forecasting. Guo et al.
[10] has introduced a self-learning algorithm for load forecasting process which
benefits from economic factors. This approach inserts some economic elements in
searching process to reduce computational error. According to overall implementa-
tion of automation system in residential consumption as demand response strategies,
it is found that modified algorithms, which made up SVR, can fix the intermittent
nature of internal loads (i.e. cooling, heating, and ventilation). Thereby, poly-phase
prediction can practically actualize the demand response strategies in such program-
ming. In addition, Le Cam et al. [11] has aimed to forecast total electricity cost of
automation system in a benchmark building by providing a poly-stage prediction
model that 14.2–22.5% optimum absolute error has been observed. Li et al. [12] has
combined a wavelet decomposition technique with ANN to diminish the negative
impacts of volatile load data. Plus, in the noted study, it can be given as advanced
intelligent algorithm with 2.4% mean absolute percentage error (MAPE). Effective-
ness of ANNs in Poland’s natural gas consumption forecasting has been described
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in [13]. This approach has been investigated on historical time series of Szczecin city
with characteristics of 22 input, 36 hidden layer and 1 output and 8%MAPE.Authors
of [14] have used ANNs for hour ahead prediction of universal solar radiation with
7.86% RMSE through filtering the low frequency of input data set. Reference [15]
runs two different learning rules on ANNs. Therefore, it is observed that integration
of back propagation (BP) and extreme learning method (ELM) for decoding the fluc-
tuation of wind speed prediction leads to 1.33% and 1.1965% RMSE, respectively.
In a similar standpoint, conducting PSO and genetic algorithm for optimal selecting
of weight vectors of ANN in solar irradiance estimation system can be found in [16].
It indicates that the combination of BP-ANN and PSO technique has demonstrated
correlated results as 0.78 RMSE and 0.685 mean absolute error (MAE). Authors of
[17] have aimed to apply a proper orthogonal decomposition (POD) to ANNs for
wind and demand forecasting of high altitude towers. It is found that such complex
algorithm can reaches RMSE and mean error of 4% and 0.98%, respectively. As
mentioned, ANNs support both regression based and computational methods under
various prediction scales. Ramasamy et al. [18] has formed a unique wind power
forecasting with respect to ANNs through speed estimation experiment in western
Himalayan. To prove its robustness, output series have compared with real historical
set considering some environmental and geographical factors such as temperature, air
pressure, latitude, and longitude. Resiliency of this method against the time variant
nature of ANN’s input parameters has been revealed by 6.489% as MAPE. Yadav
and Chandel [19] have identified relevant input variables for predicting of 1-min
time-step photovoltaic module power using ANNs and multiple linear regression
models with 2.15–2.55% MAPE. da Silva et al. [20] has reached to important point
that using Bayesian Regularization (BR) and Levenberg Marquardt (LM) as training
of ANNs has real time result in comparison with others for solar power estimation
in a way that MAPE and RMSE are equal to 0.02%, 0.11% (BR), and 0.31%, 0.74%
(LM), respectively.

This chapter aims to present a dynamic feed-forward back-propagation ANNs
based method for long-term forecasting of electrical demand. In addition, the highly
features of compatibility and accuracy of the proposed algorithm is revealed using
a comparison between the forecasted and the actual electrical demands of Canada’s,
Ontario independent electricity operator system (IESO), low voltage grid. The
remainder of this chapter can be organized as follows: Sect. 2 presents the prob-
lem formulation. Simulation result and discussions are provided in Sect. 3. Finally,
concluding remarks appear in Sect. 4.
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2 Problem Formulation

2.1 Artificial Neural Network (ANN)

Artificial neural network (ANN) is a powerful and extensive tool for engineering
applications such as fitting, pattern recognition, clustering, and prediction. The per-
formance of this algorithm is that, by applying weigh matrix and bias vectors to the
input vectors and mathematical operations, we can reach the desired output which
is demand consumption as in Fig. 1. The aim is to learn our ANN for obtaining the
desired output, and also updating the error vectors in any steps. Then, after several
iterations, we can regain the optimal weight values for the input vectors. The type of
learning in our ANN is supervised learning rule which it benefits from three dynamic
training techniques. Hence, the learning rule will be discussed in the next section.
During learning, we update the weight matrix to determine the best error as well as
observing a tolerable output dependency. Then, ANN will initiate with parameter
load and time series for the network as an input, and then variables would have mul-
tiplied by weight matrix. Finally, they would have added by bias vectors. The next
step begins in such order that, a specific mathematical function is presented to start
the calculation as in Fig. 2.

INPUT 
VECTORS

APPLYING 
WEIGHT 

AND BIAS 
VECTORS

APPLYING 
SPECIFIC 

FUNCTION

APPLYING 
ANN

OUTPUT 
VECTORS

(LOAD)

Fig. 1 The block diagram of proposed algorithm

ACTIVATION 
FUNCTIONXi Y

Wi 

Bi

Fig. 2 The operation of the proposed algorithm
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Where, xi , wi , Bi are the input vectors, weight matrixes and bias vectors respec-
tively and Y is the output of neural network as is depicted in Eq. (1).

yi = F(xi × wi + bi ) (1)

In order to satisfy the convergence condition, the algorithm is constructed based
on supervised learning rule. In supervised learning at any moment in time K input
x(k) is applied to the network. Network desired response Ŷ (k) is given and Couples
(x(k), Ŷ (k)) belong to a given set of learning that are pre-selected. The x(i) and
Ŷ (i), i = 1 . . . ,N(N is number of neurons) are used in supervised learning rulewhen
Ŷ (k) = Ŷ (i), x(k) = x(i). Our desired network is Multi-Layer Perceptron (MLP)
which has a group of vectors like input, output (validation), and network response
(Y (k)). MLP is a computational unit in the ANN architecture that is consisted of
input layer, hidden layer, and one output layer. After the combination of this input,
calculation process will begun as in Fig. 3.

Fig. 3 Different layers of MLP
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2.2 Dynamic Artificial Neural Network (DANN)

Dynamic artificial neural network is a computational operating system in which the
continuous integration between its elements and the training processes improves the
power of prediction. As it is depicted in Fig. 3, the conventional neural network has
been made up of one input layer, one hidden layer and, one output layer. In addi-
tion, the relation among the parameters, layers, and also the training steps, leads to
the prediction purpose. According to the nonlinear feature of input data set, using
effective learning rules which they will define in the following section, can help the
propagation procedure to be more dependable in comparison with individual learn-
ing network. Plus, the volume of calculation is a very critical point that must be
considered if the number of sample data is notable for the convergence application.
From this view point, overall conformity of forecasting algorithm will lead to the
better understanding of estimated output. As it is clear in Eq. (1), the weight matrix
and bias vectors are the stimulation parameters of ANN that are needed to gener-
alize the diversity of input vectors. They simply interconnect the intermittent based
inputs which are electric demand in this case, into the correcting steps of predict-
ing. The activation function F is the operator of the net that is accommodated with
both correcting and training processes. In another word, the F will demonstrate the
predicting based on the termination of gradient process. The connectors, which are
neurons, transfer the optimized values of weight and bias to the output layer in spe-
cific order. Moreover, dynamic neural network is defined as the combination of three
regression based learning method which are Levenberg Marquardt (LM), Bayesian
Regulation (BR), and Scaled Conjugated Gradient (SCG). First of all, the learning
system operator will initiate with LM to train the portion of input data set (70%) and
will allocate primary weight and bias vectors. After the generalization, the output
trained is employed to the second propagation network (BR) to be normalize and
filter the white noises of set with respect to the error performance (MSE) of the early
neural network with 70% as training ratio. The next view is to conjugate the perfor-
mance of two aforementioned learnings techniques to scale the searching process of
optimal weight and bias vectors selecting in the hypothesis space. In another word,
scaled conjugated will find the specific vectors for minimizing the error (MSE). Plus,
this algorithm uses desired values of weight matrix at each stage to change them so
that, the downward slope of the error curve is going to be descent. The flowchart of
proposed algorithm for load forecasting is depicted as in Fig. 4.

2.3 Back Propagation Technique (BP)

Back propagation is a learning and adjusting method which conveys several partial
derivatives from the basic parameter of neural network. In this method, we try to
minimize the objective function and obtain mean square error (MSE) between the
output of net and the desired output of electrical demand using dynamic algorithm. It
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Fig. 4 The proposed algorithm

is observed that the hypothesis searching space is a large space that defines all possible
values of the weights. The ANN tries to optimize the error to achieve reasonable
states. However, there is no guarantee that it will reach to the absolute minimum.
Therefore, the training algorithm (DANN) is used to find the weights that minimize
mean squared error (MSE). Broadly, the mechanism of BP is based on the operating
of tansigmoid as a sigmoid function for the hidden layer aswell as pure linear function
for the output layer. In this context, Eqs. (1) and (2) are the illustrative of hidden and
output structure, respectively. As the same manner, the predicted output of the net
can be achieved through the Eqs. (3) and (4) and algorithms were trained in three
steps:

1. Forward the input data
2. Compute and propagate error backward
3. Update the weights

x j =
t−n∑

i=t−1

h∑

j=1

ωi j × yi + b j (2)

y j = 1

1 + exp(−x j )
j = 1, 2, . . . , h (3)

xt =
h∑

j=1

ω j t × y j + at t = 1, . . . , T (4)
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yt = xt t = 1, . . . , T (5)

where,

x j , y j Input and output of the jth node of the hidden layer
ωi j Weight between ith input layer neuron and jth hidden layer neuron
b j , a j Bias of the input and the hidden layers which are within the range of [−1,

1]
n, h, T Number of input, hidden, and output layer nodes
xt , yt Input and output values of the output layer at time horizon t
ω j t Connection weights of the jth hidden and output layers.

The mean square error of per cycle or epoch (Total square error for all learning
models) and the norm of the gradient error is less than a predetermined value. The
BP’s view rest on the assumption of error gradient technique in the weight space.
Hence, there is possibility to catch in Local minimum. To avoid such obstacle, we
can use stochastic gradient with different values for weights. Considering the afore-
mentioned concept, the weight adjustment rule in ith iteration depends on the size
of the weight in the previous iteration as in Eq. (6).

MSE = 1

2

T∑

t=1

(ŷt − yt )
2 (6)

where, ŷt and yt are the predicted results and expected output of the neural network,
respectively. As a result, trapping in local minimum and placing on flat surfaces can
be avoided, however, the search speed increases with gradual increase of step modi-
fication. It is observed from BP’s properties that it can show undetected features of
input data in hidden layer of network. Hence, the adjusting procedure is initiated by
Eqs. (7) and (8) to propagate the weights of hidden and input neurons as follows:

�ω j t ∝ −∂MSE

∂ω j t
(7)

�ω j t = −η

(
∂MSE

∂yt

)(
∂yt
∂xt

)(
∂xt
∂ω j t

)
= η(ŷt − yt )

(
∂
(
(1 + exp(−xt ))−1

)

∂xt

)
y j

= η(ŷt − yt )yt (1 − yt )y j
for j = 1, . . . , h, t = 1, . . . , T (8)

In which,

�ω j t Weights of hidden neurons
η Learning rate
∂MSE
∂yt

Derivative of the error with respect to the activation
∂yt
∂xt

Derivative of the activation with respect to the net input
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∂xt
∂ω j t

Derivative of the net input with respect to a weight.

According to the association of error (MSE) in each step of iteration, if the algo-
rithm continues until the error is less than a certain amount, BP will terminate which
can lead us to over-fitting. Over-fitting is caused by the weight adjusting that may’ve
not a conformity with overall distribution data. By increasing the number of itera-
tion, the complexity of the hypothesis space learned by the algorithm becomes more
and more comprehendible until it can able to evaluate noise and rare example of a
network in the training set properly. The solution is to import approved collection
called validation set to stop learning when the error is small enough in this series
and also to network for simpler hypothesis spaces. Then, the amount of weight in
each iteration can be reduced. After determining the optimized values of weights,
the error in all nodes can participate as follows:

�ωi j ∝ −∂MSE

∂ωi j
(9)

Consequently,

�ωi j = −
T∑

t=1

[(
∂MSE

∂yt

)(
∂yt
∂xt

)(
∂xt
∂y j

)](
∂y j
∂x j

)(
∂x j

∂ωi j

)

= η

T∑

t=1

[
(ŷt − yt )yt (1 − yt )ωi t

]
y j (1 − y j )yi

i = t − n, . . . , t − 1 j = 1, . . . , h (10)

2.4 Levenberg Marquardt Algorithm (LM)

The LM is a computational approach for data mining problems of NN which include
uncertain parameter structure. In this premise, LM categorize the input data set by
learning the NN algorithm to adapt with the previous state of parameter through
the error expected (MSE). This method is basically drowned out by the popular
Gaussi-Newton technique [21] in non-singularity functions (tansig) as in Eqs. (11)
and (12):

xk+1 = xk + �x k = 1, . . . , N (11)

In which, xk+1, xk and �x represent the current state, historical recent state, and
the deviationwith time step of time series, respectively. The deviation can bemodeled
in the LM concept in which the Jacobians of errors train each node of neural network
as follows:
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�x = [
J T J + ηI

]−1
J T MSE (12)

where, the J, η and MSE represent the first derivative of errors with respect to the
back propagation process, learning rate (70%) and the mean square error, respec-
tively. Themerit of LM is the speed of convergence that aims to escape from the local
minima for the sake of prediction [22]. According to the abovementioned equation,
LMmethod has been conducted a correcting system on error (MSE) instead of using
Hessian matrix. It is noted that the main point in the weight adjusting of NN is the
propagation of neurons of hidden layer which over fitting may have been occurred,
if the covariance of data set is contaminated with heterogeneous pattern [23]. Hence,
the propagation search is described as Eqs. (13) and (14):

ωk+1
i j = ωk

i j + �ωi j k = 1, . . . , N (13)

�ωi j = [
J T J + ηI

]−1
J T MSE (14)

2.5 Bayesian Regularization (BR)

After considering the standardizing steps of LM in the propagation process, Bayesian
Regularization (BR) is applied for the over-fitting problem of weight allocation in
NN [24, 25]. Meanwhile, BR detects the unregulated weights considering their error
(MSE) as well as accelerates the search speed for classifying the weights by the help
of reducing their possibility from the state space. In another word, BR filters out the
unbiased weights which are selected randomly. Plus, by determining such weight
that are the white noises of NN, the optimum values can be more achievable than its
former state. Then, by adding the extra term to the propagation equations as the sum
of all weights of net, the decision function for the learning is described as follows
[26]:

Min �ωi j = αE(w) + βMSE
α, β> 0

(15)

E(w) = 1

2

N∑

i=1

ω2
i (16)

In which, MSE, E(w), α and β are the mean square error of NN, total sum of all
weights, and filtering variables, respectively [27, 28]. Hence, when the possibility of
unbiased weights decreases, the convergence of forecasting increases till it is turned
to a resistant computational unit against the local optimums. According to the volume
of input data as well as the learning interactions, the training rate of BR technique has
been set to 70%. As it can be inferred from the Eq. (15), the propagation procedure is
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converted to the quadratic equation optimization which the filtering variables play a
regularization role in this problem. By solving this equation and finding theminimum
point for the feasible solution of variables, the propagation process will be improved
as follows [29]:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

αop = γ

2Eω(ωop)

βop = N−γ

2MSE
γ = K − αTrace(A)−1

α = 1
σ 2

ω

(17)

The cooperation ofγ that is the optimumdiagnostic number of regularizedweights
with the covariance factor of input data set leads to the refinement of feasible solutions
of quadratic problem. In this equation, K is the weight matrix of neural network and
A is the Hessian matrix of the quadratic problem which acts as variance operator to
determine the error deviation as well as α has an inverse relation with diversity of
weights. It is noted that, the effective number of γ can vary from 0 to K because of
the priority of input data set. Hence, the suitable set of solutions which are the best-
fitted in the quadratic problem enhance the propagation modelling by diminishing
the noises from the Eq. (15).

2.6 Scaled Conjugated Gradient (SCG)

In this step, the conjugate scope is used to maximize the optimization feature of
dynamic technique. The concept of SCG is based on the arrangement of overall
minima of quadratic problem which aims to decrease the slop of errors. In this
category, we consider a gradient operator for both errors and gradient of errors. After
conducting the two aforementioned techniques, SCG initialize with x0 as the primary
point of linear searching algorithm for weights in accordance to Eq. (18) [30]. The
combinatory gradient can be checked with Eq. (19).

x0 ∈ R, f (x) ≤ f (x0) (18)

‖∇ f (x) − ∇ f (y)‖ ≤ L‖x − y‖
y = gk+1 − gk
gk = ∇ f (xk) (19)

In which∇ f (x),∇ f (y) and L are the error gradient, gradient of error gradient of
weight matrixes as well as x and y are the demonstration of input weights, and error
gradient, respectively [31]. It has to be noted that the procedure can be achieved under
the differentiability of objective function (15). In this assumptions, the propagating
process of SCG can be expressed as follows (20) [32]:
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xk+1 = xk + αkdk → (ωk+1 = ωk + αkdk)

dk+1 = −θk+1gk+1 + βksk

θk+1 = sTk sk
yksk

sk = xk+1 − xk (20)

In which dk and αk are the direction and step counter of searching technique [33].
According to the quasi-newton theorem, if βk = 1 then the possibility of θk for
being a positive definite matrix increases. Therefore, we can call the first step to be
innervated as:

g0 = ∇ f (x0), d0 = −g0, α0 = 1

‖g0‖ (21)

In addition, the searching algorithm updates every iteration until the Eq. (19) can
be satisfied. Hence, the Eq. (20) indicates us that the propagating process of SCG
is completely depends on the optimal selecting of dk land αk [34]. This premises
imposes us that the step counter (αk) must be determined originally for accelerating
the computation search. Thereby, theWolf condition is implemented on the objective
function for this specific purpose as in Eq. (22) [35]:

f (xk + αkdk) − f (xk) ≤ σ1αkg
T
k dk

∇ f (xk + αkdk)
T ≥ σ2g

T
k dk (22)

where σ1 and σ2 are the positive constant considering 0 < σ1 ≤ σ2< 1. At last, the
configuration of three strong computational units which compensate the propagating
search that is depicted in the following section.

3 Numerical Result and Discussions

3.1 Resiliency of Hybrid Proposed Strategy

In the conducted survey, the set of electrical load demand are assembled by three
steps as: the training, the validation, and the testing that are valued by a tentative
options 70%, 15%, and 15%, respectively. In order to fit the assumption of proposed
technique byNN, theMSE criterion serves as the best identification of error distance.
This criteria is defined for each stages of DANN to reach the constraints satisfaction.
Moreover, after aforementioned scaling standardize the output, the analogy between
the real historical demand data set and the linearized prediction set is obtained to
verify the compatibility of algorithm as shown in Fig. 5.
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Fig. 5 The flowchart of the proposed strategy

3.2 Robustness and Scalability

The forecasting operatory system is made by main body of NN which benefits from
three learning technique that are LM, BR, and SCG. The selection of 4344 net
input is allocated from the Canada, Ontario independent electricity operator sys-
tem (IESO), during 1/1/2001 to 6/30/2001 till 1/1/2009 to 6/30/2009 in six month
time horizons as well as 9 years which have been imported to DANN. The con-
figuration of abovementioned structure are set as 10 hidden layer within 24 hid-
den neurons for each stage as well as 4320 output set iteratively. Furthermore, the
comparison of predetermined and forecasted outputs in association with error func-
tionality (MSE) are denoted as in Figs. 6, 7, 8, and 9. According to the Figs. 8
and 9, the result is accommodated with the actual historical data set. To qualify the
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Fig. 6 Actual value of the power consumption from 1/1/2010 to 6/30/2010

Fig. 7 The demonstration of predicted set of input

Fig. 8 The comparison of actual and estimated power consumption from 1/1/2010 to 6/30/2010
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Fig. 9 The comparison of actual and estimated power consumption from 1/1/2010 to 2/1/2010

Fig. 10 The actual value of input data set for the last week during 6/24/2010 to 6/30/2010

Fig. 11 The comparison of actual and estimated power consumption 6/24/2010 to 6/30/2010

contribution of simulation, the symmetric resolution of compared output of net-
work are presented in Figs. 10 and 11 which convey the participation of measured
dataset with forecasted output, respectively. As it is obvious, the blue line consid-
ered as the actual selection of measured data from IESO. In addition the red curve is
defined to output value of simulated approach coherently. According to the identifi-
cation of error trials of our correlatedmethod, after 1000 epoch, theMSE is decreased
to 8.803 × 10−3 (ε) which enables the conformity of strategy. The appraisal of NN
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construction incorporated with performance of NN are depicted in Figs. 12 and 13,
respectively. Moreover Figs. 14 and 15 attached to clarify the feasibility of algorithm
substantially. It is worth mentioning that, Fig. 16 is represented as linear regression
view of simulated structure to fit all data set simultaneously.

Fig. 12 The configuration of LM method
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Fig. 13 The performance of LM-DANN

Fig. 14 The autocorrelation of error
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Fig. 15 The error histogram of proposed architecture

4 Conclusion

All in all, we have assumed the advantage of ANN for the long term forecasting
of electrical consumption as well as to predict the desired data set using the error
criterion. In this paper, the intermittent nature of our problem has been depicted us
that implementing proposed method is applicable for the uncertain frequency data
sets. Thereby, the historical sets is reported by IESO, Canada’s power network, for
the purpose of estimating . Plus, after determining the composition of DANN, the
regulating steps which is guided by training progress of demand curve are applied to
gain dependable results. Consequently, the simulation performance of DANN covers
the sensitivity and practicable operating of proposed architecture which is obtained
as tolerable minimum MSE.
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Fig. 16 The regression criterion for proposed architecture

MATLAB Code

Note that sheets 1 and 2 are the historical data and the time series data set of input,
respectively. In addition, the training progress should be applied after each stages
met their termination condition and gained acceptable performance. The dash sign
is separated all training slops in order.
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% Import the file which is the historical data set with 
respect to month/day/year in Excel format

function [newData1] = importfile3(fileToRead1)
sheetName='Sheet1'; 
[numbers, strings] = xlsread(fileToRead1, sheetName);
if ~isempty(numbers)

newData1.data =  numbers;
end
if ~isempty(strings)

newData1.textdata =  strings;
end
function [newData1] = importfile3(fileToRead1)

% Import the file which is the actual data in Excel 
format.

sheetName='Sheet2'; 
[numbers, strings] = xlsread(fileToRead1, sheetName);
if ~isempty(numbers)

newData1.data =  numbers;
end
if ~isempty(strings)

newData1.textdata =  strings;
end

% Construct the main body of NN and adjust the hidden 
layer size and its neurons in another Matlab file.

inputSeries = tonndata(data,false,false);
targetSeries = tonndata(data,false,false);
inputDelays = 0:24;
hiddenLayerSize = 10;
net = timedelaynet(inputDelays,hiddenLayerSize);
[inputs,inputStates,layerStates,targets] = pre-
parets(net,inputSeries,targetSeries);

% set the primary values of training, validation and 
testing stages.
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net.divideParam.trainRatio = 70/100;
net.divideParam.valRatio = 15/100;
net.divideParam.testRatio = 15/100;

% Determine the training approach.
net.trainFcn = 'trainlm'
[net,tr] = 
train(net,inputs,targets,inputStates,layerStates);

% Check the validation in accord with the flowchart.

outputs = net(inputs,inputStates,layerStates);
errors = gsubtract(targets,outputs);
performance = perform(net,targets,outputs)

% Plot the forecasted output.

figure, plotperform(tr)
figure, plottrainstate(tr)
figure, plotresponse(targets,outputs)
figure, ploterrcorr(errors)
figure, plotinerrcorr(inputs,errors)

nets = removedelay(net);
[xs,xis,ais,ts] = pre-
parets(nets,inputSeries,targetSeries);
ys = nets(xs,xis,ais);
earlyPredictPerformance = perform(net,tc,yc) 
% Make another Matlab files and apply the code for both 
BRNN and SCGNN.

% Construct the main body of NN and adjust the hidden 
layer size and its neurons in another Matlab file.

inputSeries = tonndata(data,false,false);
targetSeries = tonndata(data,false,false);
inputDelays = 0:24;
hiddenLayerSize = 10;
net = timedelaynet(inputDelays,hiddenLayerSize);
[inputs,inputStates,layerStates,targets] = 
preparets(net,inputSeries,targetSeries);

% set the primary values of training, validation and 
testing stages.

net.divideParam.trainRatio = 70/100;
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net.divideParam.valRatio = 15/100;
net.divideParam.testRatio = 15/100;

% Determine the training approach.
net.trainFcn = 'trainbr'
[net,tr] = 
train(net,inputs,targets,inputStates,layerStates);

% Check the validation in accord with the flowchart.
outputs = net(inputs,inputStates,layerStates);
errors = gsubtract(targets,outputs);
performance = perform(net,targets,outputs)

% Plot the forecasted output.

figure, plotperform(tr)
figure, plottrainstate(tr)
figure, plotresponse(targets,outputs)
figure, ploterrcorr(errors)
figure, plotinerrcorr(inputs,errors)

nets = removedelay(net);
[xs,xis,ais,ts] = pre-
parets(nets,inputSeries,targetSeries);
ys = nets(xs,xis,ais);
earlyPredictPerformance = perform(net,tc,yc)

% Construct the main body of NN and adjust the hidden 
layer size and its neurons in another Matlab file.

inputSeries = tonndata(data,false,false);
targetSeries = tonndata(data,false,false);
inputDelays = 0:24;
hiddenLayerSize = 10;
net = timedelaynet(inputDelays,hiddenLayerSize);
[inputs,inputStates,layerStates,targets] =
 preparets(net,inputSeries,targetSeries);

% set the primary values of training, validation and 
testing stages.

net.divideParam.trainRatio = 70/100;
net.divideParam.valRatio = 15/100;
net.divideParam.testRatio = 15/100;

% Determine the training approach.
net.trainFcn = 'trainscg'
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[net,tr] = 
train(net,inputs,targets,inputStates,layerStates);

% Check the validation in accord with the flowchart.
outputs = net(inputs,inputStates,layerStates);
errors = gsubtract(targets,outputs);
performance = perform(net,targets,outputs)

% Plot the forecasted output.

figure, plotperform(tr)
figure, plottrainstate(tr)
figure, plotresponse(targets,outputs)
figure, ploterrcorr(errors)
figure, plotinerrcorr(inputs,errors)

nets = removedelay(net);
[xs,xis,ais,ts] = pre-
parets(nets,inputSeries,targetSeries);
ys = nets(xs,xis,ais);
earlyPredictPerformance = perform(net,tc,yc)
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Multi-objective Economic and Emission
Dispatch Using MOICA: A Competitive
Study

Soheil Dolatabadi and Saeid Ghassem Zadeh

Abstract In this chapter, the application of multi-objective imperialist competitive
algorithm is investigated for solving economic and emission dispatch problem. It is
aimed to minimize two conflicting objectives, economic and environmental, while
satisfying the problem constraints. In addition, nonlinear characteristics of gener-
ators such as prohibited zone and ramp up/down limits are considered. To check
applicability of the MOICA, it is applied to 12 h of IEEE 30-bus test system. Then,
results ofMOICAare comparedwith those derived by non-dominated sorting genetic
algorithm and multi-objective particle swarm optimizer. The finding indicates that
MOICA exhibits better performance.

Keywords Multi-objective imperialist competitive algorithm · Economic and
emission dispatch · Non-convex optimization problem

Nomenclature

C(PG) Total cost of power generation
E(PG) Total emission
PLoss Total network loss
Pi Power generated at ith unit
PL,i Power flow of ith line
PD Total load demand
P0i Output power of ith unit in previous dispatch interval
ai, bi, ci, ei, fi Fuel cost coefficients of ith unit
αi , βi , γi , ξi , λi Emission coefficients of ith unit
URi/DRi Up-ramp/down-ramp limits of ith unit
f i ith objective function
U(.) Uniform distribution function
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ng Number of units
nL Number of transmission lines
nObj Number of objective functions
npop Number of population

Symbols

X � y x weakly dominates y
x ≺ y x strictly dominates y

1 Introduction

Economic dispatch (ED) program is used to define the optimum power output of
generators in order to minimize total generation cost of units. Many constraints
should be satisfied in ED problem, whichmake it a complex optimization problem. In
this regard, many traditional methods are suggested for ED problem such as lambda
iteration, interior point and linear programing methods [1]. In addition, nonlinear
characteristics of generator such as prohibited zones and valve-point loading change
ED problem to a non-convex optimization problem. For non-convex ED, dynamic
programing is proposed, however it produces extremely large dimensionwhich needs
huge computation [2].

In recent years, newmethods based on artificial intelligence are proposed to solve
non-convex ED problems which show promising results. In [3] genetic algorithm
(GA) is successfully applied to ED problem with considering valve point disconti-
nuities and the results are verified by comparing with DP’s results. Particle swarm
optimizer (PSO) is proposed for solving ED problems in [4] which shows better per-
formances compare to traditionalmethods andGA.After introductionof evolutionary
multi-objective optimization algorithms, many researchers studied the application of
these algorithms for solving economic and emission dispatch (EED) problem, where
both pollution and fuel cost are considered for minimization. For instance, in [5] the
performance of second version of non-dominated sorting genetic algorithm (NSGA-
II) has been investigated for solving EED problem and it was successfully tested
on four IEEE standard test systems, and the result indicates satisfying fitness values
for both pollution and fuel cost. In [6] multi-objective gravitational search algorithm
(MOGSA) is used and its results are compared with biography-based optimization
(BBO). The multi-objective PSO (MOPSO) is proposed for EED problem and is
tested on IEEE 30-bus test system [7]. In [8], the application of multi-objective
harmony search algorithms has been investigated for EED and its performance is
validated in three test systems.
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The single-objective ICA is introduced by Atashpaz et al. in 2007 [9]. This
algorithm has been successfully applied to many power engineering problem, such
as machine design [10], distributed generation sizing and placement [11], FACTS
devices allocating [12] and PID controller tuning [13]. The multi-objective version
of ICA (MOICA) is presented in [14] and is tested on different standard bench-
marks which the results show superiority of MOICA over MOPSO and NSGA-II.
Despite of good performance of MOICA, still it has been not used for EED prob-
lem. Only in [15], The performance of MOICA in EED problem has been studied,
but the researchers didn’t consider nonlinear characteristics of generators such as
valve-point loading and prohibited zones. In addition, some important constraints
like up/down ramping rate limits are ignored which makes the solution impractical.
Thus, for the first time, this paper is going to investigate application of MOICA
on a non-convex EED problem. To evaluate the results of MOICA, a comparison
is done between MOICA and two other popular multi-objective algorithms namely
NSGA-II andMOPSO. The study is done on 12 h of IEEE 30-bus test system and the
simulation is carried out in MATLAB. The rest of paper is organized as follows. The
EED problem description and formulation are presented in Sect. 2. Section 3 briefly
explains the multi-objective algorithm and the MOICA. The results of simulations
are discussed in Sect. 4 and finally Sect. 5 concludes the paper.

2 Problem Description

As mentioned earlier, in EED problem, it is aimed to optimize both economic and
environmental objectives simultaneous. This problem is formed from objective func-
tions alongwith a number of equality and inequality constraints whichmake the EED
problem a complex optimization problem. The whole problem can be described
briefly as follow:

Minimize(C(PG), E(PG))

s.t. : g(PG) = 0, h(PG) ≥ 0 (1)

The fuel cost is formed from a quadratic term and a sinusoidal term which is
related to valve-point loading. As mentioned in [16] considering valve-point loading
makes EED solution more accurate and practical.

C(PG) =
ng∑

j=1

a j + b j Pj + c j P
2
j + ∣∣e j × sin

(
f j × (

Pmin
j − Pj

))∣∣ (2)

The total ton/h gas emission can be calculated by
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E(PG) =
ng∑

j=1

10−2
(
α j + β j Pj + γ j P

2
j

) + ξ jexp
(
λ j Pj

)
(3)

2.1 Equalities and Inequalities Constraints

1. Active power balance: the produced active power by generators should meet the
total load demand plus total network transmission loss:

ng∑

j=1

Pj = PD + PLoss (4)

Which total network loss (PLoss) is function of generator power output (P) and
can be calculated using B coefficient [17]:

PLoss =
ng∑

i=1

ng∑

j=1

Pi Bi j Pj +
ng∑

j=1

B0 j Pj + B00 (5)

2. Generator power output limit: the output power of a generator is limited to a
maximum and minimum value and should be considered.

Pmin
i < Pi < Pmax

i (6)

3. Ramp rate limit: the generators are not capable to increase or decrease the output
power instantly.

Pi − P0
i ≤ URi and Pi − P0

i ≤ DRi (7)

4. Prohibited zone: according to [18], some thermal units with many valve points
are not capable to operate in some specific ranges of output power. Therefore,
the feasible operation range can be defined as follow:

Pmin
i ≤ Pi ≤ Pl

i,1

Pu
i, j−1 ≤ Pi ≤ Pl

i, j , j = 2, 3, . . . , ng

Pu
i,ng ≤ Pi ≤ Pmax

i (8)

5. Line flow limit: the power flow through each transmission line should not exceed
from its nominal value.

PL ,i ≤ Pmax
L ,i , i = 1, 2, . . . , nl (9)
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3 Multi-objective Optimization Algorithm

The evolutionarymulti-objective optimization (EMO) algorithms aim tofind solution
for minimization/maximization of a series objective functions [19]:

⎧
⎨

⎩

Minimize/Maximize fm(x) m = 1, 2, . . . , M
subject to : gi (x) ≥ 0, h j (x) = 0 i = 1, 2, . . . , I, j = 1, 2, . . . , J
xmin
k ≤ xk < xmax

k k = 1, 2, . . . , n
(10)

where the optimization solution (X) is a vector of n decision variables X =
(x1, x2, . . . , xn). Contrary to single-objective, multi-objective optimization should
search throughout the multi-dimensional search space and therefore to distinguish
the best solution from others, the domination concept was introduced. According to
[20] the x dominates y if and only if: (1) the solution x is better or equal to y in all
objectives and (2) x is strictly better than y at least in one objective. Themathematical
expression of domination is given in (11).

{∀i ∈ I, xi � yi
∃i ∈ I, xi ≺ yi

⇔ x ≺ y (11)

The solutions which are not dominated by any other solutions are called non-
dominated solutions which are near to Pareto-front (Fig. 1). A proper set of non-
dominated solutions, in addition to be located near to Pareto-front, should also have
diversity to represent the whole range of Pareto-front (niching strategy [21]).

In this regard, different strategies are proposed for finding Pareto-front but non-
dominated sorting method is the most popular and efficient one. This method which
proposed by Deb et al. in 2002 [22], at first was used in NSGA-II, but then many
researchers apply the concept of non-dominated sorting method on various type
of optimization algorithms to create new MOA such as multi-objective ant colony
[23], multi-objective bat algorithm [24] andmulti-objective imperialistic competitive

Fig. 1 Depiction of
Pareto-front and other fronts
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algorithm [14]. In other words, an evolutionary algorithm is responsible for explo-
ration and exploitation the multi-dimensional search space and NS is responsible for
ranking the solutions in multi-objective space to find the Pareto-front.

3.1 The Imperialist Competitive Algorithm

The ICA algorithm is introduced by Atashpaz and Lucas in 2007 which is inspired
from imperialistic competition [9]. In the first step, the algorithm is initialized with
random population or countries and based on their power or inverse of their fitness
values, these countries are divided to imperialists (powerful countries) and colonies
(rest of countries). Each imperialist, along with its colonies form an empire. The
algorithm tries to find the best solution by eliminating imperialists via competition
where each imperialist tries to extend its territory and possesses colonies of other
empires. Therefore, aweak empirewithworse fitness valuewill lose all of its colonies
to more powerful empires.

In each iteration of ICA, the colonies of an empire move toward their imperialist.
The step size of this movement is calculated by using a uniform distribution function.

x ∼ U (0, β × d) (12)

where β is a number greater than 1 and d is the distance between the colony and
imperialist. By moving colonies, it is possible that a colony gain a better fitness value
compare to the imperialist. This issue leads to position exchange between the best
colony and the imperialist. Therefore, in addition to the competition among empires,
an internal competition exists between the imperialist and the colonies (Fig. 2).

The total power of nth empire (T . Cn) in each iteration is evaluated as follow:

T .Cn = Cost(imperilistn) + ζmean{Cost(Colonies O f Empiren)} (13)

At the final stage of ICA, only one imperialist will be remained which is the
solution of the optimization problem.

Fig. 2 The movement of
colony toward the imperialist
[9]
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3.2 The MOICA

In each iteration, the MOICA uses ICA for generating new solutions and then non-
dominated sorting method to rank them. This process can be explained in three
important steps. In beginning of each iteration, the ICA generates a new set of
population (P) using the previous generation. In next step, set P goes to NS algorithm
for ranking purpose. The NS works in two phases, first finding the non-dominated
solutions (rank one) and then ranking other solutions. Two entities are attributed to
each solution: the number of solutions which dominate the solution i (ni) and set
of solutions which solution i dominates (Si). The solutions with ni = 0 are in first
front (Fi) or current front. Then, for other solutions (j) which is placed in set Si of
first-front members, the nj count will be reduced by one. By doing so, any solutions
with nj = 0 will be placed in set H. After checking all solutions in set Si of current
front, the solutions in set H will become new current front and the same process will
be repeated. The pseud code of NS is given in Table 1.

And finally, the solutions of each fronts are sorted by using crowding distance
method.

d
(
x j

) =
nobj∑

i=1

∣∣ fi
(
x j+1

) − fi
(
x j−1

)∣∣

f max
i − f min

i

(14)

Having sorted solutions, the algorithm picks out Npop number of high ranked
solutions to produce next generation or to deliver it as the final result. This process
is shown in Fig. 3.

Figure 4, presents the process of using MOICA for solving the non-convex multi-
objective EED problem.

Table 1 The pseud code on non-dominated sorting for a given population (P)
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Fig. 3 The whole process of MOICA

Fig. 4 Process of using
MOICA for solving EED
problem
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3.3 Selecting the Best Compromise Solution

In this study, the fuzzy-based method is used to find the best compromising solution
by evaluating each non-dominated solutions of Pareto-front [25]. In this regard, the
value ofmember function of each solution should be evaluated using (15), and the best
compromising solution will be the one with the highest value of member function.

μ fi =

⎧
⎪⎨

⎪⎩

1 f min
i ≥ fi

f max
i − fi

f max
i − f min

i
f min
i < fi < f max

i

0 f max
i ≤ fi

(15)

4 The Numeric Results

The IEEE 30-bus test system is used to test the performance of MOICA for solving
EEC problem. This system has 6 thermal units which the detail data of this system are
presented in Table 2 [26]. The prohibited zones and emission coefficients of thermal
units are given in Tables 3 and 4 respectively [27]. A 12-h load profile is considered
for this study (Table 5).

Table 2 Generating unit capacity, fuel cost coefficients and ramp rate limits

Unit Pmin
i

(MW)
Pmax
i

(MW)
a ($) b

($/MW)
c
($/MW2)

URi
(MW/h)

DRi
(MW/h)

P0i
(MW)

1 100 500 240 7.0 0.0070 80 120 340.00

2 50 200 200 10.0 0.0095 50 90 134.00

3 80 300 220 8.5 0.0090 65 100 240.00

4 50 150 200 11.0 0.0090 50 90 90.00

5 50 200 220 10.5 0.0080 50 90 110.00

6 50 120 190 12.0 0.0075 50 90 52.00

Table 3 The prohibited
zones of units

Unit Prohibited zone (MW)

1 [210 240]–[350 380]

2 [90 110]–[140 160]

3 [150 170]–[210 240]

4 [80 90]–[110 120]

5 [90 110]–[140 150]

6 [75 85]–[100 105]
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Table 4 The emission coefficients of thermal units

Unit α β γ ξ λ

1 4.091 −5.554 6.490 2.0E−4 2.857

2 2.543 −6.047 5.638 5.0E−4 3.333

3 4.258 −5.094 4.586 1.0E−6 8.000

4 5.326 −3.550 3.380 2.0E−3 2.000

5 4.258 −5.094 4.586 1.0E−6 8.000

6 6.131 −5.555 5.151 1.0E−5 6.667

Table 5 A 12-h load demand (MW)

Hour 1 2 3 4 5 6 7 8 9 10 11 12

Load 955 942 935 930 935 963 989 1023 1126 1150 1201 1235

Fig. 5 Possible values for
intializing the MOICA

4.1 Initialization of Algorithm

To initialize the MOICA, random values are chosen by considering maxi-
mum/minimum capacity of units, ramp rating limits and prohibited zones. This
process increases accuracy of algorithm while reduces number of fitness function
evaluations. Same method is applied to produce new generation of solutions in each
iteration. Figure 5 shows the feasible values for a given thermal units by considering
the constrains (dark green areas).

4.2 The Simulation Results

The Pareto-fronts of MOICA, MOPSO and NSGA-II for 7 different hours of power
system are shown in Fig. 6. According to these graphs, the MOICA shows better
performance compare to other ones. Figure 7 shows the relative generation costs
and gas emissions for solutions of Pareto-front. The best compromising solution
of MOICA for each hour is calculated using the previously presented fuzzy-based
method. Using these compromising solutions, the values of generators output power,
fuel cost and pollution for each thermal unit are calculated which due to lack of space
only the MOICA’s results are presented in Table 6.
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Fig. 6 Comparison among resulted Pareto-fronts of MOICA, MOPSO and NSGA-II: a 1st hour,
b 2nd hour c 4th hour, d 6th hour, e 8th hour, f 10th hour, g 12th hour
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Fig. 7 The distribution of Pareto-front solutions for a generation cost, b gas emission

Figure 8 compares the results of MOICA with results which is derived from
NSGA-II and MOPSO. The MOICA has better performance in both environmental
and economic objectives compare to the two other algorithms.

5 Conclusion

This paper has studied the application ofmulti-objective imperialist completive algo-
rithm (MOICA) to solve emission and economic dispatch (EED) problems. In this
regard, the algorithm has been applied for solving EED problem of a IEEE 30-bus
test system. the non-linear characteristics of generators such as valve-point loading
and prohibited zone along with other constraints of the system are considered. For
comparison purpose, the results of MOICA are compared with results of NSGA-II
and MOPSO, which indicate better performance of MOICA.
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Table 6 The result of compromising solution in each hour

Hour Unit Total

1 2 3 4 5 6

1 Generation 281.73 154.10 183.24 106.68 138.48 100.77 965.01

Cost 2586.24 1778.08 2112.67 1413.49 1729.87 1466.85 11,087.22

Pollution 0.2083 0.0382 0.0663 0.0544 0.0363 0.0481 0.4516

2 Generation 264.78 150.01 220.59 103.25 123.43 90.48 952.54

Cost 2307.36 1739.52 2613.61 1399.98 1488.41 1420.79 10,969.68

Pollution 0.1761 0.0354 0.1955 0.0538 0.0324 0.0471 0.5403

3 Generation 223.50 166.13 182.56 128.94 145.38 98.54 945.04

Cost 1963.93 1926.14 2098.33 1622.97 1874.87 1457.83 10,944.08

Pollution 0.1164 0.0477 0.0654 0.0599 0.0386 0.0478 0.3758

4 Generation 245.19 166.98 166.78 117.63 136.55 106.97 940.09

Cost 2083.80 1938.64 1778.73 1483.48 1692.16 1494.56 10,471.38

Pollution 0.1449 0.0484 0.0499 0.0568 0.0357 0.0491 0.3847

5 Generation 226.87 150.82 172.80 127.12 157.39 110.11 945.11

Cost 1974.99 1746.74 1894.08 1595.32 2140.31 1512.04 10,863.48

Pollution 0.1204 0.0359 0.0548 0.0593 0.0440 0.0496 0.3641

6 Generation 243.45 162.20 177.33 122.35 153.59 114.17 973.08

Cost 2069.53 1871.92 1987.72 1532.36 2057.42 1540.16 11,059.11

Pollution 0.1424 0.0443 0.0593 0.0580 0.0421 0.0505 0.3966

7 Generation 255.89 154.27 207.48 124.46 135.37 121.71 999.17

Cost 2191.77 1779.75 2518.66 1558.45 1669.95 1614.46 11,333.04

Pollution 0.1612 0.0383 0.1238 0.0586 0.0353 0.0524 0.4696

8 Generation 259.76 173.03 224.72 119.00 136.92 120.05 1033.48

Cost 2239.31 2035.04 2630.01 1496.31 1699.28 1595.39 11,695.34

Pollution 0.1675 0.0541 0.2296 0.0571 0.0358 0.0519 0.5960

9 Generation 253.79 162.96 236.44 97.14 244.19 143.99 1138.51

Cost 2167.81 1882.04 2670.23 1379.10 3212.02 2020.31 13,331.50

Pollution 0.1579 0.0450 0.3759 0.0527 0.5341 0.0615 1.2269

10 Generation 296.53 162.50 260.28 132.44 195.73 112.53 1160.01

Cost 2874.33 1875.87 2901.88 1681.81 2617.83 1527.98 13,479.70

Pollution 0.2415 0.0446 1.1608 0.0610 0.0883 0.0501 1.6463

11 Generation 389.64 181.66 229.17 118.94 184.76 107.08 1211.24

Cost 4159.59 2193.18 2644.69 1495.78 2553.72 1495.10 14,542.04

Pollution 0.6688 0.0632 0.2751 0.0571 0.0684 0.0491 1.1817

12 Generation 412.13 182.97 229.98 136.60 179.97 103.46 1245.12

Cost 4239.28 2219.19 2647.25 1760.20 2510.52 1478.14 14,854.57

Pollution 0.8912 0.0647 0.2845 0.0623 0.0622 0.0485 1.4135
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Fig. 8 The optimization results of MOICA, MOPSO and NSGA-II a fuel cost, b generated power,
c emitted gas
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MATLAB Codes

Genetic algorithm script and function.

clc;
clear;
close all;
global FE;
FE=0;

%% Problem Definition
CostFunction=@(x) CostF(x);     % Cost Function
nVar=6;             % Number of Decision Variables
VarSize=[1 nVar];   % Decision Variables Matrix Size
VarMin=0;         % Lower Bound of Variables
VarMax= 1;         % Upper Bound of Variables

%% GA Parameters
MaxIt=200;     % Maximum Number of Iterations
nPop=1000;       % Population Size
pc=0.7;                 % Crossover Percentage
nc=2*round(pc*nPop/2);  % Number of Offsprings (also 
Parnets)
gamma=0.4;              % Extra Range Factor for Cross-
over
pm=0.3;                 % Mutation Percentage
nm=round(pm*nPop);      % Number of Mutants
mu=0.1;         % Mutation Rate

%% Initialization
empty_individual.Position=[];
empty_individual.Cost=[];
pop=repmat(empty_individual,nPop,1);
for i=1:nPop

% Initialize Position
pop(i).Position=unifrnd(VarMin,VarMax,VarSize);
% Evaluation
pop(i).Cost=CostFunction(pop(i).Position);

end
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% Sort Population
Costs=[pop.Cost];
[Costs, SortOrder]=sort(Costs);
pop=pop(SortOrder);
% Store Best Solution
BestSol=pop(1);
% Array to Hold Best Cost Values
BestCost=zeros(MaxIt,1);
% Store Cost
WorstCost=pop(end).Cost;
%% Main Loop
for it=1:MaxIt

if FE>100000
break;

end
% Crossover
popc=repmat(empty_individual,nc/2,2);
for k=1:nc/2

i1=randi([1 nPop]);
i2=randi([1 nPop]);
% Select Parents
p1=pop(i1);
p2=pop(i2);
% Apply Crossover
[popc(k,1).Position, popc(k,2).Position]= 

Crossover(p1.Position,p2.Position,gamma,VarMin,VarMax);
% Evaluate Offsprings
popc(k,1).Cost= CostFunc-

tion(popc(k,1).Position);
popc(k,2).Cost= CostFunc-

tion(popc(k,2).Position);
end
popc=popc(:);
% Mutation
popm=repmat(empty_individual,nm,1);
for k=1:nm

% Select Parent
i=randi([1 nPop]);
p=pop(i);
% Apply Mutation
popm(k).Position= Mu-

tate(p.Position,mu,VarMin,VarMax);
% Evaluate Mutant
popm(k).Cost=CostFunction(popm(k).Position);

end
% Create Merged Population
pop=[pop
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popc
popm]; %#ok

% Sort Population
Costs=[pop.Cost];
[Costs, SortOrder]=sort(Costs);
pop=pop(SortOrder);
% Update Worst Cost
WorstCost=max(WorstCost,pop(end).Cost);
% Truncation
pop=pop(1:nPop);
Costs=Costs(1:nPop);
% Store Best Solution Ever Found
BestSol=pop(1);
% Store Best Cost Ever Found
BestCost(it)=BestSol.Cost;
% Show Iteration Information
disp(['Iteration ' num2str(it) ': Best Cost = '

num2str(BestCost(it))]);
end

%% Results
printresult(BestSol.Position)
figure;
semilogy(BestCost,'LineWidth',2);
% plot(BestCost,'LineWidth',2);
xlabel('Iteration');
ylabel('Best Cost');

function fitness_value=CostF(x)
global FE; % Number of function evaluations
FE=FE+1;
P_base=100; % base power
n=size(x,2); % number of units;
%Fuel coost coefficients
cost_c(:,1)=[0.0070;0.0095;0.0090;0.0090;0.0080;0.0075]
; % for unit 1, 2, ..., n
cost_c(:,2)=[7.0;10.0;8.5;11.0;10.5;12.0]; % for unit 
1, 2, ..., n
cost_c(:,3)=[240;200;220;200;220;190]; % for unit 1, 2,
..., n
% Valve-Point Loading Effects Coefficients
cost_c(:,4)=[300;200;150;150;150;150]; % for unit 1, 2,
..., n
cost_c(:,5)=[0.031;0.042;0.063;0.063;0.063;0.063]; % 
for unit 1, 2, ..., n
% B-Coefficients
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B_c=[0.0017,0.0012,0.0007,-0.0001,-0.0005,-0.0002;...
0.0012,0.0014,0.0009,0.0001,-0.0006,-0.0001;...
0.0007,0.0009,0.0031,0.0000,-0.0010,-0.0006;...
-0.0001,0.0001,0.0000,0.0024,-0.0006,-0.0008;...
-0.0005,-0.0006,-0.0010,-0.0006,0.0129,-0.0002;...
-0.0002,-0.0001,-0.0006,-0.0008,-0.0002,0.0150];

B0_c=0.001*[-0.3908,-0.1297,0.7047,0.0591,0.2161,-
0.6635];
B00_c=0.056;
% Emission-Rates Coefficients
Alpha=[4.091;2.543;4.258;5.426;4.258;6.131]; % for unit
1, 2, ..., n
Beta=-1*[5.554;6.047;5.094;3.550;5.094;5.555]; % for 
unit 1, 2, ..., n
Gamma=[6.490;5.638;4.586;3.380;4.586;5.151]; % for unit
1, 2, ..., n
Xi=[0.000200;0.000500;0.000001;0.002000;0.000001;0.0000
10]; % for unit 1, 2, ..., n
Delta=[2.857;3.333;8.000;2.000;8.000;6.667]; % for unit
1, 2, ..., n
% Ramp-Rate Limits
Pnow=[440;170;200;150;190;110]/P_base; % for unit 1, 2,
..., n
UR=[80;50;65;50;50;50]/P_base; % for unit 1, 2, ..., n
DR=[120;90;100;90;90;90]/P_base; % for unit 1, 2, ..., 
n
% Prohibited Zones
PZL1=[210;90;150;80;90;75]/P_base; % 1st Lower Limit of
Prohibited Zone 1
PZU1=[240;110;170;90;110;85]/P_base; % 1st Upper Limit
of Prohibited Zone 1
PZL2=[350;140;210;110;140;100]/P_base; % 2nd Lower Lim-
it of Prohibited Zone 2
PZU2=[380;160;240;120;150;105]/P_base; % 2nd Upper Lim-
it of Prohibited Zone 2
P_D=1263/P_base; % Load value in p.u.
P_G_min=[100;50;80;50;50;50]/P_base; % for P1, P2, ...,
Pn (in MW)
P_G_max=[500;200;300;150;200;120]/P_base; % for P1, P2,
..., Pn (in MW)
% Calculating generator output power by considering 
generator limits
for i=1:n

P_G(i)=P_G_min(i)+(P_G_max(i)-P_G_min(i))*x(i);
end
% Calculating transmission loss
P_loss=P_G*B_c*P_G'+B0_c*P_G'+B00_c;
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% Calculating power unblance penalty
err_unblance=abs(sum(P_G)-P_loss-P_D);
% Checking prohibited zone
err_PZ1=(P_G'<PZL1 .* P_G'>P_G_min + P_G'>PZU1 .* 
P_G'<PZL2 +...

P_G'>PZU2 .* P_G'<P_G_max);
% Cheking ramp limit
err_RL=~((P_G'>Pnow).*((P_G'-Pnow)<UR) + 
(P_G'<=Pnow).*((Pnow-P_G')<DR));
% calculating fuel cost
fuel_cost=(P_G.^2)*cost_c(:,1)+P_G*cost_c(:,2)+sum(cost
_c(:,3))+abs(cost_c(:,4)'*sin(cost_c(:,5).*(P_G_min-
P_G')));
% Calculating emmision
emmision=1e-
2*(Alpha+P_G'.*Beta+P_G'.^2.*Gamma)+sum(Xi.*exp(P_G'.*D
elta));
% FINALLY, Calculating fitness function
fit-
ness_value=sum(emmision)+fuel_cost+1e6*(sum(~err_PZ1)+e
rr_unblance+sum(err_RL));
end

function [y1, y2]=Crossover(x1,x2,gamma,VarMin,VarMax)
alpha=unifrnd(-gamma,1+gamma,size(x1));
y1=alpha.*x1+(1-alpha).*x2;
y2=alpha.*x2+(1-alpha).*x1;
y1=max(y1,VarMin);
y1=min(y1,VarMax);
y2=max(y2,VarMin);
y2=min(y2,VarMax);
end

function y=Mutate(x,mu,VarMin,VarMax)
nVar=numel(x);
nmu=ceil(mu*nVar);
j=randsample(nVar,nmu);
sigma=0.1*(VarMax-VarMin);
y=x;
y(j)=x(j)+sigma*randn(size(j));
y=max(y,VarMin);
y=min(y,VarMax);
end
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n=6; % number of generators;
cost_c(:,3)=[240;200;220;200;220;190]; % for unit 1, 2,
..., n
cost_c(:,2)=[7.0;10.0;8.5;11.0;10.5;12.0]; % for unit 
1, 2, ..., n
cost_c(:,1)=[0.0070;0.0095;0.0090;0.0090;0.0080;0.0075]
; % for unit 1, 2, ..., n
% Emission-Rates Coefficients
Alpha=[4.091;2.543;4.258;5.426;4.258;6.131]; % for unit
1, 2, ..., n
Beta=-1*[5.554;6.047;5.094;3.550;5.094;5.555]; % for 
unit 1, 2, ..., n
Gamma=[6.490;5.638;4.586;3.380;4.586;5.151]; % for unit
1, 2, ..., n
Xi=[0.000200;0.000500;0.000001;0.002000;0.000001;0.0000
10]; % for unit 1, 2, ..., n
Delta=[2.857;3.333;8.000;2.000;8.000;6.667]; % for unit
1, 2, ..., n
% B-Coefficients
B_c=[0.0017,0.0012,0.0007,-0.0001,-0.0005,-0.0002;...

0.0012,0.0014,0.0009,0.0001,-0.0006,-0.0001;...
0.0007,0.0009,0.0031,0.0000,-0.0010,-0.0006;...
-0.0001,0.0001,0.0000,0.0024,-0.0006,-0.0008;...
-0.0005,-0.0006,-0.0010,-0.0006,0.0129,-0.0002;...
-0.0002,-0.0001,-0.0006,-0.0008,-0.0002,0.0150];

B0_c=0.001*[-0.3908,-0.1297,0.7047,0.0591,0.2161,-
0.6635];
B00_c=0.056;
P_D=1263/P_base;
% Prohibited Zones
PZL1=[210;90;150;80;90;75]/P_base; % 1st Lower Limit of
Prohibited Zone 1
PZU1=[240;110;170;90;110;85]/P_base; % 1st Upper Limit 
of Prohibited Zone 1
PZL2=[350;140;210;110;140;100]/P_base; % 2nd Lower Lim-
it of Prohibited Zone 2
PZU2=[380;160;240;120;150;105]/P_base; % 2nd Upper Lim-
it of Prohibited Zone 2
Pnow=[440;170;200;150;190;110]/P_base; % for unit 1, 2,
..., n
UR=[80;50;65;50;50;50]/P_base; % for unit 1, 2, ..., n
DR=[120;90;100;90;90;90]/P_base; % for unit 1, 2, ..., 
n
P_G_min=[100;50;80;50;50;50]/P_base; % for P1, P2, ...,
Pn (in MW)
P_G_max=[500;200;300;150;200;120]/P_base; % for P1, P2,
..., Pn (in MW)

function z=printresult(x)
P_base=100;
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for i=1:n
P_G(i)=P_G_min(i)+(P_G_max(i)-P_G_min(i))*x(i);

end
P_loss=P_G*B_c*P_G'+B0_c*P_G'+B00_c;
for i=1:n

cost1(i)= P_G(i)^2*cost_c(i,1)+P_G(i)*cost_c(i,2)+ 
cost_c(i,3);
end
%     cost1
pout=[P_G'*100]
cost1'
sum(P_G*100)-P_D*100-P_loss*100
err_PZ1=(P_G'<PZL1 .* P_G'>P_G_min + P_G'>PZU1 .* 
P_G'<PZL2 +...

P_G'>PZU2 .* P_G'<P_G_max)
err_RL=(P_G'>Pnow).*((P_G'-Pnow)<UR) + 
(P_G'<=Pnow).*((Pnow-P_G')<DR)
emmision=1e-2*(Alpha+P_G'.*Beta+P_G'.^2.*Gamma)+ 
Xi.*exp(P_G'.*Delta)
P_loss*P_base
sum(cost1)
sum(emmision)
end

MATLAB Code for Imperialist Competitive Algorithm

clc;
clear;
close all;
global FE;
FE=0;
%% Problem Definition
CostFunction=@(x) CostF(x);        % Cost Function
nVar=6;             % Number of Decision Variables
VarSize=[1 nVar];   % Decision Variables Matrix Size
VarMin= 0;         % Lower Bound of Variables
VarMax= 1;         % Upper Bound of Variables
%% ICA Parameters
MaxIt=200;         % Maximum Number of Iterations
nPop=1000;            % Population Size
nEmp=10;            % Number of Empires/Imperialists
alpha=1;            % Selection Pressure
beta=1.5;           % Assimilation Coefficient
pRevolution=0.05;   % Revolution Probability
mu=0.1;             % Revolution Rate
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zeta=0.2;           % Colonies Mean Cost Coefficient
%% Globalization of Parameters and Settings
global ProblemSettings;
ProblemSettings.CostFunction=CostFunction;
ProblemSettings.nVar=nVar;
ProblemSettings.VarSize=VarSize;
ProblemSettings.VarMin=VarMin;
ProblemSettings.VarMax=VarMax;
global ICASettings;
ICASettings.MaxIt=MaxIt;
ICASettings.nPop=nPop;
ICASettings.nEmp=nEmp;
ICASettings.alpha=alpha;
ICASettings.beta=beta;
ICASettings.pRevolution=pRevolution;
ICASettings.mu=mu;
ICASettings.zeta=zeta;
%% Initialization
% Initialize Empires
emp=CreateInitialEmpires();
% Array to Hold Best Cost Values
BestCost=zeros(MaxIt,1);
%% ICA Main Loop
for it=1:MaxIt

if FE>100000
break;

end
% Assimilation
emp=AssimilateColonies(emp);
% Revolution
emp=DoRevolution(emp);
% Intra-Empire Competition
emp=IntraEmpireCompetition(emp);
% Update Total Cost of Empires
emp=UpdateTotalCost(emp);
% Inter-Empire Competition
emp=InterEmpireCompetition(emp);
% Update Best Solution Ever Found
imp=[emp.Imp];
[~, BestImpIndex]=min([imp.Cost]);
BestSol=imp(BestImpIndex);
% Update Best Cost
BestCost(it)=BestSol.Cost;
% Show Iteration Information
disp(['Iteration ' num2str(it) ': Best Cost = '

num2str(BestCost(it))]);
end
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%% Results
figure;
plot(BestCost,'LineWidth',2);
% semilogy(BestCost,'LineWidth',2);
xlabel('Iteration');
ylabel('Best Cost');

function fitness_value=CostF(x)
global FE;
FE=FE+1;
P_base=100; % base power
n=6; % number of units;

%Fuel coost coefficients
cost_c(:,1)=[0.0070;0.0095;0.0090;0.0090;0.0080;0.0075]
; % for unit 1, 2, ..., n
cost_c(:,2)=[7.0;10.0;8.5;11.0;10.5;12.0]; % for unit 
1, 2, ..., n
cost_c(:,3)=[240;200;220;200;220;190]; % for unit 1, 2,
..., n

% Valve-Point Loading Effects Coefficients
cost_c(:,4)=[300;200;150;150;150;150]; % for unit 1, 2, 
..., n
cost_c(:,5)=[0.031;0.042;0.063;0.063;0.063;0.063]; % 
for unit 1, 2, ..., n
% B-Coefficients
B_c=[0.0017,0.0012,0.0007,-0.0001,-0.0005,-0.0002;...

0.0012,0.0014,0.0009,0.0001,-0.0006,-0.0001;...
0.0007,0.0009,0.0031,0.0000,-0.0010,-0.0006;...
-0.0001,0.0001,0.0000,0.0024,-0.0006,-0.0008;...
-0.0005,-0.0006,-0.0010,-0.0006,0.0129,-0.0002;...
-0.0002,-0.0001,-0.0006,-0.0008,-0.0002,0.0150];

B0_c=0.001*[-0.3908,-0.1297,0.7047,0.0591,0.2161,-
0.6635];
B00_c=0.056;
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Delta=[2.857;3.333;8.000;2.000;8.000;6.667]; % for unit
1, 2, ..., n

% Ramp-Rate Limits
Pnow=[440;170;200;150;190;110]/P_base; % for unit 1, 2,
..., n
UR=[80;50;65;50;50;50]/P_base; % for unit 1, 2, ..., n
DR=[120;90;100;90;90;90]/P_base; % for unit 1, 2, ..., 
n

% Prohibited Zones
PZL1=[210;90;150;80;90;75]/P_base; % 1st Lower Limit of
Prohibited Zone 1
PZU1=[240;110;170;90;110;85]/P_base; % 1st Upper Limit 
of Prohibited Zone 1
PZL2=[350;140;210;110;140;100]/P_base; % 2nd Lower Lim-
it of Prohibited Zone 2
PZU2=[380;160;240;120;150;105]/P_base; % 2nd Upper Lim-
it of Prohibited Zone 2
P_D=1263/P_base;
P_G_min=[100;50;80;50;50;50]/P_base; % for P1, P2, ...,
Pn (in MW)
P_G_max=[500;200;300;150;200;120]/P_base; % for P1, P2,
..., Pn (in MW)
for i=1:n

P_G(i)=P_G_min(i)+(P_G_max(i)-P_G_min(i))*x(i);
end
P_loss=P_G*B_c*P_G'+B0_c*P_G'+B00_c;
if sum(P_G)>=P_loss+P_D

err_unblance=abs(sum(P_G)-P_loss-P_D);
else

err_unblance=1e6;
end

% Emission-Rates Coefficients
Alpha=[4.091;2.543;4.258;5.426;4.258;6.131]; % for unit
1, 2, ..., n
Beta=-1*[5.554;6.047;5.094;3.550;5.094;5.555]; % for 
unit 1, 2, ..., n
Gamma=[6.490;5.638;4.586;3.380;4.586;5.151]; % for unit
1, 2, ..., n
Xi=[0.000200;0.000500;0.000001;0.002000;0.000001;0.0000
10]; % for unit 1, 2, ..., n
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function emp=CreateInitialEmpires()
global ProblemSettings;
global ICASettings;
CostFunction=ProblemSettings.CostFunction;
nVar=ProblemSettings.nVar;
VarSize=ProblemSettings.VarSize;
VarMin=ProblemSettings.VarMin;
VarMax=ProblemSettings.VarMax;
nPop=ICASettings.nPop;
nEmp=ICASettings.nEmp;
nCol=nPop-nEmp;
alpha=ICASettings.alpha;
empty_country.Position=[];
empty_country.Cost=[];
country=repmat(empty_country,nPop,1);
for i=1:nPop

country(i).Position=unifrnd(VarMin,VarMax,VarSize);
country(i).Cost=CostFunction(country(i).Position);

end
costs=[country.Cost];
[~, SortOrder]=sort(costs);
country=country(SortOrder);
imp=country(1:nEmp);
col=country(nEmp+1:end);
empty_empire.Imp=[];
empty_empire.Col=repmat(empty_country,0,1);
empty_empire.nCol=0;
empty_empire.TotalCost=[];
emp=repmat(empty_empire,nEmp,1);

% Assign Imperialists
for k=1:nEmp

emp(k).Imp=imp(k);
end

err_PZ1=(P_G'<PZL1 .* P_G'>P_G_min + P_G'>PZU1 .* 
P_G'<PZL2 +...

P_G'>PZU2 .* P_G'<P_G_max);
err_RL=~((P_G'>Pnow).*((P_G'-Pnow)<UR) + 
(P_G'<=Pnow).*((Pnow-P_G')<DR));
fuel_cost=(P_G.^2)*cost_c(:,1)+P_G*cost_c(:,2)+sum(cost
_c(:,3))+abs(cost_c(:,4)'*sin(cost_c(:,5).*(P_G_min-
P_G')));
emmision=1e-2*(Alpha+P_G'.*Beta+P_G'.^2.*Gamma)+ 
sum(Xi.*exp(P_G'.*Delta));
fit-
ness_value=sum(emmision)+fuel_cost+1e6*(sum(~err_PZ1)+e
rr_unblance+sum(err_RL));
end
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function emp=AssimilateColonies(emp)
global ProblemSettings;
CostFunction=ProblemSettings.CostFunction;
VarSize=ProblemSettings.VarSize;
VarMin=ProblemSettings.VarMin;
VarMax=ProblemSettings.VarMax;
global ICASettings;
beta=ICASettings.beta;
nEmp=numel(emp);
for k=1:nEmp

for i=1:emp(k).nCol
emp(k).Col(i).Position = emp(k).Col(i).Position

...
+ beta*rand(VarSize).*(emp(k).Imp.Position-

emp(k).Col(i).Position);
emp(k).Col(i).Position= 

max(emp(k).Col(i).Position,VarMin);
emp(k).Col(i).Position = 

min(emp(k).Col(i).Position,VarMax);
emp(k).Col(i).Cost = CostFunc-

tion(emp(k).Col(i).Position);
end

end
end

% Assign Colonies
P=exp(-alpha*[imp.Cost]/max([imp.Cost]));
P=P/sum(P);
for j=1:nCol

k=RouletteWheelSelection(P);
emp(k).Col=[emp(k).Col

col(j)];
emp(k).nCol=emp(k).nCol+1;

end
emp=UpdateTotalCost(emp);
end
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function emp=DoRevolution(emp)
global ProblemSettings;
CostFunction=ProblemSettings.CostFunction;
nVar=ProblemSettings.nVar;
VarSize=ProblemSettings.VarSize;
VarMin=ProblemSettings.VarMin;
VarMax=ProblemSettings.VarMax;
global ICASettings;
pRevolution=ICASettings.pRevolution;
mu=ICASettings.mu;
nmu=ceil(mu*nVar);
sigma=0.1*(VarMax-VarMin);
nEmp=numel(emp);
for k=1:nEmp

NewPos = emp(k).Imp.Position + sig-
ma*randn(VarSize);

jj=randsample(nVar,nmu)';
NewImp=emp(k).Imp;
NewImp.Position(jj)=NewPos(jj);
NewImp.Cost=CostFunction(NewImp.Position);
if NewImp.Cost<emp(k).Imp.Cost

emp(k).Imp = NewImp;
end
for i=1:emp(k).nCol

if rand<=pRevolution
NewPos = emp(k).Col(i).Position + sig-

ma*randn(VarSize);
jj=randsample(nVar,nmu)';
emp(k).Col(i).Position(jj) = NewPos(jj);
emp(k).Col(i).Position = 

max(emp(k).Col(i).Position,VarMin);
emp(k).Col(i).Position = 

min(emp(k).Col(i).Position,VarMax);
emp(k).Col(i).Cost = CostFunc-

tion(emp(k).Col(i).Position);
end

end
end
end
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function emp=IntraEmpireCompetition(emp)
nEmp=numel(emp);
for k=1:nEmp

for i=1:emp(k).nCol
if emp(k).Col(i).Cost<emp(k).Imp.Cost

imp=emp(k).Imp;
col=emp(k).Col(i);

emp(k).Imp=col;
emp(k).Col(i)=imp;

end
end

end
end

function emp=UpdateTotalCost(emp)
global ICASettings;
zeta=ICASettings.zeta;
nEmp=numel(emp);
for k=1:nEmp

if emp(k).nCol>0
emp(k).TotalCost= 

emp(k).Imp.Cost+zeta*mean([emp(k).Col.Cost]);
else

emp(k).TotalCost=emp(k).Imp.Cost;
end

end
end

function emp=InterEmpireCompetition(emp)
if numel(emp)==1

return;
end
global ICASettings;
alpha=ICASettings.alpha;
TotalCost=[emp.TotalCost];
[~, WeakestEmpIndex]=max(TotalCost);
WeakestEmp=emp(WeakestEmpIndex);
P=exp(-alpha*TotalCost/max(TotalCost));
P(WeakestEmpIndex)=0;
P=P/sum(P);
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if any(isnan(P))
P(isnan(P))=0;
if all(P==0)

P(:)=1;
end
P=P/sum(P);

end
if WeakestEmp.nCol>0

[~, WeakestColIndex]=max([WeakestEmp.Col.Cost]);
WeakestCol=WeakestEmp.Col(WeakestColIndex);

WinnerEmpIndex=RouletteWheelSelection(P);
WinnerEmp=emp(WinnerEmpIndex);

WinnerEmp.Col(end+1)=WeakestCol;
WinnerEmp.nCol=WinnerEmp.nCol+1;
emp(WinnerEmpIndex)=WinnerEmp;

WeakestEmp.Col(WeakestColIndex)=[];
WeakestEmp.nCol=WeakestEmp.nCol-1;
emp(WeakestEmpIndex)=WeakestEmp;

end
if WeakestEmp.nCol==0

WinnerEmpIndex2=RouletteWheelSelection(P);
WinnerEmp2=emp(WinnerEmpIndex2);

WinnerEmp2.Col(end+1)=WeakestEmp.Imp;
WinnerEmp2.nCol=WinnerEmp2.nCol+1;
emp(WinnerEmpIndex2)=WinnerEmp2;

emp(WeakestEmpIndex)=[];
end
end



288 S. Dolatabadi and S. Ghassem Zadeh

Cost calculation function:

clear;
close all;
clc;

n=6; % number of generators;

cost_c(:,3)=[240;200;220;200;220;190]; % for unit 1, 2,
..., n
cost_c(:,2)=[7.0;10.0;8.5;11.0;10.5;12.0]; % for unit 
1, 2, ..., n
cost_c(:,1)=[0.0070;0.0095;0.0090;0.0090;0.0080;0.0075]
; % for unit 1, 2, ..., n

% B-Coefficients
B_c=[0.0017,0.0012,0.0007,-0.0001,-0.0005,-0.0002;...
0.0012,0.0014,0.0009,0.0001,-0.0006,-0.0001;...
0.0007,0.0009,0.0031,0.0000,-0.0010,-0.0006;...
-0.0001,0.0001,0.0000,0.0024,-0.0006,-0.0008;...
-0.0005,-0.0006,-0.0010,-0.0006,0.0129,-0.0002;...
-0.0002,-0.0001,-0.0006,-0.0008,-0.0002,0.0150];
B0_c=0.001*[-0.3908,-0.1297,0.7047,0.0591,0.2161,-
0.6635];
B00_c=0.056;

P_base=100;
P_D=1263/P_base;

P_G_min=[100;50;80;50;50;50]/P_base; % for P1, P2, ...,
Pn (in MW)
P_G_max=[500;200;300;150;200;120]/P_base; % for P1, P2,
..., Pn (in MW)

lambda(1)=0;
epsi=0.001;
A_m=zeros(n,n);
C_m=zeros(n,1);
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%%initializing lamda
a_total=(sum(cost_c(:,1).^-1))^-1;
b_total=a_total*sum((cost_c(:,1).^-1).*cost_c(:,2));

lambda(2)=a_total*P_D*P_base+b_total;

P_G(1:2,:)=zeros(2,n);

itt=2;
flag=1;
while (flag)

itt=itt+1;    
for i=1:n

for j=1:n
if i==j

A_m(i,j)=cost_c(i,1)*P_base/lambda(itt-
1)+2*B_c(i,i);

else
A_m(i,j)=-2*B_c(i,j);

end
end

end

for i=1:n
C_m(i,1)=(1-B0_c(i))-cost_c(i,2)/lambda(itt-1);

end

P_G(itt-1,:)=A_m\C_m;
for i=1:n

if P_G(itt-1,i)>=P_G_max(i)
P_G(itt-1,i)=P_G_max(i);

elseif P_G(itt-1,i)<=P_G_min(i)
P_G(itt-1,i)=P_G_min(i);

end
end
%Claculating P_loss
P_loss=P_G(itt-1,:)*B_c*P_G(itt-1,:)'+B0_c*P_G(itt-

1,:)'+B00_c;

if(sum(P_G(itt-1,:))-P_loss-P_D<epsi && 
sum(P_G(itt-1,:))-P_loss-P_D>0)

flag=0;
else

lambda(itt)=lambda(itt-1)+(lambda(itt-1)-
lambda(itt-2))*(P_loss+P_D-sum(P_G(itt-1,:)))...
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/(sum(P_G(itt-1,:))-sum(P_G(itt-2,:))+eps);
end

end
% Transmission loss
P_loss=P_loss*P_base
% Power output of units
P_G_final=P_G(end,:)'*P_base
% Calculating fuel cost of units
fuel_cost=(P_G(end,:).^2)*cost_c(:,1)+P_G(end,:)*cost_c
(:,2)+sum(cost_c(:,3))
% Calculating error of power unblance
err_unblance=sum(P_G(end,:)'*P_base)-P_D*P_base-P_loss;

Main MATLAB script code for multi objective particle swarm optimization

clc;
clear;
close all;

%% Problem Definition
CostFunction=@(x) CostF(x);      % Cost Function
nVar=6;             % Number of Decision Variables
VarSize=[1 nVar];   % Size of Decision Variables Matrix
VarMin=0;          % Lower Bound of Variables
VarMax=1;          % Upper Bound of Variables

%% MOPSO Parameters
MaxIt=300;           % Maximum Number of Iterations
nPop=600;            % Population Size
nRep=300;            % Repository Size
w=0.5;       % Inertia Weight
wdamp=0.99;         % Intertia Weight Damping Rate
c1=1;               % Personal Learning Coefficient
c2=2;               % Global Learning Coefficient
nGrid=7;            % Number of Grids per Dimension
alpha=0.1;          % Inflation Rate
beta=2;             % Leader Selection Pressure
gamma=2;            % Deletion Selection Pressure
mu=0.1;             % Mutation Rate

%% Initialization
empty_particle.Position=[];
empty_particle.Velocity=[];
empty_particle.Cost=[];
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empty_particle.Best.Position=[];
empty_particle.Best.Cost=[];
empty_particle.IsDominated=[];
empty_particle.GridIndex=[];
empty_particle.GridSubIndex=[];
pop=repmat(empty_particle,nPop,1);
for i=1:nPop

pop(i).Position=unifrnd(VarMin,VarMax,VarSize);
pop(i).Velocity=zeros(VarSize);
pop(i).Cost=CostFunction(pop(i).Position);
% Update Personal Best
pop(i).Best.Position=pop(i).Position;
pop(i).Best.Cost=pop(i).Cost;

end

% Determine Domination
pop=DetermineDomination(pop);
rep=pop(~[pop.IsDominated]);
Grid=CreateGrid(rep,nGrid,alpha);
for i=1:numel(rep)

rep(i)=FindGridIndex(rep(i),Grid);
end

%% MOPSO Main Loop
for it=1:MaxIt

for i=1:nPop
leader=SelectLeader(rep,beta);
pop(i).Velocity = w*pop(i).Velocity ...

+c1*rand(VarSize).*(pop(i).Best.Position-
pop(i).Position) ...

+c2*rand(VarSize).*(leader.Position-
pop(i).Position);

pop(i).Position = pop(i).Position + 
pop(i).Velocity;

pop(i).Position = max(pop(i).Position, VarMin);
pop(i).Position = min(pop(i).Position, VarMax);
pop(i).Cost = CostFunction(pop(i).Position);
% Apply Mutation
pm=(1-(it-1)/(MaxIt-1))^(1/mu);
if rand<pm

NewSol.Position= Mu-
tate(pop(i).Position,pm,VarMin,VarMax);

NewSol.Cost=CostFunction(NewSol.Position);
if Dominates(NewSol,pop(i))

pop(i).Position=NewSol.Position;
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pop(i).Cost=NewSol.Cost;
elseif Dominates(pop(i),NewSol)

% Do Nothing
else

if rand<0.5
pop(i).Position=NewSol.Position;
pop(i).Cost=NewSol.Cost;

end
end

end
if Dominates(pop(i),pop(i).Best)

pop(i).Best.Position=pop(i).Position;
pop(i).Best.Cost=pop(i).Cost;

elseif Dominates(pop(i).Best,pop(i))
% Do Nothing

else
if rand<0.5

pop(i).Best.Position=pop(i).Position;
pop(i).Best.Cost=pop(i).Cost;

end
end

end

% Add Non-Dominated Particles to REPOSITORY
rep=[rep

pop(~[pop.IsDominated])]; %#ok

% Determine Domination of New Resository Members
rep=DetermineDomination(rep);

% Keep only Non-Dminated Memebrs in the Repository
rep=rep(~[rep.IsDominated]);

% Update Grid
Grid=CreateGrid(rep,nGrid,alpha);

% Update Grid Indices
for i=1:numel(rep)

rep(i)=FindGridIndex(rep(i),Grid);
end

% Check if Repository is Full
if numel(rep)>nRep
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Extra=numel(rep)-nRep;
for e=1:Extra

rep=DeleteOneRepMemebr(rep,gamma);
end

end

% Plot Costs
figure(1);
PlotCosts(pop,rep);
pause(0.01);

% Show Iteration Information
disp(['Iteration ' num2str(it) ': Number of Rep 

Members = ' num2str(numel(rep))]);

% Damping Inertia Weight
w=w*wdamp;

end

function fitness_values=CostF(x)
P_base=100; % base power
n=6; % number of units;
%Fuel coost coefficients
cost_c(:,1)= [0.0070;0.0095;0.0090; 

0.0090;0.0080;0.0075]; % for unit 1, 2, ..., n
cost_c(:,2)=[7.0;10.0;8.5;11.0;10.5;12.0]; % for 

unit 1, 2, ..., n
cost_c(:,3)=[240;200;220;200;220;190]; % for unit 

1, 2, ..., n
% Valve-Point Loading Effects Coefficients
cost_c(:,4)=[300;200;150;150;150;150]; % for unit 

1, 2, ..., n
cost_c(:,5)=[0.031;0.042;0.063;0.063;0.063;0.063]; 

% for unit 1, 2, ..., n

% B-Coefficients
B_c=[0.0017,0.0012,0.0007,-0.0001,-0.0005,-

0.0002;...
0.0012,0.0014,0.0009,0.0001,-0.0006,-0.0001;...
0.0007,0.0009,0.0031,0.0000,-0.0010,-0.0006;...
-0.0001,0.0001,0.0000,0.0024,-0.0006,-0.0008;...
-0.0005,-0.0006,-0.0010,-0.0006,0.0129,-0.0002;...
-0.0002,-0.0001,-0.0006,-0.0008,-0.0002,0.0150];
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B0_c=0.001*[-0.3908,-0.1297,0.7047,0.0591,0.2161,-
0.6635];

B00_c=0.056;

% Emission-Rates Coefficients
Alpha=[4.091;2.543;4.258;5.426;4.258;6.131]; % for 

unit 1, 2, ..., n
Beta=-1*[5.554;6.047;5.094;3.550;5.094;5.555]; % 

for unit 1, 2, ..., n
Gamma=[6.490;5.638;4.586;3.380;4.586;5.151]; % for 

unit 1, 2, ..., n
Xi=[0.000200;0.000500;0.000001;0.002000;0.000001; 

0.000010]; % for unit 1, 2, ..., n
Delta=[2.857;3.333;8.000;2.000;8.000;6.667]; % for 

unit 1, 2, ..., n

% Ramp-Rate Limits
Pnow=[440;170;200;150;190;110]/P_base; % for unit 

1, 2, ..., n
UR=[80;50;65;50;50;50]/P_base; % for unit 1, 2, 

..., n
DR=[120;90;100;90;90;90]/P_base; % for unit 1, 2, 

..., n

% Prohibited Zones
PZL1=[210;90;150;80;90;75]/P_base; % 1st Lower Lim-

it of Prohibited Zone 1
PZU1=[240;110;170;90;110;85]/P_base; % 1st Upper 

Limit of Prohibited Zone 1
PZL2=[350;140;210;110;140;100]/P_base; % 2nd Lower 

Limit of Prohibited Zone 2
PZU2=[380;160;240;120;150;105]/P_base; % 2nd Upper 

Limit of Prohibited Zone 2

P_D=1263/P_base;
P_G_min=[100;50;80;50;50;50]/P_base; % for P1, P2, 

..., Pn (in MW)
P_G_max=[500;200;300;150;200;120]/P_base; % for P1, 

P2, ..., Pn (in MW)
for i=1:n

P_G(i)=P_G_min(i)+(P_G_max(i)-P_G_min(i))*x(i);
end
P_loss=P_G*B_c*P_G'+B0_c*P_G'+B00_c;
err_unblance=abs(sum(P_G)-P_loss-P_D);
err_PZ1=(P_G'<PZL1 .* P_G'>P_G_min + P_G'>PZU1 .* 

P_G'<PZL2 + P_G'>PZU2 .* P_G'<P_G_max);
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err_RL=~((P_G'>Pnow).*((P_G'-Pnow)<UR) + 
(P_G'<=Pnow).*((Pnow-P_G')<DR));

fuel_cost=(P_G.^2)*cost_c(:,1)+P_G*cost_c(:,2)+ 
sum(cost_c(:,3))+abs(cost_c(:,4)'*sin(cost_c(:,5).* 
(P_G_min-P_G')));

emmision=1e-2*(Alpha+P_G'.*Beta+P_G'.^2.*Gamma)+ 
sum(Xi.*exp(P_G'.*Delta));

f1=fuel_cost+1e3*(sum(~err_PZ1)+1e-3*err_unblance+ 
sum(err_RL));

f2=sum(emmision)+1e3*(sum(~err_PZ1)+1e-
3*err_unblance+ sum(err_RL));

fitness_values=[f1 
f2];

end

function pop=DetermineDomination(pop)
nPop=numel(pop);
for i=1:nPop

pop(i).IsDominated=false;
end
for i=1:nPop-1

for j=i+1:nPop
if Dominates(pop(i),pop(j))

pop(j).IsDominated=true;
end
if Dominates(pop(j),pop(i))

pop(i).IsDominated=true;
end

end
end

end
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function Grid=CreateGrid(pop,nGrid,alpha)
c=[pop.Cost];
cmin=min(c,[],2);
cmax=max(c,[],2);
dc=cmax-cmin;
cmin=cmin-alpha*dc;
cmax=cmax+alpha*dc;
nObj=size(c,1);
empty_grid.LB=[];
empty_grid.UB=[];
Grid=repmat(empty_grid,nObj,1);
for j=1:nObj

cj=linspace(cmin(j),cmax(j),nGrid+1);
Grid(j).LB=[-inf cj];
Grid(j).UB=[cj +inf];

end
end

function particle=FindGridIndex(particle,Grid)
nObj=numel(particle.Cost);
nGrid=numel(Grid(1).LB);
particle.GridSubIndex=zeros(1,nObj);
for j=1:nObj

particle.GridSubIndex(j)=...
find(particle.Cost(j)< 

Grid(j).UB,1,'first');
end
particle.GridIndex=particle.GridSubIndex(1);
for j=2:nObj

particle.GridIndex=particle.GridIndex-1;
particle.GridIndex=nGrid*particle.GridIndex;
particle.GridIndex= particle.GridIndex+ parti-

cle.GridSubIndex(j);
end

end
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function leader=SelectLeader(rep,beta)
% Grid Index of All Repository Members
GI=[rep.GridIndex];
% Occupied Cells
OC=unique(GI);
% Number of Particles in Occupied Cells
N=zeros(size(OC));
for k=1:numel(OC)

N(k)=numel(find(GI==OC(k)));
end
% Selection Probabilities
P=exp(-beta*N);
P=P/sum(P);
% Selected Cell Index
sci=RouletteWheelSelection(P);
% Selected Cell
sc=OC(sci);
% Selected Cell Members
SCM=find(GI==sc);
% Selected Member Index
smi=randi([1 numel(SCM)]);
% Selected Member
sm=SCM(smi);
% Leader
leader=rep(sm);

end

function xnew=Mutate(x,pm,VarMin,VarMax)
nVar=numel(x);
j=randi([1 nVar]);
dx=pm*(VarMax-VarMin);
lb=x(j)-dx;
if lb<VarMin

lb=VarMin;
end
ub=x(j)+dx;
if ub>VarMax

ub=VarMax;
end
xnew=x;
xnew(j)=unifrnd(lb,ub);

end
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function b=Dominates(x,y)
if isstruct(x)

x=x.Cost;
end
if isstruct(y)

y=y.Cost;
end
b=all(x<=y) && any(x<y);

end

function rep=DeleteOneRepMemebr(rep,gamma)
% Grid Index of All Repository Members
GI=[rep.GridIndex];
% Occupied Cells
OC=unique(GI);
% Number of Particles in Occupied Cells
N=zeros(size(OC));
for k=1:numel(OC)

N(k)=numel(find(GI==OC(k)));
end
% Selection Probabilities
P=exp(gamma*N);
P=P/sum(P);
% Selected Cell Index
sci=RouletteWheelSelection(P);
% Selected Cell
sc=OC(sci);
% Selected Cell Members
SCM=find(GI==sc);
% Selected Member Index
smi=randi([1 numel(SCM)]);
% Selected Member
sm=SCM(smi);
% Delete Selected Member
rep(sm)=[];

end
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function PlotCosts(pop,rep)
%     pop_costs=[pop.Cost];
%     plot(pop_costs(1,:),pop_costs(2,:),'ko');
%     hold on;

rep_costs=[rep.Cost];
plot(rep_costs(1,:),rep_costs(2,:),'r*');
xlabel('Fuel Cost ($/hr)');
ylabel('Emission (ton/hr)');
grid on;
hold off;

end

MATLABScript and function codes for Non-Sorted Genetic Algorithm II (NSAG
II):

% Copyright (c) 2015, Yarpiz (www.yarpiz.com)
% All rights reserved. Please read the "license.txt" 
for license terms.
%
% Project Code: YPEA120
% Project Title: Non-dominated Sorting Genetic Algo-
rithm II (NSGA-II)
% Publisher: Yarpiz (www.yarpiz.com)
% 
% Developer: S. Mostapha Kalami Heris (Member of Yarpiz 
Team)
% 
% Contact Info: sm.kalami@gmail.com, info@yarpiz.com
%

clc;
clear;
close all;

%% Problem Definition
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CostFunction=@(x) CostF(x);      % Cost Function
nVar=6;             % Number of Decision Variables
VarSize=[1 nVar];   % Size of Decision Variables Matrix
VarMin=0;          % Lowe1r Bound of Variables
VarMax= 1;          % Upper Bound of Variables

% Number of Objective Functions
nObj=numel(CostFunction(unifrnd(VarMin,VarMax,VarSize))
);

%% NSGA-II Parameters
MaxIt=200;      % Maximum Number of Iterations
nPop=200;        % Population Size
pCrossover=0.7;                         % Crossover 
Percentage
nCrossover=2*round(pCrossover*nPop/2);  % Number of 
Parnets (Offsprings)
pMutation=0.4;                          % Mutation Per-
centage
nMutation=round(pMutation*nPop);        % Number of Mu-
tants
mu=0.02;                    % Mutation Rate
sigma=0.1*(VarMax-VarMin);  % Mutation Step Size

%% Initialization
empty_individual.Position=[];
empty_individual.Cost=[];
empty_individual.Rank=[];
empty_individual.DominationSet=[];
empty_individual.DominatedCount=[];
empty_individual.CrowdingDistance=[];
pop=repmat(empty_individual,nPop,1);
for i=1:nPop

pop(i).Position=unifrnd(VarMin,VarMax,VarSize);
pop(i).Cost=CostFunction(pop(i).Position);

end

% Non-Dominated Sorting
[pop, F]=NonDominatedSorting(pop);

% Calculate Crowding Distance
pop=CalcCrowdingDistance(pop,F);

% Sort Population
[pop, F]=SortPopulation(pop);
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%% NSGA-II Main Loop

for it=1:MaxIt
% Crossover
popc=repmat(empty_individual,nCrossover/2,2);
for k=1:nCrossover/2

i1=randi([1 nPop]);
p1=pop(i1);
i2=randi([1 nPop]);
p2=pop(i2);
[popc(k,1).Position, 

popc(k,2).Position]=Crossover(p1.Position,p2.Position);
popc(k,1).Cost= CostFunc-

tion(popc(k,1).Position);
popc(k,2).Cost= CostFunc-

tion(popc(k,2).Position);
end
popc=popc(:);

% Mutation
popm=repmat(empty_individual,nMutation,1);
for k=1:nMutation

i=randi([1 nPop]);
p=pop(i);
popm(k).Position=Mutate(p.Position,mu,sigma);
popm(k).Cost=CostFunction(popm(k).Position);

end

% Merge
pop=[pop

popc
popm]; %#ok

% Non-Dominated Sorting
[pop, F]=NonDominatedSorting(pop);

% Calculate Crowding Distance
pop=CalcCrowdingDistance(pop,F);

% Sort Population
pop=SortPopulation(pop);

% Truncate
pop=pop(1:nPop);
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% Non-Dominated Sorting
[pop, F]=NonDominatedSorting(pop);

% Calculate Crowding Distance
pop=CalcCrowdingDistance(pop,F);

% Sort Population
[pop, F]=SortPopulation(pop);

% Store F1
F1=pop(F{1});

% Show Iteration Information
disp(['Iteration ' num2str(it) ': Number of F1 Mem-

bers = ' num2str(numel(F1))]);

% Plot F1 Costs
figure(1);
PlotCosts(F1);
pause(0.01);

end

function fitness_values=CostF(x)
P_base=100; % base power
n=6; % number of units;
%Fuel coost coefficients
cost_c(:,1)=[0.0070;0.0095;0.0090;0.0090; 

0.0080;0.0075]; % for unit 1, 2, ..., n
cost_c(:,2)=[7.0;10.0;8.5;11.0;10.5;12.0]; % for 

unit 1, 2, ..., n
cost_c(:,3)=[240;200;220;200;220;190]; % for unit 

1, 2, ..., n

% Valve-Point Loading Effects Coefficients
cost_c(:,4)=[300;200;150;150;150;150]; % for unit 

1, 2, ..., n
cost_c(:,5)=[0.031;0.042;0.063;0.063;0.063;0.063]; 

% for unit 1, 2, ..., n

% B-Coefficients
B_c=[0.0017,0.0012,0.0007,-0.0001,-0.0005,-

0.0002;...
0.0012,0.0014,0.0009,0.0001,-0.0006,-0.0001;...
0.0007,0.0009,0.0031,0.0000,-0.0010,-0.0006;...
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-0.0001,0.0001,0.0000,0.0024,-0.0006,-0.0008;...
-0.0005,-0.0006,-0.0010,-0.0006,0.0129,-0.0002;...
-0.0002,-0.0001,-0.0006,-0.0008,-0.0002,0.0150];
B0_c=0.001*[-0.3908,-0.1297,0.7047,0.0591,0.2161,-

0.6635];
B00_c=0.056;

% Emission-Rates Coefficients
Alpha=[4.091;2.543;4.258;5.426;4.258;6.131]; % for 

unit 1, 2, ..., n
Beta=-1*[5.554;6.047;5.094;3.550;5.094;5.555]; % 

for unit 1, 2, ..., n
Gamma=[6.490;5.638;4.586;3.380;4.586;5.151]; % for 

unit 1, 2, ..., n
Xi=[0.000200;0.000500;0.000001;0.002000; 

0.000001;0.000010]; % for unit 1, 2, ..., n
Delta=[2.857;3.333;8.000;2.000;8.000;6.667]; % for 

unit 1, 2, ..., n

% Ramp-Rate Limits
Pnow=[440;170;200;150;190;110]/P_base; % for unit 

1, 2, ..., n
UR=[80;50;65;50;50;50]/P_base; % for unit 1, 2, 

..., n
DR=[120;90;100;90;90;90]/P_base; % for unit 1, 2, 

..., n

% Prohibited Zones
PZL1=[210;90;150;80;90;75]/P_base; % 1st Lower Lim-

it of Prohibited Zone 1
PZU1=[240;110;170;90;110;85]/P_base; % 1st Upper 

Limit of Prohibited Zone 1
PZL2=[350;140;210;110;140;100]/P_base; % 2nd Lower 

Limit of Prohibited Zone 2
PZU2=[380;160;240;120;150;105]/P_base; % 2nd Upper 

Limit of Prohibited Zone 2
P_D=1263/P_base;
P_G_min=[100;50;80;50;50;50]/P_base; % for P1, P2, 

..., Pn (in MW)
P_G_max=[500;200;300;150;200;120]/P_base; % for P1, 

P2, ..., Pn (in MW)
for i=1:n

P_G(i)=P_G_min(i)+(P_G_max(i)-P_G_min(i))*x(i);
end
P_loss=P_G*B_c*P_G'+B0_c*P_G'+B00_c;
err_unblance=abs(sum(P_G)-P_loss-P_D);
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err_PZ1=(P_G'<PZL1 .* P_G'>P_G_min + P_G'>PZU1 .* 
P_G'<PZL2 +...

P_G'>PZU2 .* P_G'<P_G_max);
err_RL=~((P_G'>Pnow).*((P_G'-Pnow)<UR) + 

(P_G'<=Pnow).*((Pnow-P_G')<DR));
fuel_cost=(P_G.^2)*cost_c(:,1)+P_G*cost_c(:,2)+ 

sum(cost_c(:,3))+abs(cost_c(:,4)'*sin(cost_c(:,5).*(P_G
_min-P_G')));

emission=1e-2*(Alpha+P_G'.*Beta+P_G'.^2.*Gamma)+ 
sum(Xi.*exp(P_G'.*Delta));

%objective one
f1=fuel_cost+1e3*(sum(~err_PZ1)+sum(err_RL))+ 

err_unblance;
%objective two
f2=sum(emission)+1e3*(sum(~err_PZ1)+sum(err_RL))+ 

err_unblance;
%objective three
f3=P_loss*100+1e3*(sum(~err_PZ1)+sum(err_RL))+ 

err_unblance;
%fitness value
fitness_values=[f1 f2 f3]';

end

function [pop, F]=NonDominatedSorting(pop)

% Copyright (c) 2015, Yarpiz (www.yarpiz.com)
% All rights reserved. Please read the "license.txt" 
for license terms.
%
% Project Code: YPEA120
% Project Title: Non-dominated Sorting Genetic Algo-
rithm II (NSGA-II)
% Publisher: Yarpiz (www.yarpiz.com)
% 
% Developer: S. Mostapha Kalami Heris (Member of Yarpiz 
Team)
% 
% Contact Info: sm.kalami@gmail.com, info@yarpiz.com
%

nPop=numel(pop);
for i=1:nPop

pop(i).DominationSet=[];
pop(i).DominatedCount=0;

end
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F{1}=[];

for i=1:nPop
for j=i+1:nPop

p=pop(i);
q=pop(j);
if Dominates(p,q)

p.DominationSet=[p.DominationSet j];
q.DominatedCount=q.DominatedCount+1;

end
if Dominates(q.Cost,p.Cost)

q.DominationSet=[q.DominationSet i];
p.DominatedCount=p.DominatedCount+1;

end
pop(i)=p;
pop(j)=q;

end
if pop(i).DominatedCount==0

F{1}=[F{1} i];
pop(i).Rank=1;

end
end
k=1;
while true

Q=[];
for i=F{k}

p=pop(i);
for j=p.DominationSet

q=pop(j);
q.DominatedCount=q.DominatedCount-1;
if q.DominatedCount==0

Q=[Q j]; %#ok
q.Rank=k+1;

end
pop(j)=q;

end
end
if isempty(Q)

break;
end
F{k+1}=Q; %#ok
k=k+1;

end
end
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function b=Dominates(x,y)
% Copyright (c) 2015, Yarpiz (www.yarpiz.com)
% All rights reserved. Please read the "license.txt" 
for license terms.
%
% Project Code: YPEA120
% Project Title: Non-dominated Sorting Genetic Algo-
rithm II (NSGA-II)
% Publisher: Yarpiz (www.yarpiz.com)
% 
% Developer: S. Mostapha Kalami Heris (Member of Yarpiz 
Team)
% 
% Contact Info: sm.kalami@gmail.com, info@yarpiz.com
%

if isstruct(x)
x=x.Cost;

end
if isstruct(y)

y=y.Cost;
end
b=all(x<=y) && any(x<y);

end

function pop=CalcCrowdingDistance(pop,F)
% Copyright (c) 2015, Yarpiz (www.yarpiz.com)
% All rights reserved. Please read the "license.txt" 
for license terms.
%
% Project Code: YPEA120
% Project Title: Non-dominated Sorting Genetic Algo-
rithm II (NSGA-II)
% Publisher: Yarpiz (www.yarpiz.com)
% 
% Developer: S. Mostapha Kalami Heris (Member of Yarpiz 
Team)
% 
% Contact Info: sm.kalami@gmail.com, info@yarpiz.com
%

nF=numel(F);
for k=1:nF

Costs=[pop(F{k}).Cost];
nObj=size(Costs,1);
n=numel(F{k});
d=zeros(n,nObj);
for j=1:nObj
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[cj, so]=sort(Costs(j,:));
d(so(1),j)=inf;
for i=2:n-1

d(so(i),j)=abs(cj(i+1)-cj(i-1))/ 
abs(cj(1)-cj(end));

end
d(so(end),j)=inf;

end
for i=1:n

pop(F{k}(i)).CrowdingDistance=sum(d(i,:));
end

end
end

function [pop, F]=SortPopulation(pop)
% Copyright (c) 2015, Yarpiz (www.yarpiz.com)
% All rights reserved. Please read the "license.txt" 
for license terms.
%
% Project Code: YPEA120
% Project Title: Non-dominated Sorting Genetic Algo-
rithm II (NSGA-II)
% Publisher: Yarpiz (www.yarpiz.com)
% 
% Developer: S. Mostapha Kalami Heris (Member of Yarpiz 
Team)
% 
% Contact Info: sm.kalami@gmail.com, info@yarpiz.com
%

% Sort Based on Crowding Distance
[~, CDSO]=sort([pop.CrowdingDistance],'descend');
pop=pop(CDSO);

% Sort Based on Rank
[~, RSO]=sort([pop.Rank]);
pop=pop(RSO);

% Update Fronts
Ranks=[pop.Rank];
MaxRank=max(Ranks);
F=cell(MaxRank,1);
for r=1:MaxRank

F{r}=find(Ranks==r);
end

end
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function [y1, y2]=Crossover(x1,x2)
% Copyright (c) 2015, Yarpiz (www.yarpiz.com)
% All rights reserved. Please read the "license.txt" 
for license terms.
%
% Project Code: YPEA120
% Project Title: Non-dominated Sorting Genetic Algo-
rithm II (NSGA-II)
% Publisher: Yarpiz (www.yarpiz.com)
% 
% Developer: S. Mostapha Kalami Heris (Member of Yarpiz 
Team)
% 
% Contact Info: sm.kalami@gmail.com, info@yarpiz.com
%

alpha=rand(size(x1));
y1=alpha.*x1+(1-alpha).*x2;
y2=alpha.*x2+(1-alpha).*x1;

end

function y=Mutate(x,mu,sigma)
% Copyright (c) 2015, Yarpiz (www.yarpiz.com)
% All rights reserved. Please read the "license.txt" 
for license terms.
%
% Project Code: YPEA120
% Project Title: Non-dominated Sorting Genetic Algo-
rithm II (NSGA-II)
% Publisher: Yarpiz (www.yarpiz.com)
% 
% Developer: S. Mostapha Kalami Heris (Member of Yarpiz 
Team)
% 
% Contact Info: sm.kalami@gmail.com, info@yarpiz.com
%

nVar=numel(x);
nMu=ceil(mu*nVar);
j=randsample(nVar,nMu);
if numel(sigma)>1

sigma = sigma(j);
end
y=x;
y(j)=x(j)+sigma.*randn(size(j));

end
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function PlotCosts(pop)
% Copyright (c) 2015, Yarpiz (www.yarpiz.com)
% All rights reserved. Please read the "license.txt" 
for license terms.
%
% Project Code: YPEA120
% Project Title: Non-dominated Sorting Genetic Algo-
rithm II (NSGA-II)
% Publisher: Yarpiz (www.yarpiz.com)
% 
% Developer: S. Mostapha Kalami Heris (Member of Yarpiz 
Team)
% 
% Contact Info: sm.kalami@gmail.com, info@yarpiz.com
%

Costs=[pop.Cost];
plot3(Costs(1,:),Costs(2,:),Costs(3,:),'r*', 

'MarkerSize',8);
xlabel('Fuel Cost ($/hr)');
ylabel('Emission (ton/hr)');
zlabel('Transmission Loss (MW)');
grid on;

end

Copyright (c) 2015, Yarpiz (www.yarpiz.com)
All rights reserved.
Redistribution and use in source and binary forms, with or without modification,

are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this list

of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice, this

list of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUTNOTLIMITEDTO, THE IMPLIEDWARRANTIESOFMER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
CLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIB-
UTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

http://www.yarpiz.com
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LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOW-
EVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDINGNEGLIGENCEOROTH-
ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
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Voltage Control by Optimized
Participation of Reactive Power
Compensation Using Fixed Capacitor
and STATCOM

Nitin Kumar Saxena

Abstract FACTSdevices play a significant role in providing voltage control through
adequate reactive power compensation under the conditions of load and input
changes. In isolated wind diesel based hybrid electrical system, choosing ade-
quate participation of reactive power compensation device becomes more impor-
tant because of the following aspects; (i) unlike to grid connected system, additional
sources are required for supplying reactive power, (ii) normally self excited induction
generators are used for power generation through wind and these generators require
reactive power for building up the voltage, (iii) wind generators power output is
much affected by changes in input wind speed and these changes require additional
reactive power to control the voltage, (iv) similar to input change, load changes also
require additional reactive power to maintain the voltage level, (v) compensating
device should respond fast for nullifying the voltage deviation in minimum time,
(vi) the procedure adopted for reactive power compensation should be economically
acceptable even for the last end user in the society. Therefore, the reactive power
compensating devices for voltage control in isolated hybrid electric system should
be participated optimally by considering these technical and economical aspects
simultaneously. In this chapter,MATLAB (programming alongwith simulinkmodel)
based approach is demonstrated for voltage control through optimized participation
of reactive power compensation using fixed capacitor as static and STATCOM as
dynamic compensator.
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1 Role of Reactive Power Compensation

Techno-economical studies in distributed power systemhave been presented bymany
researchers. These studies depict that the electrification through traditional central-
ized generating units is a real challenge for far located remote/rural areas because of
geographical diversity, concentrated availability of natural resources and dispersed
power demand. Electrification without long transmission lines can be a better option
to such far located remote/rural consumers. Because of the remoteness of such non-
electrified population, renewable energy can offer a cost effective and environmen-
tal friendly means of providing power. In recent years, production of clean energy
(renewable ones) by private investors is encouraged. Government in almost all coun-
tries are also promoting public participation through several schemes for installing
small units of power generation using hybrid systems [1]. Government of India is
also promoting to private investors for installing distributed generating units because
of technical and economical limitations of supplying grid connected power system
at such far located rural areas [2]. Private investors’ participation in installing renew-
able energy system (RES) can be better understood through Fig. 1. It has also been
noticed that 88% renewable energy sources are installed by private investors in India
[3].

Wind energy is the most promising form of renewable energy for generation
of electric power but suffering from intermittent nature of the wind. To provide
continuous and reliable power in such far located areas, renewable energy based
generators along with conventional fuel based generators can be used without grid
connection. Researchers have presented hybrid power generation models in which
self excited induction generator (SEIG) and synchronous generator (SG) are used
together for generating power through wind and diesel respectively [4–8]. In this

Fig. 1 Participation of different sectors for installing renewable energy system in India
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chapter studies are focuses for such wind diesel based hybrid electrical system.
Since these electrical systems are isolated from grid so, called isolated hybrid energy
system (IHES).

This wind-diesel based IHES is one of the most promising systems to provide
continuous, efficient, economical and reliable electrical energy and has a wide scope
especially in developing countries. Due to grid isolation, hybrid configuration of
generation units, random behaviour of consumers load and evolvement of public-
private investors’ participation, IHES has many technical and economical issues in
their operations. Selection of adequate reactive power compensation for such IHES
is one of them which is being focussed technically as well as economically in this
chapter.

Problems in electrical systems can be broadly identified in two categories; (i)
active power frequency (P − f ) control, and (ii) reactive power voltage (Q − V )

control. The P − f and Q − V controls are almost non-interactive in electrical
systems because small changes in active power are mainly dependent on changes in
generator speed and are almost independent of changes in terminal bus voltage, while
small changes in terminal bus voltage are mainly dependent on machine excitation
and are almost independent of changes in generator speed. Since, excitation control
is a fast acting with less time constant encountered as that of generator field, while
power frequency control is a slow acting with more time constant as contributed by
turbine and generator moment of inertia. So, the time constant for P − f control
loop is much larger than that of the Q − V control loop. Even in conventional grid
connected power system, active power is exported on transmission line to load centre
but reactive power required by load is produced closer to the requirement to avoid
large transmission losses and voltage variations. It should also be noticed that the
production of reactive power involves only capital cost but no fuel cost. Therefore,
P − f and Q − V control loops are assumed to be decoupled in power system and
the problem of reactive power voltage (Q − V ) control can be focussed separately
at load centres.

The IHES is designed with the help of diesel, a non renewable energy source
to provide continuous and reliable supply and wind, a renewable energy source to
provide environmental friendly energy supply. The self excited induction generator
is used to extract power fromwind while the synchronous generator is used to extract
power from diesel in this isolated hybrid energy system. The major disadvantage of
self excited induction generator is the requirement of reactive power for its opera-
tion. In grid-connected system, induction generator can be excited from either grid
or capacitor banks, whereas in an isolated system, reactive power excitation along
with load reactive power demand can only be achieved through reactive power com-
pensators. Apart from steady state reactive power requirement, dynamic conditions
also require reactive power for regulating the voltage response due to instant changes
in load demand and input power in system. The automatic voltage regulator (AVR)
of the synchronous generator, connected in parallel with induction generator in this
IHES, may not be able to offset the reactive power mismatch as its prime function
is to generate the real power for load keeping terminal voltage within limits with
minimum over and under excitation.
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Therefore, reactive power compensators are required for additional reactive power
demand in system. Deficiency in this extra reactive power demand can cause severe
problems of large voltage fluctuations at load terminal and therefore, affect the quality
of supply. In absence of the proper voltage control, this may even damage the system
stability.Voltage control problems are complex in nature especially for heavily loaded
power system and unbalance in generation. Voltage control is one of the six ancillary
services that is used to maintain the voltage profile through injecting or absorbing
reactive power [9]. Therefore, proper reactive power compensation techniques are
required to ease the voltage control problems in IHES. Hence, as a technical issue, if
the system operator does not consider impact of reactive power on voltage control,
it may move the system toward voltage instability point. Therefore, sufficient fast
acting reactive power reserve is necessary to prevent unacceptable voltage deviation
after any system disturbance or due to load uncertainty [10]. This is called Q − V
control loop problem and is mainly focussed for reactive power compensation and
voltage control studies of this chapter for IHES.

Since, the optimal and adequate reactive power deployment in the competitive
electricity markets is identified as one of the important ancillary services and is pro-
vided by the Independent SystemOperator (ISO). The procurement of reactive power
as an ancillary service involves cost investment and thus needs to be remunerated.
Effective regulatory policies are necessary to ensure an adequate supply of reactive
power at reasonable cost whether in independent or integrated power system. The
rules for procuring reactive power can affect whether adequate reactive power sup-
ply is available, as well as whether the supply is procured efficiently from the most
reliable and lowest cost sources. Fast acting device for reactive power compensation
gives better results of voltage regulation in system but at the same time they increase
system compensation cost much. On the other side, static compensator has very low
cost but alone cannot be suitable for reactive power compensation in system. Hence,
economic analysis of reactive power compensation in IHPS is also an important
aspect.

Therefore, a hybrid use of compensating devices; static as well as dynamic com-
pensators, can be used for techno-economic solution of reactive power compensation
in IHES for controlling the system voltage under specified limits. In this chapter, the
technical benefits from the hybrid participations of static and dynamic reactive power
compensators in voltage control studies are mainly focussed. A MATLAB program
is developed for choosing the best possible participations of fixed capacitor and
STATCOM for voltage control studies in system during steady state and dynamic
conditions.

2 Introduction to Reactive Power Compensators

In isolated hybrid electrical system, reactive power compensation plays a key role
in controlling the system voltage. The reactive power support, essential to maintain
the voltage profile and stability of the system, is one of the six ancillary services
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specified in the FERC order no. 888 [11]. Reference [12] explains two types require-
ment of reactive power for system operation; (i) under steady state and (ii) under
dynamic conditions. Reference [13, 14] assumes that the generators are obligated to
provide a certain amount of reactive power (up to generator’s mandatory limit) with-
out any payment. Synchronous generator is primarily used to generate real power
to system therefore only mandatory limit reactive power is supposed to be released
form it without considering opportunity cost through it. In Reference [15] voltage
response is explored with external rotor resistance along with excitation capacitor for
autonomous SEIG. Wang et al. [16] proposed an analysis to predict both minimum
and maximum values of capacitance required for self-excitation of a three phase
induction generator.

In hybrid electrical system reactive power compensation becomes complex due
to the parallel operation of different generators along with load influence. Stand-
alone operation of a squirrel-cage induction generator based WECS with regulated
output voltage and frequency requires either an asynchronous link (ac–dc–ac) power
electronic converter or a matrix converter. The excitation capacitor bank of large
rating has to be implemented with thyristors rectifier because thyristors rectifier
can only absorb active and reactive powers. This makes the system efficiency low.
Therefore, shunt connected VSI with a capacitor and a switched resistor in the dc
bus is proposed alternatively in [17]. References [18, 19] proposed a hybrid exciter
in which one set of a parallel connected three-phase fixed frequency pulse width
modulation (PWM) inverter fed from a battery and fixed capacitor bank is used. In
order to avoid the problem of mismatch of reactive power generation and absorption
in system switch capacitor may be used in place of fixed capacitor. But switched
capacitor can only give discrete solutions for avoiding reactive power mismatch
in system. A variable reactive power source is required match the generation and
absorption of reactive power. Three SVC models are explained for reactive power
compensation in a hybrid system [20].

The STATCOM device is the static counterpart of the rotating synchronous con-
denser but it generates/absorbs reactive power at a faster rate. The STATCOM
employs a voltage source inverter (VSC), which internally induces inductive or
capacitive reactive power as required. In principle, it performs the same voltage
regulation function as the classical SVC but in a more robust manner and is also
advantageous than that of SVC [6]. It goes on well advanced energy storage facili-
ties, which open the door for a number of new applications, such as energy markets
and network security [21]. Reference [22] proposes STATCOM transient stability
and power flow models as improved versions of models previously proposed in the
literature. Reference [23] proposes a new method, called the flatness-based adaptive
control (FBAC), for STATCOM voltage regulation.

2.1 Introduction to Reactive Power Market

Private investors in deregulated and isolated mode of electricity markets in many
countries worldwide bring new perspectives for small businesses specializing in
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energy generation. Wind power generation has better options for investment and
therefore, attracts the private sector [24]. Size optimization is among the most impor-
tant studies in order to achieve efficient and economical utilization in the hybrid
system [25]. Reference [26] discusses the problem in dealing two objectives simul-
taneously (costs and unmet load) which are usually in conflict, since a reduction in
design costs implies a rise in unmet load and vice versa. Reference [27] suggests
that voltage and reactive power support are linked to each other and reactive support
is distinguished as an ancillary service, which can facilitate active power transporta-
tion in system. Modal analysis technique is proposed for the management of reactive
power generation to improve the voltage stability margin in [28]. Reference [29]
addresses the problem of how to pay the voltage support providers; and how to allo-
cate the incurred costs to the users. Reference [30] focuses on two aspects; voltage
profile management and reactive dispatch and voltage regulation in isolated system.

In the new open access environment, in pursuit of profit, the power producer has
incentive to sell active power as much as possible. A generator can sell its active
power if only there is enough reactive power to support it. Otherwise, the generator
is no longer able to sell active power due to system security constraints. So, it is
essential to establish a mechanism for financial compensation of the reactive power
ancillary service [31]. Different methods are used in different electricity markets
for reactive power procurement. As main philosophy of the electricity markets, the
system operator tries to provide reactive power with the lowest possible cost. Also,
because of important role of reactive power in network operation and security, many
researchers have considered technical issues as well as economic issues. Reference
[32] provides a techno-economic analysis to decide configuration of autonomous
system on the basis of power quality, system overall cost, payback time and emission
of green house gases. The effects of load variation on system configuration and cost
are also examined.

Although reactive power costs constitute only about 1% of total power industry
costs [33], it’s still important to make it clearly analyzed when the reactive power
market is concerned. According to economics aspects, total cost of any commodities
can be divided in two components; fixed cost component and a variable cost compo-
nent. The capital investment of equipments are categorised into fixed cost category
while costs connected to the output quantity are categorised into variable cost cate-
gory.Without any fuel cost to generate reactive power, the variable cost of generators
include maintenance and operation cost and opportunity cost. Equipments like syn-
chronous condensers, shunt capacitors, STATCOMs, and SVCs don’t produce real
power, so they don’t have opportunity cost.

Reactive power cost curve of a synchronous condenser can be formulated includ-
ing operating cost and investment cost. Reference [34] dealswith evaluation of capac-
itive reactive power cost under the deregulation environment. For the cost assessment
of reactive power, the duration curve of reactive power demand is introduced to take
into account the investment costs. Capacitor reactive power cost function is given in
[35]. Cost functions of UPFC, TCSC and SVC are given in polynomial form in [36].
Furthermore, cost functions are incorporated for bids of suppliers and consumers and
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investment costs of FACTS devices. Cost function is defined as the sum of capital
cost and installation cost.

Model presented in many papers optimize the certain objective function (e.g.,
reactive power production cost minimization or social welfare maximization) using
optimal power flow (OPF) models and use of fixed capacitor and FACTS device is
proposed for future work. The resources for reactive power such as synchronous
generators, synchronous condensers, capacitor banks, reactors, Flexible AC Trans-
mission System (FACTS) devices are owned by the independent generators or local
suppliers. Reference [37] defines costs for the service performed by these devices,
then it proposes an optimal co-ordination method which allows distributors to select,
for every operating condition, the more profitable combination of reactive sources in
order to maintain the network voltage levels within a desired range and to minimise
the regulation action global cost.

2.2 Selection of Dynamic and Static Compensator

Inmost of the present researches available onwind diesel based IHES, themain thrust
is on technical benefits using fast acting compensating devices for reactive power
compensation and voltage control while economic issues of reactive power compen-
sation are not focussed by researchers yet. The system dynamic responses can be sup-
pressed in least time within the permissible range by use of FACTS devices namely;
Static VARCompensator (SVC) or Static Compensator (STATCOM). FACTS device
produces better responses in terms of system voltage control compare to the conven-
tional compensation devices viz. fixed capacitor (FC), switched capacitor and syn-
chronous compensator. Although SVC/STATCOM give better results as discussed in
various research papers [4, 20], their cost is very high compared to fixed capacitor. It
is well known that a fair pricing of such a service can lead tomarket liquidity which in
turn results in approaching the optimal condition. Therefore, for a competitive mar-
ket environment, the economic viability should also be considered with engineering
requirements. Getting the benefits through Government promotional schemes, pri-
vate investors can develop isolated units for continuous power supply to far located
remote area. At such rural/remote areas, the end users are not too developed eco-
nomically to pay more tariff rates for generating companies (Gencos). Even most of
the time Government has to subsidize the power to such consumers and therefore,
power supply continuity is a prime concern however its quality degradation may be
allowed up to some extent to keep the cost low. And therefore, method to reduce the
compensation cost for the consumer is proposed in this chapter.

Reactive power demand in system can be classified by two categories; (i) fixed
demand, and (ii) variable demand. Fixed demand includes steady state load demand
and induction generator excitation. Variable demand includes load and induction
generator reactive power demand due to sudden changes in system conditions. The
characteristic comparison of voltage control equipment, i.e., fixed capacitor (FC),
SVC, and STATCOM (ST), is mentioned in Table 1 [38]. For voltage control, reac-
tive power is required through compensators in IHES. This compensation may be
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Table 1 Characteristics comparison of voltage support equipment

Equipment Equipment type Response speed Voltage support Operating cost

FC Static compensator Slow Poor, drops with V2 Very low

SVC Dynamic
compensator

Fast Poor, drops with V2 Moderate

STATCOM Dynamic
compensator

Fast Fair, drops with V High

achieved using static, dynamic or combination of both types of compensators. As
in Table 1, dynamic reactive power compensators (SVC and STATCOM) give best
results for voltage control [2, 4, 6], but their cost is very high compared to that of
static reactive power compensator (FC). On the other side, the cost of static compen-
sator is very low, but they alone are not capable of providing the adequate solution
of voltage regulation.

Before deciding the compensation techniques, following observations must be
noticed;

1. Reactive power is required for steady state and dynamic conditions. Steady state
requirement can be supplied by static and/or dynamic compensating device but
dynamic conditions can only be supplied by dynamic compensating device [12].

2. Static compensators are cheaper but cannot regulate to system voltage for fast
acting changes in system [4].

3. Dynamic compensators havegood characteristic for regulating the systemvoltage
during sudden changes but their use make system’s compensation cost very high
[38].

4. Participation of static compensator with dynamic compensator can be allowed
up to the extent where system voltage response remain within its pre defined
acceptable range [30].

Hence, a combination of static as well as dynamic compensating devices can be
used to mitigate system fixed demand while fast respond dynamic compensators are
necessarily required in suppressing the dynamic demand of the system in minimal
time. The methodology may be adopted for deciding the participation of static and
dynamic compensators including these two behaviours of demand. The concept for
reducing STATCOMsizewith a fixed capacitor for self-excited induction generator is
compared in Ref. [39] for full rating of STATCOM alone and half rating shared with
fixed capacitor along with STATCOM. Since the IHESs have both fixed demand
and variable demand so static compensator alone cannot be installed to mitigate
the effect of sudden changes in load and wind input power. These changes may
result in a serious problem of large voltage fluctuation without proper reactive power
compensation. Dynamic compensator alone can mitigate the voltage control issues
but the compensation cost becomes high through it. To overcome this problem,
STATCOM and fixed capacitors, both are installed in the system together to control
reactive power and to minimize voltage fluctuations. The proper selection of both
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static as well as dynamic compensators simultaneously may provide the optimum
solution between the system voltage control and cost of compensation.

Therefore, the selection of STATCOM and fixed capacitors ratings depend on
the two aspects; overall cost of compensation and system voltage response [40].
In this chapter, a cost analysis is done for reactive power participation in isolated
hybrid electrical system through fixed capacitor as static and STATCOM as dynamic
compensator.

3 Reactive Power Compensation Cost Analysis

This chapter presents the technical benefits from the hybrid participations of static
and dynamic reactive power compensators in voltage control studies. A method of
reactive power compensation pricing is proposed by including static and dynamic
compensators in system. Concepts about reactive power compensation as ancillary
service in power system, method of cost formulation and cost formulae for different
compensating devices are discussed in this section.

3.1 Reactive Power as an Ancillary Service

Any end user of power system is implicitly a consumer of ancillary services who
is demanding continuous and quality of power supply. For power producers, ancil-
lary services are mainly defined by the basic contributions they make to fulfil the
system functions. Besides the supply of active power, they supply or absorb reactive
power and control the voltage as well as contribute to maintaining the system fre-
quency.According toNorthAmericanElectricReliabilityCouncil (NERC), ancillary
services can be categorized into three categories;

Category-1: Services required for routine operation
Category-2: Services needed to avoid blackout
Category-3: Services needed to restore after blackout.

In category 1, voltage control has prime importance in the system alongwith other
ancillary services like system control, regulation, load following, energy imbalance.
In isolated hybrid power system, voltage is controlled by the compensation of reactive
power with the help of synchronous generators, static and dynamic compensator.
These reactive power devices have several characteristics for consideration such as
their dynamics, response speed, voltage changing ability, capital costs, operating
costs, and opportunity costs.

It has been suggested that the independent generators or customers install their
own reactive support resources and the ISO should enter into contracts with those
independent generators or customers for such provision. These reactive support
resourcesmay be synchronous generators, synchronous condensers, capacitor banks,
reactors, static VAR compensators and FACTS devices. Perceived demand con-
ditions, mix of the load and availability of reactive power resources should be
considered for procurement of reactive power services [1].
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Reference [41] describes that reactive power through generator and synchronous
condenser is recognized as “ancillary services.” Changes at the policy level are
necessary to include other reactive power sources such as capacitors, reactors, SVCs
and FACTS devices etc., as ancillary services. This would enlarge the market and
increase the competition, and inevitably increase the market efficiency and fairness.

In this chapter, it is being assumed that IHESs are owned by private investors who
are committed to provide electricity on cheaper rates for far located remote area based
end users. It is also assumed that power quality degradation within permissible range
can be acceptable for reducing the cost in such remote areas. Available and possible
pricing options for reactive power compensation are discussed in this section first.
Since reactive power can be supplied by synchronous generator, FC and STATCOM
in system, the cost issues by them are also being discussed here.

3.2 Pricing Options in Reactive Power Compensation

Reactive power pricing was started with the Commission’s Order No. 888, its Open
Access Rule, issued in April 1996. In that order, the Commission concluded that
“reactive supply and voltage control from generation sources” is one of six ancillary
services that transmission providers must include in an open access transmission
tariff. The main aim for reactive power procurement is to ensure the adequate sup-
plies of reactive power (including reactive reserves) in the system at least cost for
steady state and dynamic conditions. Optimization of reactive power cost is required
because; the static compensators having lowest cost cannot always be reliable and
adequate producers of reactive power as dynamic compensators. Dynamic compen-
sation might be expensive reactive power procurement but they must sometimes be
purchased even if cheap reactive power sources are available. Two general ways
have been suggested for providing reactive power though generators compensation
in literature.

3.2.1 Capacity Payment Option

In capacity payment option generator is paid in advance for the capability of produc-
ing or consuming reactive power. The payment could be made through a bilateral
contract or through a generally applicable tariff provision. Once the generator is paid,
it could be obligated to produce or consume reactive power up to the limits of its
commitment without further compensation when instructed by the system operator.
To ensure that the generator follows instructions in real time, the generator could
face penalties for failing to produce or consume when instructed. Currently, this is
the most common method for compensating reactive power providers. Four methods
are suggested for capacity payment option as;

• A cost-based payment
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• Capacity market payment
• Prices determined through auction
• Pay nothing.

3.2.2 Real-Time Price Option

In real-time price option, generator is paid in real-time for the reactive power that
it actually produces or consumes. Under this option, the generator is paid only for
what it produces or consumes, but it pays no penalty for failing to produce when
instructed. Four methods are also suggested for real time capacity payment option
as;

• Pay nothing
• Unit-specific opportunity costs
• Market clearing prices determined through auction
• Prices (or a pricing formula) announced in advance.

Reactive power spot pricing can be adopted by including the features of both
capacity payment option and real time capacity payment option. A method of reac-
tive power compensation cost analysis is proposed by including static and dynamic
compensators in system keeping compensation through synchronous generator con-
stant and equal to its mandatory limit. This proposed method includes two important
aspects for reactive power compensation; first, to encourage efficient and reliable
investment for steady state reactive power demand and second, to encourage pro-
duction and consumption of reactive power from exciting infrastructure for dynamic
state demand.

3.3 Synchronous Generator as Reactive Power Service
Provider

Synchronous generators are basically used for active power generation; however,
they are also able to provide reactive power for security purposes. The synchronous
generator’s capacity is limited by the armature current, field current and under-
excitation limits. The stable operating point of a generator is always restricted to
its capability curve boundaries, which are defined according to armature and field
winding heating limits. Synchronous generator may generate the reactive power in
three regions namely; mandatory cost, cost of loss and opportunity cost, as shown in
Fig. 2.

When synchronous generator releases reactive power in mandatory cost region, it
does not receive any payment for reactive power production. In cost of loss region,
generator is entitled to receive two components of payments availability compo-
nent and cost of loss component. In opportunity cost region, generator is entitled
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Fig. 2 Reactive power
scheme in synchronous
generator

to receive payment with its opportunity cost of reduced real power production [38].
Mathematically,

Expectation of Payment Function (EPF) of synchronous generator for reactive
power,

EPF = Mandatory cost + cost o f loss + opportunity cost (1)

A generator’s cost of producing reactive power can sometimes include opportu-
nity costs associated with forgone real power production. Opportunity costs arise
because there can be a trade-off between the amount of reactive power and real
power that a generator can produce. When a generator is operating at certain limits,
a generator can increase its production or consumption of reactive power only by
reducing its production of real power as the winding of the synchronous generator is
designed for a particular rating of current. Further, this method is somewhat complex,
and is only cost effective when a large amount of compensation is needed [9, 20].
For calculating the different points shown in Fig. 2 for reactive power scheme of
synchronous generator, i.e. mandatory reactive power (Qbase), cost of loss reactive
power (QA), reserve reactive power (QA − Qbase), and opportunity cost reactive
power (beyond QA), following mathematical expressions can be used [42].

For synchronous generator, mandatory reactive power can be calculated by the
Eq. (2) in which PSG is the rated real power of generator at cos θSG lagging power
factor.

Qmandatory = PSG,pu tan θSG (2)

From field current limit equations of synchronous generator,

PSG = 3VEq

Xs
Sinδ (3)

QSG = 3V Eq

Xs
Cosδ − 3V 2

Xs
(4)
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Squaring and adding the Eqs. (3) and (5),

P2
SG,pu +

(
QSG,pu + 3V 2

Xs

)2

=
(
3V Eq

Xs

)2

(5)

For estimating the cost of loss reactive power by synchronous generator, Eq. (5)
can be solved for getting the value of QSG,pu . So,

Qcost o f loss = QSG,pu (6)

Qreserve = Qcost of loss − Qmandatory (7)

The lost opportunity cost can be determined above the rated reactive power
requirements and below the maximum limit reactive power generation from the
generators.

Since, the synchronous generator should not be entitled to receive any payment for
reactive power production in mandatory cost region. It is assumed that synchronous
generator provides reactive power equal to mandatory limit only in the study.

3.4 Fixed Capacitor as Reactive Power Service Provider

The function of cost for capacitor is assumed to be proportional to the amount of the
reactive power output purchased and equal to the product of depreciation rate and
amount of the reactive power output purchased [11]. Fixed capacitor function of cost
(CFC) can be expressed as,

CFC = r QFC in $/H (8)

where, symbol r, defines the cost or depreciation rate of fixed capacitor QFC , is the
amount of reactive power supplied by fixed capacitor to the system. The rating of the
QFC is in MVAr. The depreciation rate is calculated by the ratio of investment cost
and the operation hours of FC. The fixed cost for life span of 15 years is considered
as per general practice [35],

CFC = 0.132 ∗ QFC in $/H (9)

Example 1 Adelta connected capacitor bank having per phase capacitance of 200μF
is connected with a electrical system. The generated voltage with this electrical
system is 400 V at 50 Hz. Find the MVAr generated by this capacitor bank. Also find
the compensation cost through FC if life span of this capacitor bank is assumed to
be 15 years.
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Solution For delta connected capacitor bank,

VP = VL = 400V

Reactance for the capacitor is,

XC = 1

2π f C

Reactive power developed by the capacitor bank,

QFC = 3V 2
P

XC
× 10−6 MVAR

The compensation cost through FC for life span of 15 years is,

CFC = 0.132 ∗ QFC $/H

Using the mathematical expressions given above, MATLAB codes are written for
getting the solutions of this example as below.

%%% MATLAB codes for compensation cost through Fixed 
Capacitor (FC) 
>>clear all;
>>clc;
>>vl=400;
>>f=50;
>>c=200e-6;
>>vp=vl;
>>xc=1/(2*pi*f*c);
>>qfc=(3*vp^2/xc)*10^-6   % MVAr generated
>>cost_qfc=0.132*qfc % compensation cost 

through FC

The results for the program given above are;
For MVAr generated = 0.0302 MVAR
Compensation cost through FC = 0.0040 $ per H.

3.5 STATCOM as Reactive Power Service Provider

An empirical method is available to obtain function of cost for STATCOM. The curve
is plotted between the investment costs and the ratings for the different installation of
STATCOM. An expression is developed for this as a function of STATCOM rating
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based on the quadratic polynomial curve fitting method. ST average operating life
is also taken same as that of FC i.e. 15 years. The rating of the QST is in MVAr in
Eq. (10). The expression for STATCOM function of cost (CST ) is given as [43];

CST = 1000 ∗ QST

8760 ∗ 15

(
0.0002466Q2

ST − 0.2243QST + 150.527
)
in $/H (10)

Example 2 In previous Example 1, if sameMVARare being supplied by STATCOM.
Find the compensation cost through STATCOM.

Solution The expression for compensation cost through STATCOM,

CST = 1000 ∗ QST

8760 ∗ 15

(
0.0002466Q2

ST − 0.2243QST + 150.527
)
$/H

QST = 0.0302MVAR

Using the mathematical expressions given above, MATLAB codes are written for
getting the solutions of this example as below.

%%% MATLAB codes for compensation cost through STATCOM 
(ST)
>>clear all;
>>clc;
>>qst=0.0302;   % MVAr generated
% compensation cost through ST
>>cost_qst=((1000*qst)/(8760*15))*((0.0002466*qst*qst)-

(0.2243*qst)+150.527)

The results for the program given above are;
For MVAr generated = 0.0302 MVAR
Compensation cost through FC = 0.0346 $ per H.

4 Reactive Power Compensation Scheme in Ihes

Ablock diagram for wind-diesel based IHES is given in Fig. 3. Self excited induction
generator coupled with wind turbine, synchronous generator coupled with diesel
genset, fixed capacitor and STATCOM as reactive power compensators and a load
are connected in parallel to a common bus line to define an isolated hybrid electric
system. Mathematically, under steady state,

�PL = �PIG + �PSG (11)
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Fig. 3 Basic configuration
of isolated hybrid power
system with compensation
schemes

�QL + �QIG = �QSG + �QCom (12)

From Eqs. (11) and (12), it can be depicted that induction generator and syn-
chronous generator both will manage for any change in the real power requirement
and change in reactive power may occur due to demand of either induction generator
or load or both together. As depicted in Eq. (12), this reactive power requirement
may be supplied to IHES by either synchronous generator or compensator or both
together. In present study, author is interested to investigate the cost of compensation
through static and dynamic compensators only, so it is assumed that synchronous
generator is generating only mandatory reactive power. The reactive power demand
of system is fulfilled by compensators in response to change in system voltage when
subjected to small disturbances.

In available studies, STATCOM alone was carried out for reactive power com-
pensation in IHES due to the technical advantage of fast response of it. Although
STATCOM has better compensation performance but it gives compensation at a
very high cost. So, STATCOM as dynamic compensator alone does not give eco-
nomic solution for voltage control in IHES. The compensation cost of fixed capacitor
as static compensator is very low, but they alone are not capable of providing the
adequate solution of voltage regulation. The compensation cost can be reduced by
introducing static compensation with dynamic compensation on compromising with
voltage response within permissible range. Hence, optimization technique is intro-
duced in this chapter that provides economic solution of reactive power compensation
for an isolated hybrid electric system.

Mathematically, total reactive power compensated by reactive power compen-
sators is given as in Eq. (13). Since static and dynamic compensators both are being
participated for reactive power compensation, this reactive power Qcom must be equal
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to the sum of reactive power generated by static compensator (FC) and dynamic
compensator (ST) as represented in Eq. (14);

Qcom = QIG + QLoad − QSG (13)

Qcom = QFC + QST (14)

Since, a fast acting device is necessarily required for compensation so that system
may reach its steady state with less settling time under dynamic conditions. Variable
demand is satisfied by dynamic compensation i.e. STATCOMonly while steady state
fixed demand can be satisfied either by STATCOM alone or combination of fixed
capacitor with STATCOM. Therefore, system total compensation at any instant of
time is given by Eq. (15).

Therefore, mathematically,

Qcom = {
Qss

FC + Qss
ST

} + Qts
ST (15)

In a restructured environment, in spite of the fact that the cost of reactive power
may be dominantly linked with the price of active energy as well as other services, it
is considered as an ancillary service which is priced separately. It is further assumed
that isolated hybrid electrical system is designed by an independent supplier who
used to decide participation of reactive power compensators on the basis of their cost,
rating, and system voltage response. For cost analysis, compensation cost function
is defined for fixed capacitor and STATCOM in succeeding sections. Equation (15)
gives the participation of static and dynamic compensators during steady state and
only dynamic compensator during dynamic condition. Total reactive power compen-
sation must satisfy Eq. (13) always in system. Therefore, total compensation cost
is formulated in Eq. (16) and it can be evaluated using the cost function of fixed
capacitor and STATCOM. It is assumed that the cost of reactive power in system
includes only the reactive power production cost of STATCOM and fixed capacitors
as explained in preceding section.

C(Qcom) = {
CFC

(
Qss

FC

) + CST
(
Qss

ST

)} + CST
(
Qts

ST

)
(16)

5 Simulink Model Representation for IHES

Abasic block diagramofwind diesel based IHES is presented inFig. 3. In this section,
the transfer functions of each component, which are used to develop the simulink
model for electrical system shown in Fig. 4, are presented in their corresponding
subsections. The s-domain quantities/expressions are represented with the s symbol
in parenthesis with quantity. This simulink model will support in developing the
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Fig. 4 Representation of
voltage-reactive power
balance equation in IHES

voltage and reactive power responses of the system component and these responses
will be used in getting the optimal values reactive power with the help of available
reactive power compensators. Since the study is being focussed for reactive power
compensation and voltage control of the electrical system in this chapter. A reactive
power balance equation given in Eq. (12) is taken for the study only and hence,
simulink block diagram is developed for the transfer functions of change in reactive
power with voltage for each component and for complete model.

5.1 Modelling for Reactive Power Balance in IHES

According to the energy policies and recommendations of international standard
IEC 60038, the voltage permissible range at load end is ±10%; thus other devices
connected in system should respond fast to achieve desirable voltage. This demand
is maintained by releasing extra reactive power from synchronous generator, STAT-
COM and fixed capacitor. But, this disturbance will cause a voltage change due to
which reactive power required by induction generator and load will also vary. The
net reactive-power surplus,

ΔQ = ΔQSG + ΔQFC + ΔQST − ΔQIG − ΔQL (17)

The governing voltage reactive power balance equation for IHES is well
established in Ref. [44] and presented in Eq. (18) below.

ΔQ =
(
s

V

ωXm
+ Dv

)
�V (18)

Dv is defined as the transfer function of change in reactive power with voltage
change for load. The procedure for estimating this is explained in detail in Ref.
[40]. Equations (17) and (18) can be clubbed to form a complete linear model of
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IHES as shown in Fig. 4. For block diagram model represented in Fig. 3, system
attains disturbances through load reactive power and wind input real power change.
Figure 4 represents synchronous generator, STATCOM,fixed capacitor and induction
generator as subsystem in IHES. As in Fig. 4, linear model of each subsystem is
required for developing simulink model and therefore, linear model for all system
components are discussed in succeeding subsections here.

5.2 Synchronous Generator Model Equations

Synchronous generator is the most popular diesel operated genset in small scale
power generation. The synchronous generator is equipped with governor and exciter
[5]. The exciter is a device which feeds dc supply to the main generator field. IEEE
has proposed following standard models for representation of excitation systems for
system studies.

1. Type 1 Excitation System—Continuously Acting Exciter And Regulator
2. Type 2 Excitation System–Rotating Rectifier System
3. Type 3 Excitation System—Static with Terminal Current and Potential Sources
4. Type 4 Excitation System—Non Continuous acting.

It is elaborated that IEEE excitation system of type-1 is the most popularly used
excitation system with diesel genset and the same is used in this study too [45]. A
linear model of synchronous generator with �V as input and �QSG as output is
developed in Ref. [46] and is presented in Fig. 5.

The values of constants K1, K2, K3 and K4, shown in Fig. 5, are given in Eq. (19)–
(22) from Ref. [40].

Fig. 5 Representation of linear model of synchronous generator
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K1 = X ′
d

Xd
(19)

K2 =
(
Xd − X ′

d

)
Xd

cos δ (20)

K3 = V cosδ

X ′
d

(21)

K4 = E ′
qcosδ − 2V

X ′
d

(22)

The standard values of these parameters are chosen in model and are defined as
in Ref. [47];

Voltage regulator gain constant; KA = 40
Voltage regulator time constant; TA = 0.05 s
Exciter gain constant; KE = 1.0
Exciter time constant; TE = 0.5 s
Stabilizing circuit gain constant; KF = 0.5
Stabilizing circuit time constant; TF = 0.75 s
Saturation function; SF = 0.

5.3 Induction Generator Model Equations

A linearmodel of induction generator is developed for approximate equivalent circuit
of induction generator as shown in Fig. 6.

Req = Rs + Rr (23)

Xeq = Xs + Xr (24)

Fig. 6 Reduced approximate equivalent circuit for induction generator
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Ry = RP − Req (25)

In Fig. 6, applying nodal analysis at RP terminal

E − V

Req + j Xeq
= E

RP
(26)

On solving,

E =
[

RP Ry

R2
y + X2

eq

+ j
RP Xeq

R2
y + X2

eq

]
V (27)

Induction generator apparent power Sig would be;

Sig = V I ∗
1 (28)

Sig = V (I2 + Im)∗ (29)

Sig = V I ∗
2 − V I ∗

m (30)

Sig = V

(
E − V

Req + j Xeq

)∗
− V

(
V

j Xm

)∗
(31)

Substituting values and solving for separating real and imaginary terms,

Sig =
[

Ry

R2
y + X2

eq

V 2

]
− j

[{
Xeq

R2
y + X2

eq

+ 1

Xm

}
V 2

]
(32)

Sig in Eq. (32) gives expression of total electric power generated by induction
generator. Real part is the active power developed by induction generator. Since
imaginary term of expression is negative in magnitude. This shows that the reactive
power is absorbed by the induction generator. Also reactive power expression has
two terms; first term denotes the power absorbed by induction generator and second
term denotes the reactive power required for magnetization in induction generator.

The wind input power Pwind is given by,

Pwind = Re
{
E I ∗

2

} = Re

{
E

(
E − V

Req + j Xeq

)∗}
(33)

On solving,

Pwind = Ry

R2
y + X2

eq

V 2 (34)
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From Eq. (32), the reactive power which is absorbed by the induction generator

QIG = Xeq

R2
y + X2

eq

V 2 (35)

Self Excited Induction generator may work under two basic conditions: operation
of the wind energy conversion system (WECS) at constant speed or variable speed
in terms of change in wind input real power.

In the case of constant speed/slip operation Eq. (32) can be rewritten in s plane
as,

�QIG = 2V Xeq

R2
y + X2

eq

�V (36)

K5 = 2V Xeq

R2
y + X2

eq

(37)

�QIG = K5�V (38)

If the induction generator is operating for variable speed/slip then the term Ry

is not constant and its value will depend on the slip. Therefore, the expression for
the reactive power will not depend only on the voltage but also on the input power
available at blade of the induction generator. Solving for small perturbation in the
case of variable speed/slip operation, the equation can be written in s plane as [48],

�QIG(s) = K6�Pwind(s) + K7�V (s) (39)

K6 = Xeq

RP − {(
R2
y + X2

eq

)
/2Ry

} (40)

K7 = 2V

R2
y + X2

eq

[
Xeq − RP Xeq

RP − {(
R2
y + X2

eq

)
/2R2

y

}
]

(41)

Equations (38) and (39) represent expressions for linear model of induction gener-
ator. These expressions have been developed for constant and variable speed respec-
tively as shown in Fig. 7a, b. For IHES in this chapter, variable speed model of
induction generator is used.

5.4 Fixed Capacitor Model Equations

Reactive power and voltage relation for fixed capacitor is a well established one.
Equation (42) provides design information about capacitance per phase in the system.
Change in reactive power of fixed capacitor with voltage variation is given in Eq. (43)
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Fig. 7 Linear model for a constant slip and b variable slip model of induction generator

Fig. 8 Linear model for
fixed capacitor

for small perturbation. Linear model for fixed capacitor is represented in Fig. 8 [46].

QFC = V 2

XC
(42)

�QFC(s) = K8�V (s) (43)

K8 = 2V

XC
(44)

5.5 STATCOMModel Equations

STATCOM controls the reactive current flow by adjusting firing angles of thyristor
for suitable control of the inverter voltage with respect to the bus voltage and finally,
STATCOMcontrols reactive power generation or absorption in system. For the power
flow modelling of the STATCOM, the reactive power expression is given in Eq. (45)
[21],

QST = (kVdc)
2BST − kVdcV BST cosα (45)

STATCOM reactive power depends upon two main variables V and α. Based on
the Eq. (45), the linear STATCOM equation for small disturbance is given below
[44],

�QST (s) = K11�α(s) + K12�V (s) (46)

where,
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K11 = kVdcV BSTSinα (47)

K12 = −kVdcBSTCosα (48)

The small signal models of STATCOM used in dynamic analysis can be designed
using three blocks namely regulator, thyristor firing delay and phase sequence delay
[49]. A proportional integral controller based linear model STATCOM are given in
Fig. 9.

Example 3 Find the cost of loss, mandatory and reserve reactive power for 111 kVA,
400 V, 50 Hz synchronous generator having 0.9 lagging power factor following
parameters are specified,

Ra = 0.002 KA = 40
X ′
d = 0.15 TA = 0.05 s

Xd = 1 KE = 1.0
T ′
d0 = 5 TE = 0.5 s
Xq = 1 KF = 0.5
Xs = 1 TF = 0.75 s
X ′
s = 0.15

Solution From the given parameters,

SSG = 111 kVA

Cos θSG = 0.9

Fig. 9 Linear model of STATCOM
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PSG = SSGCos θSG = 100 kW

Let base power and base voltage as given below,

PSG,Base = 100

VSG,Base = 400

So,

PSG,pu = 1

VSG,pu = 1

Mandatory reactive power can be calculated as,

Qmandatory = PSG,pu tan θSG

For estimative cost of loss reactive power solve the expression for getting the
value of QSG,pu ,

P2
SG,pu +

(
QSG,pu + 3V 2

Xs

)2

=
(
3V Eq

Xs

)2

Qcost o f loss = QSG,pu

Qreserve = Qcost of loss − Qmandatory

Using the mathematical expressions given above, MATLAB codes are written for
getting the solutions of this example as below.



338 N. K. Saxena

%%% MATLAB codes for cost of loss, mandatory and re-
serve reactive power for SG
clear all
clc
vb=400;
xs=1;
xq=1;
ra=0.002;
psgbase=100;
sgpf=0.9; % lagging power factor (LPF)
v=complex(400,0); % volatge in polar form
vpu=abs(v)/vb; % per unit line voltage
psg=100; % kW of SG
psgpu= psg/psgbase; % per unit kW power
phi=acosd(sgpf); % phase angle
ia=psgpu/(sqrt(3)*vpu*cosd(phi));
jayee=atand(((vpu*sind(phi))+(ia*xq))/((vpu*cosd(phi))+
(ia*ra)));
delta=jayee-phi;
iasg=complex(ia*cosd(phi),ia*sind(-1*phi));
eq_complex=(vpu+1i*0)+(iasg*complex(0,xs));
eq=abs(eq_complex);
qsgpu=psgpu*tand(phi); % per unit reactive power of SG
q_mandatory=qsgpu;
f1=psgpu^2;
f2=3*vpu*vpu/xs;
f3=(3*vpu*eq/xs)^2;
syms x;
y=((f1)+(x+(f2)).^2-f3); % formula from field current 
limit of SG
z=double(solve(y));
if z(1,1)>=0
z=z(1,1);
end
if z(2,1)>=0
z=z(2,1);
end 
q_cost_of_loss=z;
q_reserve=q_cost_of_loss-q_mandatory;
% per phase actual value
q_cost_of_loss=(q_cost_of_loss/3)*psgbase
q_mandatory=(q_mandatory/3)*psgbase
q_reserve=(q_reserve/3)*psgbase

The results for the above given MATLAB program are,
Qmandatory = 16.1441 kVAR per phase
Qcost o f loss = 36.3693 kVAR per phase
Qreserve = 20.2252 kVAR per phase.
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Example 4 For developing the linear model of synchronous generator as shown
in Fig. 5, evaluate the constants K1, K2, K3 and K4 with the help of synchronous
generator parameters as given in previous Example 3.

Solution All the parameters given inExample 3 are used tofind the value of constants
K1, K2, K3 and K4. All these constant are being calculated in per unit quantities and
the base power and base voltage for these calculations is being assumed equal to
SG rating. Therefore, MATLAB codes are written for getting the solutions of this
example as below.

%%% MATLAB codes for evaluating the value of constants 
, , and 

clear all;
clc;
%input data for system design (all powers are kW, kVAR)
v=complex(400,0); vpu=1;
psg=100;
psg_base=100; 
sgpf=0.9;
phi=acosd(sgpf);
qsg=psg*tand(phi);
psgpu=psg/psg_base; 
ra=0.002;
xd_dash=0.15; xd=1;
tdo_dash=5;
xq=1;
xs=1;
xs_dash=0.15; 
ke=1;
te=0.5;
ka=40;
ta=0.05;
kf=0.5;
tf=0.75; 

%%%% SG model constants calculation for simulink model 
zsg=1; % per unit impedance of SG
ia=(psg/psg_base)/(sqrt(3)*vpu*cosd(phi));
za-
yee=atand(((vpu*sind(phi))+(ia*xq*zsg))/((vpu*cosd(phi)
)+(ia*ra*zsg)));
delta=zayee-phi;
iasg=complex(ia*cosd(phi),ia*sind(-1*phi));
eq_complex=(vpu)+(iasg*(1i*xs*zsg));
eq=abs(eq_complex);
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id=(eq-(vpu*cosd(delta)))/(xd*zsg);
eq_dash=eq-((xd-xd_dash)*zsg*id);
tg=(tdo_dash*(xd_dash*zsg)/(xd*zsg));
k1=(xd_dash*zsg)/(xd*zsg)
k2=(xd-xd_dash)*zsg*cosd(delta)/(xd*zsg)
k3=vpu*cosd(delta)/(xd_dash*zsg)
k4=((eq_dash*cosd(delta))-(2*vpu))/(xd_dash*zsg)

The results for the above given MATLAB program are,

K1 = 0.15

K2 = 0.775

K3 = 6.0787

K4 = −7.3421

Example 5 Calculate the full load and no load reactive power requirement for the
induction generator with following specifications; V = 400 V, PIG = 150 kW,
Cos θIG = 0.9, P = 2, s = 0.04, f = 50, η = 90%. Consider line voltage as base
voltage and real power of generator as base power.

Solution The calculations are being done for the equivalent circuit diagramof induc-
tion generator as given in Fig. 6. Most of the mathematical expressions used for the
calculation purposes in writingMATLAB codes are imported from the Ref. [50]. For
better understanding of the codes readers are suggested to read this paper.

%%% MATLAB codes for evaluating the reactive power re-
quirement for the induction generator
clear all;
clc;
%%%% base values for pu calculation
vb=400; % Base voltage
sigb=150; % Base power 
zig_base=(vb*vb)/(sigb*1000); % Base impedance 
%input data for system design 
v=complex(400,0); vpu=1;
pig=150; igpf=0.9; theta=acosd(igpf);
qig=pig*tand(theta);
f=50; pole=2; s=0.04; eff=0.9; p_mech=(pig*eff);
%%%%% IG equivalent circuit parameters 
i1=(pig*10^3)/(sqrt(3)*abs(v)*igpf); % for current re-
fer equivalent circuit of IG
I1=complex(i1*cosd(theta),i1*sind(-theta));



Voltage Control by Optimized Participation of Reactive … 341

xeq=z;
x=xeq/2;
% converting parameters in pu values 
xeq=xeq/zig_base;
x=x/zig_base;
req=req/zig_base;
r=r/zig_base;
xm=xm/zig_base;
Rp=Rp/zig_base;
ry=ry/zig_base;
%%%% no load and full load current of IG
io=(vpu/sqrt(3))/(1i*xm);
i2=(vpu/sqrt(3))/(req+Rp+1i*xeq);
io=abs(io);
i2=abs(i2);
% per unit values of full load and no load reactive 
power of IG

Nr=(rsum*rsum*xm)+(xeq*xm*(xeq+xm));
Dr=(rsum^2)+(xeq+xm)^2;
form_x=im_zeq-(Nr/Dr);
z=double(solve(form_x));
a=z(1,1);
b=z(2,1);
if a>=0
z=a;
end
if b>=0
z=b;
end

zeq=(abs(v)/sqrt(3))/I1; 
zeq_complex=zeq*cosd(theta)+1i*zeq*sind(theta);
im_zeq=imag(zeq_complex);
sigma=(1-igpf)/(1+igpf);
xm=(abs(v)/sqrt(3))/(abs(I1)*sqrt(sigma));
Xm=complex(0,xm);
Im=((v)/sqrt(3))/Xm;
I2=I1-Im; % -1 multiplied with I1 as it 
is generator
i2=abs(I2);
Rp=(p_mech*10^3)/(3*i2*i2);
r=Rp*s/(1-s);
req=2*r;
rsum=req+Rp;
ry=Rp-req; 
syms xeq
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Therefore, the results for the above given MATLAB program are,
Full load reactive power requirement for the induction generator= 38.4334 kVAR

per phase.
No load reactive power requirement for the induction generator 14.9368 kVAR

per phase.

Example 6 For developing the linear models of induction generator as shown in
Fig. 7, evaluate the constants K5, K6 and K7 with the help of induction generator as
specified in previous Example 5. Also calculate the wind input power by neglecting
the constant losses.

Solution MATLAB codes given in Example 5 are followed up to the estimation
of equivalent circuit parameters i.e. (from line “clear all” to “ry = ry/zig_base;”).
The continuation command to this for evaluating the constants K5, K6 and K7 are
summarized below in the solution. All these constant are being calculated in per unit
quantities and the base power and base voltage for these calculations is being assumed
equal to IG rating. All the mathematical expression used in writing MATLAB codes
are imported from the Sect. 5.3. Therefore, MATLAB codes are written for getting
the solutions of this example as below.

%%% MATLAB codes for evaluating the value of constants 
, and and input wind power

% copy the program of example 13.5 just before writing 
the codes given below 
% pu parameters at IG base
xeq=xeq/zig_base;
x=x/zig_base;
req=req/zig_base;
r=r/zig_base;
xm=xm/zig_base;
Rp=Rp/zig_base;
ry=ry/zig_base;
Pwind=Rp*vpu^2/(ry^2+xeq^2);
Pconstantloss=0;
Piw=(Pwind+Pconstantloss) % input 
wind power estimation
k5=2*vpu*xeq/(ry^2+xeq^2)
k6=xeq/(Rp-((ry^2+xeq^2)/(2*ry)))
k7=(2*vpu/(ry^2+xeq^2))*(xeq-(Rp*xeq/(Rp-

((ry^2+xeq^2)/(2*ry)))))

qig_fl=(io^2*xm)+(i2^2*xeq);
qig_nl=(io^2*(xm+xeq));
% actual values of full load and no load reactive power 
of IG
qig_fl=qig_fl*sigb
qig_nl=qig_nl*sigb
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Therefore, the results for the above given MATLAB program can be summarized
as,

Wind input power to induction generator = 0.7996 pu

K5 = 1.2617

K6 = 3.9024

K7 = −4.9792

Example 7 A single unit wind and single unit diesel generator are coupled together to
develop an isolated hybrid electrical system. If induction generator and synchronous
generator are used forwind driven power generator and diesel driven power generator
respectively. A 200 kW at 0.9 lagging power factor load is being supplied by this
IHES in which IG and SG are used for supplying power 150 kW at 0.9 lagging power
factor and 250 kW at 0.9 lagging power factor respectively. Other specifications for
SG and IG are same as in Example 3 and 5 respectively. Calculate the reactive power
requirement through reactive power compensator assuming that SG is generating
only mandatory reactive power.

Solution This example is designed to understand the reactive power balance for
IHES during steady state conditions. For the operation of this IHES, reactive power
is required for load and IG which can be supplied by synchronous generator. But it
has been cleared in the problem that SG will generate only the amount of reactive
power equal to mandatory reactive power. So, rest reactive power requirement can
only be fulfilled by any compensator. Mathematically,

Qcom = QL + QIG − QSG

QSG is the mandatory reactive power which has been obtained in Example 3. QIG

is the full load reactive power requirement of induction generator that has already
been evaluated in Example 5.

QSG = 16.1441 kVAR per phase

QIG = 38.4334 kVAR per phase

QL = PL tan
(
cos−1(load power f actor)

)
3

= 32.2881 kVAR per phase

Therefore,

Qcom = 62.6495 kVARper phase
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Example 8 Repeat the Example 7 and find the per unit value of reactive power from
compensator for load 250 kW at 0.9 lagging power factor.

Solution To keep all the quantities at the same base, load power is taken as base
power.

%%% MATLAB codes for evaluating the per unit value of 
reactive power from compensator
clear all
clc
sbase=250;
qsg=16.1441/sbase; % As obtained in example 13.3
qig=38.4334/sbase; % As obtained in example 13.5
pl=250/(3*sbase);
lpf=0.9;
ql=pl*tand(acosd(lpf))
qcom=ql+qig-qsg

Therefore, the results for the above given MATLAB program can be summarized
as,

Reactive power required from compensator = 0.2506 pu kVARper phase

Example 9 Consider a 250 kW, 0.9 lagging power factor exponential type static load
is connected with the IHES as explained in Example 7. If the exponential factor for
static load is 3, find the transfer function Dv for this load as in Eq. (18).

Solution The detail explanation for obtaining the transfer function of exponential
type static load function is beyond the scope of this chapter. In Ref. [50], the detail
documentation for obtaining it is well presented and the same is being used here.

%%% MATLAB codes for evaluating transfer function of 
exponential type static load function
clear all
clc
lpf=0.9; 
vpu=1; % base voltage
Pl=250/3; % per phase load power 
s_base=250; % base power 
q=3; % exponential factor
Ql=Pl*tand(acosd(lpf));
Ql_pu=Ql/s_base;
num=q*Ql_pu;
den=vpu;
TFsl=tf(num,den) % estimation of Dv as in ref. [51]
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Therefore, the results for the above given MATLAB program can be summarized
as,

Load transfer function Dv = 0.4843

Example 10 If reactive power required in Example 8 through reactive power com-
pensator is given by fixed capacitor only, evaluate the constant K8 for FC as shown
in Fig. 8.

Solution Reactive power required from compensator is 0.2506 pu kVAR per phase.
If the same reactive power is supplied through FC only at voltage 1.0 pu, the constant
K8 can be evaluated as K8 = 2V

XC
, where capacitive reactance per phase can be defined

as XC = V 2

QFC
. It is assumed that capacitor bank is delta connected so phase voltage

is same as line voltage.

%%% MATLAB codes for evaluating constant k8 for FC 
clear all
clc
v=1;
qfc=0.2506;
xc=v^2/qfc
k8=2*v/xc

Therefore, the results for the above given MATLAB program can be summarized
as,

Capacitive reactance per phase, XC = 3.9904 pu ohm

K8 = 0.5012

Example 11 Repeat the Example 10, if reactive power required through reactive
power compensator is given by STATCOM only. Evaluate the constants K11 and K12

for STATCOM as shown in Fig. 9.

Solution For the power flow modelling of the STATCOM, the reactive power
expression is given in Eq. (45).

QST = (kVdc)
2BST − kVdcV BST cosα

STATCOM constants K11 and K12 can be expressed as in Eqs. (47) and (48). The
required variable for STATCOM has been evaluated by the author in Ref. [44]. The
same methodology is being followed for evaluating these parameters in this example
and the corresponding expressions are imported in MATLAB codes as given below.
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%%% MATLAB codes for evaluating constant k11 and k12 
for ST 
clear all
clc
p=12; % Number of pulses 
vpu=1;
a_st=1.2; % modulation index for ST
fs=10e3; % Switching frequency for ST
f=50;
qst=0.2506; % Reactive power requirement
m=p*sqrt(6)/(6*pi);
k=1/m;
vac=vpu;
vdc=vac/k;
is=(qst)/(sqrt(3)*vac);
icr=(5/100)*(2*sqrt(2)*is);
lac=(sqrt(2)*vac/(6*a_st*fs*icr));
B=1/(2*pi*f*lac);
alpha=acosd(((k*vdc)^2*B-(qst))/(k*vdc*vac*B));
k11=k*vdc*vac*B*sind(alpha)
k12=-(k*vdc*B*cosd(alpha))

Therefore, the results for the above given MATLAB program can be summarized
as,

K11 = 1.2646

K12 = −3.0653

6 Importance of Dynamic Compensator for Voltage
Control

For IHES showing in Fig. 3, steady state reactive power can be generated for IHES
either by static or by dynamic compensator as depicted by two Examples 10 and 11.
Equation (15) explains that dynamic condition reactive power requirement cannot be
generated by static compensator. To verify this statement and to check any feasibil-
ity of using single static compensators for dynamic changes, only fixed capacitor is
connected as reactive power compensator. A simulink model is developed in MAT-
LAB simulink toolbox window for the IHES components as shown in Fig. 4 except
the STATCOM block. All the constants and parameters are well estimated in the
preceding examples of this chapter. For analyzing the FC behaviour for dynamic
conditions, a 10% step disturbances are given at t = 1 s in input power and load.

Figure 10 clearly demonstrates how the voltage collapse in presence of FC as
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Fig. 10 Voltage collapse for load pattern 1 in presence of static compensator only

only compensator for IHES at t = 1 s. Till t = 1 s IHES demands only steady state
reactive power that can easily be supplied by FC. But, as soon as the disturbances
occur in IHES at t = 1 s, FC alone is not capable to support the system for this
dynamic compensation requirement. On the other side, if cost of compensation is not
a constraint for adopting reactive power compensationmethod, STATCOMcan alone
be used for providing reactive power compensator. A complete simulink diagram for
IHES with ST only as reactive power compensator is presented in Fig. 11.

7 Optimization of Reactive Power Participation

It can be calculated from preceding section that optimized participation of both static
compensator (FC) and dynamic compensator (ST) can be used to get technically and
economically accepted solution of voltage control for any IHES.Amethod for getting
optimum participations of reactive power compensation is proposed in this section
with the help of Fig. 12 in which FC and ST are being connected for supplying
reactive power for IG and Load in presence of SG.

It has already been discussed that cost of fixed capacitor is very low compare to
STATCOM but fixed capacitors do not respond for system under dynamics condi-
tions. STATCOM alone can provide an adequate solution of reactive power com-
pensation for system voltage control but it makes system very costly. For dynamic
conditions, reactive power can only be generated through fast acting dynamic com-
pensating device but steady state reactive power requirement can be planned through
participation of static as well as dynamic compensators so that overall compensation
cost may be reduced. The role of static compensation deforms the voltage response
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Fig. 11 Simulink model for IHPS with SG, IG, ST and CLM

Fig. 12 Simulink block diagram with static and dynamic reactive power compensator
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of the system and hence participation of fixed capacitor with STATCOM should be
optimized up to the extent of voltage variations within the permissible range.

Therefore, an optimization problem is formulated for reactive power participation
using static and dynamic compensators in system but considering two important
aspects;

1. Minimizing the cost of compensation under steady state through participation
of fixed capacitor as static compensator along with STATCOM as dynamic
compensator, and

2. Participation of static compensator with dynamic compensation up to the extent
where system voltage responses remain in its pre defined acceptable range.

The proposed approach allowsminimizing cost function given in Eq. (16). As dis-
cussed earlier, dynamic state reactive power is supplied by STATCOMonly therefore
termCST

(
Qts

ST

)
does not require to add in optimization problem. Therefore, an objec-

tive function J which represents cost function of reactive power compensation as in
Eq. (49) is optimized to find best solution of reactive power compensation in the sys-
tem. Functions of cost for STATCOM and fixed capacitor depend upon the reactive
power released by them;

Objective function

J = CFC
(
Qss

FC

) + CST
(
Qss

ST

)
(49)

Dynamic equations of fixed capacitor and STATCOM are represented by Eqs. (9)
and (10). Their corresponding linear models as given in Figs. 8 and 9 are used in
system’s simulink model as in Fig. 4. This simulink model is used to find volt-
age response of system and reactive power responses for all system components in
presence of both static and dynamic reactive power compensator together. Voltage
responses for different participations between fixed capacitor and STATCOM can be
tracked and used to decide the final acceptable system response.

Mathematically, reactive power must remain balance in the system and corre-
sponding expressions for equality constraints can be written as;

Equality constraints

Qdemand = Qrelease (50)

Qdemand = QIG + QL − QST (51)

Qrelease = Qss
FC + Qss

ST (52)
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Equation (52) explains that steady state reactive power is fulfilled by fixed capac-
itor and STATCOM. Optimized value of reactive power through STATCOM and
fixed capacitor will be chosen with pre-acceptable range of voltage response. Reac-
tive power released by STATCOM and fixed capacitors must be within the range as
in Eqs. (53) and (54). Equations (55) and (56) define pre-acceptable range of voltage
response for the system.

Inequality constraints

0 ≤ Qss
ST ≤ Qdemand (53)

0 ≤ Qss
FC ≤ Qdemand (54)

Vmin ≤ �V ≤ Vmax (55)

settling time ≤ settling timeacceptable (56)

Stability constraints
Systemvoltage deviates due to load and input disturbances from its steady state value.
The voltage deviation should reach to zero as earliest by the additional reactive power
generation by the static and dynamic compensators. In other words, system should
remain stable.

Acceptable range of voltage response should be decided first as described in
Eqs. (55) and (56). Previously available papers suggest use of STATCOM only for
reactive power compensation in isolated hybrid power system. In this work, optimum
values of static and dynamic compensators are obtained. Therefore, two cases can
be defined for comparative study of compensation cost analysis.

• Case I: STATCOM alone is used for reactive power compensation in the system.
• Case II: Participation of both fixed capacitor and STATCOM is used for reactive
power compensation in the system.

To find the participation of compensators for getting system voltage response
within the predefined acceptable range, a reference voltage is required. Though, this
decision must be based on mutual acceptance of power quality between end user and
electricity producers (private investors) in terms of system voltage quality. In this
optimizing problem, characteristic parameters from voltage response are obtained in
case I and these are used as a reference for deciding acceptable range of parameters
for case II.
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Fig. 13 Flow chart for reactive power compensation cost determination

For deciding the optimize participation of static and dynamic compensators, num-
ber of samples for reactive power generation from fixed capacitor and STATCOM
are developed satisfying Eq. (52) by gradually increasing reactive power gener-
ation through fixed capacitor and decreasing reactive power generation through
STATCOM.

For each sample, system voltage response is tracked and compared with pre-
defined values and finally, reactive power participation is selected for optimum value
of compensation cost. A flowchart showing algorithm for proposed optimization of
compensation cost is presented in Fig. 13.

Example 12 Develop a simulink block diagram for an IHES with 150 kW IG and
100 kW SG. Plot the voltage response for the system if 10% step disturbance
occurs in connected load of rating 250 kW and wind input power. Other ratings
and specifications are same as in preceding examples.

Solution Figure 4 represents the complete simulink diagram for IHES.This simulink
diagram is developed onMATLAB simulinkmodel windowwith the help of required
constants that are developed as in preceding examples. It should be noted that all the
constants and parameters must be estimated on a common base values and therefore
load values of voltage and power is taken as base power now. The constant are;
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k1 = 0.1500; k2 = 0.7750; k3 = 2.4315; k4 = −2.9368; k5 = 0.7570; k6 =
3.9024; k7 = −2.9875; k11 = 1.2646; k12 = −3.0653

A 10% step disturbances in wind input power and load reactive power is produced
in simulink model with the help of source block parameter from the simulink library
browser. STATCOM block diagram represented in Fig. 9 demonstrates regulator
block. In Ref. [44], complete detail of STATCOM is given and same is used here. PI
controller is used as regulator and the value of constants can be estimated using ISE
criterion [51]. Algorithm to develop voltage response can be summarized as follows;

1. Develop reactive power required form STATCOM after evaluating the reactive
power for SG, IG, and Load as in Examples 3, 5 and 7.

2. Evaluate gain constants for SG as estimated in Example 4.
3. Evaluate gain constants for IG as estimated in Example 6.
4. Evaluate gain constants for ST as estimated in Example 11.
5. Develop the constants for reactive power balance equation as given in Eq. (18).
6. Club all the IHES components together as presented in Fig. 4 at MATLAB

simulink model window.
7. Define input wind power and load disturbance in simulink model disturbances.
8. Estimate the PI controller gain constants for STATCOM linear model.
9. Run the MATLAB codes having all the above discussed information. Simulink

model is called in this MATLAB program and all the required information can
be imported to simulink model through MATLAB codes.

10. Develop the required responses for the IHES like voltage response etc.

Figure 14 explains the voltage response for IHES when only STATCOM is used
for supplying reactive power compensation. Due to disturbances at time 1 s, voltage
starts to deviate and demand additional reactive power from the system to stabilize

Fig. 14 Voltage response for ST as reactive power compensator
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the system voltage. To control the voltage STATCOM starts acting and generate
additional required reactive power to control the voltage. The maximum voltage
deviation is 0.01873 pu andminimumdeviation is−0.04498 puwhile system voltage
steles down at time 1.033 s.

Example 13 Find the reactive power compensation cost for IHES in Example 12.

Solution The expression for compensation cost through STATCOM,

CST = 1000 ∗ QST

8760 ∗ 15

(
0.0002466Q2

ST − 0.2243QST + 150.527
)
$/H

QST = 0.2506 pu MVAR

Using the mathematical expressions given above, MATLAB codes are written for
getting the solutions of this example as below.

%%% MATLAB codes for compensation cost through STATCOM 
(ST)
>>clear all;
>>clc;
>>Q_st=0.2506; % pu MVAr generated
>> pl_base =250; 
% compensation cost through ST by converting pu in MVAR
>>cost_Qst_ref=(1000.*(Q_st.*pl_base./1000)./(8760.*15)

).*((0.0002466.*Q_st.*Q_st)-(0.2243.*Q_st)+150.527)

The results for the program given above are;

Compensation cost through ST = 0.0717 $ per H

Example 14 For the voltage response developed in Example 12, find the transient
parameters such as voltage dip, voltage rise and rise time.

Solution For the voltage response developed in Example 12, transient parameters
can be evaluated by using the MATLAB codes as written below;
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% evalaution of the transient parameters for the known 
voltage response
sim('NAME_OF_MDL_FILE_STORED') % Syntax for running the 
simulink model form MATLAB code 
% From volatge response stored in workspace of simulink 
model, time and volatge array can be seperated as
plot_t=sim_v.time;
plot_v=sim_v.signals.values;
% Reference voltage parametrs can be evaluated by these 
two commands
V_par1=lsiminfo(plot_v,plot_t)
V_par2=stepinfo(plot_v,plot_t)
% syntax to get all parametrs saprately 
V_data11=struct2cell(V_par1)
V_data1=cell2mat(V_data11)
V_data22=struct2cell(V_par2)
V_data2=cell2mat(V_data22)
Settlingtime=V_data1(1)
Voltagedip=V_data1(2)
Voltagerise=V_data1(4)
Risetime=V_data2(1)

Therefore, the results for the above given MATLAB program can be summarized
as,

Settling time = 1.0199 s

Voltages dip = −0.0450 pu

Voltage rise = 0.0187 pu

Example 15 Consider the settling time, voltage dip and voltage rise obtained in
Example 14 as a reference parameters. Define the predefined acceptable range of
voltage response (i.e. inequality constraints) for optimization procedure.

Solution Energy policies and recommendations of international standard IEC
60038, the voltage permissible range at load end is±10%.Voltage response produced
for IHES through STATCOM only as a reactive power compensator is assumed as
reference response for achieving optimization participation of FC and ST. Therefore,
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Reference value for voltage dip = −0.0450 pu
Reference value for voltage rise = 0.0187 pu
Reference value for settling time = 1.0199 s

The predefined acceptable range of voltage response (i.e. inequlity constraints)
for optimization procedure is assumed to be,

Acceptable voltage rise ⇐ voltage rise + 0.05
Acceptable voltage dip ⇐ |voltage dip| + 0.05
Acceptable voltage settling time ⇐ settling time + 0.01

Example 16 Find the optimized participation for reactive power compensation using
FC along with ST for this IHES keeping voltage control in its predefined acceptable
range.

Solution In Example 13, compensation cost is given when ST is only used for
reactive power compensation. Example 14 provides the voltage response transient
parameters for the Fig. 14 given as the solution of Example 12. As explained earlier
that dynamic condition requirement can only be given by ST only while to reduce the
compensation cost FCcan be introducedwith ST for fulfilling the steady state reactive
power demand. To make a technical acceptable solution for participations of static
and dynamic compensator together, an acceptable solution should be decided first.
The acceptable range of voltage response (i.e. inequality constraints) for optimization
procedure is estimated inExample 15. Equality constraint for optimization problem is
that total reactive power requirement should be the sumof reactive power fromFCand
reactive power fromST.Procedure for getting the optimized solutionof compensation
cost is defined through flow chart given in Fig. 13. A MATLAB code is developed
in which numbers of samples are generated by increasing the reactive power from
FC gradually and decreasing the reactive power from ST gradually keeping the sum
of required compensation constant always. For each sample, voltage response is
achieved and compared with the transient responses reference value as in Example
14. All the samples having their transient responses with in predefined acceptable
range are sorted from the total number of samples. Out of these sorted samples,
a sample having least compensation cost is selected as optimized participation of
reactive power compensation. Therefore, MATLAB codes can be written for getting
the solutions of this example as below;
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% MATLAB code is continued after clubbing all preceding 
examples codes together
% variable “loop_ref” shows an array for all reference 
parameters
loop_ref=[cost_Qst_ref,cost_Qfc_ref,settlingtime_ref,ma
xvoltage_ref, minvoltage_ref];
% For producing number of samples satisfying equality 
constraints
ql; qig; qsg; 
qcom=ql+qig-qsg;
Qst_upper=qcom; Qst_lower=0; 
Qfc_upper=qcom; Qfc_lower=0;
Qdemand=qig+ql; % total reactive power demand in the 
system 
count1=0; sample=1000; % 1000 samples are considered
Qsg=qsg;
Qfc=linspace(Qfc_lower,Qfc_upper,sample); % initialize 
the reactive power from FC
% for producing the samples for FC and ST participa-
tion satisfying equality constraints 
for n1=1:sample
x111=Qfc(n1);
x333=-x111-Qsg+Qdemand;
if x333<=Qst_upper && x333>=Qst_lower
count1=count1+1;
Q_fc(count1)=x111;
Q_st(count1)=x333;
end
end
count1; % it gives number of samples
possible_participation=[Q_st' Q_fc']; % the values of 
each participation between ST and FC
%%%% cost calculation for each sample 
cost_Qfc=0.132.*(Q_fc.*(pl_base)./1000);
cost_Qst=(1000.*(Q_st.*pl_base./1000)./(8760.*15)).*((0
.0002466.*Q_st.*Q_st)-(0.2243.*Q_st)+150.527);
cost=cost_Qfc+cost_Qst;
cost_Q=[Q_st' Q_fc' cost_Qfc' cost_Qst' cost'] % matrix 
for cost comparison for each sample data 
% transient study parameters for all sample data 
for n=1:(count1-1)
costofQ(n)=cost(n);
% Fixed Capacitor constant for each sample 
xc=vac*vac/(Q_fc(n));
k12=2*vpu/xc;
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% STATCOM constants for each sample
m=p*sqrt(6)/(6*pi);
k=1/m;
vdc=vac/k;
is=(Q_st(n))/(sqrt(3)*vac); % in Ampere
icr=(5/100)*(2*sqrt(2)*is);
lac=(sqrt(2)*vac/(6*a_st*fs*icr)); % in henry
B=1/(w*lac);
alpha=acosd(((k*vdc)^2*B-(Q_st(n)))/(k*vdc*vac*B));
k11=k*vdc*vac*B*sind(alpha);
k12=-(k*vdc*B*cosd(alpha));
% variables for running simulink model of IHES 
qsg;
qst=Q_st(n);
qfc=Q_fc(n); 
sim('simforpaperkW');
 n 
plot_t=sim_v.time;
plot_v=sim_v.signals.values;
% To check the voltage response stable condition 
z=size(plot_v);
z=z(1,1);
counter=0;
vforlocalmaxima=plot_v;
for zz=2:z-1 
if vforlocalmaxima(zz)>0
if vforlocalmaxima(zz)>vforlocalmaxima(zz+1) && vfor-
localmaxima(zz)>vforlocalmaxima(zz-1)
counter=counter+1;
local_maxima(counter)=vforlocalmaxima(zz);
end
end
end
if local_maxima(1)>local_maxima(2) 
loop_1=lsiminfo(plot_v,plot_t);
loop_2=stepinfo(plot_v,plot_t);
loop_data11=struct2cell(loop_1);
loop_data1=cell2mat(loop_data11);
loop_data22=struct2cell(loop_2);
loop_data2=cell2mat(loop_data22);
loop_setlingtime_opt(n)=loop_data1(1);
loop_minvoltage_opt(n)=loop_data1(2);
loop_maxvoltage_opt(n)=loop_data1(4);
loop_risetime_opt(n)=loop_data2(1);
loop_overshoot_opt(n)=loop_data2(5);
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loop_undershoot_opt(n)=loop_data2(6);
else
loop_setlingtime_opt(n)=100;
loop_minvoltage_opt(n)=100;
loop_maxvoltage_opt(n)=100;
loop_risetime_opt(n)=100;
loop_overshoot_opt(n)=100;
loop_undershoot_opt(n)=100;
end
end
pi_sample_array=[costofQ' loop_settlingtime_opt' 
loop_maxvoltage_opt' loop_minvoltage_opt']
%%%%% for pi based sample sorting 
count3_loop=0;
for count2_loop=1:count1-1 
if
loop_maxvoltage_opt(count2_loop)<=maxvoltage_ref+0.05 
&& 
abs(loop_minvoltage_opt(count2_loop))<=abs(minvoltage_r

&&50.0+)fe
loop_setlingtime_opt(count2_loop)<=settlingtime_ref+.01
count3_loop=count3_loop+1;
loop_Q_st(count3_loop)=Q_st(count2_loop);
loop_Q_fc(count3_loop)=Q_fc(count2_loop);
loop_cost_Qfc(count3_loop)=cost_Qfc(count2_loop);
loop_cost_Qst(count3_loop)=cost_Qst(count2_loop);
loop_cost(count3_loop)=cost(count2_loop);

loop_MMaxvalue_Vr(count3_loop)=loop_maxvoltage_opt(coun
t2_loop);

loop_MMinvalue_Vr(count3_loop)=loop_minvoltage_opt(coun
t2_loop);

loop_rrisetimevalue(count3_loop)=loop_risetime_opt(coun
t2_loop);

loop_ssettlingtimevalue(count3_loop)=loop_setlingtime_o
pt(count2_loop);
end
end
count3_loop;
loop_sample_array1=[loop_cost' loop_ssettlingtimevalue'
loop_MMaxvalue_Vr' loop_MMinvalue_Vr']
%loop_oovershoot_opt' loop_uundershoot_opt'
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mincost = min(loop_cost);
for z=1:count3_loop
nit=loop_cost(z);
if nit==mincost
break
end
end
z;
% Hence solution for optimize participations of FC and 
ST are 
qst=loop_Q_st(z)
qfc=loop_Q_fc(z) 
qst_cost=loop_cost_Qst(z)
qfc_cost=loop_cost_Qfc(z)
total_cost=loop_cost(z)

Therefore, the results for the above given MATLAB program can be summarized
as,

Reactive power from ST = 0.0936 pu MVAR
Reactive power from FC = 0.1570 pu MVAR
Compensation cost from ST = 0.0268 $ per h
Compensation cost from FC = 0.0052 $ per h
Total Compensation cost for optimized participation = 0.0320 $ per h

Example 17 Compare the voltage response for IHES for reference case having ST
only and optimized participation of reactive power compensation using FC and ST
together. Also compare the settling time, voltage dip and voltage rise, reactive powers
from FC and ST and compensation costs in both the cases.

Solution The voltage responses are obtained by expanding the MATLAB codes
given in Example 16. The voltage response comparison is given in Fig. 15 and the
settling time, voltages dip and voltage rise in both the cases are tabulated in Table 2.

8 Conclusion and Future Scope

This chapter explains the economical benefits of hybrid participations of static and
dynamic reactive power compensators in voltage control studies for IHES. It is elab-
orated how the rating of a STATCOM can be reduced with the use of an FC so that
the overall compensation cost may be reduced up to the extent of voltage variation
within the permissible range. The use of dynamic compensator (STATCOM) alone
gives a technically viable solution, but the introduction of static compensator (FC)
can provide a technically and economically viable solution. Results explain how
the total compensation cost can be reduced by introducing static compensator along
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Fig. 15 Voltage response comparison for ST alone and ST & FC together as reactive power
compensator

Table 2 Comparative study
of transient parameters for
voltage response

Response parameters ST only ST + FC

Settling time (s) 1.016 1.028

Voltage dip (pu) −0.04498 −0.09493

Voltage rise (pu) 0.01873 0.05562

Reactive power from FC
(pu,MVAR)

0 0.1570

Reactive power from ST
(pu,MVAR)

0.2506 0.0936

Compensation cost from FC ($ per
hour)

0 0.0052

Compensation cost from ST ($ per
hour)

0.0717 0.0268

Total compensation cost ($ per
hour)

0.0717 0.0320

with dynamic compensator for generating reactive power for steady state conditions.
MATLAB codes are developed for choosing the optimized participations of FC and
STATCOM for voltage control studies in IHES. In this chapter, main objective was
towards the achievement of optimize participation of reactive power compensation
using FC and STATCOM for getting an economical viability of reactive power com-
pensation as ancillary service for the remote area situated consumers. Still, this study
has enormous future research scopes in the area of reactive power compensation and
voltage control in terms of advance methods to estimate exact parameters of induc-
tion generator,modelling of other FACTSdevice for getting compensation techniques
technically and economically, study with online load scheduling, estimation of gain
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constants of regulator used in FACTS devices by advanced algorithm, introducing
to IHES in grid connected system etc.

Key Terms and Their Definitions

Static Compensator: Compensating devices for those reactive power generations
can not be changed depending on the time.
DynamicCompensator: Compensating devices for those reactive power generations
can be changed easily as per requirement with time.
Reactive power compensators: To control the system voltage, an additional reactive
power is supplied to the system. Such devices are called reactive power compensator.
Compensation cost: Cost asked by the power seller for providing the compensation
in system. The actual compensation cost depends on the type of the device used
because each device has its own cost function.
Ancillary services: Ancillary services are defined as the additional services provided
by the power seller to upgraded the power quality for utility.

MATLAB Code
MATLAB Codes are given within the chapter with examples.
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Backward-Forward Sweep Based Power
Flow Algorithm in Distribution Systems

Farkhondeh Jabari, Farnaz Sohrabi, Pouya Pourghasem
and Behnam Mohammadi-Ivatloo

Abstract As we know, Newton-Raphson method cannot find optimum operating
points of radial and meshed distribution systems due to high R/X ratio of feeders. To
solve this problem, backward-forward sweep (BFS) load flow algorithm is presented
by scholars. This chapter aims to presentMATLAB codes of BFS power flowmethod
in a benchmark distribution grid. Feeder capacity and voltage magnitude limit are
considered in finding a good operating point for test grid. Input data such as bus
and line information matrices are presented in MATLAB codes. Simulations are
conducted on IEEE-33 bus radial distribution system. Feeder current, bus voltage
magnitude, active and reactive power flowing in or out of buses, total real power
losses system are found as outputs of BFS load flow approach.

Keywords Backward-forward sweep · Load flow analysis · Feeder current
capacity · Bus voltage limit · Active power losses
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Ṡ Power injected to node i
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İ k+1
i Current of branch i in (k + 1)th iteration
İ k+1
j Current of branch j in (k + 1)th iteration
Z j Impedance of branch j
V̇ k+1
j Voltage of bus i in (k + 1)th iteration

V̇ k+1
j Voltage of bus j in (k + 1)th iteration

Floss Total real power losses as objective function
gi, j Conductance of branch i to j
Vi Voltage magnitude of bus i
Vj Voltage magnitude of bus j
θi Voltage angle of bus i
θ j Voltage angle of bus j
nl Total number of branches
Ib Current of branch b

1 Introduction

As known, load flow analysis of distributed power systems is used for finding feeder
current value, bus voltage magnitude and angle, active and reactive power losses,
steady-state voltage stability assessment, etc. [1, 2]. Conventional Newton-Raphson
and fast decoupled power flow methods fail in finding operating point of distribution
systems because of [3]:

• High R/X ratio of feeders
• Weak meshed distribution systems
• Unbalanced system.

Hence, backward-forward sweep (BFS) algorithm is proposed by scholars to solve
this problem [4]. In this approach, there is no need to Jacobian matrix of Newton-
Raphson method [5]. Moreover, computational burden and calculation time of BFS
algorithm is lower than those of conventional Newton-Raphson and fast decoupled
power flowmethods [6]. In [7], BFS load flowmethod uses a load-impedance matrix
for fast and computationally efficient calculation of bus voltage magnitude in radial
and weakly meshed distribution grids. Latin hypercube sampling based Cholesky
decomposition (LHS-CD) technique is developed by Kabir et al. [8] for probabilistic
load flow analysis of distribution systems under uncertain generations of photovoltaic
(PV) cells. It is found that LHS-CD is faster than Monte Carlo simulations [9],
point estimationmethod [10, 11], Gram–Charlier expansion [12], and Cornish Fisher
expansion [13, 14], fuzzy [15, 16], interval arithmetic [17] algorithms. In [18], BFS
based three phase power flow approach is implemented on radial distributed systems
using Kirchhoff’s current and voltage laws to compute the voltage magnitude of the
upstream buses based on active and reactive power injections of end buses. Then, the
voltage magnitude of the downstream nodes are updated in forward sweep stage. In
[19], ZIP load model is incorporated into linear three phase power flow calculation
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of balanced and unbalanced distribution systems. In [20, 21], various connections
of transformers are considered in BFS power flow analysis. In [22], an interval
arithmetic based backward-forward sweep algorithm is used to model two lower
and upper bounds of uncertain loads for balanced radial distribution system power
flow analysis. However, upper and lower ranges estimated by interval arithmetic
approach tend to be large especially in long iterative computations while ignoring
the correlation of different variables [23].

As reviewed, different deterministic and probabilistic power flow algorithms have
recently been introduced by researchers to find the bus voltage profile and the branch
current vector of buses and feeders in radial and meshed distribution systems. But,
MATLAB codes of BFS load flow algorithm has not been presented yet. Therefore,
this chapter presents a comprehensive MATLAB code for power flow calculation of
radial and meshed distribution grids. Other sections of this chapter are organized as
follows: A comprehensive problem formulation is presented in Sect. 2. Simulation
results and discussions are provided in Sect. 3. Finally, concluding remarks appear
in Sect. 4.

2 Forward-Backward Sweep Power Flow

In this section, backward forward approach is introduced. By considering a sample
distribution system as shown in Fig. 1, the injected current to the ith node can be
calculated as Eq. (1).

J̇ k+1
i =

(
Ṡi

V̇ (k)
i

)∗
− Ẏi V̇

(k)
i (1)

where,

J̇ k+1
i : Injected current to node i in (k + 1)th iteration
V̇ (k)
i : Voltage of node i in kth iteration

Ṡi : Power injection of node i
Ẏi : Parallel admittance of node i.

Fig. 1 A simple radial
distribution network
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Backward sweep
In this step, sum of all currents injecting to branch i is obtained from Eq. (2).

İ k+1
i = − J̇ k+1

i +
∑
j∈Ci

İ k+1
j (2)

where,

İ k+1
i : Current of branch i in (k + 1)th iteration
İ k+1
j : Current of branch j in (k + 1)th iteration

Forward sweep
In this process, according to obtained current in backward process, new value of bus
voltage is formulated by Eq. (3).

V̇ k+1
j = V̇ k+1

i − İ k+1
j × Z j (3)

In which,

Z j : Impedance of branch j
V .k+1
i : Voltage of bus i in (k + 1)th iteration

V .k+1
j : Voltage of bus j in (k + 1)th iteration

Finally, in order to finalize power flow calculations, limitation (4) should be satis-
fied; otherwise, Eqs. (2) and (3) will be repeated. Total active power loss is calculated
as Eq. (4).

Floss =
nl∑

i, j=1
i �= j

gi, j
[
V 2
i + V 2

j − 2ViVj cos(θi − θ j )
]

(4)

where,

Floss : Total real power loss as objective function
gi, j : Conductance of branch i to j
Vi and Vj : Voltage magnitude of buses i and j, respectively
θi and θ j : Voltage angle of buses i and j, respectively
nl : Total number of branches.

3 Case Study and Discussions

In this section, a backward-forward sweep load flow algorithm is coded using MAT-
LAB software. According to MATLAB codes are presented in MATLAB Code
section, a 33-bus radial distribution system [24] is considered to for implementation
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of BFS sweep method. The single line diagram of IEEE 33-bus radial distribution
system is illustrated in Fig. 2. The bus data matrix is defined as “bdata.not.per.unit”.
The fist column of this matrix refer to number of nodes. Active and reactive power
consumptions in each bus is presented at second and third columns of bus data matrix
in kW and kVAr, respectively. Similarly, “ldata.not.per.unit” is line data matrix of
33-bus radial benchmark network. In each row of branch informationmatrix, number
of starting and ending point of each line is determined using bus numbers. The third
and fourth columns of the line data matrix represent the resistance and reactance
of each branch in Ohm, respectively. Figure 3 shows the voltage profile of the test
system after implementation of BFS power flow algorithm. Moreover, the bus volt-
age angle and the current flowing in or out of buses are reported in Tables 1 and 2,
respectively. Active and reactive power flows through each feeder are presented in
Table 3. As obvious from this table, total active and reactive power losses are equal
to 129.6 kW and 94.9 kVAr, respectively.

4 Conclusion

Because of high R/X ratio of feeders and weak or unbalanced structure of radial dis-
tribution systems, Newton-Raphson and fast decoupled power flow calculations fail
in finding the feasible operating point of the system. Meanwhile, backward-forward
sweep is a useful tool to solve this problem. In this chapter, the mathematical formu-
lation and the MATLAB codes of the backward-forward sweep load flow analysis
was presented. The bus information matrix consist of active and reactive power con-
sumption/injection of the buses were considered as the input load-generation data.
Moreover, the line data matrix composed of the resistance and the reactance of the
branches were presented as the impedance parameter of the feeders. The bus volt-
age magnitude and angle, the feeder current magnitude and phase, the active and
reactive power flows, total real and reactive power losses were obtained using BFS
algorithm. MATLAB codes not only carries out the power flow calculation, but also
is able to draw the single line diagram of the test system based on the line and bus data
matrices. In addition, the codes can find the best operating point of the meshed distri-
bution grids by entering the bus and the line information matrices and the base MVA
and voltage level. As the future trend, it is recommended that the MATLAB codes
will be implemented on a meshed distribution system to demonstrate the robustness
and applicability of the BFS algorithm in finding the good solutions for different
distribution systems.
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Fig. 2 Single line diagram
of IEEE 33-bus radial
distribution system
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Fig. 3 The voltage profile of the test system after application of BFS sweep load flow method

Table 1 The bus voltage
angle obtained from BFS
algorithm

Bus number Voltage angle (°)

1 0

2 0.0393

3 0.2956

4 0.5004

5 0.7074

6 0.6961

7 0.4520

8 0.4807

9 −2.5124

10 −2.4837

11 −2.4834

12 −2.4890

13 −2.7604

14 −2.9852

15 −3.0938

16 −3.1625

17 −3.3823

18 −3.4107

19 −0.0564

20 −0.7814

21 −1.0699

22 −1.6163

23 0.2010

(continued)
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Table 1 (continued) Bus number Voltage angle (°)

24 −0.0696

25 −0.2028

26 0.8114

27 0.9753

28 1.2299

29 1.4654

30 1.7705

31 1.5377

32 1.4739

33 1.4524

Table 2 The feeder current
obtained from BFS algorithm

From bus To bus Branch current (A) (*100)

1 2 0.0000 + 0.0000i

2 3 1.0030 − 0.6015i

3 4 0.9130 − 0.4040i

4 5 1.2250 − 0.8117i

5 6 0.6156 − 0.3048i

6 7 0.6230 − 0.2050i

7 8 2.0792 − 1.0331i

10 9 2.0816 − 1.0339i

11 10 0.6213 − 0.2168i

12 11 0.6210 − 0.2166i

12 13 0.4636 − 0.3184i

13 14 0.6185 − 0.3723i

14 15 0.6215 − 0.3755i

15 16 1.2431 − 0.8588i

16 17 0.6275 − 0.1157i

17 18 0.6265 − 0.2211i

2 19 0.6274 − 0.2223i

19 20 0.9396 − 0.4391i

20 21 0.9038 − 0.4020i

21 22 0.9136 − 0.4108i

3 23 0.9161 − 0.4137i

23 24 0.9199 − 0.4188i

24 25 0.9161 − 0.5076i

6 26 4.3002 − 2.0498i

26 27 4.3130 − 2.0598i

27 28 0.6245 − 0.2569i

28 29 0.6263 − 0.2570i

29 30 0.6332 − 0.2063i

(continued)
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Table 2 (continued) From bus To bus Branch current (A) (*100)

30 31 1.2797 − 0.7326i

31 32 2.1930 − 6.3693i

32 33 1.6105 − 0.7349i

22 12 2.2566 − 1.0520i

Table 3 Active and reactive
power flows in or out of buses

From bus To bus Active power
(kW)

Reactive power
(kVAr)

1 2 10.9824 5.6818

2 3 30.1114 15.3367

3 4 2.9507 1.5027

4 5 9.6823 4.9314

5 6 5.4544 4.7085

6 7 4.1038 13.5655

7 8 14.5289 4.8014

10 9 1.3028 0.9234

11 10 2.1453 0.7093

12 11 0.1168 0.0386

12 13 0.0366 0.0288

13 14 0.0541 0.0712

14 15 0.1185 0.1054

15 16 1.1386 0.8315

16 17 1.4557 1.9435

17 18 0.3699 0.2901

2 19 0.0517 0.0493

19 20 0.2450 0.2207

20 21 0.0248 0.0290

21 22 4.7677 6.3038

3 23 2.4861 1.6987

23 24 3.9653 3.1312

24 25 3.0843 2.4134

6 26 1.0963 0.5584

26 27 0.3837 0.1954

27 28 10.5402 9.2931

28 29 7.2755 6.3383

29 30 4.1860 2.1322

30 31 6.3257 6.2517

31 32 0.4272 0.4979

32 33 0.1968 0.3060

22 12 0.0649 0.0649

Whole system 129.6 94.9
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MATLAB Code

clear all
close all
clc 
bdata.not.per.unit=[%Bus P(Kw) Q(Kvar)
    1 0 0 
    2 120 72 
    3 108 48 
    4 144 96 
    5 72 36 
    6 72 24 
    7 240 120 
    8 240 120 
    9 72 24 
    10 72 24 
    11 54 36 
    12 72 42 
    13 72 42 
    14 144 96 
    15 72 12 
    16 72 24 
    17 72 24 
    18 108 48 
    19 108 48 
    20 108 48 
    21 108 48 
    22 108 48 
    23 108 60 
    24 504 240 
    25 504 240 
    26 72 30 
    27 72 30 
    28 72 24 
    29 144 84 
    30 240 720 
    31 180 84 
    32 252 120 
    33 72 48 ]; 
ldata.not.per.unit=[ 

% Inbus Outbus Resistance(ohm) Reactance(ohm)
    1 2 0.0922 0.0470 
    2 3 0.4930 0.2511 
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    7 8 0.7114 0.2351 
    8 9 1.0300 0.7400 
    9 10 1.0440 0.7400 
    10 11 0.1966 0.0650 
    11 12 0.3744 0.1238 
    12 13 1.4680 1.1550 
    13 14 0.5416 0.7129 
    14 15 0.5910 0.5260 
    15 16 0.7463 0.5450 
    16 17 1.2890 1.7210 
    17 18 0.7320 0.5740 
    2 19 0.1640 0.1565 
    19 20 1.5042 1.3554 
    20 21 0.4095 0.4784 
    21 22 0.7089 0.9373 
    3 23 0.4512 0.3083 
    23 24 0.8980 0.7091 
    24 25 0.8960 0.7011 
    6 26 0.2030 0.1034 
    26 27 0.2842 0.1447 
    27 28 1.0590 0.9377 
    28 29 0.8042 0.7006 
    29 30 0.5075 0.2585 
    30 31 0.9744 0.9630 
    31 32 0.3105 0.3619 
    32 33 0.3410 0.5302]; 
sizbdata=size(bdata.not.per.unit); 
busnum=sizbdata(1,1); 
sizldata=size(ldata.not.per.unit); 
branchnum=sizldata(1,1); 
%per unit calculation:
Sbase=10^3; 
Vbase=12.66*10^3; 
Zbase=Vbase^2/Sbase; 
bdata=bdata.not.per.unit; 
ldata=ldata.not.per.unit; 
for n=1:busnum 
    bdata(n,2)=(bdata(n,2)*1000)/Sbase; 
    bdata(n,3)=(bdata(n,3)*1000)/Sbase; 
end

    3 4 0.3660 0.1864 
    4 5 0.3811 0.1941 
    5 6 0.8191 0.7070 
    6 7 0.1872 0.6188 
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terminatebus=zeros(busnum,1); 
intermediatebus=zeros(busnum,1); 
junctionbus=zeros(busnum,1); 
junctionnum=zeros(busnum,1); 
refbus=0; 
busI=zeros(busnum,1); 
v=ones(1,busnum); 
I=zeros(busnum,busnum); 
for k=1:busnum 
    co=0; 
    l=0; 

for n=1:branchnum 
if ldata(n,1)==k 

            co=co+1; 
end

end
if co==0 

        terminatebus(k,1)=k; 
elseif co>=2 

        junctionbus(k,1)=k; 
        junctionnum(k,1)=co; 

elseif co==1 
for m=1:branchnum 

            l=l+1; 
if ldata(m,2)==k 

                intermediatebus(k,1)=k; 
break

elseif l==branchnum 
                refbus=k; 

end
end

end
end
junctionbus; 
intermediatebus; 
terminatebus; 
refbus;
junctionnum; 
tempterminatebus=terminatebus; 
controljunctionnum=zeros(busnum,1); 
k=0;
c=0;

for n=1:branchnum 
    ldata(n,3)=ldata(n,3)/Zbase; 
    ldata(n,4)=ldata(n,4)/Zbase; 
end
%per unit calculation finished
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%backward sweep
while c==0 

        k=k+1; 
        juncnum=0; 
        n=0; 
        stop=0; 
        previousI=0; 

if tempterminatebus(k,1)==k 
while(n<branchnum)&&(stop==0) 

                n=n+1; 
if ldata(n,2)==k 

                    a=ldata(n,1); 
if a==refbus 

                        c=1; 
end

                    I(a,k)=busI(k)+(bdata(k,2)-
1i*bdata(k,3))/conj(v(k))+previousI; 
                    previousI=I(a,k); 
                    tempterminatebus(k,1)=0; 

if junctionbus(a,1)==a 
                        busI(a)=busI(a)+I(a,k); 
controljunctionnum(a,1)=controljunctionnum(a,1)+1; 

if
controljunction-num(a,1)==junctionnum(a,1) 
                            tempterminatebus(a,1)=a; 

end
break

end
                    k=a; 
                    n=0; 

end
end

            k=0; 
end

end
%end of backward sweep
%forward sweep

    count=0; 
    beforev=v; 
    newldata=ldata; 
    stop1=0; 
    forwardbus=zeros(busnum,1); 
    c=0; 
    stopif=0; 

itecount=0; 
for s=1:15 %iteration
    itecount=itecount+1; 
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while stop1==0 
for k=1:branchnum 

if(newldata(k,1)==refbus)&&(stopif==0) 
                c=refbus; 

if junctionbus(refbus,1)==refbus 
                    forwardbus(refbus,1)=1; 

end
                stop2=0; 

while 1 
                    a=newldata(k,2); 
                    z=newldata(k,3)+1i*newldata(k,4); 
                    v(a)=v(c)-z*I(c,a); 
                    newldata(k,:)=0; 

if junctionbus(a,1)==a 
                        forwardbus(a,1)=1; 

end
if terminatebus(a,1)==a 

                        stopif=1 ; 
                        stop1=1; 

break
end
for n=1:branchnum 

if ldata(n,1)==a 
                            c=a; 
                            k=n; 

break
end

end
end

end
end

end
    stop3=0; 

while stop3==0 
        stopif1=0; 

for k=1:busnum 
if (forwardbus(k,1)==1)&& (stopif1==0) 

                stop4=0; 
while stop4==0 

                    stopif2=0; 
                    hhh=0; 
                    counter=0; 

for n=1:branchnum 
                        counter=counter+1; 

if (newldata(n,1)==k)&& 



Backward-Forward Sweep Based Power Flow Algorithm … 379

(stopif2==0) 
                            hhh=1; 
                            c=k; 
                            a=newldata(n,2); 
z=newldata(n,3)+1i*newldata(n,4);
                            v(a)=v(c)-z*I(c,a); 
                            newldata(n,:)=0; 

if junctionbus(a,1)==a 
                                forwardbus(a,1)=1; 

end
if terminatebus(a,1)==a 

if newldata==0 
                                    stopif1=1; 
                                    stop3=1; 
                                    stopif2=1; 
                                    stop4=1; 

break
end

                                stopif2=1; 
                                stop4=1; 

end
                            k=a; 
                            stopif2=1; 

end
if (counter==branchnum) && 

(hhh==0) 
                            stop4=1; 

end
end

end
end

end
end
%end of forward sweep
for p=2:busnum 

if abs(v(p)-beforev(p))<=0.000001 
            count=count+1; 

end
end
if count==(busnum-1) 

break
end

end
%data display
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voldisp=zeros(busnum,3); 
curdisp=zeros(branchnum,3); 
co=0; 
for n=1:busnum 

for k=1:busnum 
if I(n,k)~=0 

            co=co+1; 
            curdisp(co,1)=n; 
            curdisp(co,2)=k; 
            curdisp(co,3)=I(n,k); 

end
end

end
disp('curdisp=');
disp(' from bus to bus current(pu)'); 
disp(curdisp); 
fprintf('\n');
for n=1:busnum 
    voldisp(n,1)=n; 
    voldisp(n,2)=abs(v(n)); 
    voldisp(n,3)=angle(v(n))*180; 
end
disp('bus number voltage(pu) angle(degree)');
disp(voldisp); 
%data display end
%network display
co=0;
W=zeros(1,branchnum); 
a=zeros(1,branchnum); 
b=zeros(1,branchnum); 
for n=1:busnum 

for k=1:busnum 
if I(n,k)~=0 

            co=co+1; 
            a(co)=n; 
            b(co)=k; 

end
end

end
DG = sparse(a,b,true,busnum,busnum); 
view(biograph(DG)) 
%network display end
%loss calculation
Ploss=0; Qloss=0; 
for k=1:branchnum 
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    z=curdisp(k,1); 
    y=curdisp(k,2); 

for g=1:branchnum 
if ldata(g,1)==z && ldata(g,2)==y 

            Ploss=Ploss+abs(curdisp(k,3))^2*ldata(g,3); 
%ploss=r*|I|^2
            Qloss=Qloss+abs(curdisp(k,3))^2*ldata(g,4); 
%qloss=x*|I|^2

break
end

end
end
%end of loss calculation
Inew=zeros(busnum,1); 
for l=1:busnum 
    Inew(l,1)=(bdata(l,2)-1i*bdata(l,3))/conj(v(l)); 
end
Active_loss(i,j)=abs(Ploss); 
Reactive_loss(i,j)=abs(Qloss); 
end
end
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