
Fixed Set Search Applied
to the Minimum Weighted Vertex

Cover Problem

Raka Jovanovic1 and Stefan Voß2,3(B)

1 Qatar Environment and Energy Research Institute (QEERI),
Hamad bin Khalifa University, PO Box 5825, Doha, Qatar

rjovanovic@hbku.edu.qa
2 Institute of Information Systems, University of Hamburg,

Von-Melle-Park 5, 20146 Hamburg, Germany
stefan.voss@uni-hamburg.de

3 Escuela de Ingenieria Industrial,
Pontificia Universidad Católica de Valparáıso, Valparáıso, Chile

Abstract. Fixed set search (FSS) is a novel metaheuristic adding a learn-
ingmechanism to enhanced greedyapproaches. In this paperweuseFSS for
solving the Minimum Weighted Vertex Cover Problem (MWVCP). First
we define a Greedy Randomized Adaptive Search Procedure (GRASP) by
randomizing the standard greedy constructive algorithm and combine it
with a local search. The used local search is based on a simple downhill
procedure. It checks if substituting a single or a pair of elements from a
solution with ones that need to be added to keep the solution a vertex
cover decreases the value of the objective function. The performance of
the GRASP algorithm is improved by extending it towards FSS. Compu-
tational experiments performed on standard test instances from literature
show that the proposed FSS algorithm for the MWVCP is highly competi-
tive with state-of-the-art methods. Further, it is shown that the FSS man-
ages to significantly improve the GRASP algorithm it is based on.

Keywords: Metaheuristics · Minimum Weighted Vertex Cover
Problem · GRASP · Fixed set search

1 Introduction

The Minimum Vertex Cover Problem (MVCP) is one of the standard combina-
torial optimization problems that has been extensively researched. The decision
version of the MVCP is one of Karp’s 21 NP-complete problems [9]. It is defined
for a graph G(V,E) having a set of vertices V and a set of edges E. A vertex
set C ⊂ V is called a vertex cover if for every edge {u, v} ∈ E at least one of
the vertices u or v is an element of C. The objective of the MVCP is to find a
vertex cover C that has minimum cardinality. In this paper, we focus on solving
the Minimum Weighted Vertex Cover Problem (MWVCP) which is a variation
of the MVCP in which for each node u ∈ V there is a corresponding weight wu.

c© Springer Nature Switzerland AG 2019
I. Kotsireas et al. (Eds.): SEA2 2019, LNCS 11544, pp. 490–504, 2019.
https://doi.org/10.1007/978-3-030-34029-2_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34029-2_31&domain=pdf
https://doi.org/10.1007/978-3-030-34029-2_31

Fixed Set Search Applied to the Minimum Weighted Vertex Cover Problem 491

The objective in the MWVCP is to find the vertex cover having the minimum
total weight. Formally, the objective is to find a set C ⊂ V which minimizes:

∑

u∈V

wuxu (1)

In (1), variables of type xu are equal to 1 if u ∈ C and zero otherwise. The
variables xu need to satisfy the following constraints:

xu + xv ≥ 1 ({u, v} ∈ E) (2)

The MWVCP well represents a large number of real-world problems related to
wireless communication, circuit design, and network flow [11,15] which resulted
in an extensive amount of research dedicated to finding optimal and near opti-
mal solutions. It should be noted that the vast majority of research solves the
MWVCP with positive coefficients. It has been shown that it can be solved
as fast as the unweighted vertex cover in O(1.2738p + pNV), with exponential
memory use [3,4] (here NV is the size of the vertex set and p the size of the
prospective cover, if it exists). Due to the NP-Hardness of the MWVCP a wide
range of methods have been developed for finding near optimal solutions ranging
from greedy algorithms to different types of metaheuristics.

In [12], an ant colony optimization (ACO) is presented. The performance of
the ACO method has been further improved using a pheromone correction strat-
egy as presented in [7]. The problem has also been solved using genetic algorithms
combined with a greedy heuristic [13], a population-based iterated greedy (PBIG)
algorithm [1] and a reactive tabu search hybridized with simulated annealing [14].
One of the most successful approaches is the multi-start iterated tabu search (MS-
ITS) algorithm [16]. The most successful methods incorporate some types of local
searches [10]. In this paper a dynamic scoring strategy is incorporated to improve
the local search performance, which produces a computationally very effective
method being capable to solve problem instances having hundreds of thousands
of nodes and edges. Another method designed to solve problem instances on mas-
sive graphs can be found in [2], in which first an initial vertex cover is generated
that is later improved using an advanced local search.

Due to the fact that the use of local searches has proven very efficient in
case of the MWVCP, in this paper the potential effectiveness of the Greedy
Randomized Adaptive Search Procedure (GRASP) [5] is explored. To be more
precise, our objective is to see the effectiveness of combining a simple to imple-
ment greedy algorithm and local search. Two local searches are presented based
on a downhill procedure using swap operations which remove one or two vertices
from the solutions and add necessary vertices. The basic idea of the swap opera-
tions is very similar to the ones used in [10,14]. The performance of the proposed
GRASP algorithm is further improved by extending it to the novel Fixed Set
Search metaheuristic [8], which has previously been successfully applied to the
Traveling Salesman Problem (TSP). The FSS uses a simple approach to add a
learning mechanism to GRASP based on elements frequently appearing in high
quality solutions. The performed computational experiments show that the FSS
is highly competitive with the state-of-the-art methods in the quality of found

492 R. Jovanovic and S. Voß

solutions. Further, we show that the FSS produces a significant improvement
when compared to the GRASP algorithm on which it is based.

The paper is organized as follows. In Sect. 2, we give a brief description
of the randomized greedy algorithm for the MWVCP. In the following section
details of the local searches are presented. In Sect. 4, an outline of the GRASP
metaheuristic is given. In the next section, we give details of the FSS and how it
is applied to the MWVCP. In Sect. 6, we discuss the performed computational
experiments. The paper is finalized with concluding remarks.

2 Greedy Algorithm

In this section, the standard greedy constructive algorithm for the MWVCP is
presented. The basic idea of the method is to start from a partial solution S = ∅
and at each step expand it with the vertex that has the most desirable properties
based on a heuristic function h. To be more precise, it is preferable to expand
the solution with a vertex u that covers the largest number of non-covered edges
and has the minimal weight wu. Formally, the heuristic function for a partial
solution S and a node n has the following form.

Cov(n, S) = {{n, v} | ({n, v} ∈ E) ∧ (v /∈ S)} (3)

h(n, S) =
|Cov(n, S)|

wn
(4)

In (3), Cov(n, S) is the set of edges in E that contain node n but are not
already covered by S. An edge is covered if at least on of its vertices is in S. The
heuristic function, defined in (4), is proportional to the number of elements of
Cov(S, n), and reversely proportional to the weight wn of the vertex n.

Since, our goal is to use the presented greedy algorithm as a part of the
GRASP metaheuristic it is necessary to include randomization. In the proposed
algorithm we use the standard approach of a restricted candidate list (RCL) as
follows. Let us define R as the set of N elements from v ∈ V \ S that have
the largest value of h(v, S). Now, we can expand the partial solution with a
random element of set R. The pseudocode for the proposed randomized greedy
constructive algorithm (RGC) can be seen in Algorithm 1. In it, the partial
solution S is initially set to an empty set. At each iteration S is expanded with
a random element from the RCL. This is repeated until all the edges E are
covered. The proposed RGC has computational complexity of |S||V |, where S is
the generated solution.

3 Local Searches

In this section, two local searches based on a correction procedure are presented.
The basic idea of the proposed local searches is based on the concept of swapping
elements of a solution S with elements of V \ S that produce a vertex cover but
decrease the objective function. This approach has proven to be very successful
on the closely related dominating set problem.

Fixed Set Search Applied to the Minimum Weighted Vertex Cover Problem 493

Algorithm 1. Pseudocode for the RGC for the MWVCP
S = ∅
while Not all edges covered do

Generate RCL based on h and S
Select random element n ∈ RCL
S = S ∪ n

end while

3.1 Element Swap

Assume that we aim to improve a solution S. Since S is a vertex cover of G, for
each edge {u, v} at least one of u or v is an element of S. Let us define Un(v, S),
for a solution S and vertex v ∈ S, as the set of vertices that correspond to edges
that are uniquely covered by vertex vS as

Un(v, S) = {u | u /∈ S ∧ {u, v} ∈ E} (5)

It is evident that if we swap a vertex v with all the elements Un(v, S) a new
vertex cover will be created. For simplicity of notation let us define the swap
operation for a vertex v as

Swap(v, S) = (S ∪ Un(v, S)) \ {v} (6)

Now, a swap operation for a vertex v can be evaluated as

EvSwap(v, S) = wv −
∑

i∈Un(v,S)

wi (7)

In Eq. (7), EvSwap(v) gives the change in the solution weight when v ∈ S is
swapped. More precisely, it is equal to the weight wv of vertex v that is removed
from the solution minus the total sum of weights of vertices that are added to
the solution. Now, we can define Imp(S) as the set of all vertices of S for which
a swap operation produces an improvement

Imp(S) = {v | v ∈ S ∧ EvSwap(v, S) > 0} (8)

3.2 Pair Swap

The basic idea of the swap operation can be extended to pairs of vertices. In
case of a local search based on swap pairs it generally is the case that the com-
putational cost will increase |S| times, where S is the solution being improved.
Although this cannot be changed asymptotically, it can be greatly decreased
in practical applications. It is important to note that in case of the MWVCP
swap operations of this type are more effective than for other problems since the
elements that are used for substitution are uniquely defined. In designing the
local search based on swap pairs, we focus on two objectives. Firstly, to have a

494 R. Jovanovic and S. Voß

very small overlap with a local search based on element swaps and secondly to
increase computational efficacy.

In our application, we assume that in a pair swap operation involving {u, v}
both elements will be removed and none of them will be re-added. In case this
constraint is not used the same effect can be achieved using an element swap.
In case such a constraint exists, if {u, v} ∈ E such a pair can never be swapped
since the edge {u, v} will not be covered. Additional positive effects of a pair
swap {u, v} can only occur if u and v have overlapping neighborhoods, or in
other words in case there is a node w that is adjacent to both u and v. Using
this idea, let us formally define the set of improving swap pairs for a solution S.
Based on the previous discussion the set of all vertex pairs that should be tested
for a graph G can be defined as follows:

Cp = {{u, v} | (u, v ∈ V) ∧ (N(v) ∩ N(u) 	= ∅)} \ E (9)

In (9), the notation N(v) is used for the open neighborhood of v, i.e., all nodes
adjacent to v not including itself. Using this set of candidate swap pairs for graph
G, we can define the set of improving swap pairs in a similar way as a set of
improving elements using the following set of equations.

Un(u, v, S) = Un(u, S) ∪ Un(v, S) (10)
Swap(u, v, S) = (S ∪ Un(u, v, S)) \ {u, v} (11)

EvSwap(u, v, S) = wu + wv −
∑

i∈Un(u,v,S)

wi (12)

ImpPair(S) = {{u, v} | ({u, v} ∈ Cp ∩ S2) (13)
∧(EvSwap(u, v, S) > 0)}

In (10), Un(u, v, S) corresponds to the set of nodes that correspond to the set
of edges that are uniquely covered by one of the vertices u or v. Note, that
this set excludes vertices u and v. In (11), the effect of the swapping elements
u and v from a solution S is given. To be more precise, the vertices u and v
are removed from the solution S, and all the nodes corresponding to uniquely
covered edges are added. EvSwap(u, v, S), given in (12), is equal to the change
on the weight of the solution if the vertex pair {u, v} is swapped. Finally, in the
next equation ImpPair(S) is the set of all swap pairs that improve the quality of
the solution from the set of the restricted list of candidate pairs. The restricted
set of candidate pairs is equal to the intersection of the unordered product of
set S with itself S2 and the set of all candidate pairs for graph G.

3.3 Local Search

In this subsection, we present the local search based on the presented improve-
ment using element swaps and pair swaps. It should be noted that these two
types of improvement explore different neighborhoods of a solution S. Because
of this, as in the case of the variable neighborhood search [6], it is advantageous

Fixed Set Search Applied to the Minimum Weighted Vertex Cover Problem 495

Algorithm 2. Pseudocode for the local search based on swap operations
repeat

while Imp(S) �= ∅ do
Select random v ∈ Imp(S)
S = Swap(v, S)

end while
if ImpPair(S) �= ∅ then

Select random {v, u} ∈ ImpPair(S)
S = Swap(u, v, s)

end if
until (Imp(S) = ∅) ∧ (ImpPair(S) = ∅)

to use both of them interchangeably. The pseudocode for the local search based
on swap operations can be seen in Algorithm 2.

In Algorithm 2, a solution S is interchangeably improved based on swap
elements and swap pairs. Firstly, all the possible improvements are performed
using swap elements since this operation is computationally less expensive. This
is done by repeatedly performing swap element improvements until no further
improvement of this type is possible. Next, we test if an improvement can be
achieved using swap pairs. If this is true, the improvement is performed. As there
is a possibility, that after applying a swap pair improvement new element swaps
can produce improvement, the main loop is repeated until no such improvement
exists. It should be noted that for both types of improvements there are sev-
eral different ways to select the swap that will be performed; in the proposed
implementation we simply select a random one.

4 GRASP

To enhance the performance of the proposed greedy algorithm and local search,
we extend them to the GRASP metaheuristic as illustrated in Algorithm 3. In the
main loop of Algorithm 3, a new solution S to the MWVCP is generated using
the RGC algorithm. The local search is applied to the solution S and tested if it
is the new best solution. This procedure is repeated until some stopping criterion
is satisfied, usually a time limit or a maximal allowed number of solutions has
been generated.

Algorithm 3. Pseudocode for the GRASP
while Not Stop Criteria Satisfied do

Generate Solutions S using randomized greedy algorithm
Apply local search to S
Check if S is the new best

end while

496 R. Jovanovic and S. Voß

5 Fixed Set Search

The fixed set search (FSS) is a novel metaheuristic that adds a learning mecha-
nism to the GRASP. Literally it uses elite solutions, consistent solution elements
or alike to direct the search. It has previously been successfully applied to the
TSP [8]. The FSS has several important positive traits. Firstly, there is a wide
range of problems on which it can possibly be applied (this paper tries to put
evidence on it) since the only requirement is that the solution of the problem is
represented in a form of a set. The learning mechanism is simple to implement
and many existing GRASP algorithms can easily be extended to this form. In
this section the general concepts used in the FSS are presented as well as details
of its application to the MWVCP. A more detailed explanation of the concepts
used in the FSS can be found in [8].

The main inspiration for the FSS is the fact that generally many high qual-
ity solutions for a combinatorial optimization problem contain some common ele-
ments. The idea is to use such elements to steer the search of the solution space. To
be more precise, we wish to force such elements in a newly generated solution and
dedicate computational effort to finding optimal or near optimal solutions in the
corresponding subset of the solution space. The selected set of common elements
will be called the fixed set. In the FSS, we are trying to find the additional elements
to complete the partial solution, corresponding to the fixed set, or in other words
to “fill in the gaps.” In practice, we are intensifying the search around such fixed
sets. This can be achieved through the following steps. Firstly, a method for gener-
ating fixed sets needs to be implemented. Next, the randomized greedy algorithm
used in the corresponding GRASP needs to be adapted in a way to be able to use a
preselected set of elements. Lastly, the learning mechanism which gains experience
from previously generated solutions needs to be specified.

5.1 Fixed Set

Let us first define a method that will make it possible to generate random fixed
sets. As previously stated the FSS can be applied to a problem for which a
solution can be represented in a form of a set S having elements in some set
W , or in other words S ⊂ W . In case of the MWVCP this concerns a solution
S ⊂ V . In the following the notation P will be used for the set of all the generated
solutions (population). Next, let us define Pn ⊂ P as the set of n solutions having
the best value of the objective function inside P.

One of the requirements of the FSS is that the method used to generate a
fixed set F has the ability to control its size |F |. Further, such fixed sets need to
be able to produce high quality feasible solutions. This can be achieved using a
base solution B ∈ Pm. If the fixed set satisfies F ⊂ B, it can be used to generate
the base solution. In practice this means it can generate a feasible solution at
least of the same quality as B, and F can contain arbitrary elements of B. It
is preferable for F to contain elements that frequently occur in some group of
high quality solutions. To achieve this, let us define Skn as the set of k randomly
selected solutions out of the n best ones Pn.

Fixed Set Search Applied to the Minimum Weighted Vertex Cover Problem 497

Using these building blocks it is possible to define a function
Fix(B,Skn, Size) for generating a fixed set F ⊂ B that consists of Size
elements of the base solution B = {v1, ...vl} that most frequently occur in
Skn = {S1, .., Sk}. Let use define the function C(vx, S), for an element vx ∈ V
and a solution S ⊂ V , which is equal to 1 if vx ∈ S and 0 otherwise. We can
define a function that counts the number of occurrences of element vx in the
elements of the set Skn using the function C(vx, S) as follows.

O(vx,Skn) =
∑

S∈Skn

C(vx, S) (14)

Now, we can define Fix(B,Skn, Size) as the set of Size elements vx ∈ B
that have the largest value of O(vx,Skn).

5.2 Learning Mechanism

The learning mechanism in the FSS is implemented through the use of fixed
sets. To achieve this it is necessary to adapt the RGC algorithm used in the
corresponding GRASP to a setting where some elements are preselected (the
newly generated solution must contain them). Let us use the notation RGF (F)
for the solution generated using such an algorithm with a preselected (fixed) set
of elements F . In case of the MWVCP, the RGC algorithm is trivially adapted
to a RGF (F) by setting the initial partial solution S to F instead of an empty
set.

In the FSS, as in the case of the GRASP, solutions are repeatedly generated
and a local search is applied to each of them. The first step is generating an
initial population of solutions P by performing N iterations of the corresponding
GRASP algorithm. The initial population is used to generate a random fixed set
F having some size Size, using the method from the previous section. The fixed
set F is used to generate a new solution S = RGF (F) and the local search is
applied to it. The population of solutions is expanded using the newly generated
locally optimal solutions. This procedure is repeated until no new best solutions
are found for a long period by some criteria, or in other words until stagnation
has occurred. In case of stagnation the size of the fixed set is increased. In case
the maximal allowed size of the fixed set is reached, the size of the fixed set
is reset to the minimal allowed value. This procedure is repeated until some
stopping criterion is reached. An important part of the algorithm is defining the
array of allowed fixed set sizes, which is related to the part of the solution that
is fixed. In our implementation this array is defined as follows:

Sizes[i] = (1 − 1
2i

) (15)

The size of the used fixed sets is proportional to the used base solution B. More
precisely, at the i-th level it is equal to |B| · Size[i].

The pseudocode for FSS can be seen in Algorithm 4. In it, the first step
is initializing the sizes of fixed sets using (15). The current size of the fixed

498 R. Jovanovic and S. Voß

Algorithm 4. Pseudocode for the Fixed Set Search
Initialize Sizes
Size = Sizes.Next
Generate initial population P using GRASP (N)
while (Not termination condition) do

Set Skn to random k elements of Pn

Set B to a random solution in Pm

F = Fix(B,Skn, Size|B|)
S = RGF (F)
Apply local search to S
P = P ∪ {S}
if Stagnant Best Solution then

Size = Sizes.Next
end if

end while

set Size is set to the smallest value. The next part of the initialization stage is
generating the initial population of N solutions by performing N iterations of the
basic GRASP algorithm. Each iteration of the main loop consists of the following
steps. A random set of solutions Skn is generated by selecting k elements from Pn

and a random base solution B is selected from the set Pm. Next, the function
Fix(B,Skn, Size|B|) is used to generate a fixed set F . A new solution S =
RGF (F) is generated using the randomized greedy algorithm with preselected
elements and the local search is applied to it. Next, we check if S is the new best
solution and add it to the set of generated solutions P. In case stagnation has
occurred, the value of Size is set to the next value in Sizes. Let us note, that the
next size is the next larger element of array Sizes. In case Size is already the
largest size, we select the smallest element in Sizes. This procedure is repeated
until some termination criterion is satisfied.

In our implementation of the proposed algorithm for the MWVCP, the cri-
terion for stagnation was that no new best solution has been found in the last,
say, Stag iterations. As previously stated the adaptation of the randomized con-
structive greedy algorithm to the RGF (F) consists of simply setting the initial
partial solution to the fixed set instead of an empty set. The set of candidate
swap pairs Cp is calculated in the initialization stage. At this time the set of all
neighboring vertices for valid candidate pairs {u, v} are also calculated with the
intention of speeding the calculation of ImpPair(S).

6 Results

In this section we give details of the performed computational experiments. Their
objective is to evaluate the performance of the proposed GRASP and FSS in
combination with the element- (GRASP-E and FSS-E) and pair- (GRASP-P
and FSS-P) based local searches. Note that the pair-based local search is only

Fixed Set Search Applied to the Minimum Weighted Vertex Cover Problem 499

used in combination with the element-based one. This has been done in com-
parison with the ACO algorithm from [12] and its improvement version (ACO-
SEE) [7]. Further, a comparison is with the population-based iterated greedy
(PBIG) algorithm [1], the multi-start iterated tabu search (MS-ITS) algorithm
[16] and the Diversion Local Search based on Weighted Configuration Checking
(DLSWC) [10] which are the best performing methods. Note that the reactive
tabu search hybrid produces about the same quality of results than DLSWC,
but in [14] results are only presented for a small subset of instances.

The comparison is done on the set of test instances introduced in [12], that
have been also used to evaluate the other mentioned methods. The test instances
are divided into three groups: small, medium and large. In case of the small and
medium test instances, random graphs having 10–300 nodes and 10–5000 edges
are used for evaluation. For each pair (NV , NE) with NV and NE being the
number of vertices and edges, respectively, there are ten different graph instances.
The test instances are divided into Type 1 where there is no correlation between
the weight of a vertex and number on incident edges, and Type 2 where some
weak correlation exists; details can be found in [12]. In case of large test instances
the graphs have between 500 and 1000 vertices and between 500 and 20 000 edges,
and there is only one instance for each pair (NV , NE).

The used parameters for FSS are the following, k = 10 random solutions
are selected from the best n = 100 ones for the set of solutions Skn. The base
solution is selected from the m = 100 best solutions. The size of the initial
population is 100. The stagnation criterion is that no new best solution is found
in the last Stag = 100 iterations for the current fixed set size. The used size of
the RCL in the randomized greedy algorithm is 10. The stopping criterion for
all the proposed methods is that 5000 solutions are generated or a time limit
of 10 minutes has been reached. The FSS and GRASP have been implemented
in C# using Microsoft Visual Studio 2017. The calculations have been done on
a machine with Intel(R) Core(TM) i7-2630 QM CPU 2.00 Ghz, 4 GB of DDR3-
1333 RAM, running on Microsoft Windows 7 Home Premium 64-bit.

In Tables 1 and 2 the results for the medium-size problem instances are given
for graphs of Type 1 and Type 2, respectively. For each pair (NV , NE), the
average weight of all the vertex covers of this type are evaluated. With the
intention of having a clearer presentation, the average value of the objective
function is only given for DLSWC, while for the other methods only the difference
to this value is presented. The values for the methods used for comparison are
taken from the corresponding papers. Note that we did not include the results
for small problem instances since all the methods except the two ACO methods
manage to find all the optimal solutions. From the results in these tables it can
be seen that the two ACO algorithms have a substantially worse performance
than the other methods. Further, the FSS-P had the overall best performance
of all the methods except DLSWC, having on average only 0.8 and 0.1 higher
value of the objective function. It should be noted that although FSS overall has
a worse performance than DLSWC in case of two pairs (NV , NE) it managed to
find higher quality average solutions. The experiments performed on large test

500 R. Jovanovic and S. Voß

Table 1. Comparison of the methods for medium-size problem instances of Type 1.

NV × NE ACO Element Pair PBIG MS-ITS DLSWC

Basic SEE GRASP FSS GRASP FSS

50 × 50 2.1 0.9 0.0 0.0 0.0 0.0 0.0 0.0 1280.0

50 × 100 5.8 5.4 0.0 0.0 0.0 0.0 0.0 0.0 1735.3

50 × 250 15.1 8.3 0.0 0.0 0.0 0.0 0.0 0.0 2272.3

50 × 500 17.1 7.4 0.0 0.0 0.0 0.0 0.0 0.0 2661.9

50 × 750 8.0 6.3 0.0 0.0 0.0 0.0 0.0 0.0 2951.0

50 × 1000 17.5 6.1 0.0 0.0 0.0 0.0 0.0 0.0 3193.7

100 × 100 18.7 9.8 0.0 0.0 0.0 0.0 3.4 0.0 2534.2

100 × 250 24.8 13.3 0.0 0.0 0.0 0.0 1.1 0.0 3601.6

100 × 500 91.5 35.8 0.0 0.0 0.0 0.0 0.0 0.0 4600.6

100 × 750 30.9 37.3 0.0 0.0 0.0 0.0 0.0 0.0 5045.5

100 × 1000 25.9 14.5 0.0 0.0 0.0 0.0 1.2 0.0 5508.2

100 × 2000 43.8 16.4 0.0 0.0 0.0 0.0 0.0 0.0 6051.9

150 × 150 18.0 9.9 1.4 0.4 0.9 0.0 0.4 0.1 3666.9

150 × 250 49.8 35.0 1.8 0.0 0.0 0.0 0.4 0.0 4719.9

150 × 500 58.6 63.3 6.7 0.0 0.0 0.0 0.3 0.0 6165.4

150 × 750 58.3 39.9 7.6 6.8 0.0 0.0 7.3 10.6 6956.4

150 × 1000 82.1 23.9 8.0 1.6 1.6 1.6 9.1 0.0 7359.7

150 × 2000 81.8 47.8 0.0 0.2 0.0 0.0 12.6 0.0 8549.4

150 × 3000 50.4 40.4 0.0 0.0 0.0 0.0 0.0 0.0 8899.8

200 × 250 37.1 20.8 3.6 0.0 0.0 0.0 0.3 0.0 5551.6

200 × 500 67.3 41.8 2.6 1.1 0.0 0.0 0.5 3.2 7191.9

200 × 750 79.9 30.4 6.6 2.5 1.2 1.2 4.6 0.0 8269.9

200 × 1000 116.7 62.9 23.6 4.5 5.3 1.8 5.1 4.5 9145.5

200 × 2000 86.5 61.1 10.8 3.9 0.3 0.4 1.0 0.0 10830.0

200 × 3000 93.3 84.6 0.2 0.0 0.0 0.0 4.4 3.8 11595.8

250 × 250 49.1 20.5 4.6 0.0 0.0 0.0 0.0 0.0 6148.7

250 × 500 102.6 59.7 20.9 7.0 6.7 3.1 4.5 2.6 8436.2

250 × 750 123.5 69.6 24.8 6.4 1.9 -0.3 6.9 0.0 9745.9

250 × 1000 114.9 39.3 14.7 1.1 1.7 0.0 2.0 0.4 10751.7

250 × 2000 166.2 75.5 25.8 3.1 3.2 2.2 6.1 4.4 12751.5

250 × 3000 159.2 107.3 23.2 6.4 0.0 0.0 0.2 0.0 13723.3

250 × 5000 132.1 66.2 8.0 0.0 0.0 0.0 7.0 0.0 14669.7

300 × 300 46.9 30.8 7.0 0.2 0.0 0.0 0.2 0.0 7295.8

300 × 500 114.3 88.8 55.1 11.4 8.3 7.7 0.0 7.7 9403.1

300 × 750 137.6 127.2 60.9 14.0 13.3 2.2 8.8 2.7 11029.3

300 × 1000 143.2 65.2 40.2 8.9 4.6 4.4 10.4 9.2 12098.5

300 × 2000 162.7 102.4 49.7 15.4 6.7 2.7 17.7 5.5 14732.2

300 × 3000 213.3 69.7 42.3 1.7 1.0 1.0 7.4 0.6 15840.8

300 × 5000 202.5 136.9 31.6 19.3 2.3 1.9 7.7 0.0 17342.9

Average 78.18 45.70 12.35 2.97 1.51 0.77 3.35 1.42

Found Best 0 0 14 19 24 27 12 25

Fixed Set Search Applied to the Minimum Weighted Vertex Cover Problem 501

Table 2. Comparison of the methods for medium-size problem instances of Type 2.

NV ×NE ACO Element Pair PBIG MS-ITS DLSWC

Basic SEE GRASP FSS GRASP FSS

50 × 50 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.0 83.7

50 × 100 5.0 3.2 0.0 0.0 0.0 0.0 0.0 0.0 271.2

50 × 250 33.4 16.9 0.0 0.0 0.0 0.0 0.0 0.0 1853.4

50 × 500 90.8 51.6 0.0 0.0 0.0 0.0 0.0 0.0 7825.1

50 × 750 55.1 8.6 0.0 0.0 0.0 0.0 0.0 0.0 20079.0

100 × 50 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 67.2

100 × 100 2.5 1.2 0.0 0.0 0.0 0.0 0.0 0.0 166.6

100 × 250 15.2 8.8 0.0 0.0 0.0 0.0 0.0 0.0 886.5

100 × 500 33.1 13.4 0.0 0.0 0.0 0.0 0.0 0.0 3693.6

100 × 750 74.3 62.1 0.0 0.0 0.0 0.0 0.0 0.0 8680.2

150 × 50 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 65.8

150 × 100 0.7 0.1 0.0 0.0 0.0 0.0 0.0 0.0 144.0

150 × 250 9.9 9.0 0.2 0.0 0.0 0.0 0.2 0.0 615.8

150 × 500 43.5 27.1 1.1 0.0 0.0 0.0 0.0 0.0 2331.5

150 × 750 100.7 8.5 0.9 0.0 0.0 0.0 0.2 0.0 5698.5

200 × 50 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 59.6

200 × 100 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 134.5

200 × 250 5.6 4.8 0.3 0.0 0.0 0.0 0.0 1.4 483.1

200 × 500 39.7 14.8 0.2 0.0 0.0 0.1 0.4 0.0 1803.9

200 × 750 69.3 33.5 0.0 0.2 0.2 0.2 0.1 0.0 4043.5

250 × 250 4.2 2.2 0.0 0.0 0.0 0.0 0.0 0.0 419.0

250 × 500 23.2 20.1 1.9 0.4 0.5 0.0 1.5 0.5 1434.2

250 × 750 59.8 33.3 3.1 0.0 0.0 0.0 4.9 0.3 3256.1

250 × 1000 71.8 53.6 7.7 −0.1 −0.3 −0.3 3.0 1.8 5986.4

250 × 2000 512.6 295.6 42.1 6.2 0.0 0.0 22.0 9.9 25636.5

250 × 5000 1648.2 1231.7 120.2 28.9 0.1 0.1 0.1 0.1 170269.0

300 × 250 4.5 3.3 0.4 0.0 0.1 0.0 0.1 0.2 399.4

300 × 500 22.7 20.9 2.1 0.0 0.2 0.0 0.0 0.8 1216.4

300 × 750 38.9 34.8 4.5 0.6 0.4 0.0 0.1 1.3 2639.3

300 × 1000 100.5 72.9 17.2 1.8 6.6 1.8 1.3 1.2 4795.0

300 × 2000 413.9 226.4 60.6 6.6 0.0 2.5 10.3 5.1 20881.3

300 × 5000 2023.1 1072.2 109.9 11.5 4.8 4.8 44.9 6.4 141220.4

Average 171.96 104.09 11.64 1.75 0.39 0.29 2.78 0.91

Found Best 2 2 16 23 24 26 18 20

502 R. Jovanovic and S. Voß

Table 3. Comparison of best found solutions over 10 independent runs for large prob-
lem instances by different methods.

NV ×NE ACO Element Pair PBIG MS-ITS DLSWC

SEE GRASP FSS GRASP FSS

500 × 500 59.0 43.0 5.0 5.0 0.0 0.0 7.0 12616.0

500 × 1000 51.0 36.0 2.0 1.0 0.0 0.0 15.0 16465.0

500 × 2000 137.0 204.0 10.0 0.0 0.0 0.0 0.0 20863.0

500 × 5000 53.0 387.0 0.0 21.0 0.0 77.0 0.0 27241.0

500 × 10000 0.0 165.0 0.0 0.0 0.0 0.0 0.0 29573.0

800 × 500 24.0 44.0 0.0 0.0 0.0 0.0 21.0 15025.0

800 × 1000 45.0 99.0 0.0 15.0 0.0 0.0 13.0 22747.0

800 × 2000 379.0 472.0 144.0 102.0 16.0 54.0 8.0 31301.0

800 × 5000 277.0 518.0 159.0 163.0 62.0 112.0 0.0 38553.0

800 × 10000 148.0 290.0 45.0 41.0 6.0 45.0 0.0 44351.0

1000 × 1000 133.0 288.0 36.0 34.0 9.0 23.0 12.0 24723.0

1000 × 5000 243.0 460.0 62.0 79.0 61.0 52.0 27.0 45203.0

1000 × 10000 497.0 742.0 61.0 92.0 0.0 0.0 0.0 51378.0

1000 × 15000 400.0 670.0 133.0 169.0 61.0 20.0 20.0 57994.0

1000 × 20000 359.0 523.0 128.0 84.0 27.0 139.0 24.0 59651.0

Average 187.00 329.40 52.33 53.73 16.13 34.80 9.80

Found Best 1 0 4 3 8 7 6

Table 4. Comparison of average quality of found solutions over 10 independent runs
for large problem instances by different methods.

NV ×NE ACO Element Pair PBIG MS-ITS DLSWC

SEE GRASP FSS GRASP FSS

500 × 500 71.7 68.0 5.0 5.0 2.0 4.0 19.0 12616.0

500 × 1000 109.9 56.8 5.6 2.0 0.0 5.1 18.1 16465.0

500 × 2000 226.8 226.4 12.2 −3.2 −3.2 4.6 0.7 20866.2

500 × 5000 344.5 411.0 91.2 64.8 0.0 187.2 0.0 27241.0

500 × 10000 223.4 199.4 86.8 3.0 0.0 93.8 0.0 29573.0

800 × 500 44.9 53.6 0.0 0.0 0.0 0.0 29.1 15025.0

800 × 1000 105.1 119.4 0.0 19.0 0.0 16.0 13.0 22747.0

800 × 2000 481.9 502.6 227.4 157.2 17.6 117.6 40.7 31305.0

800 × 5000 337.6 561.7 149.3 171.9 72.5 149.6 −12.0 38569.1

800 × 10000 337.8 350.9 42.1 51.1 15.1 43.9 6.0 44353.9

1000 × 1000 202.4 315.6 45.8 34.0 29.0 40.1 43.1 24723.0

1000 × 5000 349.8 469.3 73.9 92.3 25.3 56.5 18.0 45238.9

1000 × 10000 724.6 755.2 88.4 128.0 −2.4 160.5 42.6 51380.4

1000 × 15000 659.8 723.8 132.0 223.4 77.0 150.2 73.9 57995.0

1000 × 20000 612.9 597.3 148.7 149.5 80.3 192.6 64.6 59655.3

Average 322.21 360.73 73.89 73.20 20.88 81.45 23.79

Fixed Set Search Applied to the Minimum Weighted Vertex Cover Problem 503

instances can be seen in Tables 3 and 4 where the values of the best found and
average weight over 10 runs of each algorithm are given, respectively. In case of
problems instances of this size a similar behavior can be seen as for medium-size
instances.

From the computational results it is evident that the methods FSS-P and
GRASP-P in which the local search includes pair swaps manages to find signifi-
cantly better solutions than the element-based ones. The use of pair swaps in the
local search produces a more significant improvement than the addition of the
learning mechanism used in the FSS. It should be noted that GRASP-P has a
better performance than FSS-E for medium-size instances, while FSS-E manages
to have a slightly better performance for large instances with FSS-P being con-
sistently better in both cases. The improvement that is achieved by FSS is more
significant in case of the weaker local search based on element swaps. However,
it is most important to note that the improvement achieved by FSS compared
to the corresponding GRASP is very consistent, and it only has worse average
quality of found solutions for 1 or 3 of the (NV , NE) pairs, when the used local
search was based on elements or pairs, respectively.

The convergence speed of the FSS-P is competitive to other methods, in case
of medium-size instances it needs an average time of 0.76 and 0.43 s to find the
best solution for Type 1 and Type 2 graphs, respectively. This is a very similar
result to MS-ITS which needed between 0.51 and 0.45 s to solve instances of
Type 1 and Type 2, and better than PBIG which needs 2.49 and 4.23 s. DLSWC
has a substantially better performances; on average it needs only 0.03 and 0.4 s.
The FSS-P scales well, and for large graphs needs an average of 5.05 s to find the
best solution for an instance which is similar to 5.20 of DLWSC, but it should
be noted that the quality of solutions is of lower quality. The scaling of PBIG
and MS-ITS is significantly worse and the methods on average need 126.94 and
74.80 s to solve large problem instances, respectively. It is interesting to point
out that although the asymptotic computational cost of the local search based
on pairs is greater than the one based on elements, the time for finding the best
solutions for GRASP-P and FSS-P is generally 2–5 times lower than for GRASP-
E and FSS-E. The FSS, on average, needs around half the time of GRASP with
the same type of local search to find the best solution. The pair swap local
search proves to be very efficient; for graphs having up to 100 nodes GRASP-P
generally needs less than 20 iterations to find the best known solutions.

7 Conclusion

In this paper we have presented an efficient easy to implement method for finding
near optimal solutions for the MWVCP. This has been done by developing two
local searches based on a correction procedures which switches one or two vertices
from a solution with new ones which produces a new vertex cover having a lower
weight. These local searches have been used as a part of a GRASP algorithm.
The performance of the developed GRASP has been improved by extending
it to the novel Fixed Set Search metaheuristic. The conducted computational

504 R. Jovanovic and S. Voß

experiments have shown that the proposed FSS is highly competitive with the
state-of-the-art methods. The results also indicate that the learning mechanism
in the FSS manages to significantly enhance its performance when compared
to the GRASP on which it is based. Importantly, the positive effect is most
significant on large-scale problem instances on which the effectiveness of GRASP
algorithms is generally decreased. For future research we aim to extend the
application of the FSS to other types of problems.

References

1. Bouamama, S., Blum, C., Boukerram, A.: A population-based iterated greedy algo-
rithm for the minimum weight vertex cover problem. Appl. Soft Comput. 12(6),
1632–1639 (2012)

2. Cai, S., Li, Y., Hou, W., Wang, H.: Towards faster local search for minimum weight
vertex cover on massive graphs. Inf. Sci. 471, 64–79 (2019)

3. Chen, J., Kanj, I.A., Xia, G.: Improved upper bounds for vertex cover. Theor.
Comput. Sci. 411(40–42), 3736–3756 (2010)

4. Cygan, M., Kowalik, �L., Wykurz, M.: Exponential-time approximation of weighted
set cover. Inf. Process. Lett. 109(16), 957–961 (2009)

5. Feo, T.A., Resende, M.G.: Greedy randomized adaptive search procedures. J. Glob.
Optim. 6(2), 109–133 (1995). https://doi.org/10.1007/BF01096763

6. Hansen, P., Mladenović, N.: Variable neighborhood search: principles and applica-
tions. Eur. J. Oper. Res. 130(3), 449–467 (2001)

7. Jovanovic, R., Tuba, M.: An ant colony optimization algorithm with improved
pheromone correction strategy for the minimum weight vertex cover problem. Appl.
Soft Comput. 11(8), 5360–5366 (2011)

8. Jovanovic, R., Tuba, M., Voß, S.: Fixed set search applied to the traveling sales-
man problem. In: Blesa Aguilera, M.J., Blum, C., Gambini Santos, H., Pinacho-
Davidson, P., Godoy del Campo, J. (eds.) HM 2019. LNCS, vol. 11299, pp. 63–77.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05983-5 5

9. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,
Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of computer computations, pp.
85–103. Springer, Boston (1972). https://doi.org/10.1007/978-1-4684-2001-2 9

10. Li, R., Hu, S., Zhang, H., Yin, M.: An efficient local search framework for the
minimum weighted vertex cover problem. Inf. Sci. 372, 428–445 (2016)

11. Pullan, W.: Optimisation of unweighted/weighted maximum independent sets and
minimum vertex covers. Discrete Optim. 6(2), 214–219 (2009)

12. Shyu, S.J., Yin, P.Y., Lin, B.M.: An ant colony optimization algorithm for the
minimum weight vertex cover problem. Ann. Oper. Res. 131(1–4), 283–304 (2004).
https://doi.org/10.1023/B:ANOR.0000039523.95673.33

13. Singh, A., Gupta, A.K.: A hybrid heuristic for the minimum weight vertex cover
problem. Asia-Pac. J. Oper. Res. 23(02), 273–285 (2006)

14. Voß, S., Fink, A.: A hybridized tabu search approach for the minimum weight
vertex cover problem. J. Heuristics 18(6), 869–876 (2012)

15. Wang, L., Du, W., Zhang, Z., Zhang, X.: A PTAS for minimum weighted con-
nected vertex cover P3 problem in 3-dimensional wireless sensor networks. J. Comb.
Optim. 33(1), 106–122 (2017)

16. Zhou, T., Lü, Z., Wang, Y., Ding, J., Peng, B.: Multi-start iterated tabu search
for the minimum weight vertex cover problem. J. Comb. Optim. 32(2), 368–384
(2016)

https://doi.org/10.1007/BF01096763
https://doi.org/10.1007/978-3-030-05983-5_5
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1023/B:ANOR.0000039523.95673.33

	Fixed Set Search Applied to the Minimum Weighted Vertex Cover Problem
	1 Introduction
	2 Greedy Algorithm
	3 Local Searches
	3.1 Element Swap
	3.2 Pair Swap
	3.3 Local Search

	4 GRASP
	5 Fixed Set Search
	5.1 Fixed Set
	5.2 Learning Mechanism

	6 Results
	7 Conclusion
	References

