
Ilias Kotsireas · Panos Pardalos ·
Konstantinos E. Parsopoulos ·
Dimitris Souravlias · Arsenis Tsokas (Eds.)

LN
CS

 1
15

44

Special Event, SEA² 2019
Kalamata, Greece, June 24–29, 2019
Revised Selected Papers

Analysis of
Experimental Algorithms

Lecture Notes in Computer Science 11544

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-8816-2693

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Ilias Kotsireas • Panos Pardalos •

Konstantinos E. Parsopoulos •

Dimitris Souravlias • Arsenis Tsokas (Eds.)

Analysis of
Experimental Algorithms
Special Event, SEA2 2019
Kalamata, Greece, June 24–29, 2019
Revised Selected Papers

123

Editors
Ilias Kotsireas
Wilfrid Laurier University
Waterloo, ON, Canada

Panos Pardalos
University of Florida
Gainesville, FL, USA

Konstantinos E. Parsopoulos
University of Ioannina
Ioannina, Greece

Dimitris Souravlias
Delft University of Technology
Delft, The Netherlands

Arsenis Tsokas
University of Florida
Gainesville, FL, USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-34028-5 ISBN 978-3-030-34029-2 (eBook)
https://doi.org/10.1007/978-3-030-34029-2

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2019
The chapter “Efficient Implementation of Color Coding Algorithm for Subgraph Isomorphism Problem” is
Open Access. This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/). For further details see license information in the
chapter.
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0003-2824-101X
https://doi.org/10.1007/978-3-030-34029-2
http://creativecommons.org/licenses/by/4.0/

Preface

These proceedings contain rigorously refereed versions of papers presented at SEA2

2019, the Special Event on Analysis of Experimental Algorithms, held at the Elite
Hotel City Resort, in Kalamata, Greece, during June 24–29, 2019. SEA2 2019 is an
international forum for researchers in the area of design, analysis, and experimental
evaluation and engineering of algorithms, as well as in various aspects of computa-
tional optimization and its applications. SEA2 attracted papers from both the Computer
Science and the Operations Research/Mathematical Programming communities. This
volume contains the best papers selected as full-length papers and orally presented at
the conference. In the context of the conference, participants had the opportunity to
experience firsthand the vibrant city of Kalamata, with its rich culture, exquisite cui-
sine, and a wide spectrum of available activities for adults and children. In addition,
conference participants had the chance to visit the Ancient Messini archaeological site,
located 25 kilometers north of Kalamata, which features the excavated remains of an
entire ancient city, with temples, a stadium, a theater, and several other places of
interest; the visit onsite took two and a half hours.

We take this opportunity to thank all the people that were involved in making this
conference a success. We express our gratitude to the authors who contributed their
work, to the members of the Program Committee, and to the Local Organizing
Committee for helping with organizational matters. We extend our heartfelt thanks to
the dozens of referees that provided constructive expert referee reports to the authors of
this volume. Their reports contributed decisively to substantial improvements of the
quality of the accepted papers. In addition, authors of the accepted papers were given
the opportunity to integrate in their final versions of the papers, the results of discus-
sions that took place during the conference. We specially thank Stefan Voss,
Dimitrios M. Thilikos, and Sirani M. Perera for their inspiring keynote talks. The
conference program featured several tracks in (a) Algorithms Engineering and Design,
and (b) Computational Optimization and Operations Research.

Finally, we thank Springer for supporting the SEA2 2019 conference with a 1,000
euros Best Paper Award. A Selection Committee has adjudicated the SEA2 2019 Best
Paper Award to the paper “Effective heuristics for matchings in hypergraphs.” We are
also grateful to the Kalamata Municipality for sponsoring the conference as well as
additional in-kind sponsorships from the CARGO Lab (Waterloo, Canada), CAO
(Florida, USA), and the High Performance Intelligent Computing and Signal Pro-
cessing - HICASP Lab (Ioannina, Greece).

We hope the reader will find this volume useful both as a reference to current
research and as a starting point for future work.

October 2019 Ilias Kotsireas
Panos Pardalos

Konstantinos E. Parsopoulos
Dimitris Souravlias

Arsenis Tsokas

vi Preface

Organization

General Chairs

Ilias S. Kotsireas Wilfrid Laurier University, Canada
Panos M. Pardalos University of Florida, USA

Program Committee

Konstantinos E. Parsopoulos
(Chair)

University of Ioannina, Greece

Christian Blum Artificial Intelligence Research Institute, Spain
Petros Drineas Purdue University, USA
Andries Engelbrecht Stellenbosch University, South Africa
Mario Guarracino National Research Council of Italy, Italy
Valery Kalyagin Niznhy Novgorod, Russia
Michael Khachay Ekaterinebourg, Russia
Timoleon Kipouros University of Cambridge, UK
Lefteris Kiroussis University of Athens, Greece
Isaac Lagaris University of Ioannina, Greece
Gabriel Luque University of Málaga, Spain
Giuseppe Nicosia University of Catania, Italy
Sotiris Nikoletseas University of Patras, CTI, Greece
Jun Pei Hefei University of Technology, P.R. China
Stefan Pickl Universität der Bundeswehr München, Germany
Helena Ramalhinho Lourenço Universitat Pompeu Fabra, Spain
Christoforos Raptopoulos University of Patras, Greece
Steffen Rebennack Karlsruher Institut für Technologie, Germany
Mauricio G. C. Resende Amazon, USA
Konstantina Skouri University of Ioannina, Greece
Georgios E. Stavroulakis Technical University of Crete, Greece
Radzic Tomasz King’s College, London, UK
Jamal Toutouh Massachusetts Institute of Technology, USA
Renato Umeton Dana-Farber Cancer Institute and MIT, USA

Local Organizing Committee

Dimitris Souravlias Delft University of Technology, The Netherlands
Bill Tatsis University of Ioannina, Greece
Arsenios Tsokas University of Florida, USA

Contents

Voronoi Diagram of Orthogonal Polyhedra in Two and Three Dimensions . . . 1
Ioannis Z. Emiris and Christina Katsamaki

The Complexity of Subtree Intersection Representation of Chordal Graphs
and Linear Time Chordal Graph Generation . 21

Tınaz Ekim, Mordechai Shalom, and Oylum Şeker

Computing a Minimum Color Path in Edge-Colored Graphs. 35
Neeraj Kumar

Student Course Allocation with Constraints . 51
Akshay Utture, Vedant Somani, Prem Krishnaa, and Meghana Nasre

A Combinatorial Branch and Bound for the Min-Max Regret Spanning
Tree Problem . 69

Noé Godinho and Luís Paquete

Navigating a Shortest Path with High Probability in Massive
Complex Networks . 82

Jun Liu, Yicheng Pan, Qifu Hu, and Angsheng Li

Engineering a PTAS for Minimum Feedback Vertex Set in Planar Graphs . . . 98
Glencora Borradaile, Hung Le, and Baigong Zheng

On New Rebalancing Algorithm . 114
Koba Gelashvili, Nikoloz Grdzelidze, and Mikheil Tutberidze

Colorful Frontier-Based Search: Implicit Enumeration of Chordal
and Interval Subgraphs . 125

Jun Kawahara, Toshiki Saitoh, Hirofumi Suzuki, and Ryo Yoshinaka

Unit Disk Cover for Massive Point Sets. 142
Anirban Ghosh, Brian Hicks, and Ronald Shevchenko

Improved Contraction Hierarchy Queries via Perfect Stalling 158
Stefan Funke and Thomas Mendel

Constraint Generation Algorithm for the Minimum Connectivity
Inference Problem . 167

Édouard Bonnet, Diana-Elena Fălămaş, and Rémi Watrigant

Efficient Split-Radix and Radix-4 DCT Algorithms and Applications. 184
Sirani M. Perera, Daniel Silverio, and Austin Ogle

Analysis of Max-Min Ant System with Local Search Applied
to the Asymmetric and Dynamic Travelling Salesman Problem with
Moving Vehicle . 202

João P. Schmitt, Rafael S. Parpinelli, and Fabiano Baldo

Computing Treewidth via Exact and Heuristic Lists of Minimal Separators. . . . 219
Hisao Tamaki

Fast Public Transit Routing with Unrestricted Walking Through
Hub Labeling . 237

Duc-Minh Phan and Laurent Viennot

Effective Heuristics for Matchings in Hypergraphs 248
Fanny Dufossé, Kamer Kaya, Ioannis Panagiotas, and Bora Uçar

Approximated ZDD Construction Considering Inclusion Relations
of Models . 265

Kotaro Matsuda, Shuhei Denzumi, Kengo Nakamura, Masaaki Nishino,
and Norihito Yasuda

Efficient Implementation of Color Coding Algorithm for Subgraph
Isomorphism Problem . 283

Josef Malík, Ondřej Suchý, and Tomáš Valla

Quantum-Inspired Evolutionary Algorithms for Covering Arrays
of Arbitrary Strength . 300

Michael Wagner, Ludwig Kampel, and Dimitris E. Simos

An Experimental Study of Algorithms for Geodesic Shortest Paths
in the Constant-Workspace Model . 317

Jonas Cleve and Wolfgang Mulzer

Searching for Best Karatsuba Recurrences . 332
Çağdaş Çalık, Morris Dworkin, Nathan Dykas, and Rene Peralta

Minimum and Maximum Category Constraints in the Orienteering
Problem with Time Windows . 343

Konstantinos Ameranis, Nikolaos Vathis, and Dimitris Fotakis

Internal Versus External Balancing in the Evaluation of Graph-Based
Number Types . 359

Hanna Geppert and Martin Wilhelm

Hacker’s Multiple-Precision Integer-Division Program in Close Scrutiny 376
Jyrki Katajainen

x Contents

Assessing Algorithm Parameter Importance Using Global
Sensitivity Analysis . 392

Alessio Greco, Salvatore Danilo Riccio, Jon Timmis,
and Giuseppe Nicosia

A Machine Learning Framework for Volume Prediction 408
Umutcan Önal and Zafeirakis Zafeirakopoulos

Faster Biclique Mining in Near-Bipartite Graphs . 424
Blair D. Sullivan, Andrew van der Poel, and Trey Woodlief

k-Maximum Subarrays for Small k: Divide-and-Conquer Made Simpler. 454
Ovidiu Daescu and Hemant Malik

A Faster Convex-Hull Algorithm via Bucketing . 473
Ask Neve Gamby and Jyrki Katajainen

Fixed Set Search Applied to the Minimum Weighted Vertex
Cover Problem . 490

Raka Jovanovic and Stefan Voß

Automated Deep Learning for Threat Detection in Luggage
from X-Ray Images. 505

Alessio Petrozziello and Ivan Jordanov

Algorithmic Aspects on the Construction of Separating Codes 513
Marcel Fernandez and John Livieratos

Lagrangian Relaxation in Iterated Local Search for the Workforce
Scheduling and Routing Problem . 527

Hanyu Gu, Yefei Zhang, and Yakov Zinder

Approximation Algorithms and an Integer Program for Multi-level
Graph Spanners . 541

Reyan Ahmed, Keaton Hamm, Mohammad Javad Latifi Jebelli,
Stephen Kobourov, Faryad Darabi Sahneh, and Richard Spence

Author Index . 563

Contents xi

Voronoi Diagram of Orthogonal
Polyhedra in Two and Three Dimensions

Ioannis Z. Emiris1,2 and Christina Katsamaki1(B)

1 Department of Informatics and Telecommunications,
National and Kapodistrian University of Athens, Athens, Greece

{emiris,ckatsamaki}@di.uoa.gr
2 ATHENA Research and Innovation Center, Maroussi, Greece

Abstract. Voronoi diagrams are a fundamental geometric data struc-
ture for obtaining proximity relations. We consider collections of axis-
aligned orthogonal polyhedra in two and three-dimensional space under
the max-norm, which is a particularly useful scenario in certain applica-
tion domains. We construct the exact Voronoi diagram inside an orthog-
onal polyhedron with holes defined by such polyhedra. Our approach
avoids creating full-dimensional elements on the Voronoi diagram and
yields a skeletal representation of the input object. We introduce a com-
plete algorithm in 2D and 3D that follows the subdivision paradigm
relying on a bounding-volume hierarchy; this is an original approach to
the problem. The complexity is adaptive and comparable to that of pre-
vious methods. Under a mild assumption it is O(n/Δ + 1/Δ2) in 2D
or O(nα2/Δ2 + 1/Δ3) in 3D, where n is the number of sites, namely
edges or facets resp., Δ is the maximum cell size for the subdivision
to stop, and α bounds vertex cardinality per facet. We also provide a
numerically stable, open-source implementation in Julia, illustrating the
practical nature of our algorithm.

Keywords: Max norm · Axis-aligned · Rectilinear · Straight
skeleton · Subdivision method · Numeric implementation

1 Introduction

Orthogonal shapes are ubiquitous in numerous applications including raster
graphics and VLSI design. We address Voronoi diagrams of 2- and 3-dimensional
orthogonal shapes. We focus on the L∞ metric which is used in the relevant
applications and has been studied much less than L2.

A Voronoi diagram partitions space into regions based on distances to a
given set S of geometric objects in R

d. Every s ∈ S is a Voronoi site (or simply
a site) and its Voronoi region under metric μ, is Vμ(s) = {x ∈ R

d | μ(s, x) <
μ(x, s′), s′ ∈ S \ s}. The Voronoi diagram is the set Vμ(S) = R

d \ ⋃
s∈S Vμ(s),

consisting of all points that attain their minimum distance to S by at least two
Voronoi sites. For general input, the Voronoi diagram is a collection of faces of

c© Springer Nature Switzerland AG 2019
I. Kotsireas et al. (Eds.): SEA2 2019, LNCS 11544, pp. 1–20, 2019.
https://doi.org/10.1007/978-3-030-34029-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34029-2_1&domain=pdf
https://doi.org/10.1007/978-3-030-34029-2_1

2 I. Z. Emiris and C. Katsamaki

dimension 0, 1, . . . , d − 1. A face of dimension k comprises points equidistant to
at least d + 1 − k sites. Faces of dimension 0 and 1 are called Voronoi vertices
and Voronoi edges respectively. The union of Voronoi edges and vertices is the
1-skeleton. Equivalently, a Voronoi diagram is defined as the minimization dia-
gram of the distance functions to the sites. The diagram is a partitioning of space
into regions, each region consisting of points where some function has lower value
than any other function.

Fig. 1. Voronoi diagram of
a rectilinear polygon with 2
holes. (Color figure online)

In this paper, we study Voronoi diagrams in the
interior of an axis-aligned orthogonal polyhedron;
its faces meet at right angles, and the edges are
aligned with the axes of a coordinate system. It
may have arbitrarily high genus with holes defined
by axis-aligned orthogonal polyhedra, not necessar-
ily convex. Facets are simply connected (without
holes) for simplicity. The sites are the facets on the
boundary of all polyhedra.

The distance of two points x, y ∈ R
d under L∞

is μ∞(x, y) = maxi{|xi − yi|} and the distance of
x to a set S ⊂ R

d is μ∞(x, S) = inf{μ∞(x, y) | y ∈
S}. In Fig. 1, the Voronoi diagram1 of a rectilinear
polygon with 2 holes is shown in blue. Our algo-
rithm follows the Subdivision Paradigm and handles 2D and 3D sites. It reads
in a region bounding all input sites and performs a recursive subdivision into
cells (using quadtrees or octrees). Then, a reconstruction technique is applied to
produce an isomorphic representation of the Voronoi diagram.

Previous Work. If V is the number of polyhedral vertices, the combinatorial
complexity of our Voronoi diagrams equals O(V) in 2D [13] and O(V 2) in 3D
[4]. In 3D, it is estimated experimentally to be, in general, O(V) [12].

Related work in 2D concerns L∞ Voronoi diagrams of segments. In [13],
they introduce an O(n log n) sweep-line algorithm, where n is the number of
segments; they offer a robust implementation for segments with O(1) number of
orientations. Another algorithm implemented in library CGAL [6] is incremental.
The L∞ Voronoi diagram of orthogonal polyhedra (with holes) is addressed in
[12] in view of generalizing the sweep-line paradigm to 3D: in 2D it runs in
O(n log n) as in [13], and in 3D the sweep-plane version runs in O(kV), where
k = O(V 2) is the number of events.

When the diagram is restricted in the interior of a polygon or polyhedron,
it serves as a skeletal representation. A skeleton reduces the dimension of the
input capturing its boundary’s geometric and topological properties. In particu-
lar, straight skeletons are very related to the L∞ Voronoi diagram of rectilinear
polygons [2]. An algorithm for the straight skeleton of a simple polygon (not nec-
essarily rectilinear) has complexity O(V

17
11+ε) for fixed ε > 0 [9]. For x-monotone

rectilinear polygons, a linear time algorithm was recently introduced [7]. In 3D,

1 Computed by our software and visualized with Axl viewer.

Voronoi Diagram of Orthogonal Polyhedra 3

an analogous equivalence of the straight skeleton of orthogonal polyhedra and the
L∞ Voronoi diagram exists [4] and a complete analysis of 3D straight skeletons
is provided in [3]. Specifically for 3D orthogonal polyhedra, in [4] they offer two
algorithms that construct the skeleton in O(min{V 2 log V, k logO(1) V }), where
k = O(V 2) is the number of skeleton features. Both algorithms are rather theo-
retical and follow a wavefront propagation process. Recently, the straight skele-
ton of a 3D polyhedral terrain was addressed [11].

A Voronoi diagram can contain full-dimensional faces, as part of a bisec-
tor. Under L∞, when two points have same coordinate value, their bisector is
full dimensional (Fig. 2a). Conventions have been adopted, to ensure bisectors
between sites are not full-dimensional [6,12,13]. We address this issue in the
next section. Subdivision algorithms for Voronoi diagrams are numerous, e.g.
[5,8,15]; our work is related to [5,15]. These algorithms are quite efficient, since
they adapt to the input, and rather simple to implement. None exists for our
problem.

Our Contribution. We express the problem by means of the minimization dia-
gram of a set of algebraic functions with restricted domain, that express the L∞
distance of points to the boundary. The resulting Voronoi diagram, for general
input, is (d − 1)−dimensional. We focus on 2D and 3D orthogonal polyhedra
with holes, where the resulting Voronoi diagram is equivalent to the straight
skeleton. We introduce an efficient and complete algorithm for both dimensions,
following the subdivision paradigm which is, to the best of our knowledge, the
first subdivision algorithm for this problem. We compute the exact Voronoi dia-
gram (since L∞ bisectors are linear). The output data structure can also be used
for nearest-site searching.

The overall complexity is output-sensitive, which is a major advantage. Under
the ‘Uniform Distribution Hypothesis’ (Sect. 3.3), which captures the expected
geometry of the input as opposed to worst-case behaviour, the complexity is
O(n/Δ+1/Δ2) in 2D, where n the number of sites (edges) and Δ the separation
bound (maximum edge length of cells that guarantees termination). This bound
is to be juxtaposed to the worst-case bound of O(n log n) of previous methods.
In 3D, it is O(nα2/Δ2 + 1/Δ3) where α bounds vertex cardinality per facet
(typically constant). Under a further assumption (Remark 2) this bound becomes
O(V/Δ2+1/Δ3) whereas existing worst-case bounds are quasi-quadratic or cubic
in V . Δ is measured under appropriate scaling for the bounding box to have edge
length 1. Scaling does not affect arithmetic complexity, but may be adapted to
reduce the denominators’ size in rational calculations. The algorithm’s relative
simplicity has allowed us to develop a numerically stable software in Julia2,
a user-friendly platform for efficient numeric computation; it consists of about
5000 lines of code and is the first open-source code in 3D.

The rest of this paper is organized as follows. The next section provides struc-
tural properties of Voronoi diagrams. In Sect. 3 we introduce our 2D algorithm:
the 2D and 3D versions share some basic ideas which are discussed in detail in
this section. In particular, we describe a hierarchical data structure of bounding

2 https://gitlab.inria.fr/ckatsama/L infinity Voronoi/.

https://gitlab.inria.fr/ckatsama/L_infinity_Voronoi/

4 I. Z. Emiris and C. Katsamaki

volumes, used to accelerate the 2D algorithm for certain inputs and is necessary
for the efficiency of the 3D algorithm. Then we provide the complexity analysis
of the 2D algorithm. In Sect. 4 we extend our algorithm and analysis to 3D. In
Sect. 5 we conclude with some remarks, examples and implementation details.
Due to space limitations, omitted proofs are given in the Appendix.

2 Basic Definitions and Properties

We introduce useful concepts in general dimension. Let P be an orthogonal
polyhedron of full dimension in d dimensions, whose boundary consists of n
simply connected (without holes) facets; these are edges or flats in 2D and 3D,
resp. Note that P includes the shape’s interior and boundary. Now S consists of
the closed facets that form the boundary of P including all facets of the interior
polyhedra. There are as many such polyhedra as the genus. Let V∞(s) denote
the Voronoi region of site s under the L∞ metric. Lemma 1 gives a property of
standard L∞ Voronoi diagram preserved by Definition 1.

Fig. 2. Voronoi diagrams (in red): (a) standard, under L∞, (b) under Definition 1
(Color figure online)

Lemma 1. Let s ∈ S. For every point p ∈ V∞(s) it holds that μ∞(p, s) =
μ∞(p, aff(s)), where aff(s) is the affine hull of s.

Fig. 3. H(s), Z(s), Z+(s)
for segment s.

For s ∈ S let H(s) be the closed halfspace of Rd

induced by aff(s) such that for every p ∈ s there exists
a point q ∈ H(s) s.t. q ∈ int(P) and μ∞(p, q) < ε,
∀ε > 0. We define the (unoriented) zone of s as
Z(s) := {p ∈ R

d | μ∞(p, s) = μ∞(p, aff(s))}. The
oriented zone of s is Z+(s) := H(s)∩Z(s) (Fig. 3).

We associate to s the distance function

Ds(·) : Rd → R : p �→
{

μ∞(p, s), if p ∈ Z+(s),
∞, otherwise.

The minimization diagram of D = {Ds | s ∈ S} restricted to P yields a Voronoi
partitioning. The Voronoi region of s with respect to Ds(·) is

VD(s) = {p ∈ P | Ds(p) < ∞ and ∀s′ ∈ S \ s Ds(p) < Ds′(p)}

Voronoi Diagram of Orthogonal Polyhedra 5

Definition 1. The Voronoi diagram of P w.r.t. D is VD(P) = P \ ⋃
s∈S VD(s).

This means one gets the Voronoi diagram of Fig. 2b. Clearly P ⊂ ⋃
s∈S Z+(s)

(Fig. 2a). Denoting by X the closure of a set X, then V∞(s) ⊆ VD(s) ⊆ V∞(s) ⊆
Z+(s). The bisector of s, s′ ∈ S w.r.t. D is bisD(s, s′) = {x ∈ R

d | Ds(x) =
Ds′(x) < ∞}. Then bisD(s, s′) ⊂ affbis(s, s′), where affbis(s, s′) denotes the
L∞ (affine) bisector of aff(s), aff(s′). In 2D (resp. 3D) if sites have not the same
affine hull, bisectors under D lie on lines (resp. planes) parallel to one coordinate
axis (resp. plane) or to the bisector of two perpendicular coordinate axes (resp.
planes). Although the latter consists of two lines (resp. planes), bisD lies only
on one, and it can be uniquely determined by the orientation of the zones.
Degeneracy of full-dimensional bisectors, between sites with the same affine hull,
is avoided by infinitesimal perturbation of corresponding sites. This is equivalent
to assigning priorities to the sites; the full dimensional region of the former
diagram is ‘to the limit’ assigned to the site with the highest priority (Fig. 4b).
Such a perturbation always exists, both for 2D [12, Lem. 13] and 3D [12, Lem. 31].

Fig. 4. (a) 2D Voronoi diagram for polygon with colinear edges. (b) 1D Voronoi dia-
gram after infinitesimal perturbation of edges, where ε → 0+.

Set X is weakly star shaped with respect to Y ⊆ X if ∀x ∈ X, ∃y ∈ Y such
that the segment (x, y) belongs to X.

Lemma 2. For every s ∈ S, VD(s) is weakly star shaped with respect to s.

Therefore, since every s is simply connected, from Lemma 2 VD(s) is simply
connected and VD(s) is also simply connected. Let the degree of a Voronoi vertex
be the number of sites to which it is equidistant. If the degree is > d + 1, the
vertex is degenerate. Lemma 3 is nontrivial: in metrics like L2 degree is arbitrarily
large. For d = 2, 3 this bound is tight [12].

Lemma 3. (a) The maximum degree of a Voronoi vertex is less than or equal
to 2dd. (b) When d = 2, a Voronoi vertex cannot have degree 7.

6 I. Z. Emiris and C. Katsamaki

3 Subdivision Algorithm in Two Dimensions

Given manifold rectilinear polygon P, i.e. every vertex being shared by exactly
two edges, the input consists of S and a box C0 bounding P. Non-manifold
vertices can be trivially converted to manifold with an infinitesimal perturbation.
Subdivision algorithms include two phases. First, recursively subdivide C0 to 4
identical cells until certain criteria are satisfied, and the diagram’s topology can
be determined in O(1) inside each cell. The diagram is reconstructed in the
second phase.

3.1 Subdivision Phase

We consider subdivision cells as closed. Given cell C, let φ(C) be the set of sites
whose closed Voronoi region intersects C: φ(C) =

{
s ∈ S | VD(s) ∩ C �= ∅}. For

point p ∈ P we define its label set λ(p) = {s ∈ S | p ∈ VD(s)}. When p ∈ Pc,
where Pc is the complement of P, then λ(p) = ∅. The computation of φ(C) is
hereditary, since φ(C) ⊆ φ(C′), if C′ is the parent of C. But it is rather costly;
given φ(C′) with |φ(C′)| = κ, it takes O(κ2) to compute φ(C), since the relative
position of C to the bisector of every pair of sites in φ(C′) must be specified.
Alternatively, we denote by pC , rC the center and the L∞-radius of C and define
the active set of C as:

φ̃(C) :=
{
s ∈ S | Z+(s) ∩ C �= ∅, and μ∞(pC , s) ≤ 2rC + δC

}
,

where δC = mins Ds(pC), if pC ∈ P, and 0 otherwise. We now explain how φ̃

approximates φ by adapting [5, Lem. 2], where φ̃ appears as a soft version of φ.

Lemma 4. (a) For every cell C, φ(C) ⊆ φ̃(C). (b) For a sequence of cells (C)i

monotonically convergent to point p ∈ P, φ̃(Ci) = φ(p) for i large enough.

One can easily verify φ̃(C) ⊆ φ̃(C′), therefore the complexity of computing
φ̃(C) is linear in the size of φ̃(C′). The algorithm proceeds as follows: For each
subdivision cell we maintain the label sets of its corner points and of its central
point, and φ̃. The subdivision of a cell stops whenever at least one of the termi-
nation criteria below holds (checked in turn). Upon subdivision, we propagate
φ̃ and the label sets of the parent cell to its children. For every child we compute
the remaining label sets and refine its active set. Let M be the maximum degree
of a Voronoi vertex (M ≤ 8).

Termination Criteria: (T1) C ⊆ VD(s) for some s ∈ S; (T2) int(C) ∩ P = ∅;
(T3) |φ̃(C)| ≤ 3; (T4) |φ̃(C)| ≤ M and the sites in φ̃(C) define a unique Voronoi
vertex v ∈ C.

When (T1) holds, C is contained in a Voronoi region so no part of the diagram
is in it. (T2) stops the subdivision when the open cell is completely outside the
polygon. If (T3) holds, we determine in O(1) time the diagram’s topology in

Voronoi Diagram of Orthogonal Polyhedra 7

C since there are ≤ 3 Voronoi regions intersected. (T4) stops cell subdivision
if it contains a single degenerate Voronoi vertex. The process is summarized in
Algorithm 1.

Algorithm 1. Subdivision2D(P)
1: root ← bounding box of P
2: Q ← root
3: while Q �= ∅ do
4: C ← pop(Q)

5: Compute ˜φ(C) and the label sets of the vertices and the central point.
6: if (T1) ∨ (T2) ∨ (T3) ∨ (T4) then
7: return
8: else
9: Subdivide C into C1, C2, C3, C4

10: Q ← Q ∪ {C1, C2, C3, C4}
11: end if
12: end while

Theorem 1. Algorithm 1 halts.

Proof. Consider an infinite sequence of boxes C1 ⊇ C2 ⊇ . . . such that none of
the termination criteria holds. Since (T1) and (T2) do not hold for any Ci with
i ≥ 1, the sequence converges to a point p ∈ VD(P). From Lemma 4(b), there
exists i0 ∈ N such that φ̃(Ci0) = φ(p) = λ(p). Since |λ(p)| ≤ 8, (T4) will hold. ��
Lemma 5. For a subdivision cell C, let v1, . . . , v4 its corner vertices. For s ∈ S,
C ⊆ VD(s) if and only if v1, . . . , v4 ∈ VD(s).

Hence one decides (T1) by checking the vertices’ labels. (T2) is valid for C
iff λ(pC) = ∅ and ∀s ∈ φ̃(C), s ∩ int(C) = ∅. For (T4), the presence of a Voronoi
vertex in C is verified through constructor VoronoiVertexTest: given C with
|φ̃(C)| ≥ 3, the affine bisectors of sites in φ̃(C) are intersected. If the intersection
point is in C and in Z+(s) for every s ∈ φ̃(C) then it is a Voronoi vertex. We do
not need to check whether it is in P or not; since (T1) fails for C, if v �∈ P, there
must be s intersecting C such that v �∈ Z+(s): contradiction.

3.2 Reconstruction Phase

We take the quadtree of the subdivision phase and output a planar straight-line
graph (PSLG) G = (V,E) representing the Voronoi diagram of P. G is a (vertex)
labeled graph and its nodes are of two types: bisector nodes and Voronoi vertex
nodes. Bisector nodes span Voronoi edges and are labeled by the two sites to
which they are equidistant. Voronoi vertex nodes correspond to Voronoi vertices
and so are labeled by at least 3 sites. We visit the leaves of the quadtree and,

8 I. Z. Emiris and C. Katsamaki

whenever the Voronoi diagram intersects the cell, bisector or vertex nodes are
introduced. By connecting them accordingly with straight-line edges, we obtain
the exact Voronoi diagram and not an approximation. We process leaves with
|φ̃(·)| ≥ 2 that do not satisfy (T1) nor (T2).

Cell with Two Active Sites. When φ̃(C) = {s1, s2}, C intersects VD(s1) or
VD(s2) or both. The intersection of bisD(s1, s2) with the cell, when non empty, is
part of the Voronoi diagram: for each p ∈ bisD(s1, s2)∩C it holds that Ds1(p) =
Ds2(p) and λ(p) ⊆ φ̃(C) = {s1, s2}. Therefore p ∈ VD(s1) ∩ VD(s2).

Remark 1. If there is no Voronoi vertex in C and p1, p2 ∈ bisD(s1, s2) ∩ C for
s1, s2 ∈ φ̃(C), then p1p2 ⊂ bisD(s1, s2).

Since bisD(s1, s2) ⊂ affbis(s1, s2) we intersect the affine bisector with
the boundary of the cell. An intersection point p ∈ bis∞(aff(s1), aff(s2)) is
in bisD(s1, s2) iff p ∈ Z+(s1) ∩ Z+(s2). If intersection points are both in
Z+(s1) ∩ Z+(s2), we introduce a bisector node in the middle of the line seg-
ment joining them, labeled by {s1, s2}. When only one intersection point is in
Z+(s1) ∩ Z+(s2), then s1, s2 must intersect in C. Introduce a bisector node at
the intersection point labeled by {s1, s2}.

Fig. 5. A Voronoi vertex
node connected with two
bisector nodes.

Cell with 3 Active Sites or More. When |φ̃(C)| =
3 and the VoronoiVertexTest finds a vertex in C or
when |φ̃(C)| ≥ 4 (a vertex has already been found), we
introduce a Voronoi vertex node at the vertex, labeled
by corresponding sites. In the presence of corners of P
in C, bisector nodes are introduced and connected to
the vertex node (Fig. 5).

If no Voronoi vertex is in C, we repeat the procedure
described in previous paragraph for each pair of sites.
Even if a bisector node is found, it is not inserted at
the graph if it is closer to the third site.

Connecting the Graph Nodes. The remaining graph edges must cross two
subdivision cells. We apply “dual marching cubes” [14] to enumerate pairs of
neighboring cells in time linear in the size of the quadtree: cells are neighboring
if they share a facet. Let v1, v2 be graph nodes in neighboring cells. We connect
them iff:

– v1, v2 are bisector nodes and λ(v1) = λ(v2).
– v1 is a bisector node, v2 is a Voronoi vertex node and λ(v1) ⊂ λ(v2).
– v1, v2 are Voronoi vertex nodes, |λ(v1) ∩ λ(v2)| = 2 and v1v2 ⊂ P.

See Fig. 6 for an example where v1, v2 are Voronoi vertex nodes with |λ(v1) ∩
λ(v2)| = 2 and v1v2 �⊂ P.

Voronoi Diagram of Orthogonal Polyhedra 9

Fig. 6. C1, C2 are two neighboring subdivision cells and the Voronoi vertices v1, v2 have
two common sites as labels but are not connected with a Voronoi edge.

Theorem 2 (Correctness). The output graph is isomorphic to VD(P).

Proof. We need to prove that the nodes in the graph are connected correctly. Let
neighboring cells C1, C2 and v1, v2 graph nodes in each of them respectively. If v1, v2

are bisector nodes and λ(v1) = λ(v2), then the line segment v1v2 is in bisD (s1, s2),
for s1, s2 ∈ λ(v1), and on the Voronoi diagram (Remark 1). If v1 is a bisector node
and v2 is a Voronoi vertex node s.t. λ(v1) ⊆ λ(v2), then v1v2 ⊂ bis∞(s1, s2). If
the segment v1v2 is not on the Voronoi diagram then, there is a Voronoi vertex
node different than v2 in C1 or C2; contradiction. At last, let v1 and v2 be Voronoi
vertex nodes such that their labels have two sites in common, say s, s′, and the
edge v1v2 ⊂ P. Vertices v1, v2 are both on the boundary of VD(s) ∩ VD(s′). Since
v1v2 ⊂ P, if it does not coincide with the Voronoi edge equidistant to s, s′, then
both v1, v2 must also be on the boundary of a Voronoi region other than VD(s) and
VD(s′). This leads to a contradiction. ��

3.3 Primitives, Data-Structures, Complexity

Assuming the input vertices are rational, Voronoi vertices are rational [13]. Com-
puting Voronoi vertices, and intersections between affine bisectors and cell facets
require linear operations, distance evaluations and comparisons. Therefore, they
are exact. The above operations, computing φ̃ and deciding site-cell intersection
are formulated to allow for a direct extension to 3D. In the sequel we discuss
design of predicates, computation of label sets and construction of a Bounding
Volume Hierarchy. We also provide a complexity analysis of the algorithm.

Fig. 7. Test performed
by inZone(p, s).

Membership in H(s) is trivial to decide, thus we
focus on predicates that decide membership in Z(s).
Given p ∈ R

2 and s ∈ S, let praff(s)(p) the projection
of p to aff(s) and Ip,s the 1d−interval on aff(s) centered
at praff(s)(p) with radius μ∞(p, aff(s)). inZone(p, s)
decides if p ∈ Z(s); this holds iff Ip,s ∩ s �= ∅ (Fig. 7).
Given C, s ∈ S, ZoneInCell(s, C) decides if Z(s)∩C �=
∅. For this evaluation see Lemma 6 and Fig. 8.

Lemma 6. Let s ∈ S, f1, f2 the two facets of C parallel to aff(s), ρi =
μ∞(fi, aff(s)) for i = 1, 2 and p′

C = praff(s)(pC). Then, Z(s)∩C �= ∅ iff ∃i ∈ {1, 2}
s.t. B∞(p′

C , rC + ρi) ∩ s �= ∅.

10 I. Z. Emiris and C. Katsamaki

(a) (b)

Fig. 8. Illustration of test performed by ZoneInCell

To decide if s∩C �= ∅ and if s∩int(C) �= ∅, we use isIntersecting(s, C) and
isStrictlyIntersecting(s, C) respectively. Design is trivial. All these predi-
cates are computed in O(1).

Computing Label Sets. If p ∈ P∩C then its closest sites are in φ̃(C). Deciding
if p ∈ P is done by LocationTest, which identifies position based on the sites
that intersect C: among these we select those with minimum L∞ distance to p
and for whom inZone(p, s) is true. If a convex (resp. concave) corner w.r.t. the
interior of P is formed by these sites then p ∈ P iff it belongs to the intersection
(resp. union) of the oriented zones. If no corner is formed or even if C is not
intersected by any site, decision is trivial. This takes O(|φ̃(C)|).

Bounding Volume Hierarchy. We decompose P into a collection of rectan-
gles such that any two of them have disjoint interior. We construct a kd-tree on
the reflex vertices of the polygon, splitting always at a vertex. An orthogonal
polygon with h holes, has r = n/2 + 2(h − 1) reflex vertices. The kd-tree sub-
divides the plane into at most r + 1 regions. Every terminal region contains a
nonempty collection of disjoint rectangles. Let t be the maximum number of such
rectangles. Using this decomposition, we construct a Bounding Volume Hierar-
chy (BVH) [1,10]. It is a tree structure on a set of objects stored at the leaves
along with their bounding volume while internal nodes store information of their
descendants’ bounding volume. Two important properties are minimal volume
and small overlap. They are achieved by using the Axis Aligned Bounding Box
(AABB) as bounding shape and building the BVH by bottom-up traversing the
constructed kd-tree: at every leaf of the kd-tree we compute the AABB of its
rectangles (namely a terminal bounding box) and for every internal node we
compute the AABB of its children. The bounding volumes of a node’s children
intersect only at their boundary. Space complexity is linear in tree size.

Rectangle-Intersection Queries: Given query rectangle Q the data structure
reports all rectangles in the decomposition overlapping with Q. Starting from
the root, for every internal node, we check whether Q intersects its bounding
rectangle or not. In the latter case the data structure reports no rectangles. In
the former, we check the position of Q relative to the bounding boxes of the
node’s children so as to decide for each one if it should be traversed or not.
We continue similarly: when we reach a terminal bounding box, we check the
position of Q relative to every rectangle in it. Let k be the number of terminal
bounding boxes intersected by Q. Following [1] we show:

Voronoi Diagram of Orthogonal Polyhedra 11

Theorem 3. Rectangle intersection queries are answered in O(k lg r + kt).

Proof. Let Q a rectangle-intersection query and v an internal node of the BVH
tree visited during the query. We distinguish two cases; first, the subtree rooted
at v contains a terminal bounding box that intersects Q. There are O(k) such
nodes at each level. Otherwise, Q intersects with the bounding rectangle V stored
at v but does not intersect any terminal bounding box of the subtree rooted at v.
There are at least two such terminal bounding boxes, say b and b′. Since Q does
not intersect b there is a line � passing through a facet of Q separating Q from
b. Similarly, there exists a line �′ passing through a facet of Q that separates it
from b′. W.l.o.g. there is a choice of b, b′ such that � and �′ are distinct: if all
the terminal bounding boxes of the subtree can be separated by the same line,
then V cannot intersect Q. If �, �′ are perpendicular, then their intersection also
intersects V . Since the bounding boxes of each level are strictly non-overlapping,
every vertex of Q intersects a constant number of them (up to 4). So, there is a
constant number of such nodes at a given level. When �, �′ are parallel and no
vertex of Q intersects V , then the terminal bounding rectangles of the subtree
can be partitioned to those separated by � from Q and to those separated by �′

from Q. For these distinct sets of terminal bounding boxes to be formed, there
must occur a split of V by a line parallel and in between �, �′. So there is a
reflex vertex of the polygon in V ∩ Q, causing this split. But V ∩ Q ∩ P = ∅; a
contradiction. So there are O(k) internal nodes visited at each level of tree. The
visited leaf nodes correspond to the O(k) terminal bounding boxes that intersect
Q and since each of them encloses at most t rectangles, the additional amount
of operations performed equals O(kt). Summing over all levels of the tree yields
a total query complexity of

∑�lg r�
i=0 O(k) + O(kt) = O(k lg r + kt). ��

Point Queries: Given p ∈ R
2, we report on the rectangles of the decomposition

in which p lies inside (at most 4 rectangles). When zero, the point lies outside
the polygon. Since it is a special case of a rectangle-intersection query, the query
time complexity is O(lg r + t).

Complexity. Analysis requires a bound on the height of the quadtree. The edge
length of the initial bounding box is supposed to be 1 under appropriate scaling.
Let separation bound Δ be the maximum value s.t. for every cell of edge length
≥ Δ at least one termination criterion holds. Then, the maximum tree height is
L = O(lg(1/Δ)). Let β be the minimum distance of two Voronoi vertices, and γ
the relative thickness of Pc, i.e. the minimum diameter of a maximally inscribed
L∞-ball in Pc, where Pc is the complement of P.

Theorem 4. Separation bound Δ is Ω(min{γ, β}), where the asymptotic nota-
tion is used to hide some constants.

Proof. The algorithm mainly subdivides cells that intersect VD(P), since a cell
inside a Voronoi region or outside P is not subdivided (Termination criteria (T1),
(T2)). Most subdivisions occur as long as non neighboring Voronoi regions are
“too close”. Consider C centered at pC ∈ VD(s) and site s′ �= s, with VD(s), VD(s′)
non neighboring. For rC <

μ∞(pC ,s′)−μ∞(pC ,s)

2 site s′ is not in φ̃(C). It holds that

12 I. Z. Emiris and C. Katsamaki

μ∞(pC , s′) − μ∞(pC , s) ≥ ζ(s, s′), where ζ(s, s′) = min{μ∞(p, q) | p ∈ VD(s), q ∈
VD(s′)}, i.e. the minimum distance of the closure of the two Voronoi regions.
When VD(s), VD(s′) are connected with a Voronoi edge, ζ(s, s′) = Ω(β). When
a minimum cell size of Ω(β) is not sufficient for s′ to not belong in φ̃(C), then
there is a hole between VD(s), VD(s′) and ζ(s, s′) is Ω(γ) in this case. ��

This lower bound is tight: in Fig. 9a for Δ = 0.8125β, and in Fig. 9b for
Δ = γ. Next we target a realistic complexity analysis rather than worst-case.
For this, assume the site distribution in C0 is “sufficiently uniform”. Formally:

Uniform Distribution Hypothesis (UDH): For L∞ balls A1 ⊆ A0 ⊂ C0,
let N0 (resp. N1) be the number of sites intersecting A0 (resp. A1). We suppose
N1/N0 = O(vol(A1)/vol(A0)), where vol(·) denotes the volume of a set in R

d,
d being the dimension of C0.

Theorem 5. Under UDH the algorithm complexity is O(n/Δ+1/Δ2), where n
is the total number of boundary edges (including any holes).

Proof. At each node, refinement and checking the termination criteria run in
time linear in the size of its parent’s active set. At the root |φ̃(C0)| = n. The
cardinality of active sets decreases as we move to the lower levels of the quadtree:
Let A(p, d,R) = {q ∈ R

2 | d ≤ μ∞(p, q) ≤ 2R + d}. For cell C and s ∈ φ̃(C), s ∩
A(pC , δC , rC) �= ∅. Let E = vol(A(pC , δC , rC)). For C1 a child of C and s1 ∈ φ̃(C1),
s1∩A(pC1

, δC1
, rC1

) �= ∅. Since B∞(pC , δC) is empty of sites and may intersect with
A(pC1

, δC1
, rC1

), we let E1 = vol(A(pC1
, δC1

, rC1
)\(A(pC1

, δC1
, rC1

)∩B∞(pC , δC))).
We prove that in any combination of δC , δC1

, rC it is E1 ≤ E/2. Under UDH, a
cell at tree level i has |φ̃(Ci)| = O(n/2i). Computation per tree level, is linear
in sum of active sets’ cardinality, therefore summing over all levels of the tree,
we find the that complexity of the subdivision phase is O(n/Δ). The complexity
of the reconstruction phase is O(ñ), where ñ is the number of leaf nodes in the
quadtree, which is in turn O(1/Δ2). This allows to conclude. ��

Queries in the BVH can be used to compute label sets and the active set of
a cell. Assume the number of segments touching a rectangle’s boundary is O(1),
which is the typical case. Then, we prove the following.

Lemma 7. We denote by C′ the parent of C in the subdivision. Using BVH
accelerates the refinement of C if |φ̃(C′)|/|φ̃(C)| = Ω(lg n + t).

4 Subdivision Algorithm in Three Dimensions

Let P be a manifold orthogonal polyhedron: every edge of P is shared by exactly
two and every vertex by exactly 3 facets. For non-manifold input we first employ
trihedralization of vertices, discussed in [4,12]. Input consists of S and bounding
box C0 of P. An octree is used to represent the subdivision.

The main difference with the 2D case is that Voronoi sites can be noncon-
vex. As a consequence, for site s, Z+(s) is not necessarily convex and therefore

Voronoi Diagram of Orthogonal Polyhedra 13

(a) Input consists of 28 sites and 164
cells are generated. Total time is 12.0
ms. Minimum cell size is 0.8125 · β.

(b) Input consists of 12 sites and 64
cells are generated. Total time is 5.6
ms. Minimum cell size is γ.

Fig. 9. The 1-skeleton of the Voronoi diagram is shown in blue. (Color figure online)

the distance function Ds(·) cannot be computed in O(1): it is not trivial to
check membership in Z+(s). It is direct to extend the 2D algorithm in three
dimensions. However, we examine efficiency issues.

For an efficient computation of the basic predicates (of Sect. 3.3), we prepro-
cess every facet of the polyhedron and decompose it to a collection of rectangles.
Then a BVH on the rectangles is constructed. The basic operation of all these
predicates in 2D is an overlap test between an interval and a segment in 1D. In
3D, the analog is an overlap test between a 2D rectangle and a site (rectilinear
polygon). Once the BVH is constructed for each facet, the rectangle-intersection
query takes time logarithmic in the number of facet vertices (Theorem 3).

Subdivision. The active set φ̃, φ and the label set of a point are defined as in to
2D. Most importantly, Lemma 4 is valid in 3D as well. The algorithm proceeds
as follows: We recursively subdivide C0 into 8 identical cells. The subdivision of
a cell stops whenever at least one of the termination criteria below holds. For
each cell of the subdivision we maintain the label set of its central point and φ̃.
Upon subdivision, we propagate φ̃ from a parent cell to its children for further
refinement. We denote by M the maximum degree of a Voronoi vertex (M ≤ 24).

3D Termination Criteria: (T1’) int(C) ∩ P = ∅, (T2’) |φ̃(C)| ≤ 4, (T3’)
|φ̃(C)| ≤ M and the sites in φ̃(C) define a unique Voronoi vertex v ∈ C.

Subdivision is summarized in Algorithm 2. (T1’) is valid for C iff λ(pC) =
∅ and ∀s ∈ φ̃(C) it holds that s ∩ int(C) = ∅. Detecting a Voronoi vertex
in C proceeds like in 2D. A Voronoi vertex is equidistant to at least 4 sites
and there is a site parallel to each coordinate hyperplane among them. (T1)
used in 2D is omitted, for it is not efficiently decided: labels of the cell vertices
cannot guarantee that C ⊆ VD(s). However, as the following lemma indicates,
termination of the subdivision is not affected: cells contained in a Voronoi region
whose radius is < r∗, where r∗ is a positive constant, are not subdivided.

14 I. Z. Emiris and C. Katsamaki

Algorithm 2. Subdivision3D(P)
1: root ← bounding box of P
2: Q ← root
3: while Q �= ∅ do
4: C ← pop(Q)

5: Compute the label set of central point and ˜φ(C).
6: if (T1’) ∨ (T2’) ∨ (T3’) then
7: return
8: else
9: Subdivide C into C1, . . . , C8

10: Q ← Q ∪ {C1, . . . , C8}
11: end if
12: end while

Lemma 8. Let C ⊆ VD(s). There is r∗ > 0 s.t. rC < r∗ implies φ̃(C) = {s}.

Theorem 6. Algorithm 2 halts.

Reconstruction. We construct a graph G = (V,E), representing the 1-skeleton
of the Voronoi diagram. The nodes of G are of two types, skeleton nodes and
Voronoi vertex nodes, and are labeled by their closest sites. Skeleton nodes span
Voronoi edges and are labeled by 3 or 4 sites. We visit the leaves of the octree
and process cells with |φ̃(C)| ≥ 3 and that do not satisfy (T1’). We introduce
the nodes to the graph as in 2D. Graph edges are added between corners and
Voronoi vertex nodes inside a cell. We run dual marching cubes (linear in the
octree size) and connect graph nodes v1, v2 located in neighboring cells, iff:

– v1, v2 are skeleton nodes and λ(v1) = λ(v2), or
– v1 is a skeleton node, v2 is a Voronoi vertex node and λ(v1) ⊂ λ(v2), or
– v1, v2 are Voronoi vertex nodes, |λ(v1) ∩ λ(v2)| = 3 and v1v2 ⊂ P.

Theorem 7 (Correctness). The output graph is isomorphic to the 1-skeleton
of the Voronoi diagram.

Primitives. Deciding membership in H(·) is trivial. The predicates of Sect. 3.3
extend to 3D and the runtime of each is that of a rectangle-intersection query on
the BVH constructed for the corresponding site at preprocessing: Let praff(s)(p)
be the projection of p to aff(s) and Bp,s the 2d−box on aff(s) centered at
praff(s)(p) with radius μ∞(p, aff(s)). Then, p ∈ Z(s) iff Bp,s ∩ s �= ∅. A query
with Bp,s is done by inZone(p, s). For ZoneInCell(p, C) we do a query with
B∞(p′

C , rC + ρi) where p′
C = praff(s)(pC), ρi = μ∞(fi, aff(s)) and f1, f2 the two

facets of C parallel to aff(s). Queries with B∞(p′
C , rC) are also performed by

isIntersecting(s, C) and isStrictlyIntersecting(s, C). When computing
label sets, LocationTest is slightly modified, since the corners used to identify
the position of a point can also be formed by 3 sites.

Complexity. Under appropriate scaling so that the edge length of C0 be 1, if Δ is
the separation bound, then the maximum height of the octree is L = O(lg(1/Δ)).

Voronoi Diagram of Orthogonal Polyhedra 15

The algorithm mainly subdivides cells intersecting P, unlike the 2D algorithm
that mainly subdivides cells intersecting VD(P), because a criterion like (T1) is
missing. This absence does not affect tree height, since, by the proof of Lemma 8,
the minimum cell size is same as when we separate sites whose regions are
non-neighboring (handled by Theorem 4). If β is the minimum distance of two
Voronoi vertices and γ the relative thickness of Pc, taking Δ = Ω(min{β, γ})
suffices, as in 2D (Theorem 4).

Theorem 8. Under UDH and if n is the number of polyhedral facets, α the
maximum number of vertices per facet and tα the maximum number of rectangles
in a BVH leaf, the algorithm’s complexity is O(nα(lg α + tα)/Δ2 + 1/Δ3).

Proof. We sum active sets’ cardinalities of octree nodes, since refining a cell
requires a number of rectangle-intersection queries linear in the size of its parent’s
active set. Let cell C and its child C1. Any s ∈ φ̃(C) satisfies δC ≤ μ∞(pC , s) ≤
2rC + δC . We denote by E the volume of the annulus {q ∈ R

3 | δC ≤ μ∞(pC , q) ≤
2rC + δC} and by E1 the volume of the respective annulus for C1, minus the vol-
ume of the annulus’ intersection with B∞(pC , δC). It is easy to show E1 ≤ E/2.
Under UDH, we sum all levels and bound by O(4Ln) the number of rectangle-
intersection queries. Using Theorem 3, we find that the complexity of the sub-
division phase is O(nα(lg α + tα)/Δ2). The complexity of the reconstruction
phase is O(ñ), where ñ is the number of leaf nodes in the octree, which is in
turn O(1/Δ3). This allows to conclude. ��
Remark 2. tα = O(α) so the bound of Theorem 8 is O(nα2/Δ2 + 1/Δ3). Let V
be the number of input vertices. It is expected that nα = O(V); also α is usually
constant. In this case, the complexity simplifies to O(V/Δ2 + 1/Δ3).

5 Implementation and Concluding Remarks

Our algorithms were implemented in Julia and use the algebraic geometric mod-
eler Axl for visualization. They are available in https://gitlab.inria.fr/ckatsama/
L infinity Voronoi. They are efficient in practice and their performance scales
well in thousands of input sites. Some examples with runtimes are given in
Figs. 9 and 10. All experiments were run on a 64-bit machine with an Intel(R)
Core(TM) i7-8550U CPU @1.80 GHz and 8.00 GB of RAM.

Fig. 10. The 1-skeleton of the Voronoi diagram is shown in blue. Input consists of
12 sites and 386 cells are generated (not shown). Total time is 94.8 ms. (Color figure
online)

https://gitlab.inria.fr/ckatsama/L_infinity_Voronoi
https://gitlab.inria.fr/ckatsama/L_infinity_Voronoi

16 I. Z. Emiris and C. Katsamaki

Acknowledgements. We thank Evanthia Papadopoulou for commenting on a prelim-
inary version of the paper and Bernard Mourrain for collaborating on software. Both
authors are members of AROMATH, a joint team between INRIA Sophia-Antipolis
(France) and NKUA.

Appendix A Omitted Proofs

Lemma 1. Let s ∈ S. For every point p ∈ V∞(s) it holds that μ∞(p, s) =
μ∞(p, aff(s)), where aff(s) is the affine hull of s.

Proof. Assume w.l.o.g. that s ⊂ {x ∈ R
d | xk = c}, k ∈ [d] and c ∈ R. If

μ∞(p, s) �= μ∞(p, aff(s)), then μ∞(p, s) = inf{maxi∈[d]\k{|pi − qi|} | ∀q ∈ s} and
there is q ∈ ∂s such that μ∞(p, s) = μ∞(p, q) = |pj − qj |, j ∈ [d] \ k. To see this,
suppose on the contrary that q is in the interior of s. Then, we can find q′ ∈ s
ε-close to q such that |pj − q′

j | = |pj − qj | − ε ⇒ μ∞(p, q′) = μ∞(p, q) − ε, for
any ε > 0. This leads to a contradiction. Therefore, there is a site s′ �= s with
q ∈ s′. Since p ∈ V∞(s), then μ∞(p, s) < μ∞(p, s′) ≤ μ∞(p, q); contradiction. ��

Lemma 2. For every s ∈ S, VD(s) is weakly star shaped with respect to s.

Proof. Let p ∈ VD(s) and ρ = Ds(p) = μ∞(p, q), q ∈ s. The open ball B∞(p, ρ)
centered at p with radius ρ is empty of sites. For t ∈ (0, 1), let w = tp + (1 − t)q
on the line segment (p, q). Then, since for every i ∈ [d] it is |wi − qi| = t|pi − qi|,
it holds that w ∈ Z+(s) and Ds(w) = tρ. If w �∈ VD(s) there is a site s′ such
that Ds′(w) < tρ. But B∞(w, tρ) ⊂ B∞(p, ρ) and s′ intersects B∞(p, ρ), leading
to a contradiction. ��

Lemma 3. (a) The maximum degree of a Voronoi vertex is less than or equal
to 2dd. (b) When d = 2, a Voronoi vertex cannot have degree 7.

Proof. (a) Consider the vertex placed at the origin; 2d orthants are formed
around the vertex. To obtain the maximum number of Voronoi regions in
each orthant, we count the maximum number of Voronoi edges in the interior
of an orthant that have this Voronoi vertex as endpoint; at most one such
edge can exist in each orthant. Since these Voronoi edges are equidistant to
d sites, result follows.

(b) Let v∗ = (x∗, y∗) be a Voronoi vertex of degree 7. Since 7 Voronoi edges
meet at v∗, due to symmetry, we examine the two cases of Fig. 11. When the
configuration of Voronoi regions around the vertex is like in Fig. 11a, then
s1 is a horizontal segment and s2, s7 are vertical. Then, aff(s2), aff(s7) ⊂
{(x, y) ∈ R

2 | x > x∗}. Since v∗ ∈ Z+(s2) ∩ Z+(s7) and is equidistant to
both s2 and s7, the affine hulls of s2, s7 coincide. Then, whichever is the
orientation of s1, the affine bisectors of s1, s2 and s1, s7 cannot meet like in
Fig. 11a. When like in Fig. 11b, since b3 is vertical, s1 is vertical. But since
b1 is horizontal, s1 must be horizontal; a contradiction. ��

Voronoi Diagram of Orthogonal Polyhedra 17

Fig. 11. The two cases in proof of Lemma 3.

Lemma 4. (a) For every cell C, φ(C) ⊆ φ̃(C).(b) For a sequence of cells (C)i

monotonically convergent to point p ∈ P, φ̃(Ci) = φ(p) for i large enough.

Proof. (a) If φ(C) = ∅, assertion follows trivially. Let s ∈ φ(C) and p ∈ C∩VD(s).
It holds that Ds(p) ≤ Ds′(p) ⇒ μ∞(p, s) ≤ μ∞(p, s′) for every s′ ∈ S. We
distinguish two cases according to the position of pC relatively to P. If
pC ∈ P and pC ∈ VD(s∗), then:

μ∞(pC , s) ≤ μ∞(pC , p) + μ∞(p, s) ≤ μ∞(pC , p) + μ∞(p, s∗)
≤ 2μ∞(pC , p) + μ∞(pC , s∗) ≤ 2rC + μ∞(pC , s∗).

Otherwise, if pC �∈ P, since C ∩ P �= ∅, there is a site s′ intersecting C
such that μ∞(p, s′) ≤ rC . Therefore, μ∞(pC , s) ≤ μ∞(pC , p) + μ∞(p, s) ≤
μ∞(pC , p) + μ∞(p, s′) ≤ 2rC .

(b) There exists i0 ∈ N such that for i ≥ i0 Ci ∩ P �= ∅. Therefore, for i � i0,
since pCi

→ p and rCi
→ 0, for every s ∈ Ci, (a) implies that s ∈ λ(p) = φ(p).

Since φ(p) ⊆ φ̃(Ci), result follows. ��

Lemma 5. For a subdivision cell C, let v1, . . . , v4 its corner vertices. For s ∈ S,
C ⊆ VD(s) if and only if v1, . . . , v4 ∈ VD(s).

Proof. Let v1, . . . , v4 ∈ VD(s) and p ∈ C. Then, p ∈ Z+(s), since Z+(s) is
convex in 2D and v1, . . . , v4 ∈ Z+(s). For i = 1, . . . , 4 the open ball Bi :=
B∞(vi, μ∞(vi, s)) is empty of sites. Since B∞(p, μ∞(p, aff(s))) ⊂ ∪i∈[4]Bi it holds
that μ∞(p,P) ≥ μ∞(p, aff(s)) = μ∞(p, s). On the other hand, μ∞(p,P) ≤
μ∞(p, s). So, if p �∈ VD(s) there is a site s′ s.t. Ds′(p) = Ds(p) and p ∈ VD(P).
Therefore, since Voronoi regions are simply connected and Voronoi edges are
straight lines, p must be on the boundary of C. The two possible configurations
are shown in Fig. 12 and are contradictory; for the first, use an argument similar
to that of Lemma 3(b) to show that the Voronoi edges separating the yellow-
blue, and yellow-green Voronoi regions, cannot meet like in the Fig. 12a. For the
second, notice that this cannot hold since the cell is square. We conclude that
C ⊆ VD(s). The other direction is trivial. ��

18 I. Z. Emiris and C. Katsamaki

Fig. 12. The two cases in proof of Lemma 5. Different colors correspond to different
Voronoi regions. (Color figure online)

Lemma 6. Let s ∈ S, f1, f2 the two facets of C parallel to aff(s), ρi =
μ∞(fi, aff(s)) for i = 1, 2 and p′

C = praff(s)(pC). Then, Z(s) ∩ C �= ∅ iff
∃i ∈ {1, 2}s.t.} B∞(p′

C , rC + ρi) ∩ s �= ∅.
Proof. Z(s)∩C �= ∅ iff Z(s)∩ fi �= ∅ for at least one i ∈ {1, 2}: Let p ∈ Z(s)∩C
s.t. p �∈ f1 ∪ f2 and prfi

(p) be the projection of p on fi. There exists i ∈ {1, 2}
s.t. μ∞(prfi

(p), aff(s)) > μ∞(p, aff(s)). Then, prfi
(p) ∈ Z(s).

It holds that Z(s) ∩ fi �= ∅ iff B∞(p′
C , rC + ρi) ∩ s �= ∅: Let q ∈ Z(s) ∩ fi and

q′ its projection on aff(s). Then μ∞(q′, s) ≤ μ∞(q, aff(s)) = ρi and μ∞(p′
C , q′) ≤

rC . We deduce that B∞(p′
C , rC + ρi) ∩ s �= ∅, since μ∞(p′

C , s) ≤ μ∞(p′
C , q′) +

μ∞(q′, s) ≤ rC + ρi. For the inverse direction, let B∞(p′
C , rC + ρi) ∩ s �= ∅ and

q′ in s s.t. μ∞(p′
C , q′) ≤ rC + ρi. Let q be its projection on aff(fi). If q ∈ fi

we are done. Otherwise, q is at L∞ distance from fi equal to μ∞(p′
C , q′) − rC ,

attained at a boundary point q′′ ∈ fi. Then, ρi ≤ μ∞(q′′, s) ≤ μ∞(q′′, q′) =
max{ρi, μ∞(p′

C , q′) − rC} = ρi. It follows that q′′ ∈ Z(s). ��

Lemma 7. We denote by C′ the parent of C in the subdivision. Using BVH
accelerates the refinement of C if |φ̃(C′)|/|φ̃(C)| = Ω(lg n + t).

Proof. A label set λ(p) is determined by performing a point and a rectangle-
intersection query; once the point is detected to lie inside a rectangle R0 of a
leaf T0 we find an initial estimation d0 of μ∞(p,P). Since the closest site to p
may be on another leaf, we do a rectangle-intersection query centered at p with
radius d0. The closest site(s) to p are in the intersected leaves. Thus, finding
λ(p) takes O(k(p, d0) lg r + k(p, d0)t) (Theorem 3), where k(p, d0) = O(1) is the
number of BVH leaves intersected by B∞(p, d0). Computing the sites in φ̃(C) is
accelerated if combined with a rectangle intersection query to find segments at
L∞-distance ≤ 2rC +δC from pC . Let kC be the number of BVH leaves intersected
by this rectangle-intersection query. We obtain a total refinement time for the
cell equal to O(kC lg r + kC t). Since kC = O(|φ̃(C)|) and r = O(n) the lemma
follows. ��

Lemma 8. Let C ⊆ VD(s). There is r∗ > 0 s.t. rC < r∗ implies φ̃(C) = {s}.

Proof. Let s′ ∈ S \ s. We will prove that if Z+(s′) ∩ C �= ∅, it holds that
δC < μ∞(pC , s′). Therefore there is r(s′) > 0 such that 2r(s′) + δC < μ∞(pC , s′).

Voronoi Diagram of Orthogonal Polyhedra 19

Let r∗ be the minimum of these radii for every site different than s. When
rC < r∗, it holds that φ̃(C) = {s}.

Suppose that δC = μ∞(pC , s′) = μ∞(pC , q) for q ∈ s′. We denote by v1, . . . , v4

the vertices of C. Since ∪i∈[4]B∞(vi, μ∞(vi, s)) is empty of sites, q ∈ aff(s). Also,
s′ cannot be a subset of aff(s), for pC will be in Z+(s′), a contradiction. So,
s′ is perpendicular and adjacent to s. By hypothesis Z+(s′) ∩ C �= ∅ and since
for adjacent sites it holds that Z+(s) ∩ Z+(s′) = bisD(s, s′), the Voronoi face
separating sites s, s′ intersects C which is a contradiction. Thus, there is no site
s′ with Z+(s′) ∩ C �= ∅ and μ∞(pC , s′) = δC . ��

References

1. Agarwal, P.K., de Berg, M., Gudmundsson, J., Hammar, M., Haverkort, H.J.: Box-
trees and R-trees with near-optimal query time. Discrete Comput. Geom. 28(3),
291–312 (2002). https://doi.org/10.1007/s00454-002-2817-1

2. Aichholzer, O., Aurenhammer, F., Alberts, D., Gärtner, B.: A novel type of skeleton
for polygons. J. Univ. Comput. Sci. 1, 752–761 (1995)

3. Aurenhammer, F., Walzl, G.: Straight skeletons and mitered offsets of nonconvex
polytopes. Discrete Comput. Geom. 56(3), 743–801 (2016)

4. Barequet, G., Eppstein, D., Goodrich, M., Vaxman, A.: Straight skeletons of three-
dimensional polyhedra. In: Proceedings of the Twenty-fifth ACM Annual Sympo-
sium on Computational Geometry, pp. 100–101. ACM Press, Aarhus, Denmark,
(2009). https://doi.org/10.1145/1542362.1542384.

5. Bennett, H., Papadopoulou, E., Yap, C.: Planar minimization diagrams via subdi-
vision with applications to anisotropic Voronoi diagrams. Comput. Graph. Forum
35(5), 229–247 (2016)

6. Cheilaris, P., Dey, S.K., Gabrani, M., Papadopoulou, E.: Implementing the L∞
segment voronoi diagram in CGAL and applying in VLSI pattern analysis. In:
Hong, H., Yap, C. (eds.) ICMS 2014. LNCS, vol. 8592, pp. 198–205. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-44199-2 32

7. Eder, G., Held, M., Palfrader, P.: Computing the straight skeleton of an orthogo-
nal monotone polygon in linear time. In: European Workshop on Computational
Geometry, Utrecht, March 2019. www.eurocg2019.uu.nl/papers/16.pdf

8. Emiris, I.Z., Mantzaflaris, A., Mourrain, B.: Voronoi diagrams of algebraic distance
fields. J. Comput. Aided Des. 45(2), 511–516 (2013). Symposium on Solid Physical
Modeling 2012

9. Eppstein, D., Erickson, J.: Raising roofs, crashing cycles, and playing pool: applica-
tions of a data structure for finding pairwise interactions. Discrete Comput. Geom.
22, 58–67 (1998)

10. Haverkort, H.J.: Results on geometric networks and data structures. Ph.D. thesis,
Utrecht University (2004). http://igitur-archive.library.uu.nl/dissertations/2004-
0506-101707/UUindex.html

11. Held, M., Palfrader, P.: Straight skeletons and mitered offsets of polyhedral terrains
in 3D. J. Comput. Aided Des. Appl. 16, 611–619 (2018)

12. Mart́ınez, J., Garcia, N.P., Anglada, M.V.: Skeletal representations of orthogonal
shapes. Graph. Models 75(4), 189–207 (2013)

https://doi.org/10.1007/s00454-002-2817-1
https://doi.org/10.1145/1542362.1542384.
https://doi.org/10.1007/978-3-662-44199-2_32
www.eurocg2019.uu.nl/papers/16.pdf
http://igitur-archive.library.uu.nl/dissertations/2004-0506-101707/UUindex.html
http://igitur-archive.library.uu.nl/dissertations/2004-0506-101707/UUindex.html

20 I. Z. Emiris and C. Katsamaki

13. Papadopoulou, E., Lee, D.: The L∞ Voronoi diagram of segments and VLSI appli-
cations. Int. J. Comput. Geom. Appl. 11(05), 503–528 (2001)

14. Schaefer, S., Warren, J.: Dual marching cubes: primal contouring of dual grids.
Comput. Graph. Forum 24(2), 195–201 (2005)

15. Yap, C., Sharma, V., Jyh-Ming, L.: Towards exact numerical Voronoi diagrams. In:
IEEE International Symposium on Voronoi Diagrams in Science and Engineering
(ISVD), New Brunswick, NJ, June 2012

The Complexity of Subtree Intersection
Representation of Chordal Graphs and
Linear Time Chordal Graph Generation

Tınaz Ekim1 , Mordechai Shalom2(B) , and Oylum Şeker1

1 Department of Industrial Engineering, Bogazici University, Istanbul, Turkey
{tinaz.ekim,oylum.seker}@boun.edu.tr

2 TelHai Academic College, Upper Galilee, 12210 Qiryat Shemona, Israel
cmshalom@telhai.ac.il

Abstract. It is known that any chordal graph on n vertices can be rep-
resented as the intersection of n subtrees in a tree on n nodes [5]. This
fact is recently used in [2] to generate random chordal graphs on n ver-
tices by generating n subtrees of a tree on n nodes. It follows that the
space (and thus time) complexity of such an algorithm is at least the sum
of the sizes of the generated subtrees assuming that a tree is given by a
set of nodes. In [2], this complexity was mistakenly claimed to be linear
in the number m of edges of the generated chordal graph. This error is
corrected in [3] where the space complexity is shown to be Ω(mn1/4).
The exact complexity of the algorithm is left as an open question.

In this paper, we show that the sum of the sizes of n subtrees in a tree
on n nodes is Θ(m

√
n). We also show that we can confine ourselves to

contraction-minimal subtree intersection representations since they are
sufficient to generate every chordal graph. Furthermore, the sum of the
sizes of the subtrees in such a representation is at most 2m + n. We
use this result to derive the first linear time random chordal graph gen-
erator. In addition to these theoretical results, we conduct experiments
to study the quality of the chordal graphs generated by our algorithm
and compare them to those in the literature. Our experimental study
indicates that the generated graphs do not have a restricted structure
and the sizes of maximal cliques are distributed fairly over the range.
Furthermore, our algorithm is simple to implement and produces graphs
with 10000 vertices and 4.107 edges in less than one second on a laptop
computer.

Keywords: Chordal graph · Representation complexity · Graph
generation

1 Introduction

Chordal graphs are extensively studied in the literature from various aspects
which are motivated by both theoretical and practical reasons. Chordal graphs

The first author acknowledges the support of the Turkish Academy of Science TUBA
GEBIP award.

c© Springer Nature Switzerland AG 2019
I. Kotsireas et al. (Eds.): SEA2 2019, LNCS 11544, pp. 21–34, 2019.
https://doi.org/10.1007/978-3-030-34029-2_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34029-2_2&domain=pdf
http://orcid.org/0000-0002-1171-9294
http://orcid.org/0000-0002-2688-5703
http://orcid.org/0000-0003-2357-3584
https://doi.org/10.1007/978-3-030-34029-2_2

22 T. Ekim et al.

have many application areas such as sparse matrix computations, database
management, perfect phylogeny, VLSI, computer vision, knowledge based
systems, and Bayesian networks (see e.g. [6,8,10]). Consequently, numerous
exact/heuristic/parameterized algorithms have been developed for various opti-
mization and enumeration problems on chordal graphs. The need for testing and
comparing these algorithms motivated researchers to generate random chordal
graphs [1,7,9]. A more systematic study of random chordal graph generators
has been initiated more recently in [2,3]. The generic method developed in these
papers is based on the characterization of chordal graphs as the intersection
graph of subtrees of a tree [5], to which we will refer as a subtree intersection
representation. In this method a chordal graph on n vertices and m edges is
generated in three steps:

1. Generate a tree T on n nodes uniformly at random.
2. Generate n non-empty subtrees {T1, . . . , Tn} of T .
3. Return the intersection graph G of {V (T1), . . . , V (Tn)}.

Three methods for generating subtrees in Step 2. have been suggested. In all
these methods, every node of every subtree is generated. Steps 1. and 3. being
linear in the size of G, the time and space complexities of the algorithm are
dominated by the sum of the sizes of the subtrees generated at Step 2. which
is

∑n
i=1 |V (Ti)|. In [2], this complexity was mistakenly claimed to be linear in

the size of G, that is O(n + m). In [3], this mistake is corrected by showing
that

∑n
i=1 |V (Ti)| is Ω(mn1/4), leaving the upper bound as an open question.

This question is crucial for the complexity of any chordal graph generator that
produces every subtree intersection representation on a tree of n nodes. In this
paper, we investigate the complexity of subtree intersection representations of
chordal graphs. We show that

∑n
i=1 |V (Ti)| is Θ(m

√
n). In other words, we both

improve the lower bound of Ω(mn1/4) given in [3] and provide a matching upper
bound. On the other hand, we show that the size of a “contraction-minimal”
representation is linear, more precisely, at most 2m + n. This result plays the
key role in developing a linear time chordal graph generator, the first algorithm
in the literature having this time complexity, to the best of our knowledge. Our
algorithm is also simple to implement. Our experiments indicate that it produces
graphs for which the maximal clique sizes are distributed fairly over the range.
Furthermore, the running time of the algorithm clearly outperforms the existing
ones: graphs with 10000 vertices and 4.107 edges are generated in less than one
second on a personal computer.

We proceed with definitions and preliminaries in Sect. 2. Then, for techni-
cal reasons, we first consider contraction-minimal representations in Sect. 3. We
develop our linear time random chordal graph generator in Sect. 3.1. We study
the variety of chordal graphs generated by this algorithm in Sect. 3.2; to this end,
based on similar studies in the literature, we analyze maximal cliques of the gen-
erated graphs. We proceed with the complexity of arbitrary subtree intersection
representations in Sect. 4. We conclude in Sect. 5 by suggesting further research.

Chordal Graph Generation 23

2 Preliminaries

Graphs: We use standard terminology and notation for graphs, see for instance
[4]. We denote by [n] the set of positive integers not larger than n. Given a
simple undirected graph G, we denote by V (G) the set of vertices of G and
by E(G) the set of the edges of G. We use |G| as a shortcut for |V (G)|. We
denote an edge between two vertices u and v as uv. We say that (a) the edge
uv ∈ E(G) is incident to u and v, (b) u and v are the endpoints of uv, and (c)
u and v are adjacent to each other. We denote by G/e the graph obtained from
G by contracting the edge e. A chord of a cycle C of a graph G is an edge of
G that connects two vertices that are non-adjacent in C. A graph is chordal if
it contains no induced cycles of length 4 or more. In other words, a graph is
chordal if every cycle of length at least 4 contains a chord. A vertex v of a graph
G is termed simplicial if the subgraph of G induced by v and its neighbors is a
complete graph. A graph G on n vertices is said to have a perfect elimination
order if there is an ordering v1, . . . , vn of its vertices, such that vi is simplicial in
the subgraph induced by the vertices {v1, . . . , vi} for every i ∈ [n]. It is known
that a graph is chordal if and only if it has a perfect elimination order [6].

Trees, Subtrees and Their Intersection Graphs: Let T = {T1, . . . , Tn}
be a set of subtrees of a tree T . Let G = (V,E) be a graph over the vertex
set {v1, . . . , vn} where vi represents Ti and such that vi and vj are adjacent if
and only if Ti and Tj have a common node. Then, G is termed as the vertex-
intersection graph of 〈T, T 〉 and conversely 〈T, T 〉 is termed a subtree intersection
representation, or simply a representation of G. Whenever there is no confusion,
we will denote the representation 〈T, T 〉 simply as T . We also denote the inter-
section graph of T as G(T). Gavril [5] showed that a graph is chordal if and
only if it is the vertex-intersection graph of subtrees of a tree. Throughout this
work, we refer to the vertices of T as nodes to avoid possible confusion with the
vertices of G(T).

Let G be a chordal graph with a representation 〈T, T 〉, and v be a node
of T . We denote as Tv the set of subtrees in T that contain the node v, i.e.
Tv

def
= {Ti ∈ T |v ∈ V (Ti)}. Clearly, the set Tv corresponds to a clique of G. It

is also known that, conversely, every maximal clique of G corresponds to Tv for
some node v of T .

Two sets of subtrees T and T ′ are equivalent if G(T) = G(T ′). Let T be
a set of subtrees of a tree T and e an edge of T . We denote by T/e the set of
subtrees of T/e that is obtained by contracting the edge e of every subtree in T
that contains e. A set of subtrees is contraction-minimal (or simply minimal) if
for every edge e of T we have G(T/e) �= G(T).

Through the rest of this work, G is a chordal graph with vertex set [n] and
m edges, T is a tree on t ≤ n nodes and T = {T1, . . . , Tn} is a set of subtrees
of T such that G(T) = G and 〈T, T 〉 is contraction-minimal. We also denote by

tj
def
= |Tj | the number of subtrees in T that contain the node j of T . Recall that

24 T. Ekim et al.

Tj corresponds to a clique of G. The nodes of T are numbered such that

tt = max {tj |j ∈ [t]}

and all the other vertices are numbered according to a bottom-up order of T
where t is the root.

In what follows, we first analyze contraction-minimal representations, then
proceed into the analysis of the general case.

3 Contraction-Minimal Representations

We first show that the size of a contraction-minimal representation is at most
2m+n. Based on this result, we derive a linear time algorithm to generate random
chordal graphs. In the second part of this section, we conduct experiments to
compare chordal graphs obtained by our algorithm to those in the literature. Our
experimental study indicates that our method is faster than existing methods
in the literature. Our algorithm produces graphs with 10000 vertices and 4.107

edges in less than one second on a personal computer. In addition, the generated
graphs do not have a restricted structure as far as the size of their maximal
cliques are concerned.

3.1 Chordal Graph Generation in Linear Time

The following observation plays an important role in our proofs as well as in our
chordal graph generation algorithm.

Observation 1. 〈T, T 〉 is minimal if and only if for every edge jj′ of T , none
of Tj and Tj′ contains the other (i.e., both Tj \ Tj′ and Tj′ \ Tj are non-empty).

Proof. Suppose that Tj ⊆ Tj′ for some edge jj′ of T and let v be the node
obtained by the contraction of the edge jj′. Then every pair of subtrees that
intersect on j also intersect on j′. Thus, they intersect also on v (after the
contraction of jj′). Conversely, every pair of subtrees that intersect on v contains
at least one of j, j′. By our assumption, they contain j′, thus they intersect on
j′. Therefore, a pair of subtrees intersect in T if and only if they intersect in
T/jj′ . Therefore, G(T/jj′) = G(T), thus 〈T, T 〉 is not contraction-minimal.

Now suppose that T ′
j \ Tj �= ∅ and Tj \ T ′

j �= ∅ for every edge jj′ of T . Then,
for every edge jj′ of T there exists a subtree that contains j but not j′ and
another subtree that contains j′ but not j. These two subtrees do not intersect,
but they intersect on v after the contraction of jj′. Therefore, G(T/jj′) �= G(T)
for every edge jj′ of T . We conclude that 〈T, T 〉 is contraction-minimal.

Chordal Graph Generation 25

Lemma 1. Let 〈T, T 〉 be a minimal representation of some chordal graph G on
n vertices and m edges. There exist numbers s1, . . . , st such that

∀j ∈ [t] sj ≥ 1, (1)
t∑

j=1

sj = n, (2)

sj ≤ tj ≤
t∑

i=j

si (3)

2
t∑

j=1

sjtj −
t∑

j=1

s2j = 2m + n (4)

Proof. Consider the following pruning procedure of T that implies a perfect
elimination order for G. We first remove the leaf j = 1 from T and all the
simplicial vertices of G which are represented by the subtrees Ti ∈ T that consist
of the leaf j = 1. There is at least one such subtree by Observation 1. We continue
in this way for every j ∈ [t] until both T and G vanish. Let Gj be the remaining
graph at step j before node j is removed, and sj be the number of simplicial
vertices of Gj eliminated with the removal of node j. Clearly, the numbers sj
satisfy relations (1) and (2). Recall that tj = |Tj |. To see that (3) holds, observe
that the number of subtrees removed at step j is at most the number of subtrees
containing node j. Observe also that tj ≤ n−

∑j−1
i=1 si as the subtrees eliminated

at prior steps do not contain the node j by the choice of the nodes to be removed
at every step.

To show (4), let ej be the number of edges of G that have been eliminated
at phase j of the pruning procedure (during which node j of T is removed). We
recall that a clique of sj vertices is removed, each vertex of which is adjacent
to tj − sj other vertices of G. Therefore, ej = sj(sj − 1)/2 + sj(tj − sj), i.e.,
2ej + sj = 2sjtj − s2j . Summing up over all j ∈ [t] we get

2
t∑

j=1

sjtj −
t∑

j=1

s2j =
t∑

j=1

(2ej + sj) = 2m + n.

We are now ready to prove the main result of this section.

Theorem 1. If 〈T, T 〉 is a minimal representation of some chordal graph G on
n vertices and m edges then

n∑

i=1

|V (Ti)| ≤ 2m + n.

Proof. We first note that
∑n

i=1 |V (Ti)| =
∑t

j=1 tj since every node of every
subtree Ti contributes one to both sides of the equation. We conclude as follows

26 T. Ekim et al.

using Lemma 1:

t∑

j=1

tj ≤
t∑

j=1

sjtj ≤ 2
t∑

j=1

sjtj −
t∑

j=1

s2j = 2m + n

where the first inequality and the last equality hold by relations (1) and (4) of
Lemma 1 and the second inequality is obtained by replacing tj with tj +(tj −sj)
and noting that tj − sj ≥ 0.

We now present algorithm GenerateContractionMinimal that gener-
ates a random contraction-minimal representation together with the correspond-
ing chordal graph where every contraction-minimal representation has a positive
probability to be returned. It creates a tree T at random by starting from a sin-
gle node and every time adding a leaf v adjacent to some existing node u that
is chosen uniformly at random. Every time a node v is added, the algorithm
performs the following: (a) a non-empty set of subtrees consisting of only v is
added to T , (b) a proper subset of the subtrees in Tu (i.e., those containing u) is
chosen at random and every subtree of it is extended by adding the node v and
the edge uv, (c) the graph G is extended to reflect the changes in T . A pseudo
code of the algorithm is given in Algorithm1.

Algorithm 1. GenerateContractionMinimal

Require: n ≥ 1
Ensure: A contraction-minimal representation 〈T, T 〉 with |T | = n, and G = G(T).
1: T ← ∅.
2: G ← (∅, ∅).
3: v ← NewNode.
4: T ← ({v} , ∅).
5: while |T | < n do
6: Pick a node u of T uniformly at random.
7: v ← NewNode.
8: T ← (V (T) + v, E(T) + uv).
9: Pick a proper subset T ′ of Tu at random.

10: for all Ti ∈ T ′ do
11: Ti ← (V (Ti) + v, E(Ti) + uv).
12: E(G) ← E(G) ∪ {i} × Kv.

return (〈T, T 〉, G).

13: function NewNode

14: Pick a number k ∈ [n − |T |] at random.
15: v ← a new node.
16: U ← ({v} , ∅). � A tree with a single vertex
17: T ← T ∪ k copies of U .
18: Kv ← a clique on k vertices.
19: G ← G ∪ Kv.
20: return v.

Chordal Graph Generation 27

Theorem 2. Algorithm GenerateContractionMinimal generates a chordal
graph in linear time. Moreover, it generates any chordal graph on n vertices with
strictly positive probability.

Proof. The algorithm creates the tree T incrementally, and the subtrees of T
are created and extended together with T . More precisely, the set of subtrees
containing a node of T is not altered after a newer node is created. Note that,
however, the subtrees themselves might be altered to contain newer nodes. Con-
sider an edge uv of T where v is newer than u. The sets Tu and Tv of the subtrees
containing u and v respectively, are established by the end of the iteration that
creates v. Since only a proper subset of Tu is chosen to be extended to v, at least
one subtree in Tu does not contain v. Furthermore, since v is created with a
non-empty set of subtrees containing it, and none of these subtrees may contain
u, there is at least one subtree in Tv that does not contain u. Therefore, by
Observation 1, we conclude that 〈T, T 〉 is contraction-minimal.

We proceed with the running time of the algorithm. It is well known that
the addition of a single node and the addition of a single edge to a graph can be
done in constant time. We observe that the number of operations performed by
NewNode is k +

(
k
2

)
= |V (Kv)|+ |E(Kv)|. Therefore, the number of operations

performed in all invocations of NewNode is n +
∑

v∈V (T) |E(Kv)|. Let uv be
the edge added to T at some iteration of GenerateContractionMinimal.
We now observe that the number of other operations (i.e., except the invocation
of NewNode) performed during this iteration is exactly |E(G) ∩ (Ku × Kv)|.
We conclude that the number of operations of the algorithm is proportional to
n + |E(G)|.

Consider a contraction-minimal representation 〈T̄ , T̄ 〉 with
∣
∣T̄

∣
∣ = n and let

t̄ =
∣
∣T̄

∣
∣. It remains to show that the algorithm returns 〈T̄ , T̄ 〉 with a positive

probability.
We show by induction on j, that at the beginning of iteration j (the j’th

time the algorithm executes Line 6) 〈T, T 〉 is a sub-representation of 〈T̄ , T̄ 〉 with
positive probability. That is, T is a subtree of T̄ and T consists of the non-empty
intersections of the subtrees of T̄ with T (formally, T =

{
T̄i[V (T)] | T̄i ∈ T̄

}
\

{(∅, ∅)}) with positive probability. Let v̄ be a node of T̄ , and let k̄ =
∣
∣T̄v̄

∣
∣. Clearly,

k̄ ≤ n. With probability 1/n the algorithm will start by creating a node with k̄
trivial subtrees in which case 〈T, T 〉 is a sub-representation of 〈T̄ , T̄ 〉. Therefore,
the claim holds for j = 1. Now suppose that 〈T, T 〉 is a sub-representation of
〈T̄ , T̄ 〉 at the beginning of iteration j with probability p > 0. If T = T̄ then
〈T, T 〉 = 〈T̄ , T̄ 〉, thus |T | =

∣
∣T̄

∣
∣ = n and the algorithm does not proceed to

iteration j. Otherwise, T is a proper subtree of T̄ , i.e. T̄ contains an edge uv
with u ∈ V (T) and v /∈ V (T). At iteration j, u will be chosen with probability
1/ |V (T)| ≥ 1/n by the algorithm and the edge uv will be added to T , ensuring
that T is a subtree of T̄ with probability at least p/n at the end of iteration
j. The number k̄ of subtrees in T̄ that contain v but not u is at most n − |T |.
Since 〈T̄ , T̄ 〉 is contraction-minimal, we have k̄ ≥ 1. Therefore, k̄ ∈ [n−|T |] and
the algorithm creates k̄ trivial subtrees in v with probability 1/(n − |T |) > 1/n.
Since 〈T̄ , T̄ 〉 is contraction-minimal, the set of subtrees in T̄ that contain both

28 T. Ekim et al.

u and v is a proper subset of T̄u = Tu. The algorithm chooses this proper subset
with probability 1/(2|Tu|−1) and adds the edge uv to each of them. We conclude
that at the end of iteration j (thus at the beginning of iteration j + 1), 〈T, T 〉 is
a sub-representation of 〈T̄ , T̄ 〉 with probability at least p/(n22n) > 0.

3.2 Experimental Studies

In this section, we present our experimental results to demonstrate the com-
putational efficiency of GenerateContractionMinimal and to provide some
insight into the distribution of chordal graphs it generates. We implemented the
presented algorithm in C++, and executed it on a laptop computer with 2.00-
GHz Intel Core i7 CPU. The implementation of the algorithm spans only 70
lines of C++ code. Our source code is available in http://github.com/cmshalom/
ChordalGraphGeneration.

Following the approach of works [2,3,9], we consider the characteristics of
the maximal cliques of the returned graph. Table 1 provides a summary of the
computational results of our algorithm. The first column reports the number
of vertices n. For every value of n, we use four different average edge density
values of 0.01, 0.1, 0.5, and 0.8, where edge density is defined as ρ = m

n(n−1)/2

with m being the number of edges in the graph. For each pair of values n, ρ, we
performed ten independent runs and reported the average values across those
ten runs. The table exhibits the number of connected components, the number of
maximal cliques, and the minimum, maximum, and average size of the maximal
cliques along with their standard deviation. The rightmost column shows the
time in seconds that it takes the algorithm takes to construct one graph. In
order to achieve the desired edge density values, we discarded the graphs that
turned out to be outside the range [(1 − ε)ρ, (1 + ε)ρ], for ε = 0.05. For ρ ≤ 0.1,
we adjusted the upper bound at Line 14 in function NewNode so that graphs
with small edge densities are obtained more probably.

Algorithm GenerateContractionMinimal produces connected chordal
graphs for ρ ≥ 0.1. When the average edge density is 0.01, the average number
of connected components decreases as n increases. A minimum clique size of 1
for ρ = 0.01 and n = 1000 implies that the disconnectedness of the graphs is due
to the existence of isolated vertices. As for the running time of the algorithm,
the linear time complexity shown in Theorem2 clearly manifests itself in the
amount of time it takes to construct a chordal graph. The rightmost column of
Table 1 shows that our algorithm constructs a chordal graph in less than one
second on average, even when n = 10000 and ρ = 0.797, i.e., m > 4 · 107.

We compare our results to those of the two other methods from the litera-
ture. The first one is algorithm ChordalGen proposed in Şeker et al.’s work [3],
which is based on the subtree intersection representation of chordal graphs. This
algorithm is presented along with three alternative subtree generation methods.
Here, we only consider algorithm ChordalGen together with the subtree gen-
eration method called GrowingSubtree, because this one is claimed to stand
out as compared to the other presented methods, as far as the distribution of
maximal clique sizes are concerned. The second algorithm we compare to is

http://github.com/cmshalom/ChordalGraphGeneration
http://github.com/cmshalom/ChordalGraphGeneration

Chordal Graph Generation 29

Table 1. Experimental results of algorithm GenerateContractionMinimal

n Density # conn.
comp.s

maximal
cliques

Min
clique
size

Max
clique
size

Avg
clique
size

Sd of
clique
sizes

Time
to
build

1000 0.010 24.6 422.2 1.0 17.2 5.8 2.9 0.002

0.100 1.0 62.8 7.3 125.0 43.3 26.8 0.003

0.500 1.0 9.5 92.5 520.0 255.7 127.1 0.008

0.780 1.0 6.5 167.2 767.4 393.1 201.0 0.010

2500 0.010 6.3 582.8 1.1 38.8 12.1 6.7 0.005

0.100 1.0 70.7 12.4 311.9 101.4 65.8 0.010

0.507 1.0 10.0 227.5 1357.7 617.6 330.4 0.030

0.808 1.0 7.2 379.9 1997.9 931.1 535.3 0.049

5000 0.010 1.7 703.6 1.8 75.7 21.8 12.9 0.014

0.102 1.0 78.5 22.7 635.1 196.1 131.0 0.035

0.503 1.0 9.7 457.6 2479.1 1236.1 636.2 0.166

0.796 1.0 7.2 775.5 3986.7 1914.0 1058.4 0.204

10000 0.010 1.4 825.0 2.8 146.4 40.4 25.3 0.036

0.100 1.0 90.0 32.0 1385.9 356.9 266.5 0.132

0.499 1.0 9.9 829.4 5343.8 2407.2 1366.3 0.659

0.797 1.0 9.2 902.7 8125.6 3065.4 2243.1 0.952

Andreou et al.’s algorithm [1]. This algorithm is also used in [3] for compari-
son purposes, and we refer to the implementation therein. In order to obtain
results comparable to those given in [3], we use the same n, ρ value pairs in our
experiments.

We now compare the results in Table 1 to those reported in [3] for algo-
rithm ChordalGen with GrowingSubtree and Andreou et al.’s algorithm.
We observe that the number of maximal cliques of the graphs produced
by GenerateContractionMinimal is usually lower than the others, and
inevitably, their average clique sizes are higher than the others. The most notable
difference of our algorithm from the others is its running time. Whereas a run-
ning time analysis of Andreou et al.’s algorithm has not been given in [1], the
average running time of our implementation of their algorithm is of 477.1 s per
generated graph, excluding graphs on 10000 vertices for which the algorithm
was extremely slow to experiment. The average running times of our implemen-
tation of algorithm ChordalGen is 93.2, 4.7, 182.6 s with the subtree gen-
eration methods GrowingSubtree, ConnectingNodes, and PrunedTree,
respectively. Algorithm GenerateContractionMinimal, however, achieves
an average running time of 0.14 s.

In our next set of experimental results, we investigate the distribution of
the sizes of maximal cliques to get some visual insight into the structure of the
chordal graphs produced. Figure 1 shows the average number of maximal cliques

30 T. Ekim et al.

across ten independent runs for n = 1000 vertices and four edge density val-
ues. The figure is comprised of three rows, each row describing the result of the
experiments on one algorithm; algorithms GenerateContractionMinimal,
ChordalGen combined with GrowingSubtree method, and the implemen-
tation of Andreou et al.’s algorithm [1] as given in [3]. Every row consists of
four histograms corresponding to four different average edge density values
ρ = 0.01, 0.1, 0.5, and 0.8. The bin width of the histograms is taken as five;
that is, frequencies of maximal clique sizes are summed over intervals of width
five (from one to five, six to ten, etc.) and divided by the number of runs (i.e.,
ten) to obtain the average values. For a given n and average edge density value,
we keep the ranges of x-axes the same in order to make the histograms compa-
rable. The y-axes, however, have different ranges because maximum frequencies
in histograms vary considerably.

(a) Results from algorithmGenerateContractionMinimal.

(b) Results from algorithm ChordalGen with GrowingSubtree method.

(c) Results from Andreou et al.’s method [1].

Fig. 1. Histograms of maximal clique sizes for n = 1000 and average edge densities
0.01, 0.1, 0.5, and 0.8 (from left to right).

The histograms in Fig. 1(a) reveal that the sizes of maximal cliques of graphs
produced by our algorithm are not clustered around specific values; they are
distributed fairly over the range. The shapes of the histograms for average edge
densities 0.01 and 0.1 are similar for our algorithm and algorithm Chordal-

Gen, as we observe from the first half of Fig. 1(a) and (b). For higher densities
(as we proceed to the right), the sizes of maximal cliques are distributed more
uniformly in the graphs generated by our algorithm; there is no obvious mode
of the distribution. In the graphs produced by Andreou et al.’s method, the

Chordal Graph Generation 31

vast majority of maximal cliques have up to 15 vertices when the average edge
densities are 0.01 and 0.1. As we increase the edge density, frequencies of large-
size maximal cliques become noticeable relative to the dominant frequencies of
small-size maximal cliques. In any case, the range outside its extremes is barely
used.

For brevity, we do not present the histograms for every n-value we consider
in this study. Having presented the histograms for the smallest value of n we
consider, next we provide the set of results for a larger value of n. The implemen-
tation of Andreou et al.’s algorithm [1] turned out to be too slow to allow testing
graphs on 10000 vertices in a reasonable amount of time. In order to present a
complete comparison with the methods we look at from the literature, we pro-
vide the results for the next largest value of n in Fig. 2. From the histograms in
Fig. 2, we observe that the general distribution of maximal clique sizes do not
change much with the increase in the number of vertices. Maximal clique sizes
of chordal graphs produced by our algorithm are not confined to a limited area;
they are distributed fairly over the range.

To summarize, our experiments show thatGenerateContractionMinimal

is by far faster than the existing methods in practice, in accordance with our the-
oretical bounds. Moreover, our inspection of the generated graphs in terms of
their maximal cliques shows that the algorithm produces chordal graphs with no
restricted structure.

(a) Results from algorithm GenerateContractionMinimal.

(b) Results from algorithm ChordalGen with GrowingSubtree method.

(c) Results from Andreou et al.’s method [1].

Fig. 2. Histograms of maximal clique sizes for n = 5000 and average edge densities
0.01, 0.1, 0.5, and 0.8 (from left to right).

32 T. Ekim et al.

4 Arbitrary Representations

We start this section by showing that the upper bound of Theorem1 does not
hold for arbitrary representations on trees with n nodes. We denote by L(T) the
set of leaves of a tree T .

Lemma 2. Let T ′ = {T ′
1, . . . , T

′
n} be a set of subtrees on a tree with n nodes

and m be the number of edges of G(T ′). Then
n∑

i=1

|L(T ′
i)| is Ω(m

√
n).

Proof. Let k be a non-negative integer, and n = 6 · 32k. Let T ′ be a tree on
n nodes {v1, . . . , v4·32k , u1, . . . , u2·32k}, where the nodes {v1, . . . , v4·32k} induce a
path and the nodes {u1, . . . , u2·32k} induce a star with center u1. The represen-
tation contains the following subtrees:

– S1: 2 trivial paths on every node in {v1, . . . , v2·32k}, for a total of 4 ·32k paths,
– S2: 3k+1 copies of the star on nodes {u1, . . . , u2·32k}, and
– S3: 2 · 32k − 3k+1 disjoint trivial paths on part of the nodes in {v2·32k+1, . . . ,

v4·32k}. Note that the number of these paths is less than the number 2 · 32k

of nodes in the path, thus disjointness can be achieved.

The number of subtrees is 4 ·32k +3k+1 +2 ·32k −3k+1 = 6 ·32k = n, as required.
As for the total number of leaves, we have:

n∑

i=1

|L(T ′
i)| ≥ 3k+1 · (2 · 32k − 1) + 4 · 32k + 2 · 32k − 3k+1 ≥ 6 · 33k.

Let G be the intersection graph of these subtrees. G consists of a K3k+1 , 2 · 32k

disjoint K2s and isolated vertices. We have m = 2 · 32k + 3k+1 3k+1−1
2 , thus

∑n
i=1 |L(T ′

i)|
m

≥ 6 · 33k
13
2 · 32k − 3

23k
= Ω(3k) = Ω(

√
n).

Since the space needed to represent a subtree is at least the number of its
leaves, Lemma 2 implies the following:

Corollary 1. The time complexity of any algorithm that generates chordal
graphs by picking an arbitrary subtree representation on a tree with n nodes
is Ω(m

√
n).

We now proceed to show that this bound is tight up to a constant factor.
Through the rest of this section T ′ is a tree on n nodes and T ′ = {T ′

1, . . . , T
′
n}

is a set of subtrees of T ′ such that G(T ′) = G. We also denote by t′j
def
=

∣
∣T ′

j

∣
∣

the number of subtrees in T ′ that contain the node j of T ′. We assume that
〈T, T 〉 is a contraction-minimal representation of G obtained from 〈T ′, T ′〉 by
zero or more successive contraction operations. Then, T has t ≤ n nodes and the
multiplicity of j (with respect to T ′), denoted by kj , is the number of contractions
effectuated in T ′ in order to obtain node j in T , plus one.

Chordal Graph Generation 33

Lemma 3. With the above notations, we have

∀j ∈ [t] kj ≥ 1 (5)
t∑

j=1

kj = n. (6)

n∑

i=1

|V (T ′
i)| ≤

t∑

j=1

kjtj . (7)

Proof. Relations (5) and (6) hold by definition of t and multiplicity.
When an edge jj′ of T ′ is contracted to a node v we have kv = kj + kj′ and

tv = max {tj , tj′}. Therefore,

kvtv = (kj + kj′)tv ≥ kjtj + kj′tj′ .

Using the above fact and noting that we have
∑n

i=1 |V (T ′
i)| =

∑n
j=1 t′j , inequality

(7) follows by induction on the number of contractions.

Recall that our task is to find an upper bound on the sum of the sizes of
subtrees in a representation on a tree with n nodes of a chordal graph on n
vertices. Relation (7) allows us to focus on the sum of kjtj values (in a mini-
mal representation) in order to achieve this goal. In what follows, we treat this
task as an optimization problem under a given set of constraints. Thus, the fol-
lowing lemma whose proof is in the full version of the paper should be read
independently from graph theoretic interpretations of each parameter.

Lemma 4. Let t, s1, . . . , st, t1, . . . tt and k1, . . . , kt be numbers that satisfy (1),
(2), (3), (4), (5), and (6). Then

ρ
def
=

∑t
j=1 kjtj

2m + n
is O(

√
n).

We can now infer the main theorem of this section.

Theorem 3. Let 〈T ′, T ′〉 be a representation of a chordal graph G where T ′ has
n nodes and G has n vertices and m edges. Then we have

n∑

i=1

|V (T ′
i)| is Θ(m

√
n).

Proof. Let 〈T, T 〉 be a minimal representation of G obtained from 〈T ′, T ′〉. Then
〈T, T 〉 satisfies (1), (2), (3), (4) by Lemma 1, and (5), (6), (7) hold by Lemma 3.
The lower and upper bounds provided in Lemmas 2 and 4 respectively allows us
to conclude the proof.

34 T. Ekim et al.

5 Conclusion

In this work, we present a linear time algorithm to generate random chordal
graphs. To the best of our knowledge, this is the first algorithm with this time
complexity. Our algorithm is fast in practice and simple to implement. We also
show that the complexity of any random chordal graph generator which pro-
duces any subtree intersection representation on a tree of n nodes with positive
probability is Ω(m

√
n).

We conducted experiments to analyze the distribution of the sizes of the
maximal cliques of the generated chordal graphs and concluded that our method
generates fairly varied chordal graphs with respect to this measure. It should be
noted that, however, we do not know the distribution of the maximal clique sizes
over the space of all chordal graphs of a given size.

We have shown that every chordal graph on n vertices is returned by our algo-
rithm with positive probability. The development of an algorithm that generates
chordal graphs uniformly at random is subject of further research.

References

1. Andreou, M.I., Papadopoulou, V.G., Spirakis, P.G., Theodorides, B., Xeros, A.:
Generating and radiocoloring families of perfect graphs. In: Nikoletseas, S.E. (ed.)
WEA 2005. LNCS, vol. 3503, pp. 302–314. Springer, Heidelberg (2005). https://
doi.org/10.1007/11427186 27

2. Şeker, O., Heggernes, P., Ekim, T., Taşkın, Z.C.: Linear-time generation of random
chordal graphs. In: Fotakis, D., Pagourtzis, A., Paschos, V.T. (eds.) CIAC 2017.
LNCS, vol. 10236, pp. 442–453. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-57586-5 37

3. Şeker, O., Heggernes, P., Ekim, T., Taşkın, Z.C.: Generation of random chordal
graphs using subtrees of a tree. arXiv preprint arXiv:1810.13326 (2018)

4. Diestel, R.: Graph Theory. GTM, vol. 173, 4th edn. Springer, Heidelberg (2017)
5. Gavril, F.: The intersection graphs of subtrees in trees are exactly the chordal

graphs. J. Comb. Theory 16, 47–56 (1974)
6. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Annals of Dis-

crete Mathematics, vol. 57. North-Holland Publishing Co., Amsterdam (2004)
7. Markenzon, L., Vernet, O., Araujo, L.H.: Two methods for the generation of chordal

graph. Ann. Oper. Res. 157(1), 47–60 (2008)
8. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible

Inference. Morgan Kaufmann, Burlington (2014)
9. Pemmaraju, S.V., Penumatcha, S., Raman, R.: Approximating interval coloring

and max-coloring in chordal graphs. J. Exp. Algorithms 10, 2–8 (2005)
10. Rose, D.J.: A graph-theoretic study of the numerical solution of sparse positive

definite systems of linear equation. In: Graph Theory and Computing, pp. 183–
217 (1972)

https://doi.org/10.1007/11427186_27
https://doi.org/10.1007/11427186_27
https://doi.org/10.1007/978-3-319-57586-5_37
https://doi.org/10.1007/978-3-319-57586-5_37
http://arxiv.org/abs/1810.13326

Computing a Minimum Color Path
in Edge-Colored Graphs

Neeraj Kumar(B)

Department of Computer Science,
University of California, Santa Barbara, USA

neeraj@cs.ucsb.edu

Abstract. In this paper, we study the problem of computing a min-
color path in an edge-colored graph. More precisely, we are given a graph
G = (V, E), source s, target t, an assignment χ : E → 2C of edges to
a set of colors in C, and we want to find a path from s to t such that
the number of unique colors on this path is minimum over all possible
s− t paths. We show that this problem is hard (conditionally) to approx-
imate within a factor O(n1/8) of optimum, and give a polynomial time
O(n2/3)-approximation algorithm. We translate the ideas used in this
approximation algorithm into two simple greedy heuristics, and analyze
their performance on an extensive set of synthetic and real world datasets.
From our experiments, we found that our heuristics perform significantly
better than the best previous heuristic algorithm for the problem on all
datasets, both in terms of path quality and the running time.

1 Introduction

An edge colored graph G = (V,E, C, χ) comprises of an underlying graph G =
(V,E), and a set of colors C such that each edge e ∈ E is assigned a subset
χ(e) ⊆ C of colors. For any path π in this graph, suppose we define its cost
to be |χ(π)| where χ(π) =

⋃
e∈π χ(e) is the set of colors used by this path. In

this paper, we study the natural problem of computing a path π from a source
s to some target t such that its cost, that is the number of colors used by π,
is minimized. The problem is known to be NP-hard, and by a reduction from
Set-cover is also hard to approximate within a factor o(log n).

The problem was first studied by Yuan et al. [19] and was motivated by
applications in maximizing the reliability of connections in mesh networks. More
precisely, each network link is assigned one or more colors where each color
corresponds to a given failure event that makes the link unusable. Now if the
probability of all the failure events is the same, a path that minimizes the number
of colors used has also the least probability of failure. Therefore, the number of
colors used by a minimum color path can be used as a measure for ‘resilience’
of the network. This has also been applied in context of sensor networks [2] and
attack graphs in computer security [14]. Apart from resilience, the minimum color

This work was supported by NSF under Grant CCF-1814172.

c© Springer Nature Switzerland AG 2019
I. Kotsireas et al. (Eds.): SEA2 2019, LNCS 11544, pp. 35–50, 2019.
https://doi.org/10.1007/978-3-030-34029-2_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34029-2_3&domain=pdf
https://doi.org/10.1007/978-3-030-34029-2_3

36 N. Kumar

path problem can also be used to model licensing costs in networks. Roughly
speaking, each link can be assigned a set of colors based on the providers that
operate the link, and a minimum color path then corresponds to a minimum
number of licenses that are required to ensure connectivity between two given
nodes. More generally, the problem applies to any setting where colors can be
thought of as “services” and we only need to pay for the first usage of that service.
The problem was also studied by Hauser [12] motivated by robotics applications.
In such settings, colors are induced by geometric objects (obstacles) that block
one or more edges in a path of the robot. Naturally, one would like to remove
the minimum number of obstacles to find a clear path, which corresponds to the
colors used by a minimum color path.

The problem has also gathered significant theoretical interest. If each edge of
the graph is assigned exactly one color (called its label), the problem is called min-
label path and was studied in [11]. They gave an algorithm to compute an O(

√
n)-

approximation and also show that it is hard to approximate within O(logcn) for
any fixed constant c, and n being the number of vertices. Several other authors
have also studied related problems such as minimum label spanning tree and
minimum label cut [8,16]. The min-color path problem on vertex-colored graph
was recently studied in [1] where they gave an O(

√
n)-approximation algorithm.

Indeed, one can transform an edge-colored graph into a vertex-colored graph by
adding a vertex of degree two on each edge e and assigning it the set of colors
χ(e). However, this does not gives a sublinear approximation in n as the number
of vertices in the transformed graph can be Ω(n2).

1.1 Our Contribution

In this work, we make progress on the problem by improving the known approx-
imation bounds and by designing fast heuristic algorithms.

– By a reduction from the minimum k-union problem [6] which was recently
shown to be hard to approximate within a factor of O(n1/4), we show that
min-color path cannot be approximated within a factor O(n1/8) of optimum
on edge-colored graphs. This also implies improved lower bounds for min-label
path, as well as min-color path on vertex-colored graphs.

– We give an O(n2/3)-approximation algorithm for min-color path problem on
edge-colored graphs. If the number of colors on each edge is bounded by a
constant, the algorithm achieves an approximation factor of O((n

OPT)2/3),
where OPT is the number of colors used by the optimal path.

– We translate the ideas from the above approximation algorithm into two
greedy heuristics and analyze its performance on a set of synthetic and real-
world instances [15]. Although similar greedy heuristics were proposed by the
previous work [19] and have been shown to perform well on randomly gener-
ated colored graphs; a holistic analysis of such algorithms on more challenging
and realistic instances seems to be lacking. We aim to bridge this gap by iden-
tifying the characteristics of challenging yet realistic instances that helps us
design a set of synthetic benchmarks to evaluate our algorithms. From our

Computing a Minimum Color Path 37

experiments, we found that our heuristics achieve significantly better perfor-
mance than the heuristic from [19] while being significantly (up to 10 times)
faster. We also provide an ILP formulation for the problem that performs
reasonably well in practice. All source code and datasets have been made
available online on github [17].

The rest of the paper is organized as follows. In Sect. 2, we discuss our hard-
ness reduction. The details of O(n2/3)−approximation is given in Sect. 3. We
discuss our heuristic algorithms and experiments in Sect. 4. For the rest of our
discussion, unless stated otherwise, we will use the term colored graph to mean
an edge-colored graph and our goal is to compute a min-color path on such
graphs. On some occasions, we will also need to refer to the min-label path prob-
lem, which is a special case of min-color path when all edges have exactly one
color.

2 Hardness of Approximation

By a simple reduction from Set-cover, it is known that the min-color path
problem is hard to approximate to a factor better than o(log n), where n is the
number of vertices. This was later improved by Hassin et al. [11], where they
show that the min-label path (and therefore the min-color path) problem is hard
to approximate within a factor O(logc n) for any fixed constant c. In this section,
we work towards strengthening this lower bound. To this end, we consider the
minimum k-union problem that was recently studied in [6].

In the minimum k-union problem, we are given a collection S of m sets over
a ground set U and the objective is to pick a sub-collection S ′ ⊆ S of size k such
that the union of all sets in S ′ is minimized. The problem is known to be hard to
approximate within a factor O(m1/4). However, it is important to note that this
lower bound is conditional, and is based on the so-called Dense vs Random

conjecture being true [6]. The conjecture has also been used to give lower bound
guarantees for several other problems such as Densest k-subgraph [3], Lowest
Degree 2-Spanner, Smallest m-edge subgraph [5], and Label cover [7].

In the following, we will show how to transform an instance of minimum k-
union problem to an instance of min-color path. More precisely, given a collection
S of m sets over a ground set U and a parameter k, we will construct a colored
graph G = (V,E, C, χ) with two designated vertices s, t, such that a solution for
min-color path on G corresponds to a solution of minimum k-union on S and
vice versa. We construct G in three steps (See also Fig. 1).

– We start with a path graph G′ that has m+1 vertices and m edges. Next, we
create m−k+1 copies of G′ and arrange them as rows in a (m−k+1)×(m+1)-
grid, as shown in Fig. 1.

– So far we only have horizontal edges in this grid of the form (vij , vi(j+1)).
Next, we will add diagonal edges of the form (vij , v(i+1)(j+1)) that basically
connect a vertex in row i to its right neighbor in row i + 1.

38 N. Kumar

s t

S1 S2 Sm

Fig. 1. Reducing minimum k-union to min-color path. The dashed edges are uncolored.
The horizontal edge (vij , vi(j+1)) is assigned color corresponding to the set Sj in all
rows i.

– Finally, we add the vertices s, t and connect them to bottom-left vertex v11
and the top-right vertex v(m−k+1)(m+1), respectively.

We will now assign colors to our graph G. For the set of possible colors C, we
will use the ground set U and assign every subset Sj ∈ S to horizontal edges of
G from left to right. More precisely,

– The diagonal edges of G are not assigned any color.
– Every horizontal edge that connects a node in column j to j +1 gets assigned

the set of color Sj , for all j ∈ 1, 2, . . . ,m. That is χ(vij , vi(j+1)) = Sj , for all
i ∈ {1, 2, . . . ,m − k + 1}.

We make the following claim.

Lemma 1. Assuming that minimum k-union problem is hard to approximate
within a factor O(m1/4) of optimal, the min-color path problem cannot be approx-
imated within a factor of O(n1/8), where m is the number of sets in the collection
and n is the number of vertices in G.

Proof. Consider any s−t path π in G. Without loss of generality, we can assume
that π is simple and moves monotonically in the grid. This holds because if π
moves non-monotonically in the grid, then we can replace the non-monotone
subpath by a path that uses the same (or fewer) number of colors. Now observe
that in order to get from s to t, the path π must make a horizontal displacement
of m columns and a vertical displacement of m − k rows. Since the vertical
movement is only provided by diagonal edges and π can only take at most m−k
of them, it must take k horizontal edges. If π is the path that uses minimum
number of colors, then the sets Sj corresponding to the horizontal edges taken
by π must have the minimum size union and vice versa.

Now suppose it was possible to approximate the min-color path problem
within a factor O(n1/8) of optimal. Then given an instance of minimum k-union,
we can use the above reduction to construct a graph G that has n = O(m2)
vertices and run this O(n1/8) approximation algorithm. This will give us a path
π that uses at most O(m1/4)r colors, where r is the minimum number of colors
used. As shown above, r must also be the number of elements in an optimal

Computing a Minimum Color Path 39

solution of minimum k-union. Therefore, we can compute a selection of k sets
that have union at most O(m1/4) times optimal, which is a contradiction. ��

Note that we can also make G vertex-colored: subdivide each horizontal edge
e by adding a vertex ve of degree two, and assign the set of colors χ(e) to ve.
Observe that since the graph G we constructed above had O(n) edges, the same
lower bound also translates to min-color path on vertex-colored graph.

Corollary 1. Min-color path on vertex-colored graphs is hard to approximate
within a factor O(n1/8) of optimal.

One can also obtain a similar bound for min-label path.

Lemma 2. Min-label path is hard to approximate within a factor O((n
OPT)1/8),

where OPT is the number of colors used by the optimal path.

3 An O(n2/3)− Approximation Algorithm

In this section, we describe an approximation algorithm for our problem that
is sublinear in the number of vertices n. Note that if the number of colors on
each edge is at most one, there exists an O(

√
n) approximation algorithm [11].

However, their technique critically depends on the number of colors on each edge
to be at most one, and therefore cannot be easily extended to obtain a sublinear
approximation1.

An alternative approach is to transform our problem into an instance of min-
color path on vertex-colored graphs by adding a vertex of degree two on each
edge e and assigning the colors |χ(e)| to this vertex. Applying the O(

√|V |)-
approximation from [1], easily gives an O(

√|E|)-approximation for our problem,
which is sub-linear in n if the graph is sparse, but can still be Ω(n) in the worst
case. To address this problem, we apply the technique of Goel et al. [9] where
the idea is to partition the graph G into dense and sparse components based on
the degree of vertices (Step 1 of our algorithm). We consider edges in both these
components separately. For edges in dense component, we simply discard their
colors, whereas for edges in the sparse components, we use a pruning strategy
similar to [1] to discard a set of colors based on their occurrence. Finally, we show
that both these pieces combined indeed compute a path with small number of
colors. We start by making a couple of simple observations that will be useful.

First, we assume that the number of colors used by the optimal path (denoted
by k) is given to our algorithm as input. Since k is an integer between 1 and |C|, it
is easy to see that an α-approximation for this version gives an α-approximation

1 This is because if each edge has at most one color, the pruning stage in algorithm
from [11] can be phrased as a maximum coverage problem, for which constant approx-
imations are known. However even if number of colors is exactly two, the pruning
stage becomes a variant of the densest k-subgraph problem which is hard to approx-
imate within a factor of Ω(n1/4) of optimum.

40 N. Kumar

for min-color path. This holds as we can simply run the α-approximation algo-
rithm |C| times, once for each value of k and return the best path found.

Now, since we have fixed k, we can remove all edges from the graph that
contain more than k colors, as a min-color path will never use these edges. Since
each edge in G now contains at most k colors, we have the following lemma.

Lemma 3. Any s− t path of length � uses at most k� colors and is therefore an
�-approximation.

This suggests that if there exists a path in G of small length, we readily get a
good approximation. Note that the diameter of a graph G = (V,E) is bounded
by |V |

δ(G) , where δ(G) is the minimum degree over vertices in G. So if the graph is
dense, that is, degree of each vertex is high enough, the diameter will be small,
and any path will be a good approximation (Lemma 3).

We are now ready to describe the details of our algorithm. We outline the
details for the most general case when the number of colors on each edge is
bounded by a parameter z ≤ k. If z is a constant, the algorithm achieves slightly
better bounds.

Algorithm: Approximate k-Color Path. The input to our algorithm is a
colored graph G = (V,E, C, χ), two fixed vertices s and t, the number of colors
k and a threshold β (which we will fix later) for deciding if a vertex belongs to a
dense component or a sparse component. Note that all edges of G have at most
z ≤ k colors on them.

1. First, we will classify the vertices of G as lying in sparse or dense component.
To do this, we include vertices of degree at most β to the sparse component
and remove all edges adjacent to it. Now we repeat the process on the modified
graph until no such vertex exists. Finally, we assign the remaining vertices to
the dense component, and restore G to be the original graph.

2. For all edges e = (u, v) such that both u, v lie in the dense component, discard
its colors. That is set color χ(e) = ∅.

3. Now, consider the set of edges that have at least one endpoint in the sparse
component, call them critical edges. Note that the number of such edges is at
most nβ.

4. Remove every color ci that occurs on at least
√

znβ
k critical edges. That is,

set χ(e) = χ(e) \ {ci}, for all edges e ∈ E.
5. Let G′ be the colored graph obtained after above modifications. Using |χ(e)|

as weight of the edge e, run Dijkstra’s algorithm to compute a minimum
weight s − t path π in G′. Return π.

It remains to show that the algorithm above indeed computes an approxi-
mately good path. We will prove this in two steps. First, we make the following
claim.

Lemma 4. The number of colors that lie on the path π in the modified colored
graph G′ is at most

√
zknβ.

Computing a Minimum Color Path 41

Proof. Observe that each color appears on no more than
√

znβ
k edges of G′. Now

consider the optimal path π∗ in G that uses k colors. Since each of these k colors

contribute to the weight of at most
√

znβ
k edges of π∗, the weight of the path

π∗ in G′ is at most (k ·
√

znβ
k) =

√
zknβ. Therefore, the minimum weight s − t

path π will use no more than
√

zknβ colors. ��
Lemma 5. The number of colors that lie on the path π in the original colored
graph G is O(zn

β +
√

zknβ).

Proof. To show this, we will first bound the number of colors of π that we may
have discarded in Steps 2 and 4 of our algorithm.

Consider a connected dense component Ci. Now let Gi be the subgraph
induced by vertices in Ci. Since the degree of each vertex in Gi is at least β,
the diameter of Gi is at most ni

β , where ni is the number of vertices in the
component Ci. Observe that since the weight of all edges of Ci is zero in G′,
we can safely assume that π only enters Ci at most once. This holds because
if π enters and exits Ci multiple times, we can simply find a shortcut from the
first entry to last exit of weight zero, such a shortcut always exists because
Ci is connected. Therefore π contains at most ni

β edges and uses at most zni

β
colors in the component Ci. Summed over all components, the total number of
colors discarded in Step 2 that can lie on π is at most z

∑
i

ni

β ≤ zn
β . Next,

we bound the number of colors discarded in Step 4. Observe that since each
critical edge contains at most z colors, the total number of occurrences of all
colors on all critical edges is znβ. Since we only discard colors that occur on

more than
√

znβ
k edges, the total number of discarded colors is bounded by

(

znβ
/√

znβ
k

)

=
√

zknβ.

Summing these two bounds with the one from Lemma 4, we achieve the
claimed bound. ��

The bound from Lemma 5 is minimized when β = (zn
k)1/3. This gives the

total number of colors used to be O((zn
k)2/3)·k) and therefore, an approximation

factor of O((zn
k)2/3). If the number of colors z on each edge is bounded by a

constant, we get an approximation factor of O((n
k)2/3). Otherwise, we have that

z ≤ k, which gives an O(n2/3)-approximation.

Theorem 1. There exists a polynomial time O(n2/3)-approximation algorithm
for min-color path in an edge-colored graphs G = (V,E, C, χ). If the number of
colors on each edge is bounded by a constant, the approximation factor can be
improved to O((n

OPT)2/3).

4 Fast Heuristic Algorithms and Datasets

In this section we will focus on designing fast heuristic algorithms for the min-
imum color path problem. Given a colored graph G = (V,E, C, χ), one natural

42 N. Kumar

heuristic is to use Dijkstra’s algorithm as follows: simply replace the set of colors
χ(e) on each edge e by their cardinalities |χ(e)| as weights and then compute a
minimum weight path in this graph.

Building upon this idea, Yuan et al. [19] proposed a greedy strategy where
they start with a path computed by Dijkstra’s algorithm as above, and itera-
tively select the color that improves the path found so far by maximum amount.
More precisely, for each color c ∈ C, decrement the weight of each edge on
which c occurs by one, and compute a path using Dijkstra’s algorithm. Now,
select the color that improves the path found so far by maximum amount in
terms of number of colors used. Keep the weight of edges with selected color to
their decremented value and repeat the process until the path can no longer be
improved.

This heuristic was called Single-Path All Color Optimization Algorithm
(SPACOA) in their paper and was shown to achieve close to optimal number
of colors on uniformly colored random graphs2. We argue that although their
heuristic performs well on such instances, there still is a need to design and ana-
lyze algorithms on a wider range of more realistic instances. This holds because
of two reasons. First, in most practical applications where the min-color path is
used, the distribution of colors is typically not uniform. For instance, in network
reliability applications where colors correspond to a failure event, it is likely
that a specific failure event is more common (occurs on more edges) than the
other. Similarly, in a network topology setting [15], where colors correspond to
ISPs, some providers have larger connectivity than the others. Second, in most
of these applications, existence of an edge between two nodes typically depends
on proximity of nodes (imagine wireless routers or sensor networks) which is also
not accurately captured by random graphs.

Moreover, we note that due to their structural properties (such as small
diameters) uniformly colored random graphs are not good instances to measure
the efficacy of heuristic algorithms because on these instances the number of
colors used by a color oblivious Dijkstra’s algorithm is also quite close to optimal,
and as such there is little room for improvement. (See also Table 1). In the next
two sections, we aim to construct synthetic instances for the min-color path
problem that are more challenging and at the same time realistic. Thereafter, we
present a couple of greedy heuristic algorithms and analyze their performance
on these synthetic and some real world instances. We will use the SPACOA
heuristic from [19] as a benchmark for our comparisons. We begin by analyzing
min-color paths in uniformly colored random graphs and explain why a color
oblivious algorithm such as Dijkstra performs so well. This gives some useful
insights into characteristics of hard instances.

4.1 Min-color Path in Uniformly Colored Random Graphs

We begin by analyzing uniformly colored random graphs where given a random
graph, colors are assigned uniformly to its edges [19]. That is, for each edge in
2 We assume that the random graph is constructed under G(n, p) model, that is an

edge exists between a pair of vertices with probability p.

Computing a Minimum Color Path 43

the graph, a color is picked uniformly at random from the set C of all colors, and
assigned to that edge. We note that a colored graph G is likely to be a ‘hard
instance’ for min-color path if there exists an s− t path in G with small number
of colors, and the expected number of colors on any s − t path is much larger,
so that a color oblivious algorithm is ‘fooled’ into taking one of these paths. We
observe that in randomly generated colored graphs as above, this is quite less
likely to happen, which is why the paths computed by a color oblivious Dijkstra’s
algorithm are still quite good.

To see this, consider an s − t path π of length � in G. Observe that since
the colors are independently assigned on each edge, it is equivalent to first fix
a path and then assign colors to its edges. Let piπ be the probability that color
i appears on some edge of π. The probability that color i does not appear on
any edge of π is (1 − 1

|C|)
� and therefore piπ = 1 − (1 − 1

|C|)
�, for each color

i. In other words, we can represent the occurrence of a color i on the path π
by a Bernoulli random variable with a success probability piπ. The number of
colors on this path π will then correspond to the number of successes in |C| such
trials, which follows the binomial distribution B(|C|, piπ). The expected number
of colors on the path is given by |C|piπ which clearly increases as the length of
the path increases. The probability that the number of colors on π is k is given
by

(|C|
k

) · pk
iπ · (1 − piπ)|C|−k. For example, if the number of colors |C| = 50, then

the probability that a path of length 20 uses a small number, say 5, colors is
about 10−4.

Therefore, in order to construct colored graph instances where there is sig-
nificant difference between the paths computed by a color oblivious algorithm
such as Dijkstra and the optimal path, we need to ensure that (a) there are a
large number of paths between the source vertex s and destination vertex t (b)
the vertices s and t are reasonably far apart. The first condition maximizes the
probability that there will be an s − t path with a small number of colors. The
second condition ensures that the expected number of colors on any s− t path is
large, and it is quite likely that a color oblivious algorithm is fooled into taking
one of these expensive paths.

4.2 Constructing Hard Instances

We construct our instances in two steps. First, we show how to construct the
underlying graph G = (V,E) and next describe how to assign colors on edges of
G. We begin by assuming that unless otherwise stated, the vertices s and t are
always assigned to be the pair of vertices that are farthest apart in G, that is,
they realize the diameter of G. The idea now is to construct graphs that have
large diameters (so that s, t are reasonably separated), are ‘locally’ dense (so
that there is a large number of s − t paths) and capture application scenarios
for min-color path problems.

– Layered Graphs. These graphs comprise of n nodes arranged in a k× (n/k)
grid. Each column consists of k nodes that form a layer and consecutive layers
are fully connected. More precisely, a node vij in column j is connected to

44 N. Kumar

all nodes vlj+1 in the next column and the for all l = {1, . . . , k}. All vertices
in the first column are connected to the source s, and the last column are
connected to t. Such graphs are known to appear in design of centralized
telecommunication networks [10], task scheduling, or software architectures.

– Unit Disk Intersection Graphs. These graphs comprise of a collection of n
unit disks randomly arranged in a rectangular region. The graph is defined as
usual, each disk corresponds to a vertex and is connected to all the other disks
it intersects. Since the edges only exist between vertices that are close to each
other, disk intersection graphs tend to have large diameters proportional to
the dimensions of the region they lie in. These graphs appear quite frequently
in ad-hoc wireless communication networks [13]

– Road Networks. These graphs intend to capture applications of min-color
path to transportation networks such as logistics, where colors may corre-
spond to trucking companies that operate between certain cities, and one
would like to compute a path with fewest number of contracts needed to send
cargo between two cities. For these graphs, we simply use the well-known
road network datasets such as the California road network from [18]. As one
may expect, road networks also tend to have large diameters.

Next, we assign colors to edges of the graph G. To keep things simple, we will
assign colors to edges of G independently. We consider edges of G one by one
and assign them up to z colors, by sampling the set of colors z times. However,
in order to also capture that some colors are more likely to occur than others,
we sample the colors from a truncated normal distribution as follows. We start
with a normal distribution with mean μ = 0.5, standard deviation σ = 0.16 (so
that 0 < μ ± 3σ < 1) and scale it by the number of colors. Now we sample
numbers from this distribution rounding down to the nearest integer. With high
probability, the sampled color indices will lie in the valid range [0, |C|), otherwise
the sample returns an empty color set.

Table 1. Number of colors used by Dijkstra vs best known solutions on various colored
graph instances. Note the higher difference between Dijkstra and optimal values for our
instances.

Instance Dijkstra Best known Remarks

Layered 43.38 17.6 k = 4 nodes per layer

Unit-disk 34.66 13.88 n = 1000 random disks in a
10 × 100 rectangle

Road-network 366 246 1.5 M nodes, 2.7 M edges, 500
colors

Uniform-col [19] 11.45 9.5 edges added with p = log n/2n

Finally, for the sake of comparison, we also include the randomly generated
colored graphs (Uniform-col) from [19]. The number of colors used by Dijkstra’s

Computing a Minimum Color Path 45

algorithm and the optimal number of colors are shown in Table 1. For all the
datasets except Road-network, the number of nodes is 1000, the number of colors
is 50 and the number of samples per edge was 3. The reported values are averaged
over 20 runs. For the Uniform-col instances, the probability of adding edges p
was chosen so that the difference between colors used by Dijkstra’s algorithm
and the optimal is maximized.

4.3 ILP Formulation

We will now discuss an ILP formulation to solve the min-color path problem
exactly. Given a colored graph G = (V,E, C), the formulation is straightforward.
We have a variable ci for each color i ∈ C, and another variable ej for each edge
j ∈ E. The objective function can be written as:

minimize
∑

i

ci subject to

ci ≥ ej i ∈ χ(j) (color i lies on edge j) (1)

∑

j∈out(v)

ej −
∑

j∈in(v)

ej =

⎧
⎨

⎩

1, v = s
−1, v = t
0, v
= s, t

⎫
⎬

⎭
∀v ∈ V (2)

ci, ej ∈ {0, 1}
The first set of constraints (1) ensure that whenever an edge is picked, its colors
will be picked as well. The second set of constraints (2) ensure that the set of
selected edges form a path. We implemented the above formulation using Gurobi
MIP solver (version 8.0.1) and found that they run surprisingly fast (within a
second) on Uniform-col instances from Table 1. However, the solver tends to
struggle even on small instances (about a hundred nodes) of all other datasets,
suggesting that these instances are indeed challenging. In the next section, we will
discuss a couple of heuristic algorithms that can compute good paths reasonably
fast, and later in Sect. 4.5 compare their results with the optimal values computed
by the ILP solver for some small instances.

4.4 Greedy Strategies

We begin by noting that a reasonably long path that uses small number of colors
must repeat a lot of its colors. Therefore, the primary challenge is to identify the
set of colors that are likely to be repeated on a path, and “select” them so that
they are not counted multiple times by a shortest path algorithm. This selection
is simulated by removing the color from the colored graph, so that subsequent
runs of shortest path algorithm can compute potentially better paths. Inspired
from the approximation algorithm of Sect. 3, our first heuristic Greedy-Select

simply selects the colors greedily based on the number of times they occur on
edges of G and returns the best path found. We outline the details below.

Algorithm: Greedy-Select Colors. The input to the algorithm is a colored
graph G = (V,E, C, χ), two fixed vertices s, t and it returns an s − t path π.

46 N. Kumar

1. Find an initial path π0 by running Dijkstra’s algorithm on G with weight of
each edge e = |χ(e)|. Let the number of the colors used by π0 is K, an
upperbound on number of colors our paths can use. Set the path π = π0.

2. Initialize i = 1, and set G0 = G the original colored graph.
3. Remove the color cmax that appears on maximum number of critical edges of

Gi−1. That is, set χ(e) = χ(e) − {cmax} ∀e ∈ E. Let Gi be the colored graph
obtained.

4. Compute the minimum weight path πi in Gi with weight of each edge
e = |χ(e)| using Dijkstra’s algorithm.

5. Let K ′ be the number of colors on πi in the original colored graph G. If
K ′ < K, update the upperbound K = K ′ and set π = πi.

6. if i < K, set i = i + 1 and return to Step 3. Otherwise return path π.

Although the above algorithm runs quite fast and computes good paths, we
can improve the path quality further by the following observation. Consider a
color ci that occurs on a small number of edges, then using an edge that contains
ci (unless absolutely necessary) can be detrimental to the path quality, as we may
be better off picking edges with colors that occur more frequently. This suggests
an alternative greedy strategy: we try to guess a color that the path is not likely
to use, discard the edges that contain that color, and repeat the process until
s and t are disconnected. This way we arrive at a small set of colors from the
opposite direction, by iteratively discarding a set of ‘expensive’ candidates. To
decide which color to discard first, we can again use their number of occurrences
on edges of G – a small number of occurrences means a small number of edges
are discarded and s − t are more likely to remain connected. However, we found
that this strategy by itself is not as effective as Greedy-Select, but one can
indeed combine both these strategies together into the Greedy-Prune-Select

heuristic, that is a little slower, but computes even better paths.

Algorithm: Greedy-Prune-Select Colors. The input is a colored graph G =
(V,E, C, χ), two fixed vertices s, t, and a parameter threshold that controls the
number of times we invoke Greedy-Select heuristic. The output is an s − t
path π.

1. For each color c ∈ C, initialize preference(c) to be number of edges it occurs
on. Initialize i = 0, G0 = G to be the initial graph, and C0 = C to be the
initial set of candidate colors that can be discarded.

2. Run Greedy-Select on G0 to find an initial path π0 to improve upon.
Record the number of edges M = |E| in the graph at this point.

3. Repeat the following steps until Ci is empty:
(a) Pick a color ci ∈ Ci−1 such that preference(ci) is minimum, and remove

all edges e such that ci ∈ χ(e). Let Gi be the graph obtained, and Ci =
Ci−1 \ {ci}.

(b) If s, t are disconnected in Gi, restore the discarded edges. That is set
Gi = Gi−1. Set i = i + 1 and return to Step 3.

(c) Otherwise, remove all edges from Gi that do not lie in the same con-
nected component as s, t. Update preference of all colors that lie on these
discarded edges.

Computing a Minimum Color Path 47

(d) If the graph Gi has changed significantly, that is M − |Ei| ≥ threshold or
if this is the last iteration, run Greedy-Select again to compute the
path πi. Update M = |Ei|.

(e) Set i = i + 1 and return to Step 3.
4. Return the path πi that is best in terms of number of colors.

The running time is typically dominated by the number of calls to Greedy-

Select. In our experiments, we set threshold = 0.25|E| which guarantees that we
only make a small number of calls to Greedy-Select. Theoretically, Greedy-

Select runs in O(|C| · D) time, where D is the running time of Dijkstra’s
algorithm. An implementation of Greedy-Prune-Select using BFS to test
connectivity runs in O(|C| · (|V |+ |E|))+O(|C| ·D) time, which is also O(|C| ·D).
This is an order of magnitude better than SPACOA heuristic that has a worst-
case running time of O(|C|2 · D).

4.5 Experiments and Results

We will now discuss the performance of above heuristic algorithms on our
datasets. We compare our results with the values computed by the ILP solu-
tion (on small instances) and the SPACOA heuristic from [19]. In summary, we
found that both our heuristics compute paths that are much better than SPA-
COA heuristic from [19], while also being significantly faster. The paths com-
puted by Greedy-Prune-Select are almost always significantly better than
Greedy-Select and the difference especially shows on larger datasets. The
results are shown in Tables 2, 3, 4 and 5 averaged over five runs with the excep-
tion of real-world instances. Runtimes longer than one hour are marked with ∞.
All code was written in C++ using the OGDF graph library [4] and executed on a
standard linux machine (Ubuntu 16.04) running on Intel(R) Core(TM) i5-4460S
CPU @ 2.90 GHz with 16 GB RAM.

Layered Graph Instances. We run our algorithms on a 4× 125 layered graph
instance with 50 colors on a 4 × 2500 instance with 500 colors. As the number
of layers grows from 125 to 2500, these instances get progressively challenging
for the ILP solver due to a large number of candidate paths. As expected, the
SPACOA runs really slow on large instances as it needs to try a lot of colors per
iteration. There is reasonable difference between the quality of paths computed
by Greedy-Prune-Select and Greedy-Select especially on larger instances.
The results are shown in Table 2.

Unit-Disk Instances. We run our algorithms on two sets of instances, with
500 nodes (disks) in a 10×50 rectangle, and a 104 nodes in a 10×1000 rectangle.
The rectangles are chosen narrow so that the graph has a large diameter. The
behavior is quite similar to layered graphs. The results are shown in Table 3.

Real-World Instances. Next, we focus on a couple of real-world examples.
Our first instance is the California road network [18] that has 1.5 M nodes and
2.7 M edges. The graph however was not colored to begin with, so we color

48 N. Kumar

Table 2. Path quality and running time on layered graph instances.

Algorithm Colors used Time taken (ms) Colors used Time taken (ms)

4 × 125 = 0.5 k nodes 4 × 2500 = 10 k nodes

Dijkstra 36.8 0.6 441.8 23.6

SPACOA 33.6 65 396 127 × 103

Greedy-Select 18.2 12.6 185.6 3.5 × 103

Greedy-Prune-Select 17.2 49 173 12.5 × 103

ILP 16.4 707 × 103 ∞ ∞

Table 3. Path quality and running time on Unit disk graph instances.

Algorithm Colors used Time taken (ms) Colors used Time taken (ms)

4 × 125 = 0.5 k nodes 4 × 2500 = 10 k nodes

Dijkstra 28.8 1 357.8 38

SPACOA 23 124.8 333.6 41.4 × 103

Greedy-Select 14.2 13 145.6 4.7 × 103

Greedy-Prune-Select 13.4 55 134 17.6 × 103

ILP 12.6 1176 × 103 ∞ ∞

it artificially by assigning 500 colors from the truncated normal distribution as
explained before. Our second instance is from the Internet Topology Zoo [15],
a manually compiled dataset of connectivity of internet service providers over
major cities of the world. We translate this to our colored graph model, the cities
naturally correspond to nodes, providers correspond to colors, and a color is
assigned to an edge if the corresponding provider provides connectivity between
these two cities. This graph has 5.6 k nodes, 8.6 k edges and 261 colors, with an
average of 1.44 colors per edge.

Table 4. Path quality and running time on some real world instances.

Algorithm Colors used Time taken (ms) Colors used Time taken (ms)

CA Road Network Internet topology

Dijkstra 366 3.068 × 103 7 26

SPACOA 355 3.12 × 106 4 3111

Greedy-Select 251 0.73 × 106 5 29

Greedy-Prune-Select 246 2.71 × 106 4 286

ILP ∞ ∞ 4 1817

The road-network instance due to its size is challenging to all algorithms.
On the other hand, the internet-topology dataset seems quite easy for all the

Computing a Minimum Color Path 49

instances. One possible explanation for this is that although the number of nodes
is large, the graph has a lot of connected components and a small diameter. This
limits the space of candidate paths making all algorithms (particularly the ILP
solver) quite fast.

Uniform-Col Instances. These instances are the same as one from [19] and
have been mostly included for the sake of comparison. We run our algorithms
on a Uniform-Col instance with 103 nodes and 50 colors, and another instance
with 104 nodes and 500 colors.

Table 5. Path quality and running time on Uniform-Col instances.

Algorithm Colors usedTime taken (in ms)Colors usedTime taken (in ms)

103 nodes 104 nodes

Dijkstra 11.45 0.95 11.7 15

SPACOA 9.95 75.45 11.2 8664

Greedy-Select 10.4 9.2 11.5 150

Greedy-Prune-Select10.3 46.3 11.4 1919

ILP 9.5 3913.8 – –

The SPACOA heuristic performs marginally better than our heuristics on
these examples. The primary reason for this is that the difference between opti-
mal solution and that computed by Dijkstra’s algorithm is really small (about
2), and the SPACOA heuristic typically overcomes this difference in just one
iteration by trying all colors and picking the one that gives the best path. The
cases in which SPACOA heuristic struggles to find good paths is when it has
to try multiple iterations to bridge the gap between Dijkstra’s algorithm and
optimal, and gets stuck in a local minima. That is less likely to happen when
the difference between optimal and Dijkstra value is small.

5 Conclusion

In this paper, we made progress on the min-color path problem by showing
that under plausible complexity conjectures, the problem is hard to approx-
imate within a factor O(n1/8) of optimum. We also provide a simple O(n2/3)-
approximation algorithm and designed heuristic algorithms that seem to perform
quite well in practice. A natural open question is to see if these bounds can be
improved further. The log-density framework has been useful in designing tight
approximation bounds for related problems such as minimum k-union [6] and
densest k-subgraph [3]. It would be interesting to see if those techniques can be
applied to min-color path.

50 N. Kumar

References

1. Bandyapadhyay, S., Kumar, N., Suri, S., Varadarajan, K.: Improved approximation
bounds for the minimum constraint removal problem. In: APPROX 2018. LIPIcs,
vol. 116, pp. 2:1–2:19 (2018)

2. Bereg, S., Kirkpatrick, D.: Approximating barrier resilience in wireless sensor net-
works. In: Dolev, S. (ed.) ALGOSENSORS 2009. LNCS, vol. 5804, pp. 29–40.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-05434-1 5

3. Bhaskara, A., Charikar, M., Chlamtac, E., Feige, U., Vijayaraghavan, A.: Detecting
high log-densities: an O(n1/4) approximation for densest k-subgraph. In: Proceed-
ings of the 42nd STOC, pp. 201–210. ACM (2010)

4. Chimani, M., Gutwenger, C.: The Open Graph Drawing Framework (OGDF)
5. Chlamtac, E., Dinitz, M., Krauthgamer, R.: Everywhere-sparse spanners via dense

subgraphs. In: Proceedings of the 53rd FOCS, pp. 758–767 (2012)
6. Chlamtáč, E., Dinitz, M., Makarychev, Y.: Minimizing the union: tight approxima-

tions for small set bipartite vertex expansion. In: Proceedings of the 28th SODA,
pp. 881–899 (2017)

7. Chlamtáč, E., Manurangsi, P., Moshkovitz, D., Vijayaraghavan, A.: Approximation
algorithms for label cover and the log-density threshold. In: Proceedings of the 28th
SODA, pp. 900–919 (2017)

8. Fellows, M.R., Guo, J., Kanj, I.: The parameterized complexity of some minimum
label problems. J. Comput. Syst. Sci. 76(8), 727–740 (2010)

9. Goel, G., Karande, C., Tripathi, P., Wang, L.: Approximability of combinatorial
problems with multi-agent submodular cost functions. In: Proceedings of the 50th
FOCS, pp. 755–764 (2009)

10. Gouveia, L., Simonetti, L., Uchoa, E.: Modeling hop-constrained and diameter-
constrained minimum spanning tree problems as steiner tree problems over layered
graphs. Math. Program. 128(1–2), 123–148 (2011)

11. Hassin, R., Monnot, J., Segev, D.: Approximation algorithms and hardness results
for labeled connectivity problems. J. Comb. Optim. 14(4), 437–453 (2007)

12. Hauser, K.: The minimum constraint removal problem with three robotics applica-
tions. Int. J. Robot. Res. 33(1), 5–17 (2014)

13. Huson, M.L., Sen, A.: Broadcast scheduling algorithms for radio networks. In:
Proceedings of MILCOM 1995, vol. 2, pp. 647–651. IEEE (1995)

14. Jha, S., Sheyner, O., Wing, J.: Two formal analyses of attack graphs. In: Computer
Security Foundations Workshop, pp. 49–63. IEEE (2002)

15. Knight, S., Nguyen, H.X., Falkner, N., Bowden, R., Roughan, M.: The internet
topology zoo. IEEE J. Sel. Areas Commun. 29(9), 1765–1775 (2011)

16. Krumke, S.O., Wirth, H.C.: On the minimum label spanning tree problem. Inf.
Process. Lett. 66(2), 81–85 (1998)

17. Kumar, N.: Minimum color path experiments: source code and datasets (2019).
https://doi.org/10.5281/zenodo.3382340

18. Leskovec, J., Lang, K.J., Dasgupta, A., Mahoney, M.W.: Community structure in
large networks: natural cluster sizes and the absence of large well-defined clusters.
Internet Math. 6(1), 29–123 (2009)

19. Yuan, S., Varma, S., Jue, J.P.: Minimum-color path problems for reliability in mesh
networks. In: INFOCOM 2005, vol. 4, pp. 2658–2669 (2005)

https://doi.org/10.1007/978-3-642-05434-1_5
https://doi.org/10.5281/zenodo.3382340

Student Course Allocation
with Constraints

Akshay Utture2(B), Vedant Somani1, Prem Krishnaa1, and Meghana Nasre1

1 Indian Institute of Technology Madras, Chennai, India
{vedant,jpk,meghana}@cse.iitm.ac.in

2 University of California, Los Angeles, USA
akshayutture@ucla.edu

Abstract. Real-world matching scenarios, like the matching of students
to courses in a university setting, involve complex downward-feasible
constraints like credit limits, time-slot constraints for courses, basket
constraints (say, at most one humanities elective for a student), in addi-
tion to the preferences of students over courses and vice versa, and class
capacities. We model this problem as a many-to-many bipartite match-
ing problem where both students and courses specify preferences over
each other and students have a set of downward-feasible constraints.
We propose an Iterative Algorithm Framework that uses a many-to-one
matching algorithm and outputs a many-to-many matching that satis-
fies all the constraints. We prove that the output of such an algorithm is
Pareto-optimal from the student-side if the many-to-one algorithm used
is Pareto-optimal from the student side. For a given matching, we pro-
pose a new metric called the Mean Effective Average Rank (MEAR),
which quantifies the goodness of allotment from the side of the students
or the courses. We empirically evaluate two many-to-one matching algo-
rithms with synthetic data modeled on real-world instances and present
the evaluation of these two algorithms on different metrics including
MEAR scores, matching size and number of unstable pairs.

1 Introduction

Consider an academic institution where each semester students choose elective
courses to credit in order to meet the credit requirements. Each student has a
fixed number of credits that need to be satisfied by crediting electives. Each
course has a credit associated with it and a capacity denoting the maximum
number of students it can accommodate. Both students and courses have a strict
preference ordering over a subset of elements from the other set. In addition, it
is common to have constraints like a student wanting to be allotted at most
one course from a basket of courses, or a student not wanting to be allotted
to time-conflicting courses. The goal is to compute an optimal assignment of
elective courses to students satisfying the curricular restrictions while respecting
the course capacities and satisfying the credit requirements.

A. Utture—Part of this work was done when the author was a Dual Degree student at
the Indian Institute of Technology Madras.

c© Springer Nature Switzerland AG 2019
I. Kotsireas et al. (Eds.): SEA2 2019, LNCS 11544, pp. 51–68, 2019.
https://doi.org/10.1007/978-3-030-34029-2_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34029-2_4&domain=pdf
https://doi.org/10.1007/978-3-030-34029-2_4

52 A. Utture et al.

We model the course allocation problem as a many-to-many bipartite match-
ing problem with two sided preferences where one side of the bipartition
allows downward feasible constraints (as described by [7]) and the other side
of the bipartition has capacity constraints. Formally, we have a bipartite graph
G = (S ∪ C,E) where S represents the set of students, C represents the set of
courses and an edge (s, c) ∈ E denotes that the course c can be assigned to
the student s. Each course c ∈ C has an integer valued capacity represented
by q(c). Each vertex x ∈ S ∪ C ranks its neighbours in G in a strict order and
this ordering is called the preference list of the vertex x. Each student s defines
a set of downward feasible constraints X(s) over the neighbours in G. A set of
downward feasible constraints is one in which if C ⊂ C ′, and C ′ is feasible, then
C must be feasible. In other words, if a set of courses is feasible for a student,
any subset of those courses should also be feasible. There are many types of
constraints expressible as downward feasible constraints.

1. Student Capacity: A student may have an upper limit on the number of
courses to take in a semester.

2. Student Credits: A student may specify the maximum number of credits to
be allotted. This assumes that each course has a variable number of credits.

3. Time slots: Each course runs in a particular time slot, and courses with
overlapping time slots cannot be assigned to a student.

4. Curricular constraints: A student may specify an upper limit on a subset
of courses that are of interest to him. This upper limit denotes the maximum
number of courses that can be assigned to him from the subset. For instance,
in a semester, a student may want to be assigned at most two Humanities
electives amongst the multiple Humanities electives in his preference list.

There exist natural examples of constraints like minimum number of students
required in a course (for the course to be operational) or pre-requisites on courses
which cannot be expressed as downward feasible constraints.

Figure 1 shows an example instance of the student course allocation problem
with downward feasible constraints. Here there are three students and three
courses and the preference lists of the participants can be read from the figure.
We assume all courses have uniform credits and therefore students specify a
maximum capacity on the number of desired courses. Each student has a capacity
of two. Each course can accommodate at most two students. Finally, for each
student, there is a constraint that the student can be allotted at most one of the
two courses {c2, c3}. Such a constraint could be imposed if the courses c2 and
c3 run in overlapping time-slots. The student s3 has a constraint that he can
be allotted at most one of {c1, c3}. All these constraints (tabulated in Fig. 1),
including the capacity constraints, are downward feasible constraints.

A matching M in a student course allocation setting is a subset of the edges of
the underlying bipartite graph; matching M is said to be feasible if M respects all
downward feasible constraints specified. As seen in Fig. 1 an instance may admit
multiple feasible matchings. This motivates the need for a notion of optimality
in order to select a matching from the set of all feasible matchings.

Student Course Allocation with Constraints 53

Fig. 1. Each student si, for i = 1, 2, 3 prefers c1 followed by c2 followed by c3.
Each course has the same preference order. Matchings M1 = {(s1, c1), (s2, c1), (s1, c2),
(s2, c2), (s3, c3)} and M2 = {(s1, c1), (s2, c1), (s3, c2), (s1, c2), (s2, c3)} are both feasible
in this instance.

To the best of our knowledge, this problem setting has not be considered
in the literature; settings with a subset of these constraints have been studied
before. Cechlarova et al. [7] study a similar problem for one-sided preferences
where they consider computing pareto-optimal matchings (defined below). In
the two sided preference list model, laminar classifications [15,19] have been
studied which can be defined as follows. Each vertex x ∈ S ∪ C specifies a
family of sets called classes over the neighbours of x in G. A class J i

x is allowed
to have an upper quota q+(J i

x) and a lower quota q−(J i
x) which specifies the

maximum and minimum number of vertices from J i
x that need to be matched to

x in any feasible matching. The family of classes for a vertex x is laminar if for
any two classes of a vertex either one is contained inside the other or they are
disjoint. Note that if there are no lower quotas associated with classes, then a
laminar classification is a special case of downward feasibility. In fact, downward
feasibility allows for non-laminar classes and course credits but as noted earlier,
cannot capture lower quotas. Huang [19] and later Fleiner and Kamiyama [15]
extended the notion of stability for laminar classifications. Their results show
that in a many-to-many bipartite matching problem with two sided preferences
and two sided laminar classifications with upper and lower quotas, it is possible
to decide in polynomial time whether there exists a stable matching. In contrast,
if classifications are non-laminar, even without lower quotas, it is NP-Complete
to decide whether a stable matching exists [19]. Below we discuss two well-studied
notions of optimality.

Stability: In the presence of two sided preferences, stability is the de-facto
notion of optimality. We recall the definition of stability as in [15] which is
applicable to our setting as well. Let M be a feasible matching in an instance
G of the student course allocation problem with downward feasible constraints.
For a vertex u ∈ S ∪ C let M(u) denote the set of partners assigned to u in M .
An edge (s, c) ∈ E \ M is blocking w.r.t. M if both the conditions below hold:

– Either M(s) ∪ {c} is feasible for s or there exists a c′ ∈ M(s) such that s
prefers c over c′ and (M(s) \ {c′}) ∪ {c} is feasible for s, and

– Either M(c) ∪ {s} is feasible for c or there exists an s′ ∈ M(c) such that c
prefers s over s′ and (M(c) \ {s′}) ∪ {s} is feasible for c.

A matching M is stable if no pair (s, c) ∈ E \ M blocks M . It is easy to verify
that the matching M1 in Fig. 1 is stable whereas the matching M2 is unstable
since the pair (s2, c2) blocks M2.

54 A. Utture et al.

Student Pareto-optimality: We now recall the definition of pareto-optimality
from [7] which we consider for the student side. A student s prefers a set M(s)
over another set M ′(s) if M(s) is lexicographically better than M ′(s); we denote
this as M(s) >s M

′(s). A matching M dominates another matching M ′ if there
exists at least one student s such that M(s) >s M ′(s) and for all students
s′ ∈ S \ s, we have M(s′) ≥′

s M
′(s′). A matching M is pareto-optimal if there is

no matching M ′ that dominates M . Since we consider the domination only from
the student side, we call this student pareto-optimality. However, since there is
no ambiguity, we will simply denote it as pareto-optimal. For the example in
Fig. 1, both M1 and M2 are pareto-optimal.

We now contrast these two notions via a simple example as shown in Fig. 2.
There is only one student and three course and the credits of the student and
courses as well as preferences of the student can be read from the figure. There
are two feasible matchings, Ms and Mp, both of which are stable, yet only Mp is
pareto-optimal. Note that Mp matches s to its top choice and satisfies the credit
requirements. The example illustrates that in the presence of credits, stability
may not be the most appealing notion of optimality. However, the only Pareto-
optimal matching is Mp is more suitable in this scenario.

Fig. 2. Stability versus pareto-optimality. Ms = {(s,c2), (s, c3)}, Mp = {(s, c1)}.

Our Contributions

– We provide an efficient algorithm for the many-to-many matching problem
with two sided preferences, downward feasible constraints on one side, and
capacity constraints on the other. Our framework can be easily extended to
allow downward feasible constraints on both sides (Sect. 2).

– We prove that if the many-to-one matching algorithm used in the framework
is student-pareto-optimal then our output for the many-to-many matching
problem is also student pareto-optimal (Sect. 3).

– We introduce a new evaluation metric Mean Effective Average Rank (MEAR)
score, a variation of the average rank metric, to quantify the quality of the
matchings produced in a such a problem setting (Sect. 4).

– We empirically evaluate the well-known Gale-Shapley [16] stable matching
algorithm and First Preference Allotment algorithm in the Iterative Algo-
rithm Framework, using synthetic data-sets modeled on real-world instances,
on different metrics including MEAR scores, matching size and number of
unstable pairs (Sect. 5).

Related Work: The closest to our work is the work by Cechlarova et al. [7]
where they consider the many-to-many matchings under downward feasible con-
straints. They give a characterization and an algorithm for Pareto-optimal many-
to-many matchings under one sided preferences Variants of this problem deal

Student Course Allocation with Constraints 55

with constraints like course prerequisites [6], lower-quotas for courses [8], or ties
in the preference list [5]. Our problem setting deals with a similar setup but
allows two-sided preferences.

The Gale and Shapley algorithm used by us is a classical algorithm to com-
pute stable matchings in the well-studied Hospital Residents (HR) problem [16].
The HR problem is a special case of our problem with no downward feasible
constraints, and a unit capacity for every student. Variants of the HR problem
with constraints include allowing lower quotas [18], class constraints [15,19] and
exchange-stability [9,21]. Other variations allow multiple partners [3,27], cou-
ples [25], colleague preferences [11] and ties [20,22–24]. The algorithms for the
models considered above have strong mathematical guarantees, unlike our solu-
tion. However, the constraints studied do not capture all the complexities of the
course allocation problem considered in our setting.

An empirical analysis of matching algorithms has been done in the context
of the National Residency Matching Program in the U.S. [1,12–14,29,31], and
its counter-part in the U.K. [2,4,30]. Manlove et al. [28] introduce a constraint
programming model to solve the Hospital Residents problem with couples and
justify its quality by its empirically obtained low execution time and number of
blocking pairs. Krishnapriya et al. [26] empirically study the quality of the match-
ings produced by a popular matching on metrics of practical importance, like
size, number of blocking pairs and number of blocking residents. Giannakopoulos
et al. [17] give a heuristic algorithm for the NP-Hard equitable stable marriage
problem, and empirically show that it outputs high-quality matchings. Diebold
et al. [10] conduct a field experiment to understand the benefits of the efficiency-
adjusted deferred acceptance mechanism as compared to the Gale-Shapley stu-
dent optimal stable marriage mechanism. In this paper, we use a similar experi-
mental approach to justify the practical importance of our proposed algorithm.

2 Algorithm Description

In this section, we present a framework called the Iterative Algorithm Frame-
work (IAF for short) into which one can insert any many-to-one matching algo-
rithm with two-sided preferences, and get a concrete algorithm which solves the
many-to-many student-course matching problem with two-sided preferences and
downward feasible constraints. As an example, we show two such many-to-one
matching algorithms, namely the Gale-Shapley algorithm [16] and the First Pref-
erence Allotment. Finally, we suggest a simple extension to deal with downward
feasible constraints on both sides of the bipartition.

2.1 Iterative Algorithm Framework

Algorithm. 1 gives the pseudo-code for the Iterative Algorithm Framework
(IAF). As input, we require the set of students (S), the set of courses (C), the set
of constraints X(s) which determines what subset of courses from C is feasible
for student s, the preference list of each student s (P (s)), the preference list of
each course c (P (c)), and the capacity of each course c (q(c)). The framework
outputs for each student s the set of allotted courses (M(s)).

56 A. Utture et al.

The residual capacity of a course (denoted by r(c)) is the remaining capacity
of a course at some point in the algorithm. It is initialized to its total capacity
q(c). Initialize the set of allotted courses M(s) of each student s to be the
empty set. We also maintain for every student s a reduced preference list (R(s))
which is intialized to the original preference list (P (s)). During the course of the
algorithm the reduced preference list contains the set of courses in the preference
list which have not yet been removed by the algorithm.

The framework is iterative and as long as some student has a non-empty
reduced preference list, it invokes the manyToOneMatch function. The many-
ToOneMatch function is invoked with the capacities of the courses being set to
the residual capacities. The manyToOneMatch function can be substituted with
any many-to-one matching algorithm with two-sided preferences like the Gale-
Shapley algorithm. An important characteristic of the IAF is that the allotments
made at the end of the manyToOneMatch function are frozen, and matched
student-course pairs cannot get unmatched in a future iteration. This character-
istic is essential to ensure the termination of the algorithm. After the execution
of the manyToOneMatch function, the residual capacities of the courses are
recalculated based on the allotment in manyToOneMatch.

In the remaining part of the loop the algorithm removes preferences which can
no longer be matched given the current set of allotted courses. If the course c was
allotted to student s in this iteration, we remove c from the preference list of s.
Additionally, we remove courses with no residual capacity, because all allotments
up to this point are frozen and none of the residual capacity is going to free up
in a future iteration. In order to maintain feasibility in the future iterations, we
also need to remove all courses on a student’s preference list which are infeasible
with the current partial allotment of courses. In this part, it is implicit that if a
course c is removed from the preference list of student s, even s is removed from
the preference list of c.

2.2 Gale-Shapley Algorithm in the Iterative Algorithm Framework

The many-to-one Gale-Shapley algorithm [16] is one option for the manyToOne-
Match function in Algorithm. 1. It works in a series of rounds until each student
has exhausted his preference list. In each round, every unallotted student applies
to his most preferred course that he has not applied to before, and if the course
is either not full or prefers this student to its least preferred allotted student,
the course will provisionally accept this student (and reject its least preferred
allotted student in case it was full). Consider applying the Gale-Shapley algo-
rithm with the IAF to the example shown in Fig. 1. Table 1 gives the partial
allotments made after each iteration. We note that the allotments made in the
first iteration are frozen and cannot be modified in the next iteration.

In this example, the student-optimal stable matching returned by the Gale-
Shapley algorithm is pareto-optimal among the students it allots. However, this
is not always true. Figure 3 shows an example where the student-optimal sta-
ble matching is {(s1, c2), (s3, c1), (s4, c1)}. This is not student pareto-optimal

Student Course Allocation with Constraints 57

Data: S = set of students, C = set of courses, X(s) = constraints for student s,
P (s) = preference list for student s, P (c) = preference list for each
course c, q(c) = capacity for each course c

Result: For each student s, M(s) = set of allotted courses
1 Let r(c) = q(c), ∀c ∈ C ;
2 Let M(s) = ∅, ∀s ∈ S ;
3 Let R(s) = P (s), ∀s ∈ S ;
4 Let R(c) = P (c), ∀c ∈ C ;
5 while ∃s ∈ S,R(s) �= ∅ do
6 Invoke manyToOneMatch() using the residual capacities ;
7 Freeze every allotment (s, c) made in manyToOneMatch() ;

/* (s,c) cannot be unmatched in a future iteration */

8 Calculate the new r(c), ∀c ∈ C ;
9 foreach student s ∈ S,R(s) �= ∅ do

10 c = course allotted to s in manyToOneMatch() of current iteration ;
11 Remove c from R(s) and s from R(c);
12 From R(s) remove every c′ such that r(c′) = 0 ;

/* Also remove corresponding s from R(c′) */

13 From R(s) remove every c′ such that M(s) ∪ {c′} is not feasible
according to X(s) ;
/* Also remove corresponding s from R(c′) */

14 end

15 end
Algorithm 1: Iterative algorithm framework

Table 1. Gale-Shapley+IAF algorithm for the example in Fig. 1

Iteration Allotment in current Iteration Partial allotment so far

1 {(s1, c1), (s2, c1), (s3, c2)} {(s1, c1), (s2, c1), (s3, c2)}
2 {(s1, c2), (s2, c3)} {(s1, c1), (s2, c1), (s3, c2), (s1, c2), (s2, c3)}

because (s1, s3) can exchange their partners and both be better off. We discuss
why we might still use the Gale-Shapley algorithm with the IAF in Sect. 5.

2.3 First Preference Allotment in the Iterative Algorithm
Framework

Another option for the manyToOneMatch function in Algorithm. 1 is the First
Preference Allotment. The First Preference Allotment is a simple many-to-one
allotment, where each student is temporarily allotted to the first course on his
or her preference list. If a course c, with capacity q(c) is oversubscribed by k (i.e.
q(c) + k students are temporarily allotted to it), c rejects its k least preferred
students. The algorithm terminates here, and the students who get rejected from
courses which are oversubscribed do not apply again to other courses on their
preference list. Allowing unallotted students to apply to the remaining courses
on their preference list will result in a student-optimal stable marriage which is
not pareto-optimal among the students it allots. The First Preference Allotment
algorithm, on the other hand, is pareto-optimal among the subset of students

58 A. Utture et al.

Fig. 3. Student-optimal stable matching is not pareto-optimal for students

it matches (even though not pareto-optimal among the entire student set), and
hence results in a pareto-optimal matching when inserted into the IAF.

Consider applying this algorithm to the example in Fig. 1. Table. 2 gives
the partial allotments after each iteration of the First Preference Allotment
algorithm when used with the IAF. In the first iteration, all students apply to
their top choice course (c1 for all), which accepts {s1, s2} and rejects its worst
preferred student (s3). The allotment so far is frozen, and in the next iteration,
all students again apply to their next top choice course (c2 for all). Again, since
c2 only has a capacity of 2, it accepts {s1, s2} and rejects its worst preferred
student (s3). In the final iteration, s3 is the only student left with any capacity,
and it applies to its next top choice course (c3) and gets accepted.

Table 2. First Preference Allotment+IAF algorithm for the example in Fig. 1

Iteration Allotment in current Iteration Partial allotment so far

1 {(s1, c1), (s2, c1)} {(s1, c1), (s2, c1)}
2 {(s1, c2), (s2, c2)} {(s1, c1), (s2, c1), (s1, c2), (s2, c2)}
3 {(s3, c3)} {(s1, c1), (s2, c1), (s1, c2), (s2, c2), (s3, c3)}

2.4 Extending the Iterative Algorithm Framework to additionally
allow downward feasible constraints for courses

We can extend the IAF for the case where both students and courses express
downward feasible constraints over each other. The manyToOneMatch method
now needs a one-to-one matching algorithm, and line 13 in Algorithm 1 needs to
additionally remove preferences which are infeasible for the course constraints.
The proof of student pareto-optimality is almost identical to the one shown in
Sect. 3.2 for Algorithm 1, and is hence skipped for brevity. Also, since the problem
is now symmetric from the student and course sides, we can similarly show course
pareto-optimality if the manyToOneMatch method is pareto-optimal among the
courses it allots.

3 Theoretical Guarantees

In this section, we first characterize a pareto-optimal matching, and then prove
that if the many-to-one matching used in the manyToOneMatch method of the

Student Course Allocation with Constraints 59

Iterative Algorithm Framework is pareto-optimal among the subset of students
it allots, then the final many-to-many matching given by the Iterative Algo-
rithm Framework is also pareto-optimal. Note that the condition of requiring
the manyToOneMatch method to be pareto-optimal among the subset of stu-
dents allotted is weaker than requiring it to be pareto-optimal among the entire
set of students, and hence gives us more flexibility in picking a many-to-one
matching.

3.1 Characterization of Pareto Optimality in the Many-to-Many
Setting

Cechlarova et al. [7] prove that a matching is pareto-optimal if and only if it is
Maximal, Trade-In Free, and Coalition Free. These terms are defined as follows.

1. Maximal: M is maximal if no student-course pair (s, c) exists such that r(c) >
0, and M(s) ∪ {c} is feasible.

2. Trade-In Free: M is trade-in free if no student-course pair (s, c) exists such
that r(c) > 0, and M(s) \ C ′ ∪ {c} is feasible, where s prefers c over every
c1 ∈ C ′. (i.e. s can feasibly trade the lower preferred C ′ for c)

3. Coalition: M is coalition free if there exists no set of students S′ ⊆ S who can
exchange courses with one another, (and drop some lower preferred courses
if needed to maintain feasibility) to get a new matching M ′, in which lexico-
graphically M ′(s) > M(s),∀s ∈ S′

3.2 Proof of Pareto Optimality from the Student Side

To prove pareto-optimality, we show that the allotment is Maximal, Trade-In
Free and Coalition Free. Theorems in this section use the assumption that the
manyToOneMatch method is pareto-optimal among the subset of students it
allotted a course.

Lemma 1. The matching given by Algorithm 1 is Maximal.

Proof. Let (s, c) be a student-course pair violating maximality. Since Algorithm 1
terminates with R(s) = ∅, (s, c) /∈ R(s). Since a student-course pair only gets
removed from R(s) on Lines 12 and 13, (s, c) must satisfy at least one of these: i)
r(c) = 0 or ii) M(s)∪{c} is not feasible. Hence (s, c) cannot violate maximality.

Lemma 2. The matching given by Algorithm 1 is Trade-in Free.

Proof. Assume that the allotment is not Trade-in free. Let s be a student who
wants to trade-in the set of courses C ′ for the course c, which s prefers over
every course in C ′. By the definition of trading-in stated above, r(c) > 0 at
the end of the algorithm. r(c) > 0 holds throughout the algorithm because r(c)
never increases after an iteration. Consider the start of the first iteration where
some c1 ∈ C ′ was allotted to s. By the definition of trading-in, c is feasible with
M(s) \ C ′, and hence should have been feasible at this point. The allotment of
(s, c1) instead of (s, c) is a contradiction to the fact that the manyToOneMatch
method is pareto-optimal among the students it allots. Hence the assumption
that the allotment is not Trade-in free must be false.

60 A. Utture et al.

Lemma 3. The matching given by Algorithm 1 is Coalition Free.

Proof. Let all arithmetic here be modulo n. Assume that K = ((s1, c1), . . . ,
(sn, cn)) is a coalition in M . Consider the first iteration where one of the coali-
tion pairs was allotted. The entire coalition could not have been alotted in this
iteration, because manyToOneMatch will not violate pareto-optimality. Hence
∃(sk, ck) ∈ K such that it was allotted in this iteration, but (sk+1, ck+1) was not.

r(ck+1) > 0 throughout this iteration because r(c) does not increase for all
c, and (sk+1, ck+1) got matched in a later iteration. During the current itera-
tion, sk selected ck instead of the more preferred ck+1, even though r(ck+1) > 0
throughout this iteration. This contradicts the condition that manyToOneMatch
is pareto-optimal among the students it allots in an iteration. Hence the assump-
tion that a coalition exists must be false.

3.3 Time Complexity

Let n be the total number of students and courses, and m be the sum of the
sizes of the preference lists. The outer while loop in Algorithm. 1 runs for O(m)
iterations in the worst case because at least 1 allotment happens in each itera-
tion. The inner foreach loop runs through each student’s preference list a con-
stant number of times, and hence has complexity O(m) (assuming that the
feasibility checking of the constraints for a preference list of length l is O(l)).
The complexity of the manyToOneMatch method depends on the algorithm
inserted. Hence, the overall complexity of the Iterative Algorithm Framework is
O(m) ∗ (O(m) + Complexity(manyToOneMatch)).

However, for some many-to-one algorithms like the Gale-Shapley, we can
obtain a tighter bound on the number of iterations of the outer while loop. Each
iteration of the Gale-Shapley algorithm runs in O(m) time and allots each stu-
dent at least one course on his or her preference list (unless all the courses on
the preference list are full), and hence the number of while loop iterations is
O(n), bringing the total complexity to O(mn). The complexity of the many-
ToOneMatch method with the First Preference Allotment algorithm is O(m),
since each student only applies to his top choice course and each course checks
its preference list once, resulting in an overall complexity of O(m2)

4 Evaluation Metrics

In this section we look at some evaluation metrics used to quantify the quality
of a matching produced in the presence of downward feasible constraints.

4.1 Mean Effective Average Rank

We define a new metric called Mean Effective Average Rank (MEAR for short)
for quantifying the goodness of a matching in this problem setting. We discuss the
MEAR in the context of students (shortened to MEAR-S), but it is applicable for

Student Course Allocation with Constraints 61

Fig. 4. Example for effective average rank calculation

courses as well (shortened to MEAR-C). MEAR is a mean of the Effective Aver-
age Rank (EAR) over all the students. EAR is a variation of the per student aver-
age rank and is defined in Eq. 2. The definition uses the Reduced Rank (see Eq. 1)
which is the actual rank in the preference list, minus the number of courses above
this preference which were removed due to some infeasibility with a higher ranked
course. The intuition behind using the Reduced Ranks in the definition of EAR is
that if a student has expressed the constraint that he be allotted only one of the
first ten courses on his preference list, and he gets allotted his first and eleventh
choice, then the sum of ranks is (1+10 = 11) 11, but the sum of Reduced Ranks
(1 + 2 = 3) is 3, which is a more accurate representation of the allotment.

ReducedRankM(s)(c) = Rank(c) − |{c′ : c′ ∈ T (s), c′ >s c}| (1)

EAR(s) =

∑
c∈M(s) ReducedRanks(c)

|M(s)|2 (2)

Here M(s) is the set of courses allotted to s, T (s) is the set of courses removed
due to infeasibility with higher ranked courses in M(s), and the notation c′ >s c
means that student s prefers course c′ over c.

Average Rank uses |M(s)| in the denominator, but Eq. 2 uses its square
instead, for normalization. For a student allotted her first 5 choices, the sum of
allotted Reduced Ranks is (1 + 2 + 3 + 4 + 5 = 15). Dividing by the number
of courses, gives us (15/5 = 3), whereas a student allotted only his second
preference gets an average of 2. An Average Rank of 3 sounds like a poor outcome
for the student, but the student got all his top 5 choices. Hence dividing by
|M(s)|2 gives us (15/25 = 0.6) which represents the quality of the allotment
more accurately.

Consider the example in Fig. 4, to understand the EAR calculation for stu-
dent s. The table lists the preferences, and the constraint is that only one of
{c1, c2} can be allotted to s. M(s) = {c1, c4}. The Reduced Rank of c1 is 1, and
since c2 got removed because of the allotment to c1, the reduced ranks of c3,
c4 and c5 are 2, 3 and 4 respectively. Finally, the EAR is the sum of Reduced
Ranks of M(s), which is (1 + 3) divided by |M(s)|2 or (22).

Some properties of the MEAR-score are as follows. A lower EAR score implies
a better allotment. The lowest EAR value (and MEAR value) possible is 0.5. If
the top k courses are allotted, EAR = (k ∗ (k+1))/2k2, which approaches 0.5 as
k approaches infinity. EAR favours larger matches because of the square term in

62 A. Utture et al.

the denominator. MEAR favours fairer allotments because an average is taken
over all students irrespective of the number of courses allotted to each student.
This is exemplified in Fig. 1, where M1 and M2 have a similar total sum of ranks
across all students, but M2 gets a lower MEAR score (1.25 instead of 1.5).

4.2 Other Metrics

Even though MEAR gives a single number to assess the quality of a matching,
there are other metrics of interest like the allotment size and number of unstable
pairs. Another possible metric is the exchange blocking pairs (studied in a similar
context by [21] and [9]), defined as the number of student pairs who can exchange
one of their allotted courses and both be better off. By definition, a pareto-
optimal matching will not have exchange blocking pairs, but if a non pareto-
optimal many-to-one matching is used with the Iterative Algorithm Framework,
this becomes an interesting metric. Exchange-blocking pairs and unstable-pairs
are important metrics because they quantify the dissatisfaction among students.
For example, two students forming an exchange-blocking pair will want to swap
their courses because they can both be better off.

5 Experimental Results

In this section we empirically evaluate the quality of the matchings produced
by the Gale-Shapley algorithm and First Preference Allotment algorithms in the
manyToOneMatch method of the Iterative Algorithm Framework (shortened
as GS+IAF and FP+IAF respectively) and compare these results against a
Maximum Cardinality Matching (shortened as MCM), which serves as a baseline.
Other baselines are not available since we are not aware of alternative algorithms
in this setting. Using an input generator (a modified version of the one used by
[26]), we first generate synthetic-data which models common downward feasible
constraints in the student-course matching scenario, and then study the effect of
varying parameters like the instance size, competition for courses and preference
list lengths. The matching sizes are reported as a fraction of the MCM size
and the unstable pairs are reported as a fraction of the number of unallotted
pairs. All numbers reported in this section are averaged over 10 instances. All
source code and instructions on reproducing the experiments are available at
https://github.com/ved5288/student-course-allocation-with-constraints.

5.1 Input Data Generator

We generate two kinds of data sets: the Shuffle Dataset and Master Dataset.
The generation of these datasets is identical, except that the Shuffle dataset rep-
resents one extreme of the possible skew in preference ordering where preference
orders are fully random, and the Master dataset represents the other extreme
where preference orders are identical. In the Master dataset, there exists a univer-
sal ordering among courses, and all student preference lists respect this relative
ordering among the courses in their preference list. All course preference lists
use a similar universal ordering of students.

https://github.com/ved5288/student-course-allocation-with-constraints

Student Course Allocation with Constraints 63

The Shuffle Dataset is generated as follows. The number of students, courses
and the range of preference list sizes (default is [3,12]) are taken as input. For
each student, the set of acceptable courses is chosen according to a geometric
distribution (with parameter 0.1) among the courses. The preference ordering is
random. The credits of a course and the student credit limit follow geometric dis-
tributions (with parameter 0.1) among the values (5, 10, 15, 20) and (40, 50, 60,
70) respectively. The average capacity of a course is adjusted so that the number
of seats offered by courses is 1.5× the total demand from students. A set of uni-
versal class constraints across all students mimics the type of constraint where
no student can take time-overlapping courses. There are 20 such constraints, and
in each of them, a student can pick at most k1 (random integer in [1,3]) courses
from a set of (ncourses/20) courses. Individual class constraints (unique to each
student) mimic the constraint of a student wanting at most p1 courses from a
set of p2 courses (eg. a student wants at most 2 out of the 7 humanities courses
on his/her preference list), where p2 is a random integer from [2, preference list
size] and p1 is a random integer from [1,p2 − 1]. The number of such constraints
per student is a random integer from [0, preference list size]. The values used for
the generator are chosen to mimic the typical values in a university setting.

5.2 Effect of Varying Instance Size

Figure 5 shows the effect of varying the number of students and courses on
MEAR-S for GS+IAF, FP+IAF and MCM. On the Shuffle Dataset, GS+IAF
(mean = 0.79) and FP+IAF (mean = 0.79) perform similarly, and both clearly
outperform the MCM (mean = 1.42). On the Master Dataset, the GS+IAF
(mean = 1.38) performs slightly better FP+IAF (mean = 1.52), which in turn
performs better than the MCM (mean = 1.83). Increasing the size of the match-
ing does not affect this trend on either data set. Tables 3 and 4 show the effect
of varying instance size on other parameters for the two datasets. GS+IAF
and FP+IAF give similar scores on all metrics. The GS+IAF, however, gives a
few exchange-blocking pairs because the Gale-Shapley algorithm is not pareto-
optimal among the students it allots. Both IAF algorithms outperform MCM in
the Unstable Pairs and Exchange Blocking Pairs (almost 0 for both IAF algo-
rithms) by a huge margin, but do slightly worse on MEAR-C and, as expected,
the matching size. The MEAR-C is higher because the GS+IAF and FP+IAF
algorithms are inherently biased towards the student side. It is impossible to get
an Exchange-blocking pair for any algorithm used on the Master Dataset, and
hence it is not shown in Table 4. Any 2 courses common to 2 student preference
lists will be listed in the same relative order, and exchanging them will leave
exactly 1 student worse off.

5.3 Effect of Increasing Competition

Figure 6 shows the effect of varying competition on the MEAR-S metric. The
number of students is varied, while the number of courses is kept constant at
250. On the Shuffle Dataset, FP+IAF (mean = 0.98) outperforms the GS+IAF

64 A. Utture et al.

(a) Shuffle Dataset (b) Master Dataset

Fig. 5. MEAR-S values for varying instance sizes (student-course ratio is 1:6)

Table 3. Effect of varying instance size for the Shuffle Dataset

Students MEAR-C Matching size Unstable-Pair Ratio Ex. Blocking Pairs

GS+I FP+I MCM GS+I FP+I MCM GS+I FP+I MCM GS+I FP+I MCM

1000 1.42 1.43 1.23 0.87 0.87 1.0 0.11 0.11 0.38 0.3 0 69.9

2000 1.39 1.40 1.23 0.87 0.87 1.0 0.10 0.10 0.39 0.6 0 70.9

4000 1.49 1.49 1.31 0.86 0.86 1.0 0.10 0.10 0.40 0.4 0 68.9

8000 1.39 1.40 1.21 0.87 0.87 1.0 0.10 0.10 0.38 0.1 0 50.8

16000 1.44 1.45 1.26 0.87 0.87 1.0 0.10 0.10 0.38 0 0 66.3

(mean = 1.17) on the larger inputs, and both clearly outperform the Maxi-
mum Cardinality Matching (mean = 1.92). On the Master Dataset, the FP+IAF
(mean = 2.17) performs slightly better than GS+IAF (mean = 2.19), which in
turn performs better than the MCM (mean = 2.69). Tables 5 and 6 show the
effect of varying student competition on other parameters for the two datasets.
With increasing competition, MCM deteriorates significantly on EAR-C and
Exchange-blocking pairs, and loses most of its advantage in matching size.
FP+IAF on the other hand scales well on almost all measures (including EAR-S)
and hence is the appropriate choice for a high-competition scenario.

5.4 Effect of Varying Preference List Sizes

Figure 7 shows the effect of varying preference list sizes on the MEAR-S met-
ric, on an input of 8000 students and 1333 courses. On the Shuffle Dataset,
GS+IAF (mean = 0.81) and FP+IAF (mean = 0.81) clearly outperform the
MCM (mean = 1.34). On the Master Dataset, the GS+IAF (mean = 1.33) per-
forms slightly better than FP+IAF (mean = 1.45), which in turn outperforms
the MCM (mean = 1.68). The observations here are qualitatively identical to
those obtained by varying the instance size (Sect. 5.2) (Tables 7 and 8).

Student Course Allocation with Constraints 65

Table 4. Effect of varying instance size for the Master Dataset

Students MEAR-C Matching size Unstable-Pair Ratio

GS+I FP+I MCM GS+I FP+I MCM GS+I FP+I MCM

1000 2.10 2.05 1.27 0.82 0.82 1.0 0.17 0.24 0.57

2000 1.99 1.97 1.17 0.84 0.84 1.0 0.14 0.20 0.56

4000 2.07 2.05 1.23 0.84 0.84 1.0 0.14 0.20 0.57

8000 2.04 2.04 1.24 0.84 0.84 1.0 0.15 0.21 0.57

16000 2.17 2.17 1.23 0.79 0.79 1.0 0.15 0.23 0.57

(a) Shuffle Dataset (b) Master Dataset

Fig. 6. MEAR-S values for varying competition for courses (by varying the number of
students while keeping the number of courses constant at 250)

Table 5. Effect of varying competition for the Shuffle Dataset

Students MEAR-C Matching size Unstable-Pair Ratio Ex. Blocking Pairs

GS+I FP+I MCM GS+I FP+I MCM GS+I FP+I MCM GS+I FP+I MCM

1000 1.40 1.40 1.27 0.90 0.90 1.0 0.02 0.02 0.34 0 0 66.5

2000 1.37 1.37 1.20 0.87 0.87 1.0 0.09 0.09 0.39 0 0 131.6

4000 1.43 1.46 1.41 0.85 0.84 1.0 0.24 0.24 0.53 6.7 0 321

8000 1.58 1.87 2.57 0.94 0.93 1.0 0.32 0.38 0.75 181.1 0 3598.2

16000 1.05 2.59 5.11 0.99 0.98 1.0 0.10 0.40 0.89 6287.4 0 5554.9

(a) Shuffle Dataset (b) Master Dataset

Fig. 7. MEAR-S values for varying student preference list sizes

66 A. Utture et al.

5.5 Discussion

From the preceding observations, we can conclude that GS+IAF and FP+IAF
give similar results on the Shuffle Dataset, but GS+IAF does better on the Mas-
ter Dataset. Even though it does not have a theoretical pareto-optimal guarantee,
GS+IAF gives a negligible number of exchange-blocking pairs. It also consistently
fares better on the Unstable Pairs metric because it avoids Unstable Pairs within
an iteration. Hence, these observations empirically justify the use of GS+IAF,
even though it may not have the same guarantees as FP+IAF. MCM on the other
hand clearly outputs inferior matchings for the Shuffle Dataset on all parameters
except size. Since all preference lists are similar in the Master Dataset, ignoring
preferences does not hurt much, and MCM fares decently. Note that the MCM
does not scale to larger instances because it is obtained by an ILP.

Table 6. Effect of varying competition on other metrics for the Master Dataset

Students MEAR-C Matching Size Unstable-Pair Ratio

GS+I FP+I MCM GS+I FP+I MCM GS+I FP+I MCM

1000 2.88 2.87 1.50 0.88 0.88 1.0 0.06 0.08 0.44

2000 2.39 2.44 1.28 0.84 0.85 1.0 0.13 0.19 0.56

4000 1.67 1.64 1.38 0.80 0.80 1.0 0.24 0.39 0.79

8000 1.90 2.00 2.56 0.91 0.91 1.0 0.25 0.54 0.90

16000 2.39 3.31 5.34 0.98 0.98 1.0 0.16 0.59 0.95

Table 7. Effect of varying student preference list sizes for the Shuffle Dataset

Length MEAR-C Matching Size Unstable-Pair Ratio Ex. Blocking Pairs

GS+I FP+I MCM GS+I FP+I MCM GS+I FP+I MCM GS+I FP+I MCM

3 0.97 0.98 0.89 0.93 0.93 1.00 0.08 0.08 0.34 0 0 2.5

5 1.14 1.15 1.01 0.90 0.90 1.00 0.11 0.11 0.43 0.2 0 20

7 1.34 1.34 1.17 0.87 0.87 1.00 0.12 0.12 0.43 0.5 0 53.6

9 1.44 1.46 1.23 0.86 0.84 1.00 0.11 0.12 0.41 0.1 0 81.3

Table 8. Effect of varying student preference list sizes for the Master Dataset

Length MEAR-C Matching Size Unstable-Pair Ratio

GS+I FP+I MCM GS+I FP+I MCM GS+I FP+I MCM

3 1.23 1.23 0.94 0.92 0.92 1.00 0.04 0.06 0.42

5 1.55 1.58 1.02 0.86 0.86 1.00 0.12 0.16 0.63

7 1.87 1.92 1.16 0.83 0.82 1.00 0.16 0.22 0.63

9 2.40 2.42 1.39 0.81 0.80 1.00 0.18 0.26 0.60

Student Course Allocation with Constraints 67

6 Conclusion

In this paper, we presented the Iterative Algorithm Framework to solve the
many-to-many matching problem with two-sided preferences and downward fea-
sible constraints. We proved that if the many-to-one manyToOneMatch sub-
routine is pareto-optimal among the students it allots, the framework outputs a
pareto-optimal matching satisfying all the constraints. To quantify the quality of
a matching, we introduced the Mean Effective Average Rank (MEAR) measure.
We showed that the Gale-Shapley and First Preference Allotment algorithms
used with the Iterative Algorithm Framework, get significantly higher student
MEAR-scores on two different synthetic datasets, and these results hold even
when the instance size, competition or preference list lengths are changed. The
Iterative Algorithm Framework algorithms also perform significantly better on
other metrics like the number of unstable pairs and exchange-blocking pairs.
In future, it would be interesting to study constraints which are not downward
feasible – for instance lower quotas, course-pre-requisites.

References

1. National Residency Matching Program. https://www.nrmp.org
2. Scottish Foundation Association Scheme. https://www.matching-in-practice.eu/

the-scottish-foundation-allocation-scheme-sfas
3. Bansal, V., Agrawal, A., Malhotra, V.S.: Polynomial time algorithm for an optimal

stable assignment with multiple partners. Theor. Comput. Sci. 379(3), 317–328
(2007)

4. Biró, P., Irving, R.W., Schlotter, I.: Stable matching with couples: An empirical
study. J. Exp. Algorithmics 16, 1.2:1.1–1.2:1.27 (2011)

5. Cechlárová, K., et al.: Pareto optimal matchings in many-to-many markets with
ties. Theor. Comput. Syst. 59(4), 700–721 (2016)

6. Cechlárová, K., Klaus, B., Manlove, D.F.: Pareto optimal matchings of students
to courses in the presence of prerequisites. Discrete Optim. 29, 174–195 (2018)

7. Cechlárová, K., Eirinakis, P., Fleiner, T., Magos, D., Mourtos, I., Potpinková, E.:
Pareto optimality in many-to-many matching problems. Discrete Optim. 14, 160–
169 (2014)

8. Cechlárová, K., Fleiner, T.: Pareto optimal matchings with lower quotas. Math.
Soc. Sci. 88, 3–10 (2017)

9. Cechlárová, K., Manlove, D.F.: The exchange-stable marriage problem. Discrete
Appl. Math. 152(1), 109–122 (2005)

10. Diebold, F., Aziz, H., Bichler, M., Matthes, F., Schneider, A.: Course allocation
via stable matching. Bus. Inf. Syst. Eng. 6(2), 97–110 (2014)

11. Dutta, B., Massó, J.: Stability of matchings when individuals have preferences over
colleagues. J. Econ. Theory 75(2), 464–475 (1997)

12. Roth, E.A.: The effects of the change in the NRMP matching algorithm. national
resident matching program. JAMA J. Am. Med. Assoc. 278, 729–732 (1997)

13. Roth, E.A., Peranson, E.: The redesign of the matching market for american physi-
cians: some engineering aspects of economic design. Am. Econ. Rev. 89, 748–780
(1999)

https://www.nrmp.org
https://www.matching-in-practice.eu/the-scottish-foundation-allocation-scheme-sfas
https://www.matching-in-practice.eu/the-scottish-foundation-allocation-scheme-sfas

68 A. Utture et al.

14. Echenique, F., Wilson, J.A., Yariv, L.: Clearinghouses for two-sided matching: an
experimental study. Quant. Econ. 7(2), 449–482 (2016)

15. Fleiner, T., Kamiyama, N.: A matroid approach to stable matchings with lower
quotas. In: Proceedings of the Twenty-third Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2012 pp. 135–142 (2012)

16. Gale, D., Shapley, L.S.: College admissions and the stability of marriage. Am.
Math. Mon. 69(1), 9–15 (1962)

17. Giannakopoulos, I., Karras, P., Tsoumakos, D., Doka, K., Koziris, N.: An equitable
solution to the stable marriage problem. In: Proceedings of the 2015 IEEE 27th
International Conference on Tools with Artificial Intelligence ICTAI, pp. 989–996.
ICTAI 2015 (2015)

18. Hamada, K., Iwama, K., Miyazaki, S.: The hospitals/residents problem with lower
quotas. Algorithmica 74(1), 440–465 (2016)

19. Huang, C.C.: Classified stable matching. In: Proceedings of the Twenty-first
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2010, pp. 1235–
1253 (2010)

20. Irving, R.W.: Stable marriage and indifference. Discrete Appl. Math. 48(3), 261–
272 (1994)

21. Irving, R.W.: Stable matching problems with exchange restrictions. J. Comb.
Optim. 16(4), 344–360 (2008)

22. Irving, R.W., Manlove, D.F., O’Malley, G.: Stable marriage with ties and bounded
length preference lists. J. Discrete Algorithms 7(2), 213–219 (2009)

23. Irving, R.W., Manlove, D.F., Scott, S.: The hospitals/residents problem withties.
In: Algorithm Theory - SWAT 2000, pp. 259–271 (2000)

24. Iwama, K., Miyazaki, S., Morita, Y., Manlove, D.: Stable marriage with incomplete
lists and ties. In: Wiedermann, J., van Emde Boas, P., Nielsen, M. (eds.) ICALP
1999. LNCS, vol. 1644, pp. 443–452. Springer, Heidelberg (1999). https://doi.org/
10.1007/3-540-48523-6 41

25. Klaus, B., Klijn, F.: Stable matchings and preferences of couples. J. Econ. Theory
121(1), 75–106 (2005)

26. Krishnapriya, A. M., Nasre, M., Nimbhorkar, P., Rawat, A.: How good are popular
matchings? In: Proceedings of the 17th International Symposium on Experimental
Algorithms, SEA 2018, L’Aquila, Italy, 27–29 June 2018, pp. 9:1–9:14 (2018)

27. Malhotra, V.S.: On the stability of multiple partner stable marriages with ties. In:
Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 508–519. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-30140-0 46

28. Manlove, D.F., McBride, I., Trimble, J.: “almost-stable” matchings in the hospi-
tals/residents problem with couples. Constraints 22(1), 50–72 (2017)

29. Peranson, E., Randlett, R.R.: The NRMP matching algorithm revisited. Acad.
Med. 70, 477–484 (1995)

30. Roth, A.E.: A natural experiment in the organization of entry-level labor markets:
regional markets for new physicians and surgeons in the united kingdom. Am.
Econ. Rev. 81(3), 415–440 (1991)

31. Williams, K.J.: A reexamination of the NRMP matching algorithm national resi-
dent matching program. Academic medicine: journal of the Association of Ameri-
can Medical Colleges 70, 470–476 (1995). discussion 490

https://doi.org/10.1007/3-540-48523-6_41
https://doi.org/10.1007/3-540-48523-6_41
https://doi.org/10.1007/978-3-540-30140-0_46

A Combinatorial Branch and Bound
for the Min-Max Regret Spanning Tree

Problem

Noé Godinho(B) and Lúıs Paquete

CISUC, Department of Informatics Engineering, University of Coimbra, Pólo II,
3030-290 Coimbra, Portugal
{noe,paquete}@dei.uc.pt

Abstract. Uncertainty in optimization can be modeled with the con-
cept of scenarios, each of which corresponds to possible values for each
parameter of the problem. The min-max regret criterion aims at obtain-
ing a solution minimizing the maximum deviation, over all possible sce-
narios, from the optimal value of each scenario. Well-known problems,
such as the shortest path problem and the minimum spanning tree,
become NP-hard under a min-max regret criterion. This work reports
the development of a branch and bound approach to solve the Minimum
Spanning Tree problem under a min-max regret criterion in the discrete
scenario case. The approach is tested in a wide range of test instances
and compared with a generic pseudo-polynomial algorithm.

Keywords: Min-max regret criterion · Multi-objective optimization ·
Minimum Spanning Tree · Branch and bound

1 Introduction

The min-max regret formulation of an optimization problem deals with the exis-
tence of uncertainty on the objective function coefficients [10]. This uncertainty
composes scenarios and the goal is to find a solution that minimizes the devia-
tion between the value of the solution and the value of the optimal solution for
each scenario. This way, the anticipated regret of a wrong decision is taken into
account into the problem.

In this article, we consider a branch and bound algorithm to solve the min-
max regret minimum spanning tree (MMR-MST) problem in the discrete scenario
case. Let G = (V,E) be a undirected edge-weighted graph with vertex set V and
edge set E, and let n and m denote the number of vertices and edges, respectively.
Let T denote the set of all spanning trees in G and let S = {s1, . . . , sk} be a
set of k scenarios. For each scenario s ∈ S, each edge e ∈ E has an associated
positive integer cost w(e, s). We assume that G is connected and simple. For a
tree T ∈ T , its cost w(T, s) is the sum of the costs of its edges for scenario s ∈ S
as follows:

w(T, s) :=
∑

e∈T

w(e, s) (1)

c© Springer Nature Switzerland AG 2019
I. Kotsireas et al. (Eds.): SEA2 2019, LNCS 11544, pp. 69–81, 2019.
https://doi.org/10.1007/978-3-030-34029-2_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34029-2_5&domain=pdf
https://doi.org/10.1007/978-3-030-34029-2_5

70 N. Godinho and L. Paquete

Fig. 1. Two instances for Example 1 (left) and Example 2 (right)

Let T ∗
s denote the minimum spanning tree for scenario s. Note that T ∗

s can be
found in polynomial time with classical algorithms such as Prim’s or Kruskal’s
Algorithm. The goal in the MMR-MST problem is to find a spanning tree that
has the least deviation from the minimum spanning trees for every scenario in
terms of total cost. Let T ∈ T be a spanning tree of graph G and R(T) be the
regret function, i.e.

R(T) := max
s∈S

(w(T, s) − w(T ∗
s , s)) (2)

Then, the MMR-MST problem consists of minimizing the regret function among
all spanning trees, i.e.,

min
T∈T

R(T) (3)

Example 1. Figure 1, left, shows a graph with 4 vertices and two scenarios, S =
{s1, s2}, where the tuple at each edge indicates its cost in the first and in the sec-
ond scenario, respectively. Then, we have that T ∗

s1
= {{A,C}, {A,D}, {B,D}}

with costs w(T ∗
s1

, s1) = 5 and w(T ∗
s1

, s2) = 9 and T ∗
s2

= {{A,D}, {B,C}, {C,D}}
with costs w(T ∗

s2
, s1) = 9 and w(T ∗

s2
, s2) = 5. The optimal spanning tree

T ∗ for the MMR-MST problem is T ∗ = {{A,D}, {A,C}, {B,C}} with costs
w(T ∗, s1) = 7 and w(T ∗, s2) = 6 and R(T ∗) = max(7 − 5, 6 − 5) = 2.

Note that the regret value of the minimum spanning tree for each scenario
may be arbitrarily far from the optimal regret value, as shown in the following
example.

Example 2. Figure 1, right, shows a graph with 4 vertices and two scenarios,
S = {s1, s2}. Assume that 0 < ε < 1 and γ > 1 is a large integer value. Then,
we have that T ∗

s1
= {{A,D}, {B,C}, {C,D}} with costs w(T ∗

s1
, s1) = 1 + 2ε

and w(T ∗
s1

, s2) = γ + 1 + ε, and T ∗
s2

= {{A,B}, {A,D}, {B,C}} with costs
w(T ∗

s2
, s1) = γ + 1 + ε and w(T ∗

s2
, s2) = 1 + 2ε. Then, R(T ∗

s1
) = R(T ∗

s2
) = γ − ε.

The spanning tree T ∗ with optimal regret value is T ∗ = {{A,C}, {A,D}, {B,C}}
with costs w(T ∗, s1) = w(T ∗, s2) = 2 + ε and R(T ∗) = 1 − ε.

A Combinatorial Branch and Bound for the Min-Max Regret Spanning Tree 71

The discrete case differs from the interval scenario case, in which the cost
of each edge is defined by an interval; see formulation and algorithms for the
MMR-MST problem in the interval case in [11,12,17] as well as its application
to other optimization problems [5,13]. Unfortunately, it is not possible to use
these approaches to solve the discrete case.

Solution approaches for the discrete case are rather scarce. It is known that
if the number of scenarios is bounded by a constant, then the MMR-MST prob-
lem is weakly NP-hard [2]. However, if the number of scenarios is unbounded,
the problem becomes strongly NP-hard [2]. A general pseudo-polynomial time
algorithm is discussed in [2], which consists of solving a sequence of feasibility
problems on a transformed graph that is obtained by scalarizing the costs of each
edge. Each feasibility problem is defined by a given parameter v and consists of
determining, for increasing value of this parameter, if there exists a solution with
value v; once a spanning tree is found with value v, then it is also optimal for the
original problem with respect to the min-max regret criterion. Since the time
complexity depends of the range of parameter v, this approach becomes pseudo-
polynomial if the feasibility problem can be solved in (pseudo-)polynomial time.

The MMR-MST problem is closely related to the multiobjective minimum
spanning tree problem, that is, at least one optimal spanning tree for the MMR-
MST problem is also optimal for the multiobjective version [2]. This result
suggests that solving the latter would allow to solve the MMR-MST problem.
However, the multiobjective minimum spanning tree is also known to be NP-
hard [15]. Still, this relation may be useful for deriving search strategies for the
MMR-MST. In our case, we derive a pruning technique for this problem using
techniques that are known to work very well in implicit enumeration approaches
for multiobjective optimization [7,16]. In particular, we derive a lower bound
that combines the bounds for each scenario and use it within a branch and
bound approach to discard partial spanning trees that provably do not lead to
an optimal spanning tree. Moreover, we develop an upper bound that consists
of a solution to a scalarized problem of the multiobjective minimum spanning
tree problem.

2 A Framework for a Branch and Bound

To solve the MMR-MST problem within the framework of a branch and bound
algorithm for a given graph G = (V,E), we define a subproblem P in terms of a
pair (CP ,DP), where CP is the set of edges of a subtree rooted at a vertex v ∈ V
and DP is another set of edges disjoint with CP . If, in a subproblem P , the set
CP is a spanning tree of G, then P is a terminal subproblem and CP is a solution
to the original problem. Otherwise, if E \ (CP ∪DP) �= ∅, the branch and bound
selects an edge e from this set such that e is incident to another edge in CP and
defines two child subproblems: (i) augmenting CP with e; (ii) augmenting DP

with e. Note that subproblem P is solved if both children subproblems are also
solved.

72 N. Godinho and L. Paquete

In the next section, we discuss extensions of this framework by deriving lower
and upper bounding procedures, which should reduce the number of subproblems
to visit and, consequently, to improve the running time.

2.1 A Lower Bound

For a subproblem P defined by (CP ,DP) and a scenario s ∈ S, we define the
cost w(P, s) as follows

w(P, s) :=
∑

e∈CP

w(e, s) (4)

Let C∗
P be a spanning tree that minimizes the min-max regret function for which

CP ⊆ C∗
P and let R(C∗

P) be its regret function value. A trivial lower bound can
be derived as follows:

LB1(P) := max
s∈S

(w(P, s) − w(T ∗
s , s)) (5)

where T ∗
s denotes a minimal spanning tree of the edge set E for scenario s ∈ S.

A tighter lower bound can be obtained. Let T̂s be a minimum spanning tree
of the edge set E \ (CP ∪ DP) for the scenario s ∈ S with value w(T̂s, s). Then,
we have the following inequality:

LB1(P) ≤ LB2(P) := max
s∈S

(
w(P, s) + w(T̂s, s) − w(T ∗

s , s)
)

≤ R(C∗
P) (6)

Note that finding T̂s involves solving a minimum spanning tree problem. How-
ever, this also implies that LB2 is more computational demanding than LB1.

2.2 An Upper Bound

We build a new graph G′ = (V,E), where the cost of each edge e is a weighted
sum of the edge costs for the several scenarios in graph G. Then, the minimum
spanning tree of G′ is given as follows.

T ∗
δ := arg min

T∈T

∑

e∈T

∑

s∈S

δs · w(e, s) (7)

where
∑

s∈S δs = 1. This is, in fact, a scalarization of the multiobjective mini-
mum spanning tree problem [6]. Since T ∗

δ is a spanning tree, we have the following
inequality

R(T ∗) ≤ R(T ∗
δ) (8)

where T ∗ denotes an optimal spanning tree for the MMR-MST problem.
Unfortunately, an optimal solution for this problem may not be optimal for

any scalarized problem in the form of Eq. (7), as shown in the following example.

A Combinatorial Branch and Bound for the Min-Max Regret Spanning Tree 73

Fig. 2. An instance for Example 3

Example 3. Figure 2 shows a graph with 3 vertices and two scenarios,S = {s1, s2}.
There exists three solutions: T1 = {(A,B), (A,C)} T2 = {(A,B), (B,C)} and
T3 = {(A,C), (B,C)}, with w(T1, s1) = w(T2, s2) = 3, w(T1, s2) = w(T2, s1) = 7
and w(T3, s1) = w(T3, s2) = 6. Then, the spanning tree with optimal regret value
is T3 with R(T3) = 3. However, there exists no non-negative vector δ = (δ1, δ2) for
which T3 is optimal for the scalarized problem in Eq. (7).

This example shows that general approaches that enumerate all optimal solu-
tions to scalarized problems, such as in [14], may fail to find the optimal solution
for the min-max regret version.

3 A Combinatorial Branch and Bound Algorithm

Let P denote the set of active subproblems, which is initially {(∅, ∅)}. At the
beginning, the incumbent solution is defined as (Rb, T b) := (∞, ∅), where T b

stands for the best spanning tree obtained so far and Rb = R(T b) is the regret
function value of that spanning tree. Alternatively, Rb can be an upper bound
computed in a pre-processing step as described in Sect. 2.2.

For a given subproblem P , the algorithm proceeds as follows. First, the feasi-
bility of subproblem P is verified. Note that due to the edges in DP , P may not
be able to form a spanning tree, and, in that case, the subproblem is terminated.
Next, the algorithm determinates if P is a terminal subproblem, in which case,
the incumbent is updated if necessary and the subproblem terminates. If none
of the two cases above applies, then, the following condition is verified

LB1(P) ≥ Rb (9)

If it fails, the following condition is also verified

LB2(P) ≥ Rb (10)

74 N. Godinho and L. Paquete

If any of the two above pruning conditions holds, the subproblem is also ter-
minated. Otherwise, an edge e is chosen to produce the two child subproblems,
which are added to P and the process is repeated until P is empty.

For the choice of the edge e in the step above, we follow the enumeration
approach described in [8], which ensures the generation of unique spanning trees
in O(n + m + n|T |) time complexity. This implies that, for complete graphs,
our branch and bound approach (using Prim’s Algorithm with Binary heap to
compute LB2) has O(nn+1) time complexity in the worst case.

For a given subproblem defined by (CP ,DP), the enumeration algorithm
keeps three lists, LC , LD and LE , to store the edges in CP , DP , and E\(CP ∪DP),
respectively. Then, the algorithm is called recursively using a depth-first search
traversal to find all spanning trees that contain the subtree represented by the
edges in CP . It starts by selecting an edge e in LE that is incident to an edge
in LC , adding it to the latter set. Then, all spanning trees that contain edge
e are found recursively. Next, this edge is removed from LC and inserted into
LD, another edge as above is selected and the same steps are repeated until
a bridge is found in the graph Ḡ with edge set E excluding the edges in LD,
that is, Ḡ becomes disconnected if the selected edge is removed. This implies
that all spanning trees containing the subtree defined by CP have been found.
The authors in [8] discuss an efficient method to detect a bridge in Ḡ based on
the depth-first search tree that is constructed recursively, as well as appropriate
data structures for LC , LD and LE . In our branch and bound, the bounding
conditions (9) and (10) are tested whenever a new edge is inserted into LP .

4 Numerical Experiments

In the following, we report an experimental analysis of our approach on a wide
range of instances of the MMR-MST problem. Three types of experiences were
conducted: First, we analyse the performance of our approach with different
pruning strategies on complete graphs, which corresponds to a worst case in
practical performance, and two scenarios. Then, we study the approach with the
best pruning strategy on different type of graphs with different edge densities and
up to four scenarios. Finally, we compare it with the state-of-the-art algorithm
proposed in [3].

The instances size ranged from 5 to 20 vertices. For the second experiment
we consider three different type of instances:

– Random: Given n vertices, each pair of vertices has a given probability of
being connected by an edge.

– Bipartite: Given two sets of vertices, of sizes
n/2� and �n/2, respectively,
each pair of vertices, each of which in a distinct set, has a given probability
of being connected by an edge.

– Planar: Given n points in the two-dimensional plane, the edges correspond
to a Delaunay triangulation.

A Combinatorial Branch and Bound for the Min-Max Regret Spanning Tree 75

Fig. 3. Average CPU-time (in seconds) for different pruning strategies

The edge weights are generated randomly according to an uniform distribu-
tion within an predefined interval, bounded from above by 1000. We generated
10 instances for each size. The branch and bound was implemented in C++, and
compiled with g++, version 5.4.0. The optimal solution for each scenario and the
computation of LB2 were obtained with our implementation of Prim’s algorithm.
(it took less than 0.001 s on instances of 300 vertices) The implementations were
tested in a computer with Ubuntu 16.04 operating system, 4 GB RAM and a
single core CPU with 2 virtual threads and a clock rate of 2 GHz. For each run,
we collected the CPU-time taken by each approach. We defined a time limit of
1800 s.

4.1 Effect of Pruning

We investigated the effect of the pruning conditions described in Sect. 2.1. We
considered four versions: using only LB1, using only LB2, using both lower
bounds sequentially, as explained in Sect. 3, with and without the upper bound
explained in Sect. 2.2 (LB12 and LB12+UB, respectively). For the latter, some
preliminaries experiments suggested that a good performance would be obtained
by considering the minimum regret value from a sequence of k + 1 scalarized
problems with the following scheme for δ = (δ1, . . . , δk), given a number k of
scenarios:

δ1 :=
(

1
k

,
1
k

, . . . ,
1
k

)
δ2 :=

(
k + 1
2k

,
1
2k

, . . . ,
1
2k

)

δ3 :=
(

1
2k

,
k + 1
2k

, . . . ,
1
2k

)
. . . δk+1 :=

(
1
2k

,
1
2k

, . . . ,
k + 1
2k

)

We also tested a further approach that does not test any pruning condition in
order to be used as a reference (No LB). Figure 3 shows the mean CPU-time for

76 N. Godinho and L. Paquete

5 10 15 20

1e
−0

4
1e

−0
2

1e
+0

0
1e

+0
2

Number of vertices

Ti
m

e
(in

 s
ec

on
ds

)

● ● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

k=4
k=3
k=2

5 10 15 20

1e
−0

4
1e

−0
2

1e
+0

0
1e

+0
2

Number of vertices

Ti
m

e
(in

 s
ec

on
ds

)

●
●

● ●

●

●

●

●

●

●

●

●

●

k=4
k=3
k=2

(b)(a)

5 10 15 20

1e
−0

4
1e

−0
2

1e
+0

0
1e

+0
2

Number of vertices

Ti
m

e
(in

 s
ec

on
ds

)

●

●

●

●

●

●

●

●

●
●

●

●

k=4
k=3
k=2

5 10 15 20

1e
−0

4
1e

−0
2

1e
+0

0
1e

+0
2

Number of vertices

Ti
m

e
(in

 s
ec

on
ds

)

●

●

●

●

●

●

●

●

●

●

●

k=4
k=3
k=2

(d)(c)

Fig. 4. Average CPU-time (in seconds) of variant LB12+UB for different number of
scenarios and edge densities 0.25 (a), 0.5 (b), 0.75 (c) and complete graphs (d) on
random instances

the branch and bound implementations. The results indicate that the pruning
test is very effective; for instances with 10 vertices, the branch and bound imple-
mentation is approximately 100 faster than performing a complete enumeration
of all spanning trees. In addition, as the instance size grows, the use of both
lower bounds gives better performance than each isolatedly. Note that, for the
instance sizes considered, computing LB2 amounts to a small overhead. More-
over, our approach performs approximately 20% faster with the upper bound
(LB12+UB). Note that the slope change on the right tail of the lines is due to a
truncated mean, since some of the runs exceeded the time limit of 1800 s (hori-
zontal dashed line) on larger instances (1/10 and 6/10 for n = 13 and n = 14,
respectively, with LB1, 1/10 for n = 14 with LB2 and LB12, and 6/10 for n = 15
with L12+UB).

A Combinatorial Branch and Bound for the Min-Max Regret Spanning Tree 77

5 10 15 20

1e
−0

4
1e

−0
2

1e
+0

0
1e

+0
2

Number of vertices

Ti
m

e
(in

 s
ec

on
ds

)

● ●
● ●

●

●
●

●
●

●

●
●

●

●

●

●

●

k=4
k=3
k=2

5 10 15 20

1e
−0

4
1e

−0
2

1e
+0

0
1e

+0
2

Number of vertices

Ti
m

e
(in

 s
ec

on
ds

)

●
●

● ●

●

●

●

●

●

● ●

●

●

●

● ●

●

k=4
k=3
k=2

)b()a(

5 10 15 20

1e
−0

4
1e

−0
2

1e
+0

0
1e

+0
2

Number of vertices

Ti
m

e
(in

 s
ec

on
ds

)

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

k=4
k=3
k=2

5 10 15 20

1e
−0

4
1e

−0
2

1e
+0

0
1e

+0
2

Number of vertices

Ti
m

e
(in

 s
ec

on
ds

)

●

●

●

●

●

●

●

●

●

●

●

●

k=4
k=3
k=2

)d()c(

Fig. 5. Average CPU-time (in seconds) of variant LB12+UB for different number of
scenarios and edge densities 0.25 (a), 0.5 (b), 0.75 (c) and complete graphs (d) on
bipartite instances

4.2 Effect of Edge Density and Number of Scenarios

In the second experiment, we generated random, planar and bipartite instances
with 2, 3 and 4 scenarios and with edge densities d = {0.25, 0.5, 0.75} for ran-
dom and bipartite instances; enough edges where added to the final graph in
order to ensure connectedness between any pair of vertices. In addition, we also
considered complete random and complete bipartite graphs. Figures 4 and 5
show the results of the branch and bound implementation with pruning strat-
egy LB12+UB on random and bipartite graphs, respectively, with different edge
densities and complete graphs (a–d, respectively) and with different scenarios.

78 N. Godinho and L. Paquete

5 10 15 20

1e
−0

4
1e

−0
2

1e
+0

0
1e

+0
2

Number of vertices

Ti
m

e
(in

 s
ec

on
ds

)

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

k=4
k=3
k=2

Fig. 6. Average CPU-time (in seconds) of variant LB12+UB for different number of
scenarios on planar instances

Figure 6 shows the results for the case of planar graphs. The results suggest that
the edge density has a strong effect on the performance of our approach. For
instance, the difference can be 100 times faster in a graph with edge density
0.25 than in a graph with edge density 0.5. However, the CPU-time only slightly
increases with the increase on the number of scenarios. Finally, the bipartite
graphs and planar graphs seem to be easier than random graphs for the same
number of vertices.

In order to determine if the CPU-time of our approach is a function on
a linear combination of the number of vertices and the number of edges, we
performed a multiple linear regression with n and m as independent variables
and CPU-time as dependent variable. Given that the results did not suggest a
strong dependency of CPU-time with respect to the number of scenarios, we did
not consider the later as third independent variable. Only CPU-times of runs
that ended before the cut-off time of 1800 s were considered in the regression.
A Boxcox procedure suggested a logarithmic transformation on the CPU-time,
which corresponds to an exponential relationship between CPU-time required
by our approach with respect to a linear combination of n and m. We arrived to
the following model:

log t = −11.64 + 0.26n + 0.046m

with R2 = 0.91, which suggested a good fit. Figure 7 shows the CPU-time col-
lected in all runs (in logarithmic scale) vs. linear combination on the number of
vertices and edges, as suggested by the model above.

A Combinatorial Branch and Bound for the Min-Max Regret Spanning Tree 79

−10 −5 0 5 10

1e
−0

4
1e

−0
2

1e
+0

0
1e

+0
2

b + a1 n + a2 m

lo
g(

t)

●
●
●●
●●
●●●
●

●
●●
●
●
●●●●●

●

●●
●●

●

●

●
●

●

●●

●
●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●
●●
●

●

●
●●●●

●●
●
●

●
●

●
● ●●●

●

●

●
●

●
●

●
●

●

●
●●

●

●
● ●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
● ●

●
●

●

●

●●

●

●

●

●

●

●

●
●●

●

● ●

●

●
●
●

●●●
●●
●●

●●●
●

●●
●

●
●
●

●

●

●
●●

●
●

●

●

●●

●
●

●
●

●

●
●●●

●

●

●

●

●

●
●● ●

●
●

●

●

●

●
●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●
●

●●●

● ●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●
●

●

●
●

●

● ●

●

●●

●

●
●

●

●

●

●
●

●

●
●

●
●

●

●

●

●●●
●●

●●●● ●●●
●
●
●

●●
●●●●

●
●●●
●

●
● ●

●●●
●

●

●

●
●

●
●

●
●

●

●●

●

●●
●

●
●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●●●●●
●

●
●

●

●
●●

●
●

●
●
●

●● ●●
●

●

●●●
●

●
●

●

●

●

●

●●
●

●●

●

●

●

●

●
●

●
●

●

●●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●●●
●●●
●
●
●● ●

●●

●●●
●●●
●

●●
●

●●

●●
●●
●●●

●
●

●

●
●

●
●

● ●●

●

●

●● ●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●●●●●● ●

●
●

●
●

●●
●
●●●

●
●
●
●

●

●●●●
●●●
●
●●●●

●

●
●●

●●

●●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●●●●●●●
●
●● ●●●

●
●●●●
●●●●

●
●●
●
●●●● ● ●●●●

●
●●

●● ●●
●

● ●

●

●●●● ●●

●

●

●

●●●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●●

●

●
●

●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●●●●●●●●●
●●

●

●

●
●●●
●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●●
●

●

●
●
●●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●●
●●●●●

●●●

●●
●
●●
●
●

●●●

●
●●
●●
●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●●
●

●

●●● ●

●●
●
●●

●
●●●

●
●●

●●

●

●

●
●●

●●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

● ●●●

●

●
●

● ●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●●

●●
●
●

● ●●●●
● ●

●●● ●

●

●●

●

●
●

●
●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ●

●
●

●●● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●
●

●
●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●●●●●●
●

●●●
●
●●●●●
●

●
●

● ●●●

●

●●

●

●

●● ●

●●
●
●●●●●
● ● ●

●
●●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●●

●

●●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●
●

●●●
●● ●●●●●

●
●

●●
●

●
●●●
●

●
●

●●

●
●
●
●●● ●

●●●●
●

●●

●
●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●●

●

●

●

●

●

●
●●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●●●●
● ●

●●
●●

●
●
●
●

●
●

● ●●●●
●●

●
●

●

●

●
●
●●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●●

●

●
●

●

●

●
●
●
●●
●●
●●
●

●●●
●●●
●●

●●
●
●

●
●●●●
●●●

●

●

●

●
●●

●●

●
●●

●●

●
●

●

●

●

●
●

●●

●

●
●

●

● ●
●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●●●● ●●●●● ●●●●●●●●●
● ●●●●●●●●●●

●
●● ●●●●

●●
●

●●

●

●

●●

●●

●

● ●●

●
●

●●●●

●
●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●●

●●●
●

●

●

●

●●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

● ●

●

●
●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●
●●●
●●
●

●●

●●

●●●
●

●●
●

●●
●
●

●

●
●
●

● ●

●

●
●●●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●●
●

●
●
●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●
●●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●●●●●●●●●

●
●
●
●

●

●

●●
●

●

●

●●●

●
●

●●
●
●

●

●

●
●

●

●●
●

●●

●

●
●

●

●

●
●

●

●

●

●●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●●

●

●

●

●

●
●

●●

●
●

●

●
●

●
●

●

●
●

●●●●● ●
●
●

●
●

●

●
●
●

●

●
●●

●
●●

●

●

●

●
●

●
●

●
●

●

●

●

● ●

●
●●●

●

●
●

●

● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

● ●

●

●

●
●

●

● ●

●

●

●
●

●

●

●

●
●●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●●

●●
●● ●●●

●

●

●●

●
●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ● ●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

●
●●●●●●

●
●
● ●●●

●
●●●

●
●

●

●

●●
●

●
●

●●●
●

●

●

●●
●

●

●

●●

●

●

●●
●
●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●●●●●● ●●● ●●

●●

● ●
●

●●
●●●

●

●●
●●

●

●

●
●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●
● ●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●
●
●

●

●●
●●
●●● ●
●

●●
●●● ●

●
●
●●

●

●
●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●●●●
●
●
●
●●

●●
●

●
●●●
●●
●

●
●●

●

●

●
●

●
●● ●

●

●
●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●
●

●

●

●
●

●

●●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●
●
●●●●●
●
●● ●●●●●●

●
●● ●●●

●
●●

●●●●

● ●
●●

●

●
●●● ● ●

●●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●●● ●

●●

●

●

●●

●

●

●

●●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●
●
●●●
●●●

●

●●●
●●

●●

●●
●

●

● ●●

●●
●

●
●

●
●

●
●●

●

●
●

●
●

●
●
●

●
●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

● ●

●

●

●●

●
●

●

●

●

●
●

●●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

● ●

●

●
●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

● ●

●●

●

Fig. 7. CPU-time in logarithm scale vs. linear combination on the number of vertices
and edges and regression line

4.3 Comparison with the Approach in [3]

We compared our approach LB1+2+UB to the generic pseudo-polynomial algo-
rithm in [3], as described in Sect. 1. Instead of solving each feasibility problem,
we implemented the approach described in [4] as suggested in [3], which allows to
retrieve the number of spanning trees for each possible value from the coefficients
of a polynomial expression. This expression is retrieved from the determinant of
a polynomial matrix of size (n − 1) × (n − 1) built from the adjacency matrix
of the transformed graph instance. Therefore, once the polynomial expression
is obtained, each feasibility problem for a parameter v is solved by verifying
whether the coefficient of the v-th term of the polynomial expression is positive.
We used the GiNaC C++ libraries [1] to generate the polynomial matrix as well as
to compute the polynomial determinant. The overall implementation was imple-
mented in C++ and tested in the same computational environment. The main
bottleneck of this approach is on computation of the determinant, which did not
allow us to test for v > 8 in less than one hour of CPU-time. Table 1 shows the
average and standard deviation for both approaches for 100 instances of size 15
and maximum edge weight value ranging from 4 to 8 (column max). It is possible
to observe a significant difference between both algorithms when the maximum
edge weight is 7 and 8 and that our approach is less sensible to the change of
this instance parameter.

80 N. Godinho and L. Paquete

Table 1. Average and standard deviation of CPU-time for the pseudo-polynomial
approach in [3] and our branch and bound

max Approach in [3] Branch and bound

4 140.915 ± 11.375 219.141 ± 518.135

5 289.467 ± 26.243 331.819 ± 722.151

6 540.375 ± 51.108 405.109 ± 696.086

7 946.274 ± 100.143 599.055 ± 947.901

8 1452.317 ± 162.189 657.392 ± 995.465

5 Discussion and Conclusion

In this article, we described a branch and bound approach for the min-max
regret minimum spanning tree problem. The upper and lower bounding tech-
niques are based on known approaches to multiobjective optimization and they
can be applied to other combinatorial optimization problems, such as shortest
path or knapsack problem. The experimental analysis shows that the sequential
use of the two lower bounds proposed in this article, together with an upper
bound, brings considerable improvement in terms of running time. In addition,
we experimentally compared our approach with a pseudo-polynomial algorithm.
The results suggest that our approach may be preferable in terms of running
time for increasing maximum edge cost.

Our branch and bound algorithm should perform even faster if the lower
bound LB2 is computed in an incremental manner using the lower bound com-
puted in the previous recursive call. If, for a given edge e ∈ E \ (CP ∪ DP), the
decision is either to augment CP or DP with e (see Sect. 2) and if e is incident
to a leaf of the spanning tree T ′ corresponding to the previous lower bound, the
new lower bound can easily be computed by removing the cost of the edge that
connects that leaf to T ′. This option was not considered in our implementation
since the computation of LB2 was not a bottleneck for the instance sizes consid-
ered in our experimental analysis. However, one main drawback of our approach
is the large variance on the running time. We observed that a few runs took
much more time than the remaining, which may be related to a less tight upper
bound. One possibility of reducing this variance is to perform random restarts,
as suggested in [9], and/or to consider several upper bounds simultaneously,
obtained by different scalarizations in Eq. (7).

Acknowledgments. This work was carried out in the scope of the MobiWise project:
From mobile sensing to mobility advising (P2020 SAICTPAC/0011/2015), co-financed
by COMPETE 2020, Portugal 2020 - POCI, European Union’s ERDF.

A Combinatorial Branch and Bound for the Min-Max Regret Spanning Tree 81

References

1. Ginac C++ libraries. https://www.ginac.de/
2. Aissi, H., Bazgan, C., Vanderpooten, D.: Approximation complexity of min-max

(regret) versions of shortest path, spanning tree, and knapsack. In: Brodal, G.S.,
Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 862–873. Springer, Heidelberg
(2005). https://doi.org/10.1007/11561071 76

3. Aissi, H., Bazgan, C., Vanderpooten, D.: Pseudo-polynomial time algorithms for
min-max and min-max regret problems. In: Proceedings of the 5th International
Symposium on Operations Research and Its Applications, pp. 171–178 (2005)

4. Barahona, J.F., Pulleyblank, R.: Exact arborescences, matching and cycles. Dis-
crete Appl. Math. 16, 91–99 (1987)

5. Chassein, A., Goerigk, M.: On the recoverable robust traveling salesman problem.
Optim. Lett. 10(7), 1479–1492 (2016)

6. Ehrgott, M.: Muticriteria Optimization, 2nd edn. Springer, Heidelberg (2005).
https://doi.org/10.1007/3-540-27659-9

7. Figueira, J.R., Paquete, L., Simões, M., Vanderpooten, D.: Algorithmic improve-
ments on dynamic programming for the bi-objective {0, 1} knapsack problem.
Comput. Optim. Appl. 56(1), 97–111 (2013)

8. Harold, N.G., Myers, E.W.: Finding all spanning trees of directed and undirected
graphs. SIAM J. Comput. 7(3), 280–287 (1978)

9. Gomes, C.P., Selman, B., Crato, N., Kautz, H.: Heavy-tailed phenomena in satis-
fiability and constraint satisfaction problems. J. Autom. Reason. 24(1–2), 67–100
(2000)

10. Kouvelis, P., Yu, G.: Robust Discrete Optimization and Its Applications. Kluwer
Academic Publishers, Dordrecht (1997)

11. Makuchowski, M.: Perturbation algorithm for a minimax regret minimum spanning
tree problem. Oper. Res. Decis. 24(1), 37–49 (2014)

12. Montemanni, R., Gambardella, L.M.: A branch and bound algorithm for the robust
spanning tree problem with interval data. Eur. J. Oper. Res. 161(3), 771–779
(2005)

13. Montemanni, R., Gambardella, L.M., Donati, A.V.: A branch and bound algorithm
for the robust shortest path problem with interval data. Oper. Res. Lett. 32(3),
225–232 (2004)

14. Przybylski, A., Gandibleux, X., Ehrgott, M.: A recursive algorithm for finding
all nondominated extreme points in the outcome set of a multiobjective integer
programme. INFORMS J. Comput. 22(3), 371–386 (2010)

15. Serafini, P.: Some considerations about computational complexity for multi objec-
tive combinatorial problems. In: Jahn, J., Krabs, W. (eds.) Recent Advances and
Historical Development of Vector Optimization. LNEMS, vol. 294, pp. 222–232.
Springer, Heidelberg (1987). https://doi.org/10.1007/978-3-642-46618-2 15

16. Sourd, F., Spanjaard, O.: A multiobjective branch-and-bound framework: appli-
cation to the biobjective spanning tree problem. INFORMS J. Comput. 20(3),
472–484 (2008)

17. Yaman, H., Karasan, O.E., Pinar, M.Ç.: The robust spanning tree problem with
interval data. Oper. Res. Lett. 29, 31–40 (2001)

https://www.ginac.de/
https://doi.org/10.1007/11561071_76
https://doi.org/10.1007/3-540-27659-9
https://doi.org/10.1007/978-3-642-46618-2_15

Navigating a Shortest Path with High
Probability in Massive Complex Networks

Jun Liu1,2(B), Yicheng Pan3, Qifu Hu1,2, and Angsheng Li3

1 State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing, China

{ljun,huqf}@ios.ac.cn
2 University of Chinese Academy of Sciences, Beijing, China

3 State Key Laboratory of Software Development Environment, Beihang University,
Beijing, China

{yichengp,angsheng}@buaa.edu.cn

Abstract. In this paper, we study the problem of point-to-point short-
est path query in massive complex networks. Nowadays a breadth first
search in a network containing millions of vertices may cost a few seconds
and it can not meet the demands of real-time applications. Some existing
landmark-based methods have been proposed to solve this problem in sac-
rifice of precision. However, their query precision and efficiency is not high
enough. We first present a notion of navigator, which is a data structure
constructed from the input network. Then navigation algorithm based on
the navigator is proposed to solve this problem. It effectively navigates a
path only using local information of each vertex by interacting with navi-
gator. We conduct extensive experiments in massive real-world networks
containing hundreds of millions of vertices. The results demonstrate the
efficiency of our methods. Compared with previous methods, ours can nav-
igate a shortest path with higher probability in less time.

Keywords: Navigation · Shortest path · Massive networks

1 Introduction

With the rapid development of Internet technology, a large amount of data will be
produced every day. The data contains much valuable information but analysing
it is a great challenge due to their tremendous amounts. Graph is one of the
effective ways to organize the data because it contains the relationship between
entities. There are various kinds of graphs in real world. For example, in a social
graph, users are considered as vertices and edges represent friend relationships
between each other; in a web graph, web-pages are regarded as vertices and an
edge between two vertices represents that one web-page can be accessed from
the other via the hyper-links.

This work is supported by the National Basic Research Program of China
No.2014CB340302 and the National Nature Science Foundation of China No.61772503.

c© Springer Nature Switzerland AG 2019
I. Kotsireas et al. (Eds.): SEA2 2019, LNCS 11544, pp. 82–97, 2019.
https://doi.org/10.1007/978-3-030-34029-2_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34029-2_6&domain=pdf
https://doi.org/10.1007/978-3-030-34029-2_6

Navigating a Shortest Path with High Probability 83

Shortest path or distance computation is a greatly important and funda-
mental problem in graphs. It has various applications. The distance in social
graphs indicates how close the relationship is. The shortest path and its length
in metabolic networks are used to identify an optimal pathway and valid con-
nectivity [17]. There are also indirect applications of shortest path and distance
such as locating influential users in networks [2] and detecting information source
based on a spreading model [24,25] etc.

1.1 Related Works

In the last decades, many methods have been proposed both from theoretical
and experimental communities to answer the distance query efficiently. In gen-
eral, an auxiliary data structure called distance oracle is constructed during the
preprocessing phase and, then it is used to answer the distance query. Thorup
and Zwick [19] showed that for an undirected weighted graph G = (V,E) with n
vertices and m edges and for every natural number k ≥ 1, there is a data struc-
ture S that is constructed from G in time O(kmn1/k) and space O(kn1+ 1

k) such
that every distance query can be answered in time O(k), and the approximate
distance returned from the query is within (2k − 1) times of the length of the
shortest paths. Wulff-Nilson [21] improved the query time in Thorup and Zwick
[19] from O(k) to O(log k). Chechik [5] further improved the query time in [21]
from O(log k) to O(1). Derungs, Jacob and Widmayer [8] proposed the notion
of index graph and a path finding algorithm such that both the index set and
the algorithm run in sublinear time for any pair of vertices. The algorithm finds
a path between the vertices in the graph by interacting with the index set such
that the length of the result path is at most O(log n) times of the length of the
shortest paths.

Among the experimental community, some algorithms have been proposed
to answer the shortest distance query approximately [11,15,16,20]. In general,
they also construct an auxiliary data structure from G. Some vertices are selected
heuristically as landmarks. The distances from every vertex to the landmarks
are computed and recorded. Then for every vertex pair, their distance can be
estimated by using the stored information combined with the triangle inequality.
If a shortest path is wanted [11,20], then the paths rather than only the distances
have to be stored in the auxiliary data structure.

To measure the shortest path or distance in computer networks, graph coordi-
nate systems [6,22,23] have been proposed in which a metric space is embedded
in the graph and each vertex is assigned a coordinate. In [6,22,23], they embed
each vertex into a metric space such as Hyperbolic space and Euclidean space
and then their metric functions are used to estimate the distance between any
pair of vertices.

Search-based A* method ALT [10] and other goal-oriented pruning strategies
[13,14] were proposed for road networks to accelerate the shortest path query.
They use the special properties of road networks such as near planarity, low
vertex-degree and the presence of a hierarchy based on the importance of roads.
However, it is different from the complex networks used in our experiments.

84 J. Liu et al.

1.2 Our Methods

We present a notion named navigator. It serves in a navigation algorithm, in
which, we are able to find the approximately shortest path efficiently from any
vertex to another by interacting with the navigator using only local information.
Besides the target, the local information involves only the neighbours of current
vertex during the path exploration. The distance of any neighbour to the target
can be queried by the navigator and finally a path can be explored by this
interaction. We firstly present the formal definition of navigator as follows.

Definition 1 (Navigator). Given a connected graph G = (V,E), Navigator is
a kind of data structure constructed from G which satisfies the conditions that,
for an arbitrary vertex pair u, v ∈ V (u �= v),

(i) it gives an approximate answer δ(u, v) for the distance query efficiently.
(ii) there always exists at least a neighbour w of u such that δ(w, v) < δ(u, v).

Actually, the first property of navigator is the goal of distance oracle. How-
ever, the greedy strategy, i.e., picking in each step the neighbour that has the
shortest distance to the target answered by distance oracle, may not lead to a
path to the target. For example, in a graph with a cut vertex u whose removal
makes the graph into two parts S and T , for two vertices s ∈ S and t ∈ T ,
note that every path from s to t passes through u. Since the distances answered
by distance oracle are approximate, it is possible that a neighbour of u in S
has smaller distance (to t) answers than all those in T , which makes the greedy
strategy choose that vertex when it reaches u and thus fails in finding a path
from s to t.

To overcome this defect, we add the second condition to navigator’s defini-
tion. Then under this condition, the greedy strategy will get a smaller distance
answer than that in the previous step, which guarantees the halt of the greedy
strategy. If a distance oracle can give an exact answer to the distance query,
then it will be a natural navigator. However, as far as we know, exact distance
oracles are only studied in some special class of graphs such as planar graphs
[7,9]. Most approximate distance oracles may not meet the second demand. By
using the navigator, a navigation algorithm is formulated naturally as follows.

Definition 2 (Navigation algorithm). Given a connected graph G = (V,E), and
a navigator constructed from G. Navigation algorithm is conducted as follows:
during the path exploration, each vertex in each step only has the knowledge of
the set of its local neighbours and the target. Then it selects the nearest neighbour
to the target as the vertex in next step through interacting with the navigator.

In this paper, we propose some novel navigation algorithms based on nav-
igator to solve the point-to-point shortest path query problem, which will be
introduced in Sect. 3.2. Extensive experiments have been conducted in massive
networks. The results demonstrate that our methods have higher precision and
better query efficiency. In some instances, the query time of our method is about
10 times faster than previous methods and the precision of the query results is
about 20% higher on average.

Navigating a Shortest Path with High Probability 85

1.3 Outlines

In Sect. 2, we give an overview of some existing landmark-based methods. Then
we present our algorithms in Sect. 3 in detail. In Sect. 3.1, we will describe the
method to construct the navigator. Then the navigation algorithm will be intro-
duced in Sect. 3.2. In Sect. 4, we show the experimental results. Finally, we give
our conclusion in Sect. 5.

2 Preliminary

Let G = (V,E) denote a graph with n = |V | vertices and m = |E| edges. For
simplicity of description, we shall consider an undirected and unweighted graph,
although our method can be applied to weighted directed graphs as well.

A path π(s, t) of length l between two vertices s, t ∈ V is defined as a sequence
π(s, t) = (s, u1, u2, ..., ul−1, t). We denote the length l of a path π(s, t) as |π(s, t)|.
The concatenation of two paths π(s, r) = (s, ..., r) and π(r, t) = (r, ..., t) is the
combined path π(s, t) = π(s, r) + π(r, t) = (s, ..., r, ..., t). The shortest distance
dG(s, t) between vertices s and t in G is defined as the length of the shortest
path between s and t. Then it satisfies the triangle inequality: for any r ∈ V ,

|dG(s, r) − dG(r, t)| ≤ dG(s, t) ≤ dG(s, r) + dG(r, t). (1)

These two bounds can both be used to estimate the shortest distance between
any pair of vertices. But previous work [15] indicates that lower-bound estimates
are not as accurate as the upper-bound ones. Furthermore, If a vertex set R =
{r1, r2, ..., rk} is selected as the landmarks, then more accurate estimation can
be obtained through:

δ(s, t) = min
ri∈R

{dG(s, ri) + dG(ri, t)}. (2)

Note that this approach only allows us to compute an approximate distance,
but does not provide a way to retrieve the path itself. In order to retrieve a path,
a direct way is the concatenation of the path to the landmark in the shortest path
trees T = {T1, T2, ..., Tk} rooted by R = {r1, r2, ..., rk} respectively. So during
the construction of each Ti, in each vertex v, we not only store the distance to
the landmark ri, but also the shortest path PTi

(v, ri) in Ti. Then the path can
be estimated by:

|πT (s, t)| = min
ri

{|πTi(s, ri) + πTi(ri, t)|}, (3)

However, it is not accurate enough. Some improvements have been proposed
[11,20]. They utilize the constructed shortest path trees further, such as finding
the lowest common ancester and possible shortcut, eliminating a possible cycle.
Their best techniques are called TreeSketch [11] and Landmarks-BFS [20], both
of which use online search to improve the accuracy. TreeSketch is a sketch-based
method. The sketch of each vertex v stores the shortest path to the landmarks

86 J. Liu et al.

and it can be organized as a tree rooted by v denoted by Tv, in which the
landmarks are the leaf vertices. For a query q = (s, t), TreeSketch performs a
bidirectional expansion on Ts and Tt following a breadth-first search order. Let
Vs and Vt denote the sets of visited vertices from two sides, respectively. Consider
u ∈ Ts and v ∈ Tt that are two vertices under expansion in the current iteration.
TreeSketch checks if there is an edge from u to a vertex in Vt or from a vertex
in Vs to v. If it is true, then a path between s and t is found and added to a
queue Q. Denote the length of the shortest path in Q by lshortest, the algorithm
terminates if d(s, u)+d(v, t) ≥ lshortest. For a query between s and t, Landmarks-
BFS uses the vertices in the set of paths (πT1(s, r1) + πT1(r1, t), πT2(s, r2) +
πT2(r2, t), ..., πTk(s, rk) + πTk(rk, t)) to construct an induced subgraph G′ from
G and then a BFS routine is conducted in G′ to find a path.

3 Algorithm Description

In this section, we give a detailed description of our methods. Firstly we intro-
duce a method to construct the navigator and then describe several navigation
algorithms.

3.1 Navigator

As described in Definition 1, a navigator has to be able to answer the distance
query efficiently, the same as distance oracle does. For the second condition,
let us consider the shortest path tree T of G. We say that the tree path (or
T -path πT when the tree is denoted by T) between two vertices is the unique
path between them on the tree. The length of this tree path is called the tree
distance. Note that the T -paths in any branch of T are exactly shortest paths
in G and the distance in T can be easily and efficiently obtained.

Suppose that we are given k shortest path trees (SPTs) T1, T2, · · · , Tk of G.
Denote by k-SPT the set of these k SPTs. The distance δ(s, t) in k-SPT can be
defined as:

δ(s, t) = min
Ti∈T

|πTi(s, t)| = min
ci

{|πTi(s, ci) + πTi(ci, t)|}, (4)

where ci is the lowest common ancestor (LCA) between s and t in Ti.
Define the answer to the distance query between two vertices u and v as the

distance δ(u, v) in k-SPT. Then we have the following lemma.

Lemma 1. For any positive integer k, k-SPT is a navigator.

Proof. Since the k-SPT answers the distance query by returning the shortest
tree distance among the k trees, the first condition of the navigator’s definition
is satisfied. For the second condition, at any step, suppose that vertex u is
being visited and T is the SPT that contains the shortest tree distance. So the
neighbour of u that is also on the (unique) path from u to the target on T has
shorter tree distance. This meets the second condition of navigator’s definition.

Navigating a Shortest Path with High Probability 87

Obviously, k-SPT can be constructed in time O(km). Owing to the frequent
interactions in the navigation algorithm, the navigator has to be able to answer
the distance query fast. We store two parts in each vertex for each SPT, in which
the first one is the parent vertex in SPT and the second is the distance to the
root as illustrated in Fig. 1. So the space complexity is O(kn). In each Ti rooted
by ri, we store a label Li(v) = {(pi[v], dG(v, ri))} in each vertex v, where pi[v]
indicates the parent vertex in Ti. Then L(v) =

⋃
Li(v) and L =

⋃
L(v). L is

our navigator.

1

2 34 5

6 7 89 10

11

(0,0)

(1,1) (1,1)(1,1) (1,1)

(4,2)

(4,2)

(2,2)(2,2) (3,2)
(7,3)

Fig. 1. An example of a navigator containing one SPT T of G. In this figure, the solid
lines are the edges in T and the dotted lines are the edges of the graph that are outside
of T . The first number in the label of each vertex indicates the parent vertex in T and
the second one indicates the shortest distance to the root of T .

Algorithm 1 describes the details of distance query process in the navigator.
Actually, it computes the k-SPT distance using the labels stored in each vertex.
L[v][i][0] indicates the parent vertex pi[v] in Ti and L[v][i][1] indicates the dis-
tance to ri in vertex v. For each Ti, we search up to the root using the parent
vertex stored in the label both from s and t to find the lowest common ances-
tor between them. Then we will get the shortest path distance in Ti. Finally
we choose a smallest distance in all k-SPT as the output of T -paths distance δ.
Suppose that the diameter of the network is D, then the time complexity of nav-
igator is O(k ·D). In many real-world complex networks, D is very small. So this
operation is quite efficient. Note that if s and t are in the same branch of some
Ti, the distance in Ti is already the shortest and we will directly return this
distance. In our experiments, this happens quite often for real-world complex
networks, which speeds up the query.

If navigator can give a more accurate answer, then navigation algorithm
will find a shorter path. Heuristically for k-SPT, the roots play a critical role
for its accuracy. Some landmark-based methods [11,15,20] aim to select some
vertices with high centrality. We also follow these strategies. Here we choose three

88 J. Liu et al.

Algorithm 1. compute the approximate distance δ(s, t) through navigator.
Input: navigator L, vertex s and t.
1: procedure Navigator(s, t)
2: for i ∈ {1, 2, · · · , k} do
3: ps ←− L[s][i][0], pt ←− L[t][i][0].
4: ds ←− L[s][i][1], dt ←− L[t][i][1].
5: while ds < dt do
6: dt ←− dt − 1, pt ←− L[pt][i][0].

7: while dt < ds do
8: ds ←− ds − 1, ps ←− L[ps][i][0].

9: while ps �= pt do
10: ps ←− L[ps][i][0], pt ←− L[pt][i][0].
11: ds ←− ds − 1.

12: δi(s, t) = L[s][i][1] + L[t][i][1] − 2 ∗ ds.

13: Denote δ(s, t) is the shortest path among all δi(s, t).
14: return δ(s, t)

centralities: random, degree and closeness. Among them, closeness centrality is
an estimation calculated using the method in [15].

3.2 Navigation Algorithms

In this section, we will introduce some navigation algorithms based on naviga-
tors. As described in Definition 2, in each step of the path exploration, the vertex
selects one or several vertices which are closest to the target among all its neigh-
bours, then it decides which of them to be the vertices in next step. We consider
two extreme strategies. The first is that the vertex randomly selects one of them
to be the next hop and it will eventually find a unique path. We call this method
navigating single path (NSP). The second is that the vertex selects all of them
and this may lead to multiple paths with the same length. We call this navigating
multiple paths (NMP). There is only one vertex during each step in NSP but two
or more vertices may exist during each step in NMP. So it may cost more time
but get better results in NMP. Furthermore, two techniques for improvement
will be introduced. One is navigation from both two directions successively. The
second is that we collect the vertices explored during the navigation process and
construct an induced subgraph on them, in which a BFS routine is conducted to
find a path. Both two techniques obviously improve the precision of navigation
algorithm.

Navigating Single Path. Algorithm 2 shows an overview on how to navigate
a single path. The variable dist maintains the distance from current vertex to
the target. It will continue to decrease to zero when reaching the target. During
each step, the vertex finds a next hop closest to the target among its neighbours.

It seems that someone is walking along the tree path and meanwhile searching
among his neighbours in order to find a shortcut to the target. Figure 2 illustrates

Navigating a Shortest Path with High Probability 89

Algorithm 2. Navigation single path from source s to target t

Input: Graph G = (V, E), navigator L, vertex s and t.
Output: A path π(s, t) between s and t.
1: current hop ←− s.
2: π(s, t) ←− (s).
3: Query the distance δ(s, t) between s and t through navigator.
4: dist ←− δ(s, t).
5: while current hop �= t do
6: for each neighbour w of vertex current hop do
7: Query the distance δ(w, t) between w and t through navigator.
8: if δ(w, t) < dist then
9: dist ←− δ(w, t).

10: next hop ←− w.

11: current hop ←− next hop.
12: Append vertex current hop to π(s, t).

an example of Algorithm 2. When we conduct navigation in this graph from
source vertex 6 to target vertex 10, we will get a path (6, 3, 10) whose length is
2 because vertex 3 is nearer to the target 10 than vertex 4 in this SPT among
vertex 6’s neighbours {3, 4}. Denote by N(p) the neighbours set of the vertices
in the path p found by Algorithm 2 and by D the diameter of network G. k-SPT
gives an answer in time O(k·D). Then the overall time complexity of Algorithm 2
is O(k · D · |N(p)|).

1

2 34 5

6 7 89 10

11

(0,0)

(1,1) (1,1)(1,1) (1,1)

(4,2)

(4,2)

(2,2)(2,2) (3,2)
(7,3)

1

2 34 5

6 7 89 10

11

(0,0)

(1,1) (1,1)(1,1) (1,1)

(4,2)

(4,2)

(2,2)(2,2) (3,2)
(7,3)

1

2 34 5

6 7 89 10

11

(0,0)

(1,1) (1,1)(1,1) (1,1)

(4,2)

(4,2)

(2,2)(2,2) (3,2)
(7,3)

Fig. 2. An example of a navigation process from one direction using a navigator con-
taining one SPT. The red vertices indicate the target and the green vertices indicate
the traversed vertices. The navigation process is conducted from left to right. At first,
vertex 6 interacts with the navigator to obtain the distance between its neighbours and
target 10. Then it selects vertex 3 as the next hop and finally a path to the target 10 is
found. The red edges indicate a path from source 6 to target 10. (Color figure online)

Navigating Multiple Paths. Algorithm 3 shows the detail of the algorithm of
navigating multiple paths. The difference from Algorithm2 is that during each
step, the current vertex v selects all the vertices who are closest to the target
among v’s neighbours as the vertices in next step. Then each vertex in the next

90 J. Liu et al.

step repeats the navigation process until reaching the target. So NMP may find
multiple paths and explore more vertices to find more shortcuts in order to
obtain the shorter paths. In Algorithm3, pred[v] is used to indicate vertex v’s
predecessors in the multiple paths that we find. So we are able to recover all the
paths from s to t by getting t’s predecessors recursively.

Algorithm 3. Navigating multiple paths from source s to target t

Input: Graph G = (V, E), navigator L, vertex s and t.
Output: A set of path π(s, t).
1: current hops ←− {s}.
2: Query the distance δ(s, t) between s and t through navigator.
3: dist ←− δ(s, t).
4: while t /∈ current hops do
5: next hops ←− ∅.
6: for each v ∈ current hops do
7: for each neighbour w of vertex v do
8: Query the distance δ(w, t) between w and t through navigator.
9: if δ(w, t) < dist then

10: dist ←− δ(w, t).
11: next hops ←− {w}.
12: pred[w] ←− {v}.
13: else
14: if δ(w, t) = dist then
15: next hops ←− next hops ∪ {w}.
16: pred[w] ←− pred[w] ∪ {v}.

17: current hops ←− next hops.

18: Recursively recover a set of path beginning from pred[t].

Navigation from Two Directions. To improve the accuracy, we navigate
from both two directions and may get two different paths and then choose the
shorter one as the answer. The two methods described above can both adopt
this optimization technique. We call these two methods with improvement Two-
way Navigating Single Path (TNSP) and Two-way Navigating Multiple Paths
(TNMP), respectively.

We compare our methods with previous ones by illustrating an example in
Fig. 3. In TreeSketch, the search proceeds along the path in the tree and it gets a
path between vertex 11 and 2 (11, 7, 4, 1, 2) in Fig. 3. In Landmarks-BFS, it also
only utilizes the vertices in the tree and get a path (11, 7, 4, 1, 2). Different from
them, our methods can utilize the vertices outside the path in the tree and find
more short cuts to get a shorter path.

BFS in Induced Subgraph After Navigation. When we conduct a two-
way navigating single path (TNSP) process, we collect the explored neighbours

Navigating a Shortest Path with High Probability 91

1

2 34 5

6 7 89 10

11

(0,0)

(1,1) (1,1)(1,1) (1,1)

(4,2)

(4,2)

(2,2)(2,2) (3,2)
(7,3)

1

2 34 5

6 7 89 10

11

(0,0)

(1,1) (1,1)(1,1) (1,1)

(4,2)

(4,2)

(2,2)(2,2) (3,2)
(7,3)

1

2 34 5

6 7 89 10

11

(0,0)

(1,1) (1,1)(1,1) (1,1)

(4,2)

(4,2)

(2,2)(2,2) (3,2)
(7,3)

1

2 34 5

6 7 89 10

11

(0,0)

(1,1) (1,1)(1,1) (1,1)

(4,2)

(4,2)

(2,2)(2,2) (3,2)
(7,3)

1

2 34 5

6 7 89 10

11

(0,0)

(1,1) (1,1)(1,1) (1,1)

(4,2)

(4,2)

(2,2)(2,2) (3,2)
(7,3)

1

2 34 5

6 7 89 10

11

(0,0)

(1,1) (1,1)(1,1) (1,1)

(4,2)

(4,2)

(2,2)(2,2) (3,2)
(7,3)

Fig. 3. An example of navigation process (TNSP) from two directions using navigator
containing one SPT. The first three subfigures in the first row indicate the navigation
process from 11 to 2. The last three subfigures in the second row indicate the navigation
process from 2 to 11. When we conduct navigation in G from vertex 11 to vertex 2, we
finally get a path (11, 9, 2) whose length is 2, while when navigating from vertex 2 to
11, we get a path (2, 1, 4, 7, 11) whose length is 4. They are two totally different paths.

of the two found paths p1 and p2. Then we construct an induced subgraph GV ′

on vertex set V ′ = p1 ∪ p2 ∪ N(p1) ∪ N(p2). Finally we conduct a BFS routine
in GV ′ to find a shorter path. Although it is a bit more complex and costly, it
will significantly improve the precision of the results because more vertices and
edges are explored. We call this technique N+. The time complexity of N+ is
linear with the size of GV ′ .

4 Experiments

In this section, we present the results of experiments. In our experiments, we
mainly consider three performance indicators: precision, stretch ratio and query-
ing time. We adopt the same way of constructing the shortest path tree, so
we omit the comparison of the indexing time and size of different methods. In
the label of each vertex, we use 4 bytes to store the vertices ID and 1 byte to
store the shortest distance to the root. We compare with two previous methods:
TreeSketch (TS) [11], Landmarks-BFS (LB) [20].

4.1 Datasets and Environment Description

Datasets. The datasets used in our experiments can be found at Koblenz Net-
work Collection [1], Laboratory for Web Algorithmics [3,4], Network Repository
[18] and Stanford Large Network Dataset Collection [12]. We treat all graphs as
undirected graphs. Table 1 describes the detailed information of datasets used

92 J. Liu et al.

in our experiments. The table shows the number of vertices |V |, the number of
edges |E| and the average distance d̄ (computed on sampled vertex pairs).

Environment. We conduct our experiments on a Linux Server with Intel(R)
Xeon(R) CPU E7-8850 (2.30 GHz) and 1024 GB main memory. All the algo-
rithms are implemented using C++ and compiled using gcc 5.4.0 with O3 option.
In our experiments, we compute the shortest distances of randomly selecting
10000 vertex pairs as the benchmarks.

Table 1. Datasets used in experiments

Network Type |V | |E| d̄

orkut Social 2997166 106349209 4.25

uk-2002 Web 18459128 261556721 7.61

it-2004 web 29905049 698354804 5.9

socfb-konect Social 58790782 92208195 7.86

soc-friendster Social 65608366 1806067135 4.99

uk-2007 Web 105060524 3315357859 6.9

4.2 Evaluation Metrics

Precision. Denote the query set by Q. The precision of a method M for a
network G is the frequency of the vertex pair (s, t) ∈ Q satisfying δM(s, t) =
dG(s, t). It is strict because it requires that the method actually finds the shortest
path.

Stretch Ratio. For a vertex pair (s, t), the stretch ratio of a network G for a
method M can be defined as R(s, t) = δM(s, t)/dG(s, t), Then for the query set
Q, the average stretch (AS) ratio can be defined as: RAS =

∑

(s,t)∈Q

R(s, t)/|Q|.
Also, the max stretch (MS) ratio can be defined as, RMS = max

(s,t)∈Q
R(s, t).

4.3 Analysis

In this section, we give a detailed analysis about the experimental results. For the
problem studied in this paper, we mainly focus on the accuracy and efficiency.
The performance of all methods is related to two factors: the number of SPT k,
the strategy of roots of SPT. For convenient comparison with other methods, we
fix k = 20 and select the same roots following the strategy of descending degree.
We list these comparison results in Tables 2, 3 and 4 in which three performance
indicators will be compared: precision, stretch ratio, query time. Then the per-
formance of the navigator will be listed in Table 5. Finally we will present the
precision comparison on different k and different strategies of selecting roots of
SPT in Fig. 4.

Navigating a Shortest Path with High Probability 93

Table 2. Precision of all methods when k = 20 and selecting the roots as the descending
degree of vertices.

Networks Precision

TS LB NSP NMP TNSP TNMP N+

soc-orkut 0.58 0.60 0.60 0.69 0.69 0.79 0.90

uk-2002-lcc 0.67 0.70 0.69 0.77 0.81 0.88 0.92

it-2004-lcc 0.52 0.54 0.56 0.63 0.70 0.77 0.92

socfb-konect 0.23 0.25 0.41 0.51 0.55 0.66 0.60

soc-friendster 0.20 0.21 0.26 0.43 0.38 0.58 0.84

uk-2007 0.39 0.41 0.51 0.60 0.65 0.75 0.85

Precision. From Table 2, we know that our methods NMP, TNSP, TNMP and
N+ have higher precision than previous methods in massive networks and NSP
has comparable precision. Among them, N+ has the best precision which is about
30% higher than Landmarks-BFS and reaches up to 80% in most networks when
we construct k = 20 SPTs. Furthermore, we can nearly get a relationship of the
precision among all the methods: TS < LB < NSP < NMP < TNSP < TNMP
< N+ from Table 2. The reason is that our methods can use more edges not only
in the k-SPT than previous methods.

Stretch Ratio. Table 3 presents the average stretch ratio and max stretch ratio
of all methods. Overall, our methods not only have lower average stretch ratio

Table 3. Stretch ratio of all methods when k = 20 and selecting the roots as the
descending degree of vertices.

Networks TS LB NSP TNSP NMP TNMP N+

soc-orkut RAS 1.13 1.12 1.11 1.08 1.08 1.06 1.02

RMS 2.00 2.00 2.00 2.00 2.00 2.00 1.50

uk-2002-lcc RAS 1.05 1.05 1.05 1.03 1.03 1.02 1.01

RMS 2.00 2.00 2.00 1.50 2.00 1.43 1.50

it-2004-lcc RAS 1.13 1.12 1.10 1.08 1.06 1.04 1.01

RMS 2.33 2.33 2.00 2.00 2.00 1.75 1.75

socfb-konect RAS 1.19 1.19 1.12 1.09 1.08 1.06 1.07

RMS 2.50 2.50 1.83 1.83 1.67 1.67 1.67

soc-friendster RAS 1.22 1.22 1.18 1.13 1.14 1.09 1.03

RMS 2.00 2.00 2.00 1.67 2.00 1.67 1.60

uk-2007 RAS 1.13 1.13 1.10 1.07 1.06 1.04 1.02

RMS 2.00 2.00 2.00 1.60 1.80 1.60 1.60

94 J. Liu et al.

but also decrease the max stretch ratio RMS to below 2 in all the networks of
our experiments.

Query Time. From Table 4, we know that our methods except N+ is faster
than existing methods in most networks. They run in milliseconds in networks
containing tens of millions vertices. A BFS routine costs tens of hundreds of
milliseconds. Its speedup reaches dozens of times. The method N+ has the lowest
query efficiency but is still faster than BFS.

Table 4. Query time of all methods when k = 20 and selecting the roots as the
descending degree of vertices.

Networks Query time [ms] BFS [ms]

TS LB NSP TNSP NMP TNMP N+

soc-orkut 4.49 2.00 1.49 5.14 2.69 10.25 38.80 238.49

uk-2002-lcc 28.21 15.86 2.14 3.76 4.23 7.51 44.82 759.49

it-2004-lcc 70.85 51.80 9.27 15.18 18.22 30.32 199.44 1176.42

socfb-konect 88.10 44.09 2.58 5.74 5.06 11.98 57.35 1540.80

soc-friendster 224.99 111.78 5.64 33.97 11.20 70.39 173.27 12321.30

uk-2007 170.85 98.09 18.24 27.84 36.73 56.17 479.11 5967.10

Performance on Navigator. We present the construction cost and query effi-
ciency of navigator in Table 5 under different strategies. From Table 5 we know
that closeness obviously costs nearly 5 times more than degree and random and
the precision is also higher than other two strategies. Note that in some net-
works, navigator can give a correct answer with probability higher than 60% if
we choose the closeness strategy.

Table 5. The cost and query time of navigator under different strategies when k = 20.
NS indicates the size of navigator. CT indicates the construction time of navigator.
QT indicates the query time of navigator.

Networks NS [MB] CT [s] QT [ms] Precision

deg ran close deg ran close deg ran close

soc-orkut 457.33 37 38 174.19 0.01 0.01 0.01 0.45 0.34 0.53

uk-2002-lcc 2816.64 100 93 274.84 0.01 0.01 0.01 0.41 0.43 0.61

it-2004-lcc 4563.15 165 180 526.48 0.01 0.01 0.01 0.29 0.46 0.59

socfb-konect 8970.76 304 291 790.33 0.01 0.02 0.01 0.16 0.10 0.23

soc-friendster 10011.04 1669 1678 5933.66 0.03 0.03 0.03 0.06 0.03 0.09

uk-2007 16030.96 861 855 2846.01 0.01 0.01 0.01 0.25 0.45 0.60

Navigating a Shortest Path with High Probability 95

Fig. 4. Precision of all methods when using different number of roots and selecting
roots with different strategies.

Performance on the Number and Strategy of Selecting Roots. We con-
struct up to k = 50 shortest path trees in navigator. From Fig. 4, we know that
the precision of each method is higher when k is larger and if we select the land-
marks following the closeness centrality strategy, the precision of the method
will be higher. In general, the curve of our methods in Fig. 4 is all above the
curve of previous methods in most networks. When k = 50, the precision of our
methods reaches 80% in most networks. Among them, the precision of N+ even
reaches 90% in most networks. Overall, closeness strategy for selecting roots of
SPT can get higher query precision.

5 Conclusion

In this paper, we propose navigation algorithms based on navigator for shortest
path queries in massive complex networks. Compared with the previous methods,
extensive experimental results show that our methods TMP, TNSP and TNMP
have better performance not only in precision which means to find a shortest
path with higher probability, but also in query efficiency which means to answer
the query faster. To achieve higher precision, we propose the method N+ and it
navigates a shortest path with probability higher than 80% in most real networks.
Based on the feature of navigation algorithms, we believe that it is not hard to
design a corresponding distributed algorithm and we will work on it in the next

96 J. Liu et al.

project. Moreover, a good navigator is beneficial to the navigation algorithm. So
it is worth studying to design better navigator in the future.

References

1. Konect network dataset (2017). http://konect.uni-koblenz.de
2. Backstrom, L., Huttenlocher, D.P., Kleinberg, J.M., Lan, X.: Group formation in

large social networks: membership, growth, and evolution. In: Proceedings of the
Twelfth ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, Philadelphia, PA, USA, 20–23 August 2006, pp. 44–54 (2006)

3. Boldi, P., Rosa, M., Santini, M., Vigna, S.: Layered label propagation: a multireso-
lution coordinate-free ordering for compressing social networks. In: Srinivasan, S.,
Ramamritham, K., Kumar, A., Ravindra, M.P., Bertino, E., Kumar, R. (eds.) Pro-
ceedings of the 20th International Conference on World Wide Web, pp. 587–596.
ACM Press (2011)

4. Boldi, P., Vigna, S.: The WebGraph framework I: compression techniques. In:
Proceedings of the Thirteenth International World Wide Web Conference (WWW
2004), pp. 595–601. ACM Press, Manhattan, USA (2004)

5. Chechik, S.: Approximate distance oracles with constant query time. In: Sympo-
sium on Theory of Computing, STOC 2014, New York, NY, USA, 31 May–03 June
2014, pp. 654–663 (2014)

6. Cheng, J., Zhang, Y., Ye, Q., Du, H.: High-precision shortest distance estimation
for large-scale social networks. In: 35th Annual IEEE International Conference
on Computer Communications, INFOCOM 2016, San Francisco, CA, USA, 10–14
April 2016, pp. 1–9 (2016)

7. Cohen-Addad, V., Dahlgaard, S., Wulff-Nilsen, C.: Fast and compact exact dis-
tance oracle for planar graphs. In: 58th IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2017, Berkeley, CA, USA, 15–17 October 2017, pp.
962–973 (2017)

8. Derungs, J., Jacob, R., Widmayer, P.: Approximate shortest paths guided by a
small index. Algorithmica 57(4), 668–688 (2010)

9. Gawrychowski, P., Mozes, S., Weimann, O., Wulff-Nilsen, C.: Better tradeoffs
for exact distance oracles in planar graphs. In: Proceedings of the Twenty-
Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New
Orleans, LA, USA, 7–10 January 2018, pp. 515–529 (2018)

10. Goldberg, A.V., Harrelson, C.: Computing the shortest path: a search meets graph
theory. In: Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SODA 2005, Vancouver, British Columbia, Canada, 23–25 Jan-
uary 2005, pp. 156–165 (2005)

11. Gubichev, A., Bedathur, S.J., Seufert, S., Weikum, G.: Fast and accurate estima-
tion of shortest paths in large graphs. In: Proceedings of the 19th ACM Confer-
ence on Information and Knowledge Management, CIKM 2010, Toronto, Ontario,
Canada, 26–30 October 2010, pp. 499–508 (2010)

12. Leskovec, J., Krevl, A.: SNAP Datasets: Stanford large network dataset collection,
June 2014. http://snap.stanford.edu/data

13. Maue, J., Sanders, P., Matijevic, D.: Goal-directed shortest-path queries using
precomputed cluster distances. ACM J. Exp. Algor. 14, 27 pages (2009). Article
3.2

http://konect.uni-koblenz.de
http://snap.stanford.edu/data

Navigating a Shortest Path with High Probability 97

14. Möhring, R.H., Schilling, H., Schütz, B., Wagner, D., Willhalm, T.: Partitioning
graphs to speed up Dijkstra’s Algorithm. In: Nikoletseas, S.E. (ed.) WEA 2005.
LNCS, vol. 3503, pp. 189–202. Springer, Heidelberg (2005). https://doi.org/10.
1007/11427186 18

15. Potamias, M., Bonchi, F., Castillo, C., Gionis, A.: Fast shortest path distance
estimation in large networks. In: Proceedings of the 18th ACM Conference on
Information and Knowledge Management, CIKM 2009, Hong Kong, China, 2–6
November 2009, pp. 867–876 (2009)

16. Qiao, M., Cheng, H., Chang, L., Yu, J.X.: Approximate shortest distance com-
puting: a query-dependent local landmark scheme. In: IEEE 28th International
Conference on Data Engineering (ICDE 2012), Washington, DC, USA (Arlington,
Virginia), 1–5 April, 2012, pp. 462–473 (2012)

17. Rahman, S.A., Schomburg, D.: Observing local and global properties of metabolic
pathways: “load points” and “choke points” in the metabolic networks. Bioinfor-
matics 22(14), 1767–1774 (2006)

18. Rossi, R.A., Ahmed, N.K.: The network data repository with interactive graph
analytics and visualization (2015). http://networkrepository.com

19. Thorup, M., Zwick, U.: Approximate distance oracles. J. ACM 52(1), 1–24 (2005)
20. Tretyakov, K., Armas-Cervantes, A., Garćıa-Bañuelos, L., Vilo, J., Dumas, M.:

Fast fully dynamic landmark-based estimation of shortest path distances in very
large graphs. In: Proceedings of the 20th ACM Conference on Information and
Knowledge Management, CIKM 2011, Glasgow, United Kingdom, 24–28 October
2011, pp. 1785–1794 (2011)

21. Wulff-Nilsen, C.: Approximate distance oracles with improved query time. In: Pro-
ceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2013, New Orleans, Louisiana, USA, 6–8 January 2013, pp. 539–549
(2013)

22. Zhao, X., Sala, A., Zheng, H., Zhao, B.Y.: Efficient shortest paths on massive social
graphs. In: 7th International Conference on Collaborative Computing: Networking,
Applications and Worksharing, CollaborateCom 2011, Orlando, FL, USA, 15–18
October 2011, pp. 77–86 (2011)

23. Zhao, X., Zheng, H.: Orion: shortest path estimation for large social graphs. In: 3rd
Workshop on Online Social Networks, WOSN 2010, Boston, MA, USA, 22 June
2010 (2010)

24. Zhou, C., Lu, W., Zhang, P., Wu, J., Hu, Y., Guo, L.: On the minimum differentially
resolving set problem for diffusion source inference in networks. In: Proceedings of
the Thirtieth AAAI Conference on Artificial Intelligence, Phoenix, Arizona, USA,
12–17 February 2016, pp. 79–86 (2016)

25. Zhu, K., Ying, L.: Information source detection in the SIR model: a sample-path-
based approach. IEEE/ACM Trans. Netw. 24(1), 408–421 (2016)

https://doi.org/10.1007/11427186_18
https://doi.org/10.1007/11427186_18
http://networkrepository.com

Engineering a PTAS for Minimum
Feedback Vertex Set in Planar Graphs

Glencora Borradaile, Hung Le(B), and Baigong Zheng

Oregon State University, Corvallis, OR, USA
{glencora,lehu,zhengb}@oregonstate.edu

Abstract. We investigate the practicality of approximation schemes for
optimization problems in planar graphs based on balanced separators.
The first polynomial-time approximation schemes (PTASes) for problems
in planar graphs were based on balanced separators, wherein graphs are
recursively decomposed into small enough pieces in which optimal solu-
tions can be found by brute force or other methods. However, this tech-
nique was supplanted by the more modern and (theoretically) more effi-
cient approach of decomposing a planar graph into graphs of bounded
treewidth, in which optimal solutions are found by dynamic program-
ming. While the latter approach has been tested experimentally, the
former approach has not.

To test the separator-based method, we examine the minimum feed-
back vertex set (FVS) problem in planar graphs. We propose a new,
simple O(n logn)-time approximation scheme for FVS using balanced
separators and a linear kernel. The linear kernel reduces the size of
the graph to be linear in the size of the optimal solution. In doing so,
we correct a reduction rule in Bonamy and Kowalik’s linear kernel [11]
for FVS. We implemented this PTAS and evaluated its performance on
large synthetic and real-world planar graphs. Unlike earlier planar PTAS
engineering results [8,36], our implementation guarantees the theoretical
error bounds on all tested graphs.

Keywords: Feedback vertex set · Planar graph algorithms ·
Approximation schemes · Algorithm engineering

1 Introduction

A polynomial-time approximation scheme (PTAS) is a (1 + ε)-approximation
algorithm that runs in polynomial time for any fixed parameter ε > 0. The
development of PTASes for optimization problems in planar graphs has been an
active area of study for decades, with the development of PTASes for increas-
ing complicated problems, including maximum independent set [33], minimum
vertex cover [5], TSP [4,29], Steiner tree [12] and Steiner forest [7,20].

This material is based upon work supported by the National Science Foundation under
Grant No. CCF-1252833.

c© Springer Nature Switzerland AG 2019
I. Kotsireas et al. (Eds.): SEA2 2019, LNCS 11544, pp. 98–113, 2019.
https://doi.org/10.1007/978-3-030-34029-2_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34029-2_7&domain=pdf
https://doi.org/10.1007/978-3-030-34029-2_7

Engineering a PTAS for Minimum Feedback Vertex Set in Planar Graphs 99

The first PTAS for a planar graph optimization problem was for maximum
independent set [33], and was an early application of Lipton and Tarjan’s bal-
anced planar separators [32]: recursively apply the balanced separator, deleting
the vertices of the separator as you go, until each piece is small enough to find
a maximum independent set by brute force. This balanced-separator technique
was shown applicable to a host of other planar graph optimization problems,
including minimum vertex cover [14], TSP [4], minimum-weight connected ver-
tex cover [16] and minimum-weight connected dominating set [16].

Lipton and Tarjan mentioned in their paper [33] that they could obtain “an
O(n log n) algorithm with O(1/

√
log log n) relative error” for maximum indepen-

dent set in planar graphs. By setting ε = c log log n where c is some constant,
one would obtain a PTAS for maximum independent set only when n is very
large, i.e. 22

O(1/ε2)
. This is critiqued in literature. For example, Chiba, Nishizeki

and Saito [15] said the following:

“It should be noted that, although the algorithm of Lipton and Tarjan can
also guarantee the worst case ratio 1

2 , the number n of vertices must be
quite huge, say 22

400
, so the algorithm is not practical.”

And this was cited by Baker in her seminal paper [5] and by Demaine and
Hajiaghayi [18] as the main disadvantage of separator-based technique.

Modern PTAS design in planar graphs instead decompose the graph into
pieces of bounded treewidth and then use dynamic programming over the result-
ing tree decomposition to solve the problem. This technique has been used for
most of the problems listed above and produces running times of the form

O
(
21/εO(1)

nO(1)
)

(1)

which are described as (theoretically) efficient. Indeed, for strongly NP-hard
problems, these running times are optimal, up to constants.

Most likely for the above two reasons, experimental study of planar PTASes
has been entirely restricted to treewidth-based techniques [8,36] rather than
separator-based techniques. However, we argue that the separator-based algo-
rithm can be practical:

1. Although the decomposition step in the separator-based method is compara-
tively more complicated, balanced separators have been experimentally shown
to be highly practical [2,23,25].

2. The hidden constants in treewidth-based PTASes are usually very large [8,36],
while the hidden constants in separator-based method are very reasonable.

3. The practical bottleneck for treewidth-based PTASes is decidedly the
dynamic programming step [8,34,36]; further, the dynamic programs are com-
plicated to implement and require another level of algorithmic engineering to
make practical, which may be avoided in some separator-based PTASes.

4. Modern planar PTAS designers have critiqued separator-based methods
as only able to obtain a good approximation ratio in impractically large
graphs [5,15,18] as mentioned above. However, as we will illustrate for FVS,
one can relate the error to largest component in the resulting decomposition
instead of the original graph, overcoming this issue.

100 G. Borradaile et al.

5. Separator-based PTASes require the input graph to be linear in the size of
an optimal solution in order to bound the error [24]. However, one can use
linear-based kernels to achieve this, as mentioned by Demaine, Hajiaghayi
and Kawarabayashi [17] and we illustrate herein for FVS. Given the recent
explosion of kernelization algorithms [10,21,22], we believe that separator-
based PTASes may experience a renewal of research interest.

1.1 Case Study: Feedback Vertex Set

We illustrate our ideas on the minimum feedback vertex set (FVS) problem which
asks for a minimum set of vertices in an undirected graph such that after remov-
ing this set leaves an acyclic graph (a forest). We use this problem for three
reasons: First, FVS is a classical optimization problem: it is one of Karp’s 21
original NP-Complete problems [28] and has applications in disparate areas, from
deadlock recovery in operating systems to reducing computation in Bayesian
inference [6]. Second, there are no existing PTAS implementations for this prob-
lem. Third, the existing (theoretical) PTASes for this problem are either too
complicated to implement (such as using the bidimensionality framework [18],
relying on dynamic programming over tree decompositions) or not sufficiently
efficient (such as the local search PTAS [31] with running time of the form
nO(1/ε)).

To this end, we propose a simple-to-implement O(n log n) PTAS for FVS in
planar graphs that uses a linear kernel to address issues (4) and (5) above. Our
experimental results show that our PTAS can find good solutions and achieve
better approximation ratios than those theoretical guaranteed on all the graphs
in our test set.

Theoretical Contributions. Our theoretical contributions are two-fold. First, we
show that a reduction rule of Bonamy and Kowalik’s 13k-kernel [11] for planar
FVS is incorrect. We offer a correction based on a reduction rule from Abu-
Khzam and Khuzam’s linear kernel [1] for the same problem (Sect. 3). Second,
we show a simple separator-based PTAS for FVS, which runs in O(n log n) time
(Sect. 4). Our PTAS starts with a linear kernel for planar FVS and then applies
balanced separators recursively to decompose the kernel into a set of small sub-
graphs, in which we solve FVS optimally. Compared to existing PTASes for
planar FVS, our PTAS has several advantages:

1. It only relies on two simple algorithmic black boxes: kernelization, which
consists of a sequence of simple reduction rules, and balanced separators,
which are known to be practical [2,23,25].

2. It has very few parameters to optimize.
3. The constants hidden by the asymptotic running time and approximation

ratio are practically small.
4. Its running time is theoretically efficient.

Engineering a PTAS for Minimum Feedback Vertex Set in Planar Graphs 101

We believe that our approach may be applied more generally: minor-free graphs
admit balanced separators of sublinear size [3] and many problems admit linear
kernels in minor-free graphs [10,21,22].

Engineering Contributions. We implemented our PTAS, tested this on planar
graphs (of up to 6 million vertices), and discuss limitations. It is not our aim
to beat the current best heuristics and exact solvers for FVS, although we do
compare our PTAS with Becker and Geiger’s 2-approximation algorithm [9]. We
further adapted our PTAS and introduced some heuristics (Sect. 5) to improve
the efficiency of our implementation and the solution quality of our algorithm.
With a computational lower bound, we evaluate the approximation ratio empiri-
cally on each testing graph, illustrating that our implementation achieves better
approximation ratios than the theoretically guaranteed approximation ratio on
all testing graphs (Sect. 6).

Our implementation differs from previous implementations of PTASes for
planar graph optimization problems (TSP [8] and Steiner tree [36]) in the sense
that our implementation guarantees the theoretical approximation ratio. Pre-
vious PTAS implementations sacrificed approximation guarantees to improve
the running time, because the constants hidden in the asymptotic running time
(Eq. (1)) are too large: the dynamic programming table is very expensive to
compute. Our simple PTAS (albeit for a problem in a different class) avoids this
issue. Our work suggests a different direction from these earlier PTAS engineer-
ing papers: in order to implement a practical PTAS, return to the (theoretical)
drawing board and design a simpler algorithm.

2 Preliminaries

All graphs considered in this paper are undirected and planar, and can have
parallel edges and self-loops. We denote by V (G) and E(G) the vertex set and
edge set of graph G. If there is only one edge between two vertices, we say that
edge is an single-edge. If there are two parallel edges between two vertices, we
say the two edges form a double-edge. The degree of a vertex is the number of
edges incident to the vertex. We denote by G[X] the subgraph induced by the
subset X ⊆ V (G). We use OPT (G) to represent an arbitrary minimum feedback
vertex set in graph G.

2.1 Balanced Separator

A separator is a set of vertices whose removal will partition the graph into two
parts. A separator is α-balanced if those two parts each contain at most an
α-fraction of the original vertex set. Lipton and Tarjan [32] first introduced a
separator theorem for planar graphs, which says a planar graph with n vertices
admits a 2

3 -balanced separator of size at most 2
√

2n; they gave a linear-time
algorithm to compute such a balanced separator. This algorithm computes a
breadth-first search (BFS) tree for the graph and labels the vertices according

102 G. Borradaile et al.

to their level in the BFS tree. They prove that a balanced-separator is given by
one of three cases:

(P1) The vertices of a single BFS level.
(P2) The vertices of two BFS levels.
(P3) The vertices of two BFS levels plus the vertices of a fundamental cycle1

with respect to the BFS tree that does not intersect the two BFS levels.

2.2 Kernelization Algorithm

A parameterized decision problem with a parameter k admits a kernel if there is a
polynomial time algorithm (where the degree of the polynomial is independent of
k), called a kernelization algorithm, that outputs a decision-equivalent instance
whose size is bounded by some function h(k). If the function h(k) is linear in k,
then we say the problem admits a linear kernel.

Bonamy and Kowalik give a 13k-kernel for planar FVS [11] which consists
of a sequence of 17 reduction rules. Each rule replaces a particular subgraph
with another (possibly empty) subgraph, and possibly marks some vertices that
must be in an optimal solution. The algorithm starts by repeatedly applying
the first five rules to the graph and initializes two queues: queue Q1 contains
some vertex pairs that are candidates to check for Rule 6 and queue Q2 contains
vertices that are candidates to check for the last five rules. While Q1 is not empty,
the algorithm repeatedly applies Rule 6, reducing |Q1| in each step. Then the
algorithm repeatedly applies the remaining rules in order, reducing |Q2| until
Q2 is empty. After applying any rule, the algorithm updates both queues as
necessary, and will apply the first five rules if applicable. We provide the first
11 rules in the appendix. See the original paper [11] for full details of all the
reduction rules.

3 Corrected Reduction Rule

In this section, we provided a corrected Reduction Rule 6 in Bonamy and Kowa-
lik’s kernelization algorithm, denoted by BK. This Rule and a counterexample is
illustrated in Fig. 1.

To provide a corrected rule, we need the following assistant reduction rules;
the first two are from BK, the third is from Abu-Khzam and Khuzam’s kernel-
ization algorithm [1], denoted by AK, and the last is generalized from an AK
reduction rule.

BK Reduction Rule 3. If a vertex u is of degree two, with incident edges uv
and uw, then delete u and add the edge vw. (Note that if v = w then a loop
is added.)

1 Given a spanning tree for a graph, a fundamental cycle consists of a non-tree edge
and a path in the tree connecting the two endpoints of that edge.

Engineering a PTAS for Minimum Feedback Vertex Set in Planar Graphs 103

Fig. 1. BK Reduction Rule 6 and a counterexample. Left: Rule 6 removes the solid
edges and labeled vertices and assumes the empty vertices are in the optimal solution.
The dashed edges are optional connection in the graph (either edges or more complex
components connecting the endpoints as in Center). Center: A counterexample for BK

Reduction Rule 6, whose optimal solution consists of 4 vertices: w and the three trian-
gle vertices. Right: The result of applying Reduction Rule 6, whose optimal solution
consists of the three triangle vertices. Together with w and v is a FVS of size 5.

BK Reduction Rule 4. If a vertex u has exactly two neighbors v and w, edge
uv is double, and edge uw is simple, then delete v and u, and add v into the
optimal solution.

AK Reduction Rule 4. If a vertex u has exactly two neighbors v and w such
that uv, uw and vw are double-edges, then add both v and w to the optimal
solution, and delete u, v and w.

Generalization of AK Reduction Rule 5. Refer to Fig. 2. Let vw be a
double-edge in G and let a be a vertex whose neighbors are v, w and x
such that ax is a single-edge.

(1) If both av and aw are single-edges, then delete a and add edges vx and wx.
(2) If only one of av and aw, say aw, is double-edge, then delete a and w, add

edge vx, and add w to the optimal solution.
(3) If both av and aw are double-edges, then delete a, w and v, and add v and

w to the optimal solution.

Fig. 2. Generalization of AK Reduction Rule 5.

Lemma 1. The Generalization of AK Reduction Rule 5 is correct.

Now we are ready to give the new Reduction Rule 6.

New Reduction Rule 6. Assume that there are five vertices a, b, c, v, w such
that (1) both v and w are neighbors of each of a, b, c and (2) each vertex x ∈

104 G. Borradaile et al.

{a, b, c} is incident with at most one edge xy such that y /∈ {v, w}. (See Fig. 1:
Left.) Then add a double-edge between v and w, and apply Generalization of
AK Reduction Rule 5 and (possibly) AK Reduction Rule 4 to delete all vertices
in {a, b, c} and possibly v and w.

Lemma 2. New Reduction Rule 6 is correct.

Herein, we denote the corrected kernelization algorithm by BK.

4 Polynomial-Time Approximation Scheme

In this section, we present an O(n log n) PTAS for FVS in planar graphs using a
linear kernel and balanced separators, and show that we can obtain a lower bound
of an optimal solution from its solution. Our PTAS consists of the following four
steps.

1. Compute a linear kernel H for the original graph G by algorithm BK, that is,
|V (H)| is at most c1|OPT (H)| for some constant c1.

2. Decompose the kernel H by recursively applying the separator algorithm and
remove the separators until each resulting graph has at most r vertices for
some constant r. The union of all the separators has at most c2|V (H)|/√

r =
ε|OPT (H)| vertices for r chosen appropriately.

3. Solve the problem optimally for all the resulting graphs.
4. Let UH be the union of all separators and all solutions of the resulting graphs.

Lift UH to a solution UG for the original graph. The lifting step involves
unrolling the kernelization in step 1.

We can prove the above algorithm is a PTAS and obtain the following theo-
rem whose proof is deferred to the full version.

5 Engineering Considerations

In this section, we summarize our implementation for different parts of our algo-
rithm and propose some heuristics to improve its final solution.

5.1 Kernelization Algorithm

The original kernelization algorithm BK consists of a sequence of 17 reduction
rules. The first 12 rules are simple and sufficient to obtain a 15k-kernel [11].
Since the remaining rules do not improve the kernel by much, and since Rule
12 is a rejecting rule2, we only implement the first 11 rules (provided in the
appendix) with one rule corrected, all of which are local and independent of the
parameter k.
2 This is to return a trivial no-instance for the decision problem when the resulting

graph has more than 15k vertices.

Engineering a PTAS for Minimum Feedback Vertex Set in Planar Graphs 105

Fig. 3. Reduction rule 8 replaces the left subgraph with the right subgraph.

The original algorithm BK is designed for the decision problem, so when
applying it to the optimization problem, we need some modifications to be able
to convert a kernel solution to a feasible solution for the original graph, and this
converting is called lifting. If a reduction rule does not introduce new vertices,
then the lifting step for it will be trivial. Otherwise, we need to handle the
vertices introduced by reduction steps, if they appear in the kernel solution.
Among all the implemented reduction rules, there are two rules, namely Rule
8 and Rule 9, that introduce new vertices into the graph. Since avoiding new
vertices can improve the efficiency of our implementation, we tried to modify
these two rules and found that we can avoid adding new vertices in Rule 8
(Fig. 3) by the following lemma.

Lemma 3. The new vertex introduced by Rule 8 can be replaced by a vertex
from the original graph.

For Rule 9, it seems that adding a new vertex is unavoidable, so we record
the related vertices in each application of Rule 9 in the same order as we apply
it. During the lifting step, we check those vertices in the reverse order to see if
the recorded vertices are also in the solution. If there are involved vertices in the
solution, we modify the solution according to the reverse Rule 9.

We remark that the original algorithm runs in expected O(n) time, and each
rule can be detected in O(1) time if we use a hash table. However, we found that
using a balanced binary search tree instead of a hash table gives better practical
performance.

5.2 Balanced Separators

We followed a textbook version [30] of the separator algorithm, and our imple-
mentation guarantees the 2

√
2n bound for the size of the separator. We remark

that we did not apply heuristics in our implementation for the separator algo-
rithm. This is because we did not observe separator size improvement by some
simple heuristics in the early stage of this work, and these heuristics may slow
down the separator algorithm. Since our test graphs are large (up to 6 mil-
lion vertices) and we will apply the algorithm recursively in our PTAS, these
heuristics may slow down our PTAS even more.

106 G. Borradaile et al.

5.3 Heuristics

It can be seen from the algorithm that the error comes from the computed sep-
arators. To reduce this error, we add two heuristic steps in our implementation.

Post-processing. Our first heuristic step is a post-processing step. The solution
from our PTAS may not be a minimal one, so we use the post-processing step
from Becker and Geiger’s 2-approximation algorithm [9] to convert the final
solution of the PTAS to a minimal one. This involves iterating through the
vertices in the solution and trying to remove redundant vertices from the solution
while maintaining feasibility. In fact, we only need to iterate through the vertices
in separators, since vertices in the optimal solutions of small graphs are needed
for feasibility.

Kernelization During Decomposition Step. Our second heuristic step is to apply
the kernelization algorithm BK right after we compute a separator in the decom-
position step of our PTAS. Note that there is a decomposition tree corresponding
to the decomposition step, where each node corresponds to a subgraph that is
applied the separator theorem. To apply this heuristic, we need to record the
whole decomposition tree with all the corresponding separators such that we can
lift the solutions in the right order. For example, if we want to lift a solution
for a subgraph Gw corresponding to some node w in the decomposition tree, we
first need to lift all solutions for the subgraphs corresponding to the children of
node w in the decomposition tree.

6 Experimental Results

In this section, we evaluate the performance of our algorithm. We implemented
it in C++ and the code is compiled with g++ (version 4.8.5) on CentOS (version
7.3.1611) operating system. Our PTAS implementation is built on Boyer’s imple-
mentation3 of Boyer and Myrvold’s planar embedding algorithm [13]. We find
trivial exact algorithm cannot solve graphs of size larger than 30 in short time,
so we combine our implementation for the kernelization algorithm BK and Iwata
and Imanish’s implementation for a fixed-parameter tractable (FPT) algorithm
as our exact algorithm in our experiment. Their algorithm is implemented4 in
Java and includes a linear-time kernel [26] and a branch-and-bound based FPT
algorithm [27] for FVS in general graphs. The Java version in our machine is
1.8.0 and our experiments were performed on a machine with Intel(R) Xeon(R)
CPU (2.30 GHz) running CentOS (version 7.3.1611) operating system.

We implemented three variants of our PTAS:

– the vanilla variant is a naive implementation of our PTAS, for which no
heuristic is applied;

3 http://jgaa.info/accepted/2004/BoyerMyrvold2004.8.3/planarity.zip.
4 https://github.com/wata-orz/fvs.

http://jgaa.info/accepted/2004/BoyerMyrvold2004.8.3/planarity.zip
https://github.com/wata-orz/fvs

Engineering a PTAS for Minimum Feedback Vertex Set in Planar Graphs 107

– the minimal variant applies the post-processing heuristic to our PTAS, which
will remove redundant vertices in separators;

– the optimized variant applies both heuristics to our PTAS, which will apply
kernelization algorithm whenever each separator is computed and removed
during the decomposition step, and will return a minimal final solution.

To evaluate their performance, we collect three different classes of planar graphs:

– The random graphs are random planar graphs generated by LEDA (version
6.4) [35];

– The triangu graphs are triangulated random graphs generated by LEDA,
whose outer faces are not triangulated;

– The networks graphs (including NY, BAY, COL, NW, CAL, FLA,
LKS, E and W) are road networks used in the 9th DIMACS Implementa-
tion Challenge-Shortest Paths [19]. We interpret each graph as a straight-line
embedding and we add vertices whenever two edges intersect geometrically.

Since we are interested in the performance of the algorithms in large planar
graphs, the synthetic graphs we generated have at least 600,000 vertices. And
the real network graphs have at least 260,000 vertices.

6.1 Runtime

To evaluate the runtime of our implementation, we first need to fix the parameter
in our algorithm, which is the maximum size of subgraphs in the decomposition
step. During our experiment, we find that our exact algorithm cannot optimally
solve some graphs with 120 vertices in one hour. So we set the maximum size
as 120 in the decomposition step and run the three variants on all the testing
graphs. The total runtime is summarized in Table 1. We notice the runtime of
the post-processing step is less than 1% of the total runtime on all graphs. So
vanilla and minimal almost have the same runtime, and we omit the runtime
of vanilla in the table. We can observe in the table that the total runtime of
optimized is about twice of that of minimal on all graphs.

Although the theoretical runtime of our PTAS is O(n log n), it seems that
our results in Table 1 does not exhibit this fact. The main reason for this is
that the third step of our PTAS (solving small subgraphs optimally with the
exact algorithm) dominates the total runtime, which takes over 85% of total
runtime in minimal and over 70% of total runtime in optimized on all graphs.
The runtime of the third step depends on the kernel size and the structures of
different graph classes. The kernel size will affect the number of subgraphs we
need to solve in the third step, and the structures of different graph classes will
affect the runtime of the exact algorithm. We find that even if two graphs of
different classes have similar size, their kernel size may be very different, such
as FLA and triangu3. And even if the two graphs have similar kernel size,
the total runtime of the exact algorithm can be very different, such as NY and
random1. This explains why our results seem different from the theoretical

108 G. Borradaile et al.

runtime, and implies that a better way to analyze the runtime is to consider the
running time of each step on each graph class.

Table 1. Performance of different algorithms.

graph vertices kernel

size

lower

bound

minimal vanilla optimized 2-approx

time

(s)

approx

ratio

approx

ratio

time

(s)

approx

ratio

time

(s)

approx

ratio

NY 264953 132631 25290 341 1.713 1.936 769 1.692 9 1.649

BAY 322694 90696 23111 244 1.513 1.688 429 1.498 9 1.480

COL 437294 95436 27711 272 1.429 1.573 382 1.416 13 1.415

NW 1214463 216994 69926 765 1.377 1.514 1117 1.364 37 1.369

FLA 1074167 317630 89446 1068 1.421 1.567 2175 1.409 33 1.407

CAL 1898842 495180 132355 1843 1.482 1.649 3622 1.466 58 1.454

LKS 2763392 784644 177873 3035 1.606 1.815 8039 1.587 91 1.558

E 3608115 899206 235151 4841 1.489 1.665 10912 1.469 112 1.456

W 6286759 1488420 418660 11229 1.441 1.599 21084 1.427 195 1.421

triangu1 600000 519733 185025 2392 1.258 1.321 3997 1.257 55 1.264

triangu2 800000 698248 245458 4314 1.263 1.329 8046 1.262 67 1.268

triangu3 1000000 878400 305411 7786 1.266 1.334 13873 1.265 82 1.270

triangu4 1200000 1060063 364631 12529 1.268 1.337 21753 1.265 99 1.270

triangu5 1400000 1244517 422415 18603 1.272 1.343 33450 1.269 118 1.272

random1 699970 121121 192863 2893 1.000 1.000 2591 1.000 80 1.004

random2 1197582 108619 284192 4006 1.000 1.000 3849 1.000 118 1.005

random3 1399947 244563 385738 7548 1.000 1.000 7288 1.000 154 1.004

random4 1999760 305610 538498 12270 1.000 1.000 12255 1.000 233 1.004

random5 2199977 426043 617506 15694 1.000 1.000 16449 1.000 264 1.004

random6 873280 8124 86796 781 1.000 1.000 812 1.000 58 1.006

random7 1061980 11502 111324 1095 1.000 1.000 1140 1.000 65 1.006

random8 1227072 12538 124635 1192 1.000 1.000 1252 1.000 74 1.006

random9 1520478 18921 166737 1729 1.000 1.000 1792 1.000 93 1.006

random10 2050946 40828 269315 3448 1.000 1.000 3615 1.000 140 1.006

 0

100

200

300

400

500

600

700

 0 1x106 2x106 3x106 4x106 5x106 6x106

networks
triangu

 0

 500

 1000

 1500

 2000

 2500

 0 200000 400000 600000 800000 1x106 1.2x106 1.4x106 1.6x106

minimal on networks
minimal on triangu

optimized on networks
optimized on triangu

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 200000 400000 600000 800000 1x106 1.2x106 1.4x106 1.6x10

minimal on networks
minimal on triangu

opt on networks
opt on triangu

Fig. 4. Runtime of different steps in our PTAS variants. The Y axis represents the
runtime in seconds. Left: runtime of the first step (kernelization), where X axis repre-
sents the input graph size. Middle: runtime of the second step (decomposition), where
X axis represents the kernel size. Right: runtime of the third step (exact algorithm),
where X axis represents the kernel size.

Engineering a PTAS for Minimum Feedback Vertex Set in Planar Graphs 109

To understand the detailed runtime of our PTAS, we record the runtime of
each step on two graph classes: networks and triangu. These results are shown
in Fig. 4. In this figure, we can see the runtime of the first two steps on each
graph class accords with the theoretical O(n log n) runtime, while the runtime
of the third step seems super-linear. We think this is because of the variance of
the runtime of our exact algorithm. During our experiment, we notice that our
exact algorithm can solve most subgraphs in 30 s, but it needs more than 60 s
to solve some (relatively large) subgraphs. When there are more subgraphs, the
hard instance may appear and they cost more time.

6.2 Solution Quality

We evaluate the solution quality of our PTAS variants in two aspects: compare
the solution with a lower bound of the optimal solution and with solution of
another approximation algorithm. For this purpose, we implemented Becker and
Geiger’s 2-approximation algorithm [9], denoted by 2-approx, and compare our
PTAS with this algorithm on solution quality. This 2-approximation algorithm
works for vertex-weighted FVS in general graphs and consists of two steps: com-
putes a greedy solution and removes redundant vertices to obtain a minimal
solution. The lower bound of an optimal solution can be obtained from a partial
solution of our PTAS for each graph. We compare the solutions of our implemen-
tation with this lower bound, and obtain an estimated approximation ratio on
each graph. The lower bound and the estimated approximation ratio of different
algorithms on all graphs are given in Table 1.

We can see in the Table 1 that even vanilla can find good solution for all
graphs, and achieve approximation ratio better than 2. This approximation ratio
is better than the theoretical approximation ratio of our PTAS obtained from
the kernel size-bound and separator size-bound. Further, our implementation
can find an almost optimal solution on all random graphs. This is because the
kernelization algorithm significantly reduce the size of input graph, and the
resulting kernel consists of many small disconnected components that can be
solved optimally by our exact algorithm. We observe that for networks and
triangu graphs, the minimal variant can find better solution than vanilla,

 0

 0.2

 0.4

 0.6

 0.8

 1

NY BAY NW random3 random9 triangu1

kernelization
separator

exact algorithm

 0

 0.2

 0.4

 0.6

 0.8

 1

NY BAY NW random3 random9 triangu1

kernelization
separator

exact algorithm

Fig. 5. Decompose PTAS solutions on different graphs. The X axis represents different
graphs, and Y axis represents the percentage in the whole solution. Left: solutions from
minimal. Right: solutions from optimized.

110 G. Borradaile et al.

and the optimized variant provides the best solutions among the three variants,
which implies the two heuristics both help improve the solutions. Since vanilla
works very well on random graphs, the improvement from the two heuristics is
negligible.

Comparing with 2-approx, we can see that our PTAS variants work bet-
ter on random and triangu graphs; for networks, our PTAS can find very
competitive solutions. The main reason that our algorithm cannot find smaller
solutions than 2-approx on networks is that the subgraphs obtained from the
decomposition step are still not large enough, which implies a large fraction of
the solution contains the vertices of the separators.

To better understand the solutions from our PTAS, we analyze the fraction
of each component in the solutions. In Fig. 5, we show this information for some
typical graphs of each class. Comparing different graph classes, we can see the
contributions of three components in the final solution of networks graphs are
more averaged, while the solutions for other two classes are contributed by just
one component: for random graphs, most solution vertices are collected by the
kernelization algorithm, and for the triangu graphs, most solution vertices are
computed by the exact algorithm. This also agrees with the kernel size informa-
tion in Table 1: kernelization algorithm produce much smaller kernel for random
graphs than the triangu graphs. There is not much difference between the two
variants minimal and optimized, although we can observe the solution com-
puted by the exact algorithm in optimized takes a litter smaller fraction than
that in minimal. This is because the kernelization algorithm during decompo-
sition in optimized reduces the size of kernel, and then the number of resulting
subgraphs.

6.3 Effects of Parameters on Performance

Recall that the largest size r of the subgraphs in the decomposition step is the
only parameter in our PTAS. Now we analyze the effect of this parameter on the
performance of our PTAS. For this purpose, we set a time limit for our exact
algorithm as one hour, and starting with r = 20, we increase the value of r
by 5 each time until our implementation cannot find a feasible solution, which
is caused by the fact that the exact algorithm cannot solve some subgraphs of
size r in the time limit. We test two variants minimal and optimized on two
networks graphs NY and BAY, on both of which our PTAS have relatively
large approximation ratio. The results are shown in Fig. 6.

For both graphs and both variants, we can observe the runtime increases in
a super-linear way as the value of r increases. This is because the runtime of
our exact algorithm, which dominates the runtime of our PTAS, increases in a
super-linear way as the value of r increases. When r is small, our exact algorithm
can easily solve those small subgraphs. So the runtime of our algorithm increases
slowly. When r increases, our exact algorithm needs much more time to solve
larger subgraphs. So even though there are fewer subgraphs, the total runtime
of the third step increases quickly as r increases. We also notice that the largest
r solvable by optimized is smaller than minimal. We think this is because

Engineering a PTAS for Minimum Feedback Vertex Set in Planar Graphs 111

 1.68

 1.7

 1.72

 1.74

 1.76

 1.78

 1.8

 20 40 60 80 100 120 140 160
 0

 1000

 2000

 3000

 4000

 5000

 6000

ap
pr

ox
im

at
io

n
ra

tio

ru
nt

im
e

(s
)

minimal runtime
minimal approx ratio

optimized runtime
optimized approx ratio

 1.48

 1.5

 1.52

 1.54

 1.56

 1.58

 0 20 40 60 80 100 120 140 160 180
 0

 200

 400

 600

 800

 1000

 1200

ap
pr

ox
im

at
io

n
ra

tio

ru
nt

im
e

(s
)

minimal runtime
minimal approx ratio

optimized runtime
optimized approx ratio

Fig. 6. Effects of region size r on the performance of minimal and optimized. The X
axis represents the value of r, the left Y axis represents the estimated approximation
ratio (the lower bound is obtained by setting r = 120) and the right Y axis represents
the runtime in seconds. Left: results on graph NY. Right: results on graph BAY.

the subgraphs in optimized are usually harder to solve exactly than those in
minimal. And this is one reason that explains the fact that optimized always
needs more time than minimal for the same value of r.

Figure 6 also shows that the approximation ratio of both variants decreases in
a sub-linear way as r increases on both graphs. This accords with the theoretical
relationship between r and the error parameter ε: ε = O(1/

√
r). With the same

value of r, we can see optimized always achieves smaller approximation ratio,
implying that our heuristic works well for different value of r.

7 Conclusions

We proposed an O(n log n) time PTAS for the minimum feedback vertex set
problem in planar graphs. We also implemented this algorithm based on a cor-
rected linear kernel for this problem and evaluated its performance on some
large planar graphs. Our results show that our PTAS can achieve better approx-
imation ratio than the theoretical guarantees on all testing graphs and can find
better or competitive solutions compared with the 2-approximation algorithm.
Our proposed heuristics can further improve the solution quality of our PTAS
implementation. We think these results show that separator-based PTASes are
promising to be used in practical applications.

Although we avoid expensive dynamic programming step in our PTAS, we
still need an exact algorithm for small subgraphs after the decomposition of
kernel. Our experiments show that the running time of this exact algorithm is
the bottleneck of the total runtime of our PTAS. Because of this, our PTAS
needs much more time than the simple 2-approximation algorithm. One method
to speed up our PTAS is to apply the exact algorithm in a parallel way to solve
multiple subgraphs simultaneously. However, we find in our experiment that
there exist subgraphs with 120 vertices that our exact algorithm needs more
than one hour to solve the problem. So a faster exact algorithm will be very
helpful not only in essentially reducing the runtime of our PTAS, but also in
obtaining better solutions.

112 G. Borradaile et al.

References

1. Abu-Khzam, F.N., Bou Khuzam, M.: An improved kernel for the undirected planar
feedback vertex set problem. In: Thilikos, D.M., Woeginger, G.J. (eds.) IPEC 2012.
LNCS, vol. 7535, pp. 264–273. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-33293-7 25

2. Aleksandrov, L., Djidjev, H., Guo, H., Maheshwari, A.: Partitioning planar graphs
with costs and weights. J. Exp. Algorithm. (JEA) 11, 1–5 (2007)

3. Alon, N., Seymour, P., Thomas, R.: A separator theorem for nonplanar graphs. J.
Am. Math. Soc. 3(4), 801–808 (1990)

4. Arora, S., Grigni, M., Karger, D.R., Klein, P.N., Woloszyn, A.: A polynomial-time
approximation scheme for weighted planar graph TSP. In: SODA, vol. 98, pp.
33–41 (1998)

5. Baker, B.S.: Approximation algorithms for NP-complete problems on planar
graphs. J. ACM (JACM) 41(1), 153–180 (1994)

6. Bar-Yehuda, R., Geiger, D., Naor, J., Roth, R.M.: Approximation algorithms for
the feedback vertex set problem with applications to constraint satisfaction and
Bayesian inference. SIAM J. Comput. 27(4), 942–959 (1998)

7. Bateni, M.H., Hajiaghayi, M.T., Marx, D.: Approximation schemes for Steiner
forest on planar graphs and graphs of bounded treewidth. J. ACM 58(5), 21 (2011)

8. Becker, A., Fox-Epstein, E., Klein, P.N., Meierfrankenfeld, D.: Engineering an
approximation scheme for traveling salesman in planar graphs. In: LIPIcs-Leibniz
International Proceedings in Informatics, vol. 75 (2017)

9. Becker, A., Geiger, D.: Optimization of Pearl’s method of conditioning and greedy-
like approximation algorithms for the vertex feedback set problem. Artif. Intell.
83(1), 167–188 (1996)

10. Bodlaender, H.L., Fomin, F.V., Lokshtanov, D., Penninkx, E., Saurabh, S., Thi-
likos, D.M.: (Meta) kernelization. J. ACM (JACM) 63(5), 44 (2016)

11. Bonamy, M., Kowalik, �L.: A 13k-kernel for planar feedback vertex set via region
decomposition. Theoret. Comput. Sci. 645, 25–40 (2016)

12. Borradaile, G., Klein, P., Mathieu, C.: An O(n logn) approximation scheme for
Steiner tree in planar graphs. ACM Trans. Algorithms (TALG) 5(3), 1–31 (2009)

13. Boyer, J.M., Myrvold, W.J.: On the cutting edge: simplified O(n) planarity by
edge addition. J. Graph Algorithms Appl. 8(2), 241–273 (2004)

14. Chiba, N., Nishizeki, T., Saito, N.: Applications of the Lipton and Tarjan’s planar
separator theorem. J. Inf. Process. 4(4), 203–207 (1981)

15. Chiba, N., Nishizeki, T., Saito, N.: An approximation algorithm for the maxi-
mum independent set problem on planar graphs. SIAM J. Comput. 11(4), 663–675
(1982)

16. Cohen-Addad, V., de Verdière, É.C., Klein, P.N., Mathieu, C., Meierfrankenfeld,
D.: Approximating connectivity domination in weighted bounded-genus graphs. In:
Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Com-
puting, pp. 584–597. ACM (2016)

17. Demaine, E.D., Hajiaghayi, M.T., Kawarabayashi, K.-i.: Algorithmic graph minor
theory: decomposition, approximation, and coloring. In: Proceedings of the 46th
Annual IEEE Symposium on Foundations of Computer Science, pp. 637–646 (2005)

18. Demaine, E.D., Hajiaghayi, M.T.: Bidimensionality: new connections between FPT
algorithms and PTASs. In: Proceedings of the Sixteenth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA 2005, pp. 590–601 (2005)

https://doi.org/10.1007/978-3-642-33293-7_25
https://doi.org/10.1007/978-3-642-33293-7_25

Engineering a PTAS for Minimum Feedback Vertex Set in Planar Graphs 113

19. Demetrescu, C., Goldberg, A., Johnson, D.: Implementation challenge for shortest
paths. In: Kao, M.Y. (ed.) Encyclopedia of Algorithms. Springer, Boston (2008).
https://doi.org/10.1007/978-0-387-30162-4

20. Eisenstat, D., Klein, P., Mathieu, C.: An efficient polynomial-time approxima-
tion scheme for Steiner forest in planar graphs. In: Proceedings of the Twenty-
Third Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 626–638. SIAM
(2012)

21. Fomin, F.V., Lokshtanov, D., Saurabh, S., Thilikos, D.M.: Bidimensionality and
kernels. In: Proceedings of the Twenty-First Annual ACM-SIAM Symposium on
Discrete Algorithms, pp. 503–510 (2010)

22. Fomin, F.V., Lokshtanov, D., Saurabh, S., Thilikos, D.M.: Linear kernels for (con-
nected) dominating set on H-minor-free graphs. In: Proceedings of the Twenty-
Third Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 82–93 (2012)

23. Fox-Epstein, E., Mozes, S., Phothilimthana, P.M., Sommer, C.: Short and simple
cycle separators in planar graphs. J. Exp. Algorithm. (JEA) 21, 2 (2016)

24. Grohe, M.: Local tree-width, excluded minors, and approximation algorithms.
Combinatorica 23(4), 613–632 (2003)

25. Holzer, M., Schulz, F., Wagner, D., Prasinos, G., Zaroliagis, C.: Engineering planar
separator algorithms. J. Exp. Algorithm. (JEA) 14, 5 (2009)

26. Iwata, Y.: Linear-time kernelization for feedback vertex set. CoRR (2016)
27. Iwata, Y., Wahlström, M., Yoshida, Y.: Half-integrality, LP-branching, and FPT

algorithms. SIAM J. Comput. 45(4), 1377–1411 (2016)
28. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,

Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations.
The IBM Research Symposia Series. Springer, Boston (1972). https://doi.org/10.
1007/978-1-4684-2001-2 9

29. Klein, P.N.: A linear-time approximation scheme for TSP in undirected planar
graphs with edge-weights. SIAM J. Comput. 37(6), 1926–1952 (2008)

30. Kozen, D.C.: The Design and Analysis of Algorithms. Springer, Heidelberg (2012)
31. Le, H., Zheng, B.: Local search is a PTAS for feedback vertex set in minor-free

graphs. CoRR, abs/1804.06428 (2018)
32. Lipton, R.J., Tarjan, R.E.: A separator theorem for planar graphs. SIAM J. Appl.

Math. 36(2), 177–189 (1979)
33. Lipton, R.J., Tarjan, R.E.: Applications of a planar separator theorem. SIAM J.

Comput. 9(3), 615–627 (1980)
34. Marzban, M., Qian-Ping, G.: Computational study on a PTAS for planar domi-

nating set problem. Algorithms 6(1), 43–59 (2013)
35. Mehlhorn, K., Näher, S., Uhrig, C.: The LEDA platform for combinatorial and

geometric computing. In: Degano, P., Gorrieri, R., Marchetti-Spaccamela, A. (eds.)
ICALP 1997. LNCS, vol. 1256, pp. 7–16. Springer, Heidelberg (1997). https://doi.
org/10.1007/3-540-63165-8 161

36. Tazari, S., Müller-Hannemann, M.: Dealing with large hidden constants: engineer-
ing a planar Steiner tree PTAS. J. Exp. Algorithm. (JEA) 16, 3–6 (2011)

https://doi.org/10.1007/978-0-387-30162-4
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/3-540-63165-8_161
https://doi.org/10.1007/3-540-63165-8_161

On New Rebalancing Algorithm

Koba Gelashvili1, Nikoloz Grdzelidze2, and Mikheil Tutberidze3(B)

1 School of Business, Computing and Social Sciences, St. Andrew the First-Called
Georgian University of the Patriarchate of Georgia, 53a Chavchavadze Ave.,

Tbilisi 0179, Georgia
koba.gelashvili@sangu.edu.ge

2 Department of Computer Sciences, Faculty of Exact and Natural Sciences,
Tbilisi State University, 2, University St., Tbilisi 0143, Georgia

nikolozgrdzelidze@gmail.com
3 Institute of Applied Physics, Ilia State University, 3/5 Kakutsa Cholokashvili Ave.,

Tbilisi 0162, Georgia
mtutberidze@gmail.com

Abstract. This paper proposes a new algorithm for rebalancing a
binary search tree, called qBalance, by a certain analogy. The running
time of this algorithm is proportional to the number of keys in the tree.
To compare qBalance with existing rebalancing algorithms, several ver-
sions of the algorithm are implemented. We compare qBalance with the
well-known DSW algorithm on binary search trees (BSTs), with the
Sedgewick algorithm on an ordered tree, with the modified Sedgewick
algorithm on Red-Black (RB) trees with the specific structure of the
node. For RB trees whose nodes have a standard (typical) structure,
qBalance is implemented using asynchronous mode. This version of the
algorithm is considerably complicated, but it is twice as fast as the serial
implementation. The results of numerical experiments confirm the advan-
tage of the new algorithm compared to DSW. The Sedgewick algorithm
and its modification retain advantage by 30% in terms of running time
on ordered trees. On red-black trees, the advantage of the new algorithm
is significant. This especially applies to the asynchronous version of the
algorithm.

Keywords: Binary search tree · RB-tree · DSW algorithm ·
Sedgewick balancing algorithm

1 Introduction

The issue of balancing of binary search trees is quite an old one for computer
sciences, albeit few publications are devoted to this subject. Day (see [1]) in
1976 proposed an algorithm that balances the binary search tree in linear time
without using the extra memory. Theoretically, Day’s algorithm is the fastest
balancing algorithm but its variant - the DSW algorithm is more refined because
it creates a complete tree (see [2]) - in which every level, except possibly the last,
is completely filled, and the bottommost tree level is filled from left to right.
c© Springer Nature Switzerland AG 2019
I. Kotsireas et al. (Eds.): SEA2 2019, LNCS 11544, pp. 114–124, 2019.
https://doi.org/10.1007/978-3-030-34029-2_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34029-2_8&domain=pdf
https://doi.org/10.1007/978-3-030-34029-2_8

On New Rebalancing Algorithm 115

There is also an alternative approach proposed by Sedgewick (see [3]). Even
though his recursive algorithm has the worst-case time complexity n log(n) and
requires the node structure augmentation via adding the subtree size, in practi-
cal applications, it is more effective than DSW algorithm. The tree with nodes
having subtree sizes as attributes are called ordered search tree or simply OST.

In 2016, the modified Sedgewick’s algorithm (MSA) was proposed (see [4]).
It works on OSTs, but when using the color field as the subtree size, it can
rebalance Red-Black trees (in short RB-tree). After rebalancing, the tree should
be colored again, and the properties of RB-tree will be restored. Despite some
advantages, the Sedgewick algorithm and its modification are not applicable to
general BSTs.

RB-trees (see [5]) are wide-spread. A lot of data structures used in high-level
programming languages or in computational geometry, and the Completely Fair
Scheduler used in current Linux kernels, are based on RB trees. RB trees belong
to the category of balanced trees, so the rebalancing algorithms on RB trees are
not of great importance in general. But, the situation has changed recently for
the following reasons:

– The usage of greater data became necessary;
– In realistic tasks the height of the RB tree is often very close to its theoretical

upper bound;
– Computers are not switched in the passive state immediately (e.g. hibernate)

and naturally appears the possibility to rebalance the certain structure;
– The rebalancing algorithms might be faster when using multithreading. For

example, typical laptops can ensure 4–12 threads or even more;
– The “boost” library uses RB trees to store large sparse matrices.

In Sect. 2, we introduce new rebalancing algorithm, which, like DSW, works
on BSTs. We call it qBalance (because of its similarity to qSort algorithm). qBal-
ance has similar to the DSW algorithm theoretical characteristics, it works in
linear time. Numerical results show that in all benchmarking scenarios qBalance
outperforms DSW algorithm.

In Sect. 3, we compare our qBalance algorithm to the Sedgewick rebalancing
algorithm on OSTs. The latter is approximately 30% faster than the former. The
reason is explained.

Like the original and modified Sedgewick algorithms, qBalance can be easily
programmed on RB trees with double structured nodes. In Sect. 4 we compare
qBalance and the modified Sedgewick algorithms. The new algorithm keeps a
stable advantage during all possible scenarios.

In Sect. 5 qBalance is implemented using two threads in case of RB tree
with standard node. As a result, the execution time is decreased two times in
comparison to the serial qBalance.

Note that qBalance algorithms implemented over RB trees do not use the
notion of rotation at all.

Projects and other materials used in numerical experiments were uploaded
to GitHub and are available at address https://github.com/kobage. Four folders
are created there. In the first folder “BST” the implementation of BST three

https://github.com/kobage

116 K. Gelashvili et al.

class is stored which includes DSW and qBalance algorithms. In the second folder
“OST” the implementation of OST tree is stored, which includes Sedgewick’s
modified and qBalance algorithms. In the third folder “RB” the implementation
of RB- tree with the double structure of the node is stored, which includes
modified Sedgewick’s and qBalance algorithms. The latter is arranged so that as
a result a complete tree is created. In the fourth folder “RB-asynchronous”, the
implementation of RB tree with nodes having the standard structure is stored.
The implementation includes qBalance serial and asynchronous versions. For
simplicity purposes we stay within rebalancing algorithms, therefore we have
not implemented a node deletion algorithm in these classes.

For the children nodes, we use an array of pointers. Such approach signifi-
cantly shortens the code. It is possible to use an alternative representation. The
representation used here is without an alternative for the asynchronous rebal-
ancing of RB-trees.

For the sake of simplicity, we assume that the keys of the trees have some
T type, for which the binary operation “≤” of comparison is defined. For more
generalized implementation it is necessary to pass the comparison binary predi-
cate to the class template as a parameter, which is not difficult but complicates
notations and code.

2 qBalance Algorithm Over Binary Search Tree. The
Comparison with DSW Algorithm

DSW algorithm works in the general case of BST tree, the node structure of
which contains a minimal number of members. In our implementations, nodes
have the following structure

template<typename T>
struct Node{

T key;
Node* child[2];
Node();
Node(T keyValue);

};

Which is often used in practice (see [5, p. 32]).
DSW is a two-stage algorithm. In the first stage, the tree is transformed into

a particular simple form. The authors call this transformation by treeToWine,
because of the analogy with the visual image of the tree obtained as a result.
On the second stage, from this kind of tree, the balanced tree is constructed. We
don’t display algorithms here; their codes can be accessed on GitHub.

The treeToWine algorithm is useful for other purposes as well. For example,
treeToWine is effective for coding the tree class destructor. BST may not be
balanced and in such case tree traversing recursive algorithms will cause a stack
overflow. The standard solution of the problem is to use a stack in the destructor
code. But the destructor will be faster when using treeToWine.

On New Rebalancing Algorithm 117

In the case of BST, the treeToWine algorithm is used by qBalance algorithm.
The better alternative for balanced trees will be considered in further paragraphs.

Let us describe qBalance algorithm.
Unless otherwise specified, we assume that the templated class Tree < T >

is created without using of the fictive node for leaves. If any node does not have
left or right child, the address nullptr is written in the appropriate field. The
attribute “root” in the tree class defines the address of the root.

The public method that balances the tree is as follows:

template<typename T>
void Tree<T>::qBalance()
{

Node<T>* pseudo_root = new Node<T>();
pseudo_root->child[1] = root;
tree_to_vine(pseudo_root);

root = qBalance(pseudo_root->child[1], size);
delete pseudo_root;

}

It starts working after the tree to be balanced is transformed to the linked list
by the treeToWine algorithm. The obtained list consists of tree nodes and in
this list, any node (of the tree) stores the address of its next element in pointer
x−> child[1]. Balancing is performed by the private recursive method, which
will receive the address of some node of the list and the number of nodes to be
balanced as parameters.

template<typename T>
Node<T>* Tree<T>::qBalance(Node<T>*& node, int m)
{

if (m == 2)
{

Node<T>* tmp = node->child[1];
tmp->child[0] = node;
node->child[0] = node->child[1] = nullptr;
node = tmp->child[1];
tmp->child[1] = nullptr;
return tmp;

}
if (m == 1)
{

Node<T>* tmp = node;
node = node->child[1];
tmp->child[0] = tmp->child[1] = nullptr;
return tmp;

}
int q = m / 2;

118 K. Gelashvili et al.

Node<T>* a = qBalance(node, q);
Node<T>* b = node;
b->child[0] = a;
node = node->child[1];
a = qBalance(node, m - q - 1);
b->child[1] = a;
return b;

}

Each node of the list (created by treeToWine algorithm) is visited only once by
the qBalance algorithm. Therefore the algorithm works in time proportional to
the number of nodes (linear time). the algorithm is recursive and starts with
checking the stopping conditions. If it is invoked for two nodes or one node, it
constructs the corresponding subtree and returns its root. It is obvious that any
tree with one or two nodes is balanced. Note that when the algorithm (function)
exits, the address of the node passed to function by reference stores the address
of the successor node to the node containing maximal key in the subtree.

If the number of nodes is more than 2, then it is divided into two parts. After
balancing the first part the next address of the node containing the maximal key
of the balanced subtree is placed in the parameter “node”. This node will become
the root of the rebalanced tree and its address will be returned by algorithm
qBalance. Before this, the address returned after rebalancing second subtree
(excluding future root of this subtree) will become the right child of the root
(which is returned by algorithm qBalance). Finally, algorithm will return the
root of the balanced subtree and the address of the node which is the successor
of the node containing the maximal key of the balanced subtree will be written
in the “node”.

We don’t think that rebalancing general BSTs has actual practical impor-
tance, therefore we do not complicate the algorithm in order to receive complete
tree as a result.

Results of numerical experiments show that qBalance is 30% faster than
DSW.

3 qBalance Algorithm over Ordered Search Tree (OST).
The Comparison with Sedgewick Algorithm

The node in our simple implementation of OST has the following structure:

template<typename T>
struct Node
{

T key;
Node* child[2];
int bf;
Node();
Node(T);

};

On New Rebalancing Algorithm 119

For a given node x, the attribute x−> bf contains the number of nodes in the
subtree rooted at x. In some cases it is more convenient to use a function N(x),
which coincides with x−> bf , if x is an address of any existing node, or 0 if x is
nullptr.

Sedgewick algorithm is well known, and in notations of this section, it is
described in [4]. Therefore, we will not stay at this.

The two versions of qBalance, developed for OST and BST trees, slightly
differs from each other. The public method that balances the tree is the same,

template<typename T>
Node<T>* Tree<T>::qBalance(Node<T>*& node, int m)

whilst in the private method the three additional rows ensure that the “bf” field
of the node of the rebalanced tree reflects the size of the subtree, rooted at this
node.

To this end, before returning the root of the two-noded balanced tree we are
pointing that tmp−> bf = 2; before returning the root of the one-noded tree we
are pointing that tmp−> bf = 1; finally, before returning the root of the subtree
balanced via method qBalance (Node< T > ∗& node, int m) we calculate its
size:

b->bf = N(b->child[0]) + N(b->child[1]) + 1;

This algorithm works in the linear time but it needs to traverse the tree twice
to make it balanced. Because of this Sedgewick algorithm is 30% faster than
qBalance in experiments conducted on OST with random data. When data is
coming in increasing or decreasing order, it is difficult to notice the difference
since the large-sized tree is constructed in square time, very slowly. Besides, this
case has only theoretic interest.

It is also easy to develop versions of qBalance for OST trees, resulting in a
complete tree. However, we will do it only for the standard version of RedBlack
tree because otherwise we will not be able to create the asynchronous rebalancing
version of qBalance.

4 qBalance Algorithm Over Doublestructured RB
Tree. The Comparison with the Modified Sedgewick
Algorithm

As well as in [4] let us consider RB tree with nodes having the following structure:

template<typename T>
struct Node
{

T key;
Node* p;
Node* child[2];
int bf;

120 K. Gelashvili et al.

Node();
Node(T);

};

This allows us to consider the field (data member) “bf” as either size or color of
subtree, depending on which properties are satisfied by tree – OST or RB. The
tree having such node structure is double structured in the certain sense - it is
not difficult to convert OST into RB and vice versa. The modified Sedgewick
algorithm for the Double Structured RB tree is little faster than basic algorithm,
therefore it is used for comparisons.

template<typename T>
void Tree<T>::balanceMod()
{

updateSizes(root);
root = balanceMod(root);
int maxHeight = (int)log2(size);
updateColors(root, maxHeight);

}

It is seen that together with the code being executed directly by rebalancing
algorithm (over OST tree and which is faster than qBalance in this case) it is
necessary to double traverse of the tree - the first one transforms RB tree to OST
tree and after rebalancing the second traverse refreshes colors in order to restore
RB tree properties. These procedures are described in [4] and are uploaded to
GitHub.

qBalance algorithm has no need to take into account OST tree specifics,
therefore this algorithm does only one traverse on the tree which determines its
advantage in the sense of run time. qBalance algorithm should convert the tree
into a list and select colors to obtain RB- tree again after rebalancing. These
two tasks are done simultaneously within one traverse by the following private
method:

template<typename T>
void Tree<T>::treeToList(Node<T>* x);

Which is later used by rebalancing algorithm:

template<typename T>
void Tree<T>::qBalanceComplete()
{

int height = (int)log2(size);
mateInt = pow(2, height) - 1;
mateCounter = 0;
treeToList(root);
root = qBalanceComplete(0, size - 1);

}

On New Rebalancing Algorithm 121

Numerical experiments show that qBalance works approximately 30% faster for
the RB tree with double structure than modified Sedgwick algorithm.

We developed this version of the qBalance algorithm to obtain a complete
picture of the efficiency of qBalance for RB trees. Hence, its code is not com-
pletely processed in the sense of optimization and the design. These tasks are
solved in the case of the standard structure of RB-trees.

5 qBalane Algorithm for Standard RB Tree. The
Comparison Between Sequential and Parallel (Two
Threads) Implementations

In the structure of the tree node is only one difference. Instead of the field

int bf;

we have

char color;

Hence we can consider only DSW and qBalance algorithms and their modifica-
tions. We consider an asynchronous modification of qBalance algorithm which
uses two threads. According to Amdahl’s law (see [7]) there is no reason for
using more threads. Indeed, qBalance algorithm traverses the whole tree twice
to rebalance it. In any case, it is necessary to traverse the tree at least once. It is
clear that a tree traversal is loaded by various tasks of processing the nodes (see
code), but the main part of the execution time corresponds with the traverse of
the tree.

There is another issue. In the case of the standardly structured node, we do
not know any algorithm which simultaneously will part tree nodes into more
than two linked lists. The size of lists must be approximately equal and lists
must be ordered linearly in the following sense: for any two lists either the key
of arbitrary node of the first list is less or equal to the key of the arbitrary node
of the second list or the key of arbitrary node of the first list is greater or equal
to the key of the arbitrary node of the second list.

Describe briefly the rebalancing asynchronous algorithm

template<typename T>
void Tree<T>::qBalanceAsync();

The core difference from other variants of the qBalance algorithm is that on
the first stage from the tree to be rebalanced two singly linked lists are created.
Lists are created at the same time asynchronously. To do this the two generic
algorithms are prepared in advance:

template<typename T>
Node<T>* Tree<T>::extremum(Node<T>* x, bool direction);

and

122 K. Gelashvili et al.

template<typename T>
Node<T>* Tree<T>::next(Node<T>* x, bool direction);

An invocation extremum(x, true); will return the address of the node of the
subtree with x root containing maximal key and extremum(x, false); will return
the address of the node of the subtree with x root containing the minimal key.

Similarly, any invocation of next(x, true); will return address of the node
that is the successor of the x node and an invocation next(x, false); will return
address of the node that is the predecessor of the x node.

The algorithm that transforms the tree into the list has the declaration

template<typename T>
void Tree<T>::treeToList_Colored
(

Node<T>*& head,
int NUmberOfNodes,
const bool direction,
const int height

)

First it defines the head of the list by the statement

head = extremum(root, !direction);

the head represents the address of the node of the tree containing the maximal or
minimal key. Then the algorithm starts construction of the list and determines
colors of the nodes taking into account their final position. Any invocation con-
taining “true” as an argument will give singly linked list with the head “head”.
In this list the address of node next to x node is stored in field x−> child[0].
Similarly, when in an invocation of the algorithm participates argument “false”
then the address of the node next to x node is stored in field x−> child[1]. In
the process of the transformation to the list, the determination of the color of
the node is done considering the position which will be occupied by the node in
the rebalanced tree. But this is a simple technical aspect and we will not pay
much attention to it.

The idea of the second part of qBalanceAsync is simple. The tree is already
divided into two parts (lists), and these parts will be rebalanced asynchronously
(simultaneously) excepting the middle node, which will become the root after
executing specific necessary procedures. The rebalancing algorithm which runs
on two parts of the tree simultaneously principally is the same as considered in
the previous section, but technically it is considerably complicated as two lists
obtained from the tree store in two different fields addresses of next nodes.

template<typename T>
void Tree<T>::qBalancePublic(const bool direction)

Any invocation containing argument “true” creates a complete tree and fills in
the bottom level from left to right (see left part of Fig. 1). On the other hand,

On New Rebalancing Algorithm 123

Fig. 1. Two different rebalancing scenarios, used in asynchronous mode.

any invocation containing argument “false” fills in bottom level from right to
left (see right part of Fig. 1). Such flexibility is necessary for asynchronous rebal-
ancing

template<typename T>
void Tree<T>::qBalanceAsync();

to consider all possible scenarios. First of all when heights of right and left
subtrees are equal, then first thread works on left part of the tree through the
scenario of the left part of Fig. 1 whilst second thread works through the scenario
of the right part of the same figure (see left part of Fig. 2). When the heights of
the subtrees are different, then qBalanceAsync algorithm paints the right subtree
only in black. further improvement is possible (to improve) of asynchronous

Fig. 2. Two different painting scenarios, used in asynchronous mode.

124 K. Gelashvili et al.

rebalancing to obtain completely balanced tree but the algorithm becomes more
complicated what makes doubtful the motivation of such improvement.

Numerical experiments show that the asynchronous rebalancing twice accel-
erates rebalancing process in practice and its usage instead of the sequential
algorithm is reasonable indeed.

6 Conclusion

In the case of general BST the advantage of the new algorithm compared to
DSW algorithms was confirmed by numerical experiments. Also by numerical
experiments was confirmed that in the case of OST trees Sedgewick algorithm
is faster than new rebalancing algorithm. In the case of RB trees (with different
structures of nodes) advantage of new algorithm is obvious, especially if its
asynchronous version is used. However, the code of the latter is considerably
complicated in comparison to other versions of qBalance. In the case when the
new algorithm is not faster than its alternatives, the perspective of speeding-up
of qBalance exists.

References

1. Day, C.: Comput. J. XIX, 360–361 (1976)
2. Stout, Q.F., Warren, B.L.: Commun. ACM 29(9), 902–908 (1986)
3. Sedgewick, R.: Algorithms in C, Parts 1–5. Addison-Wesley Professional, Boston

(2001)
4. Gelashvili, K., Grdzelidze, N., Shvelidze, G.: The modification of the Sedgewick’s

balancing algorithm. Bull. Georgian Acad. Sci. 10(3), 60–67 (2016)
5. Pfaff, B.: An Introduction to Binary Search Trees and Balanced Trees. Libavl Binary

Search Tree Library, vo.1.1: Source Code Ver. 2.0.2 (2004)
6. Rolfe, J.T.: One-time binary search tree balancing: the Day/Stout/Warren (DSW)

algorithm. SIGCSE Bull. 34, 85–88 (2002)
7. Amdahl, G.M.: Validity of the single processor approach to achieving large-scale

computing capabilities. In: AFIPS Conference Proceedings, pp. 483–485. AFIPS
Press, Atlantic City (1967)

Colorful Frontier-Based Search: Implicit
Enumeration of Chordal and Interval

Subgraphs

Jun Kawahara1(B) , Toshiki Saitoh2 , Hirofumi Suzuki3,
and Ryo Yoshinaka4

1 Nara Institute of Science and Technology, Ikoma, Japan
jkawahara@is.naist.jp

2 Kyushu Institute of Technology, Iizuka, Japan
toshikis@ces.kyutech.ac.jp

3 Hokkaido University, Sapporo, Japan
h-suzuki@ist.hokudai.ac.jp

4 Tohoku University, Sendai, Japan
ryoshinaka@tohoku.ac.jp

Abstract. This paper considers enumeration of specific subgraphs of a
given graph by using a data structure called a zero-suppressed binary
decision diagram (ZDD). A ZDD can represent the set of solutions quite
compactly. Recent studies have demonstrated that a technique gener-
ically called frontier-based search (FBS) is a powerful framework for
using ZDDs to enumerate various yet rather simple types of subgraphs.
We in this paper, propose colorful FBS, an enhancement of FBS, which
enables us to enumerate more complex types of subgraphs than existing
FBS techniques do. On the basis of colorful FBS, we design methods that
construct ZDDs representing the sets of chordal and interval subgraphs
from an input graph. Computer experiments show that the proposed
methods run faster than reverse search based algorithms.

Keywords: Graph algorithm · Graph enumeration · Decision
diagram · Frontier-based search · Interval graph · Chordal graph

1 Introduction

Enumeration problems are fundamental in computer science and have many appli-
cations in areas of bioinformatics, operations research, high performance comput-
ing, and so on. Various kinds of enumeration problems and algorithms for them
have been studied so far [25]. One of the most powerful frameworks for enumeration
algorithms is reverse search, proposed by Avis and Fukuda [1], which is the basis for
a vast number of enumeration algorithms thanks to its simplicity. However, since
reverse search outputs solutions one by one, its computation time is proportional
to at least the number of solutions to enumerate, which may be exponentially large
in input and unacceptable for many applications.

c© Springer Nature Switzerland AG 2019
I. Kotsireas et al. (Eds.): SEA2 2019, LNCS 11544, pp. 125–141, 2019.
https://doi.org/10.1007/978-3-030-34029-2_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34029-2_9&domain=pdf
http://orcid.org/0000-0001-7208-044X
http://orcid.org/0000-0003-4676-5167
http://orcid.org/0000-0002-5175-465X
https://doi.org/10.1007/978-3-030-34029-2_9

126 J. Kawahara et al.

(a) (b)

v

u

(c)

red:

green:

blue:

Fig. 1. Variants of T2. (Color figure online)

In this paper, we consider enumeration of subgraphs of a given graph. For sub-
graph enumeration, another framework uses zero-suppressed binary decision dia-
grams (ZDDs) [21]. A ZDD is a data structure that compactly represents and effi-
ciently manipulates a family of sets. A set of subgraphs of a graph is represented by
a ZDD by regarding a subgraph as an edge set and a set of subgraphs as a family
of edge sets, while disregarding isolated vertices. The size of the ZDD is usually
much, often exponentially, smaller than the cardinality of the set of the subgraphs.
Sekine et al. [24] and Knuth [16] proposed algorithms that construct decision dia-
grams representing all the spanning trees and all the paths of a given graph, respec-
tively. Kawahara et al. [11] generalized their algorithms for many kinds of sub-
graphs, which are specified by degrees of vertices, connectivity of subgraphs and
existence of cycles (for example, a path is a connected subgraph having two ver-
tices with degree one and others with degree two), and called the resulting frame-
work frontier-based search (FBS). The running time of FBS algorithms depends
more on the size of the ZDD than the number of subgraphs. FBS has been used for
many applications such as smart grid [6], political districting [10], hotspot detec-
tion [7], (a variant of) the longest path problem [12], and influence diffusion in
WWW [19]. However, the existing FBS framework can handle only graphs that
have the rather simple specifications mentioned above. More complex graphs such
as interval graphs and chordal graphs are out of its range.

Graphs with geometric representations are important in areas of graph algo-
rithms and computational geometry. For example, interval graphs have many
applications in areas of bioinformatics, scheduling, and so on [5]. Chordal graphs
also have such geometric representations and have many applications such as
matrix computation and relational databases [2,3]. Despite their complex geo-
metric representations, many of those classes are characterized by some rela-
tively simple forbidden induced subgraphs. For example, chordal graphs have no
induced cycle with length at least four. Actually it is easy to enumerate cycles
of size at least four by an FBS algorithm.

In this paper, we propose a novel technique that enhances FBS, which we call
colorful frontier-based search (colorful FBS), for subgraph enumeration prob-
lems, specifically enumeration of chordal and interval subgraphs. The idea of
colorful FBS is to “colorize” edges of a subgraph. The set of subgraphs with
colored edges is represented by a multiple-valued decision diagram (MDD) [20].
For example, the graph T2, shown in Fig. 1(a) cannot be uniquely determined
only by the FBS specification: three vertices with degree one, three vertices with
degree two, and a vertex with degree three, because the one in Fig. 1(b) also

Colorful Frontier-Based Search 127

satisfies this specification. Our colorful FBS employs “colored degree” of ver-
tices. For example, the vertex u in the graph of Fig. 1(c) has red degree one,
green degree zero, and blue degree zero, and the vertex v has red degree one,
green degree one, and blue degree one, and so on. No other graphs satisfy the
same colored degree specification. By “decolorizing” the graph in Fig. 1(c), we
obtain the one in Fig. 1(a). By colorful FBS and decolorization, we can treat
many more kinds of graph classes including T2, X31, XF≥1

2 , and XF≥0
3 , whose

members are shown in Fig. 2 (we borrow the names of the five classes from [23]).
Furthermore, we develop a technique that enables us to handle graphs charac-
terized by forbidden induced subgraphs as an important application of colorful
FBS, like chordal and interval graphs. We construct characterizing graphs by
adding induced edges as colored edges to given forbidden subgraphs and then
enumerate desired subgraphs characterized by forbidden induced subgraphs.

The contributions of the paper are as follows:

– We propose colorful FBS, with which one can construct ZDDs for more graph
classes than the existing FBS techniques.

– We also show that a colorful FBS algorithm can construct ZDDs for subgraphs
containing no subgraph in a given graph class as an induced subgraph.

– Using these algorithms, we propose methods that construct the ZDDs repre-
senting chordal subgraphs and interval subgraphs.

– By numerical experiments, we show that our methods surpass existing reverse-
search algorithms for enumerating chordal and interval subgraphs.

The rest of the paper is organized as follows. We provide some preliminaries
in Sect. 2. Section 3 describes colorful FBS for some graph classes. We propose a
decolorization algorithm that converts an MDD constructed by colorful FBS into
an ordinary ZDD in Sect. 3.3. In Sect. 4, we develop a method for constructing
the ZDD representing the set of subgraphs that contain no subgraphs, given as
a ZDD, as an induced subgraph. Section 5 compares the proposed methods and
existing algorithms. Finally, we conclude this paper in Sect. 6.

2 Preliminaries

2.1 Forbidden Induced Subgraphs and Chordal and Interval Graphs

A graph is a tuple G = (V,E), where V is a vertex set and E ⊆ {{v, w} | v, w ∈
V } is an edge set, respectively. The problems we consider in this paper are that
for some graph classes H in concern, we enumerate all the subgraphs H of an
input graph G such that H ∈ H. We assume that the input graph is simple
(i.e., the graph has no self-loop or parallel edges) and has at least two vertices.
Therefore, each edge is identified with a set of exactly two distinct vertices.

For any vertex subset U ⊆ V , E[U] denotes the set of edges whose end points
are both in U , i.e., E[U] = { e ∈ E | e ⊆ U }, called induced edges (by U). For
any edge subset D ⊆ E,

⋃
D denotes the set of the end points of each edge in

D, i.e.,
⋃

D =
⋃

{u,v}∈D{u, v}, called induced vertices (by D). We call (U,E[U])
the (vertex) induced subgraph (by U). Let G[D] = (

⋃
D,D), called the edge

128 J. Kawahara et al.

k nodes

(a) Ck (b) T2 (c) X31

k + 1 nodes

(d) XFk
2

k + 1 nodes

(e) XFk
3

Fig. 2. Graphs Ck, T2, X31, XFk
2 and XFk

3 . Ck belongs to the graph class C≥4 if k ≥ 4,
T2 belongs to T2, X31 belongs to X31, XFk

2 belongs to XF≥1
2 if k ≥ 1, and XFk

3 belongs
to XF≥0

3 if k ≥ 0, respectively.

induced subgraph (by D). This paper often identifies an edge induced subgraph
G′ = (

⋃
D,D) with the edge set D, ignoring isolated vertices.

Some graph classes are characterized by forbidden induced subgraphs. We say
that a graph class H is FIS-characterized by a graph class F if H consists of graphs
G = (V,E) such that no vertex subset of V induces a graph belonging to F , i.e.,

(V,E) ∈ H ⇐⇒ ∀U ⊆ V, (U,E[U]) /∈ F .

A chord of a cycle is an edge such that both endpoints of the edge are
contained in the cycle but the edge itself is not. A graph is chordal if any cycle
with size at least four of the graph has a chord. Thus, the class of chordal graphs
is FIS-characterized by the class of cycles of size at least four.

For a graph G = (V,E), a set of intervals I = {I1, . . . , In} with Ii = [ai, bi]
and ai, bi ∈ R is called an interval model of G if there is a one-to-one correspon-
dence f : V → I such that {v, w} ∈ E holds if and only if f(v) ∩ f(w) 	= ∅. An
interval graph is a graph that has an interval model. A proper interval graph is
an interval graph that has an interval model whose intervals are not contained
in any other intervals in the model.

The class of interval graphs is known to be FIS-characterized by the five
graph classes, C≥4, T2, X31, XF≥1

2 , and XF≥0
3 [18], whose members are shown

in Fig. 2. The class of proper interval graphs is FIS-characterized by the five
graph classes and K1,3 [9], where K1,3 is the class of graphs isomorphic to K1,3 =
({0, 1, 2, 3}, {{0, 1}, {0, 2}, {0, 3}}).

2.2 Multi-valued Decision Diagrams

A c-colored subset of a finite set E is a c-tuple �D = (D1, . . . , Dc) of subsets
Di ⊆ E such that Di ∩ Dj = ∅ for any distinct i and j. An element e ∈ E is
colored in i if e ∈ Di. To represent and manipulate sets of c-colored subsets,

Colorful Frontier-Based Search 129

we use (c + 1)-valued decision diagrams ((c + 1)-DDs), which are special types
of multiple-valued decision diagrams [20].

A (c + 1)-DD over a finite set E = {e1, . . . , em} is a labeled rooted directed
acyclic graph Z = (N,A, �) with a node set N , an arc set A and a labeling
function � : N → {1, . . . ,m}. We use the terms nodes and arcs for members of
N and A, while the terms vertices and edges are reserved for constituents of the
input graph. The node set N has exactly one root node, denoted by ρZ, and
exactly two terminal nodes ⊥ and �. Each non-terminal node α ∈ N \ {�,⊥}
has a label �(α) ∈ {1, . . . ,m} and has exactly c + 1 outgoing arcs called 0-arc,
1-arc, . . . , and c-arc. The node pointed at by the j-arc of α is called the j-child
and denoted by αj for each j ∈ {0, 1, . . . , c}. It is satisfied that �(αj) = �(α) + 1
if αj is not a terminal.

Each path π in a (c+1)-DD represents a c-colored subset [[π]] = (D1, . . . , Dc)
of E defined by

Dj = { e�(β) | π includes the j-arc of a node β }
for j ∈ {1, . . . , c}. The (c + 1)-DD Z itself represents a set of c-colored subsets

[[Z]] = { [[π]] | π is a path from ρZ to the terminal �} .

We call a (c+1)-DD reduced if there are no distinct nodes α and β such that
�(α) = �(β) and αj = βj for all j ∈ {0, . . . , c}. If a (c + 1)-DD has nodes that
violate this condition, those nodes can be merged repeatedly until the (c+1)-DD
becomes reduced. This reduction does not change the semantics of the (c+1)-DD.

We remark that (c+1)-DDs, 2-DDs, and 3-DDs are almost identical to MDDs,
binary decision diagrams as well as zero-suppressed binary decision diagrams,
and ternary decision diagrams, respectively, except a reduction rule that elim-
inates nodes so that the obtained data structure will be more compact. Our
algorithms with slight modification can handle “zero-suppressed” (c + 1)-DDs,
where a node can be eliminated if all the j-children for 1 ≤ j ≤ c point at
the terminal ⊥. However, for simplicity, we have defined (c + 1)-DDs without
employing such a reduction rule, where the label of a child node is always bigger
than the parent’s by one.

A (c-)colored graph is a tuple H = (U, (D1, . . . , Dc)), where U is the vertex
set and each Di is a set of edges called c-colored edges such that Di ∩Dj = ∅ for
distinct i and j. The i-degree of u ∈ U is the number of edges in Di incident to u
and the colored degree of u is a sequence �δ = (δ1, . . . , δc), where δi is the i-degree
of u. The colored degree multiset of H is a multiset s consisting of the colored
degrees of all the vertices. The multiplicity of a colored degree �δ ∈ s is denoted
by s(�δ). The decolorization of H is the graph H̃ = (U,

⋃
i=1,...,c Di) and H is

a c-coloring of H̃. A (c-)colored subgraph of a graph G is a (c-)colored graph
whose decolorization is a subgraph of G. By identifying a colored subgraph with
its c-colored edge set, the set of c-colored subgraphs can be represented by a
(c + 1)-DD. Throughout the paper, we use red, green, and blue to represent the
first, second, and third colors, respectively. Figure 3 shows the 3-DD representing
the 2-colored subgraphs of some three edge graph that have no more red edges
than green ones.

130 J. Kawahara et al.

1

2 2 2

3 3 3

⊥

0-arc:

1-arc:

2-arc:

Fig. 3. 3-DD for 2-colored subgraphs of a three edge graph that have no more red
edges than green ones. (Color figure online)

2.3 Frontier-Based Search

In this subsection, we explain FBS for subgraph enumeration problems [11,16,
24]. For a fixed input graph G = (V,E), by identifying a subgraph with its
edge set, a set of subgraphs can be represented by a 2-DD. In FBS, we order
the edges of G and write them as e1, . . . , em. An FBS algorithm constructs the
2-DD representing the set of all the subgraphs in a concerned graph class H.
Once we obtain the 2-DD, it is easy to output all the subgraphs one by one.
Therefore, in this paper, we describe how to construct the 2-DD instead of
explicitly outputting the subgraphs.

One can see FBS as a framework to construct a 2-DD representing the com-
putation of a dynamic programming algorithm searching for all the target sub-
graphs of an input graph. The dynamic programming algorithm processes edges
e1, . . . , em one by one and, accordingly, an FBS algorithm constructs the 2-DD
in a breadth-first and top-down manner. The dynamic programming algorithm
must involve a small data structure called configuration defined on each tenta-
tive decision of edge use, which corresponds to a path π from the root of the
2-DD to a node and is denoted as config(π) in the FBS algorithm. For notational
convenience, let us represent a path π as a binary sequence and let |π| denote
the length of π. The configuration config(π) must express a characteristic of the
subgraph [[π]] so that

– config(π · a) can be computed from config(π), |π|, and a ∈ {0, 1} for |π| < m,
– config(π) = � if [[π]] ∈ H and config(π) = ⊥ if [[π]] /∈ H for |π| = m,

where we identify the edge set [[π]] with the subgraph (
⋃

[[π]], [[π]]). This entails

if |π1| = |π2| and config(π1) = config(π2), then [[π1 ·π′]] ∈ H ⇐⇒ [[π2 ·π′]] ∈ H
for any π′ of length m − |π1|.

Therefore, we may make the two paths having the same configuration reach the
same node, while two paths with different configurations reach different nodes.
In other words, each node can be identified with a configuration. The design
of a configuration in FBS significantly affects the efficiency of the algorithm.

Colorful Frontier-Based Search 131

It is desirable to design config so that computation of config(π ·a) from config(π)
is cheap and as many as possible paths join to the same node.

In what follows, as an example, we consider the case in which H is the class
of graphs each of which consists of any number of distinct cycles. In this case,
the configuration of a path π is comprised of the degrees of the vertices in F|π|+1

of the subgraph [[π]], where Fi = (
⋃

j=1,...,i−1 ej) ∩ (
⋃

j=i,...,m ej), that is, the set
of vertices incident to both processed and unprocessed edges. Then, config(π · 0)
is identical to config(π) modulo the difference of the domains F|π|+1 and F|π|+2,
and config(π · 1) simply increments the degrees of both vertices of e|π|+1. The
configuration is also used for pruning. No vertex of a graph in H has degree 3
or more. If the degree of a vertex u ∈ e|π|+1 has already been two in config(π),
then using e|π|+1 makes the degree three. In this case we must perform pruning
and let the path π · 1 directly connect the terminal ⊥. Moreover, no vertex of
a graph in H has degree 1. If the degree of some vertex u ∈ e|π|+1 is one in
config(π) and u /∈ F|π|+2, then e|π|+1 is the last edge that can make the degree
of u two. Therefore, we connect the path π ·0 to the terminal ⊥, since afterwards
the degree of u will be determined to one. For π, we call a vertex u /∈

⋃m
i=|π|+1 ei

forgotten.
FBS can be used for classes of degree specified graphs [12], whose members

consist of connected graphs having a specified degree sequence. For example, the
graph K1,3 has the degree sequence (3, 1, 1, 1), and conversely, any graph with
the degree sequence (3, 1, 1, 1) must be isomorphic to K1,3. Therefore, the graph
class K1,3 is a class of degree specified graphs. To construct the 2-DD for degree
specified graphs by FBS, in addition to the degree of each vertex, we store the
number of forgotten vertices having each degree into each 2-DD node, and a
partition of the frontier to maintain connected components as a configuration.

3 Graph Classes Constructed by Colorful Frontier-Based
Search

We construct a 2-DD for interval subgraphs of an input graph based on its
FIS-characterization by the following three steps:

Step 1. We construct the 2-DDs for the subgraphs belonging to classes C≥4, T2,
X31, XF≥1

2 and XF≥0
3 .

Step 2. We make the union of those 2-DDs made by Step 1.
Step 3. Processing the 2-DD obtained by Step 2, taking induced edges into

account, we construct the goal 2-DD.

The second step is no more than a standard operation over 2-DDs. This section
is concerned with the first step, and the third step is described in Sect. 4. Both
steps involve our proposed framework, colorful FBS, which constructs a (c + 1)-
DD representing c-colored subgraphs in a breadth-first and top-down manner.

132 J. Kawahara et al.

3.1 Colorful FBS for Colored Degree Specified Graphs

Recall that a graph H is in the class C≥4 if and only if H is a connected graph
with at least four vertices all of which have degree 2. Such a condition is a
typical characterization that FBS can handle. The 2-DD for C≥4 can be con-
structed by an FBS algorithm. However, the other classes, T2, X31, XF≥1

2 and
XF≥0

3 , are not easy to treat for conventional FBS. For example, the graph
T2 ∈ T2 shown in Fig. 1(a) and the one in Fig. 1(b) have the same degree
sequence (3, 2, 2, 2, 1, 1, 1), but they are not isomorphic. In ordinary FBS, it
is difficult to distinguish two subgraphs, although it would be possible if we
far enrich the configuration stored in each node of a 2-DD, which should spoil
the efficiency of FBS. To overcome the difficulty, we use colored graphs. It
is easy to see that all 3-colored graphs with the same colored degree multi-
set {(2, 0, 0), (1, 1, 1), (1, 0, 0), (0, 2, 0), (0, 1, 0), (0, 0, 2), (0, 0, 1)} are isomorphic
to the one in Fig. 1(c). Enumeration of “colored degree specified graphs” is a
typical application of colorful FBS.

Step 1 for constructing the 2-DD for subgraphs belonging to each of T2, X31,
XF≥1

2 and XF≥0
3 consists of further two smaller steps. Step 1-1 constructs a

(c+1)-DD for colored subgraphs, whose decolorizations belong to the concerned
class, and Step 1–2 converts the (c+1)-DD into the desired 2-DD by decolorizing
represented subgraphs.

Step 1-1 for T2 is only a special case of enumerating colored degree specified
graphs over (c + 1)-DDs. We first create the root node with label 1, and for
i = 1, . . . , m, and for j = 1, . . . , c, we create the j-arc and the j-child of each
node with label i. The j-arc of a node with label i means that we use ei and
give the j-th color to the edge ei. Its 0-arc means that we do not use ei.

We describe what to be stored into each (c + 1)-DD node as a configuration.
We define the configuration for the colored degree specified graphs by the colored
degrees of the vertices in the frontier in the colored subgraph, and the number of
forgotten vertices having each colored degree. In this way, one can enumerate all
colored subgraphs of the input graph whose decolorizations are in T2. Pseudocode
is shown in the full version of the paper.

Step 1-2, the decolorization of those obtained colored graphs, is explained in
Sect. 3.3.

3.2 Coloring Graphs in X31, XF≥1
2 and XF≥0

3

The remained classes X31, XF≥1
2 and XF≥0

3 are not obtained by decolorizing
colored degree specified graphs, but a little more additional conditions will suffice
for characterizing those classes via 2-colored graphs. Those conditions are easily
handled by colorful FBS.

Class X31. We give two colors to X31 as shown in Fig. 4(a). We can show that
a graph is in X31 if and only if it admits a 2-coloring such that

Colorful Frontier-Based Search 133

(a) Colored X31 (b) Not X31

red:
green:

Fig. 4. Two graphs with colored degree multiset {(4, 0), (3, 2), (2, 1)2, (1, 0), (0, 2)2}.

k + 1 nodes

(a) Colored XFk
2

k + 1 nodes

(b) Colored XFk
3

red:
green:

Fig. 5. Coloring XFk
2 and XFk

3 .

– The colored degree multiset is {(4, 0), (3, 2), (2, 1)2, (1, 0), (0, 2)2}, where �δ2

means that the multiplicity of �δ is 2.
– The subgraph edge-induced by all the green edges is connected.

Note that we use the assumption that the input graph contains no self-loop or
parallel edges. The second condition is necessary to exclude the graph shown in
Fig. 4(b). (The subgraph edge-induced by all the red edges in a graph satisfying
the first condition is always connected.) To impose the second condition, we can
use the technique used in ordinary FBS that makes (monochrome) subgraphs
represented by the 2-DD connected [11].

Class XF≥1
2 . For k ≥ 1, we give two colors to XFk

2 as shown in Fig. 5(a). We
can show that a graph is in XF≥1

2 if and only if it admits a 2-coloring that
satisfies the following two conditions:

– The colored degree multiset is {(k + 2, 0), (1, 2)k+1, (1, 0), (0, 1)2} for some
k ≥ 1,

– The subgraph edge-induced by all the edges of each color is connected.

Class XF≥0
3 . For k ≥ 0, we give two colors to XFk

3 as shown in Fig. 5(b). We
can show that a graph is in XF≥0

3 if and only if it admits a 2-coloring such that
the following two conditions hold:

– The colored degree multiset is {(k + 3, 1)2, (2, 2)k+1, (2, 0), (0, 2)2} for some
k ≥ 0,

– The subgraph edge-induced by all the edges of each color is connected.

134 J. Kawahara et al.

3.3 Decolorization

This subsection gives a method to execute Step 1-2, decolorization. Given a
(c+1)-DD Z, the task of decolorization of Z is to construct the 2-DD decolor(Z)
such that [[decolor(Z)]] = {

⋃
i Di| �D = (D1, . . . , Dc) ∈ [[Z]]}. Let Zi denote the

(c + 1)-DD obtained from Z by regarding the i-child of the root ρZ of Z as
the root ρZi

and inheriting the nodes and the arcs of Z reachable from ρZi
. Our

decolorization algorithm is based on the following recursive formula. If Z 	= ⊥,�,

[[decolor(Z)]] = [[decolor(Z0)]] ∪

⎛

⎝e�(ρZ) ∗

⎛

⎝
⋃

i=1,...,c

[[decolor(Zi)]]

⎞

⎠

⎞

⎠ ,

where e ∗ S = {{e} ∪ S | S ∈ S}, [[decolor(⊥)]] = ∅ and [[decolor(�)]] = {∅}.
Based on the above formula, we design a decolorization algorithm for comput-

ing decolor(Z). First, we create the root node α of decolor(Z) with label �(ρZ).
Then, we recursively call decolor(Z0) and let the 0-arc of α point at the root
of the resulting 2-DD. Next, we call decolor(Z1), . . . , decolor(Zc) and compute
decolor(Z1) ∪ · · · ∪ decolor(Zc) by the conventional binary operation ‘∪’ [4,21],
where for 2-DDs ZA and ZB , we define ZA ∪ ZB by the 2-DD representing
[[ZA]] ∪ [[ZB]]. We let the 1-arc of α point at the root of the resulting 2-DD.

4 Induced Subgraph and FIS-Characterization

This section describes Step 3, which constructs the 2-DD representing the sub-
graphs of the input graph that are FIS-characterized by F represented by a
2-DD F. We have three parts:

3-1. By colorful FBS, we construct the 3-DD, say Z3, representing the set of
colored subgraphs each of which is obtained by giving red to the edges of
each member of F and green to the new edges induced by those red edges.

3-2. By using a recursive algorithm on Z3, we construct the 2-DD, say Z2,
representing the set of (monochrome) subgraphs each of which contains a
member of F as an induced subgraph.

3-3. We construct the desired 2-DD by computing Zall \Z2 by the conventional
binary operation ‘\’ [4,21], where Zall is the 2-DD for all the subgraphs of
the input graph and Zall \ Z2 is the 2-DD for [[Zall]] \ [[Z2]].

Since the 2-DD for C≥4 can be obtained by ordinary FBS, we immediately
obtain the 2-DD representing the set of all the chordal subgraphs by our method.
In Step 3-3, it is easy to construct Zall. We explain Steps 3-1 and 3-2 in the rest
of this section. Then, we also describe a more efficient way of simultaneously
carrying out Steps 3-2 and 3-3.

4.1 Colorful FBS for Edge-Inducing

We design a colorful FBS method for Z3 for Step 3-1. Suppose that F is repre-
sented by a 2-DD F. First, we describe how to store which edges are colored in

Colorful Frontier-Based Search 135

red as a configuration of FBS. Recall that a path from the root to a node α in F
corresponds to a subgraph consisting of edges in {e1, . . . , e�(α)−1}. To maintain
which edges are colored in red, we store a node of F into each node of the 3-DD
Z3, which we are constructing. We store the root of F into the root of Z3. Then,
when we create the 1-child of a node α storing β, we store β1 into the 1-child,
where βj is the j-child of β for j = 0, 1. If β1 = ⊥, we make the 1-arc of α point
at ⊥. When we create the 0-child or 2-child of α, we store β0 into the child. If
β0 = ⊥, we make the 0-arc or 2-arc of α point at ⊥.

Next, we describe how to add green edges so that the coloring condition
required in Step 3-1 holds. Let us observe some cases. Consider creating the
children of a node α. Let e�(α) = {v, w} (recall that e�(α) is the �(α)-th edge).
If both v and w are incident to (distinct) red edges, a red edge or green edge
must connect v and w. In this case, we make the 0-arc of α point at ⊥. If v is
incident to a red edge but w is not, connecting v and w by a green edge does
not immediately violate the coloring condition, but w must be incident to a red
edge in the future. Therefore, the 2-child of α must have the condition that a red
edge must be connected to w in the future. Conversely, in the same situation, if
we decide that v and w are connected by neither a red nor green edge, although
it does not immediately violate the coloring condition, we cannot connect any
red edge to w in the future. Therefore, the 0-child of α must remember that no
red edge must be connected to w in the future.

On the basis of the above observation, we store the value fα(u) for each
vertex u on the frontier into each node α of Z3 as (a part of) a configuration:

– fα(u) = 0 means that there is no condition about u,
– fα(u) = −1 means that u must not be incident to any red edge,
– fα(u) = 1 means that u is not currently incident to any red edge, but will

have to be incident to a red edge in the future,
– fα(u) = 2 means that u is incident to a red edge.

We can update the values of f in our colorful FBS and prune nodes so that no
contradiction occurs.

4.2 Recursive Algorithm

We describe a recursive algorithm for Step 3-2. Let G = (V,E) be an input
graph. The task for Step 3-2 is to construct the 2-DD Z2, which we denote by
ind(Z3), representing [[Z2]] = {F ∪ E′ | F ∈ [[F]], E′ ⊆ V \ E[

⋃
F]} = {F ∪ E′ |

(F,E′′) ∈ [[Z3]], E′ ⊆ V \ (F ∪ E′′)} from the input 2-DD F.
We use the following recursive structure to compute ind:

[[ind(Z3)]] = ([[ind(Z3
0)]] ∪ [[ind(Z3

2)]]) ∪ (ez ∗ ([[ind(Z3
0)]] ∪ [[ind(Z3

1)]]))

where z = �(ρZ3). Let us describe an intuition on this formula. We decompose
[[ind(Z3)]] as [[ind(Z3)]] = [[ind(Z3)0]] ∪ (ez ∗ [[ind(Z3)1]]), where ind(Z3)j denotes
the 3-DD whose root is the j-child of the root of ind(Z3). We also decompose
[[Z3]] into the three groups of subgraphs: (i) not having ez, (ii) having ez with red,

136 J. Kawahara et al.

and (iii) having ez with green. All the members of group (ii) must be included
in [[ind(Z3)1]], and all the members of group (iii) must be included in [[ind(Z3)0]].
All the members of group (i) must be included both in [[ind(Z3)0]] and [[ind(Z3)1]]
because not using ez in the 3-DD means that ez is allowed to be used or not in the
2-DD. Therefore, we obtain [[ind(Z3)0]] = [[ind(Z3

0)]] ∪ [[ind(Z3
2)]] and [[ind(Z3)1]] =

[[ind(Z3
0)]] ∪ [[ind(Z3

1)]].
We can integrate Steps 3-2 and 3-3 as follows. For a 2-DD Z, let [[Z]]c and Zc

denote the complement of [[Z]], i.e., [[Zall\Z]], and the 2-DD for [[Z]]c, respectively.
Then,

[[ind(Z3)]]c = (([[ind(Z3
0)]] ∪ [[ind(Z3

2)]]) ∪ (ez ∗ ([[ind(Z3
0)]] ∪ [[ind(Z3

1)]])))
c

= ([[ind(Z3
0)]]

c ∩ [[ind(Z3
2)]]

c) ∪ (ez ∗ ([[ind(Z3
0)]]

c ∩ [[ind(Z3
1)]]

c))

Hence, we can directly and recursively compute ind(·)c on the basis of the above
equation.

4.3 2-DDs for Interval and Proper Interval Subgraphs

We show how to construct the 2-DD for interval subgraphs. For a graph class
H, let Z(H) denote the 2-DD for subgraphs of the input graph belonging to
H. We construct the 2-DD Z(C≥4) by conventional FBS. We also construct the
4-DD Z(T2) by colorful FBS in Sect. 3.1, and the 3-DDs Z(X31), Z(XF≥1

2),
and Z(XF≥0

3) by colorful FBS in Sect. 3.2, respectively. Then, we carry out the
decolorization algorithm for the four DDs, that is, we compute decolor(Z(T2)),
decolor(Z(X31)), decolor(Z(XF≥1

2)), and decolor(Z(XF≥0
3)). We take the union

of the five DDs as Z(C≥4)∪decolor(Z(T2))∪decolor(Z(X31))∪decolor(Z(XF≥1
2))∪

decolor(Z(XF≥0
3)), which we denote Ẑ. Next, we compute the inducing 3-DD,

say Ẑ3, for Ẑ described in Sect. 4. Finally, we compute ind(Ẑ3)c described in
Sect. 4.2. The obtained 2-DD represents the set of all the interval subgraphs of
the input graph.

Next, we construct the 2-DD for proper interval subgraphs. A proper interval
subgraph is an interval subgraph that contains no member of K1,3 as an induced
subgraph. Therefore, we construct the 2-DD, say Z(K1,3) for K1,3 and when
taking the union above, we compute Z(C≥4)∪decolor(Z(T2))∪decolor(Z(X31))∪
decolor(Z(XF≥1

2))∪decolor(Z(XF≥0
3))∪Z(K1,3). The rest is the same as above.

The obtained 2-DD represents the set of all the proper interval subgraphs of the
input graph.

5 Experiments

In this section, we evaluate the performance of our methods by conduct-
ing experiments. Input graphs we use are complete graphs with n vertices
(Kn) and graphs provided by the Internet Topology Zoo (TZ) [15], KONECT
(KO) [17], and javaAwtComponent (JC) [22]. The Internet Topology Zoo
provides benchmark graphs representing communication networks, KONECT

Colorful Frontier-Based Search 137

contains network datasets for network science and related fields, and javaAwt-
Component includes chordal interference graphs obtained from the compilation
of java.awt.Component. We compare our methods with existing ones based on
reverse search. The authors implemented our methods, a reverse search based
algorithm for chordal subgraphs (RS-c) [14], and one for interval subgraphs (RS-
i) [13] in the C++ language. For handling DDs, we used the SAPPOROBDD
library, which has not been officially published yet but is available at https://
github.com/takemaru/graphillion, and for implementing colored FBS, we used
the TdZdd library [8]. The implementations were compiled by g++ with the -O3
optimization option and run on a machine with Intel Xeon E5-2630 (2.30 GHz)
CPU and 128 GB memory (Linux Centos 7.6).

RS-c and RS-i do not actually output chordal and interval subgraphs, respec-
tively, but only count the number of them. The proposed methods construct
2-DDs but do not explicitly output subgraphs. The cardinality of a family

Table 1. Comparison of methods for chordal graphs. “RS-c time” and “Ours time”
indicate the running time of RS-c and the proposed method (in seconds), respectively.
“<0.01” means that the time is less than 0.01 s. “# graphs” means the number of
output chordal subgraphs.

Graph |V | |E| RS-c time Ours time # graphs

K2 2 1 <0.01 <0.01 2

K3 3 3 <0.01 <0.01 8

K4 4 6 <0.01 <0.01 61

K5 5 10 <0.01 <0.01 822

K6 6 15 0.04 <0.01 18154

K7 7 21 0.68 0.02 617675

K8 8 28 28.52 0.32 30888596

K9 9 36 1892.48 14.31 2192816760

K10 10 45 T/O 680.91 215488096587

K11 11 55 T/O M/O –

TZ Darkstrand 28 31 30762.83 <0.01 2108348424

TZ Sunet 26 32 41792.31 <0.01 3523488768

TZ TataNld 145 186 T/O 1.96 4.1 × 1055

TZ UsCarrier 158 189 T/O 2.96 4.3 × 1056

TZ Kdl 754 895 T/O M/O –

KO Southern-women-2 10 14 0.04 <0.01 11822

KO South-African-Companies 11 13 0.03 <0.01 6432

KO American-Revolution 141 160 T/O 0.01 9.4 × 1046

KO PDZBase 212 242 T/O 1.27 3.3 × 1070

JC createBufferStrategy 37 145 T/O 104.33 1.3 × 1037

JC getListeners 113 342 T/O 1.13 4.3 × 1096

JC dispatchMouseWheelToAncestor 43 198 T/O M/O –

https://github.com/takemaru/graphillion
https://github.com/takemaru/graphillion

138 J. Kawahara et al.

represented by a DD can be easily computed by a simple dynamic programming-
based algorithm [16] in time proportional to the number of nodes in the DD.

Table 1 shows the comparison of RS-c and the proposed method of construct-
ing the 2-DD for chordal subgraphs. We pick up input graphs with the largest
edge set for which both algorithms succeeded in completing, and only the pro-
posed method succeeded in, and pick up input graphs with the smallest edge
set for which both algorithms failed to complete. “T/O” and “M/O” mean that
the program failed due to timeout (the computation time exceeds 100,000 s) and
out of memory (used up 128 GB memory), respectively. Both methods output
the same number of subgraphs for all input graphs shown in the table. Table 2
shows the comparison of RS-i and the proposed method of constructing the 2-
DD for interval subgraphs. The tables indicate that the proposed methods work
for larger graphs than RS-c and RS-i.

Table 2. Comparison of RS-i and the proposed method for interval graphs. “# graphs”
means the number of output interval subgraphs.

Graph |V | |E| RS-i time Ours time # graphs

K2 2 1 0.03 0.00 2

K3 3 3 0.01 0.00 8

K4 4 6 0.02 0.01 61

K5 5 10 0.14 0.01 822

K6 6 15 4.08 0.05 17914

K7 7 21 223.03 0.54 571475

K8 8 28 T/O 8.65 24566756

K9 9 36 T/O 228.66 1346167320

K10 10 45 T/O M/O –

TZ Nextgen 17 19 171.22 0.01 456375

TZ VisionNet 24 23 4427.51 0.02 8004608

TZ Interoute 110 146 T/O 2.89 5.2 × 1042

TZ DialtelecomCz 138 151 T/O 4.65 9.5 × 1044

TZ Ion 125 146 T/O M/O –

KO South-African-Companies 11 13 1.31 0.01 6184

KO Southern-women-2 10 14 2.50 0.02 11178

KO Chicago 1467 1298 T/O 1.38 4.4 × 10378

KO Facebook-NIPS 2888 2981 T/O 120.95 1.3 × 10894

KO Highland-Tribes 16 58 T/O M/O –

JC enableEvents 38 96 T/O 19.83 1.6 × 1024

JC readObject 66 112 T/O 0.60 1.5 × 1031

JC checkImage 13 46 T/O M/O –

Colorful Frontier-Based Search 139

We show the details of the computation time for interval subgraphs for K9

as follows. FBS for C≥4 and colorful FBS for T2, X31, XF≥1
2 , and XF≥0

3 took
0.02, 0.73, 5.64, 22.31, and 109.09 s, respectively. The decolorization for T2, X31,
XF≥1

2 , and XF≥0
3 took 0.06, 0.12, 1.00, and 10.58 s, respectively. The union of

the 2-DDs for the five classes took less than 0.01 s. The colorful FBS method for
Step 3-1 and ind operations took 0.26 and 94.08 s, respectively. The bottlenecks
of our method for K9 were colorful FBS for XF≥0

3 and the ind operation. For
graphs “KO Facebook-NIPS” and “JC enableEvents,” colorful FBS for XF≥1

2

took 90.9 and 2.89 s, that for XF≥0
3 took 11.5 and 0.94 s, and ind took 1.28 and

5.26 s, respectively. The bottleneck of our method for the two graphs was colorful
FBS for XF≥1

2 .

6 Conclusion

We proposed algorithms to construct the 2-DDs for the sets of all the chordal
and interval subgraphs of a given graph. Our algorithms employ colorful frontier-
based search for two different purposes. One is for enumerating forbidden sub-
graphs and the other is for inducing edges from those forbidden subgraphs.
We also presented different recursive methods converting a (c + 1)-DD into a
2-DD: one simply decolorizes subgraphs and the other produces subgraphs that
have no forbidden induced subgraphs, when the edges of the forbidden graphs
and their inducing edges have different colors in the input. Those demonstrate
the potential of our colorful FBS framework. Future directions of this research
include determining how many colors are needed for graph classes and theoreti-
cally investigating relations of graph classes and colored degrees.

Acknowledgment. This work was supported in part by JSPS KAKENHI Grant
Numbers JP15H05711, JP18K04610, JP16K16006, JP18H04091 and JP19K12098, and
NAIST Big Data Project.

References

1. Avis, D., Fukuda, K.: Reverse search for enumeration. Discrete Appl. Math. 65(1–
3), 21–46 (1996). https://doi.org/10.1016/0166-218X(95)00026-N

2. Beeri, C., Fagin, R., Maier, D., Yannakakis, M.: On the desirability of acyclic
database schemes. J. ACM 30(3), 479–513 (1983). https://doi.org/10.1145/2402.
322389

3. Blair, J.R.S., Peyton, B.: An introduction to chordal graphs and clique trees. In:
George, A., Gilbert, J.R., Liu, J.W.H. (eds.) Graph Theory and Sparse Matrix
Computation. The IMA Volumes in Mathematics and its Applications, vol. 56, pp.
1–29. Springer, New York, New York, NY (1993). https://doi.org/10.1007/978-1-
4613-8369-7 1

4. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE
Trans. Comput. C–35(8), 677–691 (1986). https://doi.org/10.1109/TC.1986.
1676819

https://doi.org/10.1016/0166-218X(95)00026-N
https://doi.org/10.1145/2402.322389
https://doi.org/10.1145/2402.322389
https://doi.org/10.1007/978-1-4613-8369-7_1
https://doi.org/10.1007/978-1-4613-8369-7_1
https://doi.org/10.1109/TC.1986.1676819
https://doi.org/10.1109/TC.1986.1676819

140 J. Kawahara et al.

5. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs (Annals of Dis-
crete Mathematics, Vol. 57). North-Holland Publishing Co., Amsterdam (2004)

6. Inoue, T., et al.: Distribution loss minimization with guaranteed error bound.
IEEE Trans. Smart Grid 5(1), 102–111 (2014). https://doi.org/10.1109/TSG.2013.
2288976

7. Ishioka, F., Kawahara, J., Mizuta, M., Minato, S., Kurihara, K.: Evaluation of
hotspot cluster detection using spatial scan statistic based on exact counting. Jpn.
J. Stat. Data Sci. 2(1), 1–15 (2019). https://doi.org/10.1007/s42081-018-0030-6

8. Iwashita, H., Minato, S.: Efficient top-down ZDD construction techniques using
recursive specifications. TCS Technical Reports TCS-TR-A-13-69 (2013)

9. Jackowski, Z.: A new characterization of proper interval graphs. Discrete Math.
105(1), 103–109 (1992). https://doi.org/10.1016/0012-365X(92)90135-3

10. Kawahara, J., Horiyama, T., Hotta, K., Minato, S.: Generating all patterns of graph
partitions within a disparity bound. In: Poon, S.-H., Rahman, M.S., Yen, H.-C.
(eds.) WALCOM 2017. LNCS, vol. 10167, pp. 119–131. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-53925-6 10

11. Kawahara, J., Inoue, T., Iwashita, H., Minato, S.: Frontier-based search for enu-
merating all constrained subgraphs with compressed representation. IEICE Trans.
Inf. Syst. E100–A(9), 1773–1784 (2017)

12. Kawahara, J., Saitoh, T., Suzuki, H., Yoshinaka, R.: Solving the longest oneway-
ticket problem and enumerating letter graphs by augmenting the two representative
approaches with ZDDs. In: Phon-Amnuaisuk, S., Au, T.-W., Omar, S. (eds.) CIIS
2016. AISC, vol. 532, pp. 294–305. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-48517-1 26

13. Kiyomi, M., Kijima, S., Uno, T.: Listing chordal graphs and interval graphs. In:
Fomin, F.V. (ed.) WG 2006. LNCS, vol. 4271, pp. 68–77. Springer, Heidelberg
(2006). https://doi.org/10.1007/11917496 7

14. Kiyomi, M., Uno, T.: Generating chordal graphs included in given graphs. IEICE
Trans. Inf. Syst. E89–D(2), 763–770 (2006). https://doi.org/10.1093/ietisy/e89-
d.2.763

15. Knight, S., Nguyen, H.X., Falkner, N., Bowden, R., Roughan, M.: The internet
topology zoo. IEEE J. Sel. Areas Commun. 29(9), 1765–1775 (2011). https://doi.
org/10.1109/JSAC.2011.111002

16. Knuth, D.E.: The Art of Computer Programming. Combinatorial Algorithms, Part
1, vol. 4A. Addison-Wesley, Upper Saddle River (2011)

17. Kunegis, J.: KONECT: the Koblenz network collection. In: Proceedings of the 22nd
International Conference on World Wide Web, pp. 1343–1350 (2013). https://doi.
org/10.1145/2487788.2488173

18. Lekkerkerker, C., Boland, J.: Representation of a finite graph by a set of intervals
on the real line. Fundamenta Mathematicae 51(1), 45–64 (1962)

19. Maehara, T., Suzuki, H., Ishihata, M.: Exact computation of influence spread by
binary decision diagrams. In: Proceedings of the 26th International Conference on
World Wide Web, pp. 947–956 (2017). https://doi.org/10.1145/3038912.3052567

20. Miller, D.: Multiple-valued logic design tools. In: Proceedings of the 23rd Interna-
tional Symposium on Multiple-Valued Logic, pp. 2–11 (1993). https://doi.org/10.
1109/ISMVL.1993.289589

21. Minato, S.: Zero-suppressed BDDs for set manipulation in combinatorial problems.
In: Proceedings of the 30th ACM/IEEE Design Automation Conference, pp. 272–
277 (1993). https://doi.org/10.1145/157485.164890

https://doi.org/10.1109/TSG.2013.2288976
https://doi.org/10.1109/TSG.2013.2288976
https://doi.org/10.1007/s42081-018-0030-6
https://doi.org/10.1016/0012-365X(92)90135-3
https://doi.org/10.1007/978-3-319-53925-6_10
https://doi.org/10.1007/978-3-319-48517-1_26
https://doi.org/10.1007/978-3-319-48517-1_26
https://doi.org/10.1007/11917496_7
https://doi.org/10.1093/ietisy/e89-d.2.763
https://doi.org/10.1093/ietisy/e89-d.2.763
https://doi.org/10.1109/JSAC.2011.111002
https://doi.org/10.1109/JSAC.2011.111002
https://doi.org/10.1145/2487788.2488173
https://doi.org/10.1145/2487788.2488173
https://doi.org/10.1145/3038912.3052567
https://doi.org/10.1109/ISMVL.1993.289589
https://doi.org/10.1109/ISMVL.1993.289589
https://doi.org/10.1145/157485.164890

Colorful Frontier-Based Search 141

22. Pereira, F.M.Q., Palsberg, J.: Register allocation via coloring of chordal graphs.
In: Yi, K. (ed.) APLAS 2005. LNCS, vol. 3780, pp. 315–329. Springer, Heidelberg
(2005). https://doi.org/10.1007/11575467 21

23. de Ridder, H.N., et al.: Information System on Graph Classes and their Inclusions
(ISGCI). http://www.graphclasses.org

24. Sekine, K., Imai, H., Tani, S.: Computing the Tutte polynomial of a graph of
moderate size. In: Staples, J., Eades, P., Katoh, N., Moffat, A. (eds.) ISAAC 1995.
LNCS, vol. 1004, pp. 224–233. Springer, Heidelberg (1995). https://doi.org/10.
1007/BFb0015427

25. Wasa, K.: Enumeration of enumeration algorithms. CoRR abs/1605.05102 (2016)

https://doi.org/10.1007/11575467_21
http://www.graphclasses.org
https://doi.org/10.1007/BFb0015427
https://doi.org/10.1007/BFb0015427

Unit Disk Cover for Massive Point Sets

Anirban Ghosh(B), Brian Hicks, and Ronald Shevchenko

School of Computing, University of North Florida, Jacksonville, FL, USA
{anirban.ghosh,n00133251,n01385011}@unf.edu

Abstract. Given a set of points in the plane, the Unit Disk Cover

(UDC) problem asks to compute the minimum number of unit disks
required to cover the points, along with a placement of the disks. The
problem is NP-Hard and several approximation algorithms have been
designed over the last three decades.

In this paper, we experimentally compare practical performances of
some of these algorithms on massive point sets. The goal is to investigate
which algorithms run fast and give good approximation in practice.

We present an elementary online 7-approximation algorithm for UDC
which runs in O(n) time on average and is easy to implement. In our
experiments with both synthetic and real-world massive point sets, we
have observed that this algorithm is up to 61.63 times and at least 2.9
times faster than the existing algorithms implemented in this paper. It
gave 2.7-approximation in practice for the point sets used in our exper-
iments. In our knowledge, this is the first work which experimentally
compares the existing algorithms for UDC.

Keywords: Geometric covering · Unit disks · Clustering

1 Introduction

Geometric covering is a well-researched family of problems in computational
geometry and have been studied for decades. The Unit Disk Cover (UDC)
problem has turned out to be one of the fundamental geometric covering prob-
lems. Given a set P of n points p1, . . . , pn in the Euclidean plane, the UDC
problem asks to compute the minimum number of possibly intersecting unit
disks (closed disks of unit radius) required to cover the points in P , along with a
placement of the disks. See Fig. 1 for an example. The algorithms for UDC can
be easily scaled for covering points using disks of any fixed radius r > 0. In this
paper, we use r = 1.

The UDC problem has applications in wireless networking, facility location,
robotics, image processing, and machine learning. For instance, P can be per-
ceived as a set of clients or locations of interest seeking service from service
providers which can be modelled using fixed-radius disks. The goal is to provide
service or cover these locations using the minimum number of service providers.

Research supported by the University of North Florida start-up fund.

c© Springer Nature Switzerland AG 2019
I. Kotsireas et al. (Eds.): SEA2 2019, LNCS 11544, pp. 142–157, 2019.
https://doi.org/10.1007/978-3-030-34029-2_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34029-2_10&domain=pdf
https://doi.org/10.1007/978-3-030-34029-2_10

Unit Disk Cover for Massive Point Sets 143

Fig. 1. Any optimal solution for this point set contains exactly 5 disks; an optimal
solution is shown using gray disks. The solution shown in this figure used 12 disks.

The UDC problem has a long history. Back in 1981, UDC was shown to be
NP-Hard by Fowler [14]. The first known approximation algorithm for UDC is a
PTAS designed by Hochbaum and Maass [18], which runs in O(�4(2n)4�2+1) time
having an approximation factor of (1 + 1

�)2, for any integer � ≥ 1. Gonzalez [17]
presented two approximation algorithms; a 2(1 + 1

�)-approximation algorithm
which runs in O(�2n7) time, where � is a positive integer and another constant-
factor1 approximation algorithm with runtime of O(n log |OPT|), where |OPT|
is the number of disks in an optimal cover. Charikar, Chekuri, Feder, and Mot-
wani [8] devised a 7-approximation algorithm for the UDC problem (the authors
used the name Dual Clustering for this problem). A O(1)-approximation
algorithm with runtime of O(n3 log n) is presented by Brönnimann and Goodrich
[6]. Franceschetti, Cook, and Bruck [15] developed an algorithm with an approxi-
mation factor of 3(1+ 1

�)2 having a runtime of O(Kn), where � is a positive integer
and K is a constant which depends on �. A 2.8334-approximation algorithm is
designed by Fu, Chen, and Abdelguerfi [16] which runs in O(n(log n log log n)2)
time. Liu and Lu [22] designed a 25/4-approximation algorithm having a runtime
of O(n log n). Biniaz, Liu, Maheshwari, and Smid [5] devised a 4-approximation
algorithm which has runtime of O(n log n). Recently, Dumitrescu, Ghosh, and
Tóth [13] have designed an online 5-approximation2 algorithm for the problem,
but no comment about its asymptotic runtime is made.

In the era of Big Data, the sizes of data sets are growing exponentially. Find-
ing good solutions efficiently for NP-Hard geometric optimization problems has
posed a great challenge. Due to the practical importance of the UDC problem, it
is worthwhile to investigate which algorithms designed for UDC are fit for pro-
cessing massive point sets in practice. It is no surprise that algorithms having
runtime worse than O(n log n) are unfit for practical uses. Moreover, the con-
stants in their asymptotic runtimes should be small enough to be tolerated for
practical purposes. This motivated us to implement some of the existing algo-
rithms to find out which ones among these are efficient in practice. In particular,

1 In [17], the author claims this constant to be 4, whereas in [5,15,22] the authors
claims it to be 8. Unfortunately, in all these papers the claims appear unjustified.

2 In the literature of online algorithms, the term competitive ratio is used instead of
approximation factor.

144 A. Ghosh et al.

our objective is to find a practical approximation algorithm for UDC which runs
fast in practice and at the same time produces good quality solution with some
theoretical guarantee.

Covering problems involving points and disks are well-studied in computa-
tional geometry; see for instance, [2–4,9–12,19,20]. Recently, Bus, Mustafa, and
Ray designed a practical algorithm for the geometric hitting set problem; see [7].
The UDC problem has also been considered in the streaming setup by Liaw, Liu,
and Reiss [21].

Our Contributions. For our experiments, we have implemented the following
algorithms; appropriate abbreviations are used for naming purposes.

1. HM-1985 by Hochbaum and Mass (1985) [18]
2. G-1991 by Gonzalez (1991) [17]
3. CCFM-1997 by Charikar, Chekuri, Feder, and Motwani (1997) [8]
4. FCB-2001 by Franceschetti, Cook, and Bruck (2001) [15]
5. LL-2014 by Liu and Lu (2014) [22]
6. BLMS-2017 by Biniaz, Liu, Maheshwari, and Smid (2017) [5]
7. DGT-2018 by Dumitrescu, Ghosh, and Tóth (2018) [13]

We have refrained from implementing the algorithms from [6] and [16] since
their runtimes are worse than O(n log n). However, we have implemented HM-
1985 [18] despite its poor runtime, primarily due to its historical importance in
covering problems.

We have designed a simple online 7-approximation algorithm named GHS
which runs in O(n) time on average; see Sect. 2.8. The solutions generated by
GHS in our experiments is competitive with the ones generated by the above
sophisticated algorithms. A simple proof is presented to show that GHS has
an approximation factor of 7. Our experiments with 36 synthetic and 11 real-
world massive point sets show that GHS gives 2.7-approximation in practice
and is remarkably faster than the other implemented algorithms. In fact, we
have observed up to 61.63 times and at least 2.9 times speedup while main-
taining 2.7-approximation. The largest point set used in the experiments has
≈10.8 million points. The algorithms are implemented in C++17 using the CGAL
4.13 library [23]. For some algorithms, we have used some built-in algorithms
from CGAL for high precision and efficient practical performance.

In Sect. 2, we discuss the algorithms implemented in this paper along with
the GHS algorithm. In Sect. 3, we present our experimental results.

Notations. We denote a point p ∈ R2 using a pair of real numbers (a, b). By px

and py, we denote its x and y-coordinates, respectively.

2 Algorithms

2.1 HM-1985: Hochbaum and Mass (1985)

HM-1985 [18] is a PTAS designed for covering points in d-space using unit balls.
It has an approximation factor of (1+ 1

�)d and runs in O(�d(�
√

d)d(2n)d(�
√

d)d+1)

Unit Disk Cover for Massive Point Sets 145

time, for any integer � ≥ 1. In 2-space, it runs in O(�4(2n)4�2+1) time and has
an approximation factor of (1 + 1

�)2. For � = 1, 2, 3, the approximation factors
are 4, 2.25, ≈1.77 and the running times are O(n5),O(n17),O(n37), respectively.
Although the approximation factors look attractive, this algorithm is unusable
for massive point sets. Even with small point sets, the algorithm can be embar-
rassingly slow. However, from theoretical perspective this algorithm has a histor-
ical importance due to the shifting strategy introduced for geometric covering.
Also, a few algorithms which came after this used the shifting strategy as a
basis. Nevertheless, we have implemented this algorithm in order to gain further
insight.

The shifting strategy is a divide and conquer approach. Let P be enclosed
between two vertical lines L1 and L2. The space between these two lines are
divided into vertical strips of width 2. A group is a collection of � consecutive
strips. Thus, a group has width 2�. There are � different ways of partitioning the
region between L1, L2 into � groups; let the partitions be S := S1, . . . , S�, such
that every partition in this sequence can be obtained from the previous one by
shifting it 2 units to the right. If we repeat the shift � times on S1, the partition
S1 itself is obtained.

Algorithm 1 : HM-1985(P)

1: Obtain the partitions S := S1, . . . , S� by applying the shifting strategy in x;
2: for every Si ∈ S do
3: Divide Si into groups G1, G2, . . . of width 2�;
4: for every group Gi do
5: apply the shifting strategy in y-dimension and obtain the best solution for Gi

among � solutions using the algorithm for finding optimal covers in 2� × 2�
squares;

6: end for
7: The solution Ci for Si is the union of the solutions obtained for the Gis;
8: end for
9: return C ∈ {C1, . . . , C�} having the minimum number of disks;

For every partition Si ∈ S, we compute a cover Ci in the following way.
For every group in Si, we compute a cover. The solution for Si is the union of
these covers obtained for these groups. The authors have showed that if we use
a c-approximation algorithm for the groups, then the approximation factor of
the global algorithm is c(1 + 1

�). Interestingly, the shifting strategy can also be
applied to every group independently. In this case, the global algorithm has an
approximation factor of (1 + 1

�)2. Now observe that for a particular group of
width 2�, at each iteration of the shifting strategy, we obtain 2� × 2� squares.
The author showed that one can find the optimal solutions for these squares.
Assume that such a square contains m points. The authors argued that 2�2

disks are enough to cover these points. The candidate disks are the ones which
have at least two points on their boundaries. It is easy to see that there are

146 A. Ghosh et al.

at most 2
(
m
2

)
such disks. Hence, we need to check O(m4�2) arrangements of

disks, starting with arrangements of size 1 and continuing till arrangements of
size 2�2, until an arrangement is found which covers the m points. The final
solution returned by the global algorithm is a cover C ∈ {C1, . . . , C�} having the
minimum number of disks. Refer to Algorithm 1, for a high-level description of
HM-1985.

The main slowdown comes from the time taken to find optimal solutions in
the 2� × 2� squares. Although HM-1985 appears to be unusable in practice, it
finishes within a tolerable amount of time for point sets where the number of
points in these 2� × 2� squares is low, say less than 10.

2.2 G-1991: Gonzalez (1991)

Gonzalez designed two algorithms for UDC in d-space; refer to [17]. One of
these algorithms is a PTAS which uses the shifting strategy introduced in HM-
1985. This PTAS has an approximation factor of 2(1 + 1

l)
d−1 and runtime of

O(�d−1d(2
√

d)(�
√

d)d−1nd(2
√

d)d−1+1), for every integer � ≥ 1. In the plane, this
algorithm has an approximation factor of 2(1 + 1

l) and runs in O(�2n4
√
2+1)

time. Although this algorithm is asymptotically faster than HM-1985, but in
practice, it can be embarrassingly slow for massive point sets. Hence, we did not
implement this algorithm.

Algorithm 2 : G-1991(P)

1: Let P1 := {p ∈ P |iy(p) is odd} and P2 := {p ∈ P |iy(p) is even}. Execute the lines
2-12 independently on P1 and P2. The final solution is the union of these two
solutions;

2: Sort Pi (P1 or P2) w.r.t ix(p) into sets S := S1, . . . , Sk;
3: R ← S1 ∪ S2; j ← 2;
4: while R �= ∅ do
5: q ← min{px | p ∈ R};
6: Let Q be the set of points in R at a distance ≤ √

2 (w.r.t x only) from q,
R ← R \ Q;

7: Output the
√

2 × √
2 square whose left boundary includes q and whose top

boundary coincides with the top boundary of the slab;
8: while j < k and R contains elements from at most one of the sets in S do
9: j ← j + 1; R ← R ∪ Sj ;

10: end while
11: end while
12: For every

√
2 × √

2 square in the solution, place a unit disk at its center;

The other algorithm G-1991 has an approximation factor of 2d−1(
√

d)d and
runtime of O(dn + n log |OPT|), where |OPT| is the number of disks in an opti-
mal cover. In the plane, G-1991 is a 4-approximation algorithm and runs in

Unit Disk Cover for Massive Point Sets 147

O(n log |OPT|) time. Let p ∈ P , then ix(p) = �px/
√

2� and iy(p) = �py/
√

2�.
This notation is used in the high-level description of G-1991; see Algorithm 2.

The author presented this algorithm for covering points using axis-parallel
squares of fixed size and claimed that the same can be used for UDC. In our
implementation we have used squares of length

√
2 and then placed a unit disk

at the center of every square. Since a square of length
√

2 can be inscribed inside
a unit disk, every point is covered in this approach.

Note that G-1991 does not use any comparison-based sorting algorithm. Refer
to [17] for more details. Our experiments show that this algorithm is fast in
practice and gives good quality solution.

2.3 CCFM-1997: Charikar, Chekuri, Feder, and Motwani (1997)

The algorithm by Charikar et al. [8] was originally designed for the online version
of UDC, which the authors named Dual Clustering. In d-space, CCFM-
1991 has an approximation factor of O(2dd log d). In 2-space, CCFM-1997 has
an approximation factor of 7; refer to Algorithm 3. However, no comment was
made about its runtime or implementation. So, have used the standard Delaunay
triangulation from CGAL for nearest neighbour queries.

Algorithm 3 : CCFM-1997(P)

1: Let active-centers and inactive-centers be two empty Delaunay triangula-
tions;

2: for p ∈ P do
3: if the distance to the nearest disk center in active-centers > 1 then
4: if the distance to the nearest disk center q in inactive-centers ≤ 1 then
5: Delete q from inactive-centers and add q to active-centers;
6: else
7: Add p to active-centers and add the following points to

inactive-centers: (px +
√

3, py), (px +
√

3/2, py + 1.5), (px +
√

3/2, py −
1.5), (px − √

3/2, py + 1.5), (px − √
3, py), (px − √

3/2, py − 1.5);
8: end if
9: end if

10: end for
11: return active-centers;

2.4 FCB-2001: Franceschetti, Cook, and Bruck (2001)

FCB-2001 [15] is based on the shifting strategy from HM-1985. The main slow-
down in HM-1985 was the exhaustive checking with the disk arrangements inside
2�×2� squares. FCB-2001 tries to address this issue using the following strategy
thereby improving the overall asymptotic runtime.

Recall that in HM-1985 we need to check O(m4�2) arrangements of disks to
find the optimal solution for a square, where m is the number of points in a
square. But in FCB-2001, a square grid of certain size is overlayed on the point

148 A. Ghosh et al.

set. Now consider any 2� × 2� square. Find the grid points which belong to this
square. Let the number of such points be p. These p points are the candidate
disk centers for covering the m points in the square. A sub-optimal covering is
found by checking all possible arrangements containing at most 2�2 − 1 disks. If
all these arrangements to cover the points, a compact covering arrangement of
2�2 disks is chosen. Now the question remains that what should be the size of
the grid. According to the authors, to achieve the best possible approximation,
one can choose the grid size to be 4/5

√
2 ≈ 0.57 (scaling applied for unit disks).

This strategy achieves an approximation factor of 3(1 + 1
�)2 having a runtime

of Kn, where K = �2
∑��

√
2�2−1

i=1

(
p
i

)
i. The pseudocode of FCB-2001 is similar to

that of HM-1985 and hence is not presented.
For UDC, it is natural to consider the greedy strategy where at each itera-

tion a disk placed which covers the maximum number of uncovered points. The
authors showed that this greedy strategy does not give constant factor approxi-
mation.

2.5 LL-2014: Liu and Lu (2014)

In LL-2014 [22], the plane is divided into vertical strips of width
√

3 each. Inside
each strip, we obtain an approximate solution by sorting the points in non-
increasing order according to y-coordinate. The next uncovered point is covered
by placing a disk as low as possible. The final solution is obtained by taking the
union of all the solutions obtained for the strips. This technique is applied by
shifting the strip system five times to the right. The final solution is the best
out of these six solutions. Refer to Algorithm 4. The authors show that this
algorithm has an approximation factor of 25/6 ≈ 4.17 and runs in O(n log n)
time.

The algorithm can be quite slow in practice since the algorithm has six
expensive iterations. However, it gives high quality solution in practice. Also,
this algorithm is quite easy to implement, not requiring any complicated data-
structure and/or advanced algorithmic techniques. In our implementation, we
have assumed that every strip is left closed and right open.

2.6 BLMS-2017: Biniaz, Liu, Maheshwari, and Smid (2017)

The algorithm by Biniaz et al. [5] is a 4-approximation algorithm which runs in
O(n log n) time. Refer to Algorithm 5 for a high-level description of the algo-
rithm. We have implemented Disk-Centers in the algorithm using Delaunay
triangulation from CGAL.

Although the algorithm has a good approximation factor, placing four disks
in advance sometimes yields poor quality solution compared to the other algo-
rithms. For instance, if the distance between any two points in P is greater than
2, BLMS-2017 places exactly 4 times the optimal number of disks. In compar-
ison, other algorithms such as, G-1991 or DGT-2018 places an optimal number
of disks.

Unit Disk Cover for Massive Point Sets 149

Algorithm 4 : LL-2014(P)

1: Disk-Centers ← ∅, min ← n + 1;
2: Sort P w.r.t x-coordinate using an optimal sorting algorithm;
3: for i ∈ {0, 1, 2, 3, 4, 5} do

4: current ← 1, C ← ∅, right ← P [1]x + i
√
3

6
;

5: while current ≤ n do
6: index ← current;
7: while P [current]x < right and current ≤ n do
8: current ← current + 1;
9: end while

10: x-of-restriction-line ← right −√
3/2, segments ← ∅;

11: for j ← index to current−1 do
12: d ← P [j]x− x-of-restriction-line, y ← √

1 − d2;
13: Create a segment s with the endpoints (x-of-restriction-line, P [j]y +y)

and (x-of-restriction-line, P [j]y − y), insert s into segments;
14: end for
15: Sort segments in non-ascending order based on y coordinate of the top and

greedily stab them by choosing the stabbing point as low as possible, while
still stabbing the topmost unstabbed segment. Put the stabbing points (the
disk centers) in C;

16: Increment right by a multiple of
√

3 such that P [current] − right ≤ √
3;

17: end while
18: if |C| < min then
19: Disk-Centers ← C, min ← |C|;
20: end if
21: end for
22: return Disk-Centers;

Algorithm 5 : BLMS-2017(P)

1: C ← ∅, Disk-Centers ← ∅;
2: Sort P from left to right using an optimal sorting algorithm;
3: for p := (x, y) ∈ P do
4: if the nearest point in C is more than 2 units away from p then

5: Place four disks centered at (x, y), (x+
√

3, y), (x+
√

3
2

, y+1.5), (x+
√
3
2

, y−1.5)
as add these four points to Disk-Centers;

6: C ← C ∪ p;
7: end if
8: end for
9: return Disk-Centers;

2.7 DGT-2018: Dumitrescu, Ghosh, and Tóth (2018)

DGT-2018 is a simple online algorithm which gives 5-approximation in the plane.
In d-space, the algorithm has an approximation factor of O(1.321d) which is
an improvement over CCFM-1997. Being an online algorithm like CCFM-1997,

150 A. Ghosh et al.

these two algorithms do not require any expensive pre-processing, such as, sort-
ing. We have used Delaunay triangulation for nearest-neighbour queries. Refer
to Algorithm 6 for a high-level description of this algorithm.

Algorithm 6 : DGT-2018(P)

1: Disk-Centers ← ∅;
2: for p ∈ P do
3: if the distance from p to the nearest point in Disk-Centers is > 1 then
4: Disk-Centers ← Disk-Centers ∪ p;
5: end if
6: end for
7: return Disk-Centers;

2.8 GHS: A Fast 7-Approximation Algorithm

For massive point sets, any kind of pre-processing which requires ω(n) time is
expensive. For instance, sorting n elements using any optimal sorting algorithm,
takes a considerable amount of time. In this section, we present a simple algo-
rithm GHS which does not require any pre-processing and is an online algorithm.

We use a square grid of size
√

2 as shown in Fig. 2(left). Every square in this
grid is inscribed within a unit disk. If a point is already covered by one of the
disks previously placed, then no action is required, else place a disk at the center
of the square in which the point lies. We call such a disk, a grid disk. GHS is
presented with all the technical details in Algorithm 7.

In our implementation, for fast searching we have used a hash table for storing
the centers of the disks placed previously. In order to avoid floating-point inac-
curacies, we have used a pair of integers to denote a disk center; see Fig. 2(left).
The actual coordinates can be easily obtained by multiplying these integers by√

2 and then adding
√

2/2 = 1/
√

2 to each of them. Given a point p ∈ P , the
pair of integers used to represent the square and also the circumscribed disk in
which it lies are vp := �px/

√
2� and hp := �py/

√
2�. The exact location of the

disk is (
√

2vp + 1√
2
,
√

2hp + 1√
2
). In GHS, for every point we perform at most

five searches in the table; refer to Algorithm 7. Hence, GHS runs in O(n) time
on average.

It is computationally expensive to check if a point is covered by a disk
placed before since it involves floating-point distance calculations. To avoid these
heavy calculations in some cases, we have used the following heuristic. Refer to
Fig. 2(right). If a point lies in the gray square, then one can safely conclude that
this point is not covered any other disks. This checking does not require any
distance calculation and hence can be executed fast.

In the following, we show that GHS is an 7-approximation algorithm.

Theorem 1. GHS is an 7-approximation algorithm. For every integer n ≥ 1,
there exists an 7n-element point-set for which GHS places seven times the opti-
mal number of disks. GHS requires O(s) additional runtime space, where s
denotes the size of the solution.

Unit Disk Cover for Massive Point Sets 151

Fig. 2. Left: Illustration of the GHS algorithm. Right: If a point in a grid square belongs
to the inner gray square, then the point is not covered by any disk placed before; it

follows from rudimentary geometry that d = 1 −
√
2
2

≈ 0.293.

Algorithm 7 : GHS(P)

1: H ← ∅, Disk-Centers ← ∅;
2: for p ∈ P do
3: v ←
px/

√
2�, h ←
py/

√
2�;

4: if (v, h) ∈ H then
5: no action is required; {p is covered by a disk placed before}
6: else if px ≥ √

2(v + 1.5) − 1 and (v + 1, h) ∈ H and
distance(p, (

√
2(v + 1) + 1√

2
,
√

2h + 1√
2
)) ≤ 1 then

7: do nothing; {p is covered by the disk E placed before; see Fig. 2(right)}
8: else if px ≤ √

2(v − 0.5) + 1 and (v − 1, h) ∈ H and
distance(p, (

√
2(v − 1) + 1√

2
,
√

2h + 1√
2
)) ≤ 1 then

9: do nothing; {p is covered by the disk W placed before; see Fig. 2(right)}
10: else if py ≥ √

2(h + 1.5) − 1 and (v, h + 1) ∈ H and
distance(p, (

√
2v + 1√

2
,
√

2(h + 1) + 1√
2
)) ≤ 1 then

11: do nothing; {p is covered by the disk N placed before; see Fig. 2(right)}
12: else if py ≤ √

2(h − 0.5) + 1 and (v, h − 1) ∈ H and
distance(p, (

√
2v + 1√

2
,
√

2(h − 1) + 1√
2
)) ≤ 1 then

13: do nothing; {p is covered by the disk S placed before; see Fig. 2(right)}
14: else
15: Insert (v, h) into H and (

√
2v + 1√

2
,
√

2h + 1√
2
) into Disk-Centers;

16: end if
17: end for
18: return Disk-Centers;

Proof. The union of grid disks gives R2. Hence, it is enough to consider the grid
disks to cover the points in P .

152 A. Ghosh et al.

Consider any disk D from an optimal solution. It suffices to show that D
intersects or touches at most seven grid disks placed by the algorithm. It is easy
to see that D contains exactly 1, 2, or 4 grid points. Refer to Fig. 2(left). Note
that D cannot contain exactly 3 grid points. In this figure, we index the grid
disks using pairs of integers which denote the row and column numbers from the
grid as shown in Fig. 2(left).

When D contains exactly one grid point, it intersects with exactly four grid
disks placed by GHS; refer to D1 in Fig. 2(left). The four disks are D4,2, D4,3,
D3,2, D3,3.

When D contains exactly two grid points, it intersects with at most seven
grid disks. Without loss of any generality, consider the disk D2 in Fig. 2(left)
which contains exactly two grid points. Note that D2 ∩ D4,6 = D2 ∩ D2,6 = ∅.
Hence D2 can intersect or touch at most seven disks in this case. In this case,
these seven disks are D4,4,D4,5,D3,4,D3,5,D3,6, D2,4, D2,5.

When D contains exactly four grid points, it intersects or touches six grid
disks; refer to D3 in Fig. 2(left). The six disks are D3,2,D3,3,D2,1,D2,2,D2,3,
D1,2. Observe that in this case D4 is also a grid disk. Hence, we have proved
that GHS is an 7-approximation algorithm.

Now observe that if the points p1, . . . , p7 (see Fig. 2(left)) are present in the
input in this sequence, our algorithm places the seven disks D4,4, D4,5, D3,4,
D3,5, D3,6, D2,4, D2,5. These seven points can be covered by a single disk D2.
This shows that our analysis is tight.

Let us call p1, . . . , p7, a cluster. Given an integer n ≥ 1, place n such clusters
sufficiently apart, say at least 3 units away from each other. In this case, any
optimal solution will contain n disks, but our algorithm will place 7n disks.

Note that we insert a disk into the hash-table only when it belongs to the
solution. Hence, additional space required by GHS is O(s), where s denotes the
number of disks in the solution.

Remark. If the bounding box of P is known in advance and sufficient space is
available, GHS can be implemented to run exactly in O(n) time using a matrix
for storing the disk centers. In our experiments, we have assumed that the bound-
ing box is unknown.

3 Experimental Results

We have implemented these algorithms in C++17 using the CGAL library [23].
The machine used for experiments is equipped with Intel Core i7-6700 (3.40 GHz)
and 24 GB of main memory, running Ubuntu Linux 18.04 LTS. The g++ com-
piler was used with -O3 flag. Native C++ containers list and vector are used
wherever possible. For sorting, the standard std::sort is utilized. From CGAL,
the Exact predicates exact constructions kernel is used. We have tried our
best to tune our codes to run faster. For instance, for constant expressions used in
the code, we pre-calculated those and stored them in variables to avoid repeated
calculations.

Unit Disk Cover for Massive Point Sets 153

Execution time of many UDC algorithms vastly depends on the spread of
point sets. If the points are within a small bounding box, covers have small size.
This enhances speed of many algorithms, such as, DGT-2018. For a point p,
DGT-2018 checks a low number of disks to see if p is covered by a disk place
previously. To demonstrate this, we have used point sets which have bounding
boxes of varied sizes.

We have experimented the algorithms with synthetic and real-world point
sets. For synthetic point sets, we have used three built-in point generators from
CGAL: Random points in square 2 (see Fig. 3), Random points in disc 2 (see
Fig. 4), and random convex set 2 (see Fig. 5). We also have used point sets
drawn from an annulus (see Fig. 6). For each of these four generators, we have
varied the size of the domain from which the points are drawn randomly: small,
medium, and large. Exact sizes are stated in the respective tables. Using each
of these three domain sizes, we have generated point sets of three different sizes:
0.1 million, 0.5 million, and 1 million to see the changes in performances with
the increase in n. In total, we have experimented with 36 synthetic point sets
having different geometry.

We have used the following eleven real-world point sets for our experiments.
Some of these are used in [7] for experiments and few others are obtained from
Kaggle. See Fig. 7 for the experimental results obtained for these point sets.

1. birch3 [7]: An 100, 000-element point set representing random sized clusters
in random locations.

2. monalisa [1]: A 100, 000-city TSP instance representing a continuous-line
drawing of the Mona Lisa.

3. usa [1]: A 115, 475-city TSP instance representing (nearly) all towns, vil-
lages, and cities in the United States.

4. KDDCU2D [7]: An 145, 751-element point set representing the first two dimen-
sions of a protein data-set.

5. europe [7]: An 169, 308-element point set representing differential coordi-
nates of the map of Europe.

6. wildfires3: An 1, 880, 465-element point set representing wildfire locations
in USA.

7. world [1]: A 1, 904, 711-city TSP instance consisting of all locations in the
world that are registered as populated cities or towns, as well as several
research bases in Antarctica.

8. china [7]: An 1, 636, 613-element point set representing locations in China.
9. nyctaxi4: An 2, 917, 288-element point set representing NYC taxi pickup

and drop-off locations.
10. uber5: An 4, 534, 327-element point set representing Uber pickup locations

in New York City.
11. hail20156: An 10, 824, 080-element point set representing hail storm cell

locations based on NEXRAD radar data obtained in 2015.
3 https://www.kaggle.com/rtatman/188-million-us-wildfires/home.
4 https://www.kaggle.com/wikunia/nyc-taxis-combined-with-dimacs/home.
5 https://www.kaggle.com/fivethirtyeight/uber-pickups-in-new-york-city.
6 https://www.kaggle.com/noaa/severe-weather-data-inventory.

https://www.kaggle.com/rtatman/188-million-us-wildfires/home
https://www.kaggle.com/wikunia/nyc-taxis-combined-with-dimacs/home
https://www.kaggle.com/fivethirtyeight/uber-pickups-in-new-york-city
https://www.kaggle.com/noaa/severe-weather-data-inventory

154 A. Ghosh et al.

In the tables, α stands for the approximation obtained for GHS, i.e., quality
of the solution generated for a specific point set. We measure this using the size
of solution obtained using BLMS-2017. Assume that for a particular point set,
GHS placed m disks and BLMS-2017 placed n disks, then α = 4m/n, since
BLMS-2017 has an approximation factor of 4. Note that we could do this since
in our experiments, the sizes of the solutions generated by GHS is always less
than those generated by BLMS-2017. For a given point set, we define β to be
the ratio of the running time of the fastest algorithm (other than GHS) to that
of GHS. For every table, we report the highest and lowest observed β. We have
truncated the running times and the values for α, β in the tables to 2 decimal
places. Every point set was run 3 times and the average running time is reported.

In our experiments, we have found that the shifting-strategy based algorithms
HM-1985 and FCB-2001 are embarrassingly slow (as expected from their asymp-
totic runtimes). However, for point sets where the size of the bounding square is
large (say, 5 times n), HM-1985 can produce result within a tolerable amount of
time. This implies that the number of points in every square (refer to HM-1985
from Sect. 2) must be very low, less than 10. High number of points in a square
slows down HM-1985 because of expensive checking with exponential number of
disk arrangements. For instance, for a 10, 000-element point set generated inside
a square of size 50, 000 and � = 2, HM-1985 gives the answer in 25.3 s. But when
� = 2, for a 60-element point set generated randomly within a square of size 20,
HM-1985 ran in 88.86 s. FCB-2001 is also slow in practice since for every square,
we consider every lattice point inside it as a candidate disk center. For instance,
when � = 2, for a set of 60 points drawn from a square of size 20, FCB-2001
took 34.61 s. Since we are concerned with massive point sets, we do not include
any further experimental data for them as they are unusable in practice.

Fig. 3. Points drawn from square of varied size; Top: 2n/104, Middle: 2n/103, Bottom:
2n/10. A pair in a cell denotes the solution size followed by the time taken in seconds.
Highest β observed: 61.63 (Top, n = 1M); lowest β observed: 2.9 (Bottom, n = 1M).

Unit Disk Cover for Massive Point Sets 155

Fig. 4. Points drawn from disk of varied radius; Top: n/104, Middle: n/103, Bottom:
n/10. A pair in a cell denotes the solution size followed by the time taken in seconds.
Highest β observed: 55.53 (Top, n = 1M); lowest β observed: 3.01 (Bottom, n = 1M).

Fig. 5. Convex sets drawn from square of varied size; Top: 2n/104, Middle: 2n/103,
Bottom: 2n/10. A pair in a cell denotes the solution size followed by the time taken in
seconds. Highest β observed: 8.35 (Middle, n = 1M); lowest β observed: 4.75 (Bottom,
n = 1M).

Fig. 6. Point sets drawn from an annulus of varied width, in this case, the radius r1 of
the inner circle is varied. Radius r2 of the outer circle is fixed to 103; Top: r1 = 0.95r2,
Middle: r1 = 0.75r2, Bottom: r1 = 0.5r2. A pair in a cell denotes the solution size
followed by the time taken in seconds. Highest β observed: 20.56 (Top, n = 1M);
lowest β observed: 5.1 (Bottom, n = 1M).

156 A. Ghosh et al.

Fig. 7. Performances of the algorithms on real-world point sets. A pair in a cell denotes
the solution size followed by the time taken in seconds. Highest β observed: 51.51
(world); lowest β observed: 4.17 (usa).

Why GHS is Efficient in Practice? GHS uses a hash-table to store the disks.
Every point in R2 belongs to a constant number of grid disks. Since hash-tables
look-ups take O(1) time on average, these checks can be done quickly resulting in
fast running time in practice. Also, no expensive pre-processing is required such
as sorting. The heuristic used to minimize the number of distance calculations
speeds up GHS further.

In the proof of Theorem 1, it is shown that GHS places 7 times the opti-
mal number of disks only under certain circumstances. In real-world point sets,
these patterns of point clusters occur rarely. This gives good quality solution in
practice.

4 Conclusion

The algorithms HM-1985 and FCB-2001 cannot be recommended for practical
purposes. If quality of solution is of more interest than real-life running time, we
recommend using LL-2014 or G-1991. If running time is important, we recom-
mend GHS.

Interestingly, GHS not only runs fast but also computes good quality solu-
tions on diverse point distributions, as seen in our experimental results; highest
observed value of α is 2.7. For every point set used in our experiments, GHS
ran faster than the other algorithms; highest and lowest observed values of β are
61.63 and 2.9, respectively. Moreover, even for the point sets for which highest
speedups are obtained, GHS produced competitive solutions.

For future work, a natural direction is to design fast practical heuristics
to improve the quality of the solutions generated by GHS. Another possible
direction is to investigate which algorithms are efficient in practice for higher
dimensions and also in other norms such as, L1 and L∞.

Unit Disk Cover for Massive Point Sets 157

References

1. www.math.uwaterloo.ca/tsp/
2. Agarwal, P.K., Pan, J.: Near-linear algorithms for geometric hitting sets and set

covers. In: Proceedings of the Thirtieth Annual Symposium on Computational
Geometry, p. 271. ACM (2014)

3. Aloupis, G., Hearn, R.A., Iwasawa, H., Uehara, R.: Covering points with disjoint
unit disks. In: CCCG, pp. 41–46 (2012)

4. Bar-Yehuda, R., Rawitz, D.: A note on multicovering with disks. Comput. Geom.
46(3), 394–399 (2013)

5. Biniaz, A., Liu, P., Maheshwari, A., Smid, M.: Approximation algorithms for the
unit disk cover problem in 2D and 3D. Comput. Geom. 60, 8–18 (2017)

6. Brönnimann, H., Goodrich, M.T.: Almost optimal set covers in finite VC-
dimension. Discrete Comput. Geom. 14(4), 463–479 (1995)

7. Bus, N., Mustafa, N.H., Ray, S.: Practical and efficient algorithms for the geometric
hitting set problem. Discrete Appl. Math. 240, 25–32 (2018)

8. Charikar, M., Chekuri, C., Feder, T., Motwani, R.: Incremental clustering and
dynamic information retrieval. SIAM J. Comput. 33(6), 1417–1440 (2004)

9. Chazelle, B.M., Lee, D.T.: On a circle placement problem. Computing 36(1–2),
1–16 (1986)

10. Das, G.K., Fraser, R., Lóopez-Ortiz, A., Nickerson, B.G.: On the discrete unit disk
cover problem. Int. J. Comput. Geom. Appl. 22(05), 407–419 (2012)

11. De Berg, M., Cabello, S., Har-Peled, S.: Covering many or few points with unit
disks. Theory Comput. Syst. 45(3), 446–469 (2009)

12. Dumitrescu, A.: Computational geometry column 68. ACM SIGACT News 49(4),
46–54 (2018)

13. Dumitrescu, A., Ghosh, A., Tóth, C.D.: Online unit covering in euclidean space.
In: Kim, D., Uma, R.N., Zelikovsky, A. (eds.) COCOA 2018. LNCS, vol. 11346, pp.
609–623. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04651-4 41

14. Fowler, R.J.: Optimal packing and covering in the plane are NP-complete. Inf.
Process. Lett. 12(3), 133–137 (1981)

15. Franceschetti, M., Cook, M., Bruck, J.: A geometric theorem for approximate disk
covering algorithms (2001)

16. Fu, B., Chen, Z., Abdelguerfi, M.: An almost linear time 2.8334-approximation
algorithm for the disc covering problem. In: Kao, M.-Y., Li, X.-Y. (eds.) AAIM
2007. LNCS, vol. 4508, pp. 317–326. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-72870-2 30

17. Gonzalez, T.F.: Covering a set of points in multidimensional space. Inf. Process.
Lett. 40(4), 181–188 (1991)

18. Hochbaum, D.S., Maass, W.: Approximation schemes for covering and packing
problems in image processing and VLSI. J. ACM (JACM) 32(1), 130–136 (1985)

19. Kaplan, H., Katz, M.J., Morgenstern, G., Sharir, M.: Optimal cover of points by
disks in a simple polygon. SIAM J. Comput. 40(6), 1647–1661 (2011)

20. Liao, C., Hu, S.: Polynomial time approximation schemes for minimum disk cover
problems. J. Comb. Optim. 20(4), 399–412 (2010)

21. Liaw, C., Liu, P., Reiss, R.: Approximation schemes for covering and packing in the
streaming model. In: Canadian Conference on Computational Geometry (2018)

22. Liu, P., Lu, D.: A fast 25/6-approximation for the minimum unit disk cover prob-
lem. arXiv preprint arXiv:1406.3838 (2014)

23. The CGAL Project: CGAL User and Reference Manual. CGAL Editorial Board,
4.13 edn. (2018). https://doc.cgal.org/4.13/Manual/packages.html

www.math.uwaterloo.ca/tsp/
https://doi.org/10.1007/978-3-030-04651-4_41
https://doi.org/10.1007/978-3-540-72870-2_30
https://doi.org/10.1007/978-3-540-72870-2_30
http://arxiv.org/abs/1406.3838
https://doc.cgal.org/4.13/Manual/packages.html

Improved Contraction Hierarchy Queries
via Perfect Stalling

Stefan Funke and Thomas Mendel(B)

Universität Stuttgart, Stuttgart, Germany
mendel@fmi.uni-stuttgart.de

Abstract. Contraction Hierarchies (CH) are one of the most relevant
techniques for accelerating shortest path-queries on road networks in
practice. We reconsider the CH query routine and devise an additional
preprocessing step which gathers auxiliary information such that CH
queries can be answered even faster than before. Compared to the stan-
dard CH query, response times decrease by more than 70%; compared to
a well-known refined CH query routine with so-called stall-on-demand,
response times still decrease by more than 33% on average. While faster
speed-up schemes like hub labels incur a serious space overhead, our
precomputed auxiliary information takes less space than the graph rep-
resentation itself.

Keywords: Shortest path · Contraction Hierarchies

1 Introduction

While the problem of computing shortest paths in general graphs with non-
negative edge weights seems to have been well understood already decades ago,
the last 10–15 years have seen tremendous progress when it comes to the specific
problem of efficiently computing shortest paths in real-world road networks. Here
the main idea is to spend some time in a preprocessing step where auxiliary
information about the network is computed and stored, such that subsequent
queries can be answered much faster than via standard Dijkstra’s algorithm.
One might classify most of the employed techniques into two classes: ones that
are based on pruned graph search and such that are based on distance lookups.
Most approaches fall into the former class, e.g., reach-based methods [11,12],
highway hierarchies [13], arc-flags-based methods [6], or contraction hierarchies
(CH) [10]. Here, basically Dijkstra’s algorithm is given a hand to ignore some
vertices or edges during the graph search. The achievable speed-up compared
to plain Dijkstra’s algorithm ranges from one magnitude [12] up to three orders
of magnitudes [10]. In practice, this means that a query on a country-sized
network like that of Germany (around 20 million nodes) can be answered in
less than a millisecond compared to few seconds of Dijkstra’s algorithm. While
these methods directly yield the actual shortest path, the latter class is primarily
concerned with the computation of the (exact) distance between given source
c© Springer Nature Switzerland AG 2019
I. Kotsireas et al. (Eds.): SEA2 2019, LNCS 11544, pp. 158–166, 2019.
https://doi.org/10.1007/978-3-030-34029-2_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34029-2_11&domain=pdf
https://doi.org/10.1007/978-3-030-34029-2_11

Improved Contraction Hierarchy Queries via Perfect Stalling 159

and target queries – recovering the actual path often requires some additional
effort. Examples for such distance-lookup-based methods are transit nodes [4,5]
and hub labels [2]. They allow for the answering of distance queries another one
or two orders of magnitudes faster.

In spite of their inferior query times, the methods based on pruned graph
search are more popular in practice, because most of the time the actual shortest
paths are in fact needed, and the methods based on distance lookups typically
incur quite a considerable space overhead. For example, for a network of around
20 million nodes, the hub labelling scheme [2] requires to store for each node in
the order of hundreds distance labels to allow for quick query answering. Hence
the space consumption of the precomputed auxiliary information by far exceeds
the space consumption of the original graph itself. For most methods based
on pruned graph search, the space consumption of the precomputed auxiliary
information is very moderate compared to the original graph itself. See [3] for a
comprehensive survey on the topic.

1.1 Contribution and Outline

In this note we propose a refinement of the standard contraction hierarchies (CH)
query procedure which decreases the average number of settled nodes during a
query by 65% and the average query times by around 70% compared to the
standard CH query procedure on a country-sized road network. Compared to a
known ‘stall-on-demand’ query refinement our approach still decreases the query
times by around 33%. In that sense it brings the CH query times closer to the
distance-lookup-based methods, yet incurs only a very modest space overhead.

In Sect. 2 we first recapitulate basics of the contraction hierarchy (CH)
scheme as well as the CH-based hierarchical hub labelling scheme. Then in Sect. 3
we show how to generate perfect stalling information for CH queries based on
hub labels. Finally, we conclude with some experimental results and future work.

2 Preliminaries

2.1 Contraction Hierarchies

The contraction hierarchies approach [10] computes an overlay graph in which
so-called shortcut edges span large sections of the shortest path. This reduces
the hop length of optimal paths and therefore allows a variant of Dijkstra’s
algorithm to answer queries more efficiently.

The preprocessing is based on the so-called node contraction operation. Here,
a node v as well as its adjacent edges are removed from the graph. In order not to
affect shortest path distances between the remaining nodes, shortcut edges are
inserted between all neighbors u,w of v, if and only if uvw was a shortest path
(which can easily be checked via a Dijkstra run). The cost of the new shortcut
edge (u,w) is set to the summed costs of (u, v) and (v, w). In the preprocessing
phase all nodes are contracted one-by-one in some order. The rank of the node
in this contraction order is also called the level of the node.

160 S. Funke and T. Mendel

After having contracted all nodes, a new graph G+(V,E+) is constructed,
containing all original edges of G as well as all shortcuts that were inserted
in the contraction process. An edge e = (v, w) – original or shortcut – is called
upwards, if the level of v is smaller than the level of w, and downwards otherwise.
By construction, the following property holds: For every pair of nodes s, t ∈ V ,
there exists a shortest path in G+, which first only consist of upwards edges,
and then exclusively of downwards edges. This property allows to search for the
optimal path with a bidirectional Dijkstra only considering upwards edges in
the search starting at s, and only downwards edges in the reverse search starting
in t. This reduces the search space significantly and allows for answering of
shortest path queries within the milliseconds range compared to seconds on a
country-sized road network.

2.2 CH-Based Hub Labels

Hub Labelling is a scheme to answer shortest path distance queries which differs
fundamentally from graph search based methods. Here the idea is to compute
for every v ∈ V a label L(v) such that for given s, t ∈ V the distance between
s and t can be determined by just inspecting the labels L(s) and L(t). All the
labels are determined in a preprocessing step (based on the graph G), later on,
the graph G can even be thrown away. There have been different approaches to
compute such labels (even in theory); we will be concerned with labels that work
well for road networks and are based on CH again, following the ideas in [2]. To
be more concrete, the labels we are constructing have the following form:

L(v) = {(w, d(v, w)) : w ∈ H(v)}

Here we call H(v) a set of hubs – important nodes – for v. The hubs should
be chosen such that for any s and t, the shortest path from s to t intersects
L(s) ∩ L(t).

If such label sets could be computed, the computation of the shortest path
distance between s and t boils down to determining the node w ∈ L(s) ∩ L(t)
minimizing the summed distance. If the labels L(.) are stored lexicographically
sorted, this can be done in a very cache-efficient manner in time O(|L(s)|+|L(t)|).

Knowing about CH, there is a natural way of computing such labels: simply
run an upward Dijkstra from each node v and let the label L(v) be the settled
nodes with their respective distances. Clearly, this yields valid labels since CH
answers queries exactly. The drawback is that the space requirement is quite
large; depending on the metric and the CH construction, one can expect labels
consisting of several hundreds to thousands node-distance pairs. It turns out,
though, that many of the labels created in such a manner are useless as they do
not represent shortest-path distance (as we restricted ourselves to a search in
the upgraph only); pruning out those reduces the number of labels by a factor
of 4. A source target distance query can then be answered in the microseconds
range.

Improved Contraction Hierarchy Queries via Perfect Stalling 161

3 Perfect Stalling

As we already observed in the construction of hub labels, the exploration of the
upgraph during the CH query phase might visit nodes with non-shortest path
distances. Obviously, none of the nodes settled with non-shortest path distance
are relevant for answering a shortest path query, yet they contribute to the
query time. In the original CH paper [10] a technique which they call stall-on-
demand was suggested which identifies some of the nodes with non-shortest path
distances in the exploration of the upgraphs. Note though, that there is a trade-
off between the decrease in query time due to the reduced number of nodes to
consider and the effort to identify nodes with non-shortest path distance.

In its simplest form, the stall-on-demand strategy from [10] works as follows:
Consider the upgraph search from the source s (the reverse upgraph search
from the target t works analogously). When a node v is pulled from the priority
queue with distance label d(v), one inspects all incoming neighbors w with (v, w)
and level(w) > level(v). Clearly, if d(w) + c(w, v) < d(v), d(v) cannot be the
shortest path distance from s to v and hence the exploration (in particular
relaxation of outgoing edges) of v can be ‘stalled’. Of course, this procedure
does not necessarily identify all nodes with non-shortest path distances, yet it is
easy to implement and still prunes the search considerably. More involved stall-
on-demand strategies explore a larger neighborhood to conclude for even more
nodes to bear non-shortest-path distances. Yet, the additional effort at query
time is not rewarded by a respective more reduced search space.

3.1 Precomputing Perfect Stalling Decisions

The contribution of this paper is the idea of precomputing perfect stalling deci-
sions. In that way, we can benefit from a maximally reduced search space during
the CH search without incurring a runtime penalty for performing a stall-on-
demand computation at query time. It turns out that this can be done with
moderate space overhead.

The first idea that comes to mind is to store for each node of the upgraph of
s (and analogously for t) a bit whether it is reachable within the upgraph with
shortest path distance. There are some disadvantages of this idea: First, we might
store information for nodes in the upgraph that would never be encountered
during the search because all immediate predecessors have already been stalled.
Second, since the desired information varies for different sources s, we have to
store for each s and each v in the upgraph of s whether v is reachable from s
on a shortest path within the upgraph. While the actual information is only a
single bit, storing the identity of each v is quite costly, e.g., a node ID is typically
64 bits. Storing several hundreds or thousands of such items results in several
kilobytes additional memory for each node in the graph.

Note that if CH-based hub labels are available, the decision whether a node
v just pulled from the priority queue with distance label d(v) in the upgraph
search from s can be made by using hub labels to look up the correct shortest
path distance and comparing with d. Clearly, these decisions are perfect in a

162 S. Funke and T. Mendel

sense that we stall exactly those nodes that are not reachable on a shortest path
within the upgraph. Yet, the requirement of having precomputed hub labels in
the background just to speed up CH queries is prohibitive in practice due to the
considerable space consumption.

Furthermore we want to remark that the notion of ’stalled nodes’ also appears
in theoretical analyses of contraction hierarchies, e.g., [7] or [9]; there, the so-
called ‘direct search space’ DSS(v) of a node v refers to all nodes in the upgraph
of v with true shortest path distances, whereas the actual ‘search space’ SS(v)
comprises also nodes which are not reachable on shortest paths within the
upgraph. Similar to the practical implementations, the latter nodes create some
nuisance in the theoretical analysis.

Stalling Traces. Now the main idea to enjoy the benefits of stalling at query
time without the runtime penalty of stall-on-demand or the space overhead of
hub labels is to simulate the upgraph searches with perfect stalling during a
preprocessing step (with the help of precomputed CH-based hub labels) and
only record the respective decisions as a bit stream – which we call stalling trace
– in the order they are taken. For each node v we store two stalling traces –
one for the upgraph search where v acts as source, one for the reverse upgraph
search where v acts as target. Apart from representing perfect stalling decisions,
this approach not necessarily requires a bit for every node of the upgraph of v;
if for a node w in the upgraph of v, all immediate predecessors are not reachable
on shortest paths from v, w will never be pulled from the priority queue (due
to the perfect stalling decisions) and hence does not require a bit in the stalling
trace.

In summary, the preprocessing phase of our method looks as follows:

PREPROCESSING(G)
1. Construct CH
2. Construct CH-based hub labels HL
3. for each node:

a. simulate upgraph searches
b. store stalling traces

4. discard HL and only keep CH and stalling traces

At query time we simply run an ordinary CH-query but use the stalling
traces to have perfect stalling decisions during the exploration of the upgraphs.
Algorithms 1 and 2 illustrate the precomputation of a trace as well as the query
for an unidirectional dijkstra run. In the bi-directional case we simply use the
traces of the source as well as the target node.

We will see in the next section that this strategy pays off; queries are consid-
erably accelerated without incurring a major space overhead compared to pure
CH representation.

Improved Contraction Hierarchy Queries via Perfect Stalling 163

Data: Node s, UpGraph G
Result: Boolean Vector “trace”
trace = Vector[Bool];
distance = Vector[Integer](default=INF);
pq = MinHeap;
pq.push(0, s);
distance[s] = 0;
while pq not empty do

settle next node from pq;
if distance is correct then

trace.push(TRUE);
relax outgoing edges;

else
trace.push(FALSE);

end
end

Algorithm 1: Computing the trace for a single node. The decision whether a
distance is correct is made via precomputed hub labels.

Data: Node s, UpGraph G, Trace t
Result: Distance Vector “distance”
distance = Vector[Integer](default=INF);
pq = MinHeap;
pq.push(0, s);
distance[s] = 0;
while pq not empty do

settle next node from pq;
if t.next() == TRUE then

relax outgoing edges;
end

end
Algorithm 2: Using the trace during upgraph search.

4 Experiments

In the following we report on our experiments with the improved query scheme
for contraction hierarchies. All implementations were compiled using g++ 7.3.0
and executed on a single core of a Ubuntu Linux 18.04 system with an Intel
Xeon E3-1225v3, 3.2 GHz and 32 GB of RAM.

4.1 Data Sets, CH and HL Precomputation

We consider three data sets that were extracted from the OpenStreetMap project
[1]. For all three data sets contraction hierarchies as well as CH-based hub labels
were computed using the standard approaches in [10] and [2]. See Table 1 for

164 S. Funke and T. Mendel

the resulting characteristics of our data sets. Note that both graphs and metrics
differ from the ones used in [10] or [3], hence in particular the number of shortcuts
as well as the average label sizes differ.

Table 1. Data sets for benchmarking

STGT BW GER

Nodes 1.16 M 3.67 M 24.61 M

Edges (original + shortcuts) 4.32 M 13.76 M 91.61 M

CH shortcuts 1.97 M 6.37 M 41.82 M

HL avg. label size 81.2 109.5 236.28

4.2 Stalling Trace Construction

Since our machine did not suffice to store the hub labels for the largest instance in
main memory, we had the hub labels stored in an external array on hard disk. The
mapping was realized via STXXL [8], which can be used as a caching mechanism.
Page and block sizes were chosen to fit into 16 GB of Memory to mimic a simple
standard Desktop/Laptop. Furthermore the block-size was chosen such that most
of the labels would fit into a single block. While the access of the labels is mostly
sporadic, we always read the whole label into memory. Due to this blockwise
access the overhead of disk-based storage was around a factor of 4 compared to
a purely RAM-based implementation (given enough memory).

Table 2 summarizes the result of our preprocessing step. Preprocessing times
were 5 min/31 min/19:21 h for our three data sets. While the first two instances
at some point simply resided in main memory, the largest instance required fre-
quent disk accesses. Note that our implementation is single-threaded; we expect
considerable speedup by parallelization since any number of vertices can be pro-
cessed in parallel. Observe that we require less than the graph representation
itself of additional memory to store the stalling traces.

Table 2. Stalling trace construction

STGT BW GER

avg. trace length (Bits/node) 130.2 202.6 489.4

max. trace length (Bits/node) 233 332 851

total trace space (MBytes) 36.0 177.3 2871.5

Graph size (incl. CH) (MBytes) 182.5 580.9 3870.2

Improved Contraction Hierarchy Queries via Perfect Stalling 165

4.3 Queries

Now let us analyze the effect on query times. We report on average query times
for random source target queries for plain Dijkstra (Dijk), plain CH without
stall-on-demand (CH), CH with standard stall-on-demand (CHso), and CH
with perfect stalling (CHps), stating both number of settled nodes as well as
the actual query times. All numbers are averaged over 100,000 queries except
for plain Dijkstra, where we only made 100 queries due to time constraints. See
Table 3 for the results.

Table 3. Query benchmarks: measuring average number of settled nodes as well as
query times.

STGT BW GER

Dijk CH CHso CHps Dijk CH CHso CHps Dijk CH CHso CHps

settled

avg 627 k 313 206 201 1.65M 586 321 311 12.9M 2212 782 761

max 1.14M 634 390 377 3.59M 1183 585 577 24.4M 4161 1388 1297

query-time

avg in µs 155ms 85 66 47 439ms 200 124 83 4.4 s 1159 457 301

max in µs 298ms 133 95 70 951ms 313 175 119 8.6 s 1874 644 427

As to be expected all CH variants are at least a factor of 1,000 more effi-
cient than plain Dijkstra, both in terms of number of settled nodes as well as
actual query time (both max and average). Comparing the CH variants for the
largest graph, the CHso variant on average settles only around 35% of the nodes,
the query times are around 39% of the standard CH query. Somewhat to our
surprise, CHps only settles slightly less nodes than CHso, yet the average query
times improve to just 25% of the standard CH query. So one-hop stall-on-demand
is almost perfect in detecting nodes with non-shortest-path distances; the addi-
tional improvement of CHps in query time is due to not having to perform
stall-on-demand and simply use the precomputed stalling trace. We also observe
that both stalling variants become more effective the larger the graphs get. The
respective maximum values behave similar to the averages.

5 Conclusion

We have proposed a conceptually very simple technique to precompute and
space-efficiently store perfect stalling decisions for contraction hierarchy based
shortest path queries. While incurring only very moderate additional space (less
than the graph and CH itself), considerable speedup in terms of number of
touched nodes as well as actual query times can be achieved. Our preprocessing
times still leave some room for improvement, yet straightforward parallelization
should result in considerable speed-up of the preprocessing phase. We were quite

166 S. Funke and T. Mendel

surprised to see simple one-hop stall-on-demand to be so effective in detecting
nodes with non-shortest-path distances; only very few such nodes survived the
simple one-hop stall-on-demand. Our approach is obvlious to the concrete CH
construction and hence could be combined with more sophisticated CH construc-
tion techniques as well.

References

1. OpenStreetMap. https://www.openstreetmap.org/
2. Abraham, I., Delling, D., Goldberg, A.V., Werneck, R.F.: Hierarchical hub label-

ings for shortest paths. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol.
7501, pp. 24–35. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
33090-2 4

3. Bast, H., et al.: Route planning in transportation networks. CoRR, abs/1504.05140
(2015)

4. Bast, H., Funke, S., Matijevic, D., Sanders, P., Schultes, D.: In transit to constant
time shortest-path queries in road networks. In: ALENEX. SIAM (2007)

5. Bast, H., Funke, S., Sanders, P., Schultes, D.: Fast routing in road networks with
transit nodes. Science 316(5824), 566 (2007)

6. Bauer, R., Delling, D.: SHARC: fast and robust unidirectional routing. In:
ALENEX, pp. 13–26. SIAM (2008)

7. Blum, J., Funke, S., Storandt, S.: Sublinear search spaces for shortest path planning
in grid and road networks. In: AAAI, pp. 6119–6126. AAAI Press (2018)

8. Dementiev, R., Kettner, L., Sanders, P.: STXXL: standard template library for
XXL data sets. Softw. Pract. Exper. 38(6), 589–637 (2008)

9. Funke, S., Storandt, S.: Provable efficiency of contraction hierarchies with ran-
domized preprocessing. In: Elbassioni, K., Makino, K. (eds.) ISAAC 2015. LNCS,
vol. 9472, pp. 479–490. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48971-0 41

10. Geisberger, R., Sanders, P., Schultes, D., Vetter, C.: Exact routing in large road
networks using contraction hierarchies. Transp. Sci. 46(3), 388–404 (2012)

11. Goldberg, A.V., Kaplan, H., Werneck, R.F.: Reach for a*: efficient point-to-point
shortest path algorithms. In: ALENEX, pp. 129–143. SIAM (2006)

12. Gutman, R.J.: Reach-based routing: a new approach to shortest path algorithms
optimized for road networks. In: ALENEX/ANALCO, pp. 100–111. SIAM (2004)

13. Sanders, P., Schultes, D.: Engineering highway hierarchies. ACM J. Exp. Algorith-
mics, 17(1) (2012)

https://www.openstreetmap.org/
https://doi.org/10.1007/978-3-642-33090-2_4
https://doi.org/10.1007/978-3-642-33090-2_4
https://doi.org/10.1007/978-3-662-48971-0_41
https://doi.org/10.1007/978-3-662-48971-0_41

Constraint Generation Algorithm
for the Minimum Connectivity

Inference Problem

Édouard Bonnet1, Diana-Elena Fălămaş1,2, and Rémi Watrigant1(B)

1 Univ Lyon, CNRS, ENS de Lyon, Université Claude Bernard Lyon 1, LIP,
69342 Lyon Cedex 07, France

{edouard.bonnet,remi.watrigant}@ens-lyon.fr, falamasd@yahoo.com
2 Technical University of Cluj-Napoca, Cluj-Napoca, Romania

Abstract. Given a hypergraph H, the Minimum Connectivity Infer-

ence problem asks for a graph on the same vertex set as H with the min-
imum number of edges such that the subgraph induced by every hyper-
edge of H is connected. This problem has received a lot of attention these
recent years, both from a theoretical and practical perspective, leading
to several implemented approximation, greedy and heuristic algorithms.
Concerning exact algorithms, only Mixed Integer Linear Programming
(MILP) formulations have been experimented, all representing connectiv-
ity constraints by the means of graph flows. In this work, we investigate
the efficiency of a constraint generation algorithm, where we iteratively
add cut constraints to a simple ILP until a feasible (and optimal) solu-
tion is found. It turns out that our method is faster than the previous
best flow-based MILP algorithm on random generated instances, which
suggests that a constraint generation approach might be also useful for
other optimization problems dealing with connectivity constraints. At
last, we present the results of an enumeration algorithm for the problem.

Keywords: Hypergraph · Constraint generation algorithm ·
Connectivity problem

1 Introduction and Related Work

We study the problem where one wants to infer a binary relation over a set of
items V (that is, a graph), where the input consists of some subsets of those
items which are known to be connected in the solution we are looking for. In
other words, the input can be represented by a hypergraph H = (V, E), and
we are looking for an underlying undirected graph G = (V,E) such that for
every hyperedge S ∈ E , the subgraph induced by S, denoted by G[S], is con-
nected (such a graph G will be called a feasible solution in the sequel). Observe
that it is easy to construct trivial feasible solutions to this problem: consider for
instance the graph K(H) having vertex set V and an edge uv iff u and v belong
to a same hyperedge. Since these solutions are unlikely to be of great interest in
c© Springer Nature Switzerland AG 2019
I. Kotsireas et al. (Eds.): SEA2 2019, LNCS 11544, pp. 167–183, 2019.
https://doi.org/10.1007/978-3-030-34029-2_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34029-2_12&domain=pdf
https://doi.org/10.1007/978-3-030-34029-2_12

168 É. Bonnet et al.

practice, it makes sense to add an optimization criteria. In this paper, we focus
on minimizing the number of edges of the solution. More formally, we study the
following problem:

Minimum Connectivity Inference (MCI)
Input: a hypergraph H = (V, E)
Output: a graph G = (V,E) such that G[S] is connected ∀S ∈ E
Goal: minimize |E(G)|

This optimization problem is NP-hard [11], and was first introduced for the
design of vacuum systems [12]. It has then be studied independently in several
different contexts, mainly dealing with network design: computer networks [13],
social networks [3] (more precisely modeling the publish/subscribe communica-
tion paradigm [7,15,19]), but also other fields, such as auction systems [8] and
structural biology [1,2]. Finally, we can mention the issue of hypergraph draw-
ing, where, in addition to the connectivity constraints, one usually looks for
graphs with additional properties (e.g. planarity, having a tree-like structure...
etc.) [5,16–18]. This plethora of applications explains why this problem is known
under different names, such as Subset Interconnected Design, Minimum

Topic Overlay or Interconnection Design. For a comprehensive survey
of the theoretical work done on this problem, see [6] and the references therein.

Concerning the implementation of algorithms, previous works mainly focused
on approximation, greedy and other heuristic techniques [19]. To the best of
our knowledge, the first exact algorithm was designed by Agarwal et al. [1,
2] in the context of structural biology, where the sought graph represents the
contact relations between proteins of a macro-molecule, which has to be inferred
from a hypergraph constructed by chemical experiments and mass spectrometry.
In this work, the authors define a Mixed Integer Linear Programming (MILP)
formulation of the problem, representing the connectivity constraints by flows.
They also provide an enumeration method using their algorithm as a black box,
by iteratively adding constraints to the MILP in order to forbid already found
solutions. Both their optimization and enumeration algorithms were tested on
some real-life (from a structural biology perspective) instances for which the
contact graph was already known.

This MILP model was then improved recently by Dar et al. [10], who mainly
reduced the number of variables and constraints of the formulation, but still
representing the connectivity constraints by the means of flows. In addition,
they also presented and implemented a number of (already known and new)
reduction rules. This new MILP formulation together with the reduction rules
were then compared to the algorithm of Agarwal et al. on randomly-generated
instances. For every kind of tested hypergraphs (different number and sizes of
hyperedges), they observed a drastic improvement of both the execution time
and the maximum size of instances that could be solved.

In this paper we initiate a different approach for this problem, by defining a
simple constraint generation algorithm relying on a cut-based ILP. This method
can be seen as an application of Benders’ decomposition [4], where one wants

Constraint Generation Algorithm for the Minimum Connectivity Problem 169

to solve a (generally large) ILP called master problem by decomposing it into a
smaller (and easier to solve) one, adding new constraints from the master prob-
lem when the obtained solution is infeasible (this approach is sometimes known
as row generation, because new constraints are added throughout the resolu-
tion). We first present different approaches for the addition of new constraints
and compare their efficiency on random instances. We then evaluate the perfor-
mance of our method by comparing it to the MILP formulation of Dar et al. on
randomly generated instances (using the same random generator).

Finally, we present an algorithm for enumerating all optimal solutions of an
instance, which we compare to the approach developed by Agarwal et al.

Organization of the Paper. In the next section, we introduce our constraint
generation algorithm. In Sect. 3, we recall the random generator of Dar et al.
and present the results of the comparison between our constraint generation
algorithm and the flow-based MILP formulation. Finally, Sect. 4 is devoted to
our enumeration algorithm.

2 Constraint Generation Algorithm for MCI

2.1 Presentation

Rather than defining a single (M)ILP model whose optimal solutions coincide
with optimal solutions of the MCI problem, our approach is a constraint gener-
ation algorithm which starts with a simple ILP whose optimal solutions do not
necessarily correspond to feasible solutions for MCI. Then, some constraints are
added to the model which is solved again. This process is repeated until we reach
a feasible solution.

Let us define more formally our approach. In the sequel, H = (V, E) will
always denote our input hypergraph, and n and m will always denote the number
of vertices and hyperedges of H, respectively. Recall that K(H) denotes the
graph with vertex set V having an edge uv iff u and v belong to a same hyperedge.
Let us first define our starting ILP model. It has one binary variable xe for every
possible edge e of K(H), which takes value 1 iff the corresponding edge is in the
solution. In the following, we will thus make no distinction between solutions of
our ILP and graphs with vertex set V .

The constraints that will be added are defined by cuts (X1,X2, . . . , Xr),
r ≥ 2, where Xi ⊆ V , Xi �= ∅ and Xi ∩ Xj = ∅ for every i, j ∈ {1, . . . , r},
i �= j. Given a cut C := (X1, . . . , Xr), we define its corresponding set of edges
E(C) := {xy ∈ E(G), x ∈ Xi, y ∈ Xj , i �= j}. Given a set of cuts C, let M(C) be
the following ILP:

170 É. Bonnet et al.

Minimize
∑

e∈K(H)

xe

subject to: ∑

u,v∈S

xuv ≥ |S| − 1 ∀S ∈ E (1)
∑

e∈E(C)

xe ≥ r − 1 ∀C := (X1, . . . , Xr) ∈ C (2)

xe ∈ {0, 1} ∀e ∈ K(H)

Constraints (1) forces the solution to contain at least |S| − 1 edges within
every hyperedge. Although this constraints is not sufficient to guarantee the
connectivity in every hyperedge (for instance, two disjoint cycles also satisfy
this constraint), its purpose is mainly to speed-up the resolution.

The purpose of constraints (2) is to forbid X1, . . . , Xr to be connected
components in the solution: it forces the quotient graph1 w.r.t. X1, . . . , Xr to
contain at least r − 1 edges. Notice that if r = 2, then it forces the solution to
have an edge between the two parts X1 and X2.

For a set S ⊆ V , define BS := {(X,S\X) : X ⊆ S,X /∈ {∅, S}} the set of cuts
constructed from all non-trivial2 bipartitions of S, and PS = {(X1, . . . , Xr) : r ≥
2,Xi ⊆ S, Xi �= ∅, ∪r

i=1Xi = S and Xi ∩ Xj = ∅ for all i, j ∈ {1, . . . , r}, i �= j}
the set of cuts constructed from all non-trivial partitions of S. Moreover let
BH :=

⋃
S∈E BS and PH :=

⋃
S∈E PS . We have the following:

Proposition 1. Optimal solutions of M(PH) are in one-to-one correspondence
with optimal solutions of M(BH) which are themselves in one-to-one correspon-
dence with optimal solutions of the MCI instance.

Proof. We have BH ⊆ PH , hence a feasible solution of M(PH) is also a feasible
solution of M(BH). A feasible solution of M(BH) is also a feasible solution of
MCI, since otherwise Constraint (2) would not be satisfied for some bipartition
of some hyperedge. Finally a feasible solution of MCI is a feasible solution of
M(PH), otherwise a hyperedge would not induce a connected subgraph.
�

By the previous proposition, it would be sufficient to solve M(BH) or
M(PH). However, we have |PH | =

∑
S∈E 2|S| − 1 and |BH | =

∑
S∈E 2|S|−1 − 1,

which makes these naive ILPs inefficient from a practical point of view. Fortu-
nately, it turns out that for many instances in practice, only a small number of
cuts among BH (resp. PH) is actually needed in order to ensure connectivity in
every hyperedge. This idea is the basis of our constraint generation algorithm
described below.

1 The quotient graph w.r.t. X1, . . . , Xr has r vertices v1, . . . , vr, and an edge vivj
whenever there is an edge between a vertex of Xi and a vertex of Xj , i �= j.

2 A non-trivial partition of a set V is a partition where each set is different from ∅
and V .

Constraint Generation Algorithm for the Minimum Connectivity Problem 171

Algorithm 1: constraint generation algorithm for MCI

Input: a hypergraph H = (V, E)
Output: a solution G = (V,E)

1 C ← Cinit(H)
2 G ← solve(M(C))
3 while G is not feasible do
4 C ← C ∪ newCuts(G)
5 G ← solve(M(C))
6 end

Our strategy is specified by a set of initial cuts of the input hypergraph
Cinit(H), and a routine newCuts(G) which takes a non-feasible solution G as
input, and outputs a set of cuts. If the newCuts(.) routine always returns cuts
from BH (resp. PH) that were not considered before, then the algorithm clearly
outputs a feasible optimal solution for the problem, since it only stops when
a feasible solution is found and, in the worst case, it ends by solving M(BH)
(resp. M(PH)). This proves that Algorithm 1 always terminates and returns an
optimal solution for MCI, provided that the newCuts(.) routine satisfies the
property described above. The choices of the initial set of cuts and this routine
are described in the next sub-section.

2.2 Choice of Cuts

The choice of cuts is a crucial feature of our algorithm. The main challenge is
to find the policies that will lead to a right balance of the number of added
constraints: if too few constraints are added in each iteration, then the number
of these iterations will increase, which will then result in a lack of efficiency.
On the opposite, if too many constraints are added at the beginning and/or
in each iteration, then the size of the ILP will increase too quickly, which will
slow down the solver, and then result in a lack of efficiency once again. Here we
present a set of initial set of cuts, and three possible newCuts(.) routines. We
then conducted an empirical evaluation of these strategies (using the initial set
of cuts or not, followed by one of the three newCuts(.) routine, thus defining six
possible strategies).

Initial Set of Cuts. For every hyperedge S ∈ E , and every vertex v ∈ S, the idea
is to add the cut ({v}, S \ {v}). This set of cuts forbids solutions with isolated
vertices in every hyperedge. One could also consider cuts (X,X \S) formed from
every subset X ⊆ S of a fixed size q. However, for q = 2 already, we noticed a
drop of efficiency, mainly caused by the large number of constraints it creates.
Hence, we shall initialize Cinit with the cuts formed by singletons only. In the
sequel, this initial set of cuts will sometimes be called singleton cuts.

172 É. Bonnet et al.

The newCuts(.) Routine. Given a non-feasible solution G of MCI, recall that we
shall add, for every hyperedge S such that G[S] is disconnected, a set of cuts. Let
S be such a hyperedge. Notice that the objective is not to guarantee connectivity
in the very next iteration of the algorithm, but to constrain the model more and
more. Let S1, . . . , Sp be the connected components of G[S], with p ≥ 2. We
considered three natural ideas for the set of new cuts corresponding to S in this
situation:

– Routine 1: add only one cut (A,B) corresponding to a balanced bipartition
of the connected components, that is, A ∪ B = S, A ∩ B = ∅ and Si ⊆ A
or Si ⊆ B for every i ∈ {1, . . . , p}, and the absolute value of |A| − |B| is
as minimum as possible. Since the problem of finding a balanced bipartition
of a given set of numbers is an NP-hard problem, the computation of the
bipartition was done using a polynomial greedy algorithm which considers
connected components in decreasing order w.r.t. their sizes, and iteratively
adds each of them to A (resp. B) whenever |A| < |B| (resp. |A| ≥ |B|). Notice
that this algorithm provides a 7

6 -approximation of an optimal bipartition, and
runs in O(p log p) time [14].

– Routine 2: add the cut (Si,∪j �=iSj), for every i ∈ {1, . . . , p}. This idea
forbids Si to be disconnected from the rest of S in the next iteration.

– Routine 3: add the cut (S1, . . . , Sp). Here, we simply forbid G[S] to have
the exact same connected components in the next round.

Observe that the first two strategies return cuts from the set BH defined previ-
ously, while the third one returns a cut which belongs to PH . In all three cases,
the routine returns cuts which were not in the model, hence guaranteeing the
optimality and termination of our algorithms, as seen previously.

Combining the above choices, it gives six different strategies:

– Strategy 1: initial set of cuts: none; newCuts(.): Routine 1
– Strategy 2: initial set of cuts: none; newCuts(.): Routine 2
– Strategy 3: initial set of cuts: none; newCuts(.): Routine 3
– Strategy 4: initial set of cuts: singleton cuts; newCuts(.): Routine 1
– Strategy 5: initial set of cuts: singleton cuts; newCuts(.): Routine 2
– Strategy 6: initial set of cuts: singleton cuts; newCuts(.): Routine 3

After an empirical evaluation of the above strategies for different kind of
instances, we observed a similar behaviour for all of them, with a high deviation
for seemingly similar instances. Nevertheless, we could observe that on average,
strategies 4, 5, and 6 were more efficient than strategies 1, 2 and 3, especially for
instances with a high number of vertices, which suggests that using a non-empty
set of initial set of cuts should always be better. The closeness of the results for
the three routines can be explained by the fact that in practice (in our random
instances, all having less than 25 vertices), the number of connected compo-
nents of every hyperedge of non-feasible solution is usually small (frequently 2
or 3, and often smaller than 5), which leads to similar ILP models to be solved
(for instance, when there are only two connected components, all three routines
output exactly the same set of cuts).

Constraint Generation Algorithm for the Minimum Connectivity Problem 173

Our first empirical results suggest that a more fine-grained comparison should
be performed in order to better understand which hypergraph parameters influ-
ence the efficiency of our different strategies. This approach could then be used
in a more general algorithm which would first analyze the instance to solve,
and then choose the right strategy to use. Another option would be to run all
strategies in parallel in order to obtain the least running time for every instance.

In the sequel, we decided to effectively use the singleton cuts as initial set of
cuts, and to use Routine 1 as newCuts(.) (that is, it corresponds to strategy 4
described above).

3 Experimental Evaluation

3.1 Generation of Instances

Our random generator of instances follows the same rules as in the experiment
conducted by Dar et al. [10]. A given scenario depends on the following features:

– Number of vertices n of the hypergraph.
– Density of the hypergraph d = m

n . As in [10], we used the following values:
d ∈ {1, 3, 5}.

– Hyperedge size bounds and distributions. For this parameter, we used
the four types defined by [10] plus a new fifth type. For the first four, a size
is chosen uniformly at random for each hyperedge among prescribed upper
and lower bounds:

• Type 1: sizes of hyperedges between 2 and n
• Type 2: sizes of hyperedges between 2 and n/2�
• Type 3: sizes of hyperedges between n/4� and n
• Type 4: sizes of hyperedges between n/4� and n/2�.

Then, for each hyperedge, vertices are chosen uniformly at random until the
desired size is reached. For the fifth type, hyperedges are chosen uniformly
at random among all possible hyperedges. To do so, for each hyperedge, each
vertex is added with probability 1/2 until the desired number of distinct
hyperedges is reached. Hence, the sizes of hyperedges follow a uniform distri-
bution for the first four types, and a gaussian distribution (centered at n

2) for
the fifth one.

In the following, a scenario corresponds to a triple (n, d, Type). In all exper-
iments conducted in this paper, 50 instances were generated for each scenario.
Moreover, a time limit of 900 s (15 min) was set for each instance.

3.2 Comparison with the Flow-Based MILP Formulation

In this sub-section, we present the results of the comparison between our con-
straint generation algorithm and the best state-of-the-art exact algorithm for
MCI, which is the improved flow-based MILP model of Dar et al. [10]. As
explained in the introduction, this algorithm is itself an improvement of a

174 É. Bonnet et al.

previous algorithm of Agarwal et al. [1]. Although both algorithms rely on a
flow-based MILP formulation of the problem, the improvement of Dar et al. can
be summarized as follows:

– The MILP formulation of Dar et al. contains less variables and constraints,
mainly because of a factoring of several linearly-dependent constraints in
the previous formulation. They also added some new constraints in order to
speed-up the resolution.

– The algorithm of Dar et al. also contains several pre-processing rules whose
purpose is to reduce the number of vertices and hyperedges of the input
instance, and thus reduce the size of the MILP formulation. These reduction
rules rely on some observations of the problem, dealing with parts of the
instances where the structure of an optimal solution can be inferred in poly-
nomial time (e.g. when a set of vertices belong to a same set of hyperedges
of a large size). Notice that Dar et al. conducted an experimental evaluation
of their reduction rules in [9].

For the sake of completeness, we provide the MILP formulation of Dar et al.
To this end, let us first introduce some notions and definitions. For every hyper-
edge S ∈ E they choose an arbitrary vertex rS ∈ S to be the source of the flow
which will ensures connectivity. Hence, they define a complete digraph A(S)
with vertex set S and, in addition to a variable xe for every edge of K(H), their
model has also a variable fS

a for every arc a of A(S). For a vertex v ∈ S, A−
S (v)

(resp. A+
S (v)) denotes the set of arcs of A(S) entering v (resp. leaving v). The

model is the following:

Minimize
∑

e∈K(H)

xe

subject to: ∑

u,v∈S

xuv ≥ |S| − 1 ∀S ∈ E
∑

a∈A−
S (v)

fS
a − ∑

a∈A+
S (v)

fS
a = −1 ∀S ∈ E , ∀v ∈ S \ rS

fS
uv + fS

vu ≤ (|S| − 1)xe ∀S ∈ E , ∀u, v ∈ S
fS
a ≥ 0 ∀S ∈ E , ∀a ∈ A(S)
xe ∈ {0, 1} ∀e ∈ K(H)

Since our goal was mainly to compare the performance of our constraint
generation algorithm to a simple (M)ILP formulation, the reduction rules of
Dar et al. were not used for both algorithms. In the sequel, the algorithm of
Dar et al. will be denoted by Flow-MILP, and our constraint generation algo-
rithm by CGA.

All experiments were conducted on a computer equipped with an Intel R©
Xeon R© E5620 processor (64 bits) at 2.4 GHz, 24 GB of RAM and a Linux system
(Ubuntu version 18.04.1 LTS). The implementation of our constraint generation
algorithm (Strategy 4 described above) was written and run in SageMath version

Constraint Generation Algorithm for the Minimum Connectivity Problem 175

8.2 (release date 05/05/2018). The algorithm of Dar et al. was written3 and run
in MATLAB R© Released R2016b. The MILP solver used in both algorithms was
CPLEX R© version 12.8 from IBM R©. All algorithms (including all MILP reso-
lutions) were conducted sequentially, i.e. not exploiting multi-threading. Notice
that the measured time of the algorithm of Dar et al. only consists in the reso-
lution of the MILP model (the purpose of the MATLAB R© code is thus only to
construct the MILP model from the instance), hence the difference of program-
ming languages does not matter for the comparison.

For each scenario (n, d, Type), a set of 50 instances were generated and given
to both Flow-MILP and CGA. As said previously, for each instance, a time
limit of 900 s was set. Tables 1, 2 and 3 represent the results of the comparison
for densities 1, 3 and 5, respectively, where the running time is the average
running time of all instances solved within the time limit, and the number in
brackets indicates the number of instances (out of 50) effectively solved within
this limit in the case this number was different from 50. The tables also show the
average number of constraints in the MILP formulation of both algorithms: for
Flow-MILP it corresponds directly to the number of constraints of the MILP
model, while for CGA it corresponds to the number of constraints it had to add
in order to be able to solve the instance (hence, it corresponds to the number of
constraints in the last ILP solved).

As we can see in the results, our approach has a much lower average running
time compared to the previous algorithm in every scenario. Indeed, on average
(for all instances of all scenarios) CGA has a running time more than 13 times
smaller than Flow-MILP. As we could expect, the newly introduced type 5
of instances is the most difficult for both algorithms, certainly because these
instances contain much less small hyperedges than the others. This also explains
why type 2 instances are often the easiest to solve for both algorithms. These
results also highlights the fact that our algorithm is able to solve larger instances
than previously. When considering types 1, 2, 3, and 4 only:

– For m = n and n = 26 for instance, our algorithm is able to solve 100% of
instances within the time limit, while Flow-MILP can only solve less than
85% of them.

– For m = 3n, n = 20, CGA is able to solve 90% of instances, while Flow-

MILP can only solve 66%.
– For m = 5n and n = 18, CGA is able to solve 98% of instances while Flow-

MILP can only solve 82% of them.

Observe also that our algorithm generate much smaller MILP models. Indeed,
firstly the number of variables is always smaller, since our models do not contain
any flow variables. Secondly, as we can observe in the results, the number of
added constraints is roughly 6 times smaller than in the flow-based MILP model.
Despite the fact that for each instance our algorithm needs to call the MILP

3 We used the implementation of [10] provided by their authors.

176 É. Bonnet et al.

Table 1. Comparison of running times and number of constraints between Flow-

MILP and CGA for density 1. Columns labeled with (sec) (resp. (con) represent the
average running time (resp. number of constraints).

n Type Flow-MILP (sec) Flow-MILP (con) CGA (sec) CGA (con)

14 1 0.40 598.56 0.05 130.54

2 0.10 195.26 0.02 78.42

3 0.40 636.28 0.05 135.02

4 0.12 226.58 0.03 85.70

5 0.31 428.56 0.04 115.12

16 1 0.84 830.22 0.07 162.08

2 0.16 277.54 0.04 99.18

3 1.05 958.52 0.08 178.28

4 0.25 358.30 0.06 115.60

5 1.75 618.86 0.18 152.50

18 1 2.58 1163.16 0.11 201.56

2 0.27 372.92 0.07 123.00

3 8.51 1263.40 0.19 219.42

4 0.40 466.40 0.09 139.08

5 3.72 826.74 0.37 187.18

20 1 24.17 1569.76 0.34 253.22

2 0.52 471.60 0.11 145.18

3 35.33 1799.16 0.58 282.62

4 1.88 672.04 0.54 182.14

5 35.64 1158.72 2.97 250.80

22 1 60.53 2023.32 0.85 307.94

2 1.05 630.04 0.27 177.80

3 107.17 [49] 2386.94 1.08 342.64

4 6.31 838.70 1.14 216.18

5 137.17 [47] 1504.98 12.02 315.64

24 1 119.20 [49] 2566.84 2.15 365.82

2 3.76 807.26 0.54 211.76

3 314.43 [39] 3147.10 8.58 443.44

4 42.49 [49] 1140.20 4.29 272.38

5 344.12 [28] 1929.75 122.41 [49] 404.24

26 1 194.88 [38] 3342.79 28.25 448.26

2 19.83 1019.42 4.28 253.16

3 365.14 [33] 3733.33 8.39 498.22

4 101.67 [48] 1338.85 16.92 318.62

5 606.45 [8] 2382.62 285.70 [31] 478.58

Constraint Generation Algorithm for the Minimum Connectivity Problem 177

Table 2. Comparison of running times and number of constraints between Flow-

MILP and CGA for density 3. Columns labeled with (sec) (resp. (con)) represent the
average running time (resp. number of constraints).

n Type Flow-MILP (sec) Flow-MILP (con) CGA (sec) CGA (con)

12 1 0.90 1056.10 0.08 275.24

2 0.19 399.16 0.05 181.20

3 0.78 1153.72 0.08 291.50

4 0.30 469.44 0.06 198.74

5 0.99 814.18 0.13 253.84

14 1 2.40 1645.76 0.15 366.24

2 0.38 586.10 0.08 233.46

3 2.75 1707.58 0.19 377.32

4 0.59 665.06 0.14 251.90

5 6.14 1254.08 0.69 340.64

16 1 9.67 2424.56 0.42 469.52

2 0.97 827.48 0.21 293.36

3 31.98 2773.78 1.38 518.96

4 8.25 1056.66 1.60 340.16

5 155.75 [49] 1857.67 27.56 454.78

18 1 35.95 3269.58 1.72 578.04

2 3.55 1107.86 0.66 356.14

3 187.60 [49] 3773.76 15.92 645.78

4 69.12 1411.38 12.30 417.76

5 393.61 [11] 2458.09 241.37 [33] 566.21

20 1 178.20 [44] 4413.09 11.05 712.24

2 21.53 1454.96 4.73 432.20

3 418.32 [22] 5395.00 115.07 [48] 829.40

4 367.51 [16] 1943.69 274.18 [33] 532.66

5 −1.00 [0] 0.00 888.23 [1] 685.00

22 1 330.37 [29] 5896.55 76.89 872.12

2 105.96 [49] 1901.41 23.52 [49] 519.82

3 544.25 [2] 6935.50 210.25 [35] 993.80

4 −1.00 [0] 0.00 689.20 [8] 623.13

5 −1.00 [0] 0.00 −1.00 [0] 0.00

solver several times, calling it on much smaller MILP models offers a better
overall running time.

We also generated instances with hyperedges sizes bounded by a (small)
constant, in order to see how far we could increase the number of vertices for both
algorithms. More precisely, we generated instances with hyperedges of size 7, and

178 É. Bonnet et al.

Table 3. Comparison of running times and number of constraints between Flow-

MILP and CGA for density 5. Columns labeled with (sec) (resp. (con)) represent the
average running time (resp. number of constraints).

n Type Flow-MILP (sec) Flow-MILP (con) CGA (sec) CGA (con)

10 1 0.44 1009.94 0.06 322.38

2 0.19 432.96 0.05 226.90

3 0.47 1023.98 0.07 324.68

4 0.19 438.26 0.05 228.50

5 0.53 816.82 0.07 301.58

12 1 1.28 1717.92 0.14 452.32

2 0.36 674.92 0.07 303.98

3 2.37 1862.66 0.19 479.42

4 0.76 786.34 0.13 331.62

5 2.63 1346.06 0.27 420.58

14 1 6.54 2684.80 0.28 601.18

2 0.82 989.18 0.17 390.82

3 10.00 2809.78 0.42 624.30

4 1.79 1112.46 0.31 419.54

5 57.82 2108.38 5.90 568.06

16 1 27.61 3892.42 0.95 765.86

2 2.35 1375.52 0.45 485.30

3 146.77 [49] 4414.90 6.91 843.04

4 73.50 [46] 1757.11 42.70 567.12

5 546.07 [20] 2976.35 176.13 [38] 728.76

18 1 91.41 [48] 5527.35 3.31 963.82

2 15.35 1884.84 1.61 597.76

3 381.68 [30] 6082.20 55.23 1050.14

4 357.08 [36] 2313.11 104.60 [46] 684.29

5 440.86 [1] 4244.00 283.08 [2] 911.00

20 1 178.73 [35] 7266.37 17.41 1169.50

2 65.76 2430.20 6.06 708.82

3 588.01 [1] 9003.00 347.20 [21] 1322.05

4 −1.00 [0] 0.00 −1.00 [0] 0.00

5 −1.00 [0] 0.00 −1.00 [0] 0.00

density d ∈ {1, 3} (for density 5, the maximum number of vertices for which our
algorithm was able to solve 100% of the instances was only 300).

The differences of running time is even more significant in this experiment
(see Table 4). The algorithm of Dar et al. fails to solve 100% of the instances
within the time limit for 200 vertices already (density 3). Moreover, for density

Constraint Generation Algorithm for the Minimum Connectivity Problem 179

1, there is a huge lack of efficiency between 750 and 1000 vertices for the flow-
based MILP algorithm, going from 100% of instances solved to 8%. Overall, we
can observe that our approach allows to solve instances or a much larger size
than the previous algorithm.

4 Enumeration Algorithm

In this section, we describe an approach to enumerate all optimal solutions of
an instance of MCI. When solving an optimization problem using an MILP
formulation in which the solution is represented by 0–1 variables, a natural way
to obtain an enumeration algorithm consists in adding new constraints in order to
forbid previously found solutions. More formally, if the objective of the MILP is

Minimize
n∑

i=1

xi

where each xi is a 0–1 variable, then one can forbid a given solution S ⊆
{1, . . . , n} represented by the indices of all variables set to 1 by adding the
following constraint:

Table 4. Results for instances with hyperedges of size 7. Columns labeled with (sec)
(resp. (con)) represent the average running time (resp. number of constraints).

n d Flow-MILP (sec) Flow-MILP (con) CGA (sec) CGA (con)

30 1 0.31 407.04 0.12 169.58

30 3 5.14 1259.36 2.03 512.14

50 1 0.47 699.32 0.25 286.58

50 3 12.85 2066.28 2.89 856.66

100 1 1.33 1396.66 0.62 572.82

100 3 39.35 4176.84 4.85 1752.02

200 1 5.38 2809.72 0.79 1132.54

200 3 106.51 [46] 8269.80 4.76 3436.34

300 1 17.20 4209.62 1.40 1691.58

300 3 148.21 [33] 12415.18 8.04 5117.94

400 1 41.62 5596.66 1.61 2239.86

400 3 220.36 [37] 16584.57 23.73 7033.42

500 1 83.89 7002.62 2.29 2792.82

500 3 369.10 [46] 20739.85 94.24 8969.68

750 1 296.43 10521.40 15.07 4265.36

750 3 −1.00 [0] 0.00 266.82 13454.44

1000 1 627.295 [4] 14018.50 34.54 5645.48

1000 3 −1.00 [0] 0.00 666.70 [33] 17785.06

180 É. Bonnet et al.

∑

i∈S

xi < |S|

Hence, forbidding a set of solutions A can be done by adding |A| new constraints
to the model. This idea was used by Agarwal et al. [1] in order to obtain an algo-
rithm enumerating all optimal solutions of an instance of MCI. This strategy,
although being easy to implement, becomes much less efficient when the num-
ber of solutions of the instances increases, because the size of the MILP model
becomes too large for the solver. We propose a new method for the enumeration
of solutions, which, in a nutshell, consists in forbidding the solutions “chunk by
chunk”. To this end, we iteratively accumulate optimal solutions by exploring
the neighborhood of a solution found (the way we explore this neighborhood
will be explained later). Once this exploration is done, we forbid all optimal
solutions found at the same time. A pseudo-code of this approach is presented
in Algorithm 2.

Algorithm 2: Enumeration algorithm for MCI

Input: a hypergraph H = (V, E)
Output: A: the set of all optimal solutions of H

1 A ← ∅
2 c∗ ← cost of an optimal solution of H
3 while there exists a solution S of cost c∗ which does not belong to A do
4 N ← neighborhood of S
5 A ← A ∪ N
6 end
7 return A

Naturally, we use our constraint generation algorithm described previously
in order to find new optimal solutions. Notice that once we have found one
optimal solution of cost c∗, we shall add a new constraint to our ILP in order
to find new solutions of size exactly c∗ in the next rounds, which usually speeds
up the resolution. We now describe the way we explore the neighborhood of
a solution (which corresponds to Line 4 of Algorithm 2). This step is done by
forbidding an arbitrary edge e of the previously found solution, by simply adding
a new constraint to our ILP forcing the corresponding variable xe to 0. We thus
iteratively accumulate new optimal solutions until the solver returns that the
obtained ILP does not admit a solution of the desired cost, which means that
the exploration of the neighborhood is done. We then remove the newly added
constraints used in this routine for the next loop in Line 3 of Algorithm 2.

We evaluated the performance of our approach by comparing its running
time to the natural approach of forbidding each new optimal found in the ILP
described at the beginning of this section (still using our exact algorithm as a
black box for finding new solutions). To this end, we generated a set of 1000
random instances of type 1 with a density of m

n = 2, and n = 10. These
settings were chosen because they allow the random generation to produce
instances of various different structures. In particular, we observed a quite fair

Constraint Generation Algorithm for the Minimum Connectivity Problem 181

Fig. 1. Comparison of running times between the naive enumeration algorithm and
our new approach, as a function of the number of solutions of the instances.

distribution of the numbers of solutions, which seemed to be a meaningful param-
eter for the comparison of the two approaches. Figure 1 presents the result of
these experiments. As we can see, our new method offers a great improvement
when the number of solutions is high, by reducing by more than 8 times the run-
ning time in our generated instances. These results suggest that our algorithm
has a running time which is linear in the number of solutions in practice.

5 Conclusion

In this paper we presented and evaluated an exact algorithm for the Minimum

Connectivity Inference problem, based on a constraint generation strategy
in order to ensure connectivity. Our experiments, conducted on various randomly
generated instances, demonstrated that our method outperforms the best pre-
viously known exact algorithm for this problem, relying on a flow-based MILP
formulation. Since connectivity constraints appear very often in practical situa-
tions which are usually solved by the means of MILP, our results suggest that
a constraint generation strategy can sometimes be much more efficient. As a
further research, it would be interesting to apply this technique to other opti-
mization problems in which connectivity plays an important role. It should be
noted that during the empirical evaluation of the different sub-routines for our
algorithm, we noticed high standard deviations in the running times. It would
be thus interesting to understand which hypergraph parameters influence the
complexity of our strategies. Apart from providing useful information about the

182 É. Bonnet et al.

problem and our method, this could be used in order to build a more structured
benchmark of instances, which could be of great help for the evaluation of future
exact algorithms. Finally, our enumeration algorithms seems to be a promising
method which should be tested for other similar problems.

Acknowledgment. We would like to thank Muhammad Abid Dar, Andreas Fischer,
John Martinovic and Guntram Scheithauer for providing us the source code of their
algorithm [10].

References

1. Agarwal, D., Araujo, J.-C.S., Caillouet, C., Cazals, F., Coudert, D., Pérennes, S.:
Connectivity inference in mass spectrometry based structure determination. In:
Bodlaender, H.L., Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp. 289–300.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40450-4 25

2. Agarwal, D., Araújo, J.C.S., Caillouet, C., Cazals, F., Coudert, D., Pérennes, S.:
Unveiling contacts within macro-molecular assemblies by solving minimum weight
connectivity inference problems. Mol. Cell. Proteomics 14, 2274–2284 (2015)

3. Angluin, D., Aspnes, J., Reyzin, L.: Inferring social networks from outbreaks. In:
Hutter, M., Stephan, F., Vovk, V., Zeugmann, T. (eds.) ALT 2010. LNCS (LNAI),
vol. 6331, pp. 104–118. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-16108-7 12

4. Benders, J.F.: Partitioning procedures for solving mixed-variables programming
problems. Numerische Mathematik 4(1), 238–252 (1962)

5. Brandes, U., Cornelsen, S., Pampel, B., Sallaberry, A.: Path-based supports for
hypergraphs. J. Discrete Algorithms 14, 248–261 (2012). Proceedings of the 21st
International Workshop on Combinatorial Algorithms (IWOCA 2010)

6. Chen, J., Komusiewicz, C., Niedermeier, R., Sorge, M., Suchý, O., Weller, M.:
Polynomial-time data reduction for the subset interconnection design problem.
SIAM J. Discrete Math. 29(1), 1–25 (2015)

7. Chockler, G., Melamed, R., Tock, Y., Vitenberg, R.: Constructing scalable overlays
for pub-sub with many topics. In: Proceedings of the 26th Annual ACM Symposium
on Principles of Distributed Computing (PODC 2007), pp. 109–118 (2007)

8. Conitzer, V., Derryberry, J., Sandholm, T.: Combinatorial auctions with struc-
tured item graphs. In: Proceedings of the 19th National Conference on Artifical
Intelligence, AAAI 2004, pp. 212–218 (2004)

9. Dar, M.A., Fischer, A., Martinovic, J., Scheithauer, G.: A computational study of
reduction techniques for the minimum connectivity inference problem. In: Singh,
V.K., Gao, D., Fischer, A. (eds.) Advances in Mathematical Methods and High Per-
formance Computing. AMM, vol. 41, pp. 135–148. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-02487-1 7

10. Dar, M.A., Fischer, A., Martinovic, J., Scheithauer, G.: An improved flow-based
formulation and reduction principles for the minimum connectivity inference prob-
lem. Optimization 0(0), 1–21 (2018)

11. Du, D.Z., Miller, Z.: Matroids and subset interconnection design. SIAM J. Discrete
Math. 1(4), 416–424 (1988)

12. Du, D.Z., Miller, Z.: On complexity of subset interconnection designs. J. Global
Optim. 6(2), 193–205 (1995)

https://doi.org/10.1007/978-3-642-40450-4_25
https://doi.org/10.1007/978-3-642-16108-7_12
https://doi.org/10.1007/978-3-642-16108-7_12
https://doi.org/10.1007/978-3-030-02487-1_7
https://doi.org/10.1007/978-3-030-02487-1_7

Constraint Generation Algorithm for the Minimum Connectivity Problem 183

13. Fan, H., Hundt, C., Wu, Y.-L., Ernst, J.: Algorithms and implementation for inter-
connection graph problem. In: Yang, B., Du, D.-Z., Wang, C.A. (eds.) COCOA
2008. LNCS, vol. 5165, pp. 201–210. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-85097-7 19

14. Graham, R.L.: Bounds on multiprocessing timing anomalies. SIAM J. Appl. Math.
17(2), 416–429 (1969)

15. Hosoda, J., Hromkovič, J., Izumi, T., Ono, H., Steinová, M., Wada, K.: On the
approximability and hardness of minimum topic connected overlay and its special
instances. Theoret. Comput. Sci. 429, 144–154 (2012)

16. Johnson, D.S., Pollak, H.O.: Hypergraph planarity and the complexity of drawing
venn diagrams. J. Graph Theory 11(3), 309–325 (1987)

17. Klemz, B., Mchedlidze, T., Nöllenburg, M.: Minimum tree supports for hyper-
graphs and low-concurrency Euler diagrams. In: Ravi, R., Gørtz, I.L. (eds.) SWAT
2014. LNCS, vol. 8503, pp. 265–276. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-08404-6 23

18. Korach, E., Stern, M.: The clustering matroid and the optimal clustering tree.
Math. Program. 98(1), 385–414 (2003)

19. Onus, M., Richa, A.W.: Minimum maximum degree publish-subscribe overlay net-
work design. In: IEEE INFOCOM 2009, pp. 882–890 (2009)

https://doi.org/10.1007/978-3-540-85097-7_19
https://doi.org/10.1007/978-3-540-85097-7_19
https://doi.org/10.1007/978-3-319-08404-6_23
https://doi.org/10.1007/978-3-319-08404-6_23

Efficient Split-Radix and Radix-4 DCT
Algorithms and Applications

Sirani M. Perera(B) , Daniel Silverio, and Austin Ogle

Embry-Riddle Aeronautical University, Daytona Beach, USA
pereras2@erau.edu

{silverid,oglea1}@my.erau.edu
https://faculty.erau.edu/Sirani.Perera

Abstract. This paper proposes efficient split-radix and radix-4 Discrete
Cosine Transform (DCT) of types II/III algorithms. The proposed fast
split-radix and radix-4 algorithms extend the previous work on the low-
est multiplication complexity, self-recursive, radix-2 DCT II/III algo-
rithms. The paper also addresses the self-recursive and stable aspects of
split-radix and radix-4 DCT II/III algorithms having simple, sparse, and
scaled orthogonal factors. Moreover, the proposed split-radix and radix-
4 algorithms attain the lowest theoretical multiplication complexity and
arithmetic complexity for 8-point DCT II/III matrices. The factoriza-
tion corresponding to the proposed DCT algorithms contains sparse and
scaled orthogonal matrices. Numerical results are presented for the arith-
metic complexity comparison of the proposed algorithms with the known
fast and stable DCT algorithms. Execution time of the proposed algo-
rithms is presented while verifying the connection to the order of the
arithmetic complexity. Moreover, we will show that the execution time of
the proposed split-radix and radix-4 algorithms are more efficient than
the radix-2 DCT algorithms. Finally, the implementations of the pro-
posed DCT algorithms are stated using signal-flow graphs.

Keywords: Discrete cosine transforms · Sparse and orthogonal
factors · Split-radix and radix-4 algorithms · Self recursive algorithms ·
Complexity and performance of algorithms · Signal flow graphs

1 Introduction

The Discrete Fourier Transform (DFT) has a plethora of applications in applied
mathematics and electrical engineering. Discrete Cosine Transform (DCT) is a
real-arithmetic analogue of DFT. DCTs with orthogonal trigonometric trans-
forms have been especially popular in recent decades due to their applications in
digital video technology and high efficiency video coding; see, e.g., [2,29,34,39].

This work was funded by the Faculty Research Development Program, the Office of
Undergraduate Research, and the Office of Provost at Embry-Riddle Aeronautical Uni-
versity.

c© Springer Nature Switzerland AG 2019
I. Kotsireas et al. (Eds.): SEA2 2019, LNCS 11544, pp. 184–201, 2019.
https://doi.org/10.1007/978-3-030-34029-2_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34029-2_13&domain=pdf
http://orcid.org/0000-0002-3975-3742
https://doi.org/10.1007/978-3-030-34029-2_13

Efficient Split-Radix and Radix-4 DCT Algorithms and Applications 185

Due to the savings in the transformed data, DCTs can be considered the building
blocks for video and image compression algorithms, especially in High Efficiency
Video Coding (HEVC) and H.264/H.265 video compression [26]. Also, DCT II
is accepted as the best suboptimal transform since its performance is very close
to that of the optimal Karhunen-Loeve Transform; see, e.g., [2,29,30]. One can
say that DCT is the key transform in image processing, signal processing, finger
print enhancement, quick response code (QR code), multi-mode interface, etc.
[1,3,7,9,12–15,17,24,40].

Fast algorithms can be derived to compute DCT and its inverse efficiently.
In this paper, we discuss self-recursive split-radix and radix-4 DCT and inverse
DCT algorithms with reduction of the execution time. Our DCT algorithms are
based on the recently published lowest multiplication complexity, self-recursive,
radix-2 DCT algorithms [24]. We have considered simple, sparse, and scaled
orthogonal factorization for the DCT matrices and reduced multiplication com-
plexity while scaling at the end of the computation. The arithmetic complexity
of the proposed DCT algorithms are the same as in [24]. The proposed algo-
rithms have shown favorable results with the execution time as opposed to the
radix-2 DCT algorithms. One should recall that algorithms are most beneficial
when the hardware can take advantage. Based on the VLSI designs, the pro-
posed DCT algorithms are neat [24]. The DCTs have main types varying from
I to IV based on Dirichlet and Neumann boundary conditions. In this paper we
have considered orthogonal DCT matrices of type II and III which we call DCT
and inverse DCT, respectively, as follows:

CII
n =

√
2
n

[
εn(j) cos

j(2k + 1)π
2n

]
, CIII

n =

√
2
n

[
εn(k) cos

(2j + 1)kπ

2n

]
,

where εn(0) = εn(n) = 1√
2
, εn(j) = 1 for j ∈ {1, 2, · · · , n − 1}, n ≥ 2 is an even

integer, and j, k = 0, 1, · · · , n − 1.
Since the 1960’s, split-radix DCT and Discrete Sine Transform (DST) algo-

rithms have been obtained as a special case of DFT algorithms [5,6,11,31,41,45].
Simply put, split-radix DCT and DST algorithms are computed using DFT algo-
rithms. The crucial work on the reduced flop count of the split-radix DCT and
DST algorithms in [11,31] is also based on DFT algorithms. The authors in
[11,31] had reduced redundant operations using even symmetry of the input
data. When DCT is computed using DFT we are using complex arithmetic as
opposed to real arithmetic. Thus, one has to pay attention for the practical
implementation of the DCT algorithms which utilize DFTs. Moreover, when
DCTs are computed using DFT with several routines, this effects significantly
the execution time and memory hierarchy. Thus, as opposed to the split-radix
DCT algorithms in the literature, the proposed split-radix DCT algorithms are
self-recursive and contain simple, sparse, and scaled orthogonal matrices. One
could recall here that, if the factorizations do not preserve orthogonality, the
resulting DCT and DST algorithms can lead to inferior numerical stability [37].
Apart from split-radix DCT computation through the DFTs, one can find fast
split-radix DCT II algorithms utilizing real arithmetic in [19]. Unlike split-radix

186 S. M. Perera et al.

DCT algorithms, radix-4 DCT algorithms have not quite been studied. But one
can design a converged processor for 64-point DCT using radix-4 FFT as in [38].
Also, a fast radix-q and split-radix type-IV DCT algorithm, which was obtained
using DCT-II, can be seen in [10]. Fast radix-p DCT and inverse DCT algorithms
can be derived using a divide-and-conquer method and Chebyshev polynomi-
als as in [33]. In this paper, we have proposed radix-4 DCT and inverse DCT
algorithms with simple, sparse, and scaled orthogonal matrices while leading to
self-recursive algorithms as opposed to the existing radix-4 DCT algorithms.

It is natural to compute fast (in the sense of using O(n log n) complexity)
DCT and DST algorithms using the polynomial arithmetic technique (using the
divide and conquer technique to reduce the degree of the polynomial; see, e.g.,
[27,28,32,42]) and the matrix factorization technique (direct factorization of the
DCT/DST matrix into the product of real and sparse matrices; see, e.g., [19–
25,43,44]). Apart from these main techniques, one can use polynomial division
based on comrade matrices to derive fast DCT and DST algorithms as in [18].

This paper addresses efficient split-radix and radix-4 DCT and inverse DCT
algorithms by using real arithmetic with simple, sparse, and scaled orthogonal
matrices. Moreover, we have presented self-recursive algorithms with real arith-
metic as opposed to complex arithmetic, and compared arithmetic complexity
results of the proposed algorithms with the existing fast and stable DCT algo-
rithms. We have also shown optimized C code for comparing the execution time
of the proposed DCT algorithm with existing radix-2 DCT algorithms. The pro-
posed algorithms are also implemented to demonstrate signal flow graphs.

In Sect. 2, we utilize the factorization proposed in [24] to obtain
self/completely recursive split-radix and radix-4 DCT II/III algorithms hav-
ing sparse and scaled orthogonal matrices. Next, in Sect. 3 we derive addition
and multiplication counts of the proposed split-radix and radix-4 algorithms.
Within Subsect. 3.2, we will compare the proposed split-radix and radix-4 DCT
algorithms with the known fast and stable DCT algorithms. Moreover, in Sub-
sect. 3.3, we will utilize optimized C code to show the connection between the
order of arithmetic complexity and execution time of the proposed algorithms.
We have also presented the execution time of the proposed algorithms with exist-
ing radix-2 algorithms. Finally, in Sect. 4 we illustrate the signal flow graphs of
the proposed algorithms for a 16-point case.

2 Simple, Self-recursive, Split-Radix and Radix-4 DCT
Algorithms

In this section we introduce self-contained factorizations for DCT II/III having
sparse and orthogonal matrices. The proposed factorizations are presented based
on the lowest multiplication complexity, self-recursive, radix-2 DCT algorithms
introduced in [24]. Once the factorizations are established we will state the cor-
responding simple, self-recursive, split-radix and radix-4 DCT II/III algorithms.
The purpose of presenting these novel algorithms is to introduce self-recursive,
fast split-radix and radix-4 algorithms having sparse and scaled orthogonal

Efficient Split-Radix and Radix-4 DCT Algorithms and Applications 187

matrices. Let us first introduce all notations before discussing the factorizations
of DCT matrices.

2.1 Frequently Use Notations

Here we introduce notations for sparse and scaled orthogonal matrices which will
frequently be used in this paper. For a given vector x = [x0, x1, · · · , xn−1] ∈ Rn,
let us introduce an even-odd permutation matrix Pn (n ≥ 3) by

Pn x =

{
[x0, x2, · · · , xn−2, x1, x3, · · · , xn−1]

T even n,

[x0, x2, · · · , xn−1, x1, x3, · · · , xn−2]
T odd n.

We also introduce a scaled orthogonal matrix Hn =

⎡
⎣ In

2
Ĩn

2

In
2

−Ĩn
2

⎤
⎦ , where In is

the identity matrix and Ĩn is the counter-identity matrix, an orthogonal matrix

H̄n = 1√
2
Hn, a bidiagonal matrix Bn

2
=

⎡
⎢⎢⎢⎢⎢⎣

√
2 1

1 1
.

1
1

⎤
⎥⎥⎥⎥⎥⎦

, a diagonal matrix

Wn
2

= diag
[
sec(

(2k−1)π
2n)

2

]n
2

k=1

, and a block diagonal matrix of say A and B as

blkdiag (A,B).

2.2 Self-enclosed, Sparse, and Scaled Orthogonal Factors for DCT
II/III

We will first show that the DCT II matrix admits a self-enclosed factorization
with sparse and orthogonal matrices with the help of the DCT factorization in
[24]. Next, we will use the factorization for DCT II to state the factorization
for DCT III. Let us first recall the self-contained, sparse, orthogonal DCT II
factorization proposed in [24].

Lemma 1. For an even integer n ≥ 4, the matrix CII
n can be factored in the

form

CII
n = PT

n

[
In

2
0

0 Bn
2

] [
CII

n
2

0
0 CII

n
2

] [
In

2
0

0 Wn
2

]
H̄n. (1)

Proof. See [24].

The followings are immediate results of Lemma 1.

188 S. M. Perera et al.

Corollary 1. For a given n = 2t(t ≥ 2), the split factorization for the matrix
CII

n can be stated in the form

CII
n = PT

n

[
PT

n
2

In
2

] ⎡
⎢⎣
In

4
Bn

4
Bn

2

⎤
⎥⎦

⎡
⎢⎢⎣
CII

n
4

CII
n
4

CII
n
2

⎤
⎥⎥⎦

⎡
⎢⎣
In

4
Wn

4
Wn

2

⎤
⎥⎦

[
H̄n

2
In

2

]
H̄n. (2)

Proof. This can easily be seen by factoring CII
n
2

in the top half of Eq. (1).

Corollary 2. For a given n = 2t(t ≥ 2), the split factorization for the matrix
CIII

n can be stated in the form

CIII
n = H̄T

n

[
H̄T

n
2

In
2

] ⎡
⎢⎣
In

4
Wn

4
Wn

2

⎤
⎥⎦

⎡
⎢⎢⎣
CIII

n
4

CIII
n
4

CIII
n
2

⎤
⎥⎥⎦

⎡
⎢⎣
In

4
BT

n
4

BT
n
2

⎤
⎥⎦

[
Pn

2
In

2

]
Pn. (3)

Proof. This is trivial by Corollary 1 as CIII
n =

[
CII

n

]T .

Corollary 3. For a given m = 4t(t ≥ 1), the factorization for the matrix CII
m

can be stated in the form

CII
m = PT

m

[
Im

2
Bm

2

] [
PT

m
2

PT
m
2

] ⎡
⎢⎢⎢⎣
Im

4
Bm

4
Im

4
Bm

4

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
CII

m
4

CII
m
4

CII
m
4

CII
m
4

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
Im

4
Wm

4
Im

4
Wm

4

⎤
⎥⎥⎥⎦

[
H̄m

2
H̄m

2

] [
Im

2
Wm

2

]
H̄m.

(4)

Proof. This can easily be seen by factoring each CII
n
2

in Eq. (1).

Corollary 4. For a given m = 4t(t ≥ 1), the factorization for the matrix CIII
m

can be stated in the form

CIII
m = H̄T

m

[
Im

2
Wm

2

] [
H̄T

m
2

H̄T
m
2

] ⎡
⎢⎢⎢⎣
Im

4
Wm

4
Im

4
Wm

4

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
CIII

m
4

CIII
m
4

CIII
m
4

CIII
m
4

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
Im

4
BT

m
4

Im
4

BT
m
4

⎤
⎥⎥⎥⎥⎦

[
Pm

2
Pm

2

] [
Im

2
BT

m
2

]
Pm.

(5)

Proof. This is trivial by Corollary 3 as CIII
m =

[
CII

m

]T .

Efficient Split-Radix and Radix-4 DCT Algorithms and Applications 189

2.3 Self Recursive Split-Radix and Radix-4 DCT II/III Algorithms

The factorization of DCT II/III matrices established in Sect. 2.2 leads to self-
recursive split-radix and radix-4 algorithms for computing y = CIIx and y =
CIIIx for a given x. To further reduce the number of multiplications, we can
move the factor 1√

2
in matrix H̄ (i.e. using scaled orthogonal matrix H) to the

end of the calculation to compute y =
√

nCII
n x, y =

√
nCIII

n x, y =
√

mCII
m x,

and y =
√

mCIII
m x. Let us present the self-recursive split-radix and radix-4 DCT

II/III algorithms to compute cos2sr(x, n), cos3sr(x, n), cos2r4(x, n), and
cos3r4(x, n), respectively.

Before stating the self recursive split-radix and radix-4 algorithms, let’s use
the following notations to denote diagonal and bidiagonal matrices which will
be used hereafter for n ≥ 4

W̃n =
[
In

2
0

0 Wn
2

]
and B̃n =

[
In

2
0

0 Bn
2

]
. (6)

Split-radix DCT-II Algorithm i.e. cos2sr(x, n)

Input: n = 2t(t ≥ 1), n1 = n
2 , n2 = n

4 , x ∈ R
n.

1. If n = 2, then

y :=
[
1 1
1 −1

]
x.

2. If n = 4, then

y := PT
4

[
I2

B2

]⎡
⎣I2

1 1
1 −1

⎤
⎦ [

I2
W2

] [
H2

I2

]
H4 x.

3. If n ≥ 8, then
u := Hn x,

v := [blkdiag(Hn1 , In1)] u,

[wj]n−1
j=0 := [blkdiag(W̃n1 ,Wn1)] v,

z1 := cos2sr
(
[wj]

n2−1
j=0 , n2

)
,

z2 := cos2sr
(
[wj]

n1−1
j=n2

, n2

)
,

z3 := cos2sr
(
[wj]

n−1
j=n1

, n1

)
,

q := [blkdiag(B̃n1 , Bn1)]
(
z1T , z2T , z3T

)T
,

y := PT
n [blkdiag(PT

n1
, In1)]q.

Output: y =
√

nCII
n x.

Split-radix DCT-III Algorithm i.e. cos3sr(x, n)

Input: n = 2t(t ≥ 1), n1 = n
2 , n2 = n

4 , x ∈ R
n.

1. If n = 2, then

y :=
[
1 1
1 −1

]
x.

190 S. M. Perera et al.

2. If n = 4, then

y := HT
4

[
H2

I2

] [
I2

W2

] ⎡
⎣I2

1 1
1 −1

⎤
⎦[

I2
BT

2

]
P4 x.

3. If n ≥ 8, then
u := Pn x,

v := [blkdiag(Pn1 , In1)] u,

[wj]n−1
j=0 := [blkdiag(B̃T

n1
, BT

n1
) v,

z1 := cos3sr
(
[wj]

n2−1
j=0 , n2

)
,

z2 := cos3sr
(
[wj]

n1−1
j=n2

, n2

)
,

z3 := cos3sr
(
[wj]

n−1
j=n1

, n1

)
,

q := [blkdiag(W̃n1 ,Wn1)]
(
z1T , z2T , z3T

)T
,

r := [blkdiag(HT
n1

, In1)]q,

y := HT
n r.

Output: y =
√

nCIII
n x.

Radix-4 DCT-II Algorithm i.e. cos2r4(x, n)

Input: m = 4t(t ≥ 1), m1 = m
2 , m2 = m

4 , x ∈ R
m.

1. If m = 4, then

y := PT
4

[
I2

B2

] [
H2

H2

] [
I2

W2

]
H4 x.

2. If m ≥ 16, then
u1 := Hm x,

u2 := W̃mu1,

v := [blkdiag(Hm1 ,Hm1)] u2,

[wj]m−1
j=0 := [blkdiag(W̃m1 , W̃m1)] v,

z1 := cos2r4
(
[wj]

m2−1
j=0 ,m2

)
,

z2 := cos2r4
(
[wj]

m1−1
j=m2

,m2

)
,

z3 := cos2r4
(
[wj]

3m2−1
j=m1

,m2

)
,

z4 := cos2r4
(
[wj]

m−1
j=3m2

,m2

)
,

q := [blkdiag(B̃m1 , B̃m1)]
(
z1T , z2T , z3T , z4T

)T
,

y := PT
m B̃m [blkdiag(PT

m1
, PT

m1
)]q

Output: y =
√

mCII
m x.

Radix-4 DCT-III Algorithm i.e. cos3r4(x, n)

Input: m = 4t(t ≥ 1), m1 = m
2 , m2 = m

4 , x ∈ R
m.

Efficient Split-Radix and Radix-4 DCT Algorithms and Applications 191

1. If m = 4, then

y := HT
4

[
I2

W2

] [
H2

H2

] [
I2

BT
2

]
P4 x.

2. If m ≥ 16, then
u := [blkdiag(Pm1 , Pm1)] B̃T

m Pm x,

[wj]m−1
j=0 := [blkdiag(B̃T

m1
, B̃T

m1
)] u,

z1 := cos3r4
(
[wj]

m2−1
j=0 ,m2

)
,

z2 := cos3r4
(
[wj]

m1−1
j=m2

,m2

)
,

z3 := cos3r4
(
[wj]

3m2−1
j=m1

,m2

)
,

z4 := cos3r4
(
[wj]

m−1
j=3m2

,m2

)
,

q := [blkdiag(W̃m1 , W̃m1)]
(
z1T , z2T , z3T , z4T

)T
,

r := [blkdiag(HT
m1

,HT
m1

)] q,

s := W̃m r

y := HT
m s

Output: y =
√

mCIII
m x.

3 Complexity of the Proposed DCT II/III Algorithms

We will analyze explicitly the number of additions and multiplications required
to execute the proposed split-radix and radix-4 DCT algorithms. If we compute
an order n×n DCT matrix by a vector in the usual way, it requires O(n2) arith-
metic operations. But using these self recursive radix-2 DCT II/III algorithms,
it is possible to compute y with significant multiplication complexity reduction.
Once the arithmetic complexity results are presented, we compare the complex-
ity results of the proposed algorithms with the well-known fast and stable DCT
algorithms. Finally, we will utilize optimized C code to show the execution time
of the proposed DCT algorithms with existing radix-2 DCT algorithms and also
to verify the order of the complexity.

3.1 Arithmetic Complexity of Self-recursive Split-Radix
and Radix-4 DCT II/III Algorithms

In this section, we compute the number of additions (say α) and multiplications
(say β) required to produce y =

√
nCII/III x for n = 2t(t ≥ 1) and y =√

mCII/III x for m = 4t(t ≥ 1). Note that we do not count multiplication by
±1.

Lemma 2. Let n = 2t (t ≥ 2) be given. If the split-radix DCT II algorithm is
computed using the algorithm cos2sr(x, n), then the arithmetic complexity is

192 S. M. Perera et al.

given by

α (DCT II, n) =
3
2
nt − n + 1,

β (DCT II, n) =
1
2
nt − 1. (7)

Proof. Referring to the split-radix DCT II algorithm cos2sr(x, n), we get

β(DCT II, n) = 2 · β
(
DCT II,

n

4

)
+ β

(
DCT II,

n

2

)
+ β (Hn) + β

(
Hn

2

)

+ β
(
W̃n

2

)
+ β

(
Wn

2

)
+ β

(
B̃n

2

)
+ β

(
Bn

2

) (8)

Following the structures of Hn, W̃n,Wn
2
, B̃n, and Bn

2
, we have

α (Hn) = n, β (Hn) = 0,
α

(
W̃n

)
= α

(
Wn

2

)
= 0, β

(
W̃n

)
= β

(
Wn

2

)
= n

2 ,

α
(
B̃n

)
= α

(
Bn

2

)
= n

2 − 1, β
(
B̃n

)
= β

(
Bn

2

)
= 1.

(9)

Using the above result, we can rewrite (8) as

β(DCT II, n) = 2 · β
(
DCT II,

n

4

)
+ β

(
DCT II,

n

2

)
+

3
4
n + 2.

Since n = 2t, the above simplifies to the second order linear difference equation
with respect to t ≥ 2

β(DCT II, 2t) − β
(
DCT II, 2t−1

) − 2 · β
(
DCT II, 2t−2

)
= 3 · 2t−2 + 2.

Solving the above second order linear difference equation using the initial con-
ditions β (DCT II, 2) = 0 and β (DCT II, 4) = 3, we can obtain

β(DCT II, 2t) =
1
2
nt − 1

Similarly, using the initial conditions α (DCT II, 2) = 2 and α (DCT II, 4) = 9,
one can derive the analogous result for the number of multiplications as shown
in (7).

Corollary 5. Let n = 2t (t ≥ 2) be given. If the split-radix DCT III algorithm
is computed using the algorithm cos3sr(x, n), then the arithmetic complexity is
given by

α (DCT III, n) =
3
2
nt − n + 1,

β (DCT III, n) =
1
2
nt − 1. (10)

Proof. This is trivial as the factorization for DCT III is obtained using the
factorization of DCT II with the help of the transpose property.

Efficient Split-Radix and Radix-4 DCT Algorithms and Applications 193

Lemma 3. Let m = 4t (t ≥ 1) be given. If the radix-4 DCT II algorithm is
computed using the algorithm cos2r4(x, m), then the arithmetic complexity is
given by

α (DCT II,m) = 3mt − m + 1,

β (DCT II,m) = mt − 1. (11)

Proof. Referring to the radix-4 DCT II algorithm cos2r4(x, m), we get

β(DCT II,m) = 4 · β
(
DCT II,

m

4

)
+ β (Hm) + 2 · β

(
Hm

2

)

+ β
(
W̃m

)
+ 2 · β

(
W̃m

2

)
+ 2 · β

(
B̃m

2

)
+ β

(
B̃m

) (12)

Following the structures of Hn, W̃n, and B̃n i.e. using (9), we can rewrite (12)
as

β(DCT II,m) = 4 · β
(
DCT II,

m

4

)
+ m + 3.

Since m = 4t, the above simplifies to the first order linear difference equation
with respect to t ≥ 1

β(DCT II, 4t) − 4 · β
(
DCT II, 4t−1

)
= 4t + 3.

Solving the above first order linear difference equation using the initial condition
β (DCT II, 4) = 3, we can obtain

β(DCT II, 4t) = mt − 1

Similarly, using the initial condition α (DCT II, 4) = 9, one can derive the anal-
ogous result for the number of multiplications as shown in (10).

Corollary 6. Let m = 4t (t ≥ 1) be given. If the radix-4 DCT III algorithm is
computed using the algorithm cos3r4(x, m), then the arithmetic complexity is
given by

α (DCT III,m) = 3mt − m + 1,

β (DCT III,m) = mt − 1. (13)

Proof. This is trivial as the factorization for DCT III is obtained using the
factorization of DCT II with the help of the transpose property.

3.2 Complexity Comparison of DCT II/III Algorithms

We provide addition and multiplication complexity comparisons of the proposed
split-radix and radix-4 DCT II/III algorithms with the fast and stable DCT algo-
rithms in [4,16,19,24,28,31,35,36,41,43]. The numerical results are presented for
the matrix size varying from 8 × 8 to 4096 × 4096 in Tables 1, 2, 3 and 4.

Although 8-point DCT is proposed in [36] with 22 multiplications and 28
additions, we did not include that in the Tables 1 and 2, as that paper established

194 S. M. Perera et al.

Table 1. Number of multiplications required to compute DCT II algorithms

n cos2sr(x, n) cos2r4(x,m) [24] [28,41] [19] [4] [43] [35] [16]

8 11 – 11 12 14 16 13 13 11

16 31 31 31 32 44 44 35 33 31

32 79 – 79 80 118 116 91 81 –

64 191 191 191 192 300 292 227 193 –

128 447 – 447 448 726 708 547 449 –

256 1023 1023 1023 1024 1708 1668 1283 1025 –

512 2303 – 2303 2304 3926 3844 2947 2305 –

1024 5119 5119 5119 5120 8876 8708 6659 5121 –

2048 11263 – 11263 11264 19798 19460 14851 11265 –

4096 24575 24575 24575 24576 43692 43012 32771 24577 –

DCT II approximation, not the exact same as we discuss here. We also did
not include the multiplication and addition counts in [25] as it is based on the
stability of DCT algorithms.

As shown in Table 1, the multiplication complexity of the proposed split-
radix and radix-4 DCT II algorithms is closer to that of [35]. But there is no
formula for the factorization for the DCT II matrix in [35] (only the arithmetic
complexity of DCT II). Simply put, the authors in [35] state that a new DCT
II algorithm can be obtained by applying the method specified in [44] for their
proposed DCT IV matrix factorization (without derivation or stating a DCT II
matrix factorization explicitly).

Table 2. Number of additions required to compute DCT II algorithms

n cos2sr(x, n) cos2r4(x,m) [24,28,41] [19] [4] [43] [35] [16]

8 29 – 29 26 26 29 29 29

16 81 81 81 72 74 83 81 81

32 209 – 209 186 194 219 209 –

64 513 513 513 456 482 547 513 –

128 1217 – 1217 1082 1154 1315 1217 –

256 2817 2817 2817 2504 2690 3075 2817 –

512 6401 – 6401 5690 6146 7043 6401 –

1024 14337 14337 14337 12744 13826 15875 14337 –

2048 31745 – 31745 28218 30722 35331 31745 –

4096 69633 69633 69633 61896 67586 77827 69633 –

We can see from Table 1 that the DCT II algorithm given by [16] has the same
number of multiplications as our split-radix and radix-4 DCT II algorithms for
n = 8, 16. Yet, [16] does not have any result for n ≥ 32. Note that the proposed
split-radix and radix-4 DCT algorithms and DCT algorithms in [24] have the
lowest multiplication complexity compared to all existing algorithms for n ≥ 32.

Efficient Split-Radix and Radix-4 DCT Algorithms and Applications 195

Table 3. Number of multiplications required to compute DCT III algorithms

n cos3sr(x, n) cos3r4(x,m) [24] [28] [19] [43]

8 11 – 11 12 28 13

16 31 31 31 32 74 35

32 79 – 79 80 180 91

64 191 191 191 192 426 227

128 447 – 447 448 980 547

256 1023 1023 1023 1024 2218 1283

512 2303 – 2303 2304 4948 2947

1024 5119 5119 5119 5120 10922 6659

2048 11263 – 11263 11264 23892 14851

4096 24575 24575 24575 24576 51882 32771

Table 4. Number of additions required to compute DCT III algorithms

n cos3sr(x, n) cos3r4(x,m) [24,28] [19] [43]

8 29 – 29 26 29

16 81 81 81 72 83

32 209 – 209 186 219

64 513 513 513 456 547

128 1217 – 1217 1082 1315

256 2817 2817 2817 2504 3075

512 6401 – 6401 5690 7043

1024 14337 14337 14337 12744 15875

2048 31745 – 31745 28218 35331

4096 69633 69633 69633 61896 77827

There is no result for the comparison of DCT III algorithms in [4,16,35]. Thus,
in Tables 3 and 4, we only compare the computational complexity results of the
new DCT III algorithm with the DCT III algorithms in [19,24,28,43]. One can
observe from Tables 1 and 3 that the multiplication complexity of the proposed
DCT II/III algorithms is closer to that of [28]. But the derivation for the factoriza-
tions of DCT II/III matrices in [28] is more tedious. Moreover, the DCT II matrix
factorization in [28] is similar to the traditional DCT II matrix factorization where
the DCT II matrix is expressed using half the matrix size of itself and half the
matrix size of DCT IV. But the proposed split-radix and radix-4 DCT II/III algo-
rithms are expressed using itself together with simple, sparse, and scaled orthog-
onal matrices. Multiplication count of the proposed split-radix DCT II algorithm
is closer to the multiplication count of the split-radix DCT II algorithm in [41].

196 S. M. Perera et al.

But the split-radix DCT-II algorithm in [41] was computed through a DFT and
neither contain orthogonal nor scaled orthogonal factors. Hence, such algorithms
affect the stability, performance, and implementations [8,11,37].

The reduced flop counts (with 5.6% reduction) for split-radix DCT II/III
algorithms were presented in [31]. We didn’t include the results in that paper
in Tables 1, 2, 3 and 4, as that paper has the flop count but not the explicit
multiplication and addition counts. Based on the comparison of the proposed
split-radix DCT II/III algorithms with [31], the proposed ones have the lowest
multiplication complexity and also the arithmetic complexity for 8-point DCT
II/III matrices. When the size of the matrices are getting higher than the 32-
point DCT II/III, the arithmetic complexity of split-radix DCT II/III algorithms
in [31] are better than the proposed split-radix DCT II/III algorithms. But the
split-radix DCT II/III algorithms in [31] neither being orthogonal nor scaled
orthogonal, affects the stability of the DCT algorithms [37]. Moreover, practical
implementation of the split-radix algorithms proposed in [31] have to be modi-
fied significantly because several subdivisions are performed at once within the
execution and hence affect the modern memory hierarchy [8,11].

3.3 Performance and Execution Time of the Split-Radix
and Radix-4 DCT Algorithms

In this section we will compare the execution time of the proposed split-radix
and radix-4 DCT algorithms with the DCT-II algorithms in [2,19,24]. These
numerical results are presented using C codes with CPU running at 1.80 GHz
and Intel Core i7-8550U processor. The execution time of the DCT algorithms
is presented for the matrix of size varying from 8 × 8 to 1024 × 1024 in Fig. 1.
We have denoted SRP and R4P as the proposed split-radix and radix-4 DCT
II algorithms respectively, R2P as the radix-2 DCT II algorithm in [24], and
R2T as the radix-2 DCT II algorithms in [2,19]. In these results, we have stored
matrices as vectors and not considered time required for active memory access
and multiplication by 0 and ±1.

(a) Comparison with nlogn. (b) Comparison of DCT algorithms.

Fig. 1. Execution time of DCT II algorithms.

Efficient Split-Radix and Radix-4 DCT Algorithms and Applications 197

We have included nlogn to observe the relationship between the execu-
tion time and the order of the arithmetic complexity of DCT algorithms. As
shown in Fig. 1(a), the execution time of the proposed split-radix and radix-4
DCT algorithms is proportional to the order of the arithmetic complexity i.e.
O(nlogn). Moreover, the proposed DCT algorithms are faster than nlogn with
speed improvement factor (ratio between nlogn and the execution time of the
proposed algorithms) of 10 even for 1024×1024 matrices. As shown in Fig. 1(b),
the execution time of the proposed split-radix DCT algorithm is better than the
radix-4 DCT algorithms. Also, the execution time of the proposed split-radix
DCT algorithm is better than that of the radix-2 DCT algorithms. Finally, the
execution time of the radix-2 DCT algorithm in [24] is better than that of the
radix-2 DCT algorithms in [2,19].

4 Signal Flow Graphs for Split-Radix and Radix-4 DCT
II/III Algorithms

Signal flow graphs can be utilized to realize a given system as an integrated cir-
cuit. In this section, we will present signal flow graphs to establish the connection

X(0)

X(1)

X(2)

X(3)

X(4)

X(5)

X(6)

X(7)

X(8)

X(9)

X(10)

X(11)

X(12)

X(13)

X(14)

X(15)

Y (0)

Y (15)

Y (7)

Y (8)

Y (3)

Y (12)

Y (4)

Y (11)

Y (1)

Y (14)

Y (6)

Y (9)

Y (2)

Y (13)

Y (5)

Y (10)

×

× × ×

× × ×

× × × × ×

× × × × ×

× × ×

× × ×

× × × ×

× × × ×

× × × × × ×

× × × × × ×

× × × ×

× × × ×

× ×

× ×

×

×

×

×

×

×

×

×

−1

−1

−1

−1

−1 −1

−1

−1

−1

−1 −1

−1 −1

−1 −1

−1

−1 −1

−1

−1

−1

−1

−1

−1

−1

−1

−1 −1

−1

−1

−1

−1

W15,32

W13,32

W11,32

W9,32

W7,32

W5,32

W3,32

W1,32

W7,16

W5,16

W3,16

W1,16

W1,16

W3,16

W5,16

W7,16

W1,8

W3,8

W3,8

W1,8

W3,8

W1,8

W1,8

W3,8

√
2

√
2

√
2

√
2

√
2

√
2

√
2

Fig. 2. Signal flow graph for 16-point split-radix DCT II.

198 S. M. Perera et al.

X(0)

X(1)

X(2)

X(3)

X(4)

X(5)

X(6)

X(7)

X(8)

X(9)

X(10)

X(11)

X(12)

X(13)

X(14)

X(15)

Y (0)

Y (15)

Y (7)

Y (8)

Y (3)

Y (12)

Y (4)

Y (11)

Y (1)

Y (14)

Y (6)

Y (9)

Y (2)

Y (13)

Y (5)

Y (10)

×

× ××

×× ×

×× × ××

× ×× × ×

× ××

×× ×

× × × ×

× × × ×

× × × × × ×

× × × × × ×

× × × ×

× × × ×

× ×

× ×

×

×

×

×

×

×

×

×

−1

−1

−1

−1

−1

−1

−1 −1

−1

−1

−1

−1

−1

−1

−1

−1

−1 −1

−1

−1

−1

−1 −1

−1 −1

−1 −1

−1

−1 −1

−1

−1

W15,32

W13,32

W11,32

W9,32

W7,32

W5,32

W3,32

W1,32

W7,16

W5,16

W3,16

W1,16

W1,16

W3,16

W5,16

W7,16

W3,8

W1,8

W1,8

W3,8

W3,8

W1,8

W1,8

W3,8

√
2

√
2

√
2

√
2

√
2

√
2

√
2

Fig. 3. Signal flow graph for 16-point radix-4 DCT II.

between algebraic operations used in simple, sparse, and scaled orthogonal fac-
torizations of DCT II/III matrices. We provide two signal flow graphs here, one
for cos2sr(x, n) Algorithm, as shown in Fig. 2, the other for cos2r4(x, n) Algo-
rithm, as shown in Fig. 3. The notation Wj,k := 1

2 sec
(

jπ
2k

)
is used in the figures.

Note that the signal-flow graphs are drawn using decimation-in-frequency. It
is possible to convert the decimation-in-frequency split-radix and radix-4 DCT
II/III algorithms into decimation-in-time DCT II/III algorithms.

Efficient Split-Radix and Radix-4 DCT Algorithms and Applications 199

5 Conclusion

This paper extended the lowest complexity, self-recursive, radix-2 DCT II/III
algorithms into efficient, self-recursive, split-radix and radix-4 Discrete Cosine
Transform II/III algorithms. The proposed DCT algorithms have sparse and
scaled orthogonal factors. The presented algorithms represent self-recursive and
stable split-radix and radix-4 DCT II/III algorithms. The proposed algorithms
have attained the lowest theoretical multiplication complexity and also the
arithmetic complexity for 8-point DCT II/III matrices. Arithmetic complexity
comparison of the proposed algorithms has been discussed including the exist-
ing fast and stable DCT algorithms. The optimized C code has shown favorable
results on the execution time of the proposed algorithms as compared to radix-2
algorithms. This code has verified the order of arithmetic complexity. Finally,
for the integrated circuits design and to show the simplicity of the proposed
algorithms, signal flow graphs have been shown in decimation-of-frequency.

References

1. Britanak, V.: New generalized conversion method of the MDCT and MDST coeffi-
cients in the frequency domain for arbitrary symmetric windowing function. Digit.
Sig. Proc. 23, 1783–1797 (2013)

2. Britanak, V., Yip, P.C., Rao, K.R.: Discrete Cosine and Sine Transforms: General
Properties Fast Algorithms and Integer Approximations. Academic Press, Great
Britain (2007)

3. Chakraborty, S., Rao, K.R.: Fingerprint enhancement by directional filtering. In:
2012 9th International Conference on Electrical Engineering/Electronics, Com-
puter, Telecommunications and Information Technology (ECTI-CON), Phetch-
aburi, pp. 1–4, May 2012. https://doi.org/10.1109/ECTICon.2012.6254113

4. Chen, W.H., Smith, C.H., Fralick, S.: A fast computational algorithm for the dis-
crete cosine transform. IEEE Trans. Commun. 25(9), 1004–1009 (1977)

5. Duhamel, P.: Implementation of split-radix FFT algorithms for complex, real, and
real-symmetric data. IEEE Trans. Acoust. Speech Sig. Process. ASSP 34(2), 285–
295 (1986)

6. Duhamel, P., Vetterli, M.: Fast Fourier transforms: a tutorial review and a state
of the art. Sig. Process. 19(4), 259–299 (1990)

7. Fan, D., et al.: Optical identity authentication scheme based on elliptic curve digital
signature algorithm and phase retrieval algorithm. Appl. Opt. 52(23), 5645–5652
(2013)

8. Frigo, M., Johnson, S.G.: The design and implementation of FFTW3. Proc. IEEE
93(2), 216–231 (2005)

9. Han, J., Saxena, A., Melkote, V., Rose, K.: Towards jointly optimal spatial predic-
tion and adaptive transform in video/image coding. IEEE Trans. Image Process.
21(4), 1874–1884 (2012)

10. Hsu, H.-W., Liu, C.-M.: Fast radix-q and mixed radix algorithms for type-IV DCT.
IEEE Sig. Process. Lett. 15, 910–913 (2008)

11. Johnson, S.G., Frigo, M.: A modified split-radix FFT with fewer arithmetic oper-
ations. IEEE Trans. Sig. Process. 55(1), 111–119 (2007)

https://doi.org/10.1109/ECTICon.2012.6254113

200 S. M. Perera et al.

12. Kekre, H.B., Sarode, T.K., Save, J.K.: Column transform based feature generation
for classification of image database. Int. J. Appl. Innov. Eng. Manag. (IJAIEM)
3(7), 172–181 (2014)

13. Kekre, H.B., Sarode, T., Natu, P.: Performance comparison of hybrid wavelet trans-
form formed by combination of different base transforms with DCT on image com-
pression. Int. J. Image Graph. Sig. Process. 6(4), 39–45 (2014)

14. Kekre, H.B., Solanki, J.K.: Comparative performance of various trigonometric uni-
tary transforms for transform image coding. Int. J. Electron. 44, 305–315 (1978)

15. Lee, M.H., Khan, M.H.A., Kim, K.J., Park, D.: A fast hybrid jacket-hadamard
matrix based diagonal block-wise transform. Sig. Process. Image Commun. 29(1),
49–65 (2014)

16. Loeffler, C., Ligtenberg, A., Moschytz, G.S.: Practical fast 1-D DCT algorithms
with 11 multiplications. In: 1989 International Conference on Acoustics, Speech,
and Signal Processing (ICASSP-1989), vol. 2, pp. 988–991 (1989). https://doi.org/
10.1109/ICASSP.1989.266596

17. Ma, J., Plonka, G., Hussaini, M.Y.: Compressive video sampling with approximate
message passing decoding. IEEE Trans. Circuits Syst. Video Technol. 22(9), 1354–
1364 (2012)

18. Olshevsky, A., Olshevsky, V., Wang, J.: A comrade-matrix-based derivation of
the eight versions of fast cosine and sine transforms. In: Olshevsky, V. (ed.) Fast
Algorithms for Structured Matrices: Theory and Applications, CONM, vol. 323,
pp. 119–150. AMS Publications, Providence (2003)

19. Plonka, G., Tasche, M.: Fast and numerically stable algorithms for discrete cosine
transforms. Linear Algebra Appl. 394, 309–345 (2005)

20. Perera, S.M., Olshevsky, V.: Fast and stable algorithms for discrete sine transfor-
mations having orthogonal factors. In: Cojocaru, M.G., Kotsireas, I.S., Makarov,
R.N., Melnik, R.V.N., Shodiev, H. (eds.) Interdisciplinary Topics in Applied Math-
ematics, Modeling and Computational Science, vol. 117, pp. 347–354. Springer,
Basel (2015). https://doi.org/10.1007/978-3-319-12307-3 50

21. Perera, S.M.: Signal flow graph approach to efficient and forward stable DST algo-
rithms. In: Proceedings of the 20th ILAS Conference, Leuven, Belgium (2016).
Linear Algebra Appl. 542, 360–390 (2017)

22. Perera, S.M., Madanayake, A., Dornback, N., Udayanga, N.: Design and digital
implementation of fast and recursive DCT II-IV algorithms. Circuits Syst. Sig.
Process. 38(2), 529–555 (2018). https://doi.org/10.1007/s00034-018-0891-8

23. Perera, S.M., Olshevsky, V.: Stable, recursive and fast algorithms for discrete sine
transformations having orthogonal factors. J. Coupled Syst. Multiscale Dyn. 1(3),
358–371 (2013)

24. Perera, S.M., Liu, J.: Lowest complexity self recursive radix-2 DCT II/III algo-
rithms. SIAM J. Matrix Anal. Appl. 39(2), 664–682 (2018)

25. Perera, S.M.: Signal processing based on stable radix-2 DCT I-IV algorithms having
orthogonal factors. Electron. J. Linear Algebra 31, 362–380 (2016)

26. Pourazad, M.T., Doutre, C., Azimi, M., Nasiopoulos, P.: The new gold standard
for video compression: how does HEVC compare with H.264/AVC? IEEE Consum.
Electron. Mag. 1(3), 36–46 (2012). https://doi.org/10.1109/MCE.2012.2192754

27. Püschel, M., Moura, J.M.F.: The algebraic approach to the discrete cosine and sine
transforms and their fast algorithms. SIAM J. Comput. 32, 1280–1316 (2003)

28. Püschel, M., Moura, J.M.F.: Algebraic signal processing theory: Cooley-Tukey type
algorithms for DCTs and DSTs. IEEE Trans. Sig. Process. 56(4), 1502–1521 (2008)

29. Rao, K.R., Kim, D.N., Hwang, J.J.: Fast Fourier Transform: Algorithm and Appli-
cations. Springer, New York (2010). https://doi.org/10.1007/978-1-4020-6629-0

https://doi.org/10.1109/ICASSP.1989.266596
https://doi.org/10.1109/ICASSP.1989.266596
https://doi.org/10.1007/978-3-319-12307-3_50
https://doi.org/10.1007/s00034-018-0891-8
https://doi.org/10.1109/MCE.2012.2192754
https://doi.org/10.1007/978-1-4020-6629-0

Efficient Split-Radix and Radix-4 DCT Algorithms and Applications 201

30. Rao, K.R., Yip, P.: Discrete Cosine Transform: Algorithms, Advantages, Applica-
tions. Academic Press, San Diego (1990)

31. Shao, X., Johnson, S.G.: Type-II/III DCT/DST algorithms with reduced number
of arithmetic operations. Sig. Process. 88, 1553–1564 (2008)

32. Steidl, G., Tasche, M.: A polynomial approach to fast algorithms for discrete
Fourier-cosine and Fourier-sine transforms. Math. Comput. 56, 281–296 (1991)

33. Steidl, G.: Fast radix-p discrete cosine transforms. Appl. Algebra Eng. Commun.
Comput. 3(1), 39–46 (1992)

34. Strang, G.: The discrete cosine transform. SIAM Rev. 41, 135–147 (1999)
35. Suehiro, N., Hatori, M.: Fast algorithms for the DFT and other sinusoidal trans-

forms. IEEE Trans. Acoust. Speech Sig. Process. 34(3), 642–644 (1986)
36. Tablada, C.J., Bayer, F.M., Cintra, R.J.: A class of DCT approximations based on

the Feig-Winograd algorithm. Sig. Process. 113, 38–51 (2015)
37. Tasche, M., Zeuner, H.: Roundoff error analysis for fast trigonometric trans-

forms. In: Anastassiou, G. (ed.) Handbook of Analytic-Computational Methods in
Applied Mathematics, pp. 357–406. Chapman and Hall/CRC Press, Boca Raton
(2000)

38. Tell, E., Seger, O., Liu, D.: A converged hardware solution for FFT, DCT and
Walsh transform. In: Proceedings of Seventh International Symposium on Signal
Processing and Its Applications, pp. 609–612. IEEE (2003)

39. Van Loan, C.: Computational Frameworks for the Fast Fourier Transform. SIAM
Publications, Philadelphia (1992)

40. Veerla, R., Zhang, Z., Rao, K.R.: Advanced image coding and its comparison with
various still image codecs. Am. J. Sig. Process. 2(5), 113–121 (2012)

41. Vetterli, M., Nussabaumer, H.J.: Simple FFT and DCT algorithms with reduced
number of operations. Sig. Process. 6, 267–278 (1984)

42. Voronenko, Y., Püschel, M.: Algebraic signal processing theory: Cooley-Tukey type
algorithms for real DFTs. Trans. Sig. Process. 57(1), 1–19 (2009)

43. Wang, Z.: Fast algorithms for the discrete W transform and the discrete Fourier
transform. IEEE Trans. Acoust. Speech Sig. Process. 32, 803–816 (1984)

44. Wang, Z.: On computing the Fourier and cosine transforms. IEEE Trans. Acoust.
Speech Sig. Process. 33, 1341–1344 (1985)

45. Yavne, R.: An economical method for calculating the discrete Fourier transform.
In: Proceedings of the AFIPS Fall Joint Computer Conference, San Francisco, vol.
33, pp. 115–125, December 1968

Analysis of Max-Min Ant System with
Local Search Applied to the Asymmetric

and Dynamic Travelling Salesman
Problem with Moving Vehicle

João P. Schmitt(B), Rafael S. Parpinelli(B), and Fabiano Baldo(B)

Graduate Program in Applied Computing,
Santa Catarina State University (UDESC), Joinville, SC, Brazil

schmittjoaopedro@gmail.com, {rafael.parpinelli,fabiano.baldo}@udesc.br

Abstract. Vehicle routing problems require efficient computational
solutions to reduce operational costs. Therefore, this paper presents a
benchmark analysis of Max-Min Ant System (MMAS) combined with
local search applied to the Asymmetric and Dynamic Travelling Sales-
man Problem with Moving Vehicle (ADTSPMV). Different from the well
known ADTSP, in the moving vehicle scenario the optimization algo-
rithm continues to improve the TSP solution while the vehicle is visiting
the clients. The challenge of this scenario is mainly concerned with the
fulfilment of hard time restrictions. In this study we evaluate how MMAS
performs combined with US local search, 3-opt local search, and a mem-
ory mechanism. Besides that, we demonstrate how to model the moving
vehicle restrictions under the MMAS algorithm. To perform the bench-
mark analysis instances from TSBLIB were selected. The dynamism was
emulated by means of changes in traffic factors. The results indicate that
for ADTSP the MMAS-US is the best algorithm while for ADTSPMV
the MMAS-3opt is the most suitable.

Keywords: Computational optimization · Swarm intelligence · Hybrid
methods · Dynamic problems

1 Introduction

The travelling salesman problem (TSP) is a well know problem in computer
science, in which a salesman needs to visit a set of clients passing each one only
once at the minimum cost. The TSP is important because it simulates problems
from our daily live, like courier services. The TSP is still a rich field of study due
to the complexity of finding exact solution methods [4]. By nature, TSP have
exponential time execution and can not be optimally solved in a suitable time
by exact methods, at least for scenarios with large amount of vertices.

Besides the classical TSP formulation, we can add other real-world features,
like dynamism. Under dynamic problems there are studies that focus on TSP [12]
and others that address the vehicle routing problem (VRP) [10,18]. The VRP
c© Springer Nature Switzerland AG 2019
I. Kotsireas et al. (Eds.): SEA2 2019, LNCS 11544, pp. 202–218, 2019.
https://doi.org/10.1007/978-3-030-34029-2_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34029-2_14&domain=pdf
https://doi.org/10.1007/978-3-030-34029-2_14

Analysis of MMAS with Local Search Applied to the ADTSPMV 203

formulation is applied to the TSP because the VRP is considered a generalisation
of the TSP [10].

Dynamic problems require algorithms to deal with unexpected events during
the optimization, in contrast to classical TSP problems where the optimization
happens before the salesman starts to visit the clients. One example of dynamism
happens when a vehicle travelling across the clients needs to adapt its route
regarding the traffic conditions changes or new request arrives [10]. Such scenario
increases the complexity of finding good solutions.

Due to the intrinsic complexity of TSP and VRP problems, meta-heuristics
are considered powerful techniques to approach them. The survey presented
by [2] states that around 70% of the evaluated studies apply meta-heuristics,
while only 17% of the studies consider exact methods. In this context, the Ant
Colony Optimization (ACO) is seen as a suitable meta-heuristic to tackle the
TSP [6]. The ACO is a bio-inspired meta-heuristic that imitates the behaviour
of real ants in finding good paths between their next and the food sources. The
literature shows that ACO is applicable for dealing with both static [20] and
dynamic scenarios [12]. Some of them focus on the use of Max-Min Ant System
(MMAS) as the ACO solving approach due to its characteristic of managing
the pheromone, as well as, its easy integration with daemon procedures, as local
search algorithms [12,23] and memory mechanisms [13–16,19]. Such daemon
procedures are mainly used to improve the algorithm performance.

The performance of MMAS applied to the asymmetric and dynamic travel-
ling salesman problem (ADTSP) was already evaluated in [12]. However, there
is another class of TSP that adds a new feature to the problem, the moving
vehicle constraint, named ADTSPMV. This constraint is particularly important
to the logistic companies because they are concerned about the traffic dynam-
ics along the working day to improve their vehicle routes. To the best of our
knowledge, this problem was first evaluated in [19] applying the MMAS with a
memory mechanism, and there are no studies comparing the MMAS with local
search operators. Therefore, we propose a benchmark comparison of the MMAS
combined with different local search operators and a memory mechanism. The
objective is to identify the most suitable combination of MMAS with local search
operators [12,21] and memory mechanism [19] for the ADTSPMV.

The remaining of this paper is organised as follows. Section 2 details the litera-
ture review. Section 3 states the problem and the algorithms modelling. Section 4
presents the protocol of experiments, results and analysis. Finally, Sect. 5 high-
lights the conclusion and points out some future works.

2 Related Work

Many Ant Colony algorithms were already proposed to deal with dynamic sce-
narios. Besides that, the literature indicates that hybrid algorithms are some of
the best strategies to find suitable solutions [3,12,23]. This section presents some
related works concerning with solution methods for the ADTSP. In [13–15,19]
are proposed variations of the Ant Colony Algorithms (ACO), combined with

204 J. P. Schmitt et al.

memory mechanisms for the ADTSP, where the traffic dynamics is performed
by modifying the graph edges costs along the time. These studies compare dif-
ferent implementations of the ACO with a build-in memory. The results indicate
decreasing in the solutions’ cost due to memory application.

Concerning the ADTSPMV, [19] presents a memory-based MMAS algorithm
that deals with dynamic traffic factors while the vehicle is visiting the clients.
Therefore, the algorithm keeps calculating the best-so-far solution even though
the vehicle positioning is changing. The results figured out that the MMAS with
memory outperform the canonical MMAS and the EIACO [16] algorithms.

Besides the memory mechanisms, the ACO also allows easy integration with
local search operators. In [23] is presented a statistical comparison between
implementations of local search heuristics for the static version of TSP. The study
evaluate how Evolutionary and Ant-based Algorithms perform combined with
different local search operator. The authors concluded that ACO algorithms with
local search present better results than the one without such operators. Related
to the application of local search for ADTSP, [12] presents a comparison between
variants of MMAS with the 3-opt, 3-opt-res, 2-opt and Unstringing-Stringing
(US) local search operators. The results present that MMAS with US is the
best combination for ADTSP. Another study that presents a hybrid algorithm
for solving the ADTSP is presented in [3]. They proposed an ACO algorithm
combined with a Adaptive Large Neighborhood Search (ALNS). The analysis
presents that ACO with ALNS reached better results compared with R-ACO
and P-ACO variants.

The reviewed works some up the main found approaches of hybrid ACO
in the literature. As can be seen, the use of ACO combined with operators are
commonly applied to speed up its optimization. Given the benefits of this hybrid
approaches for ADTSPMV, the next section presents the problem statement.

3 Problem Formulation and Modeling

This section presents a review and formulation of each one of the subjects
addressed by this work. It starts formalizing ADTSPMV in Sect. 3.1. Then,
it is outlined the MMAS modelling in Sect. 3.2. After than, the MMAS with
Local Search Operator is stated in Sect. 3.3. Finally, the MMAS combined with
a memory mechanism is formalized in Sect. 3.4.

3.1 The Asymmetric and Dynamic Travelling Salesman Problem
with Moving Vehicle (ADTSPMV)

The travelling salesman problem (TSP) is formally defined by a fully connected
graph G = (N,A), where N = {v1, v2, ..., vn} represents the vertices set and
A = {(vi, vj)|vi, vj ∈ N, i �= j} represents the edges sets. In the classic TSP
formulation the vertices represent the cities fully connected with each other by
a edge, except to itself. Besides that, each edge (vi, vj) is associated with a
traversing cost information cij > 0. The objective of the solution approach is

Analysis of MMAS with Local Search Applied to the ADTSPMV 205

to build a route to salesman that starts in the depot, visits all cities passing
in each one only once, and then returns back to the depot. The route must be
minimized to have the smaller possible cost.

The TSP is said symmetric if for all edges the cost is the same in both direc-
tions, it means cij = cji,∀i, j ∈ N . If the symmetric restriction is broken it is
said that the TSP is asymmetric (ATSP). ATSP does not fulfil the triangular
inequality (dij + djk ≥ dik), therefore the problem gets harder because solution
methods must be concerned about this information during optimization tasks. In
general, the ATSP solutions used to have more complex data structures to rep-
resent the graph with the same amount of vertices than the symmetric ones [8].

Another characteristic that adds complexity in the TSP is the dynamism.
Dynamic problems are well know and largely addressed in literature [3,10,12–
16,18,19]. Its most common types are: dynamic requests, dynamic traffic factors
and stochastic demands [10]. In this work we focus on the dynamic traffic factors,
where the edges cost change along the time. This kind of dynamism, in real world,
is caused by traffic jams, accidents or any other environmental conditions. To
deal with such dynamic problems there are two strategies, the a-priori and the
real-time methods [10]. The a-priori methods consider probabilistic information
about the future, while real-time methods consider new information while the
vehicle is on the road. In this work, we tackle the real-time approach, considering
that the vehicle can change their route when traffic factors are modified.

To simulate the dynamic traffic factors, we apply a dynamic benchmark gen-
erator, the same used in [12]. We apply this simulator over static TSP instances,
that works by modifying the edges costs applying (1).

c′
ij = cij × tij (1)

Where tij is a dynamic traffic factor, cij is the original cost and the c′
ij is the

new cost. The tij traffic factor is generated by (2).

tij =

{
tij ← 1 + r ∈ [FL, FU], if q < m

tij ← 1, otherwise
(2)

where r is randomly distributed in the [FL, FU] bounds, q is a randomly dis-
tributed number between [0, 1] and m defines the magnitude of the change,
respecting 0 < m ≤ 1. The role of r is to define the traffic jam scale for a given
edge (street). When this value is near of FL means less traffic jam, but when
this value is close to FU means more traffic jam [12]. Besides that, m represents
the magnitude of changes, that is, it states how many edges will be modified in
the dynamism simulation.

In general terms, the dynamism is performed by the application of (1) for
every edge of the graph G within the frequency f [12]. The frequency defines
the number of iterations that the algorithm will wait to apply a dynamism.
Therefore, the frequency of dynamism is synchronized with the algorithm exe-
cution. So, assuming the current iteration as i, for each i mod f ≡ 0 a dynamic

206 J. P. Schmitt et al.

modification is applied over all edges of the graph G using (1). According this
reasoning, when f gets lower the modifications happen more often, on the other
way around, when f gets higher the modifications happen less frequently.

The last aspect to be considered concerning ADTSPMV is the moving vehi-
cle benchmark simulator [19]. Such mechanism is useful to simulate real world
conditions meanwhile the vehicle is visiting the clients during the algorithm
optimization. Formally, given a problem instance with N vertices, and an opti-
mization algorithm that executes for imax iterations, the vehicle will advance
one client at each κ = imax/N intervals. Besides that, when a client is visited,
it is ignored by the algorithm in the next optimization iterations. Therefore, for
each κ number of iterations the set of vertices to be analysed reduces one vertex.
Such scenario increases the problem complexity, because if the algorithm is not
able to adapt the solution accordingly to the dynamic changes, the vehicle will
have more probability to choose not suitable clients to visit, and then the final
solution cost will get worse.

As performance indicator for the ADTSPMV, it is needed to compute the
last iteration cost. This is necessary because it indicates the final solution cost
at the end of the vehicle route, when all clients were already visited.

3.2 Max-Min Ant System (MMAS)

The MMAS [20] is an Ant Colony Optimization (ACO) derived from the Ant
System (AS) [6]. This algorithm works based on pheromone and heuristic infor-
mation. Pheromone is an information deposited by ants to propagate knowledge
about the optimization process for future generations, and heuristic is an infor-
mation about the problem itself. A very common scenario of MMAS application
is the TSP problem, where it is used a population of ants to build routes that
visit all clients. In MMAS, the first step is the solution construction, where all
ants are positioned in a given start vertex and at each construction iteration the
next node to be visited is selected based (3).

pk
ij =

[τij]α[ηij]β∑
l∈Nk

i
[τil]α[ηil]β

, if j ∈ Nk
i (3)

Where ηij = 1/dij is the heuristic information related to the TSP problem,
τij is the pheromone information, α and β are two parameters to control the
influence of heuristic and pheromone, and Nk

i is the neighborhood list of not
visited clients from node i. Basically, it is a roulette-wheel selection, where nodes
with better heuristics, pheromone or both, will have more probability to be
selected.

After the construction step, the second step executes the pheromone evap-
oration. This step is useful to ignore not suitable nodes in the next construc-
tions, reducing the algorithm exploitation bounds. The pheromone evaporation
is given by (4).

τij = (1 − ρ)τij ,∀(i, j) (4)

Analysis of MMAS with Local Search Applied to the ADTSPMV 207

Where ρ is the evaporation rate defined in the 0 < ρ < 1 interval, and τij is
the current pheromone value of edge (i, j).

The third step is the pheromone deposit, where the best so far ant deposits
pheromone accordingly (5).

τij = τij + 	τbest
ij ,∀(i, j) ∈ Rbest (5)

Where 	τbest
ij = 1/Cbest is the amount of pheromone to be deposited, given

by the inverse cost Cbest of the best route Rbest.
The MMAS is different from other AS variations because it defines a τmin and

a τmax values, that limit the pheromone evaporation and deposit, respectively,
to balance the intensification and the exploration process, and a λ-branching
to identify stagnation of the search process. Besides that, the MMAS allows
the integration with local search operators, that is useful to exploits candidate
solutions.

In this work, we adapted the MMAS construction step for better dealing
with the ADTSPMV by considering P = [v0, v1, v2, ..., vl] as the moving vehicle
(salesman) partial route. It contains the visited clients sorted by the visited
order, where l is the length of the partial route P . Besides that, Rk is the route
of each ant k ∈ K. Before the next iteration of the construction step, we first
copy the partial route P for each route Rk using (6), where i represents the route
index. After that, we start the transition rule (3) to fill the remaining vertices
(ignoring the vertices contained in P).

∀k ∈ K, i ∈ [1, 2, ..., l], Rk
i = Pi (6)

3.3 MMAS with Local Search

Local search operators are routines that receive a constructed route (in this case
built by MMAS) and try to optimized it executing a sequence of predefined pro-
cedures [23]. Some of the most known heuristics for the TSP are Lin-Kernighan
[11], Unstringing-String (US) [7] and the λ-opt. In this work we are focusing
in US and λ-opt. The integration of MMAS (presented in Sect. 3.2) with local
search operators is straightforward [12]. It is executed every time a best-so-far
solution is found by the AS. So, the new best-so-far ant is passed as input to the
local search operator that updates the ant route if it found a better solution.

The VRP is an asymmetric problem because it deals with real route networks
that are asymmetric by nature. So, one of the challenges to solve TSP over a
VRP is that some of the local search operators support only symmetric problems.
The US version proposed by [12] is prepared to deal with asymmetric problems,
however, the λ-opt operators are not. To overcome this limitation we need to
convert the asymmetric graph to a symmetric one. It is necessary because λ-
opt not deals with the triangular inequality and can stuck in a infinity loop.
To convert the asymmetric graph we apply (1) the distance matrix conversion
proposed in [9], and (2) adapt the route with the new symmetric nodes. After
that, we execute the local search and convert its results to the original route

208 J. P. Schmitt et al.

format. Before to update the best so far route, we compare the cost improvement.
This is necessary for λ-opt because the additional nodes inserted by the matrix
conversion can present improvements in the symmetric matrix but not in the
asymmetric matrix. Therefore, we only update the best so far ant route if the
cost was decreased.

Due to the characteristic of ADTSPMV that optimizes the route while the
vehicle is moving, when a client is visited it no longer needs to be considered in
the next iterations. Therefore, to deal with this restriction we create a sub-graph
and a sub-route which contain only the active clients (not yet visited). Formally,
we create a sub-graph G′ = (N ′, A′) where N ′ = ∀vi �∈ P ∪ v0, i = [0, 1, 2, ..., n],
where P is the moving vehicle partial route, and n is the total number of clients.
After that, we copy all valid edges A′ = ∀(i, j) ∈ N ′. In G′ we ignore the
node v0 because it represents the depot position, that is the first visited node
before the vehicle starts to move. About the ant route, we create a sub-route
R′k = ∀vi �∈ P ∪v0, i ∈ Rk. Given that, the first client (v0) of route R′k represents
the depot position, but this depot is not the original problem depot (that was
removed), we need to adjust last node costs to represent the link with the original
depot. This adjustment is necessary because after the local search execution we
replace in the original route with the new partial optimized route.

3.4 MMAS with Memory

The MMAS with memory is an algorithm that uses a long-term or short-term
memory as a daemon process to help the algorithm during the optimization
[15]. The idea is that, during the dynamic changes the memory will transfer
knowledge from the previous environment to the next environment. In this study
we are using the MMAS-MEM algorithm proposed by [19]. This algorithm selects
the elitist best ants from the previous environment and update the memory if
the new ants have better cost than the current ants. After that, the ants of
this memory are used to update the pheromone trails. Finally, to increase the
algorithm diversity the memory receives immigrants that are generated using an
process to randomize the route in a predefined scale.

4 Protocol of Experiments, Results and Analysis

This section describes the methodology used to evaluate the MMAS variations
under the ADTSP [12] and the ADTSPMV [19] scenarios. The test instances
selected were KroA100, KroA150 and KroA200 [22]. These instances were
extracted from previous studies that had considered the same dynamic character-
istics [12,19]. To generate the dynamism (traffic factors), we used the dynamic
benchmark generator proposed in [12]. To apply the moving vehicle, we used
the moving vehicle simulator proposed in [19]. Besides that, we combined each
instance with different levels of dynamism, defining different frequencies and
magnitudes to be used by the dynamic benchmark generator.

Analysis of MMAS with Local Search Applied to the ADTSPMV 209

In both scenarios we applied the canonical MMAS [1], the MMAS with 3-opt
local search (MMAS-3OPT), the MMAS with unstringing-stringing local search
(MMAS-US), the MMAS with memory (MMAS-MEM), and the MMAS with
memory and US local search (MMAS-MEM-US). We focused on compare the
performance of these MMAS versions.

There are some parameters to be tuned for the dynamic benchmark gen-
erator. They are the magnitude, frequency, lower and upper bounds (FL, FU).
The values applied were extracted from the literature [12]. Concerning the mag-
nitude, it is defined with m = {0.1, 0.5, 0.75} indicating small, medium and
high number of vertices suffering dynamics, respectively. Frequency is varied
with f = {10, 100} indicating low and high number of dynamics, respectively.
Finally, lower and upped bounds are defined as FL = 0 and FU = 2. Such values
generate 18 test instances (3 test instances × 2 frequencies × 3 magnitudes).

Also, parameters for the optimization algorithms were defined based on liter-
ature. For all algorithms the number of ants was defined as 50, α = 1 and β = 5
[12]. The ρ parameter was defined as 0.02 for MMAS [20], and for MMAS-US,
MMAS-3OPT, MMAS-MEM and MMAS-MEM-US it was defined as 0.8 [12,19].

All algorithms were run under a Core i7-7700HQ CPU 2.8 GHz with 8 GB of
RAM. All algorithms were coded in Java programming language and compiled
using the JDK 1.8. Also, 30 independent runs were performed for each test
instance. For each different run a different seed was provided for the dynamic
benchmark generator. Therefore, each algorithm receives the same seed for the
same run. Hence, all algorithms can run over the same initial conditions. The
collected statistic was the POFF , given by (7).

POFF =
1
I

I∑
i=1

(
1
E

E∑
j=1

P ∗
ij) (7)

Where I is the total number of iterations, E is the number of trials, and
P ∗

ij is the best-so-far solution cost of that iteration. All algorithms were exe-
cuted using an amount of 1,000 iterations. It means that for problem instances
with frequency of 10 it is performed 100 environmental changes, while problems
with frequency of 100 it is performed 10 environmental changes. For the mov-
ing vehicle benchmark simulator (ADTSPMV) the vehicle considers the number
of vertices and iterations to calculate the time interval used to visit clients. It
means that, using KroA100 instance for example, with the algorithm executing
over 1000 iterations, the vehicle visits one client at each 10 iterations. It is worth
remembering that, for the moving vehicle restriction of ADTSPMV, we need to
analyse the last iteration cost as performance indicator.

We organised the results assessment in two sections, the Sect. 4.1 presents
the ADTSP evaluation and the Sect. 4.2 presents the ADTSPMV evaluation.

210 J. P. Schmitt et al.

4.1 ADTSP Results

Table 1 presents the POFF and its standard deviation for the ADTSP. The table
is organized as follows: columns “Inst.”, “Freq.” and “Mag.” present the test
instances configuration, and the column “Algorithms” presents the algorithms’
results. Besides that, all bold results indicate the best result with statistical
significance of 5%. The statistical test applied was the Wilcoxon Rank Sum
test. In the two bottom rows of Table 1 we present the overall average, and
the number of best/worst/same results obtained by each algorithm compared
to results obtained by MMAS-US algorithm. MMAS-US was selected because it
presented the best results in most instances. Related to best/worst/same, best
and worst are related to results in which statistical significance of 5% is achieved
and by same we mean results that do not achieved statistical significance of 5%.

Table 1. POFF results comparing algorithms execution under the asymmetric and
dynamic traveling salesman problem (ADTSP). Best/worst/same compare the algo-
rithms results against the MMAS-US algorithm.

ADTSP Algorithms

Inst. Freq. Mag. MMAS MMASMEM MMASMEMUS
MMAS3OPT MMASUS

K
ro
A
1
0
0

10 0.1 24016± 600 24028± 576 23344± 543 22601± 472 22204±373

0.5 30672± 988 30448± 979 28642± 1158 27656± 1053 27154±998

0.75 35822± 1167 35582± 1138 33236± 1393 32463± 1435 31803±1275

100 0.1 23644± 567 23197± 459 22933± 491 22464± 364 22152±314

0.5 29385± 967 28774± 929 27639± 979 26819± 822 26427±799

0.75 34263± 1206 33297± 1076 32071± 1275 31112± 1047 30804±1050

K
ro
A
1
5
0

10 0.1 31351± 704 31475± 645 30689± 706 28585± 551 28008±477

0.5 39122± 957 38789± 942 36840± 1320 34724± 1268 34463±1140

0.75 45568± 1147 45191± 1143 42632± 1605 40803± 1805 40359±1405

100 0.1 30520± 671 29890± 679 29598± 666 28315± 476 27958±399

0.5 37861± 994 36842± 920 35469± 1138 33709± 882 33454±933

0.75 43904± 1202 42783± 1219 41130± 1469 39231± 1221 38972±1228

K
ro
A
2
0
0

10 0.1 34679± 753 35135± 744 34058± 747 31737± 720 31143±591

0.5 44091± 983 43832± 979 41805± 1338 38955± 1598 38851±1246

0.75 51414± 1154 51068± 1175 48338± 1654 46044± 2179 45574±1543

100 0.1 34065± 790 33476± 806 33079± 756 31393± 517 30997±502

0.5 42869± 1100 41955± 1001 40450± 1265 38060± 1026 37775±1148

0.75 50033± 1224 48704± 1210 46671± 1598 44368± 1317 44196±1514

Overall average 36849± 954 36359± 923 34923± 1117 33280± 1042 32905±941

Best/worst/same 0/18/0 0/18/0 0/18/0 0/18/0 18/0/-

Analysis of MMAS with Local Search Applied to the ADTSPMV 211

From Table 1, a quantitative analysis of the POFF results are performed. The
analysis shows that the best algorithm for this kind of scenario is the MMAS-
US, also verified in [12], because it achieved the lowest average cost among all
algorithms (32905.2) with the lowest values in all test instances. A qualitative
analysis indicates that MMAS-US reached the best cost probably due to the
usage of US local search. It is explained because US routine executes more types
of swaps compared to 3-opt routine, and it is not influenced by the memory, that
is used to maintain the diversity in higher levels. Besides that, we can see that
the canonical version of MMAS has the higher overall average, this is because it
does not use any local search nor memory operator to improve the optimization.

Analysing the MMAS with memory, in Table 1 we can see that MMAS is
better than MMAS-MEM only in the scenarios with frequency of 10 and magni-
tude of 0.1. It indicates that, without local search, the usage of memory is more
suitable for the ADTSP. Analysing the memory with local search, the MMAS-
MEM-US is better than MMAS-MEM in all cases. It indicates that local search
plays an essential role during the optimization. Finally, comparing memory-local
search against local search only, we see that MMAS-MEM-US is worst than
MMAS-US and MMAS-3OPT in all test cases.

In Fig. 1 we present the algorithms cost function for the KroA150 scenario.
In this graphic, we can observe that MMAS-US converges faster than other
algorithms due to US operator. Besides that, analysing the MMAS only, we
observe that it takes a long time to start to converge, while other algorithms in
the first iterations have achieved better solutions.

Fig. 1. Cost function along the time in ADTSP, Max-Min Ant System algorithms
comparison.

212 J. P. Schmitt et al.

In Fig. 2 we present the diversity function, that is the mean number of dif-
ferent edges found in the constructed routes in each iteration. It helps us to
understand the convergence curves of Fig. 1. There we can see the MMAS-MEM-
US and MMAS-MEM keep high diversity levels, while MMAS keeps a midterm,
and MMAS-US and MMAS-3OPT keep the lowest levels. Analysing MMAS-US
and MMAS-3OPT we see that both have the highest amplitude variation in
diversity when dynamic changes occur. Such variation is caused by pheromone
evaporation rate, memory and local search procedures. The diversity increasing
in dynamic changes is healthful for the convergence process, as it allows the algo-
rithm to explore the search space and adapts to the new environment. Therefore,
for the ADTSP scenarios, we conclude that high convergence rates caused by
abrupt reduction in diversity combined with diversity increasing after a dynamic
change present a suitable analysis to select algorithms for the ADTSP. Besides
that, MMAS combined with local search operators only, presents to be the best
approach for the ADTSP.

Fig. 2. Diversity function along the time in ADTSP, Max-Min Ant System algorithms
comparison.

4.2 ADTSPMV Results

Differently from the ADTSP, in the ADTSPMV the vehicle is visiting the clients
of the best-so-far solution while the optimization algorithm is executing. To anal-
yse such scenario, Table 2 presents the results obtained. The best/worst/same
line computes the results obtained by each algorithm compared to results
obtained by MMAS-3OPT algorithm, chosen because it presented the best
results in most instances.

Analysis of MMAS with Local Search Applied to the ADTSPMV 213

A quantitative analysis indicates that MMAS-3OPT is the most suitable
algorithm for this problem, because in most of the instances it presents the best
results, except for KroA100 with frequency of 100. We also see that the best
overall average result and the higher number of best results hit were achieved
by MMAS-3OPT.

A qualitative analysis of the ADTSPMV requires from the algorithms to keep
robust solutions along the time, because as the vehicle is visiting the clients
during the optimization, there is a limited time budget to optimize the route
before select the next client. Therefore, if the solution is not improved, the
vehicle will have more probability to selected a poor next client and increase the
final solution cost. Related to algorithms, we observed that memory mechanisms
disturb in high scales the intensification of local searches. Hence, the 3-OPT is
probably better than US due to the asymmetric to symmetric matrix conversion
that allows search space exploration.

Table 2. POFF results comparing algorithms execution under the asymmetric and
dynamic traveling salesman problem with moving vehicle (ADTSPM).

ADTSPMV Algorithms

Inst. Freq. Mag. MMAS MMASMEM MMASMEMUS
MMAS3OPT MMASUS

K
ro

A
1
0
0

10 0.1 24441 ± 739 24218 ± 811 23758 ± 867 22998±596 23554 ± 763

0.5 31418 ± 1570 31449 ± 1566 31176 ± 1581 29860±1318 30797 ± 1465

0.75 37025 ± 1780 36303 ± 1789 36702 ± 2111 35834±1833 36370 ± 2127

100 0.1 23985 ± 544 23702 ± 646 22863 ± 515 22880 ± 517 22862±518

0.5 29806 ± 1177 29620 ± 1206 27706 ± 1047 27856 ± 1090 27669 ± 1072

0.75 34808 ± 1373 34260 ± 1368 33013 ± 1614 32775 ± 1171 32333±1373

K
ro

A
1
5
0

10 0.1 31352 ± 888 31098 ± 887 30654 ± 977 29298±568 30380 ± 1018

0.5 40250 ± 1619 39784 ± 1629 39463 ± 1833 37579±1682 39443 ± 2055

0.75 46915 ± 1994 46245 ± 1968 46692 ± 2451 44629±1825 45421 ± 1798

100 0.1 30865 ± 735 30028 ± 709 29156 ± 671 28789±550 28949 ± 610

0.5 38094 ± 1430 37297 ± 1115 35826 ± 1347 35044±1156 35264 ± 1053

0.75 44209 ± 1447 43144 ± 1350 41758 ± 1537 40954±1413 41108 ± 1535

K
ro

A
2
0
0

10 0.1 35067 ± 995 34796 ± 825 34459 ± 1297 32736±931 34008 ± 1209

0.5 44643 ± 1603 44418 ± 1632 45106 ± 2069 42061±1654 44876 ± 2023

0.75 52342 ± 1824 52122 ± 2042 52791 ± 2561 50620±2418 52470 ± 2608

100 0.1 34537 ± 813 33967 ± 851 32454 ± 832 32017±530 32215 ± 850

0.5 43171 ± 1363 42219 ± 1341 40665 ± 1661 39168±1235 39610 ± 1279

0.75 50077 ± 1426 49277 ± 1387 47175 ± 1846 46482±1587 46709 ± 1864

Overall average 37389 ± 1295 36886 ± 1285 36190 ± 1490 35088±1226 35780 ± 1401

Best/worst/same 0/18/0 0/18/0 3/15/0 15/3/- 3/15/0

The results from ADTSPMV tends to be greater than results from ADTSP,
because in the ADTSPMV the algorithms should give fast response and such
characteristic tends to increase the final solution cost if the time restriction is

214 J. P. Schmitt et al.

not satisfied. In Fig. 3 we see that algorithms with high variation tends to have
worst final solutions. In this analysis, the MMAS-3OPT is the algorithm that
suffers less variation compared with the others. Therefore, the solutions tends
to be better.

In the ADTSPMV, as in the ADTSP, Fig. 4 shows that algorithms with local
search presents the highest diversity variation during the environment changes
indicating more chance to self adaptation in new environments. Besides that, for
the ADTSPMV, the diversity decreases along the iterations, because the number
of clients decrease as long as the vehicle is visiting them, so less different solutions
can be constructed.

In the ADTSPMV, the POFF only give us a direction about the best algo-
rithm. However, in this kind of problem is important to analyse the solution
cost average of the last algorithm iteration. This value indicates the total vehi-
cle navigation cost along the route, and is a better performance indicator. In
Table 3 we see that the MMAS-3OPT seems to be the best algorithm, because
it achieves the best results for nine test instances, while MMAS-US achieves the
best solution for five and MMAS and MMAS-MEM achieved the best results
for some instances. However, in general, we conclude that MMAS-3OPT is the
most suitable algorithm for the ADTSPMV (Fig. 4).

Fig. 3. Cost function along the time in ADTSPM, Max-Min Ant System algorithms
comparison.

Analysis of MMAS with Local Search Applied to the ADTSPMV 215

Table 3. Last iteration solution cost algorithms comparison in the asymmetric and
dynamic travelling salesman problem with moving vehicle (ADTSPM).

ADTSPMV Algorithms

Inst. Freq. Mag. MMAS MMASMEM MMASMEMUS
MMAS3OPT MMASUS

K
ro

A
1
0
0

10 0.1 24252 ± 883 24280 ± 896 24089 ± 980 23416±687 23877 ± 810

0.5 32732 ± 2485 33332 ± 2975 33758 ± 2152 32656±2207 33626 ± 1724

0.75 40373 ± 3289 39026±3254 40498 ± 2689 39616 ± 2742 40634 ± 2833

100 0.1 23696 ± 493 23724 ± 695 22721±515 22992 ± 572 22791 ± 585

0.5 30348 ± 1455 30294 ± 1556 28018±1046 28416 ± 1217 28203 ± 1138

0.75 35536 ± 2009 35078 ± 1869 34000 ± 1796 34013 ± 1432 33347±1749

K
ro

A
1
5
0

10 0.1 31048 ± 1215 31050 ± 987 30669 ± 1149 29787±708 30445 ± 996

0.5 42912 ± 2676 41879 ± 2925 42691 ± 2531 40828±2681 42711 ± 3024

0.75 51026 ± 4503 49315 ± 3774 51562 ± 3883 48826 ± 2262 48767±2167

100 0.1 30390 ± 830 29849 ± 757 28815 ± 643 28793 ± 523 28585±563

0.5 38487 ± 1901 38324 ± 1535 36184 ± 1338 35595±1299 35894 ± 954

0.75 44811 ± 1897 44133 ± 1767 42517 ± 1603 42117±2014 42129 ± 1659

K
ro

A
2
0
0

10 0.1 34449 ± 1170 34459 ± 798 34281 ± 1313 33388±1140 33526 ± 1161

0.5 46708 ± 2853 46419 ± 2606 47741 ± 2493 45071±1996 47655 ± 2531

0.75 55845 ± 4013 55234±3630 57696 ± 3504 55630 ± 3055 57126 ± 3684

100 0.1 33900 ± 917 33764 ± 837 31774 ± 669 32172 ± 521 31666±881

0.5 43753 ± 1651 43147 ± 1868 40860 ± 1750 39945±1348 40116 ± 1322

0.75 50840 ± 1864 50307 ± 1647 47757 ± 1744 47899 ± 1611 47743±1892

Overall average 38395 ± 2006 37979 ± 1910 37535 ± 1767 36731±1556 37158 ± 1648

Best/worst 0/18 2/16 5/13 9/9 7/11

Fig. 4. Diversity function along the time in ADTSPM, Max-Min Ant System algo-
rithms comparison.

216 J. P. Schmitt et al.

5 Conclusions and Future Work

In this paper we evaluated the MMAS with local search and memory for
the asymmetric and dynamic travelling salesman problem with moving vehi-
cle (ADTSPMV). To evaluate the MMAS, we selected its following variations:
MMAS, MMAS-MEM, MMAS-US, MMAS-3OPT, and MMAS-MEM-US. The
analysed metrics were the convergence curves, diversity curves and the POFF ,
for both ADTSP and ADTSPMV scenarios.

For the ADTSP, a quantitative analysis indicates that MMAS-US is the best
algorithm, because in all test instances it achieved the best results with statistical
significance. These results are probably caused because US executes more types
of swaps compared to 3-opt, and it is not influenced by the memory, that is used
to maintain the diversity in higher levels. Besides that, we evaluated that local
search plays an essential role in the ADTSP, as it can intensify the search in
changed environments quickly.

For the ADTSPMV, the results indicate that MMAS-3OPT is the most suit-
able algorithm for this scenario. Besides that, differently from ADTSP where
the POFF statistic is suitable to execute the analysis, for the ADTSPMV we
evaluated the last algorithm iteration cost, that carry the total solution cost of
the moving vehicle. Analysing the statistics, the MMAS-3OPT achieved best
results in 9 out of 18 test instances. Hence, among the local search procedures,
the most suitable is the 3-opt that achieves the overall best result.

For the ADTSPMV problem, two conclusions can be drawn. First, the final
solution cost is impacted by the variability of the convergence process. This
means that algorithms with less variability in the solution cost during environ-
ment changes, reduces the vehicle chances to select poor next clients to visit.
The second analysis is related to diversity. It was observed that the diversity
tends to reduce along the time given the increasing number of visited clients.

As future work directions, we can mention the use of other local search rou-
tines, like Lin-Kernighan, and apply the proposed solution in vehicle routing
problems. Also, strategies of online adjustment and control of parameters [17]
for the proposed algorithm is pointed as future research due to their ability to
self-adapt the parameter values during the optimization process.

References

1. Ant Colony Optimization. http://www.aco-metaheuristic.org/. Accessed 8 Feb
2019

2. Braekers, K., Ramaekers, K., Van Nieuwenhuyse, I.: The vehicle routing problem:
state of the art classification and review. Comput. Ind. Eng. 99, 300–313 (2016)

3. Chowdhury, S., Marufuzzaman, M., Tunc, H., Bian, L., Bullington, W.: A modified
ant colony optimization algorithm to solve a dynamic traveling salesman problem:
a case study with drones for wildlife surveillance. J. Comput. Des. Eng. 6, 368–386
(2018)

4. Cormen, T.: Introduction to Algorithms. MIT Press, Cambridge (2009)

http://www.aco-metaheuristic.org/

Analysis of MMAS with Local Search Applied to the ADTSPMV 217

5. Dorigo, M., Stutzle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)
6. Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of

cooperating agents. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 26, 29–41
(1996)

7. Gendreau, M., Hertz, A., Laporte, G.: New insertion and postoptimization proce-
dures for the traveling salesman problem. Oper. Res. 40, 1086–1094 (1992)

8. Johnson, D., Gutin, G., McGeoch, L., Yeo, A., Zhang, W., Zverovitch, A.: Exper-
imental analysis of heuristics for the ATSP. In: Gutin, G., Punnen, A.P. (eds.)
The Traveling Salesman Problem and Its Variations, Combinatorial Optimiza-
tion. Combinatorial Optimization, vol. 12, pp. 445–487. Springer, Boston (2007).
https://doi.org/10.1007/0-306-48213-4 10

9. Jonker, R., Volgenant, T.: Transforming asymmetric into symmetric traveling sales-
man problems. Oper. Res. Lett. 2, 161–163 (1983)

10. Larsen, A.: The dynamic vehicle routing problem. Ph.D. thesis, Technical Univer-
sity of Denmark, Kongens, Lyngby, Denmark (2000)

11. Lin, S., Kernighan, B.: An effective heuristic algorithm for the traveling-salesman
problem. Oper. Res. 21, 498–516 (1973)

12. Mavrovouniotis, M., Muller, F., Yang, S.: Ant colony optimization with local search
for dynamic traveling salesman problems. IEEE Trans. Cybern. 47, 1743–1756
(2017)

13. Mavrovouniotis, M., Yang, S.: Memory-based immigrants for ant colony optimiza-
tion in changing environments. In: Di Chio, C., et al. (eds.) EvoApplications 2011.
LNCS, vol. 6624, pp. 324–333. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-20525-5 33

14. Mavrovouniotis, M., Yang, S.: Interactive and non-interactive hybrid immigrants
schemes for ant algorithms in dynamic environments. In: 2014 IEEE Congress on
Evolutionary Computation (CEC), pp. 1542–1549 (2014)

15. Mavrovouniotis, M., Yang, S.: Ant colony optimization with immigrants schemes
for the dynamic travelling salesman problem with traffic factors. Appl. Soft Com-
put. 13, 4023–4037 (2013)

16. Mavrovouniotis, M., Yang, S.: Ant colony optimization with immigrants schemes
in dynamic environments. In: Schaefer, R., Cotta, C., Ko�lodziej, J., Rudolph, G.
(eds.) PPSN 2010. LNCS, vol. 6239, pp. 371–380. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-15871-1 38

17. Parpinelli, R.S., Plichoski, G.F., Silva, R., Narloch, P.H.: A review of techniques for
on-line control of parameters in swarm intelligence and evolutionary computation
algorithms. Int. J. Bio-Inspired Comput. 13(1), 1–20 (2019)

18. Pillac, V., Gendreau, M., Guéret, C., Medaglia, A.: A review of dynamic vehicle
routing problems. Eur. J. Oper. Res. 225, 1–11 (2013)

19. Pedro Schmitt, J., Baldo, F., Stubs Parpinelli, R.: A MAX-MIN ant system with
short-term memory applied to the dynamic and asymmetric traveling salesman
problem. In: 2018 7th Brazilian Conference on Intelligent Systems (BRACIS), pp.
1–6 (2018)

20. Stützle, T., Hoos, H.: Max-min - ant system. Future Gener. Comput. Syst. 16,
889–914 (2000)

21. Stutzle, T., Hoos, H.: MAX-MIN ant system and local search for the traveling
salesman problem. In: Proceedings of 1997 IEEE International Conference on Evo-
lutionary Computation (ICEC 1997), pp. 309–314 (1997)

https://doi.org/10.1007/0-306-48213-4_10
https://doi.org/10.1007/978-3-642-20525-5_33
https://doi.org/10.1007/978-3-642-20525-5_33
https://doi.org/10.1007/978-3-642-15871-1_38

218 J. P. Schmitt et al.

22. TSPLIB. https://www.iwr.uni-heidelberg.de/groups/comopt/software/
TSPLIB95/. Accessed 8 Feb 2019

23. Wu, Y., Weise, T., Chiong, R.: Local search for the traveling salesman problem:
a comparative study. In: 2015 IEEE 14th International Conference on Cognitive
Informatics & Cognitive Computing (ICC&ICC), pp. 213–220 (2015)

https://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/
https://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/

Computing Treewidth via Exact
and Heuristic Lists of Minimal Separators

Hisao Tamaki(B)

Meiji University, Kawasaki 214-8571, Japan
tamaki@cs.meiji.ac.jp

Abstract. We develop practically efficient algorithms for computing the
treewidth tw(G) of a graph G. The core of our approach is a new dynamic
programming algorithm which, given a graph G, a positive integer k, and
a set Δ of minimal separators of G, decides if G has a tree-decomposition
of width at most k of a certain canonical form that uses minimal sep-
arators only from Δ, in the sense that the intersection of every pair of
adjacent bags belongs to Δ. This algorithm is used to show a lower bound
of k + 1 on tw(G), setting Δ to be the set of all minimal separators of
cardinality at most k and to show an upper bound of k on tw(G), setting
Δ to be some, hopefully rich, set of such minimal separators. Combin-
ing this algorithm with new algorithms for exact and heuristic listing
of minimal separators, we obtain exact algorithms for treewidth which
overwhelmingly outperform previously implemented algorithms.

1 Introduction

Treewidth is a graph parameter introduced by Robertson and Seymour [14] which
not only plays an essential role in their graph minor theory [15] but also serves
as a powerful tool for designing efficient algorithms for graph problems (see, for
example, a survey [5]). Computing treewidth is NP-complete [1] but is fixed-
parameter tractable [3,15]. The currently fastest non-parameterized algorithm
[7] uses the dynamic programming algorithm due to Bouchitté and Todinca
[6] (BT algorithm henceforth) based on the notions of minimal separators and
potential maximal cliques.

For practical computation of treewidth, the dominant approaches had been
based on the perfect elimination order (PEO) of minimal chordal completions of
the given graph [4,8] until recently. The landscape changed when the algorithm
implementation challenges PACE2016 [12] and PACE2017 [13] featured exact
treewidth tracks, where the winning implementations were not based on PEO
but on a new mode, called positive-instance driven (PID), of executing other
types of dynamic programming algorithms. In particular, a PID variant of the
BT-algorithm due to the present author [17] performed extremely well on large
instances, which were completely out of reach for PEO-based exact algorithms.

In this paper, we present an alternative to the PID approach. Roughly speak-
ing, it lies between the original BT algorithm, which lists all minimal separa-
tors and all potential maximal cliques before the main dynamic programming
iteration, and the PID algorithm which generates relevant instances of those
c© Springer Nature Switzerland AG 2019
I. Kotsireas et al. (Eds.): SEA2 2019, LNCS 11544, pp. 219–236, 2019.
https://doi.org/10.1007/978-3-030-34029-2_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34029-2_15&domain=pdf
http://orcid.org/0000-0001-7566-8505
https://doi.org/10.1007/978-3-030-34029-2_15

220 H. Tamaki

combinatorial objects on the fly during the dynamic programming iteration. In
our approach, we start by listing the minimal separators but not the poten-
tial maximal cliques. Then, in the dynamic programming iteration, we scan the
components separated by those minimal separators in the ascending order of
cardinality and decide if each component admits a partial tree-decomposition
within the target width. This decision procedure is based on the ideas underly-
ing the BT algorithm but do not explicitly involve potential maximal cliques,
either in the algorithm or in the correctness proof.

To be more specific, let us say that a tree-decomposition T uses separator S if
S is the intersection of some two adjacent bags of T . Our dynamic programming
algorithm, which we call msDP, accepts a set Δ of minimal separators of G
in addition to a graph G and a positive integer k and decides if G has a tree-
decomposition of width at most k that uses minimal separators only from Δ and
is well-formed in the sense defined in Sect. 2.

To use msDP to decide if tw(G) ≤ k, we first need to list all minimal sep-
arators of cardinality at most k. Although an efficient algorithm for generating
all minimal separators of G is known [2], which runs in O(n3) time on average
per each generated instance, no similar result is known for the generation of
minimal separators of cardinality at most k. We develop a practically efficient
algorithm List-Exact for generating this set. Experiments show that the com-
bination of List-Exact and msDP clearly outperform the PID algorithm on
large instances: many graph instances that cannot be solved by the PID algo-
rithm with 6 h time-out can be solved by the combination of List-Exact and
msDP in less than half an hour. See Sect. 6.

The most time consuming parts in the exact treewidth computation using
a decision algorithm for tw(G) ≤ k are the computations for k = tw(G) − 1
and k = tw(G), as they involve the largest numbers of minimal separators over
all values k ≤ tw(G). Although the exact computation for k = tw(G) − 1 is
unavoidable, we may use a heuristic algorithm for k = tw(G) since finding a
single tree-decomposition of width tw(G) suffices. Our heuristic algorithm for
listing minimal separators, which we call List-Heuristic, is designed for this
purpose. The combination of List-Heuristic and msDP can be used to produce
a descending sequence of upper bounds, often ending with tw(G), in time much
smaller than the exact computation for k = tw(G). Experiments show that our
exact treewidth algorithms based on this idea overwhelmingly outperform the
PID algorithm on large graphs.

The rest of this paper is organized as follows. In Sect. 2, we give preliminaries
of the paper. In Sect. 3, we describe our dynamic programming algorithm msDP.
In Sect. 4, we describe our algorithms List-Exact and List-Heuristic for list-
ing minimal separators. In Sect. 5, we describe three algorithms for treewidth
computation which consist of the component algorithms described in the previ-
ous sections. Finally in Sect. 6, we present experimental results.

Computing Treewidth via Exact and Heuristic Lists of Minimal Separators 221

2 Preliminaries

In this paper, all graphs are simple, that is, without self loops or parallel edges.
Let G be a graph. We denote by V (G) the vertex set of G and by E(G) the
edge set of G. The subgraph of G induced by U ⊆ V (G) is denoted by G[U].
We sometimes use an abbreviation G \ U to stand for G[V (G) \ U]. A vertex set
C ⊆ V (G) is a clique of G if G[C] is a complete graph. For each v ∈ V (G), NG(v)
denotes the set of neighbors of v in G: NG(v) = {u ∈ V (G) | {u, v} ∈ E(G)}.
For U ⊆ V (G), the open neighborhood of U in G, denoted by NG(U), is the set
of vertices adjacent to some vertex in U but not belonging to U itself: NG(U) =
(
⋃

v∈U NG(v)) \ U . The closed neighborhood of U in G, denoted by NG[U], is
defined by NG[U] = U ∪NG(U). We also write NG[v] for NG[{v}] = NG(v)∪{v}.
In the above notation, as well as in the notation further introduced below, we
will often drop the subscript G when the graph is clear from the context.

We say that vertex set C ⊆ V (G) is connected in G if, for every pair of
vertices u, v ∈ C, there is a path in G[C] between u and v. It is a connected
component or simply a component of G if it is connected and is inclusion-wise
maximal subject to this condition. A vertex set S ⊆ V (G) is a separator of G
if G \ S has more than one components. Note that the empty set is a separator
in this definition if G is disconnected. We call each component C of G \ S a
component associated with S; we call it a full component associated with S if
moreover N(C) = S. For a, b ∈ V (G), a separator S is an a-b separator if there
is no path between a and b in G \ S; it is a minimal a-b separator if it is an
a-b separator and no proper subset of S is an a-b separator. A separator is a
minimal separator if it is a minimal a-b separator for some a, b ∈ V (G). Observe
that S is a minimal separator if and only if there are at least two full components
associated with S. Indeed, if A and B are two full components associated with
S, then S is an a-b minimal separator for every pair a ∈ A and b ∈ B. We
generalize these notions by generalizing vertices a and b to disjoint connected
vertex sets A and B. A separator S of G is an A-B separator if there are two
distinct components of G \ S each containing A and B; it is a minimal A-B
separator if those two components are full components associated with S. When
one of A and B is a singleton, we use notation such as A-b and a-B separators.

We denote by Δ(G) the set of all minimal separators of G and by Δk(G) the
set of all minimal separators of G with cardinality at most k.

Graph H is chordal if every induced cycle of H has length exactly three. H
is a minimal triangulation of G if it is chordal, V (H) = V (G), E(G) ⊆ E(H),
and for every proper subset F of E(H)\E(G), the graph on V (G) with edge set
E(G) ∪ F is not chordal. A vertex set Ω ⊆ V (G) is a potential maximal clique
of G, if Ω is a clique in some minimal triangulation of G.

A tree-decomposition of G is a pair (T,X) where T is a tree and X is a
family {Xi}i∈V (T) of vertex sets of G such that the following three conditions
are satisfied. We call members of V (T) nodes of T and each Xi the bag at node i.

1.
⋃

i∈V (T) Xi = V (G).
2. For each edge {u, v} ∈ E(G), there is some i ∈ V (T) such that u, v ∈ Xi.

222 H. Tamaki

3. The set of nodes Iv = {i ∈ V (T) | v ∈ Xi} ⊆ V (T) induces a connected
subtree of T .

The width of this tree-decomposition is maxi∈V (T) |Xi| − 1. The treewidth of G,
denoted by tw(G) is the minimum width of all tree-decompositions of G. We
may assume that the bags Xi and Xj are distinct from each other for i �= j and,
under this assumption, we will regard a tree-decomposition as a tree T in which
each node is a bag.

The subproblems arising in the BT dynamic programming algorithm are for-
mulated in [17] as deciding the “feasibility” of connected sets of G with respect to
the target treewidth k. We generalize this feasibility notion making it dependent
on the set Δ of available separators.

Fix a graph G and a positive integer k. Let Δ be some set of minimal sep-
arators of G. We say that a connected set C ⊆ V (G) is feasible with respect to
Δ if G[N [C]] has a tree-decomposition T of width at most k such that T uses
separators only from Δ and has a bag containing N(C).

We also need a slightly stronger version of feasibility. We say that a vertex
set U of G is baggy if there is no connected set C such that N(C) = U and
moreover, for every non-empty X ⊆ U , there is a connected set C containing X
such that N(C) = U \ X. We remark that a potential maximal clique is always
baggy but the converse does not hold. We say that the tree-decomposition T of
G is well-formed if every bag of T is baggy and, for every connected vertex set
C of G such that C is a component of G \ X for some bag X of T , there is a
subtree T ′ of T and a bag Y in T ′ such that

1. T ′ is a tree-decomposition of G[N [C]],
2. Y is adjacent to a bag of T , say Z, not in T ′ with Y ∩ Z = N(C).

It is well-known (see a survey [9] on minimal triangulations, for example)
that a minimal triangulation H of G naturally gives rise to a tree-decomposition
T of H, and hence of G, such that the bags of T are maximal cliques of H and
every separator T uses is a minimal separator of G. Moreover, an optimal tree-
decomposition of G can be obtained in this manner. Since it is straightforward
to verify that such a tree-decomposition is well-formed, we have the following,
which allows us to focus on well-formed tree-decompositions in deciding the
treewidth.

Proposition 1. Every graph G has a well-formed tree-decomposition of width
tw(G).

We say that a connected vertex set C of G is well-feasible with respect to Δ
if G[N [C]] has a well-formed tree-decomposition T of width at most k such that
T has a bag containing N(C) and every separator used by T belongs to Δ.

Computing Treewidth via Exact and Heuristic Lists of Minimal Separators 223

3 Dynamic Programming for Tree-Decompositions with
a Given Set Of available Minimal Separators

In this section, we formulate a dynamic programming algorithm msDP which,
given a graph G, a positive integer k, and a set Δ of minimal separators, decides
if G has a tree-decomposition of width at most k that is well-formed and uses
separators only from Δ. We fix graph G and positive integer k in the rest of this
section. We assume that G is connected. Under this assumption, our problem is
equivalent to the well-feasibility of V (G) with respect to Δ.

Following [17], we orient minimal separators as follows. We assume a total
order < on V (G) and, for U ⊆ V (G), denote by min(U) the smallest vertex in
U . We say that a connected set C is inbound if there is some full component
D associated with N(C) such that min(D) < min(C); otherwise, it is outbound.
Observe that if N(C) is not a minimal separator then C is necessarily outbound,
since there is no full component D �= C associated with N(C).

Now we describe our dynamic programming algorithm msDP. In the descrip-
tion, we fix Δ ⊆ Δk(G) in addition to G and k. The main iteration of msDP is
given as Algorithm 1.

Algorithm 1. Main iteration of msDP: decides the feasibility of each inbound
connected set with respect to Δ ⊆ Δk(G)
1: Let L be the list of all inbound connected sets C with N(C) ∈ Δ
2: Sort L in the increasing order of cardinality
3: for all C in L do
4: if isFeasible(C) then mark C as feasible
5: end for

The procedure isFeasible used in the iteration is defined as Algorithm2,
together with an auxiliary procedure allFeasible. We remark that the argu-
ment C of isFeasible is not restricted to be inbound: indeed, when the call
is made from allFeasible, N(C) is not a minimal separator. When isFeasi-

ble(C) holds, however, marking C as feasible is done only if N(C) ∈ Δ and
C is inbound. In that sense, our dynamic programming table, that maintains
the markings, is partial. Consequently, for C such that N(C) is not a minimal
separator, it is possible that the call isFeasible(C) is made more than once.

Theorem 1. Let C ⊆ V (G) be connected with |N(C)| ≤ k. If, during the exe-
cution of our dynamic programming algorithm, call isFeasible(C) is made and
returns true then C is feasible with respect to Δ. On the other hand, if C is
inbound with N(C) ∈ Δ and moreover is well-feasible with respect to Δ, then
the algorithm marks C as feasible.

The two statements of this theorem are immediate consequences of the following
two lemmas, respectively.

Lemma 1. Let C ⊆ V (G) be connected with |N(C)| ≤ k. Suppose that every
proper subset C ′ of C that has been marked feasible is indeed feasible with respect
to Δ. If isFeasible(C) is called in this situation and returns true, then C is
feasible with respect to Δ.

224 H. Tamaki

Algorithm 2. Feasibility procedures
1: procedure isFeasible(C)
2: if N(C) ∈ Δ and |N [C]| ≤ k + 1 then return true
3: for all inbound D with min(C) ∈ D marked feasible do
4: if allFeasible(N(C) ∪ N(D), C) then return true
5: end for
6: return allFeasible(N(C) ∪ {min(C)}, C)
7: end procedure
8: procedure allFeasible(S, C)
9: if |S| > k + 1 then return false

10: for all component D associated with S such that D ⊆ C do
11: if N(D) = S then
12: if not isFeasible(D) then return false
13: else
14: assert D is inbound
15: if D is not marked as feasible then return false
16: end if
17: end for
18: return true
19: end procedure

Proof. The proof is by induction on the cardinality of C.
If isFeasible(C) returns true in the first if statement, then C is trivially

feasible with respect to Δ. Suppose isFeasible(C) returns true within or after
the for statement. Then, for some superset S of N(C) such that S ∩ C �= ∅,
allFeasible(S, C) returns true. From the description of allFeasible we see
that, for every component D associated with S such that D ⊂ C, either isFea-

sible(D) returns true or D is marked as feasible. By the induction hypothesis,
in the former case, and by the assumption in the Lemma on previous markings,
in the latter case, each such D is feasible with respect to Δ. For each such D, let
TD be a tree-decomposition of G[N [D]] of width at most k that has a bag XD

containing N(D). Combining TD for all D with a new bag S, making each XD

adjacent to S, we obtain a tree-decomposition T of G[N(C)]. Note that T indeed
satisfies the connectivity condition for tree-decompositions, since N(D) ⊆ S for
each D. Since |S| ≤ k + 1 is ensured in the first if statement of allFeasible,
the width of T is at most k and hence C is feasible as claimed.
�
Lemma 2. Let C be a connected set and suppose that C is well-feasible with
respect to Δ. Then, if isFeasible(C) is called during the execution of Algorithm
1, it returns true.

Proof. The proof is by induction on the cardinality of C.
Let T be a well-formed tree-decomposition of G[N [C]] that attests the well-

feasibility of C with respect to Δ: T has a bag XC that contains N(C) and every
separator used by T belongs to Δ. If T consists of the single bag XC , then the
call isFeasible(C) returns true in the first if statement.

Next suppose that T has two or more bags. Let C be the set of compo-
nents of G \ XC that are contained in C. Let D ∈ C be arbitrary. Since T is

Computing Treewidth via Exact and Heuristic Lists of Minimal Separators 225

well-formed, there is a subtree TD of T that attests the well-feasibility of D with
respect to Δ, such that the intersection of the vertices in the bags TD and the
vertices in the bags not in TD equals N(D). As T uses N(D), N(D) belongs to
Δ. Moreover, N(D) is a proper subset of XC since XC is baggy. We also claim
that D is inbound. To see this, let A be the connected set containing XC \N(D)
such that N(A) = N(D), which exists since XC is baggy. Then, A is a full com-
ponent associated with N(D). Since C is inbound, there is a full component B
associated with N(C) such that min(B) < min(C). Since D is a proper subset
of C and N(D) is a minimal separator, N [D] is a proper subset of N [C] and
N(C) \ N(D) is non-empty. Therefore, XC \ N(D) intersects N(C) and hence
A contains A′. We have min(A) ≤ min(A′) ≤ min(C) ≤ min(D) and hence D is
inbound. We have shown that each D ∈ C is well-feasible with respect to Δ, is a
proper subset of C, and is inbound. Therefore, each D ∈ C must be marked as
feasible since call isFeasible(D) must have been made in the main iteration in
Algorithm 1 and, by the induction hypothesis, must have returned true.

We are to show that isFeasible(C) returns true. Let v0 = min(C) and
suppose first that v0 �∈ C ∩ XC . Then, v0 must belong to some member, say
D0, of C. Then, at some point in the for iteration allFeasible, call allFea-
sible(S,C) is made with S = N(C) ∪ N(D0). Let C1 = {D ∈ C|N(D) ⊆ S}. If
C1 = C then we are done, since the else branch is always taken in the if state-
ment within the for iteration of allFeasible and hence allFeasible(S,C)
returns true. So, suppose C2 = C \ C1 is non-empty. Then, XC \ S is non-empty
and, since XC is baggy, there is a connected set Dfull containing XC \ S such
that N(Dfull) = S. Observe that Dfull is well-feasible with respect to Δ: the
attesting tree-decomposition can be constructed by collecting the well-formed
tree-decomposition attesting the feasibility of each D ∈ C2 and combining them
with a new bag S. Therefore, the call isFeasible(Dfull) in allFeasible returns
true and hence allFeasible(S,C) returns true in this case as well.

The case where v0 ∈ C ∩ XC is similar: we consider the call allFeasi-

ble(S,C) with S = N(C) ∪ {v0} and show it returns true.
�

4 Listing Minimal Separators

We continue to fix G and k and assume G is connected in this section. The
goal of this section is to develop a practically efficient algorithm for generating
Δk(G).

4.1 A Minimal a-b Separator Algorithm

Let a, b ∈ V (G) be distinct and non-adjacent vertices, A ⊆ V (G) a connected set
such that a ∈ A, b ∈ V (G) \ N [A], and N(A) ∈ Δ(G), and F a subset of N(A).
Given these parameters, we define a set Sa,b(A,F) which, informally, collects all
minimal a-b separators S such that |S| ≤ k, F ⊆ S, and S does not separate
A. We add some more conditions on S for the purpose of efficiency: a minimal
a-b separator S belongs to Sa,b(A,F) if and only if the following conditions are

226 H. Tamaki

satisfied. Let Ca and Cb denote the components of G\S to which a and b belongs,
respectively.

1. |S| ≤ k
2. F ⊆ S
3. A ⊆ Ca and Cb ∩ N [A] = ∅
4. a = min(Ca) and b = min(Cb)
5. |Ca| ≤ |Cb|
The following proposition is straightforward.

Proposition 2. We have Δk(G) =
⋃

a,b Sa,b({a}, N(a) ∩ N(b)).

We remark that the conditions 4 and 5 above are intended to make the sets
Sa,b({a}, N(a) ∩ N(b)) and Sa′,b′({a′}, N(a′) ∩ N(b′)) almost disjoint to each
other, for distinct pairs (a, b) and (a′, b′): the exception may occur only when
(a′, b′) = (b, a) and the condition 5 is satisfied with |Ca| = |Cb|.

The following observations, which provide the base cases in our recursive
computation of Sa,b(A,F), are also straightforward.

Proposition 3. Let Cb denote the component of G \ N [A] to which b belongs.
In each of the following cases, Sa,b(A,F) is empty.

1. |F | > k
2. min(A) �= a or min(Cb) �= b
3. F is not a subset of N(Cb)
4. |F | = k and N(A) �= F
5. |A| > |Cb|
6. |N(A)| > k and |A| + (|N(A)| − k) > min{|Cb|, (|V (G)| − k)/2}
Moreover, if |F | = k, N(A) = F , N(Cb) = F , and |A| ≤ |Cb| then Sa,b(A,F) =
{N(A)}.

For the recursive steps, the notion of close separators [2,11,16] used in the
literature for generating Δ(G) is essential. Let A ⊆ V (G) be connected and
b ∈ V (G) \ N [A]. Let B be the component of G \ N(A) to which b belongs.
Then, N(B) is a minimal A-B separator and, indeed, is the unique minimal A-b
separator contained in N(A). We call N(B) the minimal A-b separator close to
A. We also say that a minimal separator is close to A if it is an A-b minimal
separator close to A for some b ∈ V (G) \ N [A].

The following recurrence is an adaptation of the one used by Takata [16] for
generating Δ(G).

Lemma 3. Let a, b, A, and F be as in the definition of Sa,b(A,F). Suppose
none of the conditions in Proposition 3 for Sa,b(A,F) to be empty applies and
moreover, N(A) \ F �= ∅. Let v0 ∈ N(A) \ F be arbitrary. Then, we have

Sa,b(A,F) = Sa,b(A,F ∪ {v0}) ∪ Sa,b(A′, F)

where A′ is the component associated with the minimal (A ∪ {v0})-b separator
close to A ∪ {v0}, that contains A.

Computing Treewidth via Exact and Heuristic Lists of Minimal Separators 227

Our basic algorithm for listing minimal a-b separators recursively evaluates
the recurrence in Lemma 3, using the base cases in Propositions 3. The following
pruning rule provides a quite effective speed-up.

Lemma 4. Let a, b, A, and F be as in the definition of Sa,b(A,F) and suppose
that N(A) > k and N(A) \ F �= ∅. Let Cb denote the component of G \ N [A]
that contains b. Let P be a set of vertex disjoint paths of G such that each
P ∈ P has one end in N(A) \ F and all other vertices in V (G) \ N [A]. Let
d be the number of vertices in the (|P| − (k − |F |)) shortest paths in P. If
|A| + d > min{Cb, (|V (G)| − k)/2}, then Sa,b(A,F) is empty.

Proof. Let C be an arbitrary superset of A such that F ⊆ N(C) and |N(C)| ≤ k.
Then, N(C) contains at most k − |F | vertices that are contained in the paths in
P. Since each path in P has one end in N(A) and all other vertices outside of
N [A], at least (|P| − (k − |F |)) paths in P are entirely contained in C. We have
|C| ≥ |A| + d and the claim follows.
�
To obtain the vertex disjoint paths P, we use a greedy procedure. We first
initialize the set P to consist of a single vertex path containing v for every v
in N(A) \ F . At each iteration step, we scan the paths in P and extend each
path, if possible, by a vertex neither in N [A] nor in any path of P, including the
extensions made in this iteration. We stop when no more extensions are possible.
As applying this pruning rule involves a non-trivial overhead, we invoke it only
when |N(A)\F | is large and the chances of successful pruning appears plausible.
More specifically, we have a threshold parameter rprune and invoke the rule only
when |A| + rprune(|N(A) \ F | − (k − |F |)) ≥ |V (G) − k|/2 holds.

4.2 Nibble and Conquer

To generate Δk(G), rather than naively iterating the a-b minimal separator
algorithm for all (a, b) pairs, we adopt the following recursive approach. Given
a separator X of G, we divide the task of generating Δk(G) into the task of
generating those separators in Δk(G) “crossing” X and the task of generating
those “local to” each component of G \ X. We formalize this idea below.

Let X ⊆ V (G) and S a minimal separator of G. We say S crosses X if S
is a minimal a-b separator for some distinct two vertices a and b in X. For a
component C of G \ X, we say that S is local to C with respect to X if there is
a full component D associated with S such that N [D] ⊆ X ∪ C.

Lemma 5. Let X ⊆ V (G) and S a minimal separator of G. Then, either S
crosses X or there is some component C of G \ X such that S is local to C with
respect to X.

Proof. Suppose that S is not local to any component of G \ X. Let D be an
arbitrary full component associated with S. From the definition of locality, there
are two distinct components C1 and C2 of G \X such that N [D] intersects both
C1 and C2. Therefore, at least one vertex of D must belong to X. Since there
are at least two full components associated with S, S is a minimal a-b separator
for some a, b ∈ X.
�

228 H. Tamaki

Let U be a vertex set of graph G. The localization of G to U , denoted by
local(G,U) is the graph obtained from G[U] by filling N(C) into a clique for
every component C of G \ U .

Lemma 6. Let X ⊆ V (G) and C a component of G\X. Suppose S is a minimal
separator of G that is local to C with respect to X. Then, either S is a minimal
separator of local(G,X ∪ C) or there is some component C ′ �= C of G \ X such
that N(C ′) = S.

Proof. If there is a full component C ′ associated with S that is disjoint from
X ∪ C then there is nothing to show. So suppose that every full component
associated with S intersects X ∪ C. We show that S is a minimal separator
of local(G,X ∪ C). Let D1 and D2 be two distinct full components associated
with S and let D′

i = Di ∩ (X ∪ C) for i = 1, 2. Then, the edges added to
G[X ∪ C] to form local(G,X ∪ C) ensure that D′

i, i = 1, 2, is connected in
local(G,X ∪ C). Those edges also ensure that the open neighborhood of D′

i in
local(G,X ∪ C) equals NG(Di) = S, for i = 1, 2. Therefore, S is a minimal
separator in local(G,X ∪ C).
�

Given these two lemmas, it is tempting to adopt the following divide-and-
conquer approach for generating Δk(G): find a balanced separator X, list sep-
arators in Δk(G) that cross X, and then recurse into local(G,X ∪ C) for every
component C of G \ X. Experiments reveal, however, that listing separators
crossing X is the dominant part of this computation if X is large: having small
X, or, more precisely, X with small number of non-adjacent a-b pairs, is more
important than balancing the sizes of components of G\X. Since a small separa-
tor is often the neighborhood of a single vertex, we adopt the following nibbling
approach listed as Algorithm 3. Here, the “fill in” of vertex v in G is the set of
unordered pairs of distinct vertices a and b in N(v) such that {a, b} is not an
edge of G.

Algorithm 3. Nibble and conquer to generate Δk(G)
1: procedure List-Exact(G, k)
2: Let v be a vertex of the smallest fill-in in G
3: Let X = N(v)
4: Return the union of the followings:

– The set of all minimal separators of G, each of cardinality at most k, that cross
X

– Δk(H), where H = local(G, X ∪ C), for each component C of G \ X
5: end procedure

One of the components associated with X = N(v) in the algorithm descrip-
tion is {v} and for this component, the enumeration of Δk(H) for H =
local(G,X ∪ {v}) is trivially handled. So, we recurse into H = local(G,X ∪ C)
for other components C. Typically, there is only one such component, namely
V (G)\N [v], the result of nibbling v away. Compared to naively iterating the a-b
separator algorithm for all pairs (a, b), the nibbling approach has the advantage
of smaller graph size for a-b pairs handled deep in recursion. Experiments show
that the this advantage indeed leads to substantial speed-ups. See Sect. 6.

Computing Treewidth via Exact and Heuristic Lists of Minimal Separators 229

4.3 Heuristic Listing of Minimal Separators

To compute upper bounds of treewidth, we may apply our dynamic programming
algorithm with an arbitrary (though reasonably rich) subset Δ of Δk(G). In this
subsection, we develop a heuristic algorithm List-Heuristic which incremen-
tally generates larger and larger subsets of Δk(G).

Consider the digraph Λ(G) on Δ(G), in which (R,S) ∈ Δ(G) × Δ(G) is an
edge if and only if S is close to A ∪ {v} for some full component A associated
with R and some v ∈ R. We denote by Λk(G) the subdigraph of Λ(G) induced by
the vertex set Δk(G). It is shown in [2] that all members of Δ(G) are reachable
in Λ(G) from the set of minimal separators close to singleton vertex sets. Unfor-
tunately, the subdigraph Λk(G) does not seem to have such a nice reachability
property.

In our heuristic generation algorithm List-Heuristic, we assume that a
tree-decomposition T of width k+1 or greater is available and construct an initial
set which contains, for each bag X of T , a minimal separator S of cardinality
at most k if either S = N(C) for some component of G \ X or S is a minimal
separator of local(G,X). When T is obtained by a greedy heuristic such as
mindeg or minfill, this initial set is often sufficient to yield an improved upper
bound.

Suppose we have Δ ⊆ Δk(G) after some iteration steps. Then, in the next
iteration step, we expand Δ into Δ′ by adding, for each S ∈ Δ, all successors
of S in Λk. This is repeated until either msDP with Δ produces an improved
upper bound or Δ has no external successors in Λk.

5 Treewidth Algorithms

We have the following three algorithms for computing treewidth: Ascend,
Descend, and Alternate.
Ascend: The combination of msDP and List-Exact gives an algorithm for
deciding if tw(G) ≤ k for given G and k. Algorithm Ascend calls this procedure
for ascending values of k, starting from the trivial lower-bound, the minimum
vertex degree of G, and ending with tw(G). This ascending flow of computation
is also employed in the PID algorithm in [17]. As long as we do the optimization
based solely on an exact decision algorithm, this seems to be the only reasonable
choice, since exactly deciding if tw(G) ≤ k for k > tw(G) usually requires a
cost much larger than that for k ≤ tw(G) and should be avoided. We observe,
however, that the only exact decision indispensable in demonstrating the correct
value of tw(G) is that of the question tw(G) ≤ k for k = tw(G) − 1. The
answers for this question for k < tw(G) − 1 can be inferred from the answer
for k = tw(G) − 1 and, for k = tw(G), we only need the tree-decomposition of
width k which may be found in a heuristic manner. This observation motivates
the second algorithm.
Descend: In this Algorithm, we start from a greedily computed upper bound
and try to lower the upper bound one by one. At each such improvement step,

230 H. Tamaki

we first try a small list of minimal separators and gradually enlarge the list,
using List-Heuristic, until either an improvement is found or further heuristic
expansion of the list is impossible. When the latter happens, then it is the time
to start the effort on showing the lower bound. Suppose the current upper bound
is k + 1 and the final heuristic subset of Δk(G) used in the failed improvement
step is Δ. To show the lower bound, we first generate Δk(G) using List-Exact

and first test if Δ = Δk(G). If the result is true, we can immediately conclude
that the upper bound of k+1 is tight. Otherwise we apply msDP with this exact
set of minimal separators and, if necessary, repeat the exact decision procedure
for smaller values of k.

For all instances in the experiment for which Descend successfully com-
putes the exact treewidth, it invokes the exact decision procedure only with
k = tw(G) − 1: the decisions for smaller values of k are dispensed with and the
decision for k = tw(G) is replaced by a heuristic upper bound computation.
Experiments show that the saving in computation time is often dramatic. See
Sect. 6.
Alternate: For hard instances for which we do not have enough resource to
compute the exact treewidth, we may want to have a pair of reasonably good
upper and lower bounds. As Ascend provides only a lower bound and Descend

only an upper bound for those instances, it is natural to combine those algo-
rithms. We may execute each once, allocating a fixed amount of time to each
algorithm. In general, however, it is not easy to estimate the right amount of
time in advance and avoid wasting the time for unsuccessful improvement effort:
the bound on the other side may have been easier to improve.

In Alternate, we alternate between upper and lower bound computations
trying to balance the invested time so that the improvements on both sides of
the bounds get reasonable chances. This balancing is done through the num-
ber of minimal separators involved, in the following manner. Suppose a lower
bound of l on tw(G) is established using the list Δl−1(G) during the computa-
tion. If l is smaller than the current upper bound, then we turn to improving
the upper bound. In this improvement step, the size of the heuristic list of min-
imal separators is bounded roughly by 2|Δl−1(G)|. When the size of this list is
exceeded, then the upper bound computation is suspended and the lower bound
of l + 1 is tried. If this lower bound computation is successful, then the list
Δl(G) used is larger than the previous one and the upper bound computation is
allowed to use a larger heuristic list. In this manner, the upper and lower bounds
alternately approach the exact treewidth as the number of minimal separators
allowed increases.

6 Experimental Results

This section describes the results of computational experiments. The computing
environment for the experiment is as follows. CPU: Intel Core i7-6700 (4 cores),
3.40 GHz, 8192 KB cache; RAM: 32 GB; Operating system: Ubuntu 18.04.1 LTS;
Programming language: Java 1.8; JVM: jre1.8.0 111; The maximum heap space

Computing Treewidth via Exact and Heuristic Lists of Minimal Separators 231

size: 28 GB. The implementation is single threaded, except that multiple threads
may be invoked for garbage collection by JVM. The time measured is the elapsed
time. To minimize the influence of system processes, the computer is detached
from the network and the graphic user interface is disabled.

6.1 Graph Instances

We used two sets of graph instances in our experiments. One consists of ran-
dom graphs generated by the G(n,m) model: given n and m, a graph is drawn
uniformly at random from the set of all labeled graphs of n vertices and m
edges. The number of vertices n is in {40, 50, 60, 70, 80, 90} and, for each n, the
number of edges m is in {in | 3 ≤ i ≤ 10}. For each pair (n,m), we used a
single instance generated, fixing the pseudorandom number seed. Table 1 lists
all of these instances. For each graph G, the following characteristic values are
listed: |V (G)|, |E(G)|, tw(G), |Δk(G)| for k = tw(G)− 1, the number of feasible
inbound sets for k = tw(G) − 1, |Δk(G)| for k = tw(G), and the number of
feasible inbound sets for k = tw(G).

Observe that for each n, the number of relevant minimal separators is the
largest at m = 4n or 5n. As we will see in the performance results, this number,
together with the number of vertices and the treewidth, is a good indicator for
the hardness of an instance for treewidth computation. Thus, we have a partial
explanation of why the computation becomes easier as the graph gets denser
after a threshold, despite the increase in the treewidth.

Observe also that the number of feasible inbound sets are, perhaps unex-
pectedly, quite close to the number of minimal separators. This shows that
the advantage of the PID approach over conventional dynamic programming
algorithms does not lie in the small number of positive (feasible) subproblem
instances compared to all subproblem instances. It lies in that PID approach led
to a new method of generating those subproblem instances.

The second set consists of a few hard instances from the DIMACS graph-
coloring benchmark set [10]. Table 2 lists all of these instances with their char-
acteristic values.

6.2 Minimal Separator Listing Algorithms

We compared the performances of our three algorithms for exactly listing min-
imal separators: (1) the basic algorithm based on the recurrence in Lemma 3
with naive iteration on a-b pairs; (2) with the pruning rule of Lemma 4; (3)
with the pruning rule and the nibbling approach in Subsect. 4.2. The threshold
rprune is set to 10 in this experiment. In addition, we included our heuristic list-
ing algorithm in the comparison. Table 3 shows the results for random graphs
with 70 and 80 vertices, where the task for graph G is to generate Δk(G) for
k = tw(G)−1, the task inevitable in establishing the exact bound on tw(G). The
basic algorithm is able to complete listing within the 1-h timeout for only 4 out
of 16 instances, the algorithm with the pruning rule succeeds on 13 instances,

232 H. Tamaki

Table 1. Random graph instances used in our experiments: columns FI1 and FI show
the number of feasible inbound sets for k = tw(G) − 1 and k = tw(G), respectively; an
empty field means unsuccessful computation within reasonable amount of resource

|V | |E| tw |Δtw−1| FI1 |Δtw| FI |V | |E| tw |Δtw−1| FI1 |Δtw| FI

40 120 14 1021 912 2356 2080 70 210 22 299681 227030 786777 602892

40 160 18 1640 1344 3952 3289 70 280 28 498944 412612 1137482 930417

40 200 20 875 735 1790 1502 70 350 33 590136 464161 1291834 1006981

40 240 22 812 667 1861 1615 70 420 37 472728 386375 991158 797858

40 280 24 631 518 1275 1103 70 490 38 106296 85958 203148 161982

40 320 25 342 296 626 521 70 560 42 150427 122423 293595 235726

40 360 27 292 246 579 474 70 630 45 150442 117591 304528 233298

40 400 28 232 203 469 405 70 700 47 101673 79286 205276 158689

50 150 16 3895 3565 9152 8099 80 240 25 1621664 1424712 4081263 3503941

50 200 20 3772 3377 7878 6956 80 320 31 2284149 1936667 5189162 4362765

50 250 24 5127 4397 10555 8949 80 400 35 988166 827068 2065839 1710869

50 300 26 2788 2299 5345 4417 80 480 39 751344 622050 1481223 1208020

50 350 29 3437 2682 6685 5293 80 560 42 458205 373407 872193 700485

50 400 31 2302 1766 4512 3586 80 640 46 608006 489690 1181883 934389

50 450 32 1163 945 2089 1656 80 720 49 471433 379049 896693 706639

50 500 34 1048 889 1987 1638 80 800 52 438636 355371 846794 671334

60 180 18 11698 9238 26313 22416 90 270 27 7947239 5585295 19521897 13560016

60 240 22 12743 10540 27052 21984 90 360 35 30498292 25231339 71039889 –

60 300 27 27359 20595 56991 41584 90 450 40 24205797 18839873 51925771 –

60 360 30 17956 13829 34793 26356 90 540 45 19877659 15311306 41166209 31119888

60 420 33 17281 13843 33755 26586 90 630 49 11958408 9812327 23932551 –

60 480 34 5862 4789 10320 8248 90 720 52 7106240 5573022 13888202 10716600

60 540 38 11693 9746 22610 18241 90 810 55 4770228 3805194 9237122 7228454

60 600 40 9612 7931 19319 15958 90 900 57 2115790 1721063 3980250 3176283

Table 2. A few hard instances from DIMACS graph coloring benchmark set: FI stands
for feasible inbounds; †these lower bounds are |Δ48(G)|, |Δ83(G)|, and |Δ221(G)|, for
each G

name |V | |E| tw |Δtw−1| FIs for k = tw − 1 |Δtw| FIs for k = tw

myciel6 95 755 35 2639 2583 3938 3848

myciel7 191 2360 66 223317 219381 316296 309735

queen10 10 100 1470 72 2442357 1523527 4199412 2633702

queen11 11 121 1980 87 22351589 13793133 36424473 22429873

DSJC125.1 125 736 [48, 65] – – ≥†23302449 –

DSJC125.5 125 3891 108 190816 158478 347012 280655

DSJC250.1 250 3218 [83, 177] – – ≥†1248182 –

DSJC250.5 250 15668 [221,230] – – ≥†1882525 –

Computing Treewidth via Exact and Heuristic Lists of Minimal Separators 233

Table 3. Performances of our minimal separator listing algorithms with 1-h timeout

|V | |E| tw − 1 |Δtw−1| time (secs) for generating Δtw−1 |heuristic list|
(no. of missings)

Basic Pruning Pruning+Nibbling Heuristic

70 210 21 299681 – 876 34 17.4 299681(0)

70 280 27 498944 – 1262 102 33.5 498944(0)

70 350 32 590136 – 1348 117 42.6 590136(0)

70 420 36 472728 – 970 134 27.2 472728(0)

70 490 37 106296 932 212 33 3.84 106296(0)

70 560 41 150427 766 234 47 5.41 150427(0)

70 630 44 150442 551 221 42 5.39 150442(0)

70 700 46 101673 280 128 30 3.45 101673(0)

80 240 24 1621664 – – 259 68.5 1621664(0)

80 320 30 2284149 – – 409 99.8 2284149(0)

80 400 34 988166 – – 231 42.0 988166(0)

80 480 38 751344 – 2498 239 31.2 751344(0)

80 560 41 458205 – 1372 163 18.7 458205(0)

80 640 45 608006 – 1453 201 25.5 608006(0)

80 720 48 471433 – 1106 186 19.5 471433(0)

80 800 51 438636 – 843 166 18.0 438636(0)

and the one with pruning and nibbling succeeds on all of the 16 instances within
7 min each.

The heuristic algorithm is even faster and the list it generates is complete
for all the tested instances listed here, as can be confirmed by the last column
of the table. We cannot, however, expect this phenomenon to always happen:
there do exist instances on which the heuristic algorithm fails to generate the
complete list.

6.3 Treewidth Algorithms

We compared the performances of our algorithms with the PID algorithm in [17].
The implementation of the PID algorithm used in this experiment is essentially
the same as the one reported in [17] except in the following two points. (1) The
implementation used here does not incorporate the safe separator preprocessing,
which was an essential part of the implementation described in [17]. This is,
however, inessential in our experiments where the intention is to measure the
solution ability of the basic “engine” and the instances used do not have useful
safe separators. (2) We use a new implementation of the “block sieve” data
structure [17], which is the same as the one used in the new algorithms.

Table 4 shows the performances of the PID and our algorithms on the random
graph instances.

The advantages of our algorithms are clear. For instances with up to 80
vertices, all of our algorithms computed the exact treewidth, while the PID

234 H. Tamaki

Table 4. Performances of PID and our algorithms on random graphs with 6-h timeout:
UB and LB are the upper and lower bounds on the treewidth, respectively, computed
by the respective method; the time listed is that of the last improvement

|V | |E| tw PID Ascend Descend Alternate

UB LB time (secs) UB LB time (secs) UB LB time (secs) UB LB time (secs)

40 120 14 14 14 0.530 14 14 0.505 14 14 0.325 14 14 0.335

40 160 18 18 18 0.558 18 18 0.992 18 18 0.483 18 18 0.621

40 200 20 20 20 0.287 20 20 0.664 20 20 0.308 20 20 0.617

40 240 22 22 22 0.203 22 22 0.536 22 22 0.232 22 22 0.379

40 280 24 24 24 0.122 24 24 0.429 24 24 0.221 24 24 0.300

40 320 25 25 25 0.068 25 25 0.330 25 25 0.155 25 25 0.279

40 360 27 27 27 0.058 27 27 0.297 27 27 0.166 27 27 0.267

40 400 28 28 28 0.049 28 28 0.276 28 28 0.125 28 28 0.244

50 150 16 16 16 9.24 16 16 1.97 16 16 1.67 16 16 2.34

50 200 20 20 20 6.09 20 20 2.52 20 20 1.48 20 20 3.46

50 250 24 24 24 6.28 24 24 3.54 24 24 1.71 24 24 2.15

50 300 26 26 26 1.26 26 26 2.51 26 26 1.04 26 26 2.12

50 350 29 29 29 0.974 29 29 2.95 29 29 1.38 29 29 2.04

50 400 31 31 31 0.590 31 31 2.27 31 31 0.949 31 31 1.34

50 450 32 32 32 0.224 32 32 1.51 32 32 0.528 32 32 1.09

50 500 34 34 34 0.198 34 34 1.23 34 34 0.615 34 34 1.06

60 180 18 18 18 190 18 18 5.90 18 18 4.08 18 18 4.10

60 240 22 22 22 168 22 22 7.61 22 22 5.19 22 22 5.75

60 300 27 27 27 263 27 27 18.2 27 27 10.5 27 27 16.8

60 360 30 30 30 124 30 30 15.0 30 30 8.26 30 30 14.6

60 420 33 33 33 75.7 33 33 15.2 33 33 7.70 33 33 10.8

60 480 34 34 34 2.96 34 34 7.47 34 34 3.32 34 34 6.87

60 540 38 38 38 7.19 38 38 10.9 38 38 5.44 38 38 10.5

60 600 40 40 40 3.85 40 40 8.84 40 40 4.19 40 40 5.89

70 210 22 – 22 17808 22 22 255 22 22 129 22 22 166

70 280 28 – 28 16959 28 28 749 28 28 802 28 28 1225

70 350 33 – 33 16839 33 33 806 33 33 342 33 33 432

70 420 37 – 37 8173 37 37 733 37 37 656 37 37 870

70 490 38 38 38 2278 38 38 151 38 38 66.0 38 38 204

70 560 42 42 42 3211 42 42 214 42 42 151 42 42 225

70 630 45 45 45 3052 45 45 185 45 45 137 45 45 122

70 700 47 47 47 1178 47 47 131 47 47 56.5 47 47 116

80 240 25 – 21 4812 25 25 3283 25 25 1396 25 25 1548

80 320 31 – 27 7095 31 31 6516 31 31 3167 31 31 3632

80 400 35 – 33 15647 35 35 1573 35 35 682 35 35 1781

80 480 39 – 38 15458 39 39 1377 39 39 691 39 39 1578

80 560 42 – 42 16767 42 42 813 42 42 339 42 42 650

80 640 46 – 46 19764 46 46 1150 46 46 734 46 46 1339

80 720 49 49 49 20958 49 49 934 49 49 362 49 49 1099

80 800 52 52 52 17740 52 52 842 52 52 296 52 52 559

90 270 27 – 21 6210 – 26 8755 27 – 1357 30 26 16522

90 360 35 – 27 12283 – 32 6785 35 – 109 35 32 10972

90 450 40 – 33 19743 – 37 7398 40 – 252 40 37 9870

90 540 45 – 38 14458 – 42 7300 46 – 14896 47 42 10458

90 630 49 – 43 17118 – 47 10983 50 – 17.9 50 47 12893

90 720 52 – 47 16713 – 51 10294 52 – 128 53 51 12485

90 810 55 – 51 18279 – 55 15370 55 55 15284 55 55 19642

90 900 57 – 54 11509 57 57 8684 57 57 11450 57 57 3864

Computing Treewidth via Exact and Heuristic Lists of Minimal Separators 235

algorithm timed out (6 h) for most of the instances with 80 vertices. Even for
many instances with 70 vertices, it only computed the tight lower bound but
failed to produce the matching upper bound. For instances with 90 vertices,
the lower bounds computed by the PID algorithm is much weaker than those
computed by Ascend.

The results for those large instances that are not exactly solved by our algo-
rithms show the respective advantages and disadvantages of our three algorithms:
Ascend gives only lower bounds, Descend only upper bounds, and, though
Alternate gives both, the bounds are sometimes weaker than computed by
Ascend or Descend. It is worth noting that Descend often produces very
quickly an upper bound which coincides with the exact treewidth, although it
times out in its effort to show the tightness.

The results for the DIMACS instances are listed in Table 5. For the first four
instances, the advantage of our algorithms is clear. The result for “myciel7” is
particularly dramatic: PID can compute a very weak lower bound of 39 with
6-h time-out, while all of our three algorithms compute the exact treewidth of
66 in 10 or a few more minutes. Although the computation for “queen11 11”
times out with all the algorithms, Descend discovers the tight upper bound in
3 h and, though not shown in the table, establishes the matching lower bound
in 30 more hours. For these two instances, the exact treewidth was previously
unknown. We should note, however, that our algorithms are as helpless as PID
for the last two large instances, which are random graphs with 250 vertices and
are far from being solvable with the current state of the art.

Overall, the experimental results show the effectiveness of our approach that
combines msDP with exact and heuristic listing of minimal separators.

Table 5. Performances of PID and our algorithms on some DIMACS graph coloring
instances with 6-h timeout: time (in seconds) is that of the last improvement

name |V | |E| tw PID Ascend Descend Alternate

UB LB time UB LB time UB LB time UB LB time

myciel6 95 755 35 35 35 617 35 35 3.90 35 35 1.89 35 35 3.09

myciel7 191 2360 66 – 39 10583 66 66 779 66 66 652 66 66 584

queen10 10 100 1470 72 – 70 10792 72 72 12363 72 72 3267 72 72 8224

queen11 11 121 1980 87 – 79 14199 – 81 19525 87 – 9114 88 81 20216

DSJC125.1 125 736 – – 38 16140 – 45 15259 65 – 0.025 65 37 12758

DSJC125.5 125 3891 108 108 108 1275 108 108 581 108 108 176 108 108 590

DSJC250.1 250 3218 – – 71 15859 – 72 19840 177 – 0.235 177 51 10598

DSJC250.5 250 15668 – – 215 20218 – 212 20732 230 – 48.8 231 211 19167

Acknowledgments. A preliminary part of this work was reported and discussed at
NWO-JSPS joint seminar “Computation on Networks with a Tree-Structure: From
Theory to Practice”, held in September 2018. The author thanks Hans Bodlaender
and Yota Otachi for organizing this seminar.

236 H. Tamaki

References

1. Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings
in a k-tree. SIAM J. Algebr. Discret. Methods 8, 277–284 (1987)

2. Berry, A., Bordat, J.-P., Cogis, O.: Generating all the minimal separators of a
graph. Int. J. Found. Comput. Sci. 11(03), 397–403 (2000)

3. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996)

4. Bodlaender, H.L., Fomin, F.V., Koster, A.M.C.A., Kratsch, D., Thilikos, D.M.: On
exact algorithms for treewidth. ACM Trans. Algorithms 9(1), 12 (2012)

5. Bodlaender, H.L., Koster, A.M.C.A.: Combinatorial optimization on graphs of
bounded treewidth. Comput. J. 51(3), 255–269 (2008)

6. Bouchitté, V., Todinca, I.: Treewidth and minimum fill-in: grouping the minimal
separators. SIAM J. Comput. 31(1), 212–232 (2001)

7. Fomin, F., Villanger, Y.: Treewidth computation and extremal combinatorics.
Combinatorica 32(3), 289–308 (2012)

8. Gogate, V., Dechter, R.: A complete anytime algorithm for treewidth. In: Proceed-
ings of the 20th Conference on Uncertainty in Artificial Intelligence. AUAI Press
(2004)

9. Heggernes, P.: Minimal triangulations of graphs: a survey. Discret. Math. 306(3),
297–317 (2006)

10. Johnson, D.S., Trick, M.A. (eds.): Cliques, coloring, and satisfiability: second
DIMACS implementation challenge. Series in Discrete Mathematics and Theoret-
ical Computer Science, American Mathematical Society, vol. 26. American Math-
ematical Society (1996)

11. Kloks, T., Kratsch, D.: Listing all minimal separators of a graph. SIAM J. Comput.
27(3), 605–613 (1998)

12. Dell, H., Husfeldt, T., Jansen, B.M.P., Kaski, P., Komusiewicz, C., Rosamond,
F.: The first parameterized algorithms and computational experiments challenge.
In: Proceedings of the 11th International Symposium on Parameterized and Exact
Computation (IPEC 2016), pp. 30:1–30:9 (2017)

13. Dell, H., Komusiewicz, C., Talmon, N., Weller, M.: The PACE 2017 parameter-
ized algorithms and computational experiments challenge: the second iteration.
In: Proceedings of the 12th International Symposium on Parameterized and Exact
Computation (IPEC 2017), pp. 30:1–30:12 (2018)

14. Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree-width.
J. Algorithms 7, 309–322 (1986)

15. Robertson, N., Seymour, P.D.: Graph minors. XX Wagner’s conjecture. J. Comb.
Theory Series B 92(2), 325–357 (2004)

16. Takata, K.: Space-optimal, backtracking algorithms to list the minimal vertex sep-
arators of a graph. Discret. Appl. Math. 158(15), 1660–1667 (2010)

17. Tamaki, H.: Positive-instance driven dynamic programming for treewidth. J.
Comb. Optim., October 2018. https://doi.org/10.1007/s10878-018-0353-z

https://doi.org/10.1007/s10878-018-0353-z

Fast Public Transit Routing
with Unrestricted Walking
Through Hub Labeling

Duc-Minh Phan1 and Laurent Viennot2(B)

1 Got It Vietnam, Hanoi, Vietnam
minhp@got-it.ai

2 Inria – Paris University, Paris, France
laurent.viennot@inria.fr

Abstract. We propose a novel technique for answering routing queries
in public transportation networks that allows unrestricted walking. We
consider several types of queries: earliest arrival time, Pareto-optimal
journeys regarding arrival time, number of transfers and walking time,
and profile, i.e. finding all Pareto-optimal journeys regarding travel time
and arrival time in a given time interval. Our techniques uses hub label-
ing to represent unlimited foot transfers and can be adapted to both
classical algorithms RAPTOR and CSA. We obtain significant speedup
compared to the state-of-the-art approach based on contraction hier-
archies. A research report version is deposited on HAL with number
hal-02161283.

Keywords: Route planning · Public transportation · Hub labeling

1 Introduction

Despite remarkable progress of route planning algorithms in road networks [4],
public transit routing still requires specific algorithms due to its temporal nature.
Various efficient methods were proposed such as CSA [12], RAPTOR [11], Trans-
fer Pattern [3,5], PTL [8]. They all consider a graph with two types of edges:
the connections that correspond to a vehicle traveling from a stop to the next
one, and the transfers that correspond to walking from a stop to another nearby
stop. While each connection is scanned only once per query, transfer edges from
a stop are considered each time an event is detected at the stop. Efficiency of
such techniques thus relies on the sparsity of the transfer graph. Additionally,
they all share the requirement that the graph resulting from walking transfers is
transitively closed and are generally experimented with a sparse transfer graph
by restricting transfers to very short distances only. Allowing unrestricted trans-
fers, that is walking from a stop to any other stop, is indeed out of reach with

D.-M. Phan—This work was mostly performed while this author was at Irif – Paris
University, CNRS, France.
L. Viennot—Supported by Irif laboratory from CNRS and Paris University, and ANR
project Multimod (ANR-17-CE22-0016).

c© Springer Nature Switzerland AG 2019
I. Kotsireas et al. (Eds.): SEA2 2019, LNCS 11544, pp. 237–247, 2019.
https://doi.org/10.1007/978-3-030-34029-2_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34029-2_16&domain=pdf
http://orcid.org/0000-0003-4199-3101
https://doi.org/10.1007/978-3-030-34029-2_16

238 D.-M. Phan and L. Viennot

these methods although it would allow to find better answers. Indeed, recent
work [19] shows the benefit of using unrestricted walking over sparse transfers
by measuring that it can reduce travel time by hours in Switzerland and Ger-
many networks.

This paper is devoted to enable unrestricted walking in efficient public tran-
sit routing. The motivation for considering unrestricted walking goes beyond the
gain of quality in the answers. It is indeed a fundamental step towards comput-
ing multimodal journeys as it is considered as a main bottleneck in [7]. Note
that bicycle or taxi transfers can be handled similarly as walking transfers with
different speed and cost. Techniques developed for unrestricted walking can thus
generalize to other modes of transportation.

A first step towards unrestricted walking was made by MCR [7] and
UCCH [13] algorithms that both use a contracted version of the full walking
graph, inspired by contraction hierarchies [14], for representing the full walking
graph which is much bigger. However, this contracted graph is not transitively
closed and has to be globally scanned several times during a query. Accelerating
such computations with unrestricted walking is still challenging as multi-criteria
or profile queries require seconds to be performed on practical networks with
these methods.

In static graphs such as road networks, hub labeling [1,10] (also called 2-hop
labeling [6]) is a remarkable technique that achieves state-of-art response-time to
shortest path queries. It consists in selecting for each node a small set of access
nodes called hubs such that any shortest path can be described as a two hop
travel through a common hub of the extremities. Intersecting the two lists of hubs
of a source and a destination indeed allows to find efficiently the shortest path
between them. Such technique was used in PTL [8] on the time expanded graph
representation of a network to obtain fast transit routing. A similar approach is
followed by TTL [20] which revisits hierarchical hub labeling [2] in the context of
public transit networks. However, these approaches still assume sparse transfers.
Note that the time expanded graph representation duplicates transfer edges from
a stop for all events at that stop, and its size can blow up with dense transfer
graphs.

In this work, we propose a new approach for handling unrestricted walking
in public transit routing based on a different usage of hub labeling. It basically
consists in decomposing walking transfers into two consecutive hops. We use
hub labeling in the classical setting of a static graph but in a novel manner
compared to distance or shortest path queries: we scan hub lists to propagate
reachability information. Interestingly, the technique can easily be adapted to
both RAPTOR and CSA based algorithms which are the two main classical
approaches with restricted transfers. HLRaptor, our variant of RAPTOR obtains
significant speedup compared to MCR. HLCSA, our variant of CSA obtains
competitive running times for earliest arrival time and profile queries.

The paper is organized as follows. Section 2 defines public transit networks,
describes briefly RAPTOR and CSA algorithms, and introduces hub labeling.
Sections 3 and 4 present HLRaptor and HLCSA respectively. We describe in

Fast Public Transit Routing with Unrestricted Walking 239

Sect. 5 public transit data used to evaluate our algorithms. The results of our
experiments are presented in Sect. 6.

2 Preliminaries

We define a public transit network with a triple (S, T,R) representing trips of
vehicles (buses, trains, etc.): S is the set of stops where passengers can enter
or disembark from a vehicle, T is the set of trips made by vehicles and are
grouped into routes represented by the set R. More precisely, a trip t is given
by a sequence of stops served by a vehicle and for each stop u in the sequence,
an arrival time τarr(t, u) of the vehicle at stop u and a departure time τdep(t, u)
of the vehicle from stop u. A route r consists in a set of trips with same stop
sequence. This set of trips can be represented by a two-dimensional timetable
where each line lists the arrival and departure times τarr(t, u), τdep(t, u) of a trip
t for all stops u in the sequence. Note that the sequence of times listed in a line
is non-decreasing. Similarly to RAPTOR authors [11], we assume that no trip of
a route can overtake another trip of the same route. In other words, the lines of
the timetable can be sorted so that each column is non-decreasing. This property
can easily be enforced by splitting the set of trips with same stop sequence into
smaller subsets of trips if necessary.

The public transit network is complemented by a weighted footpath graph
G = (V,E, τw) with S ⊆ V , and τw(u, v) denotes the time needed to walk from a
node u to a node v. In the unrestricted walking setting, the graph is not assumed
to be transitively closed and we expect that V is much larger than S. Each edge
(u, v) ∈ E typically corresponds to a segment of street than can be traversed by
walking. We let dG(u, v) denote the length of a shortest path in G from u to v,
i.e., the minimum walking time from u to v.

We consider several journey computation problems. Given a source stop s
and a target stop t, a journey from s to t is an alternating sequence of trips
and footpaths in the public transit network, which starts with s and ends with t.
The goal of public transit planning is to compute journeys from s to t optimizing
one or several criteria. Given a departure time τ , an earliest arrival time query
consists in computing a journey with minimum arrival time at t that departs
from s at τ or later. In a multi-criteria query, we are additionally interested in
the number of transfers and the overall walking time of the journey, and ask for
all Pareto-optimal journeys. Recall that a journey is Pareto-optimal if no other
journey is better on one criterion and at least as good on all criteria. In a profile
(or range) query, we ask for journeys whose departure time falls within a given
time interval while optimizing both departure time and arrival time (where later
departure time is considered better). The required answer again consists in all
Pareto-optimal journeys within the given time interval.

The RAPTOR algorithm and its variants [7,11] compute journeys starting
from a given stop at a given time in rounds, where each round extends partial
journeys by one trip. More precisely, each round consists of two phases: the first
phase explores each route of the public transit network and extends partial jour-
neys arriving at stops served by a route using the first trip arriving at each stop.

240 D.-M. Phan and L. Viennot

In the second phase, each partial journey arriving at a stop is extended by walk-
ing paths from that stop. In the regular RAPTOR version [11], single-edge paths
only are considered and the footpath graph is assumed to be transitively closed.
In the unrestricted walking setting [7], a multi-source Dijkstra is performed on a
contracted version of the footpath graph in order to find all stops whose arrival
times can be improved by walking from the stops that were scanned during the
first phase.

The Connection Scan Algorithm (CSA) [12] breaks each trip into consecutive
connections, which represent a vehicle traveling from a stop to the next one in
the stop sequence of the trip. All connections are sorted by departure times in a
pre-computation step. The algorithm scans all the connections and transfers to
update the earliest arrival time at each reachable stops. More precisely, for each
connection c in increasing order of departure time, we need to check whether a
passenger can travel on c or not: either the trip containing c has been reached
earlier, or we can arrive at the departure stop of c before its departure time.
Then we update the arrival time at the arrival stop of c if necessary, and scan
the footpath transfers from the arrival stop of c. Similarly to RAPTOR, CSA
also requires the footpath graph to be transitively closed.

Two-hop labeling [6], or equivalently, hub labeling [1,10], for a (weighted,
directed) graph G consists in assigning two subsets of nodes H−(u) and H+(v)
to each node u. Nodes in H−(u) (resp. H+(u)) are called in-hubs (resp. out-hubs)
and serve as intermediate nodes to reach u (resp. to leave u). The following two-
hop property is required: for any pair u, v of nodes, there must exist a common
hub h ∈ H+(u) ∩ H−(v) lying on a shortest path from u to v, i.e., satisfying
dG(u, h) + dG(h, v) = dG(u, v). Equivalently, H+ (resp. H−) can be seen as a
graph with vertex set V and edges (u, v) with weight dG(u, v) for every pair u, v
such that v ∈ H+(u) (resp. u ∈ H−(v)). The two-hop property can then be stated
as H+ ·H− = G∗, where G∗ denotes the transitive closure of G and · denotes the
graph product resulting from the (min,+)-matrix product of adjacency matrices
(the weight of an edge (u,w) in H+·H− is minv∈H+(u)∩H−(w) dG(u, v)+dG(v, w)).
In other words, any shortest path in G corresponds to a two-hop path in H+∪H−.
The interest for such representation comes from the fact that it is possible to
compute very small hub sets (less than 100 nodes on average) in large road
networks and footpath graphs [9], and thereby obtain the fastest known practical
oracles for computing distances and shortest paths in such networks [4].

3 HLRaptor: RAPTOR with Two-Hop Transfers

Using a hub labeling H−,H+ of the footpath graph G, we propose the following
modification of RAPTOR that we call HLRaptor. We replace the second phase
of a round by two sub-phases: in the first sub-phase we scan every stop u for
which arrival time τu was improved in the regular first phase of the round, and
update arrival time at its out-hubs h ∈ H+(u) to min {τh, τu + τw(u, h)}. In
the second sub-phase, we scan every hub h whose arrival time was improved in
the first sub-phase and update arrival time at nodes v such that h ∈ H−(v) to
min {τv, τh + τw(h, v)}.

Fast Public Transit Routing with Unrestricted Walking 241

The correctness of HLRaptor comes from the two-hop property of the hub
labeling that ensures H+ · H− = G∗. Our two sub-phases using H+ and H− are
thus equivalent to the second phase of the regular RAPTOR algorithm using the
transitive closure G∗ of G. However, its performance depends on the out-degrees
of H+ and H− rather than that of G∗.

Target Pruning Optimization. The lists H−1
− (h) = {v | h ∈ H−(v)} and

H+(u) can be pre-computed for all u, h ∈ V . Additionally, these lists can be
sorted according to walking time from u (resp. h) in non-decreasing order. This
enables a target pruning optimization where we stop scanning a list as soon as
the arrival time computed for a node in the list exceeds the best arrival time
known at the target.

HLprRaptor: Profile Queries with HLRaptor. We can follow the same
approach as [19] to compute all Pareto-optimal journeys with respect to depar-
ture time and arrival time in a given interval of time. The difference is that we
use HLRaptor instead of MCR. The idea is to use HLRaptor to compute the best
arrival time τa when starting at a given time τ . Then we use a reverse version of
HLRaptor (or simply a reversed version of the transit data) to compute the last
departure time τd such that arrival at τa is still possible. We then repeat this
procedure for departure time τd+ε for sufficiently small ε (we simply use ε = 1 s,
which is the time unit in our datasets). We iterate this until all Pareto-optimal
journeys in the given time interval have been found.

HLmcRaptor: HLRaptor with Multiple Criteria. To deal with more cri-
teria than arrival time and number of transfers, we can keep multiple non-
dominating labels for each stop u in round k in a bag structure similarly to
McRAPTOR [11]. For each route r with a stop improved in the previous round,
we scan the first trip departing after any improved arrival time at a stop u of
the route and update bags accordingly at the stops served by the trip after u.
In the second phase of the round, each newly inserted label is first propagated
along out-hubs links and then newly inserted labels at hubs are propagated along
in-hubs links similarly. We can adapt local and target pruning as in McRAP-
TOR. We can also adapt our target pruning optimization specific to HLRaptor
to stop scanning hub lists as soon as the propagated label is dominated by the
destination bag.

4 HLCSA: Connection Scan with Two-Hop Transfers

Given a hub labeling H+,H− of the walking graph G, we propose the following
modification of CSA. For an earliest arrival time query from s to t, we first scan
out-hubs H+(s) and update arrival time to them by walking from s. Similarly
to CSA, we then scan connections by non-decreasing departure time. When
considering a connection c, we first scan the in-hubs H−(u) of its departure stop

242 D.-M. Phan and L. Viennot

u and update the arrival time at u through walking from a hub. The connection
can be boarded if the trip has been marked as boarded or if the arrival time at
u plus the minimum transfer time at u is no later than the departure time of c.
In that case, we update the arrival time at the arrival stop v of c and scan its
out-hubs H+(v) to update their arrival times through walking from v. Finally,
we scan the in-hubs H−(t) of the destination t and update the arrival time at t
by walking from any of them.

The correctness of the algorithm comes again from the two-hop property of
hubs. For any possible transfer from a connection c to another connection d in a
journey, c must be considered before d. Let h denote a common hub for the arrival
stop u of c and the departure stop v of d such that dG(u, v) = dG(u, h)+dG(h, v)
according to the two-hop property. After c is considered, arrival time at h is thus
no more than τ + dG(u, h), where τ is the arrival time of c at u and dG(u, h)
is the walking time from u to h. When d is then considered, arrival time to v
is updated to τ + dG(u, h) + dG(h, v) = τ + dG(u, v) as if a transfer from u to
v had been considered. A similar reasoning applies for a journey starting with
a walk from s or ending with a walk to t. HLCSA thus behaves as in a regular
CSA execution where all transitive transfers in G∗ would be considered.

Optimization. In addition to all CSA classical optimizations, we can again sort
out-hub lists in non-decreasing order of walking time, and apply target pruning
similarly as in HLRaptor. In addition, we scan the in-hub list of the departure
stop of a connection when the trip is not marked as boarded. Again, this list
can be sorted by non-decreasing walking time and we stop scanning the list as
soon as the walking time from the hub exceeds the estimated travel time to the
departure stop (local pruning).

HLprCSA: Profile Queries with HLCSA. Similarly to the original exten-
sion of CSA to solve the profile problem [12], we store for each stop a bag contain-
ing Pareto-optimal pairs of departure time at stop with associated arrival time
at destination. We also store such information for hubs. We also consider connec-
tions in non-increasing order of departure time. When scanning a connection c,
we use the bags of the out-hubs of its arrival stop to obtain the best arrival time
through walking after c. If the arrival time of the trip of c is improved, we then
update the bags of the in-hubs of the departure stop of c for that arrival time
with departure time corresponding to walking from the hub for boarding right
in time the connection. We also scan in-hubs of the destination at the beginning
of the procedure and out-hubs of the source at end in order to take care of walk-
ing from source and to destination. The correctness of the modification follows
similar lines as for HLCSA.

Fast Public Transit Routing with Unrestricted Walking 243

5 Public Transit Data

To evaluate the algorithms, we use datasets from three locations: London, Paris,
and Switzerland. The dataset for London was obtained from Transport for Lon-
don [18]. The dataset for Paris was obtained from Open Data RATP [16]. And
the dataset for Switzerland was provided by Wagner and Zündorf [19]1. The
extracted dates are 2015-11-06 for London and 2018-03-30 for Paris.

The public transit data of Paris already has transfers between stops, we sim-
ply need to make the transfer graph transitively closed for appropriate use with
RAPTOR and CSA. However, the dataset of London does not have transfers,
thus we have created transfers by linking any pair of stops separated by 75 m of
walk one from another. This threshold was chosen to obtain a transitively closed
transfer graph with similar size as in previous works. The graph obtained by
transitive closure of restricted transfers is called transfer graph in the sequel.

The footpath graphs for London and Paris were extracted from Geofabrik’s
data [15], which is itself extracted from OpenStreetMap’s data [17]. We call walk-
ing graph the union of this unrestricted footpath graph and the transfer graph.
The method to merge a stop of the public transit network into the walking graph
is the following. For each stop p, we find the closest node v in the walking graph.
If the distance between p and v is less than 5 m, we identify p and v, connecting
p with the in- and out-neighbors of v using the same weights. Otherwise, we
find the 5 closest nodes of p in the walking graph, and connect p with those at
distance 100 m at most. If there are no nodes in the walking graph within the
radius of 100 m from p, then p is isolated. Walking times are computed according
to a walking speed of 4 km/h. Table 1 provides statistics concerning the datasets.
The columns stops and transfers provide the number of nodes and edges in the
transitively closed restricted walking graph, while the last two columns give the
numbers of vertices and edges in the unrestricted walking graphs.

Table 1. Dataset statistics

Routes Trips Events Stops Transfers Vertices Edges

London 1622 122593 4695285 19746 46566 281167 840880

Paris 1973 78757 1915253 23519 362291 533470 1666386

Switzerland 13930 369744 4740869 25427 38265 604230 1882551

We computed hub labelings of the walking graphs using the sampling-based
algorithm by Delling et al. [9] (1–2 h of pre-computation per graph). Table 2
provides statistics on the degrees of transfer graphs vs. in-hubs and out-hubs
graphs: δ+(Tr) and Δ+(Tr) designate the average and maximum out-degree
resp. of the transfer graph Tr, δ+(H+) and Δ+(H+) designate the average and
maximum out-degree resp. of the out-hub graph H+, δ−(H−) and Δ−(H−)

1 https://i11www.iti.kit.edu/PublicTransitData/Switzerland/.

https://i11www.iti.kit.edu/PublicTransitData/Switzerland/

244 D.-M. Phan and L. Viennot

designate the average and maximum in-degree resp. of the in-hub graph H−.
We let |H+| and |H−| designate the number of edges in H+ and H− resp. while
|V (H)| designates the number of hubs (including stops). We note that the size of
hub lists is comparable to the number of events and their storage do not increase
too much space requirements.

Table 2. Transfers, out-hubs and in-hubs degrees.

δ+(Tr) Δ+(Tr) δ+(H+) Δ+(H+) δ−(H−) Δ−(H−) |V (H)| |H+| |H−|

London 2.36 20 70 150 71 142 65059 1393759 1395024

Paris 15.4 205 118 196 118 210 60519 2770336 2798315

Switzerland 1.5 26 78 229 79 230 117793 2005312 2005312

We also prepared two sets of roughly 1000 queries for each dataset. In the first
one, source and destinations are selected independently uniformly at random
among all stops similarly to experiments in [7,11,12]. In the second one, we
select sources and destinations similarly to [19]: one hundred sources are selected
uniformly at random. For each source, we order the destinations by increasing
walking distance and select a random one uniformly among those with rank
in [2i, 2i+1] for i = 2 . . . 14. For Switzerland, we use exactly the same pairs as
in [19] where sources are selected with probability proportional the number of
trips serving them. In both sets, we additionally selected uniformly at random a
departure time in [0, 24×3600] for each source-destination pair. We will reference
the two sets of queries as “uniform” and “rank” respectively. Note that most of
the uniform queries (those in the uniform set) correspond to high rank pairs (212

or higher) while the rank set of queries has a strong bias towards low rank pairs.
The datasets are made publicly available2.

6 Experiments

Our algorithms were implemented in C++ and compiled with GCC version 7.2.0
(with flag -O3). Experiments were conducted on one core of a dual 10-core Intel
Xeon E5-2670-v2 with with 25 MiB of L3 cache and 64 GiB of DDR3-1866 RAM.
The code is made available3.

Table 3 presents the average running times in milliseconds of HLRaptor and
HLCSA variants on the three datasets. We indicate for each algorithm which crite-
ria are optimized: arrival time (Arr.), number of transfers (Nb. tr.), overall walking
time (Walk), and whether the query spans a range of departure times (Range).

In the restricted walking setting, our algorithms are equivalent to the corre-
sponding Raptor or CSA based version. On the London instance with restricted
walking and uniform queries, we obtain similar results as Raptor [11] for ear-
liest arrival, multi-criteria and 2 h range queries: 5.1 ms vs. 7.3 ms, 87.3 ms vs.
2 https://files.inria.fr/gang/graphs/public transport/.
3 https://github.com/lviennot/hl-csa-raptor.

https://files.inria.fr/gang/graphs/public_transport/
https://github.com/lviennot/hl-csa-raptor

Fast Public Transit Routing with Unrestricted Walking 245

Table 3. Average running times of HLRaptor and HLCSA.

London Paris

Restricted Unrestr. Restricted Unrestr.
Algorithm R

an
ge

A
rr
.

N
b.

tr
.

W
al
k

Unif. Rank Unif. Rank Unif. Rank Unif. Rank
HLRaptor ◦ • • ◦ 5.1 1.9 26.4 8.7 3.0 1.3 19.5 5.5
HLCSA ◦ • ◦ ◦ 2.2 1.1 33.1 16.8 1.0 0.5 13.8 6.5
HLmcRaptor ◦ • • • 87.3 33.0 417 140 60.0 25.9 248 85.4
HLprRaptor (2h) • • • ◦ 76.5 31.1 685 237 53.0 23.1 652 205
HLprCSA (2h) • • ◦ ◦ 47.1 28.4 1012 539 60.9 35.4 628 330
HLprRaptor (24h) • • • ◦ 805 322 7522 2524 567 262 7441 2511
HLprCSA (24h) • • ◦ ◦ 312 217 11644 8453 404 298 9523 7902

Switzerland

Restricted Unrestr.
Algorithm R

an
ge

A
rr
.

N
b.

tr
.

W
al
k

Unif. Rank Unif. Rank
HLRaptor ◦ • • ◦ 13.4 4.0 59.4 7.6
HLCSA ◦ • ◦ ◦ 6.6 2.9 54.2 19.4
HLmcRaptor ◦ • • • 150 62 854 229
HLprRaptor (2h) • • • ◦ 47.7 16.4 402 83.9
HLprCSA (2h) • • ◦ ◦ 51.9 32.1 563 240
HLprRaptor (24h) • • • ◦ 293 111 3461 751
HLprCSA (24h) • • ◦ ◦ 128 96 4173 3076

107 ms, and 76.5 ms vs. 87 ms, respectively (we compare times reported in Table 3
to times reported in [11]). Our running times are 15–30% faster, probably due
to the use of more recent hardware. We also obtain similar results as CSA [12]
for earliest arrival and 24 h range queries: 2.2 ms vs. 1.2 ms and 312 vs. 107 ms.
Our running times are 2–3 times slower than those reported in [12], probably
due to less optimized code.

In the unrestricted walk setting, our algorithms are significantly faster than
previous works. On the London instance with uniform queries and unrestricted
walking, HLmcRaptor is 3.4 times faster than times reported for MCR in [7]
(417 ms vs. 1438 ms) and HLRaptor is 1.7 times faster than the MR-∞ variant
of MCR (26.4 ms vs. 44.4 ms). On the Switzerland instance with ranked based
queries and unrestricted walking, HLprRaptor computes profile queries roughly
7 times faster than the profile variant of MCR proposed in [19]: 751 ms vs. 5.5 s
approximately. Most uniform queries have high rank, and HLprRaptor obtains
their profiles in roughly 3.5 s compared to 20 s approximately as reported in [19].

Interestingly, our hub-labeling-based versions of CSA obtain rather good per-
formances with respect to Raptor based versions in the unrestricted walk setting:
they are nearly as fast or even faster on uniform queries, and at most 2–3 times
slower on rank queries. (Note that on low rank queries, Raptor-based solutions
benefit from target pruning.)

246 D.-M. Phan and L. Viennot

Table 4. Average/median gain of unrestricted walking on travel time compared to
restricted walking.

Unif. Unif. 6 h–20 h Rank Rank 6 h-20 h

London 12%/5.8% 6.9%/2.9% 24%/13% 16%/5.0%

Paris 22%/15% 15%/13% 31%/21% 22%/17%

Switzerland 47%/46% 37%/39% 47%/47% 35%/37%

Gain of Unrestricted Walking. We confirm the results of [19] showing the
benefit of considering unrestricted walking. Table 4 presents the percentage of
time gained by using a journey with unrestricted walking compared to the travel
time with restricted walking. The average gain ranges from 12% to 47% on uni-
form queries depending on the dataset. City networks (especially London) seem
to benefit less from unrestricted walking than the train network of Switzerland.
As observed in [19], the gain is less important during daytime that is queries
with departure time in the range 6 h-20 h here. We observe a higher gain on low
rank queries. The median gain ranges from 13% to 47% for them. More precisely,
the gain is at least 13% on half of the low rank queries for London, 21% for Paris
and 47% for Switzerland.

7 Conclusion

We have demonstrated the efficiency of using a two-hop representation of unre-
stricted walk transfers in conjunction with CSA and RAPTOR algorithm. This
shows that is possible to enable unrestricted walking in practical public transit
routing engines and opens new perspectives for allowing complex multimodal
scenarios. We also want to further investigate how this approach could be inte-
grated in other efficient public transit routing algorithms.

References

1. Abraham, I., Delling, D., Goldberg, A.V., Werneck, R.F.: A hub-based labeling
algorithm for shortest paths in road networks. In: Pardalos, P.M., Rebennack,
S. (eds.) SEA 2011. LNCS, vol. 6630, pp. 230–241. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-20662-7 20

2. Abraham, I., Delling, D., Goldberg, A.V., Werneck, R.F.: Hierarchical hub label-
ings for shortest paths. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol.
7501, pp. 24–35. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
33090-2 4

3. Bast, H., et al.: Fast routing in very large public transportation networks using
transfer patterns. In: de Berg, M., Meyer, U. (eds.) ESA 2010. LNCS, vol. 6346, pp.
290–301. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15775-
2 25

https://doi.org/10.1007/978-3-642-20662-7_20
https://doi.org/10.1007/978-3-642-33090-2_4
https://doi.org/10.1007/978-3-642-33090-2_4
https://doi.org/10.1007/978-3-642-15775-2_25
https://doi.org/10.1007/978-3-642-15775-2_25

Fast Public Transit Routing with Unrestricted Walking 247

4. Bast, H., et al.: Route planning in transportation networks. In: Kliemann, L.,
Sanders, P. (eds.) Algorithm Engineering. LNCS, vol. 9220, pp. 19–80. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-49487-6 2

5. Bast, H., Hertel, M., Storandt, S.: Scalable transfer patterns. In: Proceedings of
the Eighteenth Workshop on Algorithm Engineering and Experiments, ALENEX
2016, pp. 15–29. SIAM (2016). https://doi.org/10.1137/1.9781611974317.2

6. Cohen, E., Halperin, E., Kaplan, H., Zwick, U.: Reachability and distance queries
via 2-hop labels. SIAM J. Comput. 32(5), 1338–1355 (2003). https://doi.org/10.
1137/S0097539702403098

7. Delling, D., Dibbelt, J., Pajor, T., Wagner, D., Werneck, R.F.: Computing
multimodal journeys in practice. In: Bonifaci, V., Demetrescu, C., Marchetti-
Spaccamela, A. (eds.) SEA 2013. LNCS, vol. 7933, pp. 260–271. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-38527-8 24

8. Delling, D., Dibbelt, J., Pajor, T., Werneck, R.F.: Public transit labeling. In:
Bampis, E. (ed.) SEA 2015. LNCS, vol. 9125, pp. 273–285. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-20086-6 21

9. Delling, D., Goldberg, A.V., Pajor, T., Werneck, R.F.: Robust distance queries
on massive networks. In: Schulz, A.S., Wagner, D. (eds.) ESA 2014. LNCS, vol.
8737, pp. 321–333. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-44777-2 27

10. Delling, D., Goldberg, A.V., Werneck, R.F.: Hub labeling (2-hop labeling). In: Kao,
M.Y. (ed.) Encyclopedia of Algorithms, pp. 932–938. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-1-4939-2864-4 580

11. Delling, D., Pajor, T., Werneck, R.F.: Round-based public transit routing. Transp.
Sci. 49(3), 591–604 (2015). https://doi.org/10.1287/trsc.2014.0534

12. Dibbelt, J., Pajor, T., Strasser, B., Wagner, D.: Connection scan algorithm. ACM
J. Exp. Algorithmics 23, 17 (2018). https://dl.acm.org/citation.cfm?id=3274661

13. Dibbelt, J., Pajor, T., Wagner, D.: User-constrained multimodal route planning.
ACM J. Exp. Algorithmics 19(1), (2014). https://doi.org/10.1145/2699886

14. Geisberger, R., Sanders, P., Schultes, D., Vetter, C.: Exact routing in large road
networks using contraction hierarchies. Transp. Sci. 46(3), 388–404 (2012). https://
doi.org/10.1287/trsc.1110.0401

15. Geofabrik. http://download.geofabrik.de/
16. Open Data RATP. https://data.ratp.fr/
17. OpenStreetMap. https://www.openstreetmap.org/
18. Transport for London Unified API. https://api.tfl.gov.uk/
19. Wagner, D., Zündorf, T.: Public transit routing with unrestricted walking. In: 17th

Workshop on Algorithmic Approaches for Transportation Modelling, Optimization,
and Systems, ATMOS OASICS, vol. 59, pp. 7:1–7:14 (2017). https://doi.org/10.
4230/OASIcs.ATMOS.2017.7

20. Wang, S., Lin, W., Yang, Y., Xiao, X., Zhou, S.: Efficient route planning on public
transportation networks: A labelling approach. In: Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data, SIGMOD 2015, pp.
967–982. ACM, New York (2015). https://doi.org/10.1145/2723372.2749456

https://doi.org/10.1007/978-3-319-49487-6_2
https://doi.org/10.1137/1.9781611974317.2
https://doi.org/10.1137/S0097539702403098
https://doi.org/10.1137/S0097539702403098
https://doi.org/10.1007/978-3-642-38527-8_24
https://doi.org/10.1007/978-3-319-20086-6_21
https://doi.org/10.1007/978-3-662-44777-2_27
https://doi.org/10.1007/978-3-662-44777-2_27
https://doi.org/10.1007/978-1-4939-2864-4_580
https://doi.org/10.1287/trsc.2014.0534
https://dl.acm.org/citation.cfm?id=3274661
https://doi.org/10.1145/2699886
https://doi.org/10.1287/trsc.1110.0401
https://doi.org/10.1287/trsc.1110.0401
http://download.geofabrik.de/
https://data.ratp.fr/
https://www.openstreetmap.org/
https://api.tfl.gov.uk/
https://doi.org/10.4230/OASIcs.ATMOS.2017.7
https://doi.org/10.4230/OASIcs.ATMOS.2017.7
https://doi.org/10.1145/2723372.2749456

Effective Heuristics for Matchings
in Hypergraphs

Fanny Dufossé1, Kamer Kaya2 , Ioannis Panagiotas3(B) , and Bora Uçar3,4

1 Inria Grenoble Rhône-Alpes, Montbonnot-Saint-Martin, France
fanny.dufosse@inria.fr

2 Sabanci University, Istanbul, Turkey
kaya@sabanciuniv.edu

3 ENS Lyon, Lyon, France
{ioannis.panagiotas,bora.ucar}@ens-lyon.fr

4 CNRS and LIP (UMR5668, CNRS - ENS Lyon - UCB Lyon 1 - INRIA),
Lyon, France

Abstract. The problem of finding a maximum cardinality matching in
a d-partite, d-uniform hypergraph is an important problem in combina-
torial optimization and has been theoretically analyzed. We first gener-
alize some graph matching heuristics for this problem. We then propose
a novel heuristic based on tensor scaling to extend the matching via
judicious hyperedge selections. Experiments on random, synthetic and
real-life hypergraphs show that this new heuristic is highly practical and
superior to the others on finding a matching with large cardinality.

Keywords: d-dimensional matching · Tensor scaling · Matching in
hypergraphs · Karp-Sipser heuristic

1 Introduction

A hypergraph H = (V,E) consists of a finite set V and a collection E of subsets
of V . The set V is called vertices, and the collection E is called hyperedges. A
hypergraph is called d-partite and d-uniform, if V =

⋃d
i=1 Vi with disjoint Vis

and every hyperedge contains a single vertex from each Vi. A matching in a
hypergraph is a set of disjoint hyperedges. In this paper, we investigate effective
heuristics for finding large matchings in d-partite, d-uniform hypergraphs.

Finding a maximum cardinality matching in a d-partite, d-uniform hyper-
graph for d ≥ 3 is NP-Complete; the 3-partite case is called the Max-3-DM

problem [27]. This problem has been studied mostly in the context of local
search algorithms [24], and the best known algorithm is due to Cygan [8] who
provides ((d + 1 + ε)/3)-approximation, building on previous work [9,21]. It is
NP-Hard to approximate Max-3-DM within 98/97 [3]. Similar bounds exist for
higher dimensions: the hardness of approximation for d = 4, 5 and 6 are shown
to be 54/53 − ε, 30/29 − ε, and 23/22 − ε, respectively [22].

Finding a maximum cardinality matching in a d-partite, d-uniform hyper-
graph is a special case of the d-Set-Packing problem [23]. It has been shown
that d-Set-Packing is hard to approximate within a factor of O(d/ log d) [23].
c© Springer Nature Switzerland AG 2019
I. Kotsireas et al. (Eds.): SEA2 2019, LNCS 11544, pp. 248–264, 2019.
https://doi.org/10.1007/978-3-030-34029-2_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34029-2_17&domain=pdf
http://orcid.org/0000-0001-8678-5467
http://orcid.org/0000-0002-1081-2411
http://orcid.org/0000-0002-4960-3545
https://doi.org/10.1007/978-3-030-34029-2_17

Effective Heuristics for Matchings in Hypergraphs 249

The maximum/perfect set packing problem has many applications, including
combinatorial auctions [20] and personnel scheduling [18]. Such a matching
can also be used in the coarsening phase of multilevel hypergraph partition-
ing tools [6], when the input is d-uniform and d-partite, such as those used in
modeling and partitioning tensors [28].

Our contributions in this paper are as follows. We propose five heuristics.
The first two are adaptations of the well-known greedy [15] and Karp-Sipser [26]
heuristics widely used for finding matchings in bipartite graphs. We use Greedyg

and Karp-Sipserg to refer to these heuristics, and Greedy and Karp-Sipser for the
proposed generalizations. Greedy traverses the hyperedge list in random order
and adds a hyperedge to the matching whenever possible. Karp-Sipser intro-
duces certain rules to Greedy to improve the cardinality. The third heuristic is
inspired by a recent scaling-based approach proposed for the maximum cardinal-
ity matching problem on graphs [11–13]. The fourth heuristic is a modification
of the third one that allows for faster execution time. The last one finds a match-
ing for a reduced, (d − 1)-dimensional problem and exploits it for d dimensions.
This heuristic uses an exact algorithm for the bipartite matching problem. We
perform experiments to evaluate the performance of these heuristics on special
classes of random hypergraphs and real-life data.

Another way to tackle the problem at hand is to create the line graph G for
a given hypergraph H. The line graph is created by identifying each hyperedge
of H with a vertex in G, and connecting two vertices of G with an edge, iff
the corresponding hyperedges share a common vertex in H. Then, successful
heuristics for computing large independent sets in graphs, e.g., KaMIS [29], can
be used to compute large matchings in hypergraphs. This approach, although
promising quality-wise, can be impractical. This is so, since building G from H
requires quadratic run time and storage (in terms of the number of hyperedges)
in the worst case. While this can be acceptable in some instances, in others it is
not. We have such instances in the experiments.

The rest of the paper is organized as follows. Section 2 introduces the notation
and summarizes the background material. The proposed heuristics are summa-
rized in Sect. 3. Section 4 presents the experimental results and Sect. 5 concludes
the paper.

2 Background and Notation

Tensors are multidimensional arrays, generalizing matrices to higher orders. Let
T be a d-dimensional tensor whose size is n1 × · · · × nd. The elements of T are
shown with Ti1,...,id , where ij ∈ {1, . . . , nj}. A marginal is a (d−1)-dimensional
section of a d-dimensional tensor, obtained by fixing one of its indices. A d-
dimensional tensor where the entries in each of its marginals sum to one is called
d-stochastic. In a d-stochastic tensor, all dimensions necessarily have the same
size n. A d-stochastic tensor where each marginal contains exactly one nonzero
entry (equal to one) is called a permutation tensor. Franklin and Lorenz [16]
show that if a nonnegative tensor T has the same zero-pattern as a d-stochastic
tensor B, then one can find a set of d vectors x(1), x(2), . . . , x(d) such that Ti1,...,id ·

250 F. Dufossé et al.

x
(1)
i1

· · · · ·x(d)
id

= Bi1,...,id for all i1, . . . , id ∈ {1, . . . , n}. In fact, a multidimensional
version of the algorithm for doubly-stochastic scaling (of matrices) by Sinkhorn
and Knopp [32] can be used to obtain these d vectors.

A d-partite, d-uniform hypergraph H = (V1 ∪ · · · ∪ Vd, E) can be naturally
represented by a d-dimensional tensor. This is done by associating each tensor
dimension with a vertex class. Let |Vi| = ni, and the tensor T ∈ {0, 1}n1×···×nd

have a nonzero element Tv1,...,vd
iff (v1, . . . , vd) is a hyperedge of H. Then, T is

called the adjacency tensor of H. In H, if a vertex is a member of only a single
hyperedge we call it a degree-1 vertex. Similarly, if it is a member of only two,
we call it a degree-2 vertex.

In the k-out random hypergraph model, given V , each vertex u ∈ V selects k
hyperedges from the set Eu = {e : e ⊆ V, u ∈ e} in a uniformly random fashion
and the union of these hyperedges forms E. We are interested in the d-partite, d-
uniform case, and hence Eu = {e : |e ∩ Vi| = 1 for 1 ≤ i ≤ d, u ∈ e}. This model
generalizes random k-out bipartite graphs [34]. Devlin and Kahn [10] investigate
fractional matchings in these hypergraphs, and mention in passing that k should
be exponential in d to ensure that a perfect matching exists.

3 Heuristics for Maximum d-Dimensional Matching

A matching which cannot be extended with more hyperedges is called maximal.
In this work, we propose heuristics for finding maximal matchings on d-partite,
d-uniform hypergraphs. For such hypergraphs, any maximal matching is a d-
approximate matching. The bound is tight and can be verified for d = 3. Let
H be a 3-partite 3 × 3 × 3 hypergraph with the following hyperedges e1 =
(1, 1, 1), e2 = (2, 2, 2), e3 = (3, 3, 3) and e4 = (1, 2, 3). The maximum matching
is {e1, e2, e3}, and the hyperedge {e4} alone forms a maximal matching.

3.1 A Greedy Heuristic for Max-d-DM

There exist two variants of Greedyg in the literature. The first one [15] randomly
visits the edges and adds the current edge to the matching if both endpoints
are available. The second one randomly visits the vertices [30], and matches
the vertex with the first available neighbor, if any, visited in a random order.
We adapt the first variant to our problem and call it Greedy. It traverses the
hyperedges in random order and adds the current hyperedge to the matching
whenever possible. Since any maximal matching is possible as its output, Greedy
is a d-approximation heuristic. It obtains matchings of varying quality, depending
upon the order in which the hyperedges are processed.

3.2 Karp-Sipser for Max-d-DM

A widely-used heuristic to obtain large matchings in graphs is Karp-Sipserg [26].
On a graph, the heuristic iteratively adds a random edge to the matching and
reduces the graph by removing its endpoints, as well as their edges. Whenever
possible, Karp-Sipserg does not apply a random selection but reduces the problem
size, i.e., number of vertices in the graph by one via two rules:

Effective Heuristics for Matchings in Hypergraphs 251

– At any time during the heuristic, if a degree-1 vertex appears it is matched
with its only neighbor.

– If a degree-2 vertex u appears with neighbors {v, w} and no degree-1 vertex
exists, u (and its edges) is removed from the current graph, and v and w
are merged to create a new vertex vw whose set of neighbors is the union of
those of v and w (except u). A maximum cardinality matching for the reduced
graph can be extended to obtain one for the current graph by matching u
with either v or w depending on vw’s match.

Both rules are optimal in the sense that they do not reduce the cardinality of a
maximum matching in the current graph they are applied on. We now propose
an adaptation of Karp-Sipserg for d-partite, d-uniform hypergraphs, and call this
heuristic Karp-Sipser. Similar to the original one, Karp-Sipser iteratively adds a
random hyperedge to the matching, remove its d endpoints and their hyperedges.
However, the random selection is not applied whenever hyperedges defined by
the lemmas below appear.

Lemma 1. During the heuristic, if a hyperedge e with at least d − 1 degree-1
endpoints appears, there exists a maximum cardinality matching in the current
hypergraph containing e.

Proof. Let H ′ be the current hypergraph at hand and e = (u1, . . . , ud) be a
hyperedge in H ′ whose first d − 1 endpoints are degree-1 vertices. Let M ′ be a
maximum cardinality matching in H ′. If e ∈ M ′, we are done. Otherwise, assume
that ud is the endpoint matched by a hyperedge e′ ∈ M ′ (note that if ud is not
matched M ′ can be extended with e). Since ui, 1 ≤ i < d, are not matched in
M ′, M ′ \ {e′} ∪ {e} defines a valid maximum cardinality matching for H ′. �	
We note that it is not possible to relax the condition by using a hyperedge e with
less than d − 1 endpoints of degree-1; in M ′, two of e’s higher degree endpoints
could potentially be matched with two different hyperedges, in which case the
substitution as done in the proof of the lemma is not valid.

Lemma 2. During the heuristic, let e = (u1, . . . , ud) and e′ = (u′
1, . . . , u

′
d)

be two hyperedges sharing at least one endpoint where for an index set I ⊂
{1, . . . , d} of cardinality d − 1, the vertices ui, u

′
i for all i ∈ I only touch e

and/or e′. That is for each i ∈ I, either ui = u′
i is a degree-2 vertex or ui �= u′

i

and they are both degree-1 vertices. For j /∈ I, uj and u′
j are arbitrary vertices.

Then, in the current hypergraph, there exists a maximum cardinality matching
having either e or e′.

Proof. Let H ′ be the current hypergraph at hand and j /∈ I be the remaining
index. Let M ′ be a maximum cardinality matching in H ′. If either e ∈ M ′ or
e′ ∈ M ′, we are done. Otherwise, ui and u′

i for all i ∈ I are unmatched by
M ′. Furthermore, since M ′ is maximal, uj must be matched by M ′ (otherwise,
M ′ can be extended by e). Let e′′ ∈ M ′ be the hyperedge matching uj . Then
M ′ \ {e′′} ∪ {e} defines a valid maximum cardinality matching for H ′. �	

252 F. Dufossé et al.

Whenever such hyperedges appear, the rules below are applied in the same order:

– Rule-1: At any time during the heuristic, if a hyperedge e with at least d−1
degree-1 endpoints appears, instead of a random hyperedge, e is added to the
matching and removed from the hypergraph.

– Rule-2: Otherwise, if two hyperedges e and e′ as defined in Lemma 2 appear,
they are removed from the current hypergraph with the endpoints ui, u

′
i for all

i ∈ I. Then, we consider uj and u′
j . If uj and u′

j are distinct, they are merged
to create a new vertex uju

′
j , whose hyperedge list is defined as the union of

uj ’s and u′
j ’s hyperedge lists. If uj and u′

j are identical, we only rename uj

as uju
′
j . After obtaining a maximal matching on the reduced hypergraph,

depending on the hyperedge matching uju
′
j , either e or e′ can be used to

obtain a larger matching in the current hypergraph.

When Rule-2 is applied, the two hyperedges identified in Lemma 2 are
removed from the hypergraph, and only the hyperedges containing uj and/or
u′

j have an update in their vertex list. Since the original hypergraph is d-partite
and d-uniform, that update is just a renaming of a vertex in the concerned
hyperedges (hence the resulting hypergraph is also d-partite and d-uniform).

Although the two rules usually lead to improved results in comparison to
Greedy, Karp-Sipser still adheres to the d-approximation bound of maximal
matchings. To see this, we use the toy example given as a worst-case for Greedy.
For the example given at the beginning of Sect. 3, Karp-Sipser generates a max-
imum cardinality matching by applying Rule-1. However, if e5 = (2, 1, 3) and
e6 = (3, 1, 3) are added to the example, neither of the two rules can be applied.
As before, if e4 is randomly selected, it forms a maximal matching.

3.3 Karp-Sipser-scaling for Max-d-DM

Karp-Sipser can be modified for better decisions in case neither of the two rules
applies. In this variant, called Karp-Sipser-scaling, instead of a random selection,
we first scale the adjacency tensor of H and obtain an approximate d-stochastic
tensor T. We then augment the matching by adding the hyperedge which cor-
responds to the largest value in T. The modified heuristic is summarized in
Algorithm 1.

Our inspiration comes from the d = 2 case and more specifically from the
relation between scaling and matching. It is known due to Birkhoff [4] that the
polytope of n × n doubly stochastic matrices is the convex hull of the n × n
permutation matrices. A nonnegative matrix A where all entries participate in
some perfect matching can be scaled with two positive diagonal matrices R and
C such that RAC is doubly stochastic. Otherwise, provided that A has a perfect
matching, it can still be scaled to a doubly stochastic form asymptotically. In
this case, the entries not participating in any perfect matching tend to zero in
the scaled matrix. This fact is exploited to design randomized approximation
algorithms for the maximum cardinality matching problem in graphs [12,13].
By scaling the adjacency matrix in a preprocess and choosing edges with a

Effective Heuristics for Matchings in Hypergraphs 253

Algorithm 1: Karp-Sipser-scaling
Input: A d-partite, d-uniform n1 × · · · × nd hypergraph H = (V,E)
Output: A maximal matching M of H
1: M ← ∅ � Initially M is empty
2: S ← ∅ � Stack for the merges for Rule-2
3: while H is not empty do
4: Remove the isolated vertices from H
5: if ∃e = (u1, . . . , ud) as in Rule-1 then
6: M ← M ∪ {e} � Add e to the matching
7: Apply the reduction for Rule-1 on H
8: else if ∃e = (u1, . . . , ud), e

′ = (u′
1, . . . , u

′
d) and I as in Rule-2 then

9: Let j be the part index where j /∈ I
10: Apply the reduction for Rule-2 on H by introducing the vertex uju

′
j

11: E′ = {(v1, . . . , uju
′
j , . . . , vd) : for all (v1, . . . , uj , . . . , vd) ∈ E}

� memorize the hyperedges of uj

12: S.push(e, e′, uju
′
j , E

′) � Store the current merge
13: else
14: T ← Scale(adj(H)) � Scale the adjacency tensor of H
15: e ← arg max(u1,...,ud) (Tu1,...,ud) � Find the maximum entry in T
16: M ← M ∪ {e} � Add e to the matching
17: Remove all hyperedges of u1, . . . , ud from E
18: V ← V \ {u1, . . . , ud}
19: while S �= ∅ do
20: (e, e′, uju

′
j , E

′) ← S.pop() � Get the most recent merge
21: if uju

′
j is not matched by M then

22: M ← M ∪ {e}
23: else
24: Let e′′ ∈ M be the hyperedge matching uju

′
j

25: if e′′ ∈ E′ then
26: Replace uju

′
j in e′′ with u′

j

27: M ← M ∪ {e′}
28: else
29: Replace uju

′
j in e′′ with uj

30: M ← M ∪ {e}

probability corresponding to the scaled value of the associated matrix entry,
the edges which are not included in a perfect matching become less likely to be
chosen. The current algorithm differs from these approaches by selecting a single
hyperedge at each step and applying scaling again before the next selection.

For d ≥ 3, there is no equivalent of Birkhoff’s theorem as demonstrated by
the following lemma.

Lemma 3. For d ≥ 3, there exist extreme points in the set of d-stochastic ten-
sors which are not permutations tensors.

The proof can be found in the accompanying technical report [14], where we give
extreme points that are not permutation tensors. Due to the lemma above, we
do not have the theoretical foundation to imply that hyperedges corresponding

254 F. Dufossé et al.

to the large entries in the scaled tensor must necessarily participate in a perfect
matching. Nonetheless, the entries not in any perfect matching tend to become
zero (not guaranteed for all though). For the worst case example of Karp-Sipser
described above, the scaling indeed helps the entries corresponding to e4, e5 and
e6 to become zero. Additionally even if the heuristic selects an entry in the
non-zero pattern of an extreme point without a perfect matching, we do not
necessarily reduce our chances of obtaining a good matching (see the discussion
following the proof of Lemma 3 in the technical report).

On a d-partite, d-uniform hypergraph H = (V,E), the Sinkhorn-Knopp algo-
rithm used for scaling operates in iterations, each of which requires O(|E| × d)
time. In practice, only a few iterations (e.g., 10–20) can be performed. Since
we can match at most |V |/d hyperedges, the overall run time of scaling is
O(|V | × |E|). A straightforward implementation of the second rule can require
quadratic time in the case of a large number of repetitive merges with a given
vertex. In practice, more of a linear time behavior should be observed.

3.4 Hypergraph Matching via Pseudo Scaling

In Algorithm 1, applying scaling at every step can be very costly. Here we propose
an alternative idea inspired by the specifics of the Sinkhorn-Knopp algorithm to
reduce the overall cost.

The Sinkhorn-Knopp algorithm scales a d-dimensional tensor T in a series of
iterations by updating the set of vectors x(1), . . . , x(d) where initially all values
in all vectors are equal to 1. During an iteration, the coefficient vector x(j) for a
given dimension j is updated by using

x
(j)
ij

=
x
(j)
ij

∑
i1,...,ij−1,ij+1,...id

(
Ti1,...,ij ,...,id

∏d
k=1 x

(k)
ik

) , for all ij ∈ {1, . . . , nj} . (1)

These updates are done in a sequential order and for simplicity we assume that
they happen in the dimension order: 1, . . . , d. Each vector entry x

(j)
ij

corresponds
to a vertex in the hypergraph. Let λij denote the degree of the vertex ij from
jth part. For the first iteration of (1), each x

(1)
i1

is set to 1
λi1

since all values in
the vectors are one. The pseudo scaling approach applies d parallel executions of
updates (1) and sets each x

(j)
ij

= 1
λij

for all j ∈ {1, . . . , d} and ij ∈ {1, . . . , nj}.
That is, each vertex gets a value inversely proportional to its degree. This avoids
10–20 iterations of Sinkhorn-Knopp and the O(|E|) cost for each. However, as
the name of the approach implies, this scaling is not exact.

With this approach each hyperedge {i1, . . . , id} is associated with a value
1

∏d
j=1 λij

. The selection procedure is the same as that of Algorithm 1, i.e., the

hyperedge with the maximum value is added to the matching set. We refer to
this algorithm as Karp-Sipser-mindegree, as it selects a hyperedge based on a
function of the degrees of the vertices. With a straightforward implementation,
finding this hyperedge takes O(|E|) time.

Effective Heuristics for Matchings in Hypergraphs 255

3.5 Reduction to Bipartite Graph Matching

A perfect matching in a d-partite, d-uniform hypergraph H remains perfect when
projected on a (d − 1)-partite, (d − 1)-uniform hypergraph obtained by remov-
ing one of H’s vertex parts. Matchability in (d− 1)-partite sub-hypergraphs has
been investigated [1] to provide an equivalent of Hall’s Theorem for d-partite
hypergraphs. These observations lead us to propose a heuristic called Bipartite-
reduction. This heuristic tackles the d-partite, d-uniform case by recursively
asking for matchings in (d − 1)-partite, (d − 1)-uniform hypergraphs and so
on, until d = 2.

Let us start with d = 3. Let G = (VG, EG) be the bipartite graph where the
vertex set VG = V1 ∪ V2 is obtained by deleting V3 from a 3-partite, 3-regular
hypergraph H = (V,E). The edge (u, v) ∈ EG iff there exists a hyperedge
(u, v, z) ∈ E. One can assign weights to the edges during this step, e.g., w(u, v) =
|{z : (u, v, z) ∈ E}|. A maximum weighted matching algorithm can be used to
obtain a matching MG on G. A second bipartite graph G′ = (VG′ , EG′) is then
created with VG′ = (V1 × V2) ∪ V3 and EG′ = {(uv, z) : (u, v) ∈ MG, (u, v, z) ∈
H}. Any matching in G′ corresponds a valid matching in H. Furthermore, if
the weight function defined above is used with a maximum weighted matching
algorithm, the number of edges surviving for G′ is maximized.

For d-dimensional matching, a similar process is followed. First, an order-
ing i1, i2, . . . , id of the dimensions is defined. At the jth bipartite reduction
step, the matching is found between the dimension cluster i1i2 · · · ij and the
dimension ij+1 by similarly solving a bipartite matching problem, where the
edge (u1 · · · uj , v) exists in the bipartite graph iff the vertices u1, . . . , uj were
matched previously, and there exists a hyperedge (u1, . . . , uj , v, zj+2, . . . , zd) in
H. Unlike the previous heuristics, Bipartite-reduction does not have any approxi-
mation guarantee, as stated in the following lemma (the proof is in the accompa-
nying technical report [14], where we describe a family of hypergraphs for which

Bipartite-reduction yields
5
n

-approximation for n ≥ 5).

Lemma 4. If algorithms for the maximum cardinality or the maximum weighted
matching (with the suggested edge weights) problems are used, then Bipartite-
reduction has a worst-case approximation ratio of Ω(n).

3.6 Performing Local Search

A local search heuristic is proposed by Hurkens and Schrijver [24]. It starts from
a feasible maximal matching M and performs a series of swaps until it is no
longer possible. In a swap, k hyperedges of M are replaced with at least k + 1
new hyperedges from E\M so that the cardinality of M increases by at least one.
These k hyperedges from M can be replaced with at most d×k new edges. Hence,
these hyperedges can be found by a polynomial algorithm enumerating all the
possibilities. The approximation guarantee improves with higher k values. Local
search algorithms are limited in practice due to their high time complexity. The
algorithm might have to examine all

(|M |
k

)
subsets of M to find a feasible swap

at each step. The algorithm by Cygan [8] which achieves
(

d+1+ε
3

)
-approximation

is based on a different swap scheme but is also not suited for large hypergraphs.

256 F. Dufossé et al.

4 Experiments

To understand the relative performance of the proposed heuristics, we conducted
a wide variety of experiments with both synthetic and real-life data. The experi-
ments were performed on a computer equipped with intel Core i7-7600 CPU and
16 GB RAM. For d = 3, we also implemented a local search heuristic [24], called
Local-Search, which replaces one hyperedge from a maximal matching M with
at least two hyperedges from E \M to increase the cardinality of M . We did not
consider local search schemes for higher dimensions or with better approxima-
tion ratios as they are computationally too expensive. For each hypergraph, we
perform ten runs of Greedy and Karp-Sipser with different random decisions and
take the maximum cardinality obtained. Since Karp-Sipser-scaling or Karp-Sipser-
mindegree do not pick hyperedges randomly, we run them only once. We perform
20 steps of the scaling procedure in Karp-Sipser-scaling. We refer to quality of a
matching M in a hypergraph H as the ratio of M ’s cardinality to the size of the
smallest vertex partition of H.

4.1 Experiments on Random Hypergraphs

We perform experiments on two classes of d-partite, d-uniform random hyper-
graphs where each part has n vertices. The first class contains random k-out
hypergraphs, and the second one contains sparse random hypergraphs.

Random k-out, d-partite, d-uniform hypergraphs
Here, we consider random k-out, d-partite, d-uniform hypergraphs described
in Sect. 2. Hence (ignoring the duplicate ones), these hypergraphs have around
d × k × n hyperedges. These k-out, d-partite, d-uniform hypergraphs have been
recently analyzed in the matching context by Devlin and Kahn [10]. They state
in passing that k should be exponential in d for a perfect matching to exist
with high probability. The bipartite graph variant of the same problem has been
extensively studied in the literature [17,25,34]; a perfect matching almost always
exists in a random 2-out bipartite graph [34].

We first investigate the existence of perfect matchings in random k-out, d-
partite, d-uniform hypergraphs. For this purpose, we implemented the linear pro-
gram of d-dimensional matching in CPLEX and found the maximum cardinality
of a matching in these hypergraphs with k ∈ {dd−3, dd−2, dd−1} for d ∈ {2, . . . , 5}
and n ∈ {10, 20, 30, 50}. For each (k, d, n) triple, we created five hypergraphs and
computed their maximum cardinality matchings. For k = dd−3, we encountered
several hypergraphs with no perfect matching, especially for d = 3. The hyper-
graphs with k = dd−2 were also lacking a perfect matching for d = 2. However,
all the hypergraphs we created with k = dd−1 had at least one. Based on these
results, we experimentally confirm Devlin and Kahn’s statement. We also conjec-
ture that dd−1-out random hypergraphs have perfect matchings almost surely.
The average maximum matching cardinalities we obtained in this experiment
are given in Table 1. In this table, we do not have results for k = dd−3 for d = 2,
and the cases marked with ∗ were not solved within 24 h.

Effective Heuristics for Matchings in Hypergraphs 257

Table 1. The average maximum matching cardinalities of five random instances over
n on random k-out, d-partite, d-uniform hypergraphs for different k, d, and n. No runs
for k = dd−3 and d = 2; the problems marked with ∗ were not solved within 24 h.

d k d k

dd−3 dd−2 dd−1 dd−3 dd−2 dd−1

n = 10 2 - 0.87 1.00 n = 30 2 - 0.84 1.00

3 0.80 1.00 1.00 3 0.88 1.00 1.00

4 1.00 1.00 1.00 4 0.99 1.00 1.00

5 1.00 1.00 1.00 5 * 1.00 1.00

n = 20 2 - 0.88 1.00 n = 50 2 - 0.87 1.00

3 0.85 1.00 1.00 3 0.84 1.00 1.00

4 1.00 1.00 1.00 4 ∗ 1.00 1.00

5 1.00 1.00 1.00 5 * * *

We now compare the performance of the proposed heuristics on random k-
out, d-partite, d-uniform hypergraphs with d ∈ {3, 9} and n ∈ {1000, 10000}.
We tested with k being equal to powers of two, and k ≤ d log d. The results are
summarized in Fig. 1. For each (k, d, n) triplet, we created ten random instances
and present the average performance of the heuristics on them. Further figures
for d = 6 can be found in the accompanying technical report [14]. The x-axis
in each figure denotes k, and the y-axis reports the matching cardinality over n.
As seen,Karp-Sipser-scaling andKarp-Sipser-mindegree have the best performance,
comfortably beating the other alternatives. For d = 3 Karp-Sipser-scaling dom-
inates Karp-Sipser-mindegree, but when d > 3 we see that Karp-Sipser-mindegree
has the best performance.Karp-Sipser performs better thanGreedy. However, their
performances get closer as d increases. This is due to the fact that the conditions
for Rule-1 and Rule-2 hold less often for larger d. Bipartite-reduction has worse per-
formance than the others, and the gap in the performance grows as d increases.
This happens, since at each step, we impose more and more conditions on the
edges involved and there is no chance to recover from bad decisions.

Sparse random d-partite, d-uniform hypergraphs
Here, we consider a random d-partite, d-uniform hypergraph Hi that has
i × n random hyperedges. The parameters used for these experiments are
i ∈ {1, 3, 5, 7}, n ∈ {4000, 8000}, and d ∈ {3, 9}. Each Hi is created by choosing
the vertices of a hyperedge uniformly at random for each dimension. We do not
allow duplicate hyperedges. Another random hypergraph Hi+M is then obtained
by planting a perfect matching to Hi. We again generate ten random instances for
each parameter setting. We do not present results for Bipartite-reduction as it was
always worse than the others, as before. The average quality of different heuris-
tics on these instances is shown in Fig. 2 (the accompanying report [14] contains
further results). The experiments confirm that Karp-Sipser performs consistently
better than Greedy. Furthermore, Karp-Sipser-scaling performs significantly bet-
ter than Karp-Sipser. Karp-Sipser-scaling works even better than the local search

258 F. Dufossé et al.

2 4 8
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
n=1000

Greedy
Karp-Sipser
Karp-Sipser-scaling
Karp-Sipser-mindegree
Local-search
Bipartite-reduction

2 4 8
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
n=10000

Greedy
Karp-Sipser
Karp-Sipser-scaling
Karp-Sipser-mindegree
Local-search
Bipartite-reduction

(a) d = 3, n = 1000 (left) and n = 10000 (right)

2 4 8 16 32
0.2

0.3

0.4

0.5

0.6

0.7

0.8
n=1000

Greedy
Karp-Sipser
Karp-Sipser-scaling
Karp-Sipser-mindegree
Bipartite-reduction

2 4 8 16 32
0.2

0.3

0.4

0.5

0.6

0.7

0.8
n=10000

Greedy
Karp-Sipser
Karp-Sipser-scaling
Karp-Sipser-mindegree
Bipartite-reduction

(b) d = 9, n = 1000 (left) and n = 10000 (right)

Fig. 1. The performance of the heuristics on k-out, d-partite, d-uniform hypergraphs
with n vertices at each part. The y-axis is the ratio of matching cardinality to n whereas
the x-axis is k. No Local-Search for d = 9.

Hi: Random Hypergraph Hi+M : Random Hypergraph with Perfect Matching
Local Karp- Karp-Sipser- Karp-Sipser- Local Karp- Karp-Sipser- Karp-Sipser-

Greedy Search Sipser scaling minDegree Greedy Search Sipser scaling minDegree
i 4000 8000 4000 8000 4000 8000 4000 8000 4000 8000 4000 8000 4000 8000 4000 8000 4000 8000 4000 8000
1 0.43 0.42 0.47 0.47 0.49 0.48 0.49 0.48 0.49 0.48 0.75 0.75 0.93 0.93 1.00 1.00 1.00 1.00 1.00 1.00
3 0.63 0.63 0.71 0.71 0.73 0.72 0.76 0.76 0.78 0.77 0.72 0.71 0.82 0.81 0.81 0.81 0.99 0.99 0.92 0.92
5 0.70 0.70 0.80 0.80 0.78 0.78 0.86 0.86 0.88 0.88 0.75 0.74 0.84 0.84 0.82 0.82 0.94 0.94 0.92 0.92
7 0.75 0.75 0.84 0.84 0.81 0.81 0.94 0.94 0.93 0.93 0.77 0.77 0.87 0.87 0.83 0.83 0.96 0.96 0.94 0.94

(a) d = 3, without (left) and with (right) the planted matching

Hi: Random Hypergraph Hi+M : Random Hypergraph with Perfect Matching
Karp- Karp-Sipser- Karp-Sipser- Karp- Karp-Sipser- Karp-Sipser-

Greedy Sipser scaling minDegree Greedy Sipser scaling minDegree
i 4000 8000 4000 8000 4000 8000 4000 8000 4000 8000 4000 8000 4000 8000 4000 8000
1 0.25 0.24 0.27 0.27 0.27 0.27 0.30 0.30 0.56 0.55 0.80 0.79 1.00 1.00 1.00 1.00
3 0.34 0.33 0.36 0.36 0.36 0.36 0.43 0.43 0.40 0.40 0.44 0.44 1.00 1.00 0.99 1.00
5 0.38 0.37 0.40 0.40 0.41 0.41 0.48 0.48 0.41 0.40 0.43 0.43 1.00 1.00 0.99 0.99
7 0.40 0.40 0.42 0.42 0.44 0.44 0.51 0.51 0.42 0.42 0.44 0.44 1.00 1.00 0.97 0.96

(b) d = 9, without (left) and with (right) the planted matching

Fig. 2. Performance comparisons on d-partite, d-uniform hypergraphs with n =
{4000, 8000}. Hi contains i × n random hyperedges, and Hi+M contains an additional
perfect matching.

Effective Heuristics for Matchings in Hypergraphs 259

heuristic, and it is the only heuristic that is capable of finding planted perfect
matchings for a significant number of the runs. In particular when d > 3, it finds
a perfect matching on Hi+M s in all cases shown. For d = 3, it finds a perfect
matching only when i = 1 and attains a near perfect matching when i = 3.
Interestingly Karp-Sipser-mindegree outperforms Karp-Sipser-scaling on His but
is dominated on Hi+M s, where it is the second best performing heuristic.

4.2 Evaluating Algorithmic Choices

Here, we evaluate the use of scaling and the importance of Rule-1 and Rule-2.

Scaling vs No-Scaling
To evaluate and emphasize the contribution of scaling better, we compare the
performance of the heuristics on a particular family of d-partite, d-uniform hyper-
graphs where their bipartite counterparts have been used before as challenging
instances for the original Karp-Sipserg heuristic [12].

R1

R2

C1 C2

t

t

Fig. 3. AKS : A challenging
instance for Karp-Sipserg.

Table 2. Performance of the proposed heuristics
on 3-partite, 3-uniform hypergraphs corresponding
to TKS with n = 300 vertices in each part.

t Greedy Local
Search

Karp-
Sipser

Karp-
Sipser-
scaling

Karp-
Sipser-
minDegree

2 0.53 0.99 0.53 1.00 1.00

4 0.53 0.99 0.53 1.00 1.00

8 0.54 0.99 0.55 1.00 1.00

16 0.55 0.99 0.56 1.00 1.00

32 0.59 0.99 0.59 1.00 1.00

Let AKS be an n × n matrix. Let R1 and C1 be AKS ’s first n/2 rows and
columns, respectively, and R2 and C2 be the remaining n/2 rows and columns,
respectively. Let the block R1 × C1 be full and the block R2 × C2 be empty.
A perfect bipartite graph matching is hidden inside the blocks R1 × C2 and
R2 × C1 by introducing a non-zero diagonal to each. In addition, a parameter t
connects the last t rows of R1 with all the columns in C2. Similarly, the last t
columns in C1 are connected to all the rows in R2. An instance from this family
of matrices is depicted in Fig. 3. Karp-Sipserg is impacted negatively when t ≥ 2
whereas Greedyg struggles even with t = 0 because random edge selections will
almost always be from the dense R1 × C1 block. To adapt this scheme to hyper-
graphs/tensors, we generate a 3-dimensional tensor TKS such that the nonzero
pattern of each marginal of the 3rd dimension is identical to that of AKS . Table 2
shows the performance of the heuristics (i.e., matching cardinality normalized
with n) for 3-dimensional tensors with n = 300 and t ∈ {2, 4, 8, 16, 32}.

260 F. Dufossé et al.

The use of scaling indeed reduces the influence of the misleading hyperedges
in the dense block R1×C1, and the proposed Karp-Sipser-scaling heuristic always
finds the perfect matching as does Karp-Sipser-mindegree. However, Greedy and
Karp-Sipser perform significantly worse. Furthermore, Local-Search returns 0.99-
approximation in every case because it ends up in a local optima.

Rule-1 vs Rule-2
We finish the discussion on the synthetic data by focusing on Karp-Sipser. Recall
from Sect. 3.2 that Karp-Sipser has two rules. In the bipartite case, a variant of
Karp-Sipserg in which Rule-2 is not applied received more attention than the
original version, because it is simpler to implement and easier to analyze. This
simpler variant has been shown to obtain good results both theoretically [26]
and experimentally [12]. Recent work [2] shows that both rules are needed to
obtain perfect matchings in random cubic graphs.

We present a family of hypergraphs to demonstrate that using Rule-2 can
lead to better performance than using Rule-1 only. We use Karp-SipserR1

to
refer to Karp-Sipser without Rule-2. As before, we describe first the bipartite
case. Let ARF be a n × n matrix with (ARF)i,j = 1 for 1 ≤ i ≤ j ≤ n, and
(ARF)2,1 = (ARF)n,n−1 = 1. That is, ARF is composed of an upper triangular
matrix and two additional subdiagonal nonzeros. The first two columns and
the last two rows have two nonzeros. Assume without loss of generality that
the first two rows are merged by applying Rule-2 on the first column (which is
discarded). Then in the reduced matrix, the first column (corresponding to the
second column in the original matrix) will have one nonzero. Rule-1 can now
be applied whereupon the first column in the reduced matrix will have degree
one. The process continues similarly until the reduced matrix is a 2 × 2 dense
block, where applying Rule-2 followed by Rule-1 yields a perfect matching. If
only Rule-1 reductions are allowed, initially no reduction can be applied and
randomly chosen edges will be matched, which negatively affects the quality of
the returned matching.

For higher dimensions we proceed as follows. Let TRF be a d-dimensional
n×· · ·×n tensor. We set (TRF)i,j,...,j = 1 for 1 ≤ i ≤ j ≤ n and (TRF)1,2,...,2 =
(TRF)n,n−1,...,n−1 = 1. By similar reasoning, we see that Karp-Sipser with both
reduction rules will obtain a perfect matching, whereas Karp-SipserR1

will strug-

Table 3. Quality of matching and the number r of the applications of Rule-1 over n
in Karp-SipserR1

, for hypergraphs corresponding to TRF . Karp-Sipser obtains perfect
matchings.

n d

2 3 6

quality r
n

quality r
n

quality r
n

1000 0.83 0.45 0.85 0.47 0.80 0.31

2000 0.86 0.53 0.87 0.56 0.80 0.30

4000 0.82 0.42 0.75 0.17 0.84 0.45

Effective Heuristics for Matchings in Hypergraphs 261

gle. We give some results in Table 3 that show the difference between the two.
We test for n ∈ {1000, 2000, 4000} and d ∈ {2, 3, 6}, and show the quality of
Karp-SipserR1

and the number of times that Rule-1 is applied over n. We present
the best result over 10 runs.

As seen in Table 3, Karp-SipserR1
obtains matchings that are about 13–25%

worse than Karp-Sipser. Furthermore, the larger the number of Rule-1 applica-
tions is, the higher the quality is.

4.3 Experiments with Real-Life Tensor Data

We also evaluate the performance of the proposed heuristics on some real-life
tensors selected from FROSTT library [33]. The descriptions of the tensors are
given in Table 4. For nips and Uber, a dimension of size 17 and 24 is dropped
respectively, as they restrict the size of the maximum cardinality matching.
As described before, a d-partite, d-uniform hypergraph is obtained from a d-
dimensional tensor by associating a vertex for each dimension index, and a
hyperedge for each nonzero. Unlike the previous experiments, the parts of the
hypergraphs obtained from real-life tensors in Table 4 do not have an equal num-
ber of vertices. In this case, the scaling algorithm works along the same lines.
Let ni = |Vi| be the cardinality at the ith dimension, and nmax = max1≤i≤d ni

be the maximum one. By slightly modifying Sinkhorn-Knopp, for each iteration
of Karp-Sipser-scaling, we scale the tensor such that the marginals in dimension
i sum up to nmax/ni instead of one. The results in Table 4 resemble those from
previous sections; Karp-Sipser-scaling has the best performance and is slightly
superior to Karp-Sipser-mindegree. Greedy and Karp-Sipser are close to each other
and when it is feasible, Local-Search is better than them. In addition we see
that in these instances Bipartite-reduction exhibits a good performance: its per-
formance is at least as good as Karp-Sipser-scaling for the first three instances,
but about 10% worse for the last one.

Table 4. The performance of the proposed heuristics on the hypergraphs corresponding
to real-life tensors. No Local-Search for four dimensional tensor Enron.

Tensor d Dimensions nnz Greedy Local-

Search

Karp-

Sipser

Karp-

Sipser-

minDegree

Karp-

Sipser-

scaling

Bipartite-

Reduction

Uber 3 183 × 1140 × 1717 1,117,629 183 183 183 183 183 183

nips [19] 3 2,482 × 2,862 × 14,036 3,101,609 1,847 1,991 1,839 2005 2,007 2,007

Nell-2 [5] 3 12,092 × 9,184 × 28,818 76,879,419 3,913 4,987 3,935 5,100 5,154 5,175

Enron [31] 4 6,066 × 5,699 × 244,268 × 1,176 54,202,099 875 - 875 988 1,001 898

4.4 Experiments with an Independent Set Solver

We compare Karp-Sipser-scaling and Karp-Sipser-mindegree with the idea of reduc-
ing Max-d-DM to the problem of finding an independent set in the line graph of
the given hypergraph. We show that this transformation can yield good results,
but is restricted because line graphs can require too much space.

262 F. Dufossé et al.

We use KaMIS [29] to find independent sets in graphs. KaMIS uses a plethora
of reductions and a genetic algorithm in order to return high cardinality indepen-
dent sets. We use the default settings of KaMIS (where execution time is limited
to 600 s) and generate the line graphs with efficient sparse matrix–matrix multi-
plication routines. We run KaMIS, Greedy, Karp-Sipser-scaling, and Karp-Sipser-
mindegree on a few hypergraphs from previous tests. The results are summarized
in Table 5. The run time of Greedy was less than one second in all instances.
KaMIS operates in rounds, and we give the quality and the run time of the
first round and the final output. We note that KaMIS considers the time-limit
only after the first round has been completed. As can be seen, while the quality
of KaMIS is always good and in most cases superior to Karp-Sipser-scaling and
Karp-Sipser-mindegree, it is also significantly slower (its principle is to deliver
high quality results). We also observe that the pseudo scaling of Karp-Sipser-
mindegree indeed helps to reduce the run time compared to Karp-Sipser-scaling.

Table 5. Run time (in seconds) and performance comparisons between KaMIS, Greedy,
and Karp-Sipser-scaling. The time required to create the line graphs should be added
to KaMIS’s overall time.

KaMIS Greedy Karp-Sipser-

scaling

Karp-Sipser-

mindegree

Hypergraph Line graph

gen. time

Round 1 Output

Quality Time Quality Time Quality Quality Time Quality Time

8-out, n = 1000, d = 3 10 0.98 80 0.99 600 0.86 0.98 1 0.98 1

8-out, n = 10000, d = 3 112 0.98 507 0.99 600 0.86 0.98 197 0.98 1

8-out, n = 1000, d = 9 298 0.67 798 0.69 802 0.55 0.62 2 0.67 1

n = 8000, d = 3, H3 1 0.77 16 0.81 602 0.63 0.76 5 0.77 1

n = 8000, d = 3, H3+M 2 0.89 25 1.00 430 0.70 1.00 11 0.91 1

The line graphs of the real-life instances from Table 4 are too large to be
handled. We estimated (using known techniques [7]) the number of edges in
these graphs to range from 1.5 × 1010 to 4.7 × 1013. The memory needed ranges
from 126 GB to 380 TB if edges are stored twice (assuming 4 bytes per edge).

5 Conclusion and Future Work

We have proposed heuristics for the Max-d-DM problem by generalizing exist-
ing heuristics for the maximum cardinality matching in bipartite graphs. The
experimental analyses on various hypergraphs/tensors show the effectiveness
and efficiency of the proposed heuristics. As future work, we plan to inves-
tigate the stated conjecture that dd−1-out random hypergraphs have perfect
matchings almost always, and analyze the theoretical guarantees of the proposed
algorithms.

Effective Heuristics for Matchings in Hypergraphs 263

References

1. Aharoni, R., Haxell, P.: Hall’s theorem for hypergraphs. J. Graph Theory 35(2),
83–88 (2000)

2. Anastos, M., Frieze, A.: Finding perfect matchings in random cubic graphs in linear
time. arXiv preprint arXiv:1808.00825 (2018)

3. Berman, P., Karpinski, M.: Improved approximation lower bounds on small
occurence optimization. ECCC Report (2003)

4. Birkhoff, G.: Tres observaciones sobre el algebra lineal. Univ. Nac. Tucuman, Ser.
A 5, 147–154 (1946)

5. Carlson, A., Betteridge, J., Kisiel, B., Settles, B., Hruschka Jr., E.R., Mitchell,
T.M.: Toward an architecture for never-ending language learning. In: AAAI, vol.
5, p. 3 (2010)

6. Çatalyürek, Ü.V., Aykanat, C.: PaToH: A Multilevel Hypergraph Partitioning
Tool, Version 3.0. Bilkent University, Department of Computer Engineering,
Ankara, 06533 Turkey. https://www.cc.gatech.edu/∼umit/software.html (1999)

7. Cohen, E.: Structure prediction and computation of sparse matrix products. J.
Comb. Optim. 2(4), 307–332 (1998)

8. Cygan, M.: Improved approximation for 3-dimensional matching via bounded path-
width local search. In: 2013 IEEE 54th Annual Symposium on Foundations of
Computer Science (FOCS), pp. 509–518. IEEE (2013)

9. Cygan, M., Grandoni, F., Mastrolilli, M.: How to sell hyperedges: the hypermatch-
ing assignment problem. In: Proceedings of the Twenty-Fourth Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 342–351. SIAM (2013)

10. Devlin, P., Kahn, J.: Perfect fractional matchings in k-out hypergraphs. arXiv
preprint arXiv:1703.03513 (2017)

11. Dufossé, F., Kaya, K., Panagiotas, I., Uçar, B.: Scaling matrices and counting
perfect matchings in graphs. Technical Report RR-9161, Inria - Research Centre
Grenoble - Rhône-Alpes (2018)

12. Dufossé, F., Kaya, K., Uçar, B.: Two approximation algorithms for bipartite match-
ing on multicore architectures. J. Parallel Distr. Com. 85, 62–78 (2015)

13. Dufossé, F., Kaya, K., Panagiotas, I., Uçar, B.: Approximation algorithms for max-
imum matchings in undirected graphs. In: Proceedings Seventh SIAM Workshop
on Combinatorial Scientific Computing, pp. 56–65. SIAM, Bergen (2018)

14. Dufossé, F., Kaya, K., Panagiotas, I., Uçar, B.: Effective heuristics for matchings in
hypergraphs. Research Report RR-9224, Inria Grenoble Rhône-Alpes, November
2018. https://hal.archives-ouvertes.fr/hal-01924180

15. Dyer, M., Frieze, A.: Randomized greedy matching. Random Struct. Algorithms
2(1), 29–45 (1991)

16. Franklin, J., Lorenz, J.: On the scaling of multidimensional matrices. Linear Alge-
bra Appl. 114, 717–735 (1989)

17. Frieze, A.M.: Maximum matchings in a class of random graphs. J. Comb. Theory
B 40(2), 196–212 (1986)

18. Froger, A., Guyon, O., Pinson, E.: A set packing approach for scheduling passenger
train drivers: the French experience. In: RailTokyo2015. Tokyo, Japan, March 2015.
https://hal.archives-ouvertes.fr/hal-01138067

19. Globerson, A., Chechik, G., Pereira, F., Tishby, N.: Euclidean embedding of co-
occurrence data. J. Mach. Learn. Res. 8, 2265–2295 (2007)

20. Gottlob, G., Greco, G.: Decomposing combinatorial auctions and set packing prob-
lems. J. ACM 60(4), 24:1–24:39 (2013)

http://arxiv.org/abs/1808.00825
https://www.cc.gatech.edu/~umit/software.html
http://arxiv.org/abs/1703.03513
https://hal.archives-ouvertes.fr/hal-01924180
https://hal.archives-ouvertes.fr/hal-01138067

264 F. Dufossé et al.

21. Halldórsson, M.M.: Approximating discrete collections via local improvements. In:
SODA, vol. 95, pp. 160–169 (1995)

22. Hazan, E., Safra, S., Schwartz, O.: On the complexity of approximating k -
dimensional matching. In: Arora, S., Jansen, K., Rolim, J.D.P., Sahai, A. (eds.)
APPROX/RANDOM -2003. LNCS, vol. 2764, pp. 83–97. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-45198-3 8

23. Hazan, E., Safra, S., Schwartz, O.: On the complexity of approximating k-set pack-
ing. Comput. Complex. 15(1), 20–39 (2006)

24. Hurkens, C.A.J., Schrijver, A.: On the size of systems of sets every t of which
have an SDR, with an application to the worst-case ratio of heuristics for packing
problems. SIAM J. Discrete Math. 2(1), 68–72 (1989)

25. Karoński, M., Pittel, B.: Existence of a perfect matching in a random (1+e−1)-out
bipartite graph. J. Comb. Theory B 88(1), 1–16 (2003)

26. Karp, R.M., Sipser, M.: Maximum matching in sparse random graphs. In: FOCS
1981, Nashville, TN, USA, pp. 364–375 (1981)

27. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,
Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations, pp.
85–103. Springer, Boston (1972). https://doi.org/10.1007/978-1-4684-2001-2 9

28. Kaya, O., Uçar, B.: Scalable sparse tensor decompositions in distributed memory
systems. In: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. SC 2015, pp. 77:1–77:11. ACM,
Austin (2015)

29. Lamm, S., Sanders, P., Schulz, C., Strash, D., Werneck, R.F.: Finding Near-
Optimal Independent Sets at Scale. In: Proceedings of the 16th Meeting on Algo-
rithm Engineering and Exerpimentation (ALENEX’16) (2016)

30. Pothen, A., Fan, C.J.: Computing the block triangular form of a sparse matrix.
ACM T. Math. Software 16, 303–324 (1990)

31. Shetty, J., Adibi, J.: The enron email dataset database schema and brief statisti-
cal report. Information sciences institute technical report, University of Southern
California 4 (2004)

32. Sinkhorn, R., Knopp, P.: Concerning nonnegative matrices and doubly stochastic
matrices. Pacific J. Math. 21, 343–348 (1967)

33. Smith, S., et al.: FROSTT: the formidable repository of open sparse tensors and
tools (2017). http://frostt.io/

34. Walkup, D.W.: Matchings in random regular bipartite digraphs. Discrete Math.
31(1), 59–64 (1980)

https://doi.org/10.1007/978-3-540-45198-3_8
https://doi.org/10.1007/978-1-4684-2001-2_9
http://frostt.io/

Approximated ZDD Construction
Considering Inclusion Relations of Models

Kotaro Matsuda1(B), Shuhei Denzumi1, Kengo Nakamura2, Masaaki Nishino2,
and Norihito Yasuda2

1 Graduate School of Information Science and Technology,
The University of Tokyo, Tokyo, Japan

{kotaro matsuda,denzumi}@mist.i.u-tokyo.ac.jp
2 NTT Communication Science Laboratories, NTT Corporation, Kyoto, Japan

{nakamura.kengo,nishino.masaaki,yasuda.n}@lab.ntt.co.jp

Abstract. Zero-suppressed binary decision diagrams (ZDDs) are data
structures that can represent families of sets in compressed form. By
using ZDDs, we can perform several useful operations over families of sets
in time polynomial to ZDD size. However, a ZDD representing a large
family of sets tends to consume a prohibitive amount of memory. In this
paper, we attempt to reduce ZDD size by allowing them to have some
false positive entries. Such inexact ZDDs are still useful for optimization
and counting problems since they permit only false positive errors. We
propose two algorithms that can reduce ZDD size without making any
false negative errors. The first is a general algorithm that can be applied
to any ZDD. The second one is a faster algorithm that can be used if the
ZDD represents a monotone family of sets. Our algorithms find pairs of
nodes in a ZDD that do not yield any false negatives if they are merged,
and then merge those pairs in a greedy manner to reduce ZDD size. Fur-
thermore, our algorithms can be easily combined with existing top-down
ZDD construction methods to directly construct approximated ZDDs.
We conduct experiments with representative benchmark datasets and
empirically confirm that our proposed algorithms can construct ZDDs
with 1,000 times fewer false positives than those made with baseline
methods, when the ZDD sizes are halved from the original sizes.

Keywords: Zero-suppressed binary decision diagrams · Probabilistic
data structure · Enumeration

1 Introduction

A zero-suppressed binary decision diagram (ZDD) [13], a variant of the binary
decision diagram (BDD) [7], is a data structure that can represent a family of sets
as a directed acyclic graph. A ZDD can represent a family of sets in a compressed
form that permits several useful operations including computing the cardinality
of the family or performing binary operations between sets of families, in time

c© Springer Nature Switzerland AG 2019
I. Kotsireas et al. (Eds.): SEA2 2019, LNCS 11544, pp. 265–282, 2019.
https://doi.org/10.1007/978-3-030-34029-2_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34029-2_18&domain=pdf
https://doi.org/10.1007/978-3-030-34029-2_18

266 K. Matsuda et al.

polynomial to ZDD size. Due to these benefits, ZDDs and BDDs are widely used
for solving optimization and enumeration problems.

The effectiveness of any ZDD-based problem solving method strongly
depends on how compactly the ZDD can represent the target family of sets.
ZDDs can become prohibitively large if the inputs are large. Indeed, large ZDDs
may exceed the memory capacity of the computer, which prevents ZDDs from
being used to solve problems. In this paper, we propose an algorithm for con-
structing approximated ZDDs. Here we say a ZDD is approximated if it repre-
sents a family of sets F ′ that is close to the target family of sets F . However,
we may lose many of the benefits of ZDDs if F is approximated arbitrarily. Our
solution is to consider a special type of approximated ZDDs with the constraint
that F ⊆ F ′. This means that while the approximated ZDD might have false
positive entries, it will never have false negative entries. This type of ZDD is
called relaxed ZDD [2].

Even though relaxed ZDDs cannot provide exact computational results, they
are still useful since they can be applied in the following situations:

Probabilistic Membership Testing. ZDDs can answer membership
queries to a family of sets in time linear to the size of the base set. Relaxed
ZDDs can also answer membership queries, but they may cause false positive
errors. However, such approximated membership queries are useful as Bloom
filters [4], famous probabilistic data structures that can answer membership
queries but sometimes make false positive errors. They are used in a wide
range of application fields. Unlike Bloom filters, relaxed ZDDs might work
well if the cardinality of input family is huge. This is because if we want a
Bloom filter whose false positive rate is below a threshold value, then the size
of a Bloom filter must be linear to the cardinality of the family, which can be
prohibitively large.
Obtaining Upper Bound Scores in Optimization. If we represent a
family of sets as a ZDD, we can, in time linear to ZDD size, find the set present
within the family that maximizes a linear objective function. This property
is lost if we relax ZDDs, but they do allow us to obtain an upper bound
solution value of the problem. When solving optimization problems, obtaining
good upper bound values is important in making the search procedure more
efficient.
Approximated Counting with a Membership Oracle. ZDDs support
uniform sampling of their entries. If we combine a membership oracle, which
answers a membership query, with a relaxed ZDD, we can perform uniform
random sampling by combining uniform sampling on a relaxed ZDD and using
the oracle to judge membership. Moreover, estimation of the cardinality of
the family also can be performed in the same manner.

In addition to these important applications, we should note that ZDDs
obtained by applying union or intersection operations between relaxed ZDDs
are still relaxed. Therefore, they retain flexibility of ZDDs.

Our goal is to construct a ZDD that is small with the fewest false posi-
tive entries possible. We propose two algorithms; the first one is general in the

Approximated ZDD Construction Considering Inclusion Relations of Models 267

sense that any ZDD is accepted as input. The second is faster and consumes
less memory but can be applied only if the input ZDD represents a monotone
family of sets. Both algorithms consist of two steps; first, they find pairs of
nodes in the given ZDD that can be merged without yielding false negatives;
next, they merge those pairs of nodes one by one by a kind of greedy algorithm
to reduce ZDD size. Let |G| be the number of nodes in the original ZDD. For
general cases, the first step takes O(|G|2) time and space; the second step takes
O(|G|2) time and O(|G|) space for each repetition. Overall, it is an O(m|G|2)
time and O(|G|2) space algorithm where m is the number of merge operations. If
the ZDD represents a monotone family of sets, the first step takes O(|G|α(|G|))
time and O(|G|) space where α(·) is the inverse Ackermann function, and the
second step takes O(|G|) time and O(|G|) space for each repetition. Overall, it is
an O(|G|(m + α(|G|)) time and O(|G|) space algorithm. Furthermore, our algo-
rithms can be easily combined with existing top-down ZDD construction meth-
ods to directly construct approximated ZDDs. Experiments empirically confirm
that our algorithms are better than existing alternatives including heavy branch
subsetting [14,18] and ZDD relaxation [3].

2 Related Work

Making small decision diagrams has long been considered to be important.
Therefore, most BDD or ZDD processing software available today implement
methods for reducing the sizes of decision diagrams. One of the most popular
methods is variable reordering. The size of ordered BDDs and ZDDs strongly
depends on the variable order used. Since finding an optimal variable ordering is
known to be NP-hard [5], efficient heuristic algorithms like sifting [16] are used
in BDD and ZDD packages. Negative edges [6] can also be used for obtaining
small BDDs. However, since these methods are exact, i.e., they do not change
the target family of sets being represented, their reduction ability is limited. It
is known that there are Boolean functions such that a BDD representing them
becomes exponentially larger under any variable order (e.g., [7]). Exact methods
cannot cope with these functions.

Many methods for approximating decision diagrams have been proposed over
the years. Approximation methods can be divided into two classes. Methods in
one class try to reduce the size of a given decision diagram. Previous methods in
this class reduce the size of decision diagrams by applying some reduction rules.
The proposed method lies in this class. Heavy branch subsetting [14,18] reduces
ZDD size by removing a node and then making the edges pointing to that node
point to a terminal node. Unlike the proposed method, heavy branch subsetting
is applicable only in limited situations. Another approach close to ours is [14].
Their method, called Remap, is similar in that they use inclusion relationships
between two children nodes of a BDD to decide which node to delete. However,
compared with ours, the situation wherein two nodes can be merged is limited.
Moreover, the reduction rule applied in Remap cannot reduce ZDD size, while
our method can be used with both BDDs and ZDDs.

268 K. Matsuda et al.

The other class of approximation methods directly construct DDs without
first making exact DDs [3,9]. These methods are useful in the situations where
an exact DD is hard to construct due to its size. However, these methods are
specialized for solving optimization problems. Therefore, their performance is not
so high when we want to solve other than optimization problems. Moreover, these
methods must be carefully designed to suit the target family of sets. In contrast,
our methods can be used in combination with existing top-down construction
algorithms without any modification.

3 Preliminaries

Let C = {1, . . . , c} be the universal set. Throughout this paper, sets are subset
of C. The empty set is denoted by ∅. For set S = {a1, . . . , as} (⊆ C), s ≥ 0, we
denote the size of S by |S| = s. A family is a subset of the power set of C. We
say a family of sets F is monotone if F satisfies S ∈ F ⇒ ∀k ∈ S, S\{k} ∈ F
or S ∈ F ⇒ ∀k ∈ C,S ∪ {k} ∈ F . We describe families of sets that satisfy the
former condition as monotone decreasing and families of sets that satisfy the
latter condition as monotone increasing.

3.1 Zero-Suppressed Binary Decision Diagrams

A zero-suppressed binary decision diagram (ZDD) [13] is a data structure for
manipulating finite families of sets. A ZDD is a single-rooted directed acyclic
graph written as G = (V,E) that satisfies the following properties. A ZDD
has two types of nodes: branch nodes and terminal nodes. There are exactly two
terminal nodes: ⊥ and
. Terminal nodes have no outgoing edges. Branch node v
has an integer �(v) ∈ {1, . . . , c} as the label of v. v has exactly two distinguishable
edges called the 0-edge and the 1-edge of v. We call the destination node of 0-
edge zero(v) (1-edge one(v) resp.) 0-child (1-child resp.) of v. If there is no
confusion, we simply write the 0-child and 1-child of v as v0 and v1, respectively.
We say a ZDD is ordered if �(v) < �(v0) and �(v) < �(v1) holds for any branch
node v. For convenience, we define �(v) = c + 1 for terminal node v. In this
paper, we consider only ordered ZDDs. Let L1, . . . , Lc+1 be layers. Each layer Li

is the set of nodes whose label is i for i = 1, . . . , c+1. Note that there is no edge
from a node in Li to a node in Lj if i ≥ j. In the figures in the paper, terminal
and branch nodes are drawn as squares and circles, respectively, and 0-edges and
1-edges are drawn as dashed and solid arrows, respectively. We define the size
of ZDD G as the number of its nodes and denote it by |G|. We define families
of sets represented by ZDDs as follows:

Definition 1 (a family of sets represented by a ZDD). Let v be a ZDD
node. Then, a finite family of sets Fv is defined recursively as follows: (1) If v
is a terminal node: Fv = {∅} if v =
, and Fv = ∅ if v = ⊥. (2) If v is a branch
node: Fv = {S ∪ {�(v)} | S ∈ Fv1} ∪ Fv0 .

Approximated ZDD Construction Considering Inclusion Relations of Models 269

Fig. 1. Example of a ZDD.

If r is the root of ZDD G, then Fr represents the family of sets that G cor-
responds to. We also write this family of sets as FG. The example in Fig. 1 rep-
resents the following family of sets {∅, {2}, {3}, {4}, {1, 3}, {1, 4}, {2, 3}, {2, 4},
{3, 4}, {1, 2, 3}}. Set S = {a1, . . . , as} corresponds to a path in ZDD G starting
from root r in the following way: At each branch node with label b, the path
continues to the 0-child if b �∈ S and to the 1-child if b ∈ S; the path eventually
reaches
 (⊥ resp.), indicating that S ∈ Fr (S �∈ Fr resp.). If a ZDD represents
a monotone decreasing (increasing resp.) family of sets, then for any branch node
v in the ZDD, Fv0 ⊃ Fv1 (Fv0 ⊂ Fv1 resp.) holds.

3.2 False Positives/False Negatives

Our objective in this paper is to construct an approximated ZDD that represents
the family of sets F ′ that is similar to the given sets family F . We say S ⊆ C is
a false positive if S ∈ F ′ \F . Similarly, we say S is a false negative if S ∈ F \F ′.
For given ZDD G that represents F , we say a ZDD that represents F ′ is a
relaxed ZDD of G if F ′ does not have any false negative entries, that is, F ⊆ F ′.
Conversely, if F ′ has no false positive entries, then the ZDD representing F ′ is
said to be a restricted ZDD of G.

4 Approximation of a Given ZDD

In this section, we propose an algorithm that constructs a relaxed ZDD G′

from a given ZDD G. Smaller relaxed ZDDs that have fewer false positives are
preferred. Therefore, we formulate the problem of finding a good relaxed ZDD
as the following combinatorial optimization problem:

Minimize |FG′ \ FG|
Subject to |G′| < θ, FG ⊆ FG′ ,

where |FG′ \FG| represents the number of false positives and θ is the parameter
that limits the size of the relaxed ZDD. Since finding an optimal solution of the

270 K. Matsuda et al.

above problem is difficult, we resort to heuristic methods. A rough sketch of our
algorithm is as follows: (1) find node pairs whose merger does not cause false
negatives; (2) choose the pair of nodes that yields the fewest false positives and
merge them; (3) repeat (2) until ZDD size falls under θ.

In the following, we first describe the condition that merging a pair of nodes
causes no false negatives. Second, we explain how to find such node pairs effi-
ciently. We also show an almost linear time algorithm that can find node pairs,
particularly when the input ZDD represents a monotone family of sets. Finally,
we propose a greedy algorithm to construct a relaxed ZDD that uses the infor-
mation obtained by the above process.

4.1 Node Merging Without False Negatives

In our algorithms, we make the relaxed ZDD by repeatedly merging pairs of
ZDD nodes. We merge two nodes u and v by first deleting u and redirecting to v
all incoming edges to u. Then, we delete descendants of u that cannot be reached
from the root after deleting u. We call this manipulation incorporation of u into
v. Generally speaking, incorporating nodes may cause both false positive and
negative errors. However, our condition of incorporation does not yield any false
negative errors.

Theorem 1. Given ZDD nodes u and v, if Fu ⊆ Fv and �(u) = �(v), then
incorporating u into v does not cause false negatives.

From Definition 1, for node p that has u as its 1-child, the family of sets
represented by p does not contain false negatives in comparison to the original
Fp after incorporation of u into v because {S ∪ {�(p)} | S ∈ Fu} ∪ Fp0 ⊆
{S ∪ {�(p)} | S ∈ Fv} ∪ Fp0 . The above statement holds true for subsequent
ancestors and nodes having u as their 0-child. Finally, we can prove Theorem1.
An example of incorporation that does not cause false negatives is shown in
Fig. 2. Since Fu = {{3}} and Fv = {∅, {3}}, Fu ⊆ Fv holds. Incorporating u
into v causes new false positive sets ∅ and {1}, but no false negative sets.

Readers may notice that an inclusion relation such as Fp ⊆ Fq may be broken
by incorporating descendant nodes, and thus it seems that we cannot incorporate
p into q after that. However, even in this situation we can incorporate p into q.
Let F∗

p and F∗
q be the family of sets p and q initially represents, respectively,

and assume F∗
p ⊆ F∗

q . Then after incorporating descendant nodes, Fp ⊇ F∗
p

and Fq ⊇ F∗
q hold. Since F∗

p ⊆ F∗
q ⊆ Fq, incorporating p into q causes some

false positives but no false negatives compared to the original set family F∗
p .

These arguments suggest that we can continuously use the inclusion relations
computed with the initial ZDD. Therefore we compute the inclusion relations
only once (at first). From the above, we first need to find the pairs of nodes that
can be incorporated to obtain a relaxed ZDD by incorporation.

4.2 Finding All Inclusion Relations in Each Layer

Here, we show how to find inclusion relations among ZDD nodes. To identify the
node pairs that can be incorporated, we search the inclusion relations in each

Approximated ZDD Construction Considering Inclusion Relations of Models 271

Fig. 2. An example showing that incorporation does not cause false negative errors.
Bold arrow from u to v indicates that u is included in v.

Fig. 3. How to decide whether (u, v) ∈ R. Curved dashed lines denote paths consisting
of only 0-edges.

layer. Let R be the set of all node pairs that can be incorporated, i.e., (u, v) ∈ R
if and only if Fu ⊆ Fv and �(u) = �(v). Note that, for each node u, we define
(u, u) ∈ R. Since Fu ⊆ Fv is equivalent to Fu0 ⊆ Fv0 and Fu1 ⊆ Fv1 when
�(u) = �(v), we can compute R in a bottom-up order from layer Lc+1 to layer
L1. We define zp(u, k) as follows: if there is node v of label k that can be reached
from u by traversing only 0-edges, zp(u, k) = v; if such a node does not exist,
zp(u, k) = null. We should note that such v is uniquely determined if exists. For
a pair of distinct nodes (u, v) in Lk, we can decide whether u can be incorporated
into v or not by the following process: For k = c+1, it is trivial that (⊥,
) ∈ R
and (
,⊥) /∈ R. For k = c, c − 1, . . . , 2, we check whether (u, v) ∈ R or not by
seeing whether both Fu0 ⊆ Fv0 and Fu1 ⊆ Fv1 are satisfied or not. We use the
following fact.

Theorem 2. For any branch nodes u, v, (u, v) ∈ R iff (u0, zp(v0, �(u0))) ∈ R
and (u1, zp(v1, �(u1))) ∈ R are satisfied.

Figure 3 shows the condition. The above theorem says that if we have zp(u, k)
for every node u and 1 ≤ k ≤ c+1 and we know all pairs in R whose label is larger
than �(u), then we can check the inclusion relations of node pairs in constant
time. zp(u, k) can be computed by bottom-up dynamic programming in O(|G|c)
time and we can store the results in a table of size O(|G|c). As a result, our
bottom-up algorithm runs in O(|G|2) space and O(|G|2) time.

The size of R obtained by the above procedure is O(|G|2), which can be hard
to store in memory if the input ZDD is large. Since we do not need all elements

272 K. Matsuda et al.

of R in the later process, a simple remedy to this problem is to give up on
finding all elements of R. However, since we test whether Fu ⊂ Fv by checking
whether both (u0, zp(v0, �(u0))) ∈ R and (u1, zp(v1, �(u1))) ∈ R are satisfied,
if we remove some pairs in layer Lk from R, then we will overlook inclusion
relations of nodes in higher layers. Thus, it is hard to find only valuable node
pairs. The next subsection introduces a more efficient algorithm to find inclusion
relations that work only for ZDDs representing monotone families of sets.

4.3 Finding Inclusion Relations Under Monotonicity

Next method can be used for ZDDs that represent monotone families of sets.
Many monotone set families appear in real-life problems. For example, a family
of sets consisting of sets whose size is larger than some constant, k, is monotone.
As a more practical example, the set families yielded by frequent set mining
problems are also monotone. In the following, we consider only a monotone
decreasing family of sets. With small modifications, it can be applied to a mono-
tone increasing family of sets.

If a ZDD represents a monotone family of sets, then finding mergeable node
pairs becomes easier than the general case as we can use the following fact.

Theorem 3. Suppose that FG is monotone decreasing. Then Fu1 ⊆ Fv holds
for any branch node u, where v = zp(u, �(u1)) (Cond.(b)).

Different from the general case, we can find inclusion relations if we know
some inclusion relations of parent nodes.

Theorem 4. Suppose that FG is monotone decreasing. If two branch nodes p, q
satisfy �(p) = �(q) and Fp ⊆ Fq, then Fp0 ⊆ Fv (Cond.(a)) and Fp1 ⊆ Fw

(Cond.(c)), where v = zp(q, �(p0)) and w = zp(q1, �(p1)).

The above three conditions are shown in Fig. 4. Furthermore, the following
inclusion relation also holds.

Theorem 5. If FG is monotone, for each node u other than the special node in
each layer, there is at least one node pair (u, v) such that (u, v) ∈ R and u �= v.

Here we say a node is special if it can be reached from the root by using only
0-edges. All these facts suggest that we can easily find mergeable node pairs if
FG is monotone. We introduce a heuristic method that processes ZDD nodes in
order from the top layer to the bottom layer to find at most one mergeable node
pair (u, v) for every branch node u. In the following, we use sup(u) to represent
the node v that satisfies (u, v) ∈ R′, where R′ ⊆ R is the set of mergeable
node pairs found by the algorithm introduced in this section. Since the size of
R′ is O(|G|), memory requirements are reasonable. Clearly, our algorithm may
overlook important node pairs. However, by selecting a “good” pair (u, v) for
every node u by using some criterion, our algorithm is practical and works well.

Algorithm 1 shows the algorithm that finds mergeable node pairs of ZDD G
that represents a monotone decreasing family of sets. The algorithm proceeds

Approximated ZDD Construction Considering Inclusion Relations of Models 273

Algorithm 1. FindInclMono: Compute some node pairs in the same layer that
hold inclusion relations under monotonicity.
Input: a ZDD G = (V, E)
1: for k = 1, . . . , c do
2: for u ∈ Lk that is not special do
3: P0 ← {v | v ∈ V, u = v0}
4: P1 ← {v | v ∈ V, u = v1}
5: for all p ∈ P0 ∪ P1 do � Checking Cond.(a), Cond. (b)
6: q ← p
7: while u = zp(q, �(u)) do
8: q ← sup(q)

9: insert zp(q, �(u)) to the candidates of sup(u)

10: for all p ∈ P1 do � Checking Cond.(c)
11: q ← p
12: while u = zp(q1, �(u)) and q is not special do
13: q ← sup(q)

14: if u �= zp(q1, �(u)) then
15: insert zp(q1, �(u)) to the candidates of sup(u)

16: sup(u) ← arg min
v

{|Fv| | v ∈ {candidates of sup(u)}}

Fig. 4. Possible candidates of sup(u) are shown in gray. Curved dashed lines denote
paths consisting of only 0-edges. Bold arrow from p to q represents that Fp ⊆ Fq.

from the top layer to the bottom layer. For each layer, (1) it finds candidates of
sup(u) for every node u in the layer (lines 3 to 14), and (2) it sets sup(u) = v
where |Fv| is the smallest among the candidates (line 15). Here we use |Fv| as
the criterion since the number of false positives caused by incorporating u into
v equals |Fv \ Fu|. To find sup(u) candidates, we use the three conditions listed
in the above theorems.

Time Complexity. If we simply implement this algorithm, it runs in Θ(|G|2)
time in the worst case. However, we can reduce this worst case time complexity
to O(|G|α(|G|)) by using the disjoint-set data structure [8,19], where α(·) is an
inverse Ackermann function (Details are shown in AppendixA).

274 K. Matsuda et al.

Fig. 5. An example of a dominator tree for a given graph.

4.4 Greedy Reduction by Selecting Nodes to Be Incorporated

If nodes u and v satisfy Fu ⊂ Fv, we can incorporate u into v without causing
false negatives. For good approximation, we need to choose node pairs that yield
fewer false positives. In this subsection, we introduce an algorithm for deter-
mining pairs of nodes to be merged. Since finding pairs of nodes that minimize
ZDD size is difficult, we propose a greedy algorithm that repeatedly selects the
node pairs to be incorporated until the size of the ZDD becomes smaller than
the threshold θ.

We define EG(u, v) as the number of false positives yielded by incorporating
node u into node v, where u, v are nodes of current ZDD G. Let N(u) be the
number of nodes in ZDD G whose path from the root to the node contains v. In
other words, N(u) is the number of nodes we can delete after incorporating u into
another node. In every greedy search step, our algorithm chooses a node pair
(u, v) that minimizes log(EG(u, v)/|FG|)/N(u) for current ZDD G. We chose
this objective function because we want the least possible additional error rate
log(EG(u, v)/|FG|) as well as more node deletion N(u). We also tried other
objective functions, but this function achieved the best results in preliminary
experiments.

To execute the greedy algorithm efficiently, we have to rapidly calculate
EG(u, v), |FG| and N(u), for every greedy search step.

Calculating EG(u, v) and |FG|: Since we know Fu ⊂ Fv, EG(u, v) is cal-
culated simply by (|Fv| − |Fu|) times the number of paths from the root to
u. For every node u, we can calculate |Fu| and the number of paths from the
root by executing dynamic programming [11] in O(|G|) time. Note that |FG|
equals |Fr| where r is the root of G.
Calculating N(u): Here, we introduce a concept called dominator. For a
directed graph, if there exists a distinguished start node r such that the
other nodes are reachable from r, the graph is called a flow-graph. A single-
rooted ZDD is a flow-graph whose distinguished start node is the root node.
In a flow-graph, if and only if there is node v on every path from the start
node r to node u, we define node v as a dominator of u. It is known that this
relationship among all nodes can be represented by a tree structure, which

Approximated ZDD Construction Considering Inclusion Relations of Models 275

is called the dominator tree of the graph. An example of a dominator tree
is shown in Fig. 5. In a dominator tree, node u is an ancestor of node v if
and only if u dominates v in the given flow-graph. A dominator tree can be
constructed in time linear to the number of nodes of a given graph [1,12].
Remember that N(u) is the number of nodes that are reachable only via
u. Thus, N(u) equals the number of descendants of u in the dominator tree.
N(u) is calculated by bottom-up computation on the dominator tree in linear
time.

5 On-the-Fly Approximation in the Construction
of a ZDD

In Sect. 4, we described an algorithm to approximate a given ZDD. However, the
discussion implicitly assumed that the size of the given ZDD is within the main
memory limits. Indeed, approximation techniques are quite useful for huge ZDDs
that exceed main memory. In this section, we show how to apply our algorithms
for constructing ZDDs from scratch.

5.1 ZDD Construction by Depth-First Dynamic Programming

First, we briefly review an existing ZDD construction algorithm called the
frontier-based search (FBS) method [11,17]. FBS is a kind of dynamic pro-
gramming that can construct ZDDs that represent sets of all solutions of some
problems, including the knapsack problem and enumeration problems of sub-
graphs satisfying certain conditions. FBS creates ZDD nodes in the order from
the root to the bottom, i.e., it first creates a ZDD node and then creates
its child nodes. If we naively create nodes in this way, layer Lk might have
O(2k) nodes. To avoid such explosion, FBS methods apply the signature called
mate to each subset of C. Mate is designed to ensure that if two sets S1, S2

with the same maximal element have the same mate signature value, then
{S \ S1 | S ∈ FG, S1 ⊆ S} = {S \ S2 | S ∈ FG, S2 ⊆ S} for the family of
solution sets FG. In other words, if the mate values of S1 and S2 are the same,
we know that the resultant ZDDs constructed after choosing each of S1 and S2

are equivalent. By designing appropriate mate values, FBS methods can avoid
redundant computation; they reuse the results for the sets with the same mate
values and thus create ZDDs efficiently. In our relaxation method, we use φ(S)
to represent the mate value of S ∈ C and M [·] is the table that maps mate values
to corresponding ZDD nodes. If φ(S) = null, S cannot be included any solution
set. Thus, we can stop further computation. Algorithm 2 provides the pseudo
code of this algorithm. We run DFS(∅, 1) to obtain the root of the solution
ZDD.

5.2 Approximated Construction in Depth-First Manner

By combining the depth-first FBS algorithm with the node merging method
introduced in Sect. 4, we can design an on-the-fly approximation algorithm. We

276 K. Matsuda et al.

Algorithm 2. DFS (S, k): Depth-first construction algorithm of a ZDD that
contains all solutions of a given problem.
Input: a set S ⊆ C and a level k ∈ C
Output: a ZDD node
1: if k = |C| + 1 then
2: if S is a solution of the problem then return �
3: else return ⊥
4: if φ(S) = null then return ⊥
5: if key φ(S) exists in M then return M [φ(S)]
6: v0 ← DFS(S, k + 1)
7: v1 ← DFS(S ∪ {k}, k + 1)
8: if v1 = ⊥ then return v0
9: if node v with label k and having child nodes v0 and v1 exists then

10: M [φ(S)] ← v
11: return v
12: else
13: Create node v in the layer Lk whose 0-child is v0 and 1-child is v1
14: M [φ(S)] ← v
15: return v

Fig. 6. Node incorporation in construction.

first set θ as the threshold of the allowed number of nodes before commencing
ZDD construction. We then run the depth-first construction algorithm. During
construction, we run our approximation algorithm when the number of created
nodes exceeds threshold θ. An example of incorporation in construction is shown
in Fig. 6. Since ZDDs are only partially constructed, we compute EG(u, v) or
N(u); uncreated parts are ignored.

When we incorporate node u into node v, we must update M [x] to v, where
x is the mate such that M [x] = u holds before deleting u. However, storing all
such relations may results in growing the size of M . We, therefore, set another
threshold σ and divide M into c individual hashtables corresponding to each
layer. If the size of a table for a layer reaches σ, we choose an element in the
hashtable at random and delete it. Such forgetting weakens the benefit of mem-
orization and may yield redundant repeated computation, but it does guarantee
a bound on memory consumption. This idea of bounding the memory usage in
each layer is also employed in [3].

Approximated ZDD Construction Considering Inclusion Relations of Models 277

6 Experiments and Results

6.1 Approximation of a Given ZDD

In this subsection, we show that the methods proposed in Sect. 4 cause fewer
false positives than other algorithms. We implemented the algorithms proposed
in Sect. 4 and existing approximation algorithms in C++ and compared them
by measuring the numbers of nodes after approximation and the resulting sizes
of set families including false positives.

– proposed method: our algorithm (described in Sect. 4).
– proposed method monotone: our algorithm for ZDDs that represent

monotone families of sets (described in Sect. 5).
– random: choose a pair of nodes uniformly at random from all node pairs

(u, v) such that Fu ⊆ Fv and incorporate u into v.
– greedy eraser: choose node u = arg max

w
{|N(w)| | w ∈ {p | p, q ∈ V,Fp ⊆

Fq}} and incorporate u into node v = arg min
w

{|Fw| | w ∈ {q | q ∈ V,Fu ⊆
Fq}}.

– heavy branch: algorithm proposed in [15,18]; it is called rounding up by
heavy branch subsetting.1

Table 1. Detail of data sets and properties of their ZDDs.

Families of sets |C| |G| |FG|
Matching edge sets of an 8 × 8 grid graph 112 4367 1.798 × 1017

Matching edge sets in the network “Interoute” 146 11143 6.896 × 1024

Frequent item sets in “mushroom” (p = 0.001) 117 26719 2.311 × 109

Frequent item sets in “retail” (p = 0.00025) 6053 12247 5.048 × 104

frequent item sets in “T40I10D100K” (p = 0.005) 838 47363 1.286 × 106

We use the ZDDs that represent the families of sets listed in Table 1. The
top two are families of sets of edges in each graph that constitute matching in
the graphs. The network “Interoute” is derived from [10]2. The bottom three are
the results of frequent set mining with support p, 0 ≤ p ≤ 1, on data sets that
are taken from Frequent Itemset Mining Dataset Repository3. All of these data
sets are monotonically decreasing.

The results are shown in Figs. 7 and 8. Note that we use semilog scale. Our
proposed algorithms yield fewer false positives than the other algorithms; over
1 Heavy branch subsetting was originally proposed for BDDs. We slightly modify it

to suit ZDDs. In this method, when we want to delete node u with label k, we
incorporate u into node pk such that Fpk = 2{k,k+1,··· ,c}. There can be several node
selection methods such as [15,18]. In our experiment, we decide nodes to delete
similarly to our proposed method.

2 http://www.topology-zoo.org/dataset.html.
3 http://fimi.uantwerpen.be/data/.

http://www.topology-zoo.org/dataset.html
http://fimi.uantwerpen.be/data/

278 K. Matsuda et al.

Fig. 7. Relations between size of ZDD G, and FG for matching edge sets.

Table 2. Graphs used for on-the-fly approximation.

A graph G = (V, E) |C| #node |V | #edge |E|
8 × 8 grid graph 112 64 112

A real communication network “Interoute” 146 110 146

1,000 times fewer false positives for a given ZDD than the algorithm that chooses
(x, y) ∈ R at random, when the ZDD compression rate is 50%. In all cases,
our methods achieve the lowest false positive rate in almost all ranges. Our
methods restrain the increase in the number of false positives much more than
the other methods until they approach the limitation of approximation. When
comparing both of our proposed methods, the performance of the method using
monotonicity is not significantly inferior even though it does not compute all
inclusion relations between nodes. Note that our method cannot delete nodes if
no pair of nodes have the inclusion relation.

6.2 On-the-Fly Approximation

We implement our on-the-fly approximated ZDD construction algorithm and
compare it with ZDD relaxation [3]. To decide which node is to be incorporated
next, we employ the method called H3 from [3]. In this experiment, we con-
structed approximated ZDDs that include the matching edge set of the graphs
in Table 2. The variable ordering of ZDDs is determined by BFS order. We set
various size thresholds to evaluate the number of false positives. If the number
of nodes reaches a threshold during construction, we delete 300 nodes and con-
tinue construction. For ZDD relaxation, we conduct experiments with various
upper limits on ZDD width because ZDD relaxation is a method that bounds the
number of nodes in each layer. The results are shown in Fig. 9. Our proposed
methods yield about 10–100 times fewer false positives than ZDD relaxation
when the approximated ZDD size is halved.

Approximated ZDD Construction Considering Inclusion Relations of Models 279

Fig. 8. Relations between size of ZDD G, and FG for frequent item sets.

Fig. 9. Relations between size of ZDD, G, and FG for on-the-fly approximation.

7 Conclusion

In this paper, we proposed two algorithms to construct approximated ZDDs that
are allowed to have false positives. The algorithms compute inclusion relations
between pairs of nodes in each layer, choose such a pair based on an objective
function, and incorporate them one by one. Our experiments showed that our
methods construct ZDDs that have smaller size and fewer errors than other
methods.

280 K. Matsuda et al.

There are several future works. First, although our algorithms are applicable
to any ZDD, there are ZDDs whose size cannot be reduced by our algorithms.
As shown in Sect. 4.1, our algorithms are based on inclusion relations. Therefore,
our methods do not work well for ZDDs having nodes with few inclusion rela-
tions. In such cases, we should use a different node merging technique instead
of the node incorporating technique. Second, we should consider if there is a
better objective function for the greedy algorithm used. Our objective function
calculates the value for only one pair (u, v) ∈ R. If we can expand the input for
the objective function to a set of pairs, the performance of the algorithm will
improve. However, such a change will increase time complexity.

A Speeding Up Finding Inclusion Relations Under
Monotonicity

In this section, we explain how to reduce the time complexity of Algorithm1 to
O(|G|α(|G|)). Assume that we visit node q in a while loop of Algorithm1 and
reach node q′ at the end of the loop. After that, we know that a desired node
exists at least after p′ when we traverse the same route in the same while loop
because of the loop conditions. Thus, traversing nodes one by one every time
is redundant and can be avoided. For example, when we finished processing of
nodes in layer Lk, we know that we can ignore the nodes with label smaller than
k while computing sup(·) of nodes in lower layers. Therefore, we want to avoid
traversing sup(·) one by one and instead skip them to reach nodes in desired lay-
ers. Using disjoint-set data structures to store nodes already processed allows us
to execute while loops in Algorithm 1 efficiently. The disjoint-set data structure
stores multiple sets that are mutually disjoint. Each set stored in disjoint-set
data structure has one representative element in the set. Disjoint-set data struc-
ture supports two operations: (1) union operation merges two sets into one and
updates its representative; (2) find operation returns the representative of a set.
Indeed, we have to prepare four disjoint-set data structures as follows: (1) Skip
continuous sup(·) if p ∈ P0 is in the first while loop (2) Skip continuous sup(·) if
p ∈ P1 is in the first while loop (3) Skip continuous sup(·) if p ∈ P0 is in the sec-
ond while loop (4) Skip continuous 0-edges. As a result, the whole computation
time of Algorithm 1 is O(|G|α(|G|)) and its space complexity is O(|G|).

We store node sets in the ZDD by using four disjoint-set data structures
DS1,DS2,DS3,DS4. Each element in DSi corresponds to a node in the ZDD.
Let dsi(u) be the set that contains u in DSi and rep(dsi(u)) be the representative
of dsi(u). For each node u in the ZDD, dsi(u) = {u} and rep(dsi(u)) = u as an
initial value. First, we speed up the repeated updates q ← sup(q) in two while
loops by using three disjoint-set data structures DS1,DS2,DS3. These are used
in the following situations:

1. If p ∈ P0 is in the first while loop, we use DS1.
2. If p ∈ P1 is in the first while loop, we use DS2.
3. If p ∈ P0 is in the second while loop, we use DS3.

Approximated ZDD Construction Considering Inclusion Relations of Models 281

We explain only the case of p ∈ P0 in the first loop (The other cases are dealt
with in the same manner). For each node p ∈ P0, let p′ = rep(ds1(p)) and
q′ = rep(ds1(sup(p′))). While u = zp(q′, �(u)), we compute the union of ds(p′)
and ds(q′) and set rep(ds(p′)) = q′. Then, node zp(q′, �(u)) is the candidate of
sup(u). Since the union and find operations are executed at most O(|G|) times,
these operations run in O(|G|α(|G|)) time. Second, we explain how to rapidly
calculate zp(q, �(u)) and zp(q1, �(u)). When we see only 0-edges, a ZDD can be
considered as a tree whose root is the terminal node
 as shown in Fig. 3. When
we consider only the nodes included in L1, . . . , Lk (1 ≤ k ≤ c + 1), the induced
subgraph of the tree is a forest. Note that each node v ∈ L1, . . . , Lk belongs to a
tree of the forest. If T is a tree of the forest, calculating zp(q, k) is equivalent to
finding the node in Lk and an ancestor of q. We use the disjoint-set data structure
DS4 to represent the forest and update it dynamically alongside the processing of
layers. When we compute sup(·) of nodes in Lk, for each 0-edge (p, p0) such that
p0 ∈ Lk, we compute the union of ds4(p) and ds4(p0) and set the representative
of this new set to p0. This process ensures that zp(v, k) = rep(ds4(u)) holds.
Therefore, we can compute zp(q, k) by finding rep(ds4(q)) in O(α(|G|)) time.
The union and find operations are executed O(|G|) times because the number
of the 0-edges is |G|. Moreover, zp(·, ·) is called O(|G|) times. Finally, the whole
computation time of this algorithm is O(|G|α(|G|)).

References

1. Alstrup, S., Harel, D., Lauridsen, P.W., Thorup, M.: Dominators in linear time.
SIAM J. Comput. 28(6), 2117–2132 (1999)

2. Andersen, H.R., Hadzic, T., Hooker, J.N., Tiedemann, P.: A constraint store based
on multivalued decision diagrams. In: Bessière, C. (ed.) CP 2007. LNCS, vol.
4741, pp. 118–132. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-74970-7 11

3. Bergman, D., van Hoeve, W.-J., Hooker, J.N.: Manipulating MDD relaxations for
combinatorial optimization. In: Achterberg, T., Beck, J.C. (eds.) CPAIOR 2011.
LNCS, vol. 6697, pp. 20–35. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-21311-3 5

4. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun.
ACM 13(7), 422–426 (1970)

5. Bollig, B., Wegener, I.: Improving the variable ordering of OBDDs is NP-complete.
IEEE Trans. Comput. 45(9), 993–1002 (1996)

6. Brace, K.S., Rudell, R.L., Bryant, R.E.: Efficient implementation of a BDD pack-
age. In: Proceedings of DAC 1990, pp. 40–45 (1990)

7. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE
Trans. Comput. 35, 677–691 (1986)

8. Galler, B.A., Fisher, M.J.: An improved equivalence algorithm. Commun. ACM
7(5), 301–303 (1964)

9. Hadzic, T., Hooker, J.N., O’Sullivan, B., Tiedemann, P.: Approximate compilation
of constraints into multivalued decision diagrams. In: Proceedings of CP 2008, pp.
448–462 (2008)

10. Knight, S., Nguyen, H.X., Falkner, N., Bowden, R., Roughan, M.: The internet
topology zoo. IEEE J. Sel. Areas Commun. 29(9), 1765–1775 (2011)

https://doi.org/10.1007/978-3-540-74970-7_11
https://doi.org/10.1007/978-3-540-74970-7_11
https://doi.org/10.1007/978-3-642-21311-3_5
https://doi.org/10.1007/978-3-642-21311-3_5

282 K. Matsuda et al.

11. Knuth, D.E.: The Art of Computer Programming. Combinatorial Algorithms, Part
1, vol. 4A, 1st edn. Addison-Wesley Professional, Boston (2011)

12. Lengauer, T., Tarjan, R.E.: A fast algorithm for finding dominators in a flowgraph.
ACM Trans. Prog. Lang. Syst. 1(1), 121–141 (1979)

13. Minato, S.: Zero-suppressed BDDs for set manipulation in combinatorial problems.
In: Proceedings of DAC 1993, pp. 272–277 (1993)

14. Ravi, K., McMillan, K.L., Shiple, T.R., Somenzi, F.: Approximation and decom-
position of binary decision diagrams. In: Proceedings of DAC 1998, pp. 445–450
(1998)

15. Ravi, K., Somenzi, F.: High-density reachability analysis. In: Proceedings of
ICCAD 1995, pp. 154–158 (1995)

16. Rudell, R.: Dynamic variable ordering for ordered binary decision diagrams. In:
Proceedings of ICCAD 1993, pp. 42–47 (1993)

17. Sekine, K., Imai, H., Tani, S.: Computing the Tutte polynomial of a graph of
moderate size. In: Proceedings of ISAAC 1995, pp. 224–233 (1995)

18. Soeken, M., Große, D., Chandrasekharan, A., Drechsler, R.: BDD minimization for
approximate computing. In: Proceedings of ASP-DAC 2016, pp. 474–479 (2016)

19. Tarjan, R.E., van Leeuwen, J.: Worst-case analysis of set union algorithms. J. ACM
31(2), 245–281 (1984)

Efficient Implementation of Color Coding
Algorithm for Subgraph Isomorphism

Problem

Josef Maĺık(B), Ondřej Suchý , and Tomáš Valla

Department of Theoretical Computer Science, Faculty of Information Technology,
Czech Technical University in Prague, Prague, Czech Republic

{josef.malik,ondrej.suchy,tomas.valla}@fit.cvut.cz

Abstract. We consider the subgraph isomorphism problem where, given
two graphs G (source graph) and F (pattern graph), one is to decide
whether there is a (not necessarily induced) subgraph of G isomorphic
to F . While many practical heuristic algorithms have been developed for
the problem, as pointed out by McCreesh et al. [JAIR 2018], for each of
them there are rather small instances which they cannot cope. Therefore,
developing an alternative approach that could possibly cope with these
hard instances would be of interest.

A seminal paper by Alon, Yuster and Zwick [J. ACM 1995] introduced
the color coding approach to solve the problem, where the main part is a
dynamic programming over color subsets and partial mappings. As with
many exponential-time dynamic programming algorithms, the memory
requirements constitute the main limiting factor for its usage. Because
these requirements grow exponentially with the treewidth of the pattern
graph, all existing implementations based on the color coding principle
restrict themselves to specific pattern graphs, e.g., paths or trees. In
contrast, we provide an efficient implementation of the algorithm sig-
nificantly reducing its memory requirements so that it can be used for
pattern graphs of larger treewidth. Moreover, our implementation not
only decides the existence of an isomorphic subgraph, but it also enu-
merates all such subgraphs (or given number of them).

We provide an extensive experimental comparison of our implemen-
tation to other available solvers for the problem.

Keywords: Subgraph isomorphism · Subgraph enumeration · Color
coding · Tree decomposition · Treewidth

1 Introduction

Many real-world domains incorporate large and complex networks of intercon-
nected units. Examples include social networks, the Internet, or biological and

J. Maĺık—Supported by grant 17-20065S of the Czech Science Foundation.
O. Suchý and T. Valla—The author acknowledges the support of the OP VVV MEYS
funded project CZ.02.1.01/0.0/0.0/16 019/0000765 “Research Center for Informatics”.

c© The Author(s) 2019
I. Kotsireas et al. (Eds.): SEA2 2019, LNCS 11544, pp. 283–299, 2019.
https://doi.org/10.1007/978-3-030-34029-2_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34029-2_19&domain=pdf
http://orcid.org/0000-0002-7236-8336
http://orcid.org/0000-0003-1228-7160
https://doi.org/10.1007/978-3-030-34029-2_19

284 J. Maĺık et al.

chemical systems. These networks raise interesting questions regarding their
structure. One of those questions asks whether a given network contains a partic-
ular pattern, which typically represents a specific behaviour of interest [1,4,12].
The problem of locating a particular pattern in the given network can be restated
as a problem of locating a subgraph isomorphic to the given pattern graph in
the network graph.

Formally, the Subgraph Isomorphism (SubIso) problem is, given two
undirected graphs G and F , to decide whether there is a (not necessarily
induced) subgraph of G isomorphic to F . Or, in other words, whether there
is an adjacency-preserving injective mapping from vertices of F to vertices of
G. Since we do not require the subgraph to be induced (or the mapping to pre-
serve non-adjacencies), some authors call this variant of the problem Subgraph

Monomorphism.
For many applications it is not enough to just learn that the pattern does

occur in the network, but it is necessary to actually obtain the location of an
occurrence of the pattern or rather of all occurrences of the pattern [18,25].
Because of that, we aim to solve the problem of subgraph enumeration, in which
it is required to output all subgraphs of the network graph isomorphic to the pat-
tern graph. In Subgraph Enumeration (SubEnum), given again two graphs
G and F , the goal is to enumerate all subgraphs of G isomorphic to F . Note,
that SubEnum is at least as hard as SubIso. We call the variants, where the
problem is required to be induced IndSubIso and IndSubEnum, respectively.

As Clique, one of the problems on the Karp’s original list of 21 NP-complete
problems [15], is a special case of SubIso, the problem is NP-complete. Never-
theless, there are many heuristic algorithms for SubEnum, many of them based
on ideas from constraint programming (see Sect. 1.1), which give results in rea-
sonable time for most instances. However, for each of them there are rather
small instances which they find genuinely hard, as pointed out by McCreesh
et al. [23]. Therefore, developing an alternative approach that could possibly
cope with these hard instances would be of interest.

In this paper we focus on the well known randomized color coding app-
roach [2], which presumably has almost optimal worst case time complexity.
Indeed, its time complexity is O(

n
tw(F)+1
G 2O(nF)

)
with memory requirements

of O(
n
tw(F)+1
G tw(F)nF 2nF

)
, where nG and nF denote the number of vertices

in the network graph G and the pattern graph F , respectively, and tw(F) is
the treewidth of graph F—a measure of tree-likeness (see Sect. 1.2 for exact
definitions). Moreover, we presumably cannot avoid the factor exponential in
treewidth in the worst case running time, as Marx [21] presented an ETH1-based
lower bound for Partitioned Subgraph Isomorphism problem.

Proposition 1 (Marx [21]). If there is a recursively enumerable class F
of graphs with unbounded treewidth, an algorithm A, and an arbitrary func-
tion f such that A correctly decides every instance of Partitioned Subgraph

1 Exponential Time Hypothesis [14].

Color Coding Algorithm for Subgraph Isomorphism 285

Isomorphism with the smaller graph F in F in time f(F)no(tw(F)/log tw(F))
G ,

then ETH fails.

As the memory requirements of the color coding approach grow exponentially
with treewidth of the pattern graph, existing implementations for subgraph enu-
meration based on this principle restrict themselves to paths [13] or trees [25],
both having treewidth 1. As the real world applications might employ networks
of possibly tens to hundreds of thousands of vertices and also pattern graphs
with structure more complicated than trees, we need to significantly reduce the
memory usage of the algorithm.

Using the principle of inclusion-exclusion, Amini et al. [3, Theorem 15] sug-
gested a modification of the color coding algorithm, which can decide whether
the pattern F occurs in the graph G in expected time O(

n
tw(F)+1
G 2O(nF)

)
with

memory requirements reduced to O(
n
tw(F)+1
G log nF).2 While single witnessing

occurrence can be found by means of self-reduction (which is complicated in case
of randomized algorithm), the inclusion-exclusion nature of the algorithm does
not allow to find all occurrences of pattern in the graph, which is our main goal.

Therefore, our approach rather follows the paradigm of generating only those
parts of a dynamic programming table that correspond to subproblems with a
positive answer, recently called “positive instance driven” approach [28]. This
further prohibits the use of the inclusion-exclusion approach of Amini et al. [3],
since the inclusion-exclusion approach tends to use most of the table and the term
O(

n
tw(F)+1
G

)
is itself prohibitive in the memory requirements for tw(F) ≥ 2.

Because of the time and memory requirements of the algorithm, for practical
purposes we restrict ourselves to pattern graphs with at most 32 vertices.

Altogether, our main contribution is twofold:

– We provide a practical implementation of the color coding algorithm of Alon,
Yuster, and Zwick [2] capable of processing large networks and (possibly dis-
connected) pattern graphs of small, yet not a priory bounded, treewidth.

– We supply a routine to extract the occurrences of the subgraphs found from
a run of the algorithm.

It is important to note that all the modifications only improve the practical
memory requirements and running time. The theoretical worst case time and
space complexity remain the same as for the original color coding algorithm and
the algorithm achieves these, e.g., if the network graph is complete. Also, in
such a case, there are n

Θ(nF)
G occurrences of the pattern graph in the network

implying a lower bound on the running time of the enumeration part.
In Sect. 2 we describe our modifications to the algorithm and necessary tools

used in the process. Then, in Sect. 3, we benchmark our algorithm on synthetic
and realistic data and compare its performance with available existing implemen-
tations of algorithms for subgraph isomorphism and discuss the results obtained.
2 While the formulation of Theorem 15 in [3] might suggest that the algorithm actually

outputs a witnessing occurrence, the algorithm merely decides whether the number
of occurrences is non-zero (see the proof of the theorem).

286 J. Maĺık et al.

Section 4 presents future research directions. Parts of the paper not present in
this extended abstract due to space restrictions, can be found it the ArXiv
preprint [20] or in the full version of the paper.

1.1 Related Work

There are several algorithms tackling SubIso and its related variants. Some of
them only solve the variant of subgraph counting, our main focus is however on
algorithms actually solving SubEnum. Following Carletti et al. [7] and Kimmig
et al. [16], we categorize the algorithms by the approach they use (see also
Kotthoff et al. [17] for more detailed description of the algorithms). Many of
the approaches can be used both for induced and non-induced variants of the
problem, while some algorithms are applicable only for one of them.

Vast majority of known algorithms for the subgraph enumeration problem
is based on the approach of representing the problem as a searching process.
Usually, the state space is modelled as a tree and its nodes represent a state of a
partial mapping. Finding a solution then typically resorts to the usage of DFS in
order to find a path of mappings in the state space tree which is compliant with
isomorphism requirements. The efficiency of those algorithms is largely based
on early pruning of unprofitable paths in the state space. Indeed, McCreesh
et al. [23] even measure the efficiency in the number of generated search tree
nodes. The most prominent algorithms based on this idea are Ullmann’s algo-
rithm [29], VF algorithm and its variants [5,7,9,10] (the latest VF3 [5] only
applies to IndSubEnum) and RI algorithm [4]. The differences between these
algorithms are based both on employed pruning strategies and on the order in
which the vertices of pattern graph are processed (i.e. in the shape of the state
space tree).

Another approach is based on constraint programming, in which the prob-
lem is modelled as a set of variables (with respective domains) and constraints
restricting simultaneous variable assignments. The solution is an assignment of
values to variables in a way such that no constraint remains unsatisfied. In
subgraph isomorphism, variables represent pattern graph vertices, their domain
consists of target graph vertices to which they may be mapped and constraints
ensure that the properties of isomorphism remain satisfied. Also in this app-
roach, a state space of assignments is represented by a search tree, in which
non-profitable branches are to be filtered. Typical algorithms in this category
are LAD algorithm [26], Ullmann’s bitvector algorithm [30], and Glasgow algo-
rithm [22]. These algorithms differ in the constraints they use, the way they
propagate constraints, and in the way they filter state space tree.

There are already some implementations based on the color coding paradigm,
where the idea is to randomly color the input graph and search only for its sub-
graphs, isomorphic to the pattern graph, that are colored in distinct colors (see
Sect. 2.1 for more detailed description). This approach is used in subgraph count-
ing algorithms, e.g., in ParSE [31], FASCIA [24], and in [1], or in algorithms for
path enumeration described in [25] or in [13]. Each of these algorithms, after the
color coding step, tries to exploit the benefits offered by this technique in its own

Color Coding Algorithm for Subgraph Isomorphism 287

way; although usually a dynamic programming sees its use. Counting algorithms
as ParSE and FASCIA make use of specifically partitioned pattern graphs, which
allow to use combinatorial computation. Weighted path enumeration algorithms
[13,25] describe a dynamic programming approach and try to optimize it in
various ways. However, to the best of our knowledge there is no color coding
algorithm capable of enumerating patterns of treewidth larger than 1.

Our aim is to make step towards competitive implementation of color coding
based algorithm for SubEnum, in order to see, where this approach can be
potentially beneficial against the existing algorithms. To this end, we extend the
comparisons of SubEnum algorithms [6,17,23] to color coding based algorithms,
including the one proposed in this paper.

1.2 Basic Definitions

All graphs in this paper are undirected and simple. For a graph G we
denote V (G) its vertex set, nG the size of this set, E(G) its edge set, and mG

the size of its edge set.
As already said, we use the color coding algorithm. The algorithm is based

on a dynamic programming on a nice tree decomposition of the pattern graph.
We first define a tree decomposition and then its nice counterpart.

Definition 1. A tree decomposition of a graph F is a triple (T, β, r), where T
is a tree rooted at node r and β : V (T) �→ 2V (F) is a mapping satisfying: (i)⋃

x∈V (T) β(x) = V (F); (ii) ∀{u, v} ∈ E(F) ∃x ∈ V (T), such that u, v ∈ β(x);
(iii) ∀u ∈ V (F) the nodes {x ∈ V (T) | u ∈ β(x)} form a connected subtree of T .

We shall denote bag β(x) as Vx. The width of tree decomposition (T, β, r) is
maxx∈V (T) |Vx| − 1. Treewidth tw(F) of graph F is the minimal width of a tree
decomposition of F over all such decompositions.

Definition 2. A tree decomposition of a graph F is nice if degT (r) = 1, Vr = ∅,
and each node x ∈ V (T) is of one of the following four types:

– Leaf node—x has no children and |Vx| = 1;
– Introduce node—x has exactly one child y and Vx = Vy ∪ {u} for some

u ∈ V (F) \ Vy;
– Forget node—x has exactly one child y and Vx = Vy \ {u} for some u ∈ Vy;
– Join node—x has exactly two children y, z and Vx = Vy = Vz.

Note that for practical purposes, we use a slightly modified definition of nice
tree decomposition in this paper. As the algorithm starts the computation in
a leaf node, using the standard definition with empty bags of leaves [11] would
imply that the tables for leaves would be somewhat meaningless and redundant.
Therefore, we make bags of leaf nodes contain a single vertex.

Definition 3. For a tree decomposition (T, β, r), we denote by V∗
x the set of

vertices in Vx and in Vy for all descendants y of x in T . Formally V∗
x = Vx ∪⋃

y is a descendant of x in T Vy.

Note that, by Definition 3, for the root r of T we have V∗
r = V (F) and F [V∗

r] = F .

288 J. Maĺık et al.

2 Algorithm Description

In this section we first briefly describe the idea of the original color coding algo-
rithm [2], show, how to alter the computation in order to reduce its time and
memory requirements, and describe implementation details and further opti-
mizations of the algorithm. Due to space restrictions, the way to obtain a nice
tree decomposition of the pattern and the reconstruction of results are deferred
to the full version of the paper.

2.1 Idea of the Algorithm

The critical idea of color coding is to reduce the problem to its colorful ver-
sion. For a graph G and a pattern graph F , we color the vertices of G with
exactly nF colors. We use the randomized version, i.e., we create a random col-
oring ζ : V (G) �→ {1, 2, . . . , nF }. After the coloring, the algorithm considers as
valid only subgraphs G′ of G that are colorful copies of F as follows.

Definition 4. Subgraph G′ of a graph G is a colorful copy of F with respect
to coloring ζ : V (G) �→ {1, 2, . . . , nF }, if G′ is isomorphic to F and all of its
vertices are colored by distinct colors in ζ.

As the output of the algorithm heavily depends on the chosen random col-
oring of G, in order to reach some predefined success rate of the algorithm,
we need to repeat the process of coloring several times. The probability of
a particular occurrence of pattern graph F becoming colorful with respect
to the random coloring is nF !

n
nF
F

, which tends to e−nF for large nF . There-

fore, by running the algorithm enF log 1
ε times, each time with a random col-

oring ζ : V (G) �→ {1, 2, . . . , nF }, the probability that an existing occurrence of
the pattern will be revealed in none of the runs is at most ε. While using more
colors can reduce the number of iterations needed, it also significantly increases
the memory requirements. Hence, we stick to nF colors. Even though it is pos-
sible to derandomize such algorithms, e.g., by the approach shown in [11], in
practice the randomized approach usually yields the results much quicker, as
discussed in [25]. Moreover, we are not aware of any actual implementation of
the derandomization methods.

The main computational part of the algorithm is a dynamic programming.
The target is to create a graph isomorphism Φ : V (F) �→ V (G). We do so by
traversing the nice tree decomposition (T, β, r) of the pattern graph F and at
each node x ∈ V (T) of the tree decomposition, we construct possible partial
mappings ϕ : V∗

x → V (G) with regard to required colorfulness of the copy. Com-
bination of partial mappings consistent in colorings then forms a desired resulting
mapping.

The semantics of the dynamic programming table is as follows. For any tree
decomposition node x ∈ V (T), any partial mapping ϕ : Vx �→ V (G) and any color
subset C ⊆ {1, 2, . . . , nF }, we define D(x, ϕ,C) = 1 if there is an isomorphism Φ
of F [V∗

x] to a subgraph G′ of G such that:

Color Coding Algorithm for Subgraph Isomorphism 289

(i) for all u ∈ Vx, Φ(u) = ϕ(u);
(ii) G′ is a colorful copy of F [V∗

x] using exactly the colors in C, that is,
ζ(Φ(V∗

x)) = C and ζ is injective on Φ(V∗
x).

If there is no such isomorphism, then we let D(x, ϕ,C) = 0. We denote all
configurations (x, ϕ,C) for which D(x, ϕ,C) = 1 as nonzero configurations.

The original version of the algorithm is based on top-down dynamic program-
ming approach with memoization of already computed results. That immediately
implies a big disadvantage of this approach—it requires the underlying dynamic
programming table (which is used for memoization) to be fully available through-
out the whole run of the algorithm. To avoid this inefficiency in our modification
we aim to store only nonzero configurations, similarly to the recent “positive
instance driven” dynamic programming approach [28].

2.2 Initial Algorithm Modification

In our implementation, we aim to store only nonzero configurations, therefore
we need to be able to construct nonzero configurations of a parent node just
from the list of nonzero configurations in its child/children.

We divide the dynamic programming table D into lists of nonzero configura-
tions, where each nice tree decomposition node has a list of its own. Formally,
for every node x ∈ V (T), let us denote by Dx a list of all mappings ϕ with a list
of their corresponding color sets C, for which D(x, ϕ,C) = 1. The list Dx for all
x ∈ V (T) is, in terms of contained information, equivalent to maintaining the
whole table D—all configurations not present in the lists can be considered as
configurations with a result equal to zero.

Dynamic Programming Description. We now describe how to compute the
lists D(x, ϕ,C) for each type of a nice tree decomposition node.

For a leaf node x ∈ T , there is only a single vertex u in V∗
x to consider.

We can thus map u to all possible vertices of G, and we obtain a list with nG

partial mappings ϕ, in which the color list for each mapping contains a single
color set {ζ(ϕ(u))}.

For an introduce node x ∈ T and its child y in T , we denote by u the vertex
being introduced in x, i.e., {u} = Vx\Vy. For all nonzero combinations of a partial
mapping and a color set (ϕ′, C ′) in the list Dy, we try to extend ϕ′ by all possible
mappings of the vertex u to the vertices of G. We denote one such a mapping
as ϕ. We can consider mapping ϕ as correct, if (i) the new mapping ϕ(u) of
the vertex u extends the previous colorset C ′, that is, C = C ′ ∪ {ζ(ϕ(u))} �=
C ′, and (ii) ϕ is edge consistent, that is, for all edges {v, w} ∈ E(F) between
currently mapped vertices, i.e., in our case v, w ∈ Vx, there must be an edge
{ϕ(v), ϕ(w)} ∈ E(G). However, because ϕ′ was by construction already edge
consistent, it suffices to check the edge consistency only for all edges in F [Vx]
with u as one of their endpoints, i.e., for all edges {u,w} ∈ E(F [Vx]) with
w ∈ NF [Vx](u). After checking those two conditions, we can add (ϕ,C) to Dx.

290 J. Maĺık et al.

Due to space restrictions, the computation in forget and join nodes is deferred
to the full version of the paper.

Because we build the result from the leaves of the nice tree decomposition, we
employ a recursive procedure on its root, in which we perform the computations
in a way of a post-order traversal of a tree. From each visited node, we obtain
a bottom-up dynamic programming list of nonzero configurations. After the
whole nice tree decomposition is traversed, we obtain a list of configurations,
that were valid in its root. Such configurations thus represent solutions found
during the algorithm, from which we afterwards reconstruct results. Note that
as we prepend a root with no vertices in its bag to the nice tree decomposition,
there is a nonzero number of solutions if and only if, at the end of the algorithm,
the list Dr contains a single empty mapping using all colors.

2.3 Further Implementation Optimizations

Representation of Mappings. For mapping representation, we suppose that
the content of all bags of the nice tree decomposition stays in the same order
during the whole algorithm. This natural and easily satisfied condition allows
us to represent a mapping ϕ : Vx �→ V (G) in a nice tree decomposition node x
simply by an ordered tuple of |Vx| vertices from G. From this, we can easily
determine which vertex from F is mapped to which vertex in G. Also, for a
mapping in an introduce or a forget node, we can describe a position in the
mapping, on which the process of introducing/forgetting takes place.

Representation of Color Sets. We represent color sets as bitmasks, where
the i-th bit states whether color i is contained in the set or not. For optimization
purposes, we represent bitmasks with an integer number. As we use nF colors in
the algorithm and restricted ourselves to pattern graphs with at most 32 vertices,
we represent a color set with a 32-bit number.

Compressing the Lists. Because we process the dynamic programming lists
one mapping at a time, we store these lists in a compressed way and decompress
them only on a mapping retrieval basis. Due to space restrictions, the exact way
we serialize the records, the use of delta compression and a special library is
deferred to the full version of the paper.

Masking Unprofitable Mappings. Our implementation supports an
extended format of input graphs where one can specify for each vertex of the
network, which vertices of the pattern can be mapped to it. This immediately
yields a simple degree-based optimization. Before the run of the main algorithm,
we perform a linear time preprocessing of input graphs and only allow a vertex
y ∈ V (F) to be mapped to a vertex x ∈ V (G) if degG(x) ≥ degF (y).

Color Coding Algorithm for Subgraph Isomorphism 291

Mapping Expansion Optimizations. The main “brute-force” work of the
algorithm is performed in two types of nodes—leaf and introduce nodes, as
we need to try all possible mappings of a particular vertex in a leaf node or all
possible mappings of an introduced vertex in a introduce node to a vertex from G.
We describe ways to optimize the work in introduce nodes in this paragraph.

Let x be an introduce node, u the vertex introduced and ϕ a mapping from
a nonzero configuration for the child of x. We always need to check whether
the new mapping of u is edge consistent with the mapping ϕ of the remaining
vertices for the corresponding bag, i.e., whether all edges of F incident on u
would be realized by an edge in G. Therefore, if u has any neighbors in F [Vx],
then a vertex of G is a candidate for the mapping of u only if it is a neighbor of
all vertices in the set ϕ(NF [Vx](u)), i.e., the vertices of G, where the neighbors
of u in F are mapped. Hence, we limit the number of candidates by using the
adjacency lists of the already mapped vertices.

In the case degF [Vx](u) = 0 we have to use different approach. The pattern
graphs F tend to be smaller than the input graphs G by several orders of mag-
nitude. Hence, if the introduced vertex is in the same connected component of F
as some vertex already present in the bag, a partial mapping processed in an
introduce node anchors the possible resulting component to a certain position
in G. Due to space restrictions, the exact way to exploit that is deferred to the
full version of the paper.

Only if there is no vertex in the bag sharing a connected component of F
with u, we have to fall back to trying all possible mappings.

3 Experimental Results

The testing was performed on a 64-bit linux system with Intel Xeon CPU
E3-1245v6@3.70GHz and 32 GB 1333 MHz DDR3 SDRAM memory. The mod-
ule was compiled with gcc compiler (version 7.3.1) with -O3 optimizations
enabled. Implementation and instances utilized in the testing are available at
http://users.fit.cvut.cz/malikjo1/subiso/. All results are an average of 5 inde-
pendent measurements.

We evaluated our implementation in several ways. Firstly, we compare avail-
able implementations on two different real world source graphs and a set of
more-or-less standard target graph patterns. Secondly, we compare available
implementations on instances from ICPR2014 Contest on Graph Matching Algo-
rithms for Pattern Search in Biological Databases [8] with suitably small pat-
terns. We also adapt the idea of testing the algorithms on Erdős-Rényi random
graphs [23].

3.1 Algorithm Properties and Performance

In the first two subsection we used two different graphs of various properties as
target graph G. The first instance, Images, is built from an segmented image,
and is a courtesy of [27]. It consists of 4838 vertices and 7067 edges. The second

http://users.fit.cvut.cz/malikjo1/subiso/

292 J. Maĺık et al.

instance, Trans, is a graph of transfers on bank accounts. It is a very sparse
network, which consists of 45733 vertices and 44727 undirected edges. Due to
space restrictions, the results on this dataset are deferred to the full version of
the paper.

For the pattern graphs, we first use a standard set of basic graph patterns,
as the treewidth of such graphs is well known and allows a clear interpretation
of the results. In particular, we use paths, stars, cycles, an complete graphs on n
vertices, denoted Pn, Sn, Cn, and Kn with treewidth 1, 1, 2, and n − 1, respec-
tively. We further used grids Gn,m on n×m vertices, with treewidth min{n,m}.
Secondly, we use a special set of pattern graphs in order to demonstrate perfor-
mance on various patterns. Patterns A, B, C, and D have 9, 7, 9, and 7 vertices,
8, 7, 12, 6 edges, and treewidth 1, 2, 2, and 2, respectively. Patterns A, B, and
D appear in both dataset, pattern C in neither and pattern D is disconnected.
Description of these pattern graphs is deferred to the full version of the paper.

Due to randomization, in order to achieve some preselected constant error
rate, we need to repeat the computation more than once. The number of found
results thus depends not only on the quality of the algorithm, but also on the
choice of the number of its repetitions. Hence, it is logical to measure performance
of the single run of the algorithm. Results from such a testing, however, should
be still taken as a rough average, because the running time of a single run of the
algorithm depends on many factors.

Therefore, we first present measurements, where we average the results of
many single runs of the algorithm (Table 1). We average not only the time and
space needed, but also the number of found subgraphs. To obtain the expected
time needed to run the whole algorithm, it suffices to sum the time needed to
create a nice tree decomposition and � times the time required for a single run,
if there are � runs in total.

Table 1. Performance of a single run of the algorithm on Images dataset.

Pattern Comp. time [ms] Comp. memory [MB] Occurrences

P5 240 12.73 3488.21

P10 160 8.52 732.46

P15 90 10.54 76.18

S5 4 5.37 114.72

C5 20 7.24 239.17

C10 70 9.34 26.64

K4 5 6.46 0

G3,3 90 13.42 0

Pattern A 80 9.14 292.48

Pattern B 10 7.17 6.85

Pattern C 10 5.30 0

Pattern D 40 10.14 426.76

Color Coding Algorithm for Subgraph Isomorphism 293

3.2 Comparison on Real World Graphs and Fixed Graph Patterns

We compare our implementation to three other tools for subgraph enumeration:
RI algorithm [4] (as implemented in [19]), LAD algorithm [26] and color coding
algorithm for weighted path enumeration [13] (by setting, for comparison pur-
poses, all weights of edges to be equal). The comparison is done on the instances
from previous subsection and only on pattern graphs which occur at least once
in a particular target graph.

In comparison, note the following specifics of measured algorithms. The RI
algorithm does not support outputting solutions, which might positively affect
its performance. LAD algorithm uses adjacency matrix to store input graphs,
and thus yields potentially limited use for graphs of larger scale. Neither of RI
or LAD algorithms supports enumeration of disconnected patterns.3 Also we
did not measure the running time of the weighted path algorithm on non-path
queries and also on Trans dataset, as its implementation is limited to graph
sizes of at most 32 000.

We run our algorithm repeatedly to achieve an error rate of ε = 1
e . In order to

be able to measure the computation for larger networks with many occurrences
of the pattern, we measure only the time required to retrieve no more than first
100 000 solutions and we also consider running time greater than 10 min (600 s) as
a timeout. Since we study non-induced occurrences (and due to automorphisms)
there might be several ways to map the pattern to the same set of vertices. Other
measured algorithms do count all of them. Our algorithm can behave also like
this, or can be switched to count only occurrences that differ in vertex sets. For
the sake of equal measurement, we use the former version of our algorithm.

From Table 2, we can see that RI algorithm outperforms all other measured
algorithms. We can also say our algorithm is on par with LAD algorithm, as
the results of comparison of running times are similar, but vary instance from
instance. Our algorithm nevertheless clearly outperforms another color coding
algorithm, which on one hand solves more complicated problem of weighted
paths, but on the another, is still limited only to paths. Also, our algorithm is
the only algorithm capable of enumerating disconnected patterns.

The weak point of the color coding approach (or possibly only of our imple-
mentation) appears to be the search for a pattern of larger size with very few (or
possibly zero) occurrences. To achieve the desired error rate, we need to repeat-
edly run the algorithm many times. Therefore our algorithm takes longer time
to run on some instances (especially close to zero-occurrence ones), which are
easily solved by the other algorithms.

3 When dealing with disconnected patterns, one could find the components of the
pattern one by one, omitting the vertices of the host graph used by the previous
component. However, this would basically raise the running time of the algorithm
to the power equal to the number of components of the pattern graph.

294 J. Maĺık et al.

Table 2. Comparison of running time on Images dataset (in seconds).

Pattern Our algorithm RI algorithm LAD algorithm Weighted path

P5 31.12 0.11 28.86 362.41

P10 53.17 1.25 13.63 > 600

P15 104.30 3.7 8.18 > 600

S5 0.94 0.07 0.43 –

C5 4.98 0.14 35.18 –

C10 151.25 3.44 174.27 –

Pattern A 43.11 0.82 36.60 –

Pattern B 91.93 0.41 0.83 –

Pattern D 23.54 – – –

3.3 ICPR2014 Contest Graphs

To fully benchmark our algorithm without limitations on time or number of
occurrences found, we perform a test on ICPR2014 Contest on Graph Matching
Algorithms for Pattern Search in Biological Databases [8].

In particular, we focus our attention on a Molecules dataset, containing
10,000 (target) graphs representing the chemical structures of different small
organic compounds and on a Proteins dataset, which contains 300 (target)
graphs representing the chemical structures of proteins and protein backbones.
Target graphs in both datasets are sparse and up to 99 vertices or up 10,081
vertices for Molecules and Proteins, respectively.

In order to benchmark our algorithm without limiting its number of itera-
tions, we focus on pattern graphs of small sizes, which offer reasonable number
of iterations for an error rate of 1

e . Both datasets contain 10 patterns for each of
considered sizes constructed by randomly choosing connected subgraphs of the
target graphs. We obtained an average matching time of all pattern graphs of a
given size to all target graphs in a particular dataset.

Table 3. Comparison of average running time on ICPR2014 graphs

Targets Pattern size Our algorithm LAD algorithm RI algorithm

Molecules 4 0.01 0.01 0.01

Molecules 8 0.67 0.14 0.01

xsc Proteins 8 19.45 8.83 0.51

From the results in Table 3, we can see our algorithm being on par with
LAD algorithm, while being outperformed by RI algorithm. However, we mainly
include these results as a proof of versatility of our algorithm. As discussed

Color Coding Algorithm for Subgraph Isomorphism 295

in [23], benchmarks created by constructing subgraphs of target graphs do not
necessarily encompass the possible hardness of some instances and might even
present a distorted view on algorithms’ general performance. Thus, in the fol-
lowing benchmark we opt to theoretically analyze our algorithm.

3.4 Erdős-Rényi Graph Setup

In order to precisely analyze the strong and weak points of our algorithm we
measure its performance is a setting where both the pattern and the target are
taken as an Erdős-Rényi random graph of fixed size with varying edge density
and compare the performance of our algorithm with the analysis of McCreesh
et al. [23], which focused on algorithms Glasgow, LAD, and VF2.

An Erdős-Rényi graph G(n, p) is a random graph on n vertices where each
edge is included in the graph independently at random with probability p. We
measure the performance on target graph of 150 vertices and pattern graph of 10
vertices with variable edge probabilities. As our algorithm cannot be classified in
terms of search nodes used (as in [23]), we measure the time needed to complete
10 iterations of our algorithm.

Fig. 1. Behavior for target graph of 150 vertices and pattern graph of 10 vertices. The
x-axis is the pattern edge probability, the y-axis is the target edge probability, from 0
to 1 with step of 0.03. Graph shows the time required for our algorithm to complete
10 iterations (the darker, the more time is required). Black regions indicate instances
on which a timeout of 600 s occurred.

From Fig. 3 we can see our algorithm indeed follows a well observed phase
transition (transition between instances without occurrence of the pattern and
with many occurrences of the pattern). If we compare our results from Fig. 1
to the results of [23], we can see that hard instances for our algorithm start to
occur later (in terms of edge probabilities). However, due to the almost linear
dependency of treewidth on edge probabilities (see Fig. 2), hard instances for
our algorithm concentrate in the “upper right corner” of the diagram, which
contains dense graphs with naturally large treewidth (Fig. 4).

296 J. Maĺık et al.

Fig. 2. Correspondence of treewidth to the edge probability of a pattern graph with
10 vertices.

Fig. 3. Time needed to complete 10 iterations of our algorithm on a target graph of
150 vertices with edge probability of 0.5 and pattern graph of 10 vertices with variable
edge probability.

Fig. 4. Time needed to complete 10 iterations of our algorithm on a target graph of
150 vertices with edge probability of 0.8 and pattern graph of 10 vertices with variable
edge probability.

Color Coding Algorithm for Subgraph Isomorphism 297

Therefore, it seems that our algorithm complements the portfolio of algo-
rithms studied by Kotthoff et al. [17] by an algorithm suitable just below the
phase transition (in view of Fig. 1).

4 Conclusion

We described an efficient implementation of the well known color coding algo-
rithm for the subgraph isomorphism problem. Our implementation is the first
color-coding based algorithm capable of enumerating all occurrences of patterns
of treewidth larger than one. Moreover, we have shown that our implementation
is competitive with existing state-of-the-art solutions in the setting of locat-
ing small pattern graphs. As it exhibits significantly different behaviour than
other solutions, it can be an interesting contribution to the portfolio of known
algorithms [17,23].

As an obvious next step, the algorithm could be made to run in parallel. We
also wonder whether the algorithm could be significantly optimized even further,
possibly using some of the approaches based on constraint programming.

References

1. Alon, N., Dao, P., Hajirasouliha, I., Hormozdiari, F., Sahinalp, S.: Biomolecular
network motif counting and discovery by color coding. Bioinformatics 24, 241–249
(2008)

2. Alon, N., Yuster, R., Zwick, U.: Color-coding. J. ACM 42(4), 844–856 (1995)
3. Amini, O., Fomin, F.V., Saurabh, S.: Counting subgraphs via homomorphisms.

SIAM J. Discrete Math. 26(2), 695–717 (2012)
4. Bonnici, V., Giugno, R., Pulvirenti, A., Shasha, D., Ferro, A.: A subgraph iso-

morphism algorithm and its application to biochemical data. BMC Bioinform. 14,
1–13 (2013)

5. Carletti, V., Foggia, P., Saggese, A., Vento, M.: Introducing VF3: a new algorithm
for subgraph isomorphism. In: Foggia, P., Liu, C.-L., Vento, M. (eds.) GbRPR
2017. LNCS, vol. 10310, pp. 128–139. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-58961-9 12

6. Carletti, V., Foggia, P., Vento, M.: Performance comparison of five exact graph
matching algorithms on biological databases. In: Petrosino, A., Maddalena, L.,
Pala, P. (eds.) ICIAP 2013. LNCS, vol. 8158, pp. 409–417. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-41190-8 44

7. Carletti, V., Foggia, P., Vento, M.: VF2 Plus: an improved version of VF2 for bio-
logical graphs. In: Liu, C.-L., Luo, B., Kropatsch, W.G., Cheng, J. (eds.) GbRPR
2015. LNCS, vol. 9069, pp. 168–177. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-18224-7 17

8. Carletti, V., Foggia, P., Vento, M., Jiang, X.: Report on the first contest on graph
matching algorithms for pattern search in biological databases. In: Liu, C.-L., Luo,
B., Kropatsch, W.G., Cheng, J. (eds.) GbRPR 2015. LNCS, vol. 9069, pp. 178–187.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18224-7 18

9. Cordella, L.P., Foggia, P., Sansone, C., Vento, M.: Performance evaluation of the
VF graph matching algorithm. In: 10th International Conference on Image Analysis
and Processing, ICIAP 1999. pp. 1172–1177. IEEE Computer Society (1999)

https://doi.org/10.1007/978-3-319-58961-9_12
https://doi.org/10.1007/978-3-319-58961-9_12
https://doi.org/10.1007/978-3-642-41190-8_44
https://doi.org/10.1007/978-3-319-18224-7_17
https://doi.org/10.1007/978-3-319-18224-7_17
https://doi.org/10.1007/978-3-319-18224-7_18

298 J. Maĺık et al.

10. Cordella, L.P., Foggia, P., Sansone, C., Vento, M.: A (sub)graph isomorphism algo-
rithm for matching large graphs. IEEE Trans. Pattern Anal. Mach. Intell. 26(10),
1367–1372 (2004)

11. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21275-3

12. Dahm, N., Bunke, H., Caelli, T., Gao, Y.: Efficient subgraph matching using topo-
logical node feature constraints. Pattern Recogn. 48(2), 317–330 (2015)

13. Hüffner, F., Wernicke, S., Zichner, T.: Algorithm engineering for color-coding with
applications to signaling pathway detection. Algorithmica 52(2), 114–132 (2008)

14. Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. J. Comput. Syst. Sci.
62(2), 367–375 (2001)

15. Karp, R.M.: Reducibility among combinatorial problems. In: Symposium on the
Complexity of Computer Computations, COCO 1972, The IBMResearch Symposia
Series, pp. 85–103. Plenum Press, New York (1972)

16. Kimmig, R., Meyerhenke, H., Strash, D.: Shared memory parallel subgraph enu-
meration. In: 2017 IEEE International Parallel and Distributed Processing Sym-
posium Workshops (IPDPSW), pp. 519–529. IEEE Computer Society (2017)

17. Kotthoff, L., McCreesh, C., Solnon, C.: Portfolios of subgraph isomorphism algo-
rithms. In: Festa, P., Sellmann, M., Vanschoren, J. (eds.) LION 2016. LNCS, vol.
10079, pp. 107–122. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
50349-3 8

18. Kuramochi, M., Karypis, G.: Frequent subgraph discovery. In: 2001 IEEE Interna-
tional Conference on Data Mining, pp. 313–320. IEEE Computer Society (2001)

19. Leskovec, J., Sosič, R.: Snap: a general-purpose network analysis and graph-mining
library. ACM Trans. Intel. Syst. Technol. (TIST) 8(1), 1 (2016)

20. Maĺık, J., Suchý, O., Valla, T.: Efficient implementation of color coding algorithm
for subgraph isomorphism problem. CoRR abs/1908.11248 (2019)

21. Marx, D.: Can you beat treewidth? Theory Comput. 6(1), 85–112 (2010)
22. McCreesh, C., Prosser, P.: A parallel, backjumping subgraph isomorphism algorithm

using supplemental graphs. In: Pesant, G. (ed.) CP 2015. LNCS, vol. 9255, pp. 295–
312. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23219-5 21

23. McCreesh, C., Prosser, P., Solnon, C., Trimble, J.: When subgraph isomorphism
is really hard, and why this matters for graph databases. J. Artif. Intell. Res. 61,
723–759 (2018)

24. Slota, G.M., Madduri, K.: Fast approximate subgraph counting and enumeration.
In: ICPP 2013, pp. 210–219. IEEE Computer Society (2013)

25. Slota, G.M., Madduri, K.: Parallel color-coding. Parallel Comput. 47, 51–69 (2015)
26. Solnon, C.: AllDifferent-based filtering for subgraph isomorphism. Artif. Intell.

174(12–13), 850–864 (2010)
27. Solnon, C., Damiand, G., de la Higuera, C., Janodet, J.C.: On the complexity of

submap isomorphism and maximum common submap problems. Pattern Recogn.
48(2), 302–316 (2015)

28. Tamaki, H.: Positive-instance driven dynamic programming for treewidth. In: ESA
2017. LIPIcs, vol. 87, pp. 68:1–68:13. Schloss Dagstuhl (2017)

29. Ullmann, J.R.: An algorithm for subgraph isomorphism. J. ACM 23(1), 31–42
(1976)

30. Ullmann, J.R.: Bit-vector algorithms for binary constraint satisfaction and sub-
graph isomorphism. J. Exp. Algorithmics 15, 1.6:1.1–1.6:1.64 (2011)

31. Zhao, Z., Khan, M., Kumar, V.S.A., Marathe, M.V.: Subgraph enumeration in
large social contact networks using parallel color coding and streaming. In: ICPP
2010, pp. 594–603. IEEE Computer Society (2010)

https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-50349-3_8
https://doi.org/10.1007/978-3-319-50349-3_8
https://doi.org/10.1007/978-3-319-23219-5_21

Color Coding Algorithm for Subgraph Isomorphism 299

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Quantum-Inspired Evolutionary
Algorithms for Covering Arrays

of Arbitrary Strength

Michael Wagner, Ludwig Kampel, and Dimitris E. Simos(B)

SBA Research, 1040 Vienna, Austria
{mwagner,lkampel,dsimos}@sba-research.org

Abstract. The construction of covering arrays, the combinatorial struc-
tures underlying combinatorial test suites, is a highly researched topic.
In previous works, various metaheuristic algorithms, such as Simulated
Annealing and Tabu Search, were used to successfully construct covering
arrays with a small number of rows. In this paper, we propose for the
first time a quantum-inspired evolutionary algorithm for covering array
generation. For this purpose, we introduce a simpler and more natural
qubit representation as well as new rotation and mutation operators. We
implemented different versions of our algorithm employing the different
operators. We evaluate the different implementations against selected
(optimal) covering array instances.

Keywords: Optimization · Covering arrays · Quantum algorithms

1 Introduction

Covering arrays (CAs) are discrete combinatorial structures that can be consid-
ered a generalization of orthogonal arrays and are most frequently represented as
arrays, which columns fulfil certain coverage criteria regarding the appearance
of tuples in submatrices. Their properties make CAs attractive for application in
several fields, first and foremost in the field of automated software testing. The
interested reader may have a look at [12]. For their application in testing it is
generally desired to construct CAs with a small number of rows, while maintain-
ing their defining coverage criteria. Resulting optimization problems are closely
related to NP-hard problems, such as the ones presented in [4,15,17], suggest-
ing that the problem of finding optimal covering arrays is a hard combinatorial
optimization problem. However, the actual complexity of this problem remains
unknown [10].

Aside from theoretical construction techniques, based on the theory of groups,
finite fields or on combinatorial techniques (see [3] and references therein), there
exist many algorithmic approaches dedicated to the construction of CAs. The
latter include greedy heuristics [11,13], metaheuristics, see [20], as well as exact
approaches as in [9]. For a survey of CA generation methods, the interested
reader may also have a look in [19].
c© Springer Nature Switzerland AG 2019
I. Kotsireas et al. (Eds.): SEA2 2019, LNCS 11544, pp. 300–316, 2019.
https://doi.org/10.1007/978-3-030-34029-2_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34029-2_20&domain=pdf
https://doi.org/10.1007/978-3-030-34029-2_20

Quantum-Inspired Evolutionary Algorithms for Covering Arrays 301

This paper proposes quantum-inspired evolutionary algorithms for CA gen-
eration. For this purpose we introduce a reduced qubit representation and a
means to change the state of these qubits. In general, covering arrays can be
defined over arbitrary alphabets (see for example [19]). In this work, however,
we restrict our attention to CAs over binary alphabets as the 2-state nature of
a qubit makes representing binary values straightforward.

We (informally) introduce CAs as follows: A binary N × k array M =
(m1, . . . ,mk) is a binary covering array (CA), CA(N ; t, k), if and only if M
has the property that any array (mi1 , . . . ,mit), with {i1, . . . , it} ⊆ {1, . . . , k},
comprised of t columns of M has the property that each binary t-tuple in {0, 1}t

appears at least once as a row.
The value t is referred to as the strength of a CA. As already mentioned previ-

ously, CAs with a small or the smallest number of rows are of particular interest.
The smallest integer N , for which a CA(N ; t, k) exists is called covering array
number for t and k and is denoted as CAN(t, k). The proposed quantum-inspired
evolutionary algorithm in this paper will take N ,t and k, as input and attempts
to find a CA(N ; t, k). Thus for given (N, t, k), we speak of a CA instance.

The defining properties of CAs can be also expressed by means of t-way
interactions. For given strength t and a number of columns k, a t-way interaction
is a set of t pairs {(p1, v1), . . . , (pt, vt)} with 1 ≤ p1 < p2 < . . . < pt ≤ k, and
vi ∈ {0, 1} for all i = 1, . . . , t1. The value k is usually clear from the context
and is omitted. We say the t-way interaction {(p1, v1), . . . , (pt, vt)} is covered
by an array A, if there exists a row in A that has the value vi in position pi

for all i = 1, . . . , t. Then a CA(N ; t, k) is characterized by covering all t-way
interactions.

This paper is structured as follows. In Sect. 2 we provide the necessary pre-
liminaries needed for this paper and cover related work. Furthermore, Sect. 3
introduces a quantum-inspired evolutionary algorithm for CA generation, which
we will evaluate in Sect. 4. Finally, Sect. 5 concludes the paper and discusses
future directions of work.

2 Evolutionary Algorithms and Quantum Computing

Evolutionary algorithms are nature-inspired, metaheuristic, stochastic search-
and optimization algorithms based on a population of individuals, which is
evolved by the concepts of selection, recombination and mutation [14]. Each
individual represents a potential candidate solution to the problem instance.
Operations like selection and recombination are used to select a part of the pop-
ulation and produce offspring by combining the selected individuals, generating
a new generation of candidate solutions. In the selection process, an objective
function, tailored to respective problem instance, is used to evaluate the indi-
viduals and selects them accordingly for reproduction. This process of creating

1 In the literature t-way interactions are defined for arbitrary alphabets. However we
restrict our attention to binary t-way interactions.

302 M. Wagner et al.

new generations of individuals, based on the fitness of the individuals, guides
the search towards (local) maxima.

The concept of mutation is used to add variety to the individuals, which
lets the algorithm explore different search spaces and provides means to escape
local maxima. Depending on the problem, the algorithm generally gets termi-
nated when either a sufficiently good solution is found or a certain number of
generations is reached.

Quantum computing utilizes the quantum-mechanical phenomena of quan-
tum entanglement and quantum interference to perform computational tasks.
Entanglement allows one to encode data into superpositions of states and quan-
tum interference can be used to evolve these quantum states [1]. Quantum algo-
rithms make use of these superpositions of states and the resulting parallelism to
perform certain tasks faster or more space efficient than classical algorithms can.
Examples for such algorithms would be Grovers algorithm [5] for unstructured
search and Shors algorithm [18] for factoring numbers.

The smallest unit of information in Quantum Computing is a qubit, which
is a 2-state system consisting of the states |0〉 and |1〉. A qubit can either be in
state |0〉, state |1〉 or in a superposition of the two. One way to fully specify the
state of the qubit is

|Ψ〉 = α |0〉 + β |1〉 , (1)

where α, β ∈ C and |α|2 + |β|2 = 1. The coefficients α and β are called the
amplitudes of the qubit. Upon observation the qubit collapses into state |0〉
with probability |α|2 and into state |1〉 with probability |β|2. Once a qubit has
collapsed, without interference from outside, further measurement of the qubit
will always result in the previously observed state.

Moreover, a qubit can also be represented with a so called Bloch Sphere,
which we will make use of in Sect. 3 to represent the qubits for our binary CAs.
A visualization of the Bloch Sphere representation is given in Fig. 1a.

Lemma 1. The state of a 2-state system (qubit) can accurately be described by
the Bloch Sphere representation:

|Ψ〉 = cos
θ

2
|0〉 + eiϕ sin

θ

2
|1〉 , with θ ∈ [0, π], ϕ ∈ [0, 2π).

Sketch of Proof. This qubit representation is well known [21] and can be directly
derived from Eq. 1 by transforming the complex amplitudes α and β to polar
coordinates and making use of the normalization criterion |α|2 + |β|2 = 1. The
angle ϕ represents the difference in complex phases of α and β, while cos θ

2 and
sin θ

2 describe the radius of α and β respecting normalization. ��
Quantum algorithms use quantum circuits to evolve the state of the system,

where their smallest building blocks are quantum gates. Quantum gates can per-
form reversible operations on one or more qubits. The restriction of reversibil-
ity demands that a state obtained by applying a gate can be deterministically
recreated by applying the gates inverse. Therefore an operation, where informa-
tion gets lost, like for example in classical AND gates, has to be replaced by

Quantum-Inspired Evolutionary Algorithms for Covering Arrays 303

a reversible gate in quantum computing. For a more in-depth explanation and
examples of common quantum gates, we refer the interested reader to [16].

Since the late 1990s, the combination of superpositions and the inherent par-
allelism of quantum computing with evolutionary algorithms has been explored.
In contrast to approaches that try to implement evolutionary algorithms in
a quantum computation environment [22] quantum-inspired evolutionary algo-
rithms (QiEAs) are classical algorithms that take inspiration from concepts of
quantum computing. In 2002 Han and Kim proposed a quantum-inspired binary
observation evolutionary algorithm [6], which we briefly review below.

Like in most evolutionary algorithms, multiple individuals represent potential
candidate solutions for the problem instance, but in addition, every individual
also has a qubit representation, that stores two numbers α and β representing
the amplitudes of a qubit. Generally these amplitudes both get initialized to 1√

2
,

representing a uniform distribution where both states have the same probability
of being measured. Instead of the concept of reproduction, in each generation
new candidate solutions are created by observing the qubits. Observation of a
qubit will return |0〉 with probability |α|2 and |1〉 otherwise, but unlike physical
quantum states, the qubits do not collapse, but maintain their amplitudes.

To update these states, a novel gate was introduced, called rotation gate,
which is used to adjust the probability of measuring a state while maintaining
normalization. The proposed gate operator to rotate a qubit by the angle Δθi is
defined as

U(Δθi) =
[
cos(Δθi) − sin(Δθi)
sin(Δθi) cos(Δθi)

]
(2)

and acts on each qubit individually. The sign of the rotation angle Δθ for each
qubit depends on the value it contributed to the best previously measured solu-
tion for the individual. By rotating the qubit towards this best observed value,
the probability of measuring this value again in later generations increases. This
guides the search towards the best found solution, while utilizing the random
probability of observing the other state to explore the search space.

The original algorithm, as described in [6], used multiple individuals, each
evolving towards their best found solutions, and included local and global migra-
tion conditions that allowed exchange of information between the individuals as
a means to escape local maxima. The introduction of Hε gates [7] prevents the
qubits from completely collapsing into one of the two states. Therefore, using a
single individual proved sufficient for many different problems [8]. In this work,
we have modified this algorithm and extended it for the case of CA generation
which we describe in the next section.

3 A Quantum-Inspired Evolutionary Algorithm for CAs

In this section, first we introduce a qubit representation that is simpler and more
efficient for our approach to the CA problem than the representation given in
Eq. 1 and provides a more natural way of updating the states of the qubits than

304 M. Wagner et al.

the rotation gates discussed in Sect. 2. Afterwards, we will propose a quantum-
inspired evolutionary algorithm for covering array construction and explore dif-
ferent operators to guide the search.

3.1 Simplified Qubit-Representation

Considering that the quantum-inspired evolutionary algorithm proposed in [6]
utilizes real numbers, generally 1√

2
, as starting amplitudes, applying the rota-

tion gates defined in Eq. 2 will result in real amplitudes as well. Using the
Bloch Sphere representation defined in Lemma 1 and the restraint of real start-
ing amplitudes, hence no complex phase difference (ϕ = 0), it is sufficient to
consider the following simpler qubit representation. The validity of the following
corollary comes immediately from Lemma 1.

Corollary 1. If the relative phase ϕ between the states |0〉 and |1〉 is 0, the state
|Ψ〉 of a qubit can be fully described with

|Ψ〉 = cos Θ |0〉 + sinΘ |1〉 Θ ∈ [0,
π

2
].

We call such a representation, the circular representation of a qubit. Com-
pared to previous works, where only the rotation gates used to update the ampli-
tudes of the qubits were depicted in polar coordinates [6], we fully describe the
qubit state with a single real number, the angle Θ (see Fig. 1b). In the remaining
work, whenever the term qubit is mentioned, we refer to this reduced represen-
tation.

Fig. 1. Derivation of the circular representation. The angle ϕ, drawn red in (a), gets
set to zero and after dividing the angle by two, the representation reduces to (b). (c)
visualizes the effect of mutation on the qubit representation (see Subsect. 3.2).

An observation of the state will result in |0〉 with probability (cosΘ)2 and in
state |1〉 otherwise. Moreover, we can now update the qubit states as follows.

Quantum-Inspired Evolutionary Algorithms for Covering Arrays 305

Lemma 2. Let the qubit representation be |Ψ〉 = cos Θ |0〉 + sinΘ |1〉, where
Θ ∈ [0, π

2]. Then applying a rotation gate to the qubit reduces to simple addition
of the desired rotation amount:

(
cos ΔΘ − sin ΔΘ
sin ΔΘ cos ΔΘ

) (
cos Θ
sin Θ

)
=

(
cos (Θ + ΔΘ)
sin (Θ + ΔΘ)

)
(3)

Proof. Using the Ptolemy’s theorem concerning trigonometric identities, the
prove of the assertion is straight forward. ��

3.2 Algorithmic Description

In this subsection we propose our algorithm QIEAforCA, provide the pseu-
docode with an explanation and also give some examples. The basic idea under-
lying our algorithm is to consider an N × k array Q of qubits, that serves as a
source from which binary arrays are created by observing the qubits. In each gen-
eration this source gets updated according to the best found array B generated
thus far, i.e. the array that covers the most t-way interactions. This update will
happen based on a rotation operator, implemented by the procedure Rotation,
that can be realized in different types (universal rotation and individual
rotation) and influences each qubit of Q by changing its state, according to
the so called rotation speed. To guarantee a certain possibility for mutation,
we prevent the qubits in the source Q to go beyond a certain state and thus
from collapsing into one of the states |0〉 or |1〉. This will happen based on an
Hε operator, implemented by the procedure Mutation. The quantity for this
possibility is described by the mutation rate. Also, for the procedure Muta-
tion we will detail two different types (universal mutation and individual
mutation) later in this subsection.

Our algorithm can be summarized as follows (see Algorithm 1). Initially a
qubit representation Q = (qij) for each value in an N × k array gets created
according to Corollary 1. The angle, describing the initial state, of each qubit is
set to 45◦, inducing a uniform distribution of the possible states |0〉 and |1〉. By
measuring each qubit, a first candidate solution C = (cij), which is a binary-
valued array, gets created. Measuring qij in state |0〉 results in an entry cij = 0,
while measuring state |1〉 results in cij = 1 respectively (see Example 1). The
initial best solution B = (bij) is set to the first candidate solution, B(0) = C(0).
Thereafter, the following steps get repeated until either a covering array is found
or a specific number n of generations have passed. These criteria are implemented
as terminating conditions by the procedure Termination. In each generation a
new candidate solution C(n) gets created by measuring the state of each qubit
in Q(n − 1). In case the candidate solution has a higher fitness, i.e. it covers
a higher number of t-way interactions than the current best solution B(n − 1),
the best solution is updated to the candidate solution B(n) = C(n). Depending
on the best solution, the states of the qubits (qij) get updated yielding Q(n).
For this update, the direction in which the qubit qij gets rotated is defined by
the value bij in the current best solution and the procedure Mutation. This

306 M. Wagner et al.

direction is represented by the target state αij , which we explain detailed later
in this section. The angles, by which the qubits get rotated in each generation,
get determined by the procedure Rotation.

Algorithm 1. QIEAforCA(t, k,N)
Require: Rotation, Mutation, Termination
1: n ← 0
2: Create Q(n) representing the N × k array
3: Create candidate solution C(n) by observing Q(n)
4: Evaluate C(n) based on the number of covered t-way interactions
5: B(n) ← C(n)
6: while (not Termination(B(n), t) do
7: n ← n + 1
8: Create C(n) by observing Q(n − 1)
9: Evaluate C(n)
10: if C(n) is better than B(n − 1) then
11: B(n) ← C(n)
12: else
13: B(n) ← B(n − 1)
14: end if
15: for all Qubits qij in Q(n) do
16: αij ← Mutation(bij)
17: qij ← Rotation(qij , αij)
18: end for
19: end while
20: return B(n)

21: procedure Termination(B(n), n)
Require: Termination number m
22: if fitness of B(n) is 100% or n ≥ m then return true
23: else
24: return false
25: end if
26: end procedure

27: procedure Mutation(bij)
Require: εglob, MutationType
28: mutation rate εij ← 0
29: if MutationType is universal mutation then
30: εij ← εglob
31: else if MutationType is individual mutation then
32: Calculate the relative mutation amount εind based on the unique coverage of bij
33: εij ← εglob + εind

34: end if
35: if bij is 0 then
36: αij ← εij
37: else if bij is 1 then
38: αij ← 90◦ − εij
39: end if
40: return αij

41: end procedure

42: procedure Rotation(qij , αij , bij)
Require: rotation speed s, RotationType
43: sij ← 0
44: if RotationType is universal mutation then
45: sij ← s
46: else if RotationType is individual mutation then
47: Calculate rotation angle sij based on s and the unique coverage of bij
48: end if
49: Rotate qubit qij by sij towards target state αij

50: return qij
51: end procedure

Quantum-Inspired Evolutionary Algorithms for Covering Arrays 307

Example 1. A candidate solution is created by observation of the qubit angles.
The majority of measurements return the expected value, while states closer to
45◦ have a higher chance of returning the opposite state. For example, the 30◦

state has a 25% probability of observing state |1〉.

⎛
⎝Ψ02 Ψ12 Ψ22 Ψ32

Ψ01 Ψ11 Ψ21 Ψ31

Ψ00 Ψ10 Ψ20 Ψ30

⎞
⎠

T

−→
⎛
⎝10◦ 60◦ 0◦ 90◦

0◦ 30◦ 90◦ 60◦

0◦ 90◦ 60◦ 20◦

⎞
⎠

T

−→
⎛
⎝0 1 0 1

0 1 1 1
0 1 1 0

⎞
⎠

T

(4)

Mutation. Before we explain the procedure Mutation in detail, we give a
brief motivation. Whenever the state of a qubit qij reaches 0◦ or 90◦, further
measurements of this qubit will always return the same result, as the probabil-
ity (cos Θ)2 of measuring state |0〉 becomes 1 or 0 respectively. This locks the
qubit into the corresponding state and can lead to premature convergence. To
avoid this phenomenon, Han and Kim introduced Hε gates in [7] to keep the
qubits from converging completely. Using our qubit representation, this concept
is implemented in the procedure Mutation as follows. The extremal states |0〉
and |1〉, represented by 0◦ and 90◦ respectively, are replaced by the states cor-
responding to 0◦ + ε and 90◦ − ε respectively, for a certain angle ε, called the
mutation rate (see Fig. 1c). Depending on bij , the qubits now rotate towards
one of these extremal states, which is why we refer to them as target states
αij . For example with an ε of 5◦, the possible target states are 5◦ and 85◦

(see Example 2). We call this procedure Mutation, since it is very similar to
the concept of mutation used in other evolutionary algorithms, as once a qubit
converged to its target state, it will still maintain a small chance of measuring
the opposite state.

We propose two different mutation types that are implemented as part of the
procedure Mutation:

– universal mutation: εij = εglob. We call this first mutation type universal
mutation as it assigns the same mutation rate to each qubit. Moreover, we
denote the parameter specifying this angle, that is constant for all qubits,
with εglob.

– individual mutation: εij = εglob +εind. The second mutation type we intro-
duce is called individual mutation as it assigns different mutation rates
εij to the individual qubits.

We elaborated further on how to make these rates for individual mutation
specific to the CA generation problem, by proposing the property unique
coverage below. For each entry bij in the current best solution B(n), unique
coverage(bij) is defined as the number of t-way interactions that are covered
exactly once and involve bij . Removing bij from B(n) would therefore reduce
the total number of t-way interactions covered by the array exactly by unique
coverage(bij). Thus, we use this measure to evaluate the significance of bij in
the current best solution B(n). In individual mutation, we make use of this

308 M. Wagner et al.

property by calculating the angle εind, that gets added to the mutation rate
of qubit qij , indirectly proportional to unique coverage(bij). This approach
penalizes entries qij of Q(n), that correspond to entries bij that are deemed less
significant for the number of t-way interactions covered by the current best solu-
tion B(n). A visual representation of how individual mutation affects different
qubits is given in Fig. 2b and d.

Example 2. Target states for all qubits get set dependent on the values of the
best previous solution. If the value of the respective entry in the solution is 0,
then the target state is set to 0◦, else if the value is 1, the target state is
set to 90◦. The third array depicts how universal mutation with εglob = 5◦

affects the target states:

⎛
⎝0 1 0 1

0 1 1 0
0 1 1 1

⎞
⎠

T

−→
⎛
⎝0◦ 90◦ 0◦ 90◦

0◦ 90◦ 90◦ 0◦

0◦ 90◦ 90◦ 90◦

⎞
⎠

T

−→
⎛
⎝5◦ 85◦ 5◦ 85◦

5◦ 85◦ 85◦ 5◦

5◦ 85◦ 85◦ 85◦

⎞
⎠

T

. (5)

Rotation. Another part of the algorithm that can be adjusted is the angle
that the qubits get rotated by in each generation. Since this determines how
quickly the qubits converge towards their respective target states, we call
this the rotation speed s. Similar to mutation, we propose two different types
of rotation:

– universal rotation: sij = s, where each qubit gets rotated by the same
angle.

– individual rotation: sij = s · ω(bij), where each qubit gets rotated by an
individual angle, where ω(bij) is a weight based on bij with 0 < ω(bij) < 1.

In detail, during universal rotation every qubit qij gets rotated by the
same predefined angle s towards it’s respective target state αij . Furthermore,
the introduced individual rotation is based on the unique coverage of bij in
the best solution. In this rotation type, the angle by which a qubit qij gets rotated
is proportional unique coverage of the respective value bij in the best solution.
In other words, values that are contributing more to the fitness of the solution,
i.e. the number of covered t-way interactions, get rotated faster towards their
target states than others. Due to this, qubits qij , where the respective entry
bij has a high unique coverage, quickly converge towards their target state
αij and can serve as an anchor to guide the search faster towards a promising
subset of the search space.

Combination of Rotation and Mutation. Figure 2 gives a visual represen-
tation of the four possible combinations of rotation and mutation types. In this
example, for each combination two arbitrary qubits, q1 and q2, are depicted.

Quantum-Inspired Evolutionary Algorithms for Covering Arrays 309

Fig. 2. All four different combinations of the proposed rotation and mutation types
visually represented using two arbitrary qubits.

The mutation rate that gets applied to each qubit is represented by the angle
εij in red. The angle sij , by which the qubit qij gets rotated in every genera-
tion, is represented by the length of the arrow towards the respective target
state αij . In this given example, the unique coverage of the value bij rep-
resented by qubit q1 was higher than that represented by qubit q2. In other
words, the entry corresponding to q1 was more significant to the best solution
B. This is visible by the size of εij and sij when individual mutation and
individual rotation are used respectively. Figure 2a depicts a setup using
universal rotation and universal mutation, where each qubit gets the same
mutation rate ε and rotation speed s applied. In Fig. 2b, due to individual
mutation, the mutation rate ε applied to q1 is smaller, allowing it to converge
close towards the extremal states |0〉 or |1〉. Similarly, qubit q2 gets a higher
mutation rate applied. Figure 2c illustrates how with individual rotation,
the better qubit q1 gets rotated by a larger angle per iteration, while the state
of qubit q2 does not change much. Lastly, Fig. 2d shows how when combining
individual mutation and individual rotation, the angle by which qubits
get rotated and the mutation rate of qubit q1 are proportionally larger and
smaller respectively than for the less significant qubit q2.

4 Experimental Results

We evaluate our algorithm in two steps. First, we benchmark different con-
figurations of our algorithm on the same problem instance and compare their

310 M. Wagner et al.

convergence. We will use those results to study the influence of parameters like
rotation speed and mutation rate and test how the previously introduced
mutation and rotation types, that are tailored to the problem of CA genera-
tion, affect the search. Lastly we evaluate the performance of the algorithm by
attempting to find several instances of optimal covering arrays and evaluate the
results. The algorithm was implemented in C# and tested on a workstation
equipped with 8 GB of RAM and an i5-Core. To evaluate obtained solutions, we
(informally) introduce the metric coverage as the number of t-way interactions
that an array covers divided by the total number of t-way interactions. Thus
a CA, where all t-way interactions are covered at least once, has a coverage of
100%.

4.1 Parameter Tests for Rotation and Mutation

To be able to thoroughly test the different parameters and rotation and mutation
types, we chose the CA instance (N = 16, t = 3, k = 14), i.e. the problem of
finding a CA(16; 3, 14). During the conduction of our experiments it turned out
that this is a difficult problem, that most configurations of our algorithm are not
able to solve. We purposely chose this instance, as it allows for better comparison
of the different configurations. For the experiments reported in this subsection
each configuration was run 10 times with a limit of 500000 generations. For the
plots in Figs. 3, 4 and 5 we recorded the average coverage of the best found
solution after every 100 generations. The average run time of each experiment
was approximately 10 min. The average coverage as well as the coverage of the
best run for each configuration and rotation speed are reported in Table 1 at
the end of this subsection.

Rotation Type Tests Without Mutation. First we evaluate how the rota-
tion types universal rotation and individual rotation perform without
any mutation at the rotation speeds s = 0.001, s = 0.01, s = 0.1 and s = 1.0
and compare the results in Fig. 3. The results very clearly show the premature
convergence due to lack of escape mechanism without any type of mutation.
Furthermore the graphs depict nicely that the faster the rotation speed, the less
time the algorithm has to explore the solution space before fully converging.
Interestingly, even with high rotation speeds, individual rotation found
better arrays than any configuration using universal rotation. The quickest
rotation speed, s = 1.0, converged to an array with 98.0% coverage after only
500 generations, while with universal rotation, the best array had 97.7% cov-
erage and was found after around 100000 generations. We believe individual
rotation performs better on this instance, as it rotates better qubits, where
the respective bij had high unique coverage, quicker towards the best solution,
hence restricting the search early towards a promising subset of the solution
space. At the same time, the qubits representing weaker entries in the array are
still relatively unbiased, allowing the algorithm to find the best solution around
this restricted solution space.

Quantum-Inspired Evolutionary Algorithms for Covering Arrays 311

(a) universal rotation with εglob = 0 (b) individual rotation with εglob = 0

Fig. 3. Different rotation speeds (s = 0.001, s = 0.01, s = 0.1 and s = 1.0) for
universal rotation and individual rotation without any mutation are compared
side by side.

Rotation Type Tests with Universal Mutation. Next, we investigate how
universal mutation affects the previously tested configurations. Figure 4 com-
pares the convergence of the configurations with εglob = 5. Adding universal
mutation significantly improves the coverage of the best found arrays and no
clear point of full convergence exists any more. Unlike in the previous tests with-
out mutation, slow rotation speeds do not seem to provide any benefits and
in fact result in noticeably worse solutions than fast rotation speeds. Fur-
thermore, with εglob = 5, universal rotation and individual rotation find
solutions of similar quality, however universal rotation consistently performs
slightly better than individual rotation. Again, the success of fast rotation
speeds confirms the importance of quickly guiding the search to a promising
subspace. The addition of universal mutation keeps the algorithm from fully
converging and allows it to constantly explore the solution space around the
current best candidate solution. If the rotation speed s is chosen too small,
qubits can not adapt to a new solution quickly enough. We also tested configu-
rations with εglob = 10 (see Table 1), which produced worse results than a rate of
εglob = 5. This shows that if a mutation rate is too big, the system can become
unstable, resulting in too much exploration of the search space with too little
exploitation.

Comparison Tests of Mutation Types. To investigate the effect of
individual mutation, we compare the results of four configurations using
universal rotation with a fixed rotation speed of s = 0.1, see Fig. 5a. Com-
pared to the configuration without any mutation, individual mutation with
εglob = 0 already leads to a significant improvement in solution quality. We can
see that even though the majority of values now do get a mutation applied, some
of the qubits still do not, which can lead to the algorithm getting stuck more eas-
ily at a local maximum. Additionally, a global mutation rate of εglob = 5 increases
the performance for both mutation types and they converge very similarly. At

312 M. Wagner et al.

(a) universal rotation with εglob = 5 (b) individual rotation with εglob = 5

Fig. 4. Comparison between universal rotation and individual rotation with dif-
ferent rotation speeds (s = 0.001, s = 0.01, s = 0.1, s = 1.0) and universal

mutation using εglob = 5.

(a) Mutation type comparison (b) Early Generations

Fig. 5. (a) compares different mutation configurations using universal rotation with
a rotation speed of s = 0.1. (b) depicts the convergence of selected configurations
during the first 5000 generations at rotation speed s = 1.0.

the same time, in these experiments, individual mutation with εglob = 5 is the
only configuration tested that was able to actually find a CA for this instance
(see also Table 1).

Influence of Individual Rotation in the Early Stages of the Algorithm.
Lastly, in Fig. 5b we explore how selected configurations behave in the first 5000
generations. Since slower rotation speeds do not converge quickly enough for
this evaluation, we only considered a rotation speed of s = 1. It is worth not-
ing that the configurations using individual rotation performed significantly
better during the first 1500 generations. In later generations it seems that the

Quantum-Inspired Evolutionary Algorithms for Covering Arrays 313

Table 1. Results of parameter tests for CA(16, 3, 14).

Configuration s = 0.001 s = 0.01 s = 0.1 s = 1.0

RotType MutType MutRate Average Best Average Best Average Best Average Best

Univ Univ 0 97.74 98.45 97.32 97.80 95.99 96.60 94.71 95.57

Ind Univ 0 98.99 99.28 98.82 99.11 98.63 99.00 98.04 98.45

Univ Univ 5 99.46 99.73 99.61 99.79 99.67 99.86 99.65 99.76

Ind Univ 5 99.24 99.42 99.58 99.66 99.59 99.76 99.59 99.73

Univ Univ 10 99.32 99.55 99.52 99.66 99.57 99.79 99.59 99.79

Ind Univ 10 98.86 99.07 99.43 99.66 99.53 99.73 99.58 99.66

Univ Ind 0 99.19 99.42 99.11 99.42 99.13 99.45 99.16 99.42

Univ Ind 5 99.55 99.69 99.61 99.76 99.66 100 99.64 99.76

Ind Ind 5 99.32 99.55 99.67 99.79 99.62 99.79 99.66 99.79

effect of universal mutation starts to negate this advantage and the configu-
rations converge very similarly. We conducted these experiments to investigate
which algorithm finds arrays with the highest coverage within a limited number
of generations, which can serve as a foundation for future work.

4.2 Algorithm Evaluation

Having evaluated different combinations of rotation and mutation types in the
previous section, we now analyze the performance of our quantum-inspired evo-
lutionary algorithm. To that extend, we attempted to find CAs for some inter-
esting CA instances. For many of those, CAs exist that are likely to be optimal,
see [2]. Further, we consider two instances, for which the existence of a covering
array is still unknown. The results of our experiments can be found in Table 2.
In these experiments we use the configuration using individual mutation with
εglob = 5 and individual rotation with a rotation speed of s = 0.1, as this
configuration seemed to perform the most consistent during our experiments.
The upper bound for the number of generations was set to 3000000. To analyze
the results, 30 runs were executed for each CA instance. We recorded the number
of successful CA generations, the average and the best achieved coverage, as well
as the average number of iterations and run time in seconds of the successful
runs, or all 30 runs, if no solution was found.

For binary CAs of strength t = 2, the covering array numbers are known from
theory, see [19] and references therein. It is hence possible to consider for a given
number of rows N, the hardest CA instance, i.e. the instance with the largest
k, such that a CA(N ; 2, k) still exists. In our experiments we hence target the
computation of CA(7; 2, 15), CA(8; 2, 35) and CA(9; 2, 56). For t = 3, we consider
the CA instances (14; 3, 12) and (15; 3, 13), for which the existence of covering
arrays is unknown, to the best of our knowledge.

As shown in Table 2, with the configuration specified above, the algorithm
finds solutions for all CA instances in the given number of generations, with
the exception of the CA instances (14; 3, 12) and (15; 3, 13). While all tested

314 M. Wagner et al.

strength t = 2 instances were found, the results indicate that the algorithm has
difficulties finding solutions to larger problem instances such as (56; 2, 9). At
the same time, the average coverage of the resulting arrays remains high (above
99.92%). For the strength t = 3 instances, in the best run, the returned array
missed a total of two 3-way interactions to find a CA(14; 3, 12), covering 99.89% of
the 3-way interactions, while the best array found for instance (15; 3, 13) only had
a coverage of 99.74%. However, adding one row, the algorithm finds solutions to
the instances (15; 3, 12) and (16; 3, 13). Lastly, the optimal CA(24; 4, 12) is found
19 out of 30 times, demonstrating the viability of the algorithm also for higher
strengths.

Table 2. Results for selected CA instances (N ; t, k). Row counts N marked with an
asterisk are not yet confirmed to have a possible covering array solution.

CA instance Found
CAs

Average
coverage

Best
coverage

Average
genera-
tions

Average
runtime

(7; 2, 15) 30 100 100 641147 108

(8; 2, 35) 14 99.95 100 605462 1034

(9; 2, 52) 1 99.92 100 2790982 11619

(14*; 3, 12) 0 99.51 99.89 3000000 4626

(15; 3, 12) 6 99.71 100 1195933 1226

(15*; 3, 13) 0 99.46 99.74 3000000 6025

(16; 3, 13) 1 99.73 100 54113 61

(24; 4, 12) 19 98.47 100 345479 2280

5 Conclusion and Future Work

In this paper we introduced a quantum-inspired evolutionary algorithm for cov-
ering array generation. We used a simplified qubit representation and success-
fully encode properties of CAs in our algorithm. The algorithm manages to find
many optimal CAs of various strengths and showed the ability to find good,
albeit not always optimal, solutions in a small number of iterations. This prop-
erty is desirable when our quantum-inspired evolutionary algorithm is used as
a subroutine as part of greedy methods for CA construction (see [19]). Such
hybrid algorithms are considered part of our future work. Furthermore, combin-
ing the quantum-inspired evolutionary algorithm with other metaheuristics, or
subprocedures thereof, might provide additional escape mechanisms and is worth
exploring. Lastly, in this work only binary arrays were considered. Expanding
the algorithm to higher alphabets might require small modifications to the used
representation and procedures.

Quantum-Inspired Evolutionary Algorithms for Covering Arrays 315

Acknowledgements. This research was carried out partly in the context of the Aus-
trian COMET K1 program and publicly funded by the Austrian Research Promotion
Agency (FFG) and the Vienna Business Agency (WAW).

References

1. Cleve, R., Ekert, A., Macchiavello, C., Mosca, M.: Quantum algorithms revisited.
In: Proceedings of the Royal Society A: Mathematical, Physical and Engineering
Sciences, vol. 454, August 1997

2. Colbourn, C.J.: Covering Array Tables for t = 2, 3, 4, 5, 6. http://www.public.
asu.edu/∼ccolbou/src/tabby/catable.html. Accessed 26 Feb 2019

3. Colbourn, C.J.: Combinatorial aspects of covering arrays. Le Mathematiche
LIX((I–II)), 125–172 (2004)

4. Danziger, P., Mendelsohn, E., Moura, L., Stevens, B.: Covering arrays avoiding
forbidden edges. In: Yang, B., Du, D.-Z., Wang, C.A. (eds.) COCOA 2008. LNCS,
vol. 5165, pp. 296–308. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-85097-7 28

5. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Pro-
ceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing,
STOC 1996, pp. 212–219. ACM, New York (1996)

6. Han, K.H., Kim, J.H.: Quantum-inspired evolutionary algorithm for a class of
combinatorial optimization. IEEE Trans. Evol. Comput. 6(6), 580–593 (2002)

7. Han, K.H., Kim, J.H.: Quantum-inspired evolutionary algorithms with a new ter-
mination criterion, h/sub /spl epsi// gate, and two-phase scheme. IEEE Trans.
Evol. Comput. 8(2), 156–169 (2004)

8. Han, K.H., Kim, J.H.: On the analysis of the quantum-inspired evolutionary algo-
rithm with a single individual. In: 2006 IEEE International Conference on Evolu-
tionary Computation, pp. 2622–2629, July 2006

9. Hnich, B., Prestwich, S.D., Selensky, E., Smith, B.M.: Constraint models for the
covering test problem. Constraints 11(2), 199–219 (2006)

10. Kampel, L., Simos, D.E.: A survey on the state of the art of complexity problems for
covering arrays. Theor. Comput. Sci. (2019). https://doi.org/10.1016/j.tcs.2019.10.
019

11. Kleine, K., Simos, D.E.: An efficient design and implementation of the in-
parameter-order algorithm. Math. Comput. Sci. 12(1), 51–67 (2018)

12. Kuhn, D., Kacker, R., Lei, Y.: Introduction to Combinatorial Testing. Chapman &
Hall/CRC Innovations in Software Engineering and Software Development Series.
Taylor & Francis, Routledge (2013)

13. Lei, Y., Tai, K.C.: In-parameter-order: a test generation strategy for pairwise test-
ing. In: Proceedings Third IEEE International High-Assurance Systems Engineer-
ing Symposium (Cat. No. 98EX231), pp. 254–261, November 1998

14. Mart́ı, R., Pardalos, P., Resende, M.: Handbook of Heuristics. Springer, Heidelberg
(2018)

15. Nayeri, P., Colbourn, C.J., Konjevod, G.: Randomized post-optimization of cover-
ing arrays. Eur. J. Comb. 34(1), 91–103 (2013)

16. Nielsen, M.A., Chuang, I.: Quantum Computation and Quantum Information.
Cambridge University Press, New York (2002)

17. Seroussi, G., Bshouty, N.H.: Vector sets for exhaustive testing of logic circuits.
IEEE Trans. Inf. Theory 34(3), 513–522 (1988)

http://www.public.asu.edu/~ccolbou/src/tabby/catable.html
http://www.public.asu.edu/~ccolbou/src/tabby/catable.html
https://doi.org/10.1007/978-3-540-85097-7_28
https://doi.org/10.1007/978-3-540-85097-7_28
https://doi.org/10.1016/j.tcs.2019.10.019
https://doi.org/10.1016/j.tcs.2019.10.019

316 M. Wagner et al.

18. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factor-
ing. In: Proceedings 35th Annual Symposium on Foundations of Computer Science,
pp. 124–134, November 1994

19. Torres-Jimenez, J., Izquierdo-Marquez, I.: Survey of covering arrays. In: 2013 15th
International Symposium on Symbolic and Numeric Algorithms for Scientific Com-
puting, pp. 20–27, September 2013

20. Torres-Jimenez, J., Rodriguez-Tello, E.: New bounds for binary covering arrays
using simulated annealing. Inf. Sci. 185(1), 137–152 (2012)

21. Yanofsky, N.S., Mannucci, M.A., Mannucci, M.A.: Quantum Computing for Com-
puter Scientists, vol. 20. Cambridge University Press, Cambridge (2008)

22. Zhang, G.: Quantum-inspired evolutionary algorithms: a survey and empirical
study. J. Heuristics 17(3), 303–351 (2011)

An Experimental Study of Algorithms
for Geodesic Shortest Paths

in the Constant-Workspace Model

Jonas Cleve(B) and Wolfgang Mulzer

Institut für Informatik, Freie Universität Berlin, Takustr. 9, 14195 Berlin, Germany
{jonascleve,mulzer}@inf.fu-berlin.de

Abstract. We perform an experimental evaluation of algorithms for
finding geodesic shortest paths between two points inside a simple poly-
gon in the constant-workspace model. In this model, the input resides in
a read-only array that can be accessed at random. In addition, the algo-
rithm may use a constant number of words for reading and for writing.
The constant-workspace model has been studied extensively in recent
years, and algorithms for geodesic shortest paths have received particu-
lar attention.

We have implemented three such algorithms in Python, and we com-
pare them to the classic algorithm by Lee and Preparata that uses linear
time and linear space. We also clarify a few implementation details that
were missing in the original description of the algorithms. Our exper-
iments show that all algorithms perform as advertised in the original
works and according to the theoretical guarantees. However, the con-
stant factors in the running times turn out to be rather large for the
algorithms to be fully useful in practice.

Keywords: Simple polygon · Geodesic shortest path · Constant
workspace · Experimental evaluation

1 Introduction

In recent years, the constant-workspace model has enjoyed growing popularity in
the computational geometry community [6]. Motivated by the increasing deploy-
ment of small devices with limited memory capacities, the goal is to develop
simple and efficient algorithms for the situation where little workspace is avail-
able. The model posits that the input resides in a read-only array that can be
accessed at random. In addition, the algorithm may use a constant number of
memory words for reading and for writing. The output must be written to a
write-only memory that cannot be accessed again for reading. Following the ini-
tial work by Asano et al. from 2011 [2], numerous results have been published for
this model, leading to a solid theoretical foundation for dealing with geometric

Supported in part by DFG projects MU/3501-1 and RO/2338-6 and ERC StG 757609.

c© Springer Nature Switzerland AG 2019
I. Kotsireas et al. (Eds.): SEA2 2019, LNCS 11544, pp. 317–331, 2019.
https://doi.org/10.1007/978-3-030-34029-2_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34029-2_21&domain=pdf
http://orcid.org/0000-0001-8480-1726
http://orcid.org/0000-0002-1948-5840
https://doi.org/10.1007/978-3-030-34029-2_21

318 J. Cleve and W. Mulzer

problems when the working memory is scarce. The recent survey by Banyas-
sady et al. [6] gives an overview of the problems that have been considered and
of the results that are available for them.

But how do these theoretical results measure up in practice, particularly in
view of the original motivation? To investigate this question, we have imple-
mented three different constant-workspace algorithms for computing geodesic
shortest paths in simple polygons. This is one of the first problems to be stud-
ied in the constant-workspace model [2,3]. Given that the general shortest path
problem is unlikely to be amenable to constant-workspace algorithms (it is NL-
complete [18]), it may come as a surprise that a solution for the geodesic case
exists at all. By now, several algorithms are known, both for constant workspace
as well as in the time-space-trade-off regime, where the number of available cells
of working memory may range from constant to linear [1,12].

Due to the wide variety of approaches and the fundamental nature of the prob-
lem, geodesic shortest paths are a natural candidate for a deeper experimental
study. Our experiments show that all three constant-workspace algorithms work
well in practice and live up to their theoretical guarantees. However, the large
running times make them ill-suited for very large input sizes. During our imple-
mentation, we also noticed some missing details in the original publications, and
we explain below how we have dealt with them.

As far as we know, our study constitutes the first large-scale comparative
evaluation of geometric algorithms in the constant-workspace model. A previous
implementation study, by Baffier et al. [5], focused on time-space trade-offs for
stack-based algorithms and was centered on different applications of a powerful
algorithmic technique. Given the practical motivation and wide applicability of
constant-workspace algorithms for geometric problems, we hope that our work
will lead to further experimental studies in this direction.

2 The Four Shortest-Path Algorithms

We provide a brief summary for each of the four algorithms in our implementa-
tion; further details can be found in the original papers [2,3,14]. In each case, we
use P to denote a simple input polygon in the plane with n vertices. We consider
P to be a closed, connected subset of the plane. Given two points s, t ∈ P , our
goal is to compute a shortest path from s to t (with respect to the Euclidean
length) that lies completely inside P .

2.1 The Classic Algorithm by Lee and Preparata

This is the classic linear-space algorithm for the geodesic shortest path prob-
lem that can be found in textbooks [11,14]. It works as follows: we triangulate P ,
and we find the triangle that contains s and the triangle that contains t. Next,
we determine the unique path between these two triangles in the dual graph of
the triangulation. The path is unique since the dual graph of a triangulation of

Geodesic Shortest Path Algorithms with Constant Workspace 319

s t

e1 e3
e4

e5

e6

e7
e8

e2

Fig. 1. Examples of three funnels during the algorithm for finding a shortest path from
s to t. Each has cusp s and goes up to diagonals e2 (green, dashed), e6 (orange, dash
dotted), and e8 (purple, dotted). (Color figure online)

a simple polygon is a tree [7]. We obtain a sequence e1, . . . , em of diagonals (inci-
dent to pairs of consecutive triangles on the dual path) crossed by the geodesic
shortest path between s and t, in that order. The algorithm walks along these
diagonals, while maintaining a funnel. The funnel consists of a cusp p, initial-
ized to be s, and two concave chains from p to the two endpoints of the current
diagonal ei. An example of these funnels can be found in Fig. 1. In each step i
of the algorithm, i = 1, . . . ,m − 1, we update the funnel for ei to the funnel for
ei+1. There are two cases: (i) if ei+1 remains visible from the cusp p, we update
the appropriate concave chain, using a variant of Graham’s scan; (ii) if ei+1 is
no longer visible from p, we proceed along the appropriate chain until we find
the cusp for the next funnel. We output the vertices encountered along the way
as part of the shortest path.Implemented in the right way, this procedure takes
linear time and space.1

2.2 Using Constrained Delaunay-Triangulations

The first constant-workspace-algorithm for geodesic shortest paths in simple
polygons was presented by Asano et al. [3] in 2011. It is called Delaunay, and it
constitutes a relatively direct adaptation of the method of Lee and Preparata to
the constant-workspace model.

In the constant-workspace model, we cannot explicitly compute and store
a triangulation of P . Instead, we use a uniquely defined implicit triangulation
of P , namely the constrained Delaunay triangulation of P [9]. In this variant
of the classic Delaunay triangulation, we prescribe the edges of P to be part
of the desired triangulation. Then, the additional triangulation edges cannot
cross the prescribed edges. Thus, unlike in the original Delaunay triangulation,

1 If a triangulation of P is already available, the implementation is relatively straight-
forward. If not, a linear-time implementation of the triangulation procedure consti-
tutes a significant challenge [8]. Simpler methods are available, albeit at the cost of
a slightly increased running time of O(n logn) [7].

320 J. Cleve and W. Mulzer

Fig. 2. An example of a constrained Delaunay triangulation of a simple polygon.

the circumcircle of a triangle may contain other vertices of P , as long as the
line segment from a triangle endpoint to the vertex crosses a prescribed polygon
edge, see Fig. 2 for an example.

The constrained Delaunay triangulation of P can be navigated efficiently
using constant workspace: given a diagonal or a polygon edge, we can find the
two incident triangles in O(n2) time [3]. Using an O(n) time constant-workspace-
algorithm for finding shortest paths in trees, also given by Asano et al. [3], we can
thus enumerate all triangles in the dual path between the constrained Delaunay
triangle that contains s and the constrained Delaunay triangle that contains t
in O(n3) time.

As in the algorithm by Lee and Preparata, we need to maintain the visibility
funnel while walking along the dual path of the constrained Delaunay triangu-
lation. Instead of the complete chains, we store only the two line segments that
define the current visibility cone (essentially the cusp together with the first ver-
tex of each chain). We recompute the two chains whenever it becomes necessary.
The total running time of the algorithm is O(n3). More details can be found in
the paper by Asano et al. [3].

2.3 Using Trapezoidal Decompositions

This algorithm was also proposed by Asano et al. [3], as a faster alternative to the
algorithm that uses constrained Delaunay triangulations. It is based on the same
principle as Delaunay, but it uses the trapezoidal decomposition of P instead of
the Delaunay triangulation [7]. See Fig. 3 for a depiction of the decomposition
and the symbolic perturbation method to avoid a general position assumption. In
the algorithm, we compute a trapezoidal decomposition of P , and we follow the
dual path between the trapezoid that contains s and the trapezoid that contains
t, while maintaining a funnel and outputting the new vertices of the geodesic
shortest path as they are discovered. Assuming general position, we can find all

Geodesic Shortest Path Algorithms with Constant Workspace 321

Fig. 3. The trapezoidal decomposition of a polygon. If the polygon is in general position
(right) each trapezoid has at most four neighbors which can all be found in O(n) time.

incident trapezoids of the current trapezoid and determine how to continue on
the way to t in O(n) time (instead of O(n2) time in the case of the Delaunay
algorithm). Since there are still O(n) steps, the running time improves to O(n2).

2.4 The Makestep Algorithm

This algorithm was presented by Asano et al. [2]. It uses a direct approach to the
geodesic shortest path problem and unlike the two previous algorithms, it does
not try to mimic on the algorithm by Lee and Preparata. In the traditional model,
this approach would be deemed too inefficient, but in the constant-workspace
world, its simplicity turns out to be beneficial. The main idea is as follows:
we maintain a current vertex p of the geodesic shortest path, together with
a visibility cone, defined by two points q1 and q2 on the boundary of P . The
segments pq1 and pq2 cut off a subpolygon P ′ ⊆ P . We maintain the invariant
that the target t lies in P ′. In each step, we gradually shrink P ′ by advancing q1
and q2, sometimes also relocating p and outputting a new vertex of the geodesic
shortest path. These steps are illustrated in Fig. 4. It is possible to realize the
shrinking steps in such a way that there are only O(n) of them. Each shrinking
step takes O(n) time, so the total running time of the MakeStep algorithm
is O(n2).

3 Our Implementation

We have implemented the four algorithms from Sect. 2 in Python [15]. For graph-
ical output and for plots, we use the matplotlib library [13]. Even though there
are some packages for Python that provide geometric objects such as line seg-
ments, circles, etc., none of them seemed suitable for our needs. Thus, we decided
to implement all geometric primitives on our own. The source code of the imple-
mentation is available online in a Git-repository.2

2 https://github.com/jonasc/constant-workspace-algos.

https://github.com/jonasc/constant-workspace-algos

322 J. Cleve and W. Mulzer

Fig. 4. An illustration of the steps in the Makestep algorithm.

In order to apply the algorithm Lee-Preparata, we must be able to triangulate
the simple input polygon P efficiently. Since implementing an efficient polygon
triangulation algorithm can be challenging and since this is not the main objec-
tive of our study, we relied for this on the Python Triangle library by Rufat [16],
a Python wrapper for Shewchuk’s Triangle, which was written in C [17]. We
note that Triangle does not provide a linear-time triangulation algorithm, which
would be needed to achieve the theoretically possible linear running time for the
shortest path algorithm. Instead, it contains three different implementations,
namely Fortune’s sweep line algorithm, a randomized incremental construction,
and a divide-and-conquer method. All three implementations give a running
time of O(n log n). For our study, we used the divide-and conquer algorithm,
the default choice. In the evaluation, we did not include the triangulation phase
in the time and memory measurement for running the algorithm by Lee and
Preparata.

3.1 General Implementation Details

All three constant-workspace algorithms have been presented with a general
position assumption: Delaunay and Makestep assume that no three vertices
lie on a line, while Trapezoid assumes that no two vertices have the same x-
coordinate. Our implementations of Delaunay and Makestep also assume gen-
eral position, but they throw exceptions if a non-recoverable general position
violation is encountered. Most violations, however, can be dealt with easily
in our code; e.g. when trying to find the constrained Delaunay triangle(s) for
a diagonal, we can simply ignore points collinear to this diagonal. For the
case of Trapezoid, Asano et al. [3] described how to enforce the general posi-
tion assumption by changing the x-coordinate of every vertex to x + εy for
some small enough ε > 0 such that the x-order of all vertices is maintained.

Geodesic Shortest Path Algorithms with Constant Workspace 323

Fig. 5. During the gift wrapping from the cusp to the diagonal b, the vertices need to
be restricted to the shaded area. Otherwise, u would be considered to be part of the
geodesic shortest path, as it is to the left of vw. (Color figure online)

In our implementation, we apply this method to every polygon in which two
vertices share the same x-coordinate.

The coordinates are stored as 64 bit IEEE 754 floats. In order to prevent
problems with floating point precision or rounding, we take the following steps:
first, we never explicitly calculate angles, but we rely on the usual three-point-
orientation test, i.e., the computation of a determinant to find the position of a
point c relative to the directed line through to points a and b [7]. Second, if an
algorithm needs to place a point somewhere in the relative interior of a polygon
edge, we store an additional edge reference to account for inaccuracies when
calculating the new point’s coordinates.

3.2 Implementing the Algorithm by Lee and Preparata

The algorithm by Lee and Preparata can be implemented easily, in a straightfor-
ward fashion. There are no particular edge cases or details that we need to take
care of. Disregarding the code for the geometric primitives, the algorithm needs
less then half as many lines of code than the other algorithms.

3.3 Implementing Delaunay and Trapezoid

In both constant-workspace adaptations of the algorithm by Lee and Preparata,
we encounter the following problem: whenever the cusp of the current funnel
changes, we need to find the cusp of the new funnel, and we need to find the
piece of the geodesic shortest path that connects the former cusp to the new
cusp. In their description of the algorithm, Asano et al. [3] only say that this
should be done with an application of gift wrapping (Jarvis’ march) [7]. While
implementing these two algorithms, we noticed that a naive gift wrapping step
that considers all the vertices on P between the cusp of the current funnel and
the next diagonal might include vertices that are not visible inside the polygon.

324 J. Cleve and W. Mulzer

q1

q2

succ(q1)

p

qq′

t

q1

p

t

Fig. 6. Left: Asano et al. [2] state that one should check whether “t lies in the subpoly-
gon from q′ to q1.” This subpolygon, however, is not clearly defined as the line segment
q′q1 does not lie inside P . Considering pq′ instead and using q1pq

′ to shrink the cutoff
region gives the correct result on the right.

Figure 5 shows an example: here b is the next diagonal, and naively we would
look at all vertices along the polygon boundary between v and w. Hence, u
would be considered as a gift wrapping candidate, and since it forms the largest
angle with the cusp and v (in particular, an angle that is larger than the angle
formed by w) it would be chosen as the next point, even though w should be the
cusp of the next funnel. A simple fix for this problem would be an explicit check
for visibility in each gift-wrapping step. Unfortunately, the resulting increase in
the running time would be too expensive for a realistic implementation of the
algorithms.

Our solution for Trapezoid is to consider only vertices whose x-coordinate is
between the cusp of the current vertex and the point where the current visibility
cone crosses the boundary of P for the first time. For ease of implementation,
one can also limit it to the x-coordinate of the last trapezoid boundary visible
from the cusp. Figure 5 shows this as the dotted green region. For Delaunay, a
similar approach can be used. The only difference is that the triangle boundaries
in general are not vertical lines.

3.4 Implementing Makestep

Our implementation of the Makestep algorithm is also relatively straightforward.
Nonetheless, we would like to point out one interesting detail; see Fig. 6. The
description by Asano et al. [2] says that to advance the visibility cone, we should
check if “t lies in the subpolygon from q′ to q1.” If so, the visibility cone should
be shrunk to q′pq1, otherwise to q2pq′.

However, the “subpolygon from q′ to q1” is not clearly defined for the case
that the line segment q′q1 is not contained in P . To avoid this difficulty, we
instead consider the line segment pq′. This line segment is always contained in
P , and it divides the cutoff region P ′ into two parts, a “subpolygon” between
q′ and q1 and a “subpolygon” between q2 and q′. Now we can easily choose the
one containing t.

Geodesic Shortest Path Algorithms with Constant Workspace 325

4 Experimental Setup

We now describe how we conducted the experimental evaluation of our four
implementations for geodesic shortest path algorithms.

4.1 Generating the Test Instances

Our experimental approach is as follows: given a desired number of vertices n,
we generate 4–10 (pseudo)random polygons with n vertices. For this, we use a
tool developed in a software project carried out under the supervision of Günter
Rote at the Institute of Computer Science at Freie Universität Berlin [10]. Among
others, the tool provides an implementation of the Space Partitioning algorithm
for generating random simple polygons presented by Auer and Held [4].

Since our main focus was in validating the theoretical guarantees that where
published in the literature, we opted for pseudorandomly generated polygons as
our test set. This allowed us to quickly produce large input sets of varying sizes.
Of course, from a practical point of view, it would also be very interesting to
test our implementations on real-world examples. We leave this as a topic for a
future study.

Next, we generate the set S of desired endpoints for the geodesic shortest
paths. This is done as follows: for each edge e of each generated polygon, we
find the incident triangle te of e in the constrained Delaunay triangulation of
the polygon. We add the barycenter of te to S. In the end, the set S will have
between �n/2� and n− 2 points. We will compute the geodesic shortest path for
each pair of distinct points in S.

4.2 Executing the Tests

For each pair of points s, t ∈ S, we find the geodesic shortest path between s and
t using each of the four implemented algorithms. Since the number of pairs grows
quadratically in n, we restrict the tests to 1500 random pairs for all n ≥ 200.

First, we run each algorithm once in order to assess the memory consump-
tion. This is done by using the get traced memory function of the built-in
tracemalloc module which returns the peak and current memory consumption—
the difference tells us how much memory was used by the algorithm. Starting the
memory tracing just before running the algorithm gives the correct values for
the peak memory consumption. In order to obtain reproducible numbers we also
disable Python’s garbage collection functionality using the built-in gc.disable
and gc.enable functions.

After that, we run the algorithm between 5 and 20 times, depending on how
long it takes. We measure the processor time for each run with the process time
function of the time module which gives the time during which the process was
active on the processor in user and in system mode. We then take the median
of the times as a representative running time for this point pair.

326 J. Cleve and W. Mulzer

0 500 1000 1500 2000 2500 3000

0

5

10

15

20

25

vertices vs. memory in

Lee-Preparata O(n) Makestep O(1)
Trapezoid O(1) Delaunay O(1)

Fig. 7. Memory consumption for random instances. The outlined shapes are the median
values; the semi-transparent crosses are maximum values.

4.3 Test Environment

Since we have a quadratic number of test cases for each instance, our experiments
take a lot of time. Thus, the tests were distributed on multiple machines and on
multiple cores. We had six computing machines at our disposal, each with two
quad-core CPUs. Three machines had Intel Xeon E5430 CPUs with 2.67 GHz;
the other three had AMD Opteron 2376 CPUs with 2.3 GHz. All machines had
32 GB RAM, even though, as can be seen in the next section, memory was never
an issue. The operating system was a Debian 8 and we used version 3.5 of the
Python interpreter to implement the algorithms and to execute the tests.

5 Experimental Results

The results of the experiments can be seen in the following plots. The plot in
Fig. 7 shows the median and maximum memory consumption as solid shapes
and transparent crosses, respectively, for each algorithm and for each input size.
More precisely, the plot shows the median and the maximum over all polygons
with a given size and over all pairs of points in each such polygon.

We observe that the memory consumption for Trapezoid and for Makestep is
always smaller than a certain constant. At first glance, the shape of the median

Geodesic Shortest Path Algorithms with Constant Workspace 327

0 500 1000 1500 2000 2500 3000

0

2

4

6

8

10

12

14

16
vertices vs. time in

Lee-Preparata O(n) Makestep O(n2)
Trapezoid O(n2) Delaunay O(n3)

0 500 1000 1500 2000 2500 3000

0

0.1

0.2

0.3

0.4

0.5

vertices vs. time in

Lee-Preparata O(n) Makestep O(n2)
Trapezoid O(n2) Delaunay O(n3)

Fig. 8. Runtime for random instances. Outlined shapes are median values; semi-
transparent crosses are maximum values. The bottom plot is a scaled version of the
top.

328 J. Cleve and W. Mulzer

values might suggest logarithmic growth. However, a smaller number of vertices
leads to a higher probability that s and t are directly visible to each other. In
this case, many geometric functions and subroutines, each of which requires an
additional constant amount of memory, are not called. A large number of point
pairs with only small memory consumption naturally entails a smaller median
value. We can observe a very similar effect in the memory consumption of the
Lee-Preparata algorithm for small values of n. However, as n grows, we can see
that the memory requirement begins to grow linearly with n.

The second plot in Fig. 8 shows the median and the maximum running time
in the same way as Fig. 7. Not only does Delaunay have a cubic running time,
but it also seems to exhibit a quite large constant: it grows much faster than the
other algorithms.

In the lower part of Fig. 8, we see the same x-domain, but with a much
smaller y-domain. Here, we observe that Trapezoid and Makestep both have a
quadratic running time; Trapezoid needs about two thirds of the time required
by Makestep. Finally, the linear-time behavior of Lee-Preparata can clearly be
discerned.

Additionally, we observed that the tests ran approximately 85% slower on the
AMD machines than on the Intel servers. This reflects the difference between the
clock speeds of 2.3 GHz and 2.67 GHz. Since the tests were distributed equally
on the machines, this does not change the overall qualitative results and the
comparison between the algorithms.

6 Conclusion

We have implemented and experimented with three different constant-workspace
algorithms for geodesic shortest paths in simple polygons. Not only did we
observe the cubic worst-case running time of Delaunay, but we also noticed
that the constant factor is rather large. This renders the algorithm virtually use-
less already for polygons with a few hundred vertices, where the shortest path
computation might, in the worst case, take several minutes.

As predicted by the theory, Makestep and Trapezoid exhibit the same asymp-
totic running time and space consumption. Trapezoid has an advantage in the
constant factor of the running time, while Makestep needs only about half as
much memory. Since in both cases the memory requirement is bounded by a
constant, Trapezoid would be our preferred algorithm.

We chose Python for the implementation mostly due to our previous pro-
gramming experience, good debugging facilities, fast prototyping possibilities,
and the availability of numerous libraries. In hindsight, it might have been better
to choose another programming language that allows for more low-level control
of the underlying hardware. Python’s memory profiling and tracking abilities are
limited, so that we cannot easily get a detailed view of the used memory with all
the variables. Furthermore, a more detailed control of the memory management
could be useful for performing more detailed experiments.

Geodesic Shortest Path Algorithms with Constant Workspace 329

A Tables of Experimental Results

Here we list the experimental results shown in Figs. 7 and 8 (Tables 1 and 2).

Table 1. The median and maximum memory usage in bytes for all runs with a specific
number of vertices n.

n Delaunay Lee-Preparata Makestep Trapezoid
median max median max median max median max

10 3048 4976 528 952 2096 2552 2976 5344

20 3864 5512 696 1032 2240 2776 3992 5432

30 4080 5536 808 1360 2344 2840 4208 5704

40 4416 5536 952 1592 2344 2840 4672 5616

60 1184 1872 2384 2840 4784 5808

80 1400 2264 2376 2840 4904 5752

100 1464 2200 2392 2840 4952 5704

125 1792 3216 2384 2840 5040 5720

150 1832 3160 2392 2840 5024 6104

200 2152 3472 2384 2840 5048 6200

250 2264 3880 2392 2840 5144 6240

300 2376 4928 2440 3072 5284 5964

350 2360 4672 2496 3120 5288 6608

400 2880 4672 2512 3120 5328 6284

450 2616 5008 2532 3200 5304 6588

500 3048 5064 2532 3120 5484 6248

550 3552 5736 2540 3120 5480 6476

600 3824 5680 2552 3120 5404 6360

650 3104 5904 2560 3120 5472 6276

700 3496 5568 2568 3120 5528 6352

800 4224 7752 2580 3072 5528 6768

900 4448 7512 2580 3112 5516 6576

1000 4504 7248 2580 3120 5528 6648

1100 4608 7808 2580 3120 5556 6532

1200 4560 7472 2588 3120 5588 6468

1300 5792 10480 2588 3120 5592 6240

1400 5512 9936 2588 3112 5572 6240

1500 6384 10264 2580 3112 5572 6896

2000 6792 10328 2580 3112 5584 6580

2500 6232 9912 2580 3120 5624 6168

3000 7560 24448 2580 3104 5616 6392

330 J. Cleve and W. Mulzer

Table 2. The median and maximum running times in seconds for all runs with a
specific number of vertices n.

n Delaunay Lee-Preparata Makestep Trapezoid

median max median max median max median max

10 0.014019 0.064309 0.000367 0.000910 0.000519 0.004162 0.000820 0.002603

20 0.081347 0.361370 0.000616 0.001613 0.001156 0.011853 0.002010 0.007343

30 0.207516 0.943375 0.000830 0.002879 0.003319 0.026406 0.003655 0.014552

40 0.469530 2.112217 0.001045 0.002166 0.006867 0.033851 0.005716 0.020334

60 0.001399 0.002918 0.013428 0.056691 0.009516 0.030625

80 0.001756 0.003444 0.024055 0.100309 0.016658 0.061326

100 0.002056 0.004030 0.033428 0.150279 0.022560 0.068170

125 0.002501 0.005372 0.046976 0.217762 0.033954 0.101315

150 0.002888 0.005534 0.061505 0.232505 0.041352 0.133888

200 0.003576 0.007240 0.100989 0.354232 0.064532 0.193956

250 0.004321 0.008537 0.137829 0.458281 0.086141 0.260132

300 0.005073 0.009685 0.173749 0.739960 0.110249 0.407216

350 0.005579 0.010597 0.200256 0.808604 0.128425 0.457386

400 0.006372 0.011761 0.249399 0.887698 0.175070 0.589235

450 0.006710 0.013537 0.282497 1.096251 0.175412 0.587010

500 0.007469 0.015005 0.383682 1.541501 0.256470 0.746144

550 0.008528 0.016190 0.415579 1.666938 0.261306 0.859130

600 0.008899 0.017127 0.486157 1.660158 0.307261 0.969043

650 0.009350 0.018987 0.520370 1.707651 0.320547 0.991330

700 0.010033 0.021339 0.548668 2.018272 0.323926 1.187180

800 0.011583 0.021906 0.729638 2.502922 0.452032 1.526597

900 0.012974 0.029481 0.866354 3.218503 0.536978 1.866497

1000 0.014204 0.029770 1.019635 4.070813 0.623762 1.969603

1100 0.015121 0.032160 1.239577 3.846221 0.717239 2.040144

1200 0.016401 0.035842 1.251472 4.010515 0.733767 2.282640

1300 0.018357 0.039272 1.506918 5.627138 1.001474 3.095028

1400 0.019354 0.043886 1.641150 5.707774 1.026240 3.415236

1500 0.021279 0.043013 1.990088 7.978124 1.261539 3.941024

2000 0.026627 0.054653 2.821684 9.151548 1.731935 4.854338

2500 0.032861 0.070760 3.533656 12.003607 2.187277 6.840824

3000 0.039188 0.081773 5.616593 14.949720 3.159590 9.751315

References

1. Asano, T.: Memory-constrained algorithms for simple polygons. Comput. Geom.
Theory Appl. 46(8), 959–969 (2013)

2. Asano, T., Mulzer, W., Rote, G., Wang, Y.: Constant-work-space algorithms for
geometric problems. J. Comput. Geom. 2(1), 46–68 (2011)

3. Asano, T., Mulzer, W., Wang, Y.: Constant-work-space algorithms for shortest
paths in trees and simple polygons. J. Graph Algorithms Appl. 15(5), 569–586
(2011)

4. Auer, T., Held, M.: Heuristics for the generation of random polygons. In: Proceed-
ings of 8th Canadian Conference on Computational Geometry (CCCG), pp. 38–43
(1996)

Geodesic Shortest Path Algorithms with Constant Workspace 331

5. Baffier, J.F., Diez, Y., Korman, M.: Experimental study of compressed stack algo-
rithms in limited memory environments. In: Proceedings of 17th International Sym-
posium Experimental Algorithms (SEA), pp. 19:1–19:13 (2018)

6. Banyassady, B., Korman, M., Mulzer, W.: Computational geometry column 67.
SIGACT News 49(2), 77–94 (2018)

7. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geom-
etry: Theory and Applications, 3rd edn. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-77974-2

8. Chazelle, B.: Triangulating a simple polygon in linear time. Discret. Comput. Geom.
6, 485–524 (1991)

9. Chew, L.P.: Constrained Delaunay triangulations. Algorithmica 4, 97–108 (1989)
10. Dierker, S., Ehrhardt, M., Ihrig, J., Rohde, M., Thobe, S., Tugan, K.: Abschluss-

bericht zum Softwareprojekt: Zufällige Polygone und kürzeste Wege. Institut für
Informatik, Freie Universität, Berlin (2012). https://github.com/marehr/simple-
polygon-generator

11. Ghosh, S.K.: Visibility Algorithms in the Plane. Cambridge University Press, New
York (2007)

12. Har-Peled, S.: Shortest path in a polygon using sublinear space. J. Comput. Geom.
7(2), 19–45 (2016)

13. Hunter, J.D.: Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9(3), 90–
95 (2007)

14. Lee, D.T., Preparata, F.P.: Euclidean shortest paths in the presence of rectilinear
barriers. Networks 14(3), 393–410 (1984)

15. Python Software Foundation: Python. https://www.python.org/. version 3.5
16. Rufat, D.: Python Triangle (2016). http://dzhelil.info/triangle/. version 20160203
17. Shewchuk, J.R.: Triangle: engineering a 2D quality mesh generator and Delaunay

triangulator. In: Lin, M.C., Manocha, D. (eds.) WACG 1996. LNCS, vol. 1148, pp.
203–222. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0014497

18. Tantau, T.: Logspace optimization problems and their approximability properties.
Theor. Comput. Sci. 41(2), 327–350 (2007)

https://doi.org/10.1007/978-3-540-77974-2
https://doi.org/10.1007/978-3-540-77974-2
https://github.com/marehr/simple-polygon-generator
https://github.com/marehr/simple-polygon-generator
https://www.python.org/
http://dzhelil.info/triangle/
https://doi.org/10.1007/BFb0014497

Searching for Best Karatsuba Recurrences

Çağdaş Çalık1, Morris Dworkin1, Nathan Dykas2, and Rene Peralta1(B)

1 Computer Security Division, NIST, Gaithersburg, USA
{cagdas.calik,dworkin,peralta}@nist.gov

2 Mathematics Department, University of Maryland, College Park, USA
ndykas@math.umd.edu

Abstract. Efficient circuits for multiplication of binary polynomials use
what are known as Karatsuba recurrences. These methods divide the
polynomials of size (i.e. number of terms) k · n into k pieces of size n.
Multiplication is performed by treating the factors as degree-(k−1) poly-
nomials, with multiplication of the pieces of size n done recursively. This
yields recurrences of the form M(kn) ≤ αM(n) + βn + γ, where M(t) is
the number of binary operations necessary and sufficient for multiplying
two binary polynomials with t terms each. Efficiently determining the
smallest achievable values of (in order) α, β, γ is an unsolved problem.
We describe a search method that yields improvements to the best known
Karatsuba recurrences for k = 6, 7 and 8. This yields improvements on
the size of circuits for multiplication of binary polynomials in a range of
practical interest.

1 Introduction

Polynomials over F2 are called binary polynomials. They have a number of appli-
cations, including in cryptography (see [2,5] and the references therein) and in
error correcting codes. Let A,B be binary polynomials. We seek small circuits,
over the basis (∧,⊕, 1) (that is, arithmetic over F2), that compute the polyno-
mial A · B. In addition to size, i.e. number of gates, we also consider the depth
of such circuits, i.e. the length of critical paths.

Notation: We let M(t) denote the number of gates necessary and sufficient to
multiply two binary polynomials of size t.

Suppose the polynomials A,B are of odd degree 2n − 1. Karatsuba’s algo-
rithm [11] splits A,B into polynomials A0, A1 (B0, B1 resp.) of size n. Then it
recursively computes the product C = A ·B as shown in Fig. 1. Careful counting
of operations leads to the 2-way Karatsuba recurrence M(2n) ≤ 3M(n) + 7n − 3
(see [9], equation (4)).

The product C is A0B0 + Xn(A0B1 + A1B0) + X2nA1B1. The constant 3 in
the 2-way Karatsuba recurrence comes from the fact that 3 multiplications are
necessary and sufficient to calculate the three terms A0B0, A0B1 + A1B0, and
A1B1 from A0, A1, B0, B1. The term 7n − 3 counts the number of F2 additions
necessary and sufficient to produce the term W and then combine the terms
U, V,W into the result C (see [9]).

This is a U.S. government work and not under copyright protection
in the United States; foreign copyright protection may apply 2019
I. Kotsireas et al. (Eds.): SEA2 2019, LNCS 11544, pp. 332–342, 2019.
https://doi.org/10.1007/978-3-030-34029-2_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34029-2_22&domain=pdf
https://doi.org/10.1007/978-3-030-34029-2_22

Searching for Best Karatsuba Recurrences 333

A = (a0 + a1X + · · · an−1X
n−1) + Xn · (an + an+1X + · · · a2n−1X

n−1)

A = A0 + XnA1

B = (b0 + b1X + · · · bn−1X
n−1) + Xn · (bn + bn+1X + · · · b2n−1X

n−1)

B = B0 + XnB1

U ← A0 · B0

V ← A1 · B1

W ← (A0 + A1) · (B0 + B1) + U + V

C ← U + XnW + X2nV.

Fig. 1. Karatsuba’s algorithm

The generalized Karatsuba method takes two polynomials with kn terms,
splits each into k pieces A0, . . . , Ak−1, B0, . . . , Bk−1, computes the polynomials

Cm =
∑

m=i+j

AiBj

and finally combines the Ci’s by summing the overlapping terms.
Karatsuba recurrences have been studied for some time. The paper [12] gives

recurrences for the cases n = 5, 6, and 7. These recurrences have been improved
over the years. The state of the art is [9].

The work [9] provides a unifying description of the generalized Karatsuba
method, allowing for a systematic search for such recurrences. The steps in the
search are outlined in Fig. 2. Steps 1 and 4 involve solving computationally hard
problems. We rely on experimental methods to gain reasonable assurance that
we have found the best Karatsuba recurrences in the defined search space.

1. find sets of bilinear forms of minimum size α from which the target Ci’s
can be computed via additions only.

2. as per [9], each set of bilinear forms determines three matrices T, R, E
over F2.

3. the matrices T, R, E define linear maps LT , LR, LE .
4. let the number of additions necessary for each of the maps be μT , μR, μE ,

respectively.
5. then the maps yield the recurrence

M(kn) ≤ αM(n) + βn + γ

with β = 2μT + μE and γ = μR − μE .
6. pick the best recurrence.

Fig. 2. Methodology

334 Ç. Çalık et al.

2 Finding Minimum-Size Spanning Bilinear Forms

In this section we describe the method for computing (or finding upper bounds
on) the constant α in the Karatsuba recurrence.

2.1 Description of the Problem

Consider the two n-term (degree n − 1) binary polynomials

f(x) =
n−1∑

i=0

aix
i, g(x) =

n−1∑

i=0

bix
i ∈ F2[x]

with (2n − 1)-term product

h(x) := (fg)(x) =
2n−2∑

k=0

ckxk =
2n−2∑

k=0

∑

i+j=k

aibjx
k

We wish to describe the target coefficients ck =
∑

i+j=k aibj as linear combina-
tions of bilinear forms of the form

(∑

i∈S

ai

)(∑

i∈S′
bi

)
, S, S′ ⊆ [n − 1] = {0, 1, . . . , n − 1}

Each such bilinear form represents one field multiplication, and the smallest
number required to express the target coefficients equals the multiplicative com-
plexity of the polynomial multiplication.

Finding these sets of bilinear forms involves searching a space that is doubly
exponential in n. Because of this, we will mostly restrict our attention to the
symmetric bilinear forms, those for which S = S′. Two justifications for this
simplification are that heuristically they stand a good chance of efficiently gen-
erating the target coefficients, which are themselves symmetric, and also that in
practice all known cases admit an optimal solution consisting solely of symmetric
bilinear forms. However it should be noted that there do exist optimal solutions
containing non-symmetric bilinear forms.

2.2 Method for Finding Spanning Sets of Bilinear Forms

Barbulescu et al. [1] published a method for finding minimum-size sets of bilinear
forms that span a target set. Their method, which substantially reduces the
search space, is described below in the context of Karatsuba recurrences.

The first step is to guess the size of the smallest set of symmetric bilinear
forms that spans the target polynomials. Call this guess θ. If θ is too low, then no
solution will be found. For the cases of 6, 7, 8-terms θ is 17, 22, 26, respectively.

We now assume that the target polynomials are contained in a space spanned
by θ of the (2n − 1)2 symmetric bilinear vectors. Checking all spanning sets of
size θ is of complexity Ω

(
(2n−1)2

θ

)
, and even if we restrict attention to symmetric

Searching for Best Karatsuba Recurrences 335

bilinear forms as explained above, this is of complexity Ω
(
(2n−1)

θ

)
, which is still

prohibitively large, even for n = 7, θ = 22 (for n = 6, θ = 17, this is about 250

and thus close to the limit of what we can compute in practice).
The Barbulescu et al. method is as follows: Let B be the collection of (2n −1)

symmetric bilinear products and T the collection of 2n − 1 target vectors. For a
subset S ⊂ B of size θ − (2n − 1), let G = T ∪ S be a generating set of vectors
of size θ and let C be the candidate subspace generated by G.

We compute the intersection B ∩ C by applying the rank test to all B in B:

B ∈ C ⇐⇒ θ = rank(C) = rank(〈C, B〉)

which can be computed efficiently via Gaussian elimination.
Now let C′ := 〈B ∩C〉 be the subspace spanned by the intersection. In order

to determine T ∩C′, the collection of target vectors in C′, we again apply a rank
test to all T in T :

T ∈ C′ ⇐⇒ rank(C′) = rank(〈C′, T 〉)

If all the target vectors are spanned, i.e. if T ′ = T , then each set of θ independent
vectors in B ∩ C is a solution.

We iterate through the different choices of S until a solution is found. This
reduces the complexity to O

(
2n

(
(2n−1)

θ−(2n−1)

))
, which in the cases of n = 6, 7, 8

transforms the problem from computationally infeasible to feasible. For details,
see [1].

This method generates a potentially large number of solutions with the tar-
get multiplicative complexity. Each such solution allows one to produce an arith-
metic circuit that computes the product of two n-term polynomials. [9] Describes
a way to translate this arithmetic circuit into three F2-matrices T,R,E, the
top,main, and extended matrices. The additive complexities μT , μR, μE , respec-
tively, of these matrices determine the parameters α, β, γ of a recursion (see
Fig. 2). In the next section we describe our methods for bounding these additive
complexities.

3 Finding Small Circuits for the Linear Maps Determined
by each Bilinear Form

The problem is NP-hard and MAX-SNP hard [4], implying limits to its approx-
imability. In practice, it is not currently possible to exactly solve this problem
for matrices of the size that arise in this research. SAT-solvers have been used
on small matrices, but at size about 8 × 20 the methods begin to fail (see [10]).
The sizes of the matrices T,R,E in the method of [9] are given in Table 1.

For small-enough matrices (those with dimensions in written in bold) in
Table 1, we used the heuristic of [4] (henceforth the BMP heuristic). For the
larger matrices we used the randomized algorithm of [3]. More specifically, we
used the RAND-GREEDY algorithm with generalized-Paar operation, allowing
less than optimal choices in the greedy step (see [3], Sect. 3.4–3.6).

336 Ç. Çalık et al.

Table 1. Dimensions of linear optimization problems.

n T R E

5 13 × 5 9 × 13 10 × 26

6 17 × 6 11 × 17 12 × 34

7 22 × 7 13 × 22 14 × 44

8 26 × 8 15 × 26 16 × 52

4 Experimental Results

We looked for recurrences for 6, 7, and 8-way Karatsuba. Only symmetric bilin-
ear forms were considered. There exist spanning sets of bases, of optimal size,
that contain one or more non-symmetric bilinear forms. However, it is believed,
but has not been proven, that there always exists an optimal size spanning set
containing only symmetric bilinear forms.

In the following subsections, we give the best T and R matrices found for
n = 6, 7, and 8. In each case, the matrix E is defined as follows: letting Ri be
the ith row of R, the matrix E is

E =

⎛

⎜⎜⎜⎜⎜⎝

R1 0
R2 R1

...
R2k−1 R2k−2

0 R2k−1

⎞

⎟⎟⎟⎟⎟⎠
.

4.1 6-way Split

The search included all symmetric bilinear forms. We searched but did not find
solutions with 16 multiplications. We conjecture that the multiplicative complex-
ity of multiplying two binary polynomials of size 6 is 17. 54 solutions with 17
multiplications were found. This matches results reported in [1]. For the matrices
T and R, the BMP heuristic was used. For the E matrix, RAND-GREEDY was
used. The best recurrence thus obtained was

M(6n) ≤ 17M(n) + 83n − 26.

The best Karatsuba recurrence known before this work was ([9])

M(6n) ≤ 17M(n) + 85n − 29.

Searching for Best Karatsuba Recurrences 337

The matrices are

T6 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 1 0 0 0 0
1 1 0 0 0 0
0 1 1 0 0 0
1 1 1 0 0 0
0 0 0 1 0 0
1 0 1 0 1 0
0 1 1 0 1 0
1 1 0 1 1 0
0 0 0 0 0 1
0 1 1 0 0 1
0 1 0 1 0 1
1 0 1 1 0 1
0 1 0 0 1 1
0 1 1 0 1 1
0 1 0 1 1 1
1 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

R6 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 1 1 0 0 1 1 0 0 1
1 0 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1
0 1 1 1 0 1 1 0 1 1 0 0 1 0 1 1 0
0 1 0 0 0 1 0 0 0 1 1 0 0 1 1 0 0
0 1 0 1 0 0 0 0 0 0 1 1 0 1 0 1 0
0 1 0 0 1 1 1 0 0 1 0 0 1 0 0 1 1
0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

4.2 7-way Split

The search included all symmetric bilinear forms. There are no solutions with 21
multiplications. This leads us to conjecture that the multiplicative complexity
of multiplying two binary polynomials of size 7 is 22. 19550 solutions with 22
multiplications were found, which matches results reported in [1]. For the matrix
T the BMP heuristic was used. For the R and E matrices, the RAND-GREEDY
heuristic was used.

Both the BMP heuristic and the RAND-GREEDY are randomized algo-
rithms. The way to use these algorithms is to run them many times and pick
the best solution found. Since the linear optimization problem is NP-hard, we
expect that at some value of n, we should no longer be confident that we can
find the optimal solution. In practice, we aimed at running the algorithms about
100 thousand times. Since we wouldn’t be able to do this for all 19550 sets of
matrices, we proceeded in two rounds. In the first round, we ran the algorithms
for 1000 times on each set of matrices. The results yielded four sets of matrices
that implied values of the β parameter which were better than the rest. We then
ran the algorithms for 100 thousand times on each of the four sets of matrices
and picked the best.

The best recurrence thus obtained was

M(7n) ≤ 22M(n) + 106n − 31.

The best Karatsuba recurrence known before this work was ([9])

M(7n) ≤ 22M(n) + 107n − 33.

338 Ç. Çalık et al.

The matrices are

T7 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0
0 1 0 0 0 0 0
1 1 0 0 0 0 0
0 0 1 0 0 0 0
1 0 1 0 0 0 0
1 0 1 1 0 0 0
0 1 1 1 0 0 0
0 0 1 0 1 0 0
1 0 1 0 1 0 0
0 0 0 0 0 1 0
0 1 0 0 0 1 0
0 0 0 1 0 1 0
0 1 0 1 0 1 0
0 1 1 0 1 1 0
0 0 0 0 0 0 1
1 0 1 0 0 0 1
1 0 1 0 1 0 1
1 1 0 1 1 0 1
1 1 1 1 1 0 1
0 0 0 0 0 1 1
1 0 1 1 0 1 1
1 1 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

R7 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0
1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 1 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 1 1 0 1 1 0 1 1 1 0 0 0 1 1 0 1
1 0 0 1 0 0 1 0 0 0 0 1 1 0 1 1 0 1 1 0 0 0
1 1 1 0 0 0 0 1 0 0 1 1 1 1 0 1 1 0 0 0 1 1
1 1 0 0 1 0 1 1 0 0 1 0 1 0 0 0 0 1 1 0 0 0
0 1 0 0 1 1 0 0 0 1 1 0 0 0 0 1 0 0 1 0 1 1
0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

4.3 8-way Split

It is known that the multiplicative complexity of 8-term binary polynomials is
at most 26 [8]. We were not able to improve on this, the search for solutions
with multiplicative complexity 25 appears to require either a huge investment
in computation time or an improvement in search methods.

For multiplicative complexity 26, we were not able to search the whole space
of symmetric bilinear forms. We verified that there are no solutions with either
7 or 8 “singleton” bases (i.e. bases of the form aibi), and there are exactly 77
solutions with 6 “singleton” bases. Additionally, we restricted the search space
to sets of bases containing the bilinear forms a1b1 and (a0+a2+a3+a5+a6)(b0+
b2 + b3 + b5 + b6) and three among the following

(a1 + a3 + a4 + a5)(b1 + b3 + b4 + b5)
(a1 + a2 + a3 + a6)(b1 + b2 + b3 + b6)
(a2 + a4 + a5 + a6)(b2 + b4 + b5 + b6)
(a0 + a2 + a3 + a4 + a7)(b0 + b2 + b3 + b4 + b7)
(a0 + a1 + a2 + a5 + a7)(b0 + b1 + b2 + b5 + b7)
(a0 + a1 + a4 + a6 + a7)(b0 + b1 + b4 + b6 + b7)
(a0 + a3 + a5 + a6 + a7)(b0 + b3 + b5 + b6 + b7).

Searching for Best Karatsuba Recurrences 339

Our search yielded 2079 solutions, including 63 of the 77 solutions with 6
singletons. For the matrix T , the BMP heuristic was used. For the R and E
matrices, RAND-GREEDY was used. Among these 2079 solutions, we found
one for which T8 could be computed with 24 gates, R8 with 59 gates and E8

with 99 gates.
The matrices are

T8 =

⎛
⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
1 0 1 0 0 0 0 0
0 1 0 1 1 1 0 0
0 0 0 0 0 0 1 0
0 1 1 1 0 0 1 0
0 0 1 1 1 0 1 0
1 0 1 0 0 1 1 0
1 0 1 1 0 1 1 0
0 1 0 0 1 1 1 0
0 0 1 0 1 1 1 0
0 0 0 0 0 0 0 1
1 0 1 0 0 0 0 1
1 1 1 0 1 0 0 1
1 0 1 1 1 0 0 1
1 1 1 0 0 1 0 1
0 1 1 0 1 1 0 1
1 0 0 1 1 1 0 1
0 0 0 0 0 0 1 1
1 1 0 1 0 0 1 1
1 1 0 0 1 0 1 1
1 1 0 1 1 0 1 1
1 0 1 0 0 1 1 1
1 1 1 1 1 1 1 1

⎞
⎟⎟⎟⎠

R8 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0
1 1 1 0
1 1 0 1 1 0
0 1 0 1 0 1 1 0 0 1 1 0 1 0 1 0 0 0 0 1 0 1 1 1 0 1
0 0 1 1 0 0 0 1 1 1 0 0 1 0 1 1 0 1 1 0 1 1 1 1 0 0
0 0 0 0 1 1 0 0 1 1 0 1 1 1 1 0 1 1 0 0 1 0 0 0 0 1
0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 1 0 1 0 1 1 0 1 0 1 1
1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 1 1 0 1 1
1 1 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1
1 1 0 1 1 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 1
0 1 0 1 0 0 1 1 1 1 1 0 1 0 1 1 1 0 0 1 0 0 0 1 1 0
0 0 1 1 0 0 0 0 0 1 0 1 0 0 1 1 1 1 1 1 1 0 1 1 0 1
0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

This yields the recurrence

M(8n) ≤ 26M(n) + 147n − 40.

The new recurrence for 8-way Karatsuba may be of practical interest. The
smallest known Karatsuba-based circuit for multiplying two polynomials of size
96 has 7110 gates [9]. Using the new recurrence, along with M(12) ≤ 207, yields

M(96) = M(8 · 12) ≤ 26 · 207 + 147 · 12 − 40 = 7106.

340 Ç. Çalık et al.

Table 2. New circuit sizes and depths for n = 28 to 99. Values of n for which we
obtained and improvement in size are in bold.

n Size in [9] New size Depth [9] New depth n Size in [9] New size Depth in [9] New depth

28 944 943 14 15 64 3673 3673 13 13

29 1009 1009 13 13 65 3920 3920 15 15

30 1038 1038 13 13 66 4041 4041 15 15

31 1113 1113 12 12 67 4152 4152 14 14

32 1156 1156 11 11 68 4220 4220 14 14

33 1271 1271 12 12 69 4353 4353 14 14

34 1333 1333 12 12 70 4417 4417 14 14

35 1392 1392 11 11 71 4478 4456 25 20

36 1428 1428 11 11 72 4510 4489 25 20

37 1552 1552 15 15 73 4782 4782 18 18

38 1604 1604 14 14 74 4815 4815 18 18

39 1669 1669 14 14 75 4847 4847 18 18

40 1703 1703 14 14 76 5075 5075 17 17

41 1806 1806 16 17 77 5198 5198 16 16

42 1862 1859 16 17 78 5255 5255 16 16

43 1982 1982 15 16 79 5329 5329 16 16

44 2036 2036 12 12 80 5366 5366 16 16

45 2105 2105 14 14 81 5593 5593 19 20

46 2179 2179 14 14 82 5702 5697 19 19

47 2228 2228 13 13 83 5769 5760 18 19

48 2259 2259 13 13 84 5804 5795 18 19

49 2436 2436 14 14 85 6118 6115 18 19

50 2523 2523 17 17 86 6224 6221 19 20

51 2663 2663 14 14 87 6344 6344 18 19

52 2725 2725 13 13 88 6413 6413 15 15

53 2841 2825 24 19 89 6516 6488 28 23

54 2878 2863 24 19 90 6550 6523 28 23

55 2987 2984 17 18 91 6776 6776 17 17

56 3022 3017 17 18 92 6842 6842 16 16

57 3145 3145 15 15 93 6929 6929 18 19

58 3212 3211 17 18 94 7010 7010 16 16

59 3273 3273 15 15 95 7073 7071 15 25

60 3306 3306 15 15 96 7110 7106 16 25

61 3472 3472 15 15 97 7465 7465 17 17

62 3553 3553 15 15 98 7636 7636 20 20

63 3626 3626 14 14 99 7801 7801 19 19

Searching for Best Karatsuba Recurrences 341

5 Implications for the Circuit Complexity of Binary
Polynomial Multiplication

This work yielded three new Karatsuba recurrences:

M(6n) ≤ 17M(n) + 83n − 26
M(7n) ≤ 22M(n) + 106n − 31
M(8n) ≤ 26M(n) + 147n − 40.

As per [9], the circuits for these recurrences can be leveraged into circuits
for multiplication of binary polynomials of various sizes. Doing this, we found
that the new recurrences improve known results for Karatsuba multiplication
starting at size 28. The circuits were generated automatically from the circuits
for each set of matrices for n = 2, . . . , 8 (the cases n = 6, 7, 8 are reported in
this work). We generated the circuits up to n = 100. The circuits were verified
by generating and validating the algebraic normal form of each output. Table 2
compares the new circuit sizes and depths to the state of the art as reported in
[9]. The table starts at the first size in which the new recurrences yield a smaller
number of gates. The circuits have not been optimized for depth. The circuits
will be posted at cs-www.cs.yale.edu/homes/peralta/CircuitStuff/CMT.html.

A different approach to gate-efficient circuits for binary polynomial multipli-
cation is to use interpolation methods. These methods can yield smaller circuits
than Karatsuba multiplication at the cost of higher depth (see, for example,
[6,7]). An interesting open question is to characterize the depth/size tradeoff
of Karatsuba versus interpolation methods for polynomials of sizes of practi-
cal interest. In elliptic curve cryptography, multiplication of binary polynomials
with thousands of bits is used.

References

1. Barbulescu, R., Detrey, J., Estibals, N., Zimmermann, P.: Finding optimal formulae
for bilinear maps. In: Özbudak, F., Rodŕıguez-Henŕıquez, F. (eds.) WAIFI 2012.
LNCS, vol. 7369, pp. 168–186. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-31662-3 12

2. Bernstein, D.J.: Batch binary Edwards. In: Halevi, S. (ed.) CRYPTO 2009. LNCS,
vol. 5677, pp. 317–336. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-03356-8 19

3. Boyar, J., Find, M.G., Peralta, R.: Small low-depth circuits for cryptographic appli-
cations. Crypt. Commun. 11(1), 109–127 (2018). https://doi.org/10.1007/s12095-
018-0296-3

4. Boyar, J., Matthews, P., Peralta, R.: Logic minimization techniques with applica-
tions to cryptology. J. Cryptol. 26(2), 280–312 (2013)

5. Brent, R.P., Gaudry, P., Thomé, E., Zimmermann, P.: Faster multiplication in
GF(2)[x]. In: van der Poorten, A.J., Stein, A. (eds.) ANTS 2008. LNCS, vol.
5011, pp. 153–166. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-79456-1 10

http://cs-www.cs.yale.edu/homes/peralta/CircuitStuff/CMT.html
https://doi.org/10.1007/978-3-642-31662-3_12
https://doi.org/10.1007/978-3-642-31662-3_12
https://doi.org/10.1007/978-3-642-03356-8_19
https://doi.org/10.1007/978-3-642-03356-8_19
https://doi.org/10.1007/s12095-018-0296-3
https://doi.org/10.1007/s12095-018-0296-3
https://doi.org/10.1007/978-3-540-79456-1_10
https://doi.org/10.1007/978-3-540-79456-1_10

342 Ç. Çalık et al.

6. Cenk, M., Hasan, M.A.: Some new results on binary polynomial multiplication. J.
Cryptogr. Eng. 5, 289–303 (2015)

7. De Piccoli, A., Visconti, A., Rizzo, O.G.: Polynomial multiplication over binary
finite fields: new upper bounds. J. Cryptogr. Eng. 1–14, April 2019. https://doi.
org/10.1007/s13389-019-00210-w

8. Fan, H., Hasan, M.A.: Comments on five, six, and seven-term Karatsuba-like for-
mulae. IEEE Trans. Comput. 56(5), 716–717 (2007)

9. Find, M.G., Peralta, R.: Better circuits for binary polynomial multiplication. IEEE
Trans. Comput. 68(4), 624–630 (2018). https://doi.org/10.1109/TC.2018.2874662

10. Fuhs, C., Schneider-Kamp, P.: Optimizing the AES S-box using SAT. In: Pro-
ceedings International Workshop on Implementation of Logics (IWIL), pp. 64–70
(2010)

11. Karatsuba, A.A., Ofman, Y.: Multiplication of multidigit numbers on automata.
Sov. Phys. Doklady 7, 595–596 (1963)

12. Montgomery, P.L.: Five, six, and seven-term Karatsuba-like formulae. IEEE
Trans. Comput. 54(3), 362–369 (2005). https://doi.org/10.1109/TC.2005.49.
http://doi.ieeecomputersociety.org/10.1109/TC.2005.49

https://doi.org/10.1007/s13389-019-00210-w
https://doi.org/10.1007/s13389-019-00210-w
https://doi.org/10.1109/TC.2018.2874662
https://doi.org/10.1109/TC.2005.49
http://doi.ieeecomputersociety.org/10.1109/TC.2005.49

Minimum and Maximum Category
Constraints in the Orienteering Problem

with Time Windows

Konstantinos Ameranis1, Nikolaos Vathis2(B), and Dimitris Fotakis2

1 Boston University, Boston, MA 02215, USA
ameranis@bu.edu

2 National Technical University of Athens,
9 Iroon Polytechniou Street, 15780 Zografou, Greece
nvathis@softlab.ntua.gr, fotakis@cs.ntua.gr

Abstract. We introduce a new variation of the Orienteering Problem
(OP), the Minimum-Maximum Category Constraints Orienteering Prob-
lem with Time Windows. In the Orienteering Problem we seek to deter-
mine a path from node S to node T in a weighted graph where each node
has a score. The total weight of the path must not exceed a predetermined
budget and the goal is to maximize the total score. In this variation, each
Activity is associated with a category and the final solution is required
to contain at least a minimum and at most a maximum of specific cate-
gories. This variation better captures the problem of tourists visiting cities.
For example, the tourists can decide to visit exactly one restaurant at a
specific time window and at least one park. We present a Replace Local
Search and an Iterated Local Search which utilizes Stochastic Gradient
Descent to identify the tightness of the constraints. We perform exhaustive
experimental evaluation of our results against state of the art implementa-
tions for the unconstrained problem and examine how it performs against
increasingly more restricting settings.

Keywords: Orienteering · Local Search · Integer Programming ·
Heuristics · Category constraints

1 Introduction

When a tourist visits a city they want to get the most out of their time there.
There is a plethora of places they can visit in various corners of the city. Defining
the characteristics of a good itinerary is very hard, since there are various ideas
of what the perfect solution is, that are difficult to formulate. For example, a
tourist would expect to definitely visit iconic landmarks, to not visit mutually
exclusive places such as multiple restaurants in the span of a small timeframe,
and to not follow an itinerary that is saturated with similar POIs.

Our approach on honoring the aforementioned characteristics is to introduce
a new kind of constraints, namely minimum and maximum category constraints.
c© Springer Nature Switzerland AG 2019
I. Kotsireas et al. (Eds.): SEA2 2019, LNCS 11544, pp. 343–358, 2019.
https://doi.org/10.1007/978-3-030-34029-2_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34029-2_23&domain=pdf
https://doi.org/10.1007/978-3-030-34029-2_23

344 K. Ameranis et al.

Using these constraints, compulsory nodes can be assigned to a category by
themselves and request one node of that category. Nodes that are complimentary
infeasible can be assigned in the same category whose maximum is set to one.
We can also express composite constraints such as “visit at least two museums
but no more than four, while visiting at least one park”.

Almost all forms of the Orienteering Problem can be formulated as Short-
est Path Problems [20]. To solve the Minimum-Maximum Category Constraints
Orienteering Problem Team we propose two algorithms. The first is based on the
approach described in [40], while the second is a local search approach focused
on replacing POIs. We explore how to evaluate the tightness of these constraints
while solving the problem instance and compare our results to the LP which acts
as an upper limit and can be computed efficiently and note of how adding more
constraints affects the results of our algorithm.

Our contributions include:

– We formulate an extension of the Orientation Problem
– Provide an IP formulation
– Propose two algorithms
– Compare with exact solutions in cases they could be found
– Compare our algorithms with the algorithm proposed in [40]
– Evaluate our approaches on increasingly more constrained settings

As it is widely known, IP is in the general case NP-hard and as a result any
IP program attempting to solve an unconstrained might in the worst case take
exponential time to the size of the input. Attempting to solve our instances in
Sect. 4.4 using CPLEX requires too much time, otherwise the produced solution’s
score is only a fraction of what our algorithms compute.

On the other hand, our algorithms provide comparable results to previous
works for unconstrained instances, while our two approaches provide high quality
solutions for a wide spectrum of tightness of the category constraints.

2 Previous Work

The Orienteering Problem (OP) was first described in [17], but the term OP
was first introduced in [39]. Subsequently [18] proved that the OP is NP-hard.
OP has stemmed from the TSP and many papers have referred to it as the
constrained TSP [15,22,38]. Since then a multitude of variations have appeared
changing either the nature of the underlying graph, the constraints imposed on
the solution, or the objective function.

In the OP we must determine a path from node S to node T on a weighted
graph whose total weight does not exceed a certain budget and maximizes the
score collected from the participating nodes. Variations which alter the graph
include making either the node availability (OP with Time Windows) or the
edge weights temporal (Time Dependent OP), making the score associated with
a node stochastic (OP with Stochastic Profits) or the time needed to travel
between nodes and/or to visit them (OP with Stochastic Travel and Service
Times), or associating the score with edges instead of nodes (Arc OP). Variations

Min-Max Category Constraints in the OPTW 345

on the constraints of the problem include having compulsory nodes, dropping by
specific kinds of establishments (ATM, gas station, super market), limiting the
amount of nodes belonging to certain categories and having multiple constraints
such as money in addition to time. When the objective function is not linear
we refer to that problem as the Generalized OP. Obviously some variations are
orthogonal and therefore can be combined, such as the TDTOPTW.

For each one of these problems numerous exact, approximation and heuris-
tic solutions have been proposed. While before the 2000s most proposed algo-
rithms were exact and any heuristic algorithms were hand rolled, after the eve of
the new millennium there are multiple papers implementing well known meta-
heuristics to various formats of the OP. The exact solutions include Branch and
Bound [22,31], Branch and Cut [8,11,13,15], Branch and Price [4] and Cutting
Plane [23] algorithms. Early heuristic approaches include Center of Gravity [18],
the Four-phase heuristic [32] and the Five-step heuristic [6,7]. Newer attempts
in heuristics include Tabu Search [2,16], several variants of Variable Neighbor-
hood Search [2,24,41], a technique to which researches return to through the
years and use to solve almost all variants of the OP. Among other metaheuris-
tics used are Ant Colony Optimization [14,21], Iterated Local Search [19,40],
Greedy Randomized Adaptive Search Procedure, also known as GRASP [5,28],
Particle Swarm Optimization, also known as PSO [9,10,30,34,35], Simulated
Annealing [42] and Genetic Algorithms [12].

Although there are multiple attempts at solving the problem for various
maximum constraints [3,36,37], little to no research has been done for minimum
category constraints. This paper aims to provide a first peek into this problem
as it can be a useful tool while describing real life problems and applications,
such as the Tourist Trip Design Problem (TTDP).

3 Problem Formalization

While most papers use the term POI (Point of Interest) for the nodes of the
graph, we felt that this term does not fully capture their temporal nature in
the case of OPTW. Therefore we will henceforth use the term Activity. In a
single location we can have several concurrent Activities (e.g cinema) or different
Activities in non overlapping Time Windows.

Let there be a set of N Activities, each associated with a profit pi , a visiting
time vi and opening and closing times oi , ci Let there also be sets Kc such that
|⋃c Kc| = N and c1 �= c2 ⇔ Kc1 ∩ Kc2 = ∅. Furthermore there is a traveling
time tij between every pair of Activities i, j which respects the triangle inequality.
Finally, let there be a starting location s, a finishing location f , a time budget
Tmax , and minimum and maximum category constraints mc, Mc. We need to
determine a path from s to f which maximizes the total profit, while the total
time needed for travelling between and visiting the participating Activities does
not exceed Tmax . Additionally the participating Activities from each set Kc

must be between mc and Mc (inclusive).
Here we present the Integer Programming formulation of the problem. Let

xij = 1 when a visit to Activity i is followed by a visit to Activity j. Let bi be

346 K. Ameranis et al.

the time that the visit to Activity i begins. In that case, the problem can be
written down thus:

max
N−1∑

i=1

N∑

j=2

pixij (1)

∑

j �=s

xsj =
∑

i�=f

xif = 1 (2)

N∑

i=1

xik =
N∑

j=1

xkj ≤ 1 ∀k �= s, f (3)

bi − bj + xij(Tmax + vi + tij) ≤ Tmax ∀i, j (4)

oi ≤ bi ≤ ci ∀i (5)

mc ≤
∑

i∈KC

∑

j �=i

xij ≤ Mc (6)

bs = 0 (7)

bf ≤ Tmax (8)

xij ∈ {0, 1} (9)

Equation 1 is the objective function, constraints 2 forces the route to start
from s and finish at f , constraints 3 mean that each Activity will be visited at
most once and if there is an incoming edge, there will also be an outgoing one.
Constraints 4 make sure that the starting times will be correct and also serve as
the Miller-Tucket-Zemlin (MTZ) subtour elimination constraints together with 7
and 8. Constraints 5 make sure that the Time Windows are respected. Con-
straints 6 express the minimum and maximum category constraints.

From the formulation it can be deduced that this is a shortest path problem
seeking to move from s to f while optimizing the score collected along the path
with the additional category constraints.

4 Algorithmic Approaches

4.1 Iterated Local Search

The Iterated Local Search [26] algorithm, as implemented by [40], is a rather
simplistic variation of the Local Search metaheuristic. It repeatedly alternates
between two phases. In the first phase the algorithm greedily selects one Activity
at a time to be inserted in the current solution until it reaches a local optimum.
For each Activity it determines the position that will take the least amount of
additional time to visit, while respecting time constraints. After determining
this quantity (shift) for all Activities it evaluates a metric similar to that of
the continuous knapsack, Profit2

shift and selects the best one. Equation 10 shows
how to calculate shift when inserting Activity 3 between Activities 1 and 2.

Min-Max Category Constraints in the OPTW 347

Because of time windows inserting a new Activity might present no problem for
the immediate next, but make an Activity unfeasible later in the path. Naively
the algorithm could check every time until the end of the path that no such
violations exist, but in an effort to optimize the authors introduce maxshift
which describes how much later an Activity can start without violating the
starting time of any of the Activities in the current solution. As a result after
every insertion a pass forward from the inserted Activity to update starting
times and maxshift and a pass backward to update maxshift is required.

shift312 = t13 + max(o3 − b1 − t13, 0) + v3 + t32 − t12 (10)

In the second phase, it deletes a contiguous sequence of Activities, chosen in
a deterministic pseudorandom manner preparing for the next iteration. Through
the alternation between these two phases the algorithm escapes local minima,
while producing high quality solutions.

After 150 iterations of not improving the best solution found the algorithm
terminates. The ILS heuristic offers characteristics that align with our approach.
By focusing on repeated exploitation, it rapidly converges to good solutions.
These solutions have proven in practice to be near-optimal for well-known bench-
marks. With this in mind, we chose the ILS heuristic as a basis for our SLILS
heuristic, as well as a building block in our Replace LS heuristic.

4.2 Supervised Learning Iterated Local Search

One characteristic of the MMCOP is that the difficulty of finding a feasible
solution is dependent on the input, in a non obvious way. Depending on factors
such as supply, demand, visiting time of individual Activities and existence of an
Activity in the optimal solution, an instance of the MMCOP might be solvable as
easily as the unconstrained OP instance, or it might be a very difficult problem.
In fact, satisfiability of category constraints is NP-Hard in itself, as it is easy
to craft an instance that reduces to Hamiltonian cycle: Just assign the same
category to each activity and request a minimum constraint for that category
equal to the number of Activities.

If the optimal solution satisfies the category constraints, we don’t need to do
anything more than solving the unconstrained OP instance. However, for difficult
settings, we could perform a reweighting of the graph. The algorithm needs to
include more points of the desired categories until the minimum constraints
are covered. Therefore, all points of those categories need to have their ratios
increased. This can be achieved by adding a multiplicative term to the ratio
function when demand for this category is not satisfied.

WRatio = Ratio × (1 + wcat) × demandcat
supplycat

demandcat is how many more POIs of this category our solution would require
to be feasible. supplycat is how many candidates of this category we could pos-
sibly admit.

348 K. Ameranis et al.

If an oracle could answer what this optimal w was, we could run the original
ILS and it would provide us with multiple valid solutions to choose the best from.
Our goal is to find this optimal w. To arrive to this reweighting we use Stochastic
Gradient Descent (SGD). Starting from some w, we create a solution and alter
the weights depending on how close we are to cover demands for each category.
If we are far, we need to increase the corresponding wcat. If the demands were
met, then we can lower the value.

Since WRatio is the same as Ratio when demand (for the current solution)
is zero, in tightly constrained settings the category weights will only increase.
To avoid this count-to-infinity type scenario we introduced regularization. The
update rule is shown in Eq. 11.

w
(i+1)
cat = w

(i)
cat + (demand

(i)
cat − λw

(i)
cat) × step (11)

step is following an exponentially decreasing schedule to ensure convergence.
λ, the regularization factor, is set to 0.10 in our experiments and yields superior
results to the non-regularized variant when there are not too many constraints.

4.3 Replace-Based Local Search

One big shortcoming of SLILS is that it tries to find optimal and feasible solutions
at the same time. As it blindly focuses on the best possible feasible solution, it
might fail to find any feasible solution if constraints are really tight.

The second heuristic we employed to solve MMCOP is another algorithm
based on local search, albeit one that works quite differently. Instead of trying to
find solutions of maximal length, it tries to find solutions of all possible lengths.
Thus, Replace-based Local Search (Replace LS for short) is able to find feasible
solutions for very hard settings, since it first tries to find easy ways to satisfy
the constraints. The downside is of course the running time and solution quality
for less constrained settings.

Replace LS works in three phases. For each solution length N, it first gener-
ates an initial solution of length N in a controlled random fashion that is feasible
regarding the time constraints, but not necessarily regarding the category con-
straints. Then, it alternates between satisfying the constraints and maximizing
the profit.

In more detail, initially the goal is to generate any solution, irregardless of the
total profit. In order to generate a solution that satisfies the time constraints,
we try to generate the solution with the least duration. This is achieved by
repeatedly inserting Activities that have the least impact on the duration of the
solution.

Then, we set a target dist(Solution, Constraints) equal to N. Every time
dist(Solution, Constraints) is above the target distance, the algorithm will
replace one Activity with the first Activity that reduces the distance. On the
contrary, if dist(Solution, Constraints) is below the target distance, the
algorithm will replace one Activity with the first Activity that increases the
total profit, while still respecting the category constraints.

Min-Max Category Constraints in the OPTW 349

function Replace LS

while failure count < max failures do
solution length ← solution length + 1
for some iterations do

generate an initial solution
shuffle candidates
calculate distance from feasible solution
set target distance to an initial value
while target distance > 0 do

Replace Step

decrease target distance
end while
if solution is feasible then

keep solution if improves best solution
else

increase failure count
end if

end for
end while

end function

function Replace Step

for max replaces do
Delete Step

try Insert Step

if unable to insert then
reinsert deleted element

end if
end for

end function

function Delete Step

delete i-th candidate
i ← (i + 1) mod solution length

end function

function Insert Step(i, j)
for all candidates k after i do

for all positions p after j do
if replace(k, i) has better profit and dist ≤ target then

insert candidate
end if

end for
end for

end function

350 K. Ameranis et al.

4.4 IP Solutions

Before proposing any heuristics to solve the new problem we decided to try an
exact algorithm. Even a slow exact solution will allow us to have a benchmark
to compare any following algorithms. The problem was formulated using the
python CPLEX API. Each problem ran for up to 30 min before reporting the
best found integer solution.

Fig. 1. Comparison of IP, SLILS, RLS and LP solutions

Since the problem is NP-hard (as a generalization of the orienteering prob-
lem) a polynomial time solution is beyond our grasp, but the LP solution provides
an upper bound to the IP and can be found in polynomial time. Unfortunately,
the results were disappointing with very high LP values (5 times larger than
known results) and low values for the IP (comparable in small topologies and
many times smaller in large topologies).

In 5 instances, the solver was able to find the optimum integer solution which
was very close or equal to the SLILS solution, validating that our algorithm while

Min-Max Category Constraints in the OPTW 351

not always optimum, is very close to that. Additionally, in the 8 cases where the
IP algorithm found better results than SLILS, our algorithm ran for one sixth
of a second, which compared to half an hour is 10.000 times faster. If we take
into consideration that CPLEX was running on 16 cores versus the single core
that SLILS used we can clearly see that without further optimizations, using an
IP solver is not going to deliver a valuable, scalable solution.

Even letting CPLEX cheat and look into the solutions found by our algo-
rithms or letting the solver toil for 12 h did not improve the quality of the solu-
tions for some of the large topologies. In Fig. 1 the results can be seen graphically.

5 Experimental Results

5.1 Datasets

The datasets used in this paper are augmented versions of those in [40]; the
Solomon, as well as the Cordeau, Gendrau and Laporte datasets, shown in
Table 1. To the best of our knowledge there are no datasets with categories
and therefore we had to create our own by augmenting each topology with a
randomly chosen category according to the probabilities in Table 2. We chose to
assign categories randomly in order not to insert bias in the best solution.

These datasets have been used in a plethora of related papers enabling us
to establish a baseline for our algorithm and quantify our algorithms’ perfor-
mance in the unconstrained setting. Various papers have used different datasets,
depending on the problem variation each paper was studying and data avail-
ability. A partial list of problems and datasets can be found following the link
on [1].

Table 1. Summary of OPTW datasets

Name Instance sets Number of nodes Reference

Solomon c100, r100, rc100 100 [33]

Cordeau pr01–pr10 48–288

Solomon c200, r200, rc200 100 [29]

Cordeau pr11–pr20 48–288

Table 2. Probability of category for each node

Category 1 2 3 4 5 6

Probability 30% 20% 20% 10% 10% 10%

352 K. Ameranis et al.

Table 3. Aggregate results of the unconstrained setting for Solomon and Cordeau,
Gendrau, and Laporte’s test problems. Columns 1–3 show in how many instances
SLILS performed worse, the same or better. Columns 4–6 show the average percentage
gap. The formula is 100(scoreILS − scoreSLILS)/scoreILS . A negative percentage gap
means that SLILS out performs ILS, zero means equality and a positive percentage
means ILS outperforms our algorithm.

Dataset Worse Same Better Max (%) Min (%) Average (%)

RighiniTOPTW2 12 7 10 7.07 −8.24 0.30

RighiniTOPTW3 9 0 1 8.36 −0.89 2.56

MontemanniTOPTW1 18 2 7 6.66 −2.38 1.62

MontemanniTOPTW2 6 1 3 7.62 −3.73 1.09

General 45 10 21 8.36 −8.24 1.17

Table 4. Aggregate results of the unconstrained setting for Solomon and Cordeau,
Gendrau, and Laporte’s test problems. Columns 1–3 show in how many instances RLS
performed worse, the same or better. Columns 4–6 show the average percentage gap.
The formula is 100(scoreILS − scoreRLS)/scoreILS . A negative percentage gap means
that RLS out performs ILS, zero means equality and a positive percentage means ILS
outperforms our algorithm.

Dataset Worse Same Better Max (%) Min (%) Average (%)

RighiniTOPTW2 29 0 0 21.46 1.75 10.11

RighiniTOPTW3 10 0 0 18.00 6.12 10.66

MontemanniTOPTW1 27 0 0 12.50 0.88 5.57

MontemanniTOPTW2 10 0 0 17.64 2.90 9.22

General 76 0 0 21.46 0.88 8.46

5.2 Unconstrained Setting

The results of our algorithms in the unconstrained settings is listed in Tables 3
and 4. The results are aggregated over all topologies. Our algorithms contain
randomness, therefore we are citing the rounded average profit of 100 runs which
we believe is the fairest way to perform comparisons. SLILS is performing on par
with ILS (as expected since it is a modified version) while RLS is behaving poorly
in the unconstrained setting but makes up for it in very constrained settings.

In two out of seven topologies SLILS found on average better solutions, in
some cases delivering an 8% increase. In one out of seven, SLILS and ILS came
out tied, indicating that this might be the best feasible solution. Finally, in four
out of seven topologies SLILS performed slightly worse than ILS. Both algo-
rithms have similar execution times, so we decided against comparing execution
times. The main difference of the algorithms is not computationally heavy, so
that is to be expected. Both implementations were written by the authors and
hence are equally optimized.

Min-Max Category Constraints in the OPTW 353

On the other hand, RLS is consistently performing worse in the unconstrained
setting producing results up to 20% worse than already tested algorithms. This
should be attributed to broader exploration, which means that the algorithm
doesn’t fully exploit the already found solutions and does not optimize them in
order to achieve the best possible result. This is expected, as RLS was designed
to perform in more constrained settings, where SLILS fails to find any solution.

As can be seen in Fig. 2 the spread of percentage gaps follows a normal distri-
bution with different mean and standard deviation for each algorithm. Lowering
these two values should be the aim of any algorithm. Having a lower mean gap
from a tested algorithm means that the algorithm is performing better across
all topologies, while a smaller standard deviation implies that there are fewer
special cases where the algorithm is performing suboptimally.

Fig. 2. Spread of percentage gap for SLILS and RLS

5.3 Constrained Setting

Our goal in formulating this problem was to be able to solve constrained topolo-
gies. There have been many papers focusing on constraining some sort of max-
imum. The original OP tries to find a solution with the most profit under the
constraint of time. Other papers such as [36] deal with multiple maximum con-
straints. However little to no research is done on minimum constraints, other
than mandatory visits [25,27] therefore our results focus on exploring those set-
tings.

Our experiments consist of running the algorithms with increasingly higher
number of constraints, for our set of 76 topologies. The executions request a
minimum of 0, 4, 8 and 12 POIs that belong to the first category. We compared
plain ILS, SLILS and RLS. The expectation is that plain ILS will find feasible
solutions in slightly constrained settings by chance, and will fail to find solutions
in more constrained settings.

In almost all cases the profit decreases as the minimums increase. However,
in many cases one of the constrained settings achieves a better result. There
are two reasons for this behavior. First of all, Adding more constraints shrinks
the search space. That allows for a more effective exploration, finding better

354 K. Ameranis et al.

solutions more consistently. Secondly, our algorithms are greedy heuristics and
as such any changes may have slight positive or negative effect. In some cases,
the reweighting due to the constraints has a positive effect and the final solution
ends up being slightly better than the one in the unconstrained setting.

Also, in more constrained settings RLS is returning more feasible solutions
and finding solutions in which SLILS is not able to. For 8 minimums RLS is able
to solve 20 more instances than SLILS. For 12 minimums RLS solves 8 more
instances and has better solutions in a further 8. In less constrained settings
SLILS is handily beating RLS in most cases, with a few exceptions. The com-
parison between the two algorithms in the constrained setting can be found in
Fig. 3.

Fig. 3. Comparison of performance of ILS, SLILS and RLS in the constrained setting.
The graph shows for each minimum in how many instances each algorithm produced the
best result. No algorithm produced a solution when RLS failed. When no algorithm
produced a solution (presumably because it does not exist) it is depicted with red.
(Color figure online)

From the practical experimentation we can see that existing algorithms fail
to always find solutions to the problem we proposed and our algorithms produce
high quality solutions adapting themselves to the difficulty of the instance they
are currently solving.

We tested three algorithms. The IP formulation on a consumer solver
(CPLEX) which while it can provide an exact solution, might achieve that in
exponential time, deeming it unfit for wide use. The second algorithm, SLILS,
based on iterated local search is a very fast metaheuristic which achieves com-
petitive results and adjusts on the tightness of the problem instance. Finally,
RLS is more suitable for more constrained instances, as it is more guaranteed
to return a solution. However RLS is more time consuming and performs worse
when the constraints are relatively easy to satisfy and many solutions exist.

Min-Max Category Constraints in the OPTW 355

Using the described algorithms this new formulation of the Orienteering prob-
lem can be efficiently solved in a variety of cases. We hope that this paper is the
start for more research into this field.

6 Conclusion and Future Work

In this paper we have presented a new variation on the Orienteering Problem and
have proposed two algorithms for solving it. This variation is orthogonal to others
and can be easily combined to produce more realistic problem formalizations.
We began trying to solve it with integer programming which provided us with
an upper bound to our solutions. In cases where the solver managed to find an
exact solution it was very close to our own.

Our numeric experiments in the unconstrained setting showed that our app-
roach is comparable with previous results. The experiments on the constrained
setting showed that SLILS is faster and produces better results in the uncon-
strained setting, while RLS solves more easily the more demanding settings, but
lacks the quality of SLILS in the less constrained ones.

There are many avenues to explore in the future. In this work each POI had
only one category, but in reality a POI can fall under many categories. Having
many categories changes substantially the way that this problem is solved. One
question is how the different weights should be combined with these categories.

Another avenue to explore is how randomness should be utilized. The algo-
rithm could start being deterministic to achieve high exploitation and over time
relax to achieve better exploration. The schedule of this relaxation and how it
relates to the size of the search space is another interesting question.

In this paper we have concerned ourselves with cold solving a single instance.
However, solving multiple instances in the same topology could give us new ways
to approach the problem. For instance, instead of using the SGD we could train
a model to provide us with an a priori weight vector to use, taking into account
all the input variables. Furthermore, solving many instances in parallel could
pose its own challenges. Should instances be batched together, or having access
to static information and each one being solved in a different CPU is the most
efficient approach we can achieve?

As Moore’s law has been ticking away for 40 years since the conception of
the Orienteering Problem and as better and better heuristics have been devised
to solve this problem, we have acquired the ability to solve instances for ever
greater topologies. However all modern datasets are still around the hundreds
or at best a few thousand nodes, a far cry from the real life datasets where
there are a hundred POIs even in a small city and multiple thousands in the
big metropolises around the globe. Being able to scale these solutions to the
thousands and millions is crucial for the ability to transform this from a theo-
retical paper to an engineering solution which actually helps people make more
informed decisions.

356 K. Ameranis et al.

References

1. The orienteering problem: Test instances. https://www.mech.kuleuven.be/en/
cib/op

2. Archetti, C., Hertz, A., Speranza, M.G.: Metaheuristics for the team orienteering
problem. J. Heuristics 13(1), 49–76 (2007)

3. Bolzoni, P., Helmer, S.: Hybrid best-first greedy search for orienteering with cat-
egory constraints. In: Gertz, M., et al. (eds.) SSTD 2017. LNCS, vol. 10411, pp.
24–42. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-64367-0 2

4. Boussier, S., Feillet, D., Gendreau, M.: An exact algorithm for team orienteering
problems. 4OR 5(3), 211–230 (2007)

5. Campos, V., Mart́ı, R., Sánchez-Oro, J., Duarte, A.: Grasp with path relinking for
the orienteering problem. J. Oper. Res. Soc. 65(12), 1800–1813 (2014)

6. Chao, I.M., Golden, B.L., Wasil, E.A.: A fast and effective heuristic for the orien-
teering problem. Eur. J. Oper. Res. 88(3), 475–489 (1996)

7. Chao, I.M., Golden, B.L., Wasil, E.A.: The team orienteering problem. Eur. J.
Oper. Res. 88(3), 464–474 (1996)

8. Dang, D.-C., El-Hajj, R., Moukrim, A.: A branch-and-cut algorithm for solving
the team orienteering problem. In: Gomes, C., Sellmann, M. (eds.) CPAIOR 2013.
LNCS, vol. 7874, pp. 332–339. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-38171-3 23

9. Dang, D.-C., Guibadj, R.N., Moukrim, A.: A PSO-based memetic algorithm for
the team orienteering problem. In: Di Chio, C., et al. (eds.) EvoApplications 2011.
LNCS, vol. 6625, pp. 471–480. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-20520-0 48

10. Dang, D.C., Guibadj, R.N., Moukrim, A.: An effective PSO-inspired algorithm for
the team orienteering problem. Eur. J. Oper. Res. 229(2), 332–344 (2013)

11. Feillet, D., Dejax, P., Gendreau, M.: Traveling salesman problems with profits.
Transp. Sci. 39(2), 188–205 (2005)

12. Ferreira, J., Quintas, A., Oliveira, J.A., Pereira, G.A.B., Dias, L.: Solving the
team orienteering problem: developing a solution tool using a genetic algorithm
approach. In: Snášel, V., Krömer, P., Köppen, M., Schaefer, G. (eds.) Soft Com-
puting in Industrial Applications. AISC, vol. 223, pp. 365–375. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-00930-8 32

13. Fischetti, M., Gonzalez, J.J.S., Toth, P.: Solving the orienteering problem through
branch-and-cut. Inf. J. Comput. 10(2), 133–148 (1998)

14. Gambardella, L.M., Montemanni, R., Weyland, D.: An enhanced ant colony sys-
tem for the sequential ordering problem. In: Klatte, D., Lüthi, H.J., Schmedders,
K. (eds.) Operations Research Proceedings 2011. Operations Research Proceed-
ings (GOR (Gesellschaft für Operations Research e.V.)), pp. 355–360. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29210-1 57

15. Gendreau, M., Laporte, G., Semet, F.: A branch-and-cut algorithm for the undi-
rected selective traveling salesman problem. Networks 32(4), 263–273 (1998)

16. Gendreau, M., Laporte, G., Semet, F.: A tabu search heuristic for the undirected
selective travelling salesman problem. Eur. J. Oper. Res. 106(2–3), 539–545 (1998)

17. Golden, B., Levy, L., Dahl, R.: Two generalizations of the traveling salesman prob-
lem. Omega 9(4), 439–441 (1981)

18. Golden, B.L., Levy, L., Vohra, R.: The orienteering problem. Nav. Res. Logist.
34(3), 307–318 (1987)

https://www.mech.kuleuven.be/en/cib/op
https://www.mech.kuleuven.be/en/cib/op
https://doi.org/10.1007/978-3-319-64367-0_2
https://doi.org/10.1007/978-3-642-38171-3_23
https://doi.org/10.1007/978-3-642-38171-3_23
https://doi.org/10.1007/978-3-642-20520-0_48
https://doi.org/10.1007/978-3-642-20520-0_48
https://doi.org/10.1007/978-3-319-00930-8_32
https://doi.org/10.1007/978-3-642-29210-1_57

Min-Max Category Constraints in the OPTW 357

19. Gunawan, A., Lau, H.C., Lu, K.: An iterated local search algorithm for solving
the orienteering problem with time windows. In: Ochoa, G., Chicano, F. (eds.)
EvoCOP 2015. LNCS, vol. 9026, pp. 61–73. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-16468-7 6

20. Irnich, S., Desaulniers, G.: Shortest path problems with resource constraints. In:
Desaulniers, G., Desrosiers, J., Solomon, M.M. (eds.) Column Generation, pp. 33–
65. Springer, Boston (2005). https://doi.org/10.1007/0-387-25486-2 2

21. Ke, L., Archetti, C., Feng, Z.: Ants can solve the team orienteering problem. Com-
put. Ind. Eng. 54(3), 648–665 (2008)

22. Laporte, G., Martello, S.: The selective travelling salesman problem. Discret. Appl.
Math. 26(2–3), 193–207 (1990)

23. Leifer, A.C., Rosenwein, M.B.: Strong linear programming relaxations for the ori-
enteering problem. Eur. J. Oper. Res. 73(3), 517–523 (1994)

24. Liang, Y.C., Kulturel-Konak, S., Lo, M.H.: A multiple-level variable neighborhood
search approach to the orienteering problem. J. Ind. Prod. Eng. 30(4), 238–247
(2013)

25. Lin, S.W., Vincent, F.Y.: Solving the team orienteering problem with time windows
and mandatory visits by multi-start simulated annealing. Comput. Ind. Eng. 114,
195–205 (2017)

26. Lourenço, H.R., Martin, O.C., Stützle, T.: Iterated local search. In: Glover, F.,
Kochenberger, G.A. (eds.) Handbook of Metaheuristics, pp. 320–353. Springer,
Boston (2003). https://doi.org/10.1007/0-306-48056-5 11

27. Lu, Y., Benlic, U., Wu, Q.: A memetic algorithm for the orienteering problem with
mandatory visits and exclusionary constraints. Eur. J. Oper. Res. 268(1), 54–69
(2018)

28. Marinakis, Y., Politis, M., Marinaki, M., Matsatsinis, N.: A memetic-GRASP algo-
rithm for the solution of the orienteering problem. In: Le Thi, H.A., Pham Dinh,
T., Nguyen, N.T. (eds.) Modelling, Computation and Optimization in Information
Systems and Management Sciences. AISC, vol. 360, pp. 105–116. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-18167-7 10

29. Montemanni, R., Gambardella, L.M.: An ant colony system for team orienteering
problems with time windows. Found. Comput. Decis. Sci. 34(4), 287 (2009)

30. Muthuswamy, S., Lam, S.S.: Discrete particle swarm optimization for the team
orienteering problem. Memetic Comput. 3(4), 287–303 (2011)

31. Ramesh, R., Yoon, Y.S., Karwan, M.H.: An optimal algorithm for the orienteering
tour problem. ORSA J. Comput. 4(2), 155–165 (1992)

32. Ramesh, R., Brown, K.M.: An efficient four-phase heuristic for the generalized
orienteering problem. Comput. Oper. Res. 18(2), 151–165 (1991)

33. Righini, G., Salani, M.: Decremental state space relaxation strategies and initial-
ization heuristics for solving the orienteering problem with time windows with
dynamic programming. Comput. Oper. Res. 36(4), 1191–1203 (2009)

34. Şevkli, A.Z., Sevilgen, F.E.: StPSO: strengthened particle swarm optimization.
Turk. J. Electr. Eng. Comput. Sci. 18(6), 1095–1114 (2010)

35. Şevkli, Z., Sevilgen, F.E.: Discrete particle swarm optimization for the orienteering
problem. In: 2010 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8.
IEEE (2010)

36. Souffriau, W., Vansteenwegen, P., Vanden Berghe, G., Van Oudheusden, D.: The
multiconstraint team orienteering problem with multiple time windows. Transp.
Sci. 47(1), 53–63 (2013)

https://doi.org/10.1007/978-3-319-16468-7_6
https://doi.org/10.1007/978-3-319-16468-7_6
https://doi.org/10.1007/0-387-25486-2_2
https://doi.org/10.1007/0-306-48056-5_11
https://doi.org/10.1007/978-3-319-18167-7_10

358 K. Ameranis et al.

37. Sylejmani, K., Dorn, J., Musliu, N.: A tabu search approach for multi constrained
team orienteering problem and its application in touristic trip planning. In: 2012
12th International Conference on Hybrid Intelligent Systems (HIS), pp. 300–305.
IEEE (2012)

38. Thomadsen, T., Stidsen, T.K.: The quadratic selective travelling salesman problem.
Technical report (2003)

39. Tsiligirides, T.: Heuristic methods applied to orienteering. J. Oper. Res. Soc. 35,
797–809 (1984)

40. Vansteenwegen, P., Souffriau, W., Berghe, G.V., Van Oudheusden, D.: Iterated
local search for the team orienteering problem with time windows. Comput. Oper.
Res. 36(12), 3281–3290 (2009)

41. Vansteenwegen, P., Souffriau, W., Berghe, G.V., Van Oudheusden, D.: Metaheuris-
tics for tourist trip planning. In: Sörensen, K., Sevaux, M., Habenicht, W., Geiger,
M. (eds.) Metaheuristics in the Service Industry, pp. 15–31. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-00939-6 2

42. Vincent, F.Y., Lin, S.W.: Multi-start simulated annealing heuristic for the location
routing problem with simultaneous pickup and delivery. Appl. Soft Comput. 24,
284–290 (2014)

https://doi.org/10.1007/978-3-642-00939-6_2

Internal Versus External Balancing
in the Evaluation of Graph-Based

Number Types

Hanna Geppert and Martin Wilhelm(B)

Otto-von-Guericke Universität, Magdeburg, Germany
martin.wilhelm@ovgu.de

Abstract. Number types for exact computation are usually based on
directed acyclic graphs. A poor graph structure can impair the efficency
of their evaluation. In such cases the performance of a number type can
be drastically improved by restructuring the graph or by internally bal-
ancing error bounds with respect to the graph’s structure. We compare
advantages and disadvantages of these two concepts both theoretically
and experimentally.

1 Introduction

Inexact computation causes many problems when algorithms are implemented,
ranging from slightly wrong results to crashes or invalid program states. This is
especially prevalent in the field of computational geometry, where real number
computations and combinatorical properties intertwine [10]. In consequence, var-
ious exact number types have been developed [6,8,16]. It is an ongoing challenge
to make these number types sufficiently efficient to be an acceptable alternative
to floating-point primitives in practical applications. Number types based on the
Exact Computation Paradigm recompute the value of complex expressions if the
currently stored error bound is not sufficient for an exact decision [15]. Hence,
they store the computation history of a value in a directed acyclic graph, which
we call an expression dag. The structure of the stored graph is then determined
by the order in which the program executes the operations. It lies in the nature
of iterative programming that values are often computed step by step, resulting
in list-like graph structures.

Re-evaluating expressions in an unbalanced graph is more expensive than in
a balanced one [4,11]. We discuss two general approaches on reducing the impact
of graph structure on the evaluation time. Prior to the evaluation, the expression
dag can be restructured. Originally proposed by Yap [15], restructuring methods
with varying degrees of invasiveness were developed [11,14]. Root-free expres-
sion trees can be restructured to reach optimal depth as shown by Brent [3].
In Sect. 2.1 we introduce a weighted version of Brent’s algorithm applied on
maximal subtrees inside an expression dag. Besides restructuring, which can
be considered ‘external’ with respect to the evaluation process, we can make
‘internal’ adjustments during the evaluation to compensate for bad structure.
Error bounds occuring during an evaluation can be balanced to better reflect
c© Springer Nature Switzerland AG 2019
I. Kotsireas et al. (Eds.): SEA2 2019, LNCS 11544, pp. 359–375, 2019.
https://doi.org/10.1007/978-3-030-34029-2_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34029-2_24&domain=pdf
https://doi.org/10.1007/978-3-030-34029-2_24

360 H. Geppert and M. Wilhelm

the structure of the graph [4]. Doing so requires a switch from an integer to a
floating-point error bound representation, leading to numerical issues that need
to be taken into consideration [7,13]. In Sect. 2.2 we show how error bounds
can be balanced optimally in both the serial and the parallel case and compare
several heuristics. Finally, in Sect. 3 we experimentally highlight strengths and
weaknesses of each approach.

2 Concepts

An expression dag is a rooted ordered directed acyclic graph in which each node
is either a floating-point number, a unary operation (d

√
,−) with one child,

or a binary operation (+,−, ∗, /) with two children. We call an expression dag
E′, whose root is part of another expression dag E a subexpression of E. We
write v ∈ E to indicate that v is a node in E and we write |E| to represent the
number of operator nodes in E. In an accuracy-driven evaluation the goal is to
evaluate the root node of an expression dag with absolute accuracy q, i.e., to
compute an approximation x̃ for the value x of the represented expression, such
that |x̃ − x| ≤ 2q (cf. [15]). To reach this goal, sufficiently small error bounds
for the (up to two) child nodes and for the operation error are set and matching
approximations are computed recursively for the children. Let v ∈ E be a node
with outgoing edges el to the left and er to the right child. Let i(el), i(er) be the
increase in accuracy for the left and the right child of v and i(v) be the increase in
accuracy for the operation (i.e. the increase in precision) at v. Depending on the
operation in v we assign constants c(el), c(er) to its outgoing edges as depicted
in Table 1. If the node v is known from the context, we shortly write iv, il, ir
for the accuracy increases at v, el, er and cl, cr for the respective constants. To
guarantee an accuracy of q at v, the choice of iv, il, ir must satisfy the inequality

2q+iv + cl2q+il + cr2q+ir ≤ 2q or, equivalently, 2iv + cl2il + cr2ir ≤ 1 (1)

Aside from this condition, the choice of iv, il, ir is arbitrary and usually done by
a symmetric distribution of the error. In the exact number type Real algebraic
they are chosen such that cl2il ≤ 0.25, cr2ir ≤ 0.25 and 2iv = 0.5 (and adjusted
accordingly for one or zero children). Let the depth of a node v in an expres-
sion dag be the length of the longest path from the root to v. In general, the
precision pv needed to evaluate a node v increases linearly with the depth of
the node due to the steady increase through il, ir. The approximated value of
each node is stored in a multiple-precision floating-point type (bigfloat). The
cost of evaluating a node is largely dominated by the cost of the bigfloat opera-
tion, which is linear in |pv| in case of addition and subtraction and linear up to
a logarithmic factor in case of multiplication, division and roots. So the preci-
sion pv is a good indicator for the total evaluation cost of a node (except for
negations). Let E be an expression dag. We define the cost of a node v ∈ E
to be |pv| and the cost of E, denoted by cost(E), as the sum of the cost of all
nodes in E. We set the depth of E to the maximum depth of all nodes in E.
Let Elist be a list-like expression dag, i.e., an expression dag with depth Θ(n),
where n is the number of its nodes and let Ebal be a balanced expression dag,

Internal vs External Balancing in the Evaluation of Graph-Based Number 361

Table 1. Operation-dependent constants c(el) and c(er) for an accuracy-driven evalu-
ation in Real algebraic, with xhigh, yhigh upper bounds and xlow, ylow lower bounds
on the child values.

negation add./sub. multipl. division d-th root

c(el) 1 1 yhigh
1

ylow

1
d
(xlow)

1−d
d

c(er) 0 1 xhigh
1

ylow
2 0

i.e., an expression dag with depth Θ(log(n)). Since the precision increases lin-
early with the depth, we have cost(Elist) = Θ(n2) and cost(Ebal) = Θ(n log(n)),
assuming that the operation constants can be bounded (cf. [11]). In a parallel
environment the cost of the evaluation is driven by dependencies between the
nodes. For an expression dag E with n nodes let the cost of a path in E be the
sum of the cost of the nodes along the path. Let cp(E) be a path in E with
the highest cost. We call cp(E) a critical path in E. Then the cost of evaluating
E in parallel is Θ(cost(cp(E))) with O(n) processors. Let Elist, Ebal be defined
as before. Then obviously cost(cp(Elist)) = Θ(n) and cost(cp(Ebal)) = Θ(log n)
(cf. [14]). So in both the serial and the parallel case, balanced graph structures
are superior.

2.1 Graph Restructuring

By definition, exact number types that use accuracy-driven evaluation act lazy,
i.e., expressions are not evaluated until a decision needs to be made. Before their
first evaluation, underlying graph structures are lightweight and can be changed
at low cost. Therefore graph restructuring algorithms ideally take place when
the first decision is demanded. While it is not impossible to restructure graphs
that have already been evaluated, it comes with several downsides. Since subex-
pressions will change during restructuring, all approximations and error bounds
associated with these subexpressions are lost, although they could be reused in
later evaluations. Since stored data may depend on data in subexpressions, the
internal state of the whole expression dag may be invalidated. Those effects can
make restructuring expensive if many decisions are requested without significant
changes to the graph in between. Let E be an expression dag. We call a con-
nected, rooted subgraph of E an operator tree if it consists solely of operator
nodes, does not contain root operations and does not contain nodes with two
or more parents (not necessarily in E), except for its root. We restructure each
maximal operator tree in E according to a weighted version of Brent’s algo-
rithm. Let T be an operator tree in E. We call the children of the leaves of T
the operands of T and associate a positive weight with each of those operands.
We define a weight function, such that for each node v ∈ T the weight of v is
greater or equal than the weight of its children. The main difference between the
original algorithm and the weighted variation lies in the choice of the split node.
We give a brief outline of the algorithm.

362 H. Geppert and M. Wilhelm

The algorithm builds upon two operations, compress and raise. The oper-
ation compress takes an expression tree E and returns an expression tree of the
form F/G and raise takes an expression tree E and a subtree X and returns
an expression tree of the form (AX + B)/(CX + D), where A,B,C,D, F,G are
division-free expression trees with logarithmic depth.

Algorithm 1: The operations compress and raise.
1 Function compress(R):
2 if R is not an operand then
3 X = split(R, 1

2
weight(R));

4 let X1, X2 be the children of X;
5 compress(X1); compress(X2); raise(R,X);
6 substitute X in R;

7 end

8

9 Function raise(R,X):
10 if R �= X then
11 Y = split(R, 1

2
(weight(R) + weight(X)));

12 let Y1, Y2 be the children of Y , such that Y1 contains X;
13 raise(Y1,X); compress(Y2); raise(R,Y);
14 substitute Y in R;

15 end

Let vr be the root node of T . We choose vs as a node with maximal weight in T
such that both children have either weight < 1

2 weight(vr) or are operands. Note
that this implies weight(vs) ≥ 1

2 weight(vr). We then recursively call compress
on vs and raise vs to the root by repeating the following steps:

1. Search for a new split node v′
s on the path from vr to vs that splits at a weight

of 1
2 (weight(vr) + weight(vs)).

2. Recursively raise v′
s to vr and vs to the respective child node in v′

s.
3. Substitute v′

s and its children into vr by incorporating the operation at v′
s.

Let R be the expression at vr, let Y be the expression at v′
s and let X be the

expression at vs. After the second step, R = A′Y +B′
C′Y +D′ and we have Y = YL ◦ YR

with YL = A′′X+B′′
C′′X+D′′ and YR = F ′′/G′′ or vice versa. Substituting Y (with

respect to the operation ◦ at Y) then gives the desired R = AX+B
CX+D . Substituting

X = F ′/G′ finally leads to a balanced expression of the form R = F/G.
The new split operation is shown in Algorithm 2. If unit weight is cho-

sen, there will never be an operand that does not satisfy the split condition.
If furthermore the weight function is chosen as the number of operands in a
subtree, satisfying the split condition implies having a bigger weight than the
sibling. Therefore the algorithm is identical to Brent’s original algorithm applied
to subtrees of the expression dag and guarantees logarithmic depth for the new

Internal vs External Balancing in the Evaluation of Graph-Based Number 363

Algorithm 2: The split operation.
1 Function split(X,w):
2 if X.left is not operand and weight(X.left) ≥ w and

weight(X.left) ≥ weight(X.right) then
3 return split(X.left,w);
4 else if X.right is not operand and weight(X.right) ≥ w then
5 return split(X.right,w);
6 else
7 return X;

operator tree. Regarding the overall expression dag, nodes which contain root
operations, have more than one parent or have been evaluated before are treated
equally to the other operands in this case and therefore act as ‘blocking nodes’
for the balancing process. Let k be the number of these blocking nodes in E.
If the number of incoming edges for each blocking node is bounded by a con-
stant, the depth of E after applying the algorithm to each operator tree is in
O(k log(n

k)). This depth can be reduced by applying appropriate weights to the
blocking nodes. From a conceptual perspective, a sensible choice for the weight
of an operand (as well as for the weights of the inner nodes) would be the num-
ber of operator nodes in the subexpression rooted at the operand. Note that we
are actually interested in the number of bigfloat operations. However, it is very
expensive to compute the number of descendants for a node in a DAG, since one
has to deal with duplicates [2]. Ignoring duplicates, we could choose the number
of operators we would get by expanding the DAG to a tree. While computable in
linear time, the number of operators can get exponential (cf. [4,11]) and there-
fore we cannot store the exact weight in an integer data type anymore. There are
ways of managing such weights, as we discuss in Sect. 2.2, but they are impre-
cise and less efficient than relying on primitives. Both weight functions behave
identical to the unit weight case when there are no blocking nodes present. If
there are blocking nodes on the other hand, these nodes get weighted accordingly
and expensive nodes are risen to the top of the operator tree. The depth after
restructuring for k blocking nodes therefore becomes O(k + log n).

The weight functions described above are optimal, but hard to compute. Let
the weight of both operators and operands be the depth of the subexpression
rooted at the operand or operator in the underlying expression dag. Then the
algorithm subsequently reduces the length of the longest paths in the expression
dag. Note that this strategy does not necessarily lead to an optimal result.
Nevertheless, computing the depth of a subexpression in an expression dag can be
done fast and the depth can be represented efficiently. Therefore this strategy
might prove to be a good heuristic to combine advantages of the unit weight
algorithm and the weighted approach.

364 H. Geppert and M. Wilhelm

2.2 Error Bound Balancing

As described at the start of this section, the additional cost of unbalanced graph
structures originates in the increase in accuracy associated with each node. A
more careful choice of iv, il, ir in (1) may compensate for an unfavorable struc-
ture. If set correctly, linear depth still only leads to a logarithmic increase in
accuracy aside from operation constants [4].

An increase in accuracy at an operator node only affects the operation itself.
An increase in accuracy for a child node affects all operations in the subexpres-
sion of the child. We associate a non-negative weight w(e) with each edge e in an
expression dag E, representing the impact a change in i(e) has on the total cost
of E. For a node v ∈ E with outgoing edges el, er let wl = w(el) and wr = w(er).
We then say that, for an evaluation to accuracy q, the cost induced on E by the
choice of parameters in v is given by

costi(v) = −(q + iv + wlil + wrir) (2)

whereas cost(E) =
∑

v∈E costi(v). To minimize the total cost we want to mini-
mize the cost induced by each node while maintaining the condition in (1). Let
zl = cl2il , zr = cr2ir and let wall = 1 + wl + wr. With an optimal choice of the
parameters, (1) is an equality and we have iv = log(1 − zl − zr). Substituting iv
into (2) and setting ∂

∂il
costi(v) = ∂

∂ir
costi(v) = 0 we get

(1 + wl)zl + wlzr − wl = 0 (3)
(1 + wr)zr + wrzl − wr = 0 (4)

leading to zl = wl

wall
and zr = wr

wall
. Resubstituting zl and zr, the optimal choice

of the parameters for error bound distribution inside a node is

il = log(wl) − log(wall) − log(cl)
ir = log(wr) − log(wall) − log(cr) (5)
iv = − log(wall)

We can show that this parameter choice makes the cost of the evaluation to
some degree independent of the structure of the graph. For a node v ∈ E we
denote the set of paths between the root node of E and v by P(v). For a path
P ∈ P(v) we write e ∈ P to indicate that e is an edge along P . The precision
requested at v along P can be expressed as costr(P) = costv(P)+costf(P) where

costv(P) = −∑
e∈P (i(e) + log(c(e))) − i(v) and costf(P) =

∑
e∈P log(c(e))

denote the variable cost induced by the choice of il, ir, iv and the fixed cost
induced by the operation constants along the path.

Theorem 1. Let E be an expression dag consisting of n unevaluated operator
nodes. Then the cost of evaluating E with accuracy q ≤ 0 and with an optimal
choice of parameters is

cost(E) = n log(n) +
∑

v∈E log
(∑

P∈P(v) 2costf(P)
)

− nq

Internal vs External Balancing in the Evaluation of Graph-Based Number 365

Proof. We define weights for each node v and each edge e in E with respect to (2).
Let cf(v) =

∑
P∈P(v) 2costf (P) and cf(v, e) =

∑
Pe∈P(v),e∈Pe

2costf(Pe). Then we
set w(v) = wall = 1 + wl + wr if v is an operator node and w(v) = 0 otherwise.
For an edge e leading to v we set

w(e) =
cf(v, e)
cf(v)

w(v) =

∑
Pe∈P(v),e∈Pe

2costf(Pe)

∑
P∈P(v) 2costf(P)

w(v) (6)

We show that choosing the parameters as in (5) with this weight function is
optimal and that it leads to the desired total evaluation cost. For a node v ∈ E
let P ∈ P(v) be any path to v of the form P = (v0, e0, ..., vk, ek, vk+1 = v), then

costr(P) = costv(P) + costf(P)
= −∑

e∈P (i(e) + log(c(e))) − i(v) + costf(P)

= −∑k
j=0(log(w(ej)) − log(w(vj)) + log(w(v)) + costf(P)

= log(w(v0)) − ∑k
j=0 (log(cf(vj)) + log(c(ej)) − log(cf(vj+1)) + costf(P)

= log(w(v0)) − log(cf(v)) (7)

In particular, the precision requested at v along each path is the same. Assume
that the parameter choice is not optimal. For an edge e let δ(e) be the difference
in i(e) between the optimal value and the value resulting from (5) with weights
as defined in (6) and let δ(v) be the respective difference in i(v) for a node v.
Due to the optimization that led to (5), the slope of i(v) is −w(el) in direction of
i(el) and −w(er) in direction of i(er) when keeping (1) equal. So the difference
in i(v) can be bounded through

δ(v) ≤ −δ(el)w(el) − δ(er)w(er) = −∑
v′∈E

(
δ(el)

cf(v
′,el)

cf(v′) + δ(er)
cf(v

′,er)
cf(v′)

)

Denote the difference in cost by preceeding it with Δ and let E(E) be the
set of edges in E. For our parameter choice, the precision requested at a node
v is the same along each path as shown in (7), so Δ maxP∈P(v) costr(P) =
maxP∈P(v) Δ costr(P). We then get

Δ cost(E) =
∑

v∈E

max
P∈P(v)

Δ costr(P)

= −
∑

v∈E

min
P∈P(v)

∑

e∈P

δ(e) −
∑

v∈E

δ(v)

≥ −
∑

v∈E

min
P∈P(v)

∑

e∈P

δ(e) +
∑

v∈E

∑

e∈E(E)

δ(e)
cf(v, e)
cf(v)

= −
∑

v∈E

min
P∈P(v)

∑

e∈P

δ(e) +
∑

v∈E

∑

P∈P(v)

∑

e∈P

δ(e)
2costf (P)

cf(v)

≥ −
∑

v∈E

min
P∈P(v)

∑

e∈P

δ(e) +
∑

v∈E

min
P∈P(v)

∑

e∈P

δ(e) = 0

366 H. Geppert and M. Wilhelm

and therefore our parameter choice is optimal. It remains to calculate the total
cost for evaluating E. Since w(v0) = n and each path P ∈ P(v) leads to the
same requested precision, the desired equation follows directly from (7) with

cost(E) =
∑

v∈E

max
P∈P(v)

costr(P) − nq =
∑

v∈E

(log(n) − log(cf(v))) − nq �	

Choosing the parameters as in (5) leads to an optimal distribution of error
bounds under the assumption that the weights wl, wr accurately reflect the
impact of an increase in il, ir on the total cost. Computing the exact weight
shown in (6) is hard since we have to know and to maintain the cost along
all paths leading to a node. We discuss several heuristic approaches. From
Theorem 1 we can immediately conclude:

Corollary 1. Let T , |T | = n, be an expression tree, i.e., an expression dag
where each node has at most one parent. Then the optimal weight choice for an
edge leading to a node v is the number of operator nodes in the subexpression
rooted at v and the cost of an evaluation of T to accuracy q ≤ 0 is

cost(T) = n log n +
∑

v∈V

costf(path(v)) − nq

where path(v) denotes the unique path P ∈ P (v). �	
So a natural choice for the weight of an edge is the number of operator nodes in
the respective subexpression of the target node. Then the optimality condition
holds for tree-like expression dags but fails when common subexpressions exist.
Figure 1 shows a graph for which the optimal distribution (1a) differs from the
distribution achieved through counting the operators (1b). In the example the
weights for the middle node are wl = wr = 1. Since the lower addition is a
common child of the left and the right path, it gets evaluated only once. The
optimal weights would therefore be wl = wr = 0.5. When constants are present
it may even occur that a common subexpression already needs to be evaluated
at a much higher accuracy and therefore the weight can be set close to zero.

Computing the actual number of operators without duplicates in an expres-
sion dag is already a difficult task. As in Sect. 2.1, we can set the weight of an
edge to the number of operators in the subexpression, counting duplicates, in
which case we need to deal with a possible exponential increase in weight size.
This leads to an additional loss in optimality (cf. Fig. 1c), but makes it algo-
rithmically feasible to compute the weights. This approach is largely identical to
the one of van der Hoeven, who defined the weights as the number of leaves in
the left and right subexpression [4]. Regarding the exponential weight increase,
van der Hoeven suggested the use of a floating-point representation. Effectively
managing correct floating-point bounds can get expensive. We use a different
approach. In the definition of iv, il, ir the actual value of the weights is never
needed. This enables us to store the weight in a logarithmic representation from

Internal vs External Balancing in the Evaluation of Graph-Based Number 367

Fig. 1. Error bound distribution through different weight functions. The optimal dis-
tribution achieves a total cost of 7.77, while counting the operators with and without
removing duplicates has total cost 8.17 and 8.43, respectively.

the start. The downside of this approach is that an exact computation of the
weight is not possible even for small values. Note that an overestimation of the
weights will never lead us to violate the condition in (1) and therefore maintains
exact computation. When computing the weights, we need to compute terms of
the form log(2a+2b). Let a ≥ b, then we have log(2a+2b) = a+log(1+2b−a) with
2b−a ≤ 1. An upper bound on the logarithm can be obtained through repeated
squaring [5]. For a
 b squaring 1 + 2b−a is numerically unstable. In this case
we can approximate the logarithm by linearization near 1. Then

log(1 + r) ≤ log(1) + r d
dx log(x)|1 = r

ln(2) (8)

and therefore log(2a + 2b) ≤ a + 1
ln(2)2

b−a. This approximation works well for a
large difference between a and b. For small values of a − b we can use repeated
squaring. Otherwise we simply set the result to 1 for a − b ≤ log(ln(2)). One
way to efficiently compute an upper bound to the power term is to compute the
product 22

d1 · · · 22dk with dmin ≤ di ≤ 0 for 1 ≤ i ≤ k where d1, ..., dk ∈ Z are
the digits set to one in the binary representation of b − a. Since the number of
possible factors is finite, we can store upper bounds for them in a lookup table.

Error bound balancing does not alter the structure of the expression dag and
therefore does not change its parallelizability. The maximum cost of a critical
path is reduced from Θ(n2) to Θ(n log n), but multiple threads cannot be utilized
effectively. If an arbitrary number of processors is available, the total cost of the
evaluation reduces to the cost of evaluating a critical path. We can therefore
choose the error bounds in such a way that the highest cost of a path from
the root to a leaf is minimized. A lower bound on the cost of a critical path
P = (v0, e0, ..., ek−1, vk) with k operators can be obtained by isolating it, i.e.,
by assuming that each other edge in the expression dag leads to an operand.

368 H. Geppert and M. Wilhelm

Let costC(P) =
∑k

i=0 costf(path(vi)) − kq be the cost induced by the constants
and the initial accuracy along P . Then Corollary 1 gives

cost(P) = k log k + costC(P)

If k = n the weight choice is already optimal. Let Ebal be an expression dag
that resembles a perfectly balanced tree with depth k and 2k −1 operator nodes.
Since we do not have common subexpressions, |P(v)| = 1 for each v ∈ Ebal

and with (7) the total cost of any path P in Ebal is cost(P) = k log(2k − 1) +
costC(P) = Θ(k2). When minimizing the total cost of Ebal, the precision increase
iv at a node v ∈ Ebal is weighted against the cost induced in all operators in its
subexpression and therefore logarithmic in their number. The cost induced on
the critical path, however, depends on the depth of the subexpression. Building
upon this observation, the cost of the critical path in Ebal can be reduced. For
a node v ∈ Ebal with subexpression depth j and outgoing edges el, er we set
iv = − log(j) and il − log(cl) = ir − log(cr) = log(j − 1) − log(j) − 1 (cf. (5)).
Then the cost of the critical path P in Ebal is

cost(P) = −∑k
j=2(− log(j) + (j − 1)(log(j − 1) − log(j) − 1)) + costC(P)

= k log k + k(k−1)
2 + costC(P) (9)

It can be shown that this parameter choice is optimal, aside from taking the
operation constants into account. Although not an asymptotic improvement,
the cost of the critical path was cut nearly in half. In the derivation of the
chosen parameters, we made use of the symmetry of the expression. In general it
is hard to compute the optimal parameters for minimizing the critical path. Let
v be the root node of an expression dag X with outgoing edges el, er where the
left subexpression L has depth dl ≥ 1 and the right subexpression R has depth
dr ≥ 1. In an optimal parameter choice we have

cost(cp(L)) − dlil = cost(cp(R)) − drir (10)

Otherwise, il or ir could be decreased without increasing the cost of the critical
path of X and iv could be increased, reducing its cost. Let df = dl

dr
, let cf =

cost(cp(L))−cost(cp(R))
dr

and let c = 2cf . Then ir = df il + cf and with (1) and
z = 2il we get iv = log(1− z − czdf). Due to (10) there is a critical path through
el and therefore

cost(cp(X)) = cost(cp(L)) − dlil − iv

Substituting iv and forming the derivative with respect to il we get

−z − cdfzdf

1 − z − czdf
− dl = 0 ⇐⇒ c

dr − 1
dr

zdf +
dl − 1

dl
z − 1 = 0 (11)

Solving this equation yields an optimal choice for il (and hence with (10) and (1)
for ir and iv). Note that for df = 1, cf = 0 and dl = dr we get the parameters
used for Ebal. Unfortunately, there is no closed form for the solution of (11) for

Internal vs External Balancing in the Evaluation of Graph-Based Number 369

Fig. 2. Error bound distribution for a graph with two paths of different lengths. In the
optimal case, both paths have cost 5.15. When minimizing total cost, the cost of the
critical path is 6, which gets reduced to 5.74 with the depth heuristic.

arbitrary df . Thus, for an implementation a numerical or a heuristic approach is
needed. The cost induced by operation constants and the initial accuracy usually
increases with a higher depth. So it is plausible to assume for a node v that the
child with the higher subexpression depth will contain a more expensive path in
the evaluation, if the difference in accuracy increase at v is relatively small. We
can use this observation in the following heuristic. We set

iv = ir = − log(dl + 1) − 1, il = log(dl) − log(dl + 1), if dl > dr

iv = il = − log(dr + 1) − 1, ir = log(dr) − log(dr + 1), if dl < dr (12)
iv = − log(dl + 1), il = ir = log(dl) − log(dl + 1) − 1, if dl = dr

Figure 2 shows an example for the differences between the critical path optimiza-
tion, total cost optimization and the depth heuristic. The heuristic reduces the
weight of the critical path compared to the previous strategies.

3 Experiments

We present experiments to underline differences between restructuring (Sect. 2.1)
and error bound balancing (Sect. 2.2). For the comparison, the policy-based
exact-decisions number type Real algebraic with multithreading is used [8,
12]. We compare several different strategies. In our default configuration for
Real algebraic we use boost::interval as floating-point filter and mpfr t as
bigfloat data type. Furthermore we always enable topological evaluation, bottom-
up separation bound representation and error representation by exponents [9,13].
We call the default strategy without balancing def. For restructuring we use the
weighted version of Brent’s algorithm with unit weights (bru) and with setting
the weights to the expression depth (brd). For error bound balancing we use the
weight function counting all operators without removing duplicates (ebc) and

370 H. Geppert and M. Wilhelm

the depth-based approach for reducing the length of critical paths (ebd). We
furthermore test combinations of internal and external balancing as described
in the respective sections. For every strategy we use a variant with and without
multithreading (m). The experiments are performed on an Intel i7-4700MQ with
16 GB RAM under Ubuntu 18.04, using g++ 7.3.0, Boost 1.62.0 and MPFR 4.0.1.
All data points are averaged over twenty runs if not specified otherwise. All
expressions are evaluated to an accuracy of q = −10000.

3.1 List-Like Expression Dags

List-like expression dags with linear depth have quadratic cost (cf. Sect. 2). Both
restructuring and error bound balancing should reduce the cost significantly in
this case. We build an expression dag Elist by computing res := res◦ai in a sim-
ple loop starting with res = a0, where ◦ ∈ {+,−, ∗, /} is chosen randomly and
uniformly and ai are operands (0 ≤ i ≤ n). For the operands we choose random
rationals, i.e., expressions of the form ai = di,1/di,2 where di,j = 0 are random
double numbers exponentially distributed around 1. By using exact divisions we
assure that the operands have sufficient complexity for our experiments. To pre-
vent them from being affected by restructuring, we assign an additional (exter-
nal) reference to each operand. Figure 3 shows the results for evaluating Elist.
Both balancing methods lead to a significant reduction in running time compared
to the default configuration (note the logarithmic scale). For large numbers of
operators, restructuring is superior to error bound balancing. While error bound
balancing optimizes the variable precision increase, it does not reduce the cost
associated with the operation constants. The precision increase due to opera-
tion constants affects more nodes in an unbalanced structure than in a balanced
one, which gives restructuring an advantage. For small numbers of operators,
error bound balancing leads to better results than restructuring, since the cost
of evaluating additional operators created through restructuring becomes more
relevant. The structure of Elist is highly detrimental to efficient parallelization.

Fig. 3. Running times on a list-like expression dag. Restructuring reduces times by
up to 90% for single-threaded and by up to 94 % for multithreaded evaluation. Error
bound balancing reduces the running time by up to 75 % in both cases.

Internal vs External Balancing in the Evaluation of Graph-Based Number 371

Consequently, neither the default evaluation nor the error bound balanced eval-
uation show significant cost reduction when run on multiple processors. With
Brent’s algorithm a speedup of about 1.7, i.e., a runtime reduction of about
40%, can be observed. Since Elist does not contain any common subexpressions
or other barriers, the results for other restructuring or error bound balancing
strategies are indistinguishable from their counterparts. Interestingly, the evalu-
ation does not benefit from a combination of both balancing strategies. Instead
the results closely resemble the results obtained by using only restructuring and
even get a bit worse in the multithreaded case. Since through restructuring a
perfectly balanced dag is created, the default error bounds are already close to
optimal (cf. Sect. 3.3).

3.2 Blocking Nodes

Restructuring gets difficult as soon as ‘blocking nodes’, such as nodes with multi-
ple parents, occur in the expression dag (cf. Sect. 2.1). We repeat the experiment
from Sect. 3.1, but randomly let about 30% of the operator nodes be blocking
nodes by adding an additional parent (which is not part of our evaluation).
Nodes with such a parent cannot be part of a restructuring process, since the
subexpressions associated with them might be used somewhere else and therefore
cannot be destroyed. Both the default and the internal balancing method are not
affected by the change and thus show the same results as before. Restructuring
on the other hand performs worse and falls back behind error bound balancing
(cf. Fig. 4). The depth heuristic leads to fewer losses for both total and parallel
running time. It reduces the running time by about 10% in single-threaded and
about 20% in multithreaded execution compared to using unit weights. Combin-
ing internal and external balancing combines the advantages of both strategies
in this case. Exemplarly, a combination of brd and ebc, named cmb, is shown in
Fig. 4. For serial evaluation the running time of the combined approach mostly

Fig. 4. Running times on a list-like expression dag where 30% of the operators have an
additional reference. Error bound balancing is not affected by the references, restruc-
turing performs much worse. Combining error bound balancing and restructuring leads
to the best results for multithreading.

372 H. Geppert and M. Wilhelm

resembles the running time of error bound balancing, getting slightly faster for
a large number of operators (about 9% for N = 50000). In parallel, however, it
strongly increases parallelizability leading to a speedup of 1.6 and a total runtime
reduction of up to 85% compared to the default strategy.

3.3 Balanced Expression Dags

When an expression dag is already balanced, there is not much to gain by either
balancing method. In a perfectly balanced expression dag Ebal, restructuring
cannot reduce the depth and therefore does not reduce its cost, neither in serial
nor in parallel. Brent’s algorithm still creates a normal form, which adds addi-
tional operations and might even increase the maximum depth. Error bound
balancing on the other hand can potentially make a difference. For a balanced
expression dag the total cost is strongly influenced by the operation constants,
which is reflected in a high variance when choosing the operators at random.
In the experiment shown in Fig. 5, we increase the number of test sets for each
data point from 20 to 50 and use the same test data for each number type. The
single data points lie in a range of about ±20% of the respective average. As
expected, restructuring performs worse than the default number type, doubling
the depth and replacing each division by, on average, two multiplications. Error
bound balancing performs worse than not balancing as well. Neither the total
operator count, nor the depth-based strategy have a significant impact on the
running time of the bigfloat operations, since the cost decrease per operation is
at most logarithmic in the number of operators. For the same reason and due
to the limited number of processors, the expected cost reduction between ebcm
and ebdm in the multithreaded case (cf. Sect. 2.2) can not be observed in the
experimental data.

Fig. 5. Running times on a perfectly balanced expression dag. All balancing approaches
lead to a performance loss. Restructuring increases the running time by about 15%,
error bound balancing by 5% to 7% in the single-threaded case.

Internal vs External Balancing in the Evaluation of Graph-Based Number 373

3.4 Common Subexpressions

Random expression dags, created by randomly applying operations on a forest of
operands until it is reduced to a single DAG, tend to be balanced and therefore
behave similarly to a perfectly balanced tree. This changes if common subex-
pressions are involved. With error bound balancing, common subexpressions can
be recognized and the error bounds at the parent nodes can be adjusted, such
that both request the same accuracies (cf. Theorem 1). The two implemented
heuristics to some degree take common subexpressions into account, since they
contribute the same weight to all of the subexpression’s parents. We test the
behavior of error bound balancing strategies by randomly reusing a certain per-
centage of subtrees during randomized bottom-up construction of the graph.
To avoid zeros, ones, or an exponential explosion of the expression’s value we
only use additions if two subtrees are identical during construction. While error
bound balancing still cannot outperform the default strategy due to the balanced
nature, it moves on par with it. If 5% of the operations have more than one par-
ent, the error bound balancing strategies improve the single-threaded running
time by about 1% to 5%. In a parallel environment, it still performs worse with
ebdm being slightly superior to ebcm.

Fig. 6. Running times on a series of self-additions as depicted in Fig. 1. Counting
operators without removing duplicates does not improve on the default running time.
The depth heuristic reduces the default running time by up to 32%.

If common subexpressions lead to a large difference between the actual num-
ber of operators and the number of operators in a tree expansion, ebc signifi-
cantly overestimates the optimal weight of its edges (cf. Fig. 1). Figure 6 shows
results for evaluating a sequence of additions where the left and the right sum-
mand is the result of the previous addition. The full operator count heuristic does
not reduce the running time and even performs worse than the default strategy
for large numbers of operators, whereas the depth-based heuristic clearly out-
performs the other strategies. Note that in this case, the depth-based heuristic
leads to the optimal error distribution for both total and critical path cost.

374 H. Geppert and M. Wilhelm

3.5 A Note on Floating-Point Primitives

Error bound balancing requires the use of floating-point error bounds. While
IEEE 754 requires that floating point computations must be exactly rounded, it
is surprisingly difficult to find an adequate upper or lower bound to the result of
such an operation. IEEE 754 specifies four rounding modes: Round to nearest,
Round to positive/negative infinty and Round to zero [1]. For the last three
modes, which are commonly referred to as directed rounding, it is easy to obtain a
lower or upper bound by negating the operands adequately. Unfortunately, most
systems implement Round to nearest. Switching the rounding mode is expensive.
While double operations with appropriate negations for directed rounding are
about two times slower, switching to an appropriate rounding mode can increase
the running time of a single operation by a factor of 100. The same factor applies
if we manually jump to the next (or previous) representable double value.

Handling floating-point primitives correctly can, depending on the architec-
ture, be very expensive. In most cases, however, the computed error bounds mas-
sively overestimate the actual error. Moreover, for the actual bigfloats computa-
tions the error bounds are rounded up to the next integer. It is therefore almost
impossible that floating-point rounding errors make an actual difference in any
computation. For our experiments we refrained from handling those bounds cor-
rectly to make the results more meaningful and less architecture-dependent.

4 Conclusion

We have shown, theoretically and experimentally, that both external and inter-
nal balancing methods are useful tools to mitigate the impact of badly balanced
expression dags. Restructuring has a higher potential on reducing the cost, but
can become useless or even detrimental if the graph has many common subex-
pressions or is already balanced. In a parallel environment, restructuring is nec-
essary to make use of multiple processors in an unbalanced graph. Error bound
balancing is more widely applicable, but is limited in its effectivity. If the graph
is small or already sufficiently balanced, neither of the methods has a significant
positive impact on the evaluation cost. A general purpose number type should
therefore always check whether the structure generally requires balancing before
applying either of the algorithms. For both strategies we have described optimal
weight functions. In both cases implementations require heuristics to be practi-
cable. Our experiments show that carefully chosen heuristics are in most cases
sufficient to increase the performance of exact number types.

References

1. IEEE standard for floating-point arithmetic: IEEE Std 754–2008, pp. 1–70 (2008)
2. Borassi, M.: A note on the complexity of computing the number of reachable

vertices in a digraph. Inf. Process. Lett. 116(10), 628–630 (2016). https://doi.org/
10.1016/j.ipl.2016.05.002

https://doi.org/10.1016/j.ipl.2016.05.002
https://doi.org/10.1016/j.ipl.2016.05.002

Internal vs External Balancing in the Evaluation of Graph-Based Number 375

3. Brent, R.P.: The parallel evaluation of general arithmetic expressions. J. ACM
21(2), 201–206 (1974). https://doi.org/10.1145/321812.321815

4. van der Hoeven, J.: Computations with effective real numbers. Theor. Comput.
Sci. 351(1), 52–60 (2006). https://doi.org/10.1016/j.tcs.2005.09.060

5. Majithia, J.C., Levan, D.: A note on base-2 logarithm computations. Proc. IEEE
61(10), 1519–1520 (1973). https://doi.org/10.1109/PROC.1973.9318

6. Mehlhorn, K., Näher, S.: LEDA a library of efficient data types and algorithms.
In: Kreczmar, A., Mirkowska, G. (eds.) MFCS 1989. LNCS, vol. 379, pp. 88–106.
Springer, Heidelberg (1989). https://doi.org/10.1007/3-540-51486-4 58

7. Monniaux, D.: The pitfalls of verifying floating-point computations. ACM Trans.
Program. Lang. Syst. 30(3), 12:1–12:41 (2008). https://doi.org/10.1145/1353445.
1353446

8. Mörig, M., Rössling, I., Schirra, S.: On design and implementation of a generic num-
ber type for real algebraic number computations based on expression dags. Math.
Comput. Sci. 4(4), 539–556 (2010). https://doi.org/10.1007/s11786-011-0086-1

9. Mörig, M., Schirra, S.: Precision-driven computation in the evaluation of expression-
dags with common subexpressions: problems and solutions. In: Kotsireas, I.S.,
Rump, S.M., Yap, C.K. (eds.) MACIS 2015. LNCS, vol. 9582, pp. 451–465. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-32859-1 39

10. Schirra, S.: Robustness and precision issues in geometric computation. In: Hand-
book of Computational Geometry, pp. 597–632. Elsevier (2000)

11. Wilhelm, M.: Balancing expression dags for more efficient lazy adaptive evaluation.
In: Blömer, J., Kotsireas, I.S., Kutsia, T., Simos, D.E. (eds.) MACIS 2017. LNCS,
vol. 10693, pp. 19–33. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
72453-9 2

12. Wilhelm, M.: Multithreading for the expression-dag-based number type
Real algebraic. Technical Report FIN-001-2018, Otto-von-Guericke-Universität,
Magdeburg (2018)

13. Wilhelm, M.: On error representation in exact-decisions number types. In: Pro-
ceedings of the 30th Canadian Conference on Computational Geometry, CCCG,
pp. 367–373 (2018)

14. Wilhelm, M.: Restructuring expression dags for efficient parallelization. In: 17th
International Symposium on Experimental Algorithms, SEA, pp. 20:1–20:13
(2018). https://doi.org/10.4230/LIPIcs.SEA.2018.20

15. Yap, C.: Towards exact geometric computation. Comput. Geom. 7, 3–23 (1997).
https://doi.org/10.1016/0925-7721(95)00040-2

16. Yu, J., Yap, C., Du, Z., Pion, S., Brönnimann, H.: The design of core 2: a library
for exact numeric computation in geometry and algebra. In: Fukuda, K., Hoeven,
J., Joswig, M., Takayama, N. (eds.) ICMS 2010. LNCS, vol. 6327, pp. 121–141.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15582-6 24

https://doi.org/10.1145/321812.321815
https://doi.org/10.1016/j.tcs.2005.09.060
https://doi.org/10.1109/PROC.1973.9318
https://doi.org/10.1007/3-540-51486-4_58
https://doi.org/10.1145/1353445.1353446
https://doi.org/10.1145/1353445.1353446
https://doi.org/10.1007/s11786-011-0086-1
https://doi.org/10.1007/978-3-319-32859-1_39
https://doi.org/10.1007/978-3-319-72453-9_2
https://doi.org/10.1007/978-3-319-72453-9_2
https://doi.org/10.4230/LIPIcs.SEA.2018.20
https://doi.org/10.1016/0925-7721(95)00040-2
https://doi.org/10.1007/978-3-642-15582-6_24

Hacker’s Multiple-Precision
Integer-Division Program in Close

Scrutiny

Jyrki Katajainen1,2(B)

1 Department of Computer Science, University of Copenhagen,
Universitetsparken 5, 2100 Copenhagen East, Denmark

jyrki@di.ku.dk
2 Jyrki Katajainen and Company, 3390 Hundested, Denmark

http://hjemmesider.diku.dk/~jyrki/

Abstract. Before the era of ubiquitous computers, the long-division
method was presented in primary schools as a paper-and-pencil tech-
nique to do whole-number division. In the book “Hacker’s Delight” by
Warren [2nd edition, 2013], an implementation of this algorithm was
given using the C programming language. In this paper we will report
our experiences when converting this program to a generic program-
library routine.

The highlights of the paper are as follows: (1) We describe the long-
division algorithm—this is done for educational purposes. (2) We out-
line its implementation—the goal is to show how to use modern C++ to
achieve flexibility, portability, and efficiency. (3) We analyse its computa-
tional complexity by paying attention to how the digit width affects the
running time. (4) We compare the practical performance of the library
routine against Warren’s original. It is pleasure to announce that the
library routine is faster. (5) We release the developed routine as part
of a software package that provides fixed-width integers of arbitrary
length, e.g. a number of type cphstl::N<2019> (editor’s note: the non-
transliterated form used in the code is cphstl::bbbN<2019>) has 2019
bits and it supports the same operations with the same semantics as a
number of type unsigned int.

Keywords: Software library · Multiple-precision arithmetic ·
Algorithm · Long division · Description · Implementation · Meticulous
analysis · Experimentation

1 Introduction

The algorithms for multiple-precision integer addition, subtraction, multiplica-
tion, and division are at the heart of algorithmics. In this paper we discuss
the computer implementation of the long-division method introduced by Briggs

c© Springer Nature Switzerland AG 2019
I. Kotsireas et al. (Eds.): SEA2 2019, LNCS 11544, pp. 376–391, 2019.
https://doi.org/10.1007/978-3-030-34029-2_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34029-2_25&domain=pdf
http://orcid.org/0000-0002-7714-5588
https://doi.org/10.1007/978-3-030-34029-2_25

Hacker’s Multiple-Precision Integer-Division Program in Close Scrutiny 377

around 1600 A.D. [https://en.wikipedia.org/wiki/Long division]. The underly-
ing ideas are even older since the Chinese, Hindu, and Arabic division methods
used before that show remarkable resemblance to it [8,13].

In a positional numeral system, a string 〈d�−1, d�−2, . . . , d0〉 of digits di, i ∈
{0, 1, . . . , � − 1}, is used to represent an integer d, � being the length of the
representation, d�−1 the most-significant digit, and d0 the least-significant digit.
Let β, β ≥ 2, denote the base of the numeral system. The individual digits are
drawn from some bounded universe, the size of which is at least β, and the digit
dj has the weight βj . In the decimal system, the digit universe is {0, 1, . . . , 9}
and the weight of dj is 10j . For a general base β, the decimal value of d is
∑�−1

j=0 dj · βj . As is customary, in this representation the leading zero digits (0)
may be omitted, except when representing number zero (0).

In the computer representation of a number, the digit width is often selected
to be in harmony with the word size of the underlying hardware. We use W to
denote the type of the digits and we assume that the width of W is a power of
two. The numbers themselves are arrays of digits of type W. The length of these
arrays can be specified at compile time (std::array in C++), or the length can
be varying and may change at run time (std::vector in C++). The memory for
these arrays can be allocated from the stack at run time (so-called C arrays)
or from the heap relying on the memory-allocation and memory-deallocation
methods provided by the operating system. Since memory management is not
highly relevant for us, we will not discuss this issue here.

In the division problem for whole numbers (non-negative integers), the task
is to find out how many times a number y (divisor) is contained in another
number x (dividend). Throughout the paper, we use the division operator / to
denote the whole-number division and we assume that y �= 0 since division by
0 has no meaning. That is, the output of �x/y� is the largest whole number q
(quotient) for which the inequality q ∗ y ≤ x holds. Throughout the paper, we
use n to denote the length of the dividend (the number of its digits) and m the
length of the divisor. After computing the quotient, the remainder x−q ∗y can
be obtained by a single long multiplication and long subtraction. We ignore the
computation of the remainder, but we acknowledge that a routine divmod that
computes both the quotient and the remainder at the same time could be handy.

The main motivation for this study was the desire to implement a program
package for the manipulation of multiple-precision integers. In our application
(see [3]), we only needed addition, subtraction, and multiplication for numbers
whose length was two or three words. When making the package complete and
finishing the job, the implementation of the division algorithm turned out to be
a non-trivial task. We are not the first to make this observation (see, e.g. [1]).

First, we reviewed the presentation of the long-division algorithm in “The
Art of Computer Programming” (Volume 2) [6, Sect. 4.3.1]. Knuth described
the algorithm (Algorithm D), proved its correctness (Theorem B), analysed its
complexity, and gave an implementation (Program D) using his mythical MIX
assembly language. The paper by Pope and Stein [11] was one of the significant
sources used by him. Under reasonable assumptions, Knuth estimated that, in

https://en.wikipedia.org/wiki/Long_division

378 J. Katajainen

the average case, the program will execute about 30 n · m + O(n + m) MIX
instructions. (Before reading Knuth’s book, check the official errata available
at [https://www-cs-faculty.stanford.edu/∼knuth/taocp.html]—this can save you
some troubles later.)

Next, we looked at the Pascal implementation described by Brinch Hansen [1]
and the C implementation described by Warren in the book “Hacker’s
Delight” [12] (errata can be found at [https://www.hackersdelight.org/]). In par-
ticular, Warren carefully examined many implementation details so we decided
to base our library implementation on his programs (the source code is avail-
able at [https://www.hackersdelight.org/]). We looked at other sources as well,
but very quickly we got back to Algorithm D or some of its variants. When the
numbers are not longer than a few thousand digits, the long-division algorithm
should be good enough for most practical purposes. Although its asymptotic
complexity is high O(n · m), the leading constant in the order notation is small.

In this write-up, we report our observations when implementing the division
routine for the multiple-precision integers provided by the CPH STL [http://
www.cphstl.dk/]. We put emphasis on the following issues:

Portability. In the old sources the digit universe is often fixed to be small.
For example, in Warren’s implementation the width of digits was set to 16
bits. For our implementation the digit width can be any power of two—it
should just be specified at compile time. We wrote the programs using C++.
This made it possible to hide some of the messy details inside some few
subroutines called by the high-level code.

Analysis. Instead of the MIX cost used by Knuth or the RISC cost used by
Warren, we analyse the Intel cost—the number of Intel assembler
instructions—of the long-division routine as a function of the number of the
bits in the inputs and the word size of the underlying computer. (Before read-
ing any further, you should stop for a moment to think about what would
be a good data type W for the digits when dividing an N -bit number with an
N
2 -bit number.)

Efficiency. We perform some experiments to check the validity of our back-of-
the-envelope calculations in a real machine. The tests show unanimously that
our program—with larger digit widths—is faster than Warren’s program. And
because of adaptability, it should be relatively easy to modify the code—if at
all necessary—if the underlying hardware changes.

2 Long-Division Algorithm

Let
⊙

be one of the operations supported by the C++ programming language
for integers, e.g. ==, <, +, −, ∗, /, %, >>, <<, ∼ (compl), & (bitand), or ||
(bitor). To understand the beauty of the division algorithm, we use the notation⊙

(n, m) to denote a subroutine that performs the
⊙

operation when the first
operand is an n-digit number and the second operand (if any) an m-digit number.

https://www-cs-faculty.stanford.edu/~knuth/taocp.html
https://www.hackersdelight.org/
https://www.hackersdelight.org/
http://www.cphstl.dk/
http://www.cphstl.dk/

Hacker’s Multiple-Precision Integer-Division Program in Close Scrutiny 379

2.1 Software Stack

To perform the operation /(n, m), the long-division algorithm needs the follow-
ing subroutines:
⊙

(1),
⊙ ∈ {∼,nlz}. The primitive ∼ computes the bitwise complement of a

digit and nlz the number of leading 0 bits in a digit. We assume that these
primitives are available in hardware or provided by the environment.⊙

(1, 1),
⊙ ∈ {==,<, /,%,>>,<<,&, ||}. We assume that these operations

are also available in hardware or provided by the environment.
+(1, 1). We assume that this operation is a built-in primitive. The overflow bit

(carry) can be computed by checking whether the sum is smaller than one of
the operands (<(1, 1) operation) [12, Sect. 2-16].

−(1, 1). We assume that this operation is a built-in primitive. The underflow bit
(borrow) can be computed by checking whether the first operand is smaller
than the second (<(1, 1) operation) [12, Sect. 2-16].

∗(1, 1). We assume that this operation is a built-in primitive, but the output
consists of two digits so the higher-order digit must be computed separately.
A routine that computes the higher-order digit without overflows is described
in [12, Fig. 8-2]. (It requires 16 RISC instructions.)

+(2, 1). This operation involves two +(1, 1) operations and one <(1, 1) oper-
ation to forward the carry bit (if any) from the first position to the second.
The operation is always used in a context where the overflow can be ignored.

/(2, 1). The operation is only needed in a context where the output is one digit
long. In principle, this operation implements the division tables which are
the reversal of the multiplication tables we learnt at school. This operation is
the most complicated subroutine; an implementation is given in [12, Fig. 9-4].
(According to Warren’s analysis, for uniformly distributed random numbers,
this operation executes about 52 RISC instructions.)

∗(n, 1). This operation can be accomplished in a single scan over the first
operand by invoking n times the ∗(1, 1) operation, forwarding the higher-
order digit from the previous position and adding it to the result of the
multiplication with a +(2, 1) operation [1, Algorithm 2]. This form of mul-
tiplication is always used in a context where the overflow can be ignored.

<(n, n). This operation is a simple scan over the digits starting from the most-
significant end [1, Algorithm 6]. The first position where the digits differ is
found (if any) using the ==(1, 1) operation and at the found position the
<(1, 1) operation is applied to get the answer.

−(n, n). This operation can be accomplished in one scan by performing n
+(1, 1) operations, n −(1, 1) operations, and 2n <(1, 1) operations to
handle the borrow from the previous position [1, Algorithm 7]. This form of
subtraction is always used in a context where the underflow can be ignored.

Since the computational complexity of the long-division algorithm will be deter-
mined by the routines ∗(n, 1), <(n, n), and −(n, n), we give them their own
names product, is_less, and difference, respectively.

380 J. Katajainen

2.2 Algorithm Description

Let us consider how the division problem can be solved when the dividend is
x = 〈xn−1, xn−2, . . . , x0〉 and the divisor y = 〈ym−1, ym−2, . . . , y0〉. We assume
that n and m are the real lengths of the numbers so that xn−1 �= 0 and ym−1 �= 0.
Recall that the digits are of type W and let w be the width of W in bits.

At a high level, the long-division algorithm is simple: it computes the quo-
tient digits one at the time starting from the most-significant end. The basic
complication is the need of a good estimate q̂ for the next quotient digit. When
this is available, the partial remainder can be updated and the computation can
proceed to the next digit.

To get a reasonable estimate for the next quotient digit, the key algorithmic
idea is normalization [11]: this means that the divisor is cast into the form where
its most significant digit is higher than or equal to 2w−1. One way to achieve this
is to multiply both the dividend and the divisor with some factor f , which makes
the most-significant digit of the divisor large enough. Let x = f ∗x and y = f ∗y.
Since

⌊
x/y

⌋
= �x/y�, the quotient for the normalized numbers is the same as

that for the original numbers. Knuth used the factor f = �2w/(ym−1 + 1)� (see
the errata of [6, Sect. 4.3.1]). Warren [12, Fig. 9-4] used the factor f = 2σ, where
σ is the number of leading 0 bits in ym−1.

During the execution of the algorithm, the partial remainder is maintained
in u = 〈un, un−1, . . . , u0〉 which is initialized to contain the normalized dividend
f ∗ x. The normalized divisor is maintained in v = 〈vm, vm−1, . . . , v0〉. In the
main loop of the algorithm, the loop index j goes down from n−m to 0. We call
the subrange of length m+1 〈uj+m, uj+m−1, . . . , uj〉 the active part of the partial
remainder. Then the operation /(2, 1) with the first two digits 〈uj+m, uj+m−1〉
of the active part and vm−1 is used to compute an estimate q̂ for the next
quotient digit. This estimate is the correct quotient digit, or it is one or two too
high [6, Theorem B]. Collins and Musser [2] proved that for random numbers,
with high probability, the estimate is correct or off by one.

These results have been improved in several ways: (1) Mifsud [9] (see an
addendum in [10]) proved that with more aggressive normalization the estimate
can be guaranteed to be correct or off by one. (2) Krishnamurthy and Nandi [7]
obtained the same result by using the prefixes of 3 and 2 digits when calculating
the estimate. So both of these approaches guarantee that not more than one
correction is required to obtain the true quotient digit. (3) Also, people have
tried to find conditions under which the normalization can be skipped (see, for
example, [7,9]). Even if the use of v can be avoided, temporary storage is still
needed to store the active part of the partial remainder u and the product p of
q̂ and the (normalized) divisor.

Now we can describe the algorithm in detail:

(1) If x < y, return 0 as the answer. This comparison is a generalization of
the <(n, n) operation where the operands are not necessarily of the same
length. It involves a synchronous scan over the digits starting from the end
of the longer string. After this step we can be sure that n ≥ m.

Hacker’s Multiple-Precision Integer-Division Program in Close Scrutiny 381

(2) Allocate space for the quotient q = 〈qn−m, qn−m−1, . . . , q0〉 and fill it with
zeros.

(3) Allocate space for the partial remainder u = 〈un, un−1, . . . , u0〉 and copy x
there; observe that u is one longer, so un is set to zero.

(4) Allocate space for the normalized divisor v = 〈vm, vm−1, . . . , v0〉 and copy
y there; vm is needed to make this string m + 1 long, so vm is set to zero.

(5) Compute the number of leading 0 bits in the digit ym−1. Let this be σ.
(6) Shift the bits of u σ positions to the left. This operation is a special case of

the ∗(n + 1, 1) operation where the multiplier is 2σ. Since u is one digit
longer than x and σ < w, no overflow is possible.

(7) Shift the bits of v σ positions to the left. Naturally, no overflow is possible
and after this operation the leading bit of vm−1 is set as required.

(8) Compute now the digits of q, one by one, by letting the loop index j go
down from n − m to 0.

(a) Calculate an estimate q̂ for the quotient digit by invoking the /(2, 1)
operation with the arguments 〈uj+m, uj+m−1〉 and vm−1. However, if
uj+m ≥ vm−1, set q̂ equal to 2w − 1 without performing the division.

(b) Compute the product of v and q̂ by invoking the ∗(m + 1, 1) operation.
Keep the result temporarily in p = 〈pm, pm−1, . . . , p0〉.

(c) Check if the estimate is too large by invoking the <(m + 1, m + 1)
operation for the active part of the partial remainder 〈uj+m, uj+m−1,
. . . , uj〈 and p.

(d) If the estimate was too large, make it one smaller, subtract v from p by
performing the −(m + 1, m + 1) operation, and go back to Step 8c.

(e) Otherwise, set qj equal to q̂ . Furthermore, update the partial remainder
by subtracting the computed product p from the active part by invok-
ing the −(m + 1, m + 1) operation. Hereafter we can proceed to the
computation of the next quotient digit.

(9) Release the space allocated for u, v, and p.
(10) Return q as the result of the computation.

2.3 Asymptotic Analysis

In this algorithm, Steps (1)–(7) all involve sequential scans over the digit strings.
If the digits can be processed at unit cost, the amount of work done is O(n+m).
Most of the work is done in Step 8. Of the substeps, Step 8b calls the func-
tion product, Step 8c the function is_less, and Steps 8d and 8e the function
difference. The arguments are of length m+1. Each of these operations involves
a linear scan over the digits. Therefore, the asymptotic complexity of the algo-
rithm is O((n − m) · m + n + m).

3 Implementation

In this section we describe our implementation of the long-division algorithm.
The source code is extracted from the CPH STL so, unfortunately, it contains
some noise that has to be explained first.

382 J. Katajainen

Standard library. A good documentation of the facilities available at the C++
standard library can be found at [https://en.cppreference.com/].

Constraints and concepts. In the code some requirements are specified for
the template arguments to ensure that the components are used in a correct
way. Here we rely on the features drafted in the upcoming C++2a standard,
but some compilers support them already now.

Type functions. In the code some metaprogramming tools are used; these are
taken from the CPH MPL (Copenhagen metaprogramming library) [4]. A type
function maps a type to some value or to some type, and this computation
is done at compile time. By convention, a type function, the name of which
begins with is_, returns a Boolean value. As concrete examples, consider the
following type functions specified for some type W:
(1) The built-in function sizeof(W) gives the size of the objects of type W,

measured in bytes. Unfortunately, for this type function the syntax is not
the same as that preferred in the CPH MPL.

(2) The type function cphmpl::width<W> returns the width of the objects of
type W, measured in bits. In our test computer, the compiler will replace
all occurrences of cphmpl::width<int> in the code with the number 32.

(3) The type function cphmpl::twice_wider<W> specifies an alias for the
type, the width of which is twice as large as that of W. For example,
cphmpl::twice_wider<cphstl::N<512>> is an alias for cphstl::N<1024>.

Ranges. The digit strings given for the programs can be stored in a std::array,
in a std::vector, in a C array, or in any other container—or part of it—
that supports (bidirectional) iterators. A range specifies such a sequence. To
manipulate the digits, it must be possible to use a range as an argument
for the functions std::begin, std::cbegin, std::end, std::cend, std::size, and
std::empty. With this abstraction, the programs are independent of the rep-
resentation of the digit strings.

Hidden details. The code for some functions is omitted on purpose. Many of
the omitted functions defined inside the namespace cphstl::detail work for
an arbitrary numeric type, but they are overloaded to work more efficiently
for the standard integer types.

3.1 Function is less

The implementation of function is_less is given in Listing 1. Starting from the
most significant digit, the purpose is to find the first position where the two
strings differ and then use the found digits to determine the answer. The critical
inner loop is in lines 15–18.

Listing 1. Function is less in C++.

1 template<typename L , typename R>
2 requires
3 /∗ 1 ∗/ cphmpl : :specifies_range<L> and
4 /∗ 2 ∗/ cphmpl : :specifies_range<R> and
5 /∗ 3 ∗/ std : :is_same_v<cphmpl : :value<L> , cphmpl : :value<R>>

https://en.cppreference.com/

Hacker’s Multiple-Precision Integer-Division Program in Close Scrutiny 383

6 bool is_less(L const& lhs , R const& rhs) {
7 // check whether lhs < rhs or not
8 assert(std : :size(lhs) == std : :size(rhs)) ;
9 assert(not std : :empty(lhs)) ;

10 using I = cphmpl : :const_iterator<L> ;
11 using J = cphmpl : :const_iterator<R> ;
12 I p = std : :cend(lhs) ;
13 J q = std : :cend(rhs) ;
14 I first = std : :cbegin(lhs) ;
15 do {
16 −−p ;
17 −−q ;
18 } while (p =�== first and ∗p == ∗q) ;
19 return ∗p < ∗q ;
20 }

We declared the digits to be of type unsigned long long int, the size of which
was 8 bytes, and asked the compiler to generate the assembler code for the inner
loop of is_less. The inner loop had 7 instructions. A micro-benchmark that
was used to verify this count compared two equal numbers. The test revealed
that, when the digits were of type unsigned char, the compiler could optimize
the code so that the execution only required 0.17 instructions per digit. This
optimization was not done for the other standard types.

3.2 Function difference

In long division, it is only necessary to do the subtraction x − y when the two
numbers have the same length and when x ≥ y. Also, it is not necessary to keep
the old value. Therefore, we implemented the operation x −= y in addition to
the general subtraction. The C++ code for this is given in Listing 2. Here the
inner loop is in lines 18–26.

Listing 2. Function difference in C++.

1 template<typename L , typename R>
2 requires
3 /∗ 1 ∗/ cphmpl : :specifies_range<L> and
4 /∗ 2 ∗/ cphmpl : :specifies_range<R> and
5 /∗ 3 ∗/ std : :is_same_v<cphmpl : :value<L> , cphmpl : :value<R>> and
6 /∗ 4 ∗/ cphmpl : :is_unsigned<cphmpl : :value<L>>
7 void difference(L& minuend , R const& subtrahend) {
8 // compute minuend −= subtrahend
9 assert(std : :size(minuend) == std : :size(subtrahend)) ;

10 assert(not std : :empty(minuend)) ;
11 using I = cphmpl : :iterator<L> ;
12 using J = cphmpl : :const_iterator<R> ;
13 using W = cphmpl : :value<L> ;
14 I p = std : :begin(minuend) ;
15 J q = std : :cbegin(subtrahend) ;
16 I past = std : :end(minuend) ;

384 J. Katajainen

17 bool borrow = 0;
18 while (p =�== past) {
19 W t = ∗q + W(borrow) ;
20 bool overflow = (t < ∗q) ;
21 bool underflow = (∗p < t) ;
22 ∗p = ∗p − t ;
23 borrow = overflow or underflow ;
24 ++p ;
25 ++q ;
26 }
27 }

Again we let the compiler generate the assembly-language translation when
the digits were of type unsigned long long int. The inner loop had 15 instruc-
tions. When the digits were of type unsigned char, the compiler could optimize
the code so that the execution only required about 12 instructions per digit.

3.3 Function product

In long division, only a restricted form of multiplication is needed where a num-
ber x is multiplied by a single digit. Furthermore, it is not allowed to modify x so
the result must be saved somewhere else. We assume that the caller has allocated
space for the result. Listing 3 gives the C++ code that does this multiplication.

Listing 3. Function product in C++.

1 template<typename L , typename R , typename W>
2 requires
3 /∗ 1 ∗/ cphmpl : :specifies_range<L> and
4 /∗ 2 ∗/ cphmpl : :specifies_range<R> and
5 /∗ 3 ∗/ cphmpl : :is_unsigned<W> and
6 /∗ 4 ∗/ std : :is_same_v<cphmpl : :value<L> , W> and
7 /∗ 5 ∗/ std : :is_same_v<cphmpl : :value<R> , W>
8 void product(L& result , R const& multiplicand , W const& factor) {
9 // compute result = multiplicand ∗ factor

10 assert(std : :size(result) == std : :size(multiplicand)) ;
11 using D = cphmpl : :twice_wider<W> ;
12 using I = cphmpl : :iterator<L> ;
13 using J = cphmpl : :const_iterator<R> ;
14 J first = std : :cbegin(multiplicand) ;
15 J past = std : :cend(multiplicand) ;
16 W carry = W() ;
17 I q = std : :begin(result) ;
18 for (J p = first ; p =�== past ; ++p , ++q) {
19 D t = cphstl : :detail : :multiply<D>(∗p , factor) ;
20 t = cphstl : :detail : :add(t , carry) ;
21 ∗q = cphstl : :detail : :lower_half<W> (t) ;
22 carry = cphstl : :detail : :upper_half<W> (t) ;
23 }
24 }

Hacker’s Multiple-Precision Integer-Division Program in Close Scrutiny 385

Here W is the type of the digits and D is an alias for a type that is twice as wide
as W. The function cphstl::detail::multiply performs the operation ∗(1, 1) and
the function cphstl::detail::add the operation +(2, 1). Finally, the remaining
functions cphstl::detail::lower_half and cphstl::detail::upper_half are used to
get from a digit of type D its two halves of type W.

The inner loop is in lines 18–23. When sizeof(W) was 8 and D was an alias of
unsigned __int128—an extension supported by the g++ compiler, the assembly-
language translation of this loop contained 10 instructions. On the other hand,
when D was an alias of std::array<W, 2>, the inner loop contained 26 instruc-
tions. For unsigned char the instruction count was 9, and for unsigned short

and unsigned int it was 10. For the digit widths 128 and 256, the instruction
count dropped to around 6 which could be explained by the fact that the com-
piler had turned on the streaming SIMD extensions (SSE), allowing parallel
operations on four values per instruction.

3.4 Main Loop

After these initial exercises, we can peek inside the long-division program. Its
main loop is shown in Listing 4. The meaning of most functions should be clear
by their names. The function cphstl::detail::halves_together concatenates two
digits and the function cphstl::detail::divide performs the /(2, 1) operation.
Because of the if test before this division operation, the output is always a
single digit and the upper half can be discarded.

Listing 4. The main loop of the long-division program in C++; array u contains the
partial remainder, array v the normalized divisor, and array p is for temporary use.

1 auto normalized_divisor = cphstl : :range(&v [0] , &v [m + 1]) ;
2 auto temporary = cphstl : :range(&p [0] , &p [m + 1]) ;
3 auto q = std : :begin(quotient) ;
4 std : :advance(q , n − m) ;
5

6 for (int j = n − m ; j ≥ 0; −−j , −−q) {
7 auto active_part = cphstl : :range(&u [j] , &u [j+m+ 1]) ;
8 W q̂ = compl W() ; // estimate for the quotient digit
9 i f (u [j+m] < v [m−1]) {

10 D t = cphstl : :detail : :halves_together<D> (u [j+m−1] , u [j+m]) ;
11 t = cphstl : :detail : :divide(t , v [m−1]) ;
12 q̂ = cphstl : :detail : :lower_half<W> (t) ;
13 }
14 cphstl : :detail : :product(temporary , normalized_divisor , q̂) ;
15 while (cphstl : :detail : :is_less(active_part , temporary)) {
16 −− q̂ ; // correction ; estimate may be 1 or 2 too large
17 cphstl : :detail : :difference(temporary , normalized_divisor) ;
18 }
19 ∗q = q̂ ;
20 cphstl : :detail : :difference(active_part , temporary) ;
21 }

386 J. Katajainen

4 Meticulous Analysis

After describing the long-division program, we can analyse its performance. All
the processing is sequential, so we are mainly interested in the number of instruc-
tions executed. In the analysis we keep the number of digits (n) fixed, but vary
the width of the digits.

Table 1. Summary of the instruction counts (per digit) determined experimentally for
the performance-critical functions.

Digit width is less difference product

8 0.17 12.30 9.17

16 7.16 14.28 10.16

32 7.16 14.24 10.15

64 7.18 15.24 26.17

128 10.40 33.51 6.39

256 16.68 71.88 6.67

512 29.26 148.62 2 874

1024 54.37 317.04 14 339

In Table 1, we summarize the instruction counts that were measured for the
efficiency-determining functions. In the reported counts, the total number of
instructions executed is divided by n. In the micro-benchmarks, (1) is_less

compared two equal numbers; (2) difference processed two random numbers,
except that the first was made larger by resetting the most significant digits; and
(3) product multiplied a long random number with a random digit. These counts
are approximations, but they are firmly linked to the generated assembler code.

Assume now that N is a power of two and that we want to divide an N -bit
number with an N

2 -bit number. When the word size is α, our theoretical analysis
shows that the running time of the long-division program should be proportional
to N

2α · N
2α . This analysis is based on the assumption that digits can be processed

at unit cost. The micro-benchmarks show that—in the test environment—this
assumption is valid up to 64, or maybe all the way to 256.

Assuming that we rely on the more aggressive normalization proposed by
Mifsud [9], the estimate is correct or off by one. Then, in the worst-case scenario,
in each iteration of the main loop the functions is_less and product are called
once, and difference is called twice. Thus, for the word size α (α ≤ 64), N -
bit dividend, and N

2 -bit divisor, the worst-case Intel cost of the long-division
program is 1

4 ·(7.18+2·15.24+26.17)·(N
α

)2+O
(

N
α

)
, which is 15.95·(N

α

)2+O
(

N
α

)
.

5 Integration with the Library

The class templates cphstl::N and cphstl::Z are designed to provide fixed-width
integers of arbitrary length [5]. The number of bits (b) used in the representa-
tion is specified at compile time. Let us use U as a shorthand for the standard

Hacker’s Multiple-Precision Integer-Division Program in Close Scrutiny 387

type unsigned long long int and let α = cphmpl::width<U>. The class template
cphstl::N is written in two parts using constraint-based overloading.

(1) When 0 < b ≤ α, the classes cphstl::N are just thin wrappers around
the standard unsigned integer types (Listing 5). If b is not a power of two,
additional sanitation is needed to perform the calculations modulo 2b.

Listing 5. An extract from the private part of cphstl::N for 0 < b ≤ α.

1 using uints = cphmpl : :typelist<unsigned char, unsigned short int ,
↪→ unsigned int , unsigned long int , unsigned long long int> ;

2 using W = uints : :get<detail : :first_wide_enough<uints , b>()> ;
3

4 W data ;

(2) When b > α, an integer is represented as a std::array<U, n>, where n =
�(b + α − 1)/α� (Listing 6). The long-division algorithm is in action first
when the numbers are wider than α.

Listing 6. An extract from the private part of cphstl::N for b > α.

1 using U = unsigned long long int ;
2

3 static constexpr std : :size_t α = cphmpl : :width<U> ;
4 static constexpr std : :size_t n = (b + α − 1) / α ;
5

6 std : :array<U , n> data ;

In the first place, we needed the long-division program for the implementation
of operator/ for the class templates cphstl::N and cphstl::Z. Soon this program
became an important test-bed for the whole library since the functions inside the
library should work for these fixed-width integers themselves. In particular, in
long division, it is now possible to choose the digits to be of type cphstl::N

for arbitrary positive integer b that is a power of two.
To get some insight into the program transformations involved, when con-

verting Warren’s implementation [12, Chapter 9] into a generic library routine,
look at the following code extracts taken from Hacker’s Delight (Listing 7) and
the CPH STL (Listing 8), respectively. When W is an alias of unsigned int, the
assembler code generated by the compiler should be identical for both, but the
latter works for any unsigned integer type and it can even be faster.

Listing 7. An extract from the function divlu in [12, Fig. 9-3].

1 // v is the divisor of type unsigned int
2

3 unsigned vn0 , vn1 ;
4 int s ;
5

6 s = nlz(v) ; // 0 ≤ s ≤ 31
7 v = v << s ; // Normalize divisor .
8 vn1 = v >> 16; // Break divisor into
9 vn0 = v & 0xFFFF ; // two 16−bit digits .

388 J. Katajainen

Listing 8. An extract from the function divide_long_unsigned in the CPH STL.

1 // W is a template parameter
2 // v is the divisor of type W
3

4 constexpr std : :size_t w = cphmpl : :width<W> ;
5 constexpr W ooooffff = cphstl : :some_trailing_ones<w / 2, W> ;
6

7 std : :size_t const s = cphstl : :leading_zeros(v) ;
8 v = v << s ;
9 W const vn1 = v >> (w / 2) ;

10 W const vn0 = v bitand ooooffff ;

The functions nlz [12, Sect. 5-3] and cphstl::leading_zeros compute the num-
ber of leading 0 bits in the representation of a digit. In the CPH STL, this func-
tion is overloaded to work differently depending on the type of the argument.
For the standard integer types, it can even call an intrinsic function that will be
translated into a single hardware instruction1. There is also a constexpr form
that computes the value at compile time if the argument is known at that time.

6 Benchmarking

In the following we will explain in more detail how we evaluated the quality of
the division routines in the CPH STL.

6.1 Computing Environment

All the experiments were done on a personal computer that run Linux. The pro-
grams were written in C++ and the code was compiled using the g++ compiler.
The hardware and software specifications of the system were as follows.

Processor. Intel� CoreTM i7-6600U CPU @ 2.6 GHz × 4
Word size. 64 bits
Operating system. Ubuntu 18.04.1 LTS
Linux kernel. 4.15.0-43-generic
Compiler. g++ version 8.2.0—GNU project C++ compiler
Compiler options. −O3 −Wall −Wextra −std=c++2a −fconcepts −DNDEBUG

Profiler. perf stat—Performance analysis tool for Linux
Profiler options. −e instructions

6.2 Small Numbers

In our first experiment, we wanted to test how well the operations for the types
cphstl::N perform. The benchmark was simple: For an array x of n digits and
a digit f, execute the assignment x[i] = x[i]

⊙

f for all i ∈ {0, 1, . . . , n − 1}. In
the benchmark the number of instructions executed, divided by n, was measured
for different digit types and operators

⊙ ∈ {+,−, ∗, /}.
1 The Windows support of the bit tricks was programmed by Asger Bruun.

Hacker’s Multiple-Precision Integer-Division Program in Close Scrutiny 389

Table 2. The number of instructions executed (per operation) on an average when
performing scalar-vector arithmetic for different types; in the implementation of
cphstl::N<128> the GNU extension unsigned __int128 was not used.

Type + − ∗ /

unsigned char 0.40 0.40 0.90 6.02

unsigned short int 0.46 0.46 0.46 4.53

unsigned int 0.89 0.89 2.39 4.52

unsigned long long int 1.77 1.77 5.77 4.53

unsigned __int128 5.53 5.53 7.04 19.55

cphstl::N<8> 0.25 0.25 0.72 6.02

cphstl::N<16> 0.46 0.46 0.46 7.02

cphstl::N<24> 1.14 1.14 2.77 7.02

cphstl::N<32> 0.89 0.89 2.39 7.02

cphstl::N<48> 2.27 2.27 6.27 7.03

cphstl::N<64> 1.77 1.77 5.77 7.03

cphstl::N<128> 5.54 7.54 24.07 18.12

cphstl::N<256> 18.06 27.06 161.9 49.37

cphstl::N<512> 38.11 81.11 407.6 73.61

cphstl::N<1024> 96.21 179.2 1396 129.3

The obtained instruction counts are reported in Table 2. Here the absolute
values are not important due to loop overhead; one should look at the relative
values instead. From these results, we make two conclusions:

(1) The g++ compiler works well! When wrapping the standard types into a
class, the abstraction penalty is surprisingly small. Division is somewhat
slower due to the check if the divisor is zero, which is done to avoid undefined
behaviour.

(2) On purpose, in the implementation of the type cphstl::N<128>, we did not
rely on the extension unsigned __int128. Instead the double-length arith-
metic was implemented as explained in [12, Sect. 2-16, Sect. 8-2, and Fig. 9.3].
In particular, multiplication is slow compared to unsigned __int128.

6.3 Large Numbers

In our second experiment, we considered the special case where the dividend
was an N -bit number and the divisor an N

2 -bit number, and we run the long-
division programs for different values of N and digit widths. In the bench-
mark, we generated two random numbers and measured the number of instruc-
tions executed. When reporting the results, we scaled the instruction counts
using the scaling factor

(
N
64

)2. Here the rationale is that any program should
be able to utilize the power of the words native in the underlying hardware.

390 J. Katajainen

Table 3. The performance of the long-division programs for different digit widths,
measured in the number of instructions executed when processing two random numbers
of N and N

2
bits. The values indicate the coefficient C in the formula C · (

N
64

)2
.

Digit width N = 212 N = 214 N = 216 N = 218 N = 220 N = 222

8 447.1 390.5 427.2 361.9 410.5 392.7

16 110.9 97.1 124.1 113.9 104.6 135.0

32 34.2 32.1 28.6 30.8 26.6 29.1

64 14.4 12.5 10.9 12.6 11.9 11.3

128 5.8 3.2 2.6 2.4 2.4 2.4

256 13.5 4.3 1.9 1.3 1.2 1.2

512 15.5 3.8 1.3 0.7 0.6 0.6

1024 36.1 18.5 14.7 13.9 13.7 13.6

16 [12, Fig. 9-3] 63.3 60.8 60.2 60.0 60.0 60.0

The test computer was a 64-bit machine. We fixed six measurement points:
N ∈ {

212, 214, 216, 218, 220, 222
}
. The obtained results are reported in Table 3.

We expected to get the best performance when the width of the digits
matches the word size, but wider digits produced better results. As the instruc-
tion counts for Warren’s program [12, Fig. 9-3] indicate, the choice 16 for the
digit width is based on old technological assumptions. The figures for the width
16 also reveal that we have not followed the sources faithfully. (We have not used
Knuth’s optimization in Step D3 of Algorithm D [6, Sect. 4.3.1] and we have not
fusioned the loops in product and difference.) The slowdown may also be due
to abstraction overhead. Nonetheless, for larger digit widths, in these tests the
library routine performed significantly better than Warren’s program.

7 Final Remarks

The long-division program is based on the concept of digits. In a generic imple-
mentation, the type of digits is given as a template parameter so it will be fixed
at compile time. If the lengths of the inputs are known beforehand, the code can
be optimized to use the best possible digit width b. According to our experi-
ments, for large values of N , the best performance is obtained for large values
of b. The optimum depends on the operations supported by the hardware.

Seeing the program hierarchically, several levels of abstractions are visible:

User level. operator/ provided by the types cphstl::N and cphstl::Z

for any specific width b.
Implementation level. Operation /(n, m) where n and m are the number of

digits in the operands.
Efficiency-determining functions. Operations <(n, n) (is_less), −(n, n)

(difference), and ∗(n, 1) (product).

Hacker’s Multiple-Precision Integer-Division Program in Close Scrutiny 391

Intermediate level. Operation +(2, 1), which will not overflow, and operation
/(2, 1), which just needs to work when the output is a single digit.

Overflowing primitives. Operations +(1, 1) and −(1, 1) can overflow or
underflow by one bit, and operation ∗(1, 1) has a two-digit output.

Safe primitives. Operations
⊙

(1, 1),
⊙ ∈ {==,<, /,%,>>,<<,&, ||}, must

also be provided, but they cannot overflow.
Bit-manipulation primitives. Unary operations

⊙
(1),

⊙ ∈ {∼,nlz} are
needed for division, but the library supports other bit tricks as well.

For many library functions, there exist several overloaded versions to get the
best match with the instructions provided by the underlying hardware. Here the
keywords are constraint-based function overloading and template specialization.

When dividing an N -bit number by an N
2 -bit number, we determined a good

digit width b experimentally. Instead of using this idea only once, one could use
a divide-and-conquer approach where the digits are subdivided into subdigits
and the method is applied recursively. As the results of our experiments suggest,
for large values of N , this approach may have practical value. At least it would
take the hacking to another level.

References

1. Brinch Hansen, P.: Multiple-length division revisited: a tour of the mine-
field. Report 9-1992, Syracuse University (1992). https://surface.syr.edu/eecs
techreports/166/

2. Collins, G.E., Musser, D.R.: Analysis of the Pope-Stein division algorithm. Inf. Pro-
cess. Lett. 6(5), 151–155 (1977). https://doi.org/10.1016/0020-0190(77)90012-6

3. Gamby, A.N., Katajainen, J.: Convex-hull algorithms: implementation, testing, and
experimentation. Algorithms 11(12) (2018). https://doi.org/10.3390/a11120195

4. Katajainen, J.: Pure compile-time functions and classes in the CPH MPL. CPH
STL report 2017-2, Department of Computer Science, University of Copenhagen
(2017). http://hjemmesider.diku.dk/∼jyrki/Myris/Kat2017R.html

5. Katajainen, J.: Class templates cphstl::N and cphstl::Z for fixed-precision
arithmetic. Work in progress (2017–2019)

6. Knuth, D.E.: Seminumerical Algorithms, The Art of Computer Programming, vol.
2, 3rd edn. Addison Wesley Longman, Boston (1998)

7. Krishnamurthy, E.V., Nandi, S.K.: On the normalization requirement of divisor in
divide-and-correct methods. Commun. ACM 10(12), 809–813 (1967). https://doi.
org/10.1145/363848.363867

8. Lay-Yong, L.: On the Chinese origin of the galley method of arithmetical division.
Br. J. Hist. Sci. 3(1), 66–69 (1966). https://doi.org/10.1017/S0007087400000200

9. Mifsud, C.J.: A multiple-precision division algorithm. Commun. ACM 13(11), 666–
668 (1970). https://doi.org/10.1145/362790.362795

10. Mifsud, C.J., Bohlen, M.J.: Addendum to a multiple-precision division algorithm.
Commun. ACM 16(10), 628 (1973). https://doi.org/10.1145/362375.362400

11. Pope, D.A., Stein, M.L.: Multiple precision arithmetic. Commun. ACM 3(12),
652–654 (1960). https://doi.org/10.1145/367487.367499

12. Warren Jr., H.S.: Hacker’s Delight, 2nd edn. Pearson Education Inc., London
(2013)

13. Yong, L.L.: The development of Hindu-Arabic and traditional Chinese arithmetic.
Chin. Sci. 13, 35–54 (1996). https://www.jstor.org/stable/43290379

https://surface.syr.edu/eecs_techreports/166/
https://surface.syr.edu/eecs_techreports/166/
https://doi.org/10.1016/0020-0190(77)90012-6
https://doi.org/10.3390/a11120195
http://hjemmesider.diku.dk/~jyrki/Myris/Kat2017R.html
https://doi.org/10.1145/363848.363867
https://doi.org/10.1145/363848.363867
https://doi.org/10.1017/S0007087400000200
https://doi.org/10.1145/362790.362795
https://doi.org/10.1145/362375.362400
https://doi.org/10.1145/367487.367499
https://www.jstor.org/stable/43290379

Assessing Algorithm Parameter
Importance Using Global Sensitivity

Analysis

Alessio Greco1, Salvatore Danilo Riccio2,3, Jon Timmis4,
and Giuseppe Nicosia3(B)

1 Department of Mathematics and Computer Science, University of Catania,
Catania, Italy

alessio.greco.it@gmail.com
2 Politecnico di Milano, Milan, Italy
salvatore.riccio@mail.polimi.it

3 Systems Biology Centre, University of Cambridge, Cambridge, UK
{sdr38,gn263}@cam.ac.uk

4 Department of Electronic Engineering, University of York, York, UK
jon.timmis@york.ac.uk

Abstract. In general, biologically-inspired multi-objective optimization
algorithms comprise several parameters which values have to be selected
ahead of running the algorithm. In this paper we describe a global sen-
sitivity analysis framework that enables a better understanding of the
effects of parameters on algorithm performance. For this work, we tested
NSGA-III and MOEA/D on multi-objective optimization testbeds, under-
taking our proposed sensitivity analysis techniques on the relevant met-
rics, namely Generational Distance, Inverted Generational Distance, and
Hypervolume. Experimental results show that both algorithms are most
sensitive to the cardinality of the population. In all analyses, two clusters
of parameter usually appear: (1) the population size (Pop) and (2) the
Crossover Distribution Index, Crossover Probability, Mutation Distribu-
tion Index and Mutation Probability; where the first cluster, Pop, is the
most important (sensitive) parameter with respect to the others. Choos-
ing the correct population size for the tested algorithms has a significant
impact on the solution accuracy and algorithmperformance. Itwas already
known how important the population of an evolutionary algorithm was,
but it was not known its importance compared to the remaining param-
eters. The distance between the two clusters shows how crucial the size
of the population is, compared to the other parameters. Detailed analysis
clearly reveals a hierarchy of parameters: on the one hand the size of the
population, on the other the remainingparameters that are always grouped
together (in a single cluster) without a possible significant distinction. In
fact, the other parameters all have the same importance, a secondary rele-
vance for the performance of the algorithms, something which, to date, has
not been observed in the evolutionary algorithm literature. The method-
ology designed in this paper can be adopted to evaluate the importance of
the parameters of any algorithm.

c© Springer Nature Switzerland AG 2019
I. Kotsireas et al. (Eds.): SEA2 2019, LNCS 11544, pp. 392–407, 2019.
https://doi.org/10.1007/978-3-030-34029-2_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34029-2_26&domain=pdf
https://doi.org/10.1007/978-3-030-34029-2_26

Assessing Algorithm Parameter Importance 393

Keywords: NSGA-III · MOEA/D · Global Sensitivity Analysis ·
Elementary Effects · Sobol method · Variance Based Sensitivity
Analysis

1 Introduction

Machine learning algorithms typically have many parameters, and the setting of
these parameters is critical to the performance of the algorithm. Parameter setting
is typically done by experts that are able, with their knowledge, to tune algorithm
parameters. Ideally, this step should be automated, to save time and potentially
improve performance. Trying each hyperparameter combination is usually unfeasi-
ble because of the high computational cost required to run this test. To address this
problem, various approaches have been proposed. For example, Bergstra and Ben-
gio demonstrated that randomexperiments aremore efficient than grid search, sug-
gesting that this property is due to the fact that hyperparameters are not equally
important to tune [1]. Starting from this work, Wang et al. introduced an algo-
rithm to deal with extremely high dimensions in Bayesian optimization problems
[2].Another possibility is tomodel algorithmperformance as a sample fromaGaus-
sian process [3]. Chapelle et al. exploited gradient descent to tackle the problem
of tuning parameters in Support Vector Machines [4]. A similar approach that
exploits a gradient-based method to choose hyperparameters for log-linear models
is described in [5]. A first attempt to develop an automatic algorithm configura-
tion framework for a large number of parameters can be found in [6]. Concern-
ing Evolutionary Algorithms (EAs), a complete work describing parameter tun-
ing techniques for EAs was proposed in [7]. Bartz-Beielstein et al. showed an algo-
rithmic procedure to deal with parameter tuning, especially in the case of Genetic
Algorithms (GAs) [8]. More recently, Wu et al. introduced an approach able to dis-
cover hidden variables that may affect search-based parameter tuning [9]. Conca
et al. showed how to use sensitivity minimization to tune the parameter of a chosen
algorithm [10].

One of the current main limitations is the lack of a tool that is able to
determine dependencies between parameters. Furthermore, it is desirable to rank
parameters with respect to how much each parameter affects the output. This
paper presents a methodology based on Global Sensitivity Analysis to address
the sensitivity of an algorithm with respect to a chosen subset of its parameters.
In principle, our approach could be applied to any learning algorithm to produce
a ranking of the chosen parameters.

The remainder of this paper is structured as follows. Section 2 introduces the
main ideas and the general scheme to perform the analysis. Section 3 describes
the tests done and shows some application scenarios. Section 4 concludes the
work, giving some insights on the results obtained.

2 Experimental Setup

In this section we introduce the main concepts underlying the analysis. For work in
this paper, we use Evolutionary Algorithms (EAs): population-based metaheuris-
tic optimization algorithms [11] inspired by the mechanism of biological evolution,

394 A. Greco et al.

such as reproduction, mutation, recombination (or crossover), and selection [12].
The performance of any EA depends on parameters that have to be tuned.

We now briefly describe the algorithms, the metrics, and finally the Sensitiv-
ity Analysis techniques performed.

2.1 Non-dominated Sorting Genetic Algorithm III (NSGA-III)

Non-dominated Sorting Genetic Algorithm III [13] implements a niching strategy
used to obtain a more well-distributed Pareto front. The algorithm is similar to
its previous version, with a major change regarding the choice of points that
have to be sent to the next generation (i.e. “least represented reference points”
are chosen).

We choose “Polynomial Mutation” (PM) as the Mutation operator and “Sim-
ulated Binary Crossover” (SBX) as the Crossover operator. Each of them requires
two parameters: (I) probability of applying the operator (from 0 to 1); (II) distri-
bution index, a control parameter whose numeric value is inversely proportional
to the amount of perturbation in the design variables. The last hyperparameter
that has to be chosen is the population size (Pop). Thus, NSGA-III requires
five hyperparameters: (1) Population, (2) PM Probability, (3) PM Distribution
Index, (4) SBX Probability, (5) SBX Distribution Index. The Computational
Complexity for a single generation is max{Pop2 logM−2(Pop) , Pop2M} [13],
where M is the number of objectives and Pop is the population size.

2.2 Multi-objective Evolutionary Algorithm
Based on Decomposition (MOEA/D)

To experimentally show that our methodology has a more general applicability,
we apply it to MOEA/D [14]. The decomposition strategy chosen in this work
is Penalty-based Boundary Intersection Approach (PBI variant).

MOEA/D shares the same five hyperparameters previously described for
NSGA-III. Since both algorithms have the same hyperparameters, we can exploit
this feature to compare their results as it will be done in Sect. 3. The Computa-
tional Complexity for a single generation of MOEA/D is M · Pop · T [15], where
M is the number of objectives, Pop is the population size, and T is the number
of weight vectors in the neighbourhood of each weight vector.

2.3 Metrics

To assess the performance of the algorithms, indices must be selected [16,17].
We choose three indices related to the Pareto front: Generational Distance (GD)
[18,19], Inverted Generational Distance (IGD) [13], and Hypervolume (HV) [20].

2.4 Sensitivity Analysis Techniques

Sensitivity analysis is the study of how the uncertainty in the output of a mathe-
matical model or system (numerical or otherwise) can be apportioned to different
sources of uncertainty in its inputs [21–24].

Assessing Algorithm Parameter Importance 395

In this work we experimentally show that sensitivity analysis can be used
to study randomized many-objective learning algorithm, assessing how much its
parameters affect the output uncertainty.

Among many sensitivity analysis techniques, we exploit two: Elementary
Effects (EE) and Variance Based Sensitivity Analysis (VBSA).

Elementary Effects (EE). EE Test (EET, also known as Morris method) is
a screening method with low computational cost. It produces two values: μ that
represents the importance of an input factor on the model output, and σ that
represents non-linear effects and interactions between variables.

Let r be the number of samples, m the number of inputs, and Y (x) the
output of the model linked to x. Then we can define two main design types:

– Trajectory Design: the ((i−1)m+1)-th point represents the starting point of
the i-th trajectory. Starting from that point, each input is varied by a certain
amount dj . Be the j-th input the one that is varying, and k the current
point. Then, the Elemental Effect for the current sample i affected by the
input variation j is

EEk,j =
Y (xk) − Y (xk−1)

dj
(1)

– Radial Design: The ((i − 1)m + 1)-the point represents the i-th centre index
ci . From ((i − 1)m + 2) to i · m, each input is varied starting from the first
to the last one. As such, the Elementary Effect for the current sample i and
the effect j, given the variation of the input dj , is

EEi,j =
Y (xci+j) − Y (xci)

dj
(2)

The two main sampling strategy that we are going to use are Classical Morris
[25] and Optimized strategy with Latin Hypercube Sampling (LHS) [26].

Variance Based Sensitivity Analysis (VBSA). We use Variance Based
Sensitivity Analysis (VBSA, also known as Sobol method) [27] to compute two
kinds of indices:

– First-Order Indices (Si), based on the variation of just one input
– Total-Order Indices (Sti), that take into account the variation of a single

input, including all variance caused by its interactions with any other input
variables.

Other methods can be chosen to estimate the variance, see [22] for further infor-
mation. Sobol analysis is computationally expensive: it requires to explore a high
number of points (i.e. n(p+2), where n is the number of points, p is the number
of inputs) to obtain good results.

396 A. Greco et al.

2.5 The Problems

The following classical multi-objective problems have been used in the testbed:
DTLZ1, DTLZ2, DTLZ3, DTLZ4 [28], CDTLZ2 [13], WFG6, WFG7 [29].

2.6 The Design Automation Framework

The route to find a good flow will be now discussed in detail. We exploit the
existing Matlab platform for evolutionary multi-objective optimization PlatEMO
[30]. We also use the workflows already available in the SAFE toolbox [31] as an
inspiration to develop the combined EET/VBSA flow shown in Fig. 1.

The number of chosen variables is Objectives+k−1, where k is 5 for DTLZ1,
otherwise k is equal to 10. Table 1 summarizes the parameters values and ranges
used for each algorithm.

Table 1. Algorithms and parameters chosen. Each parameter is associated with its
range of feasible numeric values.

Algorithm Population SBX
Probability

SBX Distr.
Index

PM
Probability

PM Distr.
Index

NSGA-III 2–300 0–1 1–50 0–1 1–50

MOEA/D 2–300 0–1 1–50 0–1 1–50

The metrics used are the ones previously described, namely GD, IGD, and
HV. Two EET are used for the analysis:

– Morris: sampling performed using the Classic Morris strategy, with Trajectory
design as described in [25];

– Morris LHS: sampling performed using the LHS strategy, with Radial design.
The distribution function used for the strategy is Uniform [26].

Latin hypercube sampling (LHS) is the sampling strategy used for VBSA.

3 Results

We now discuss the experiments undertaken. First, an appropriate value for
NRun has to be chosen. In this work we set NRun = 20 which is a common
choice that can be found in literature [32–34]. In future works we will further
exploit existing statistical technique packages like spartan [35] to understand
how much a change in this parameter may affect sensitivity analysis overall per-
formance. To ensure fairness in the evaluation of the metrics for low population
cases that had a similarly low population in their resulting Pareto front, it was
decided to consider in the computation of the metrics the Pareto front associated
with all the points that were evaluated during the execution (instead of just the
final one).

Assessing Algorithm Parameter Importance 397

Fig. 1. Overall flow designed to perform sensitivity analysis.

Since both EET and VBSA provide a ranking of the parameters importance,
we can use the normalized values of μ, σ, Si and Sti for every execution to make
them comparable between the executions and between the metrics themselves.

Before running EET, we need to select the number of samples r. Thus, we
first study whether the normalized values of the mean μ and variance σ converge.
We solve DTLZ1 with 3 objectives using NSGA-III for increasing number of
samples r, ranging from 2 to 200. We collect μ and σ values and we plot them
together with a smoothed regression line obtained with LOESS, as shown in
Fig. 2.

From the plots, it appears that the five hyperparameters can be divided
into two clusters: the first one contains the Population (Pop), while the second
one contains Simulated Binary Crossover Distribution Index (SBX DI), Simu-
lated Binary Crossover Probability (SBX P), Polynomial Mutation Distribution
Index (PM DI), and Polynomial Mutation Probability (PM P).

Analysing the second cluster only, see Fig. 3, a convergence can be seen in
both μ and σ values as r increases. Although this property is more apparent for
higher r values, it is still valid for lower r values. For this reason, r = 5 will be
chosen for the following analyses.

Other than that, since there are 35 problems in the testbed, averaging the
result of those analysis will still be equal, in a certain sense, to making the
analysis with a higher r.

A similar analysis has to be applied to decide how many points n should be
used for VBSA. Instead of trying the values of n directly, we define the variable
a as the ratio a = TotalPoints(V BSA)

TotalPoints(EET) , where TotalPoints(V BSA) = (M + 2)n
and TotalPoints(EET) = (M + 1)r. Since M = 5, it results after few passages
that n = 6

7ar. To force this value to be an integer, we apply the ceiling function
to the result.

The analysis was performed by varying a with values ranging from 1 to 20.
The results obtained are similar to the plots in Fig. 2, with the same two clusters.
Because of this similarity, we don’t show the figures for sake of conciseness.
Nonetheless, the second cluster is worth some attention and should be analysed,
see Fig. 4.

398 A. Greco et al.

In this case, choosing a value too low for parameter a may give the wrong
result. So a = 6 was chosen to make the analysis give correct results while
keeping a moderate computational cost. With this choice of a, it results that
n = 26.

0.00

0.25

0.50

0.75

1.00

0 50 100 150 200
r

μ
no

rm
al

iz
ed

 m
ea

n
va

lu
e

of
 E

E
s

Parameter PM DI PM P Pop SBX DI SBX P

0.00

0.25

0.50

0.75

1.00

0 50 100 150 200
r

σ
no

rm
al

iz
ed

 s
ta

nd
ar

d
de

vi
at

io
n

va
lu

e
of

 E
E

s

Parameter PM DI PM P Pop SBX DI SBX P

0.00

0.25

0.50

0.75

1.00

0 50 100 150 200
r

μ
no

rm
al

iz
ed

 m
ea

n
va

lu
e

of
 E

E
s

Parameter PM DI PM P Pop SBX DI SBX P

0.00

0.25

0.50

0.75

1.00

0 50 100 150 200
r

σ
no

rm
al

iz
ed

 s
ta

nd
ar

d
de

vi
at

io
n

va
lu

e
of

 E
E

s

Parameter PM DI PM P Pop SBX DI SBX P

0.00

0.25

0.50

0.75

1.00

0 50 100 150 200
r

μ
no

rm
al

iz
ed

 m
ea

n
va

lu
e

of
 E

E
s

Parameter PM DI PM P Pop SBX DI SBX P

0.00

0.25

0.50

0.75

1.00

0 50 100 150 200
r

σ
no

rm
al

iz
ed

 s
ta

nd
ar

d
de

vi
at

io
n

va
lu

e
of

 E
E

s

Parameter PM DI PM P Pop SBX DI SBX P

Fig. 2. These plots show the convergence of normalized metrics obtained as a function
of the number of samples r. Data come from the solution of DTLZ1 with 3 objectives
using NSGA-III. First row: μ, GD (left) and σ, GD (right). Second row: μ, IGD (left)
and σ, IGD (right). Third row: μ, HV (left) and σ, HV (right). It can be seen that
there are two clusters for every value of r.

Assessing Algorithm Parameter Importance 399

0.0

0.1

0.2

0.3

0.4

0.5

0 50 100 150 200
r

μ
no

rm
al

iz
ed

 m
ea

n
va

lu
e

of
 E

E
s

Metric GD HV IGD

0.0

0.2

0.4

0.6

0 50 100 150 200
r

σ
no

rm
al

iz
ed

 s
ta

nd
ar

d
de

vi
at

io
n

va
lu

e
of

 E
E

s

Metric GD HV IGD

0.00

0.25

0.50

0.75

1.00

0 50 100 150 200
r

μ
no

rm
al

iz
ed

 m
ea

n
va

lu
e

of
 E

E
s

Metric GD HV IGD

0.00

0.25

0.50

0.75

1.00

0 50 100 150 200
r

σ
no

rm
al

iz
ed

 s
ta

nd
ar

d
de

vi
at

io
n

va
lu

e
of

 E
E

s

Metric GD HV IGD

Fig. 3. These plots show metrics convergence dynamics of the second cluster as a
function of number of samples r. First row: Mean μ (left) and Mean σ (right). Second
row: Max μ (left) and Max σ (right). Although there is good convergence for high
values of r, this may indeed lead to overfitting.

In the MOEA/D, the PBI method was chosen as the decomposition strat-
egy (kind = 1 in PlatEMO). An error in the calculation of the HV using the
PlatEMO library makes, in some cases, the result of the metric become 0, because
all of the Pareto-Front are worse than the RefPoint. To avoid this issue, we
choose RefPoint over both the Reference Set and the Pareto Front.

We verify on a benchmark the time required to compute the metrics inserted
in PlatEMO. In the first test we use NSGA-III on DTLZ1 with 3 objectives and
8 variables, see Fig. 5 for the results.

If the number of objectives is greater than 3, the PlatEMO library exploits
Monte Carlo-like method for the estimation of HV. To assess how this change
affects the time required, we tested NSGA-III on DTLZ1 with 5 objectives and
10 variables, see Fig. 6 for the results. We tried both values of SampleNum,
namely 106 and 105, obtaining almost the same metrics value whereas with the
second choice a sizeable speed up can be obtained. For this reason, we advise to
change SampleNum value to 105.

400 A. Greco et al.

●
●

●

●

●

●

●

●

●

●●

●

●●●
●●
●

●●

● ●

●● ●●● ●●● ●●●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●
●●

●

●●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●●●
●●

●

●●

●

●

●
● ●●

● ●●● ●●●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●●

●

●
●

●

●
●

● ●●●

●
●●

●●

●

0.00

0.25

0.50

0.75

1.00

5 10 15 20
a

N
or

m
al

iz
ed

 S
i

Metric GD HV IGD

0.0

0.1

0.2

0.3

0.4

5 10 15 20
a

N
or

m
al

iz
ed

 S
ti

Metric GD HV IGD

0.00

0.25

0.50

0.75

1.00

5 10 15 20
a

μ
no

rm
al

iz
ed

 m
ea

n
va

lu
e

of
 E

E
s

Metric GD HV IGD

0.00

0.25

0.50

0.75

1.00

5 10 15 20
a

N
or

m
al

iz
ed

 S
ti

Metric GD HV IGD

Fig. 4. These plots show metrics convergence dynamics of the second cluster as a
function of number of samples a (ratio of total number of points considered in VSBA
to EET). First row: Mean Si (left) and Mean Sti (right). Second row: Max Si (left) and
Max Sti (right).

IGD GD
0

2

4

6

8

20

12

14

IGD GD HV
0

200

400

600

800

1000

1200

1400

Fig. 5. Time (in milliseconds) required to compute the chosen metrics. Data come from
the solution of DTLZ1 with 3 objectives and 8 variables using NSGA-III. Left: boxplot
of the first two metrics, namely IGD and GD. Right: boxplot of all computed metrics;
clearly, HV is much more time consuming than the others.

Assessing Algorithm Parameter Importance 401

IGD GD
0

20

40

60

80

IGD GD HV
0

5000

10000

15000

20000

25000

30000

IGD GD
0

20

40

60

80

IGD GD HV
0

500

1000

1500

2000

2500

3000

Fig. 6. Time (in milliseconds) required to compute the chosen metrics. Data come
from the solution of DTLZ1 with 5 objectives and 10 variables using NSGA-III.
SampleNum = 106 (first row), SampleNum = 105 (second row). Left: boxplot of
the first two metrics, namely IGD and GD. Right: boxplot of all computed metrics;
clearly, HV is much more time consuming than the others. It is also worth noting that
using a lower value for SampleNum results in a dramatic decrease in the time required
to perform indices computations, in particular for the HV index whose time decreases
by a factor of 10.

Performing all the analyses, we can summarise as follows:

– the Population parameter usually has μNormalized and σNormalized equal to
1. As such, it is the parameter with the highest effect, interaction with other
parameters and with the highest non-linearity. The same behaviour can be
found in VBSA where both normalized First and Total Order Indices are
equal to 1;

– most of the ranks of the parameters are different between algorithms, espe-
cially in the case where a precise problem is analysed. Surprisingly enough
in the EET, when the mean between the various cases is considered, they
become more similar by either having the same ranking (with respect to μ)
between the parameters or having a similar shape (see Fig. 7);

402 A. Greco et al.

– as previously remarked, most of the times there are two clusters of points, the
first with {Pop} and the second {SBX DI, SBX P,PM DI, PM P}. These
clusters are clearly distinguishable, with population size Pop being almost
every time more important than the other cluster;

– MOEA/D seems to be less dependent on the population than NSGA-III, since
the distance of the two clusters in MOEA/D seems shorter, as seen in the
previous plots and in Fig. 7.

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
μ normalized mean value of EEs

σ
no

rm
al

iz
ed

 s
ta

nd
ar

d
de

vi
at

io
n

of
 E

E
s

Parameter PM DI PM P Pop SBX DI SBX P Algorithm MOEAD NSGAIII

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
μ normalized mean value of EEs

σ
no

rm
al

iz
ed

 s
ta

nd
ar

d
de

vi
at

io
n

of
 E

E
s

Parameter PM DI PM P Pop SBX DI SBX P Algorithm MOEAD NSGAIII

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
μ normalized mean value of EEs

σ
no

rm
al

iz
ed

 s
ta

nd
ar

d
de

vi
at

io
n

of
 E

E
s

Parameter PM DI PM P Pop SBX DI SBX P Algorithm MOEAD NSGAIII

Pop

SBX P

SBX DI
PM P

PM DI

Pop

SBX P

SBX DI

PM P

PM DI

Pop

SBX P

SBX DI

PM P
PM DI

Pop

SBX P

SBX DI

PM P
PM DI

NSGA−III MOEA/D NSGA−III MOEA/D

First Order Indices Total Order Indices

0.0

0.5

1.0

N
or

m
al

iz
ed

V
al

ue

Parameter PM DI PM P Pop SBX DI SBX P

Fig. 7. In these plots we use metrics to compare the importance of the chosen hyper-
parameters for either NSGA-III and MOEA/D. First row: Morris LHS, NSGA-III Vs
MOEA/D - HV (left), Morris LHS, NSGA-III Vs MOEA/D - Mean of all Metrics
(right). Second row: Morris, NSGA-III Vs MOEA/D - GD (left), VBSA, NSGA-III Vs
MOEA/D - Mean of all Metrics (right). It can be seen from the plots that Pop (Pop-
ulation size) is the most important hyperparameter with respect to the other ones.

Results obtained with Morris method show a different behaviour than the
ones obtained with Morris LHS, as it can be seen in Figs. 8 and 9. Nonetheless,
when the results of all multi-objective optimization problems are averaged, they
start to exhibit similar behaviour (see Fig. 10).

Assessing Algorithm Parameter Importance 403

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
μ normalized mean value of EEs

σ
no

rm
al

iz
ed

 s
ta

nd
ar

d
de

vi
at

io
n

of
 E

E
s

Parameter PM DI PM P Pop SBX DI SBX P Metric GD HV IGD

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
μ normalized mean value of EEs

σ
no

rm
al

iz
ed

 s
ta

nd
ar

d
de

vi
at

io
n

of
 E

E
s

Parameter PM DI PM P Pop SBX DI SBX P Metric GD HV IGD

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
μ normalized mean value of EEs

σ
no

rm
al

iz
ed

 s
ta

nd
ar

d
de

vi
at

io
n

of
 E

E
s

Parameter PM DI PM P Pop SBX DI SBX P Metric GD HV IGD

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
μ normalized mean value of EEs

σ
no

rm
al

iz
ed

 s
ta

nd
ar

d
de

vi
at

io
n

of
 E

E
s

Parameter PM DI PM P Pop SBX DI SBX P Metric GD HV IGD

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Normalized First−Order Indices

N
or

m
al

iz
ed

 T
ot

al
−O

rd
er

 In
di

ce
s

Parameter PM DI PM P Pop SBX DI SBX P Metric GD HV IGD

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Normalized First−Order Indices

N
or

m
al

iz
ed

 T
ot

al
−O

rd
er

 In
di

ce
s

Parameter PM DI PM P Pop SBX DI SBX P Metric GD HV IGD

Pop

SBX P

SBX DI

PM P

PM DI

Pop

SBX P

SBX DI
PM P

PM DI

Pop

SBX P

SBX DI
PM P

PM DI

Pop

SBX P
SBX DI

PM P

PM DI

Pop

SBX P

SBX DI
PM P

PM DI

Pop

SBX P

SBX DI

PM P

PM DI

GD IGD HV GD IGD HV

First Order Indices Total Order Indices

0.0

0.5

1.0

N
or

m
al

iz
ed

Va
lu

e

Parameter PM DI PM P Pop SBX DI SBX P

Pop

SBX P

SBX DI

PM P

PM DI
Pop

SBX P

SBX DI

PM P

PM DI

Pop

SBX P

SBX DI

PM P

PM DI

Pop

SBX P

SBX DI

PM P

PM DI

Pop

SBX P

SBX DI

PM P

PM DI

Pop

SBX P

SBX DI

PM P

PM DI

GD IGD HV GD IGD HV

First Order Indices Total Order Indices

0.0

0.5

1.0

N
or

m
al

iz
ed

Va
lu

e

Parameter PM DI PM P Pop SBX DI SBX P

Fig. 8. These plots show results of the implemented Sensitivity Analysis techniques
with data obtained from the solution of DTLZ1 with 8 Variables and 3 Objectives. First
row: Morris, NSGA-III (left) and MOEA/D (right). Second row: Morris LHS, NSGA-
III (left) and MOEA/D (right). Third row: VBSA, NSGA-III (left) and MOEA/D
(right). Fourth row: VBSA, NSGA-III (left) and MOEA/D (right).

404 A. Greco et al.

●●

●

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
μ normalized mean value of EEs

σ
no

rm
al

iz
ed

 s
ta

nd
ar

d
de

vi
at

io
n

of
 E

E
s

Parameter ●PM DI PM P Pop SBX DI SBX P Metric ● ● ●GD HV IGD

●
●

●

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
μ normalized mean value of EEs

σ
no

rm
al

iz
ed

 s
ta

nd
ar

d
de

vi
at

io
n

of
 E

E
s

Parameter ●PM DI PM P Pop SBX DI SBX P Metric ● ● ●GD HV IGD

●

●

●

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
μ normalized mean value of EEs

σ
no

rm
al

iz
ed

 s
ta

nd
ar

d
de

vi
at

io
n

of
 E

E
s

Parameter ●PM DI PM P Pop SBX DI SBX P Metric ● ● ●GD HV IGD

●

●

●

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
μ normalized mean value of EEs

σ
no

rm
al

iz
ed

 s
ta

nd
ar

d
de

vi
at

io
n

of
 E

E
s

Parameter ●PM DI PM P Pop SBX DI SBX P Metric ● ● ●GD HV IGD

● ●

●

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Normalized First−Order Indices

N
or

m
al

iz
ed

 T
ot

al
−O

rd
er

 In
di

ce
s

Parameter ●PM DI PM P Pop SBX DI SBX P Metric ● ● ●GD HV IGD

●

●

●

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Normalized First−Order Indices

N
or

m
al

iz
ed

 T
ot

al
−O

rd
er

 In
di

ce
s

Parameter ●PM DI PM P Pop SBX DI SBX P Metric ● ● ●GD HV IGD

●

●●●●

Pop

SBX P

SBX DI

PM P

PM DI

●

●●
●
●

Pop

SBX P

SBX DI

PM P
PM DI

●

●●●●

Pop

SBX P
SBX DI

PM P
PM DI

●

●●●●

Pop

SBX P

SBX DI
PM P

PM DI

●

●●●●

Pop

SBX P

SBX DI
PM P

PM DI

●

●●●
●

Pop

SBX P

SBX DI

PM P
PM DI

GD IGD HV GD IGD HV

First Order Indices Total Order Indices

0.0

0.5

1.0

N
or

m
al

iz
ed

Va
lu

e

Parameter ●●●●●● ●●●●●● ●●●●●● ●●●●●● ●●●●●●PM DI PM P Pop SBX DI SBX P

●

●●●
●

Pop

SBX P

SBX DI
PM P

PM DI

●

●●
●●

Pop

SBX P

SBX DI

PM P
PM DI

●

●●●
●

Pop

SBX P
SBX DI
PM P

PM DI

●

●●
●
●

Pop

SBX P

SBX DI

PM P

PM DI

●

●
●●
●

Pop

SBX P

SBX DI

PM P

PM DI

●

●
●●●

Pop

SBX P

SBX DI
PM P

PM DI

GD IGD HV GD IGD HV

First Order Indices Total Order Indices

0.0

0.5

1.0

N
or

m
al

iz
ed

Va
lu

e

Parameter ●●●●●● ●●●●●● ●●●●●● ●●●●●● ●●●●●●PM DI PM P Pop SBX DI SBX P

Fig. 9. These plots show Sensitivity Analysis techniques results for different Evolu-
tionary Algorithms, whereas the sampling strategy is the same for each row. We show
the mean results for all considered multi-objective optimization problems. First row:
Morris, NSGA-III (left) and MOEA/D (right). Second row: Morris LHS, NSGA-III
(left) and MOEA/D (right). Third row: VBSA, NSGA-III (left) and MOEA/D (right).
Fourth row: VBSA, NSGA-III (left) and MOEA/D (right).

Assessing Algorithm Parameter Importance 405

●
●

●

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
μ normalized mean value of EEs

σ
no

rm
al

iz
ed

 s
ta

nd
ar

d
de

vi
at

io
n

of
 E

E
s

Parameter ●PM DI PM P Pop SBX DI SBX P Metric ● ● ●GD HV IGD

●

●●

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
μ normalized mean value of EEs

σ
no

rm
al

iz
ed

 s
ta

nd
ar

d
de

vi
at

io
n

of
 E

E
s

Parameter ●PM DI PM P Pop SBX DI SBX P Metric ● ● ●GD HV IGD

Fig. 10. These plots show Sensitivity Analysis techniques results for different sampling
strategies. We show the mean results for both EAs (namely NSGA-III and MOEA/D)
and for all considered multi-objective optimization problems. Morris (left) and Morris
LHS (right).

4 Conclusions

In this study we demonstrated how to perform Sensitivity Analysis techniques on
Evolutionary Algorithms, namely on NSGA-III and MOEA/D. Results indicated
that usually two clusters of parameters appear: one of them takes the position of
being the parameter with both higher μ, σ, First and Total Order Indices, with
the second precise conformation varying a lot; the distance of those two clusters
seems to be shorter in the case of MOEA/D. Only in the EET, though, some of
the comparative plots between the two algorithms do show some similarity.

The obtained results do not give a unique ranking for each hyperparameter,
but they indeed show that an appropriate choice of the population size has a
great deal of effect on the performance of the algorithm.

First we must deal with the setting of the primary parameters (those that
belong to the first class, i.e. the most sensitive parameters) and afterwards to
the setting of the parameters of the remaining classes. For the algorithms dealt
with in this study, the primary class includes the size of the population, the
most sensitive parameter for the overall performances; immediately afterwards
we must consider the remaining parameters that are certainly important but less
sensitive than the population size.

References

1. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J.
Mach. Learn. Res. 13, 281–305 (2012)

2. Wang, Z., Hutter, F., Zoghi, M., Matheson, D., de Freitas, N.: Bayesian opti-
mization in a billion dimensions via random embeddings. J. Artif. Intell. Res. 55,
361–387 (2016)

3. Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine
learning algorithms. In: Advances in Neural Information Processing Systems, vol.
4 (2012)

4. Chapelle, O., Vapnik, V., Bousquet, O., Mukherjee, S.: Choosing multiple param-
eters for support vector machines. Mach. Learn. 46, 131–159 (2001)

406 A. Greco et al.

5. Foo, C.S., Do, C.B., Ng, A.Y.: Efficient multiple hyperparameter learning for log-
linear models. In: Advances in Neural Information Processing Systems (NIPS) 20,
pp. 377–384. Curran Associates Inc. (2008)

6. Hutter, F., Hoos, H., Leyton-Brown, K., Stützle, T.: ParamILS: an automatic
algorithm configuration framework. J. Artif. Intell. Res. (JAIR) 36, 267–306 (2009)

7. Eiben, A.E., Smit, S.K.: Parameter tuning for configuring and analyzing evolu-
tionary algorithms. Swarm Evol. Comput. 1(1), 19–31 (2011)

8. Bartz-Beielstein, T., Lasarczyk, C., Preuss, M.: Sequential parameter optimiza-
tion. In: 2005 IEEE Congress on Evolutionary Computation, IEEE CEC 2005.
Proceedings, vol. 1, pp. 773–780 (2005)

9. Wu, F., Weimer, W., Harman, M., Jia, Y., Krinke, J.: Deep parameter optimisation.
In: GECCO 2015: Proceedings of the 2015 Annual Conference on Genetic and
Evolutionary Computation, pp. 1375–1382. ACM, Madrid (2015)

10. Conca, P., Stracquadanio, G., Nicosia, G.: Automatic tuning of algorithms through
sensitivity minimization. In: Pardalos, P., Pavone, M., Farinella, G.M., Cutello, V.
(eds.) MOD 2015. LNCS, vol. 9432, pp. 14–25. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-27926-8 2

11. Al-Salami, N.M.A.: Evolutionary algorithm definition. Am. J. Eng. Appl. Sci. 2(6),
789–795 (2009)

12. Vikhar, P.A.: Evolutionary algorithms: a critical review and its future prospects. In:
2016 International Conference on Global Trends in Signal Processing, Information
Computing and Communication (ICGTSPICC), pp. 261–265. Jalgaon (2016)

13. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using
reference-point-based nondominated sorting approach part i: solving problems with
box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2014)

14. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on
decomposition. IEEE Trans. Evol. Comput. J. 11(6), 712–731 (2007)

15. Yuen, T.J., Ramli, R.: Comparison of computational efficency of MOEA/D and
NSGA-II for passive vehicle suspension optimization. In: 24th European Confer-
ence on Modelling and Simulation, Kuala Lumpur, Malaysia (2010)

16. Okabe, T., Jin, Y., Sendhoff, B.: A critical survey of performance indices for multi-
objective optimisation. In: The 2003 Congress on Evolutionary Computation, vol.
4, pp. 2262–2269. IEEE Press (2003)

17. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Grunert da Fonseca, V.:
Performance assessment of multiobjective optimizers: an analysis and review. IEEE
Trans. Evol. Comput. 7(2), 117–132 (2003)

18. Van Veldhuizen, D. A., Lamont, G. B.: Evolutionary computation and convergence
to a pareto front. In: Late Breaking Papers on the Genetic Programmming 1998
Conference, pp. 221–228 (1998)

19. Van Veldhuizen, D.A.: Multiobjective Evolutionary Algorithms: Classifications,
Analyses, and New Innovations. Faculty of the Graduate School of Engineering
of the Air Force Institute of Technology, Air University (1999)

20. Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms—
a comparative case study. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel,
H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 292–301. Springer, Heidelberg (1998).
https://doi.org/10.1007/BFb0056872

21. Saltelli, A.: Sensitivity analysis for importance assessment. Risk Anal. 22(3), 1–12
(2002)

22. Saltelli, A., et al.: Global Sensitivity Analysis: The Primer. Wiley, Chichester
(2008)

https://doi.org/10.1007/978-3-319-27926-8_2
https://doi.org/10.1007/978-3-319-27926-8_2
https://doi.org/10.1007/BFb0056872

Assessing Algorithm Parameter Importance 407

23. Carapezza, G., et al.: Efficient behavior of photosynthetic organelles via pareto
optimality, identifiability and sensitivity analysis. ACS Synthetic Biol. J. 2(5),
274–288 (2013)

24. Costanza, J., Carapezza, G., Angione, C., Liò, P., Nicosia, G.: Multi-objective
optimisation, sensitivity and robustness analysis in FBA modelling. In: Gilbert, D.,
Heiner, M. (eds.) CMSB 2012. LNCS, pp. 127–147. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-33636-2 9

25. Morris, M.D.: Factorial sampling plans for preliminary computational experiments.
Technometrics 33(2), 161–174 (1991)

26. Campolongo, F., Cariboni, J., Saltelli, A.: An effective screening design for sensi-
tivity analysis of large models. Environ. Modell. Software 22(10), 1509–1518 (2007)

27. Sobol, I.M.: Sensitivity estimates for nonlinear mathematical models. Math. Mod-
ell. Comput. Exp. 1(4), 407–414 (1993)

28. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable multi-objective optimiza-
tion test problems. In: The 2002 Congress on Evolutionary Computation, pp. 825–
830. IEEE Press (2002)

29. Huband, S., Hingston, P., Barone, L., While, L.: A review of multiobjective test
problems and a scalable test problem toolkit. IEEE Trans. Evol. Comput. 10(5),
477–506 (2006)

30. Tian, Y., Ran Cheng, R., Zhang, X., Jin, Y.: PlatEMO: A MATLAB platform
for evolutionary multi-objective optimization. IEEE Comput. Intell. Mag. 12(4),
73–87 (2017)

31. Pianosi, F., Sarrazin, F., Wagener, T.: A matlab toolbox for global sensitivity
analysis. Environ. Modell. Software 70, 80–85 (2015)

32. Sun, Y., Xue, B., Zhang, M., Yen, G.G.: A new two-stage evolutionary algorithm
for many-objective optimization. IEEE Trans. Evol. Comput. (2018)

33. Nicosia, G., Cutello, V.: The clonal selection principle for in silico and in vitro
computing. In: de Castro, L.N., Von Zuben, F.J. (eds.) Recent Developments in
Biologically Inspired Computing (2004)

34. Narzisi, G., Nicosia, G., Stracquadanio, G.: Robust bio-active peptide prediction
using multi-objective optimization. In: The I International Conference on Advances
in Bioinformatics and Applications - BIOINFO 2010, 7–13 March, 2010, Cancun,
Mexico, pp. 44–50. IEEE Press (2010)

35. Alden, K., Read, M., Timmis, J., Andrews, P.S., Veiga-Fernandes, H., Coles, M.:
Spartan: a comprehensive tool for understanding uncertainty in simulations of
biological systems. PLOS Comput. Biol. 9(2), e1002916 (2013)

https://doi.org/10.1007/978-3-642-33636-2_9

A Machine Learning Framework
for Volume Prediction

Umutcan Önal1(B) and Zafeirakis Zafeirakopoulos2

1 Gebze Technical University, Gebze, Turkey
umutcanonal@gmail.com

2 Institute of Information Technologies, Gebze Technical University, Gebze, Turkey

Abstract. Computing the exact volume of a polytope is a #P-hard
problem, which makes the computation for high dimensional polytopes
computationally expensive. Due to this cost of computation, randomized
approximation algorithms is an acceptable solution in practical applica-
tions. On the other hand, machine learning techniques, such as neural
networks, saw a lot of success in recent years. We propose machine learn-
ing approaches to volume prediction and volume comparison. We employ
various network architectures such as feed-forward networks, autoen-
coders and end-to-end networks. We develop different types of models
with these architectures that emphasize different parts of the problem,
such as representation of polytopes, volume comparison between poly-
topes and volume prediction. Our results have varying rate of success
depending on model and experimentation parameters. This work intends
to start the discussion about applying machine learning techniques to
computationally hard geometric problems.

Keywords: Machine learning · Autoencoders · Neural networks ·
Polytope · Volume

1 Introduction

Recent success of machine learning and deep learning brought a lot of new appli-
cations to various fields, where machine learning was not used until recently.
Computational geometry and algebra is one of the fields where machine learning
is not applied sufficiently.

In this work, we employ random forests and neural networks for a geometric
problem, namely volume computation. Among neural networks, autoencoders
play a special role in the proposed framework. We focus on two problems related
to polytope volume computation, namely volume comparison and volume pre-
diction. The first problem is a binary classification problem in machine learning
terminology. We consider pairs of polytopes and label them according to whether
the first or the second polytope have larger volume. The second problem is a
typical regression problem, where the model tries to predict a continuous value
(namely the polytope’s volume) for given input.

c© Springer Nature Switzerland AG 2019
I. Kotsireas et al. (Eds.): SEA2 2019, LNCS 11544, pp. 408–423, 2019.
https://doi.org/10.1007/978-3-030-34029-2_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34029-2_27&domain=pdf
https://doi.org/10.1007/978-3-030-34029-2_27

A Machine Learning Framework for Volume Prediction 409

Random Forest. Random forests are ensembles of multiple tree predictors
which are trained with randomly sampled independent features from the original
feature set. Every predictor generates an output based on their own feature set
and the output of the forest is decided by majority voting from predictor outputs.
If the tree is for a regression problem instead of a classification problem, the
output will be the mean of the tree outputs. It is a flexible algorithm that has a
good potential to generalize the data. However, it also has some caveats such as
depth of the trees. One of the major problems with decision trees is that they
tend to overfit if the depth is not limited to some degree. Random forests can
overcome this problem to some extend, however it is still one of the important
parameters to decide during training.

Neural Networks. Neural Networks or Artificial Neural Networks is a machine
learning technique that uses a network of neuron-like units to learn a model.
After Hinton et al. [12] introduced the back-propagation method, it became
possible to construct multiple layered networks, which are called Deep Neural
Networks . A basic form of these networks is called multilayer perceptron or
Feed-forward Neural Network. Layers are densely connected in this type of net-
works which means every perceptron is connected to all of the perceptrons in
the previous and the next layer in the network. A big success came for neural
networks when Krizhevsky et al. [10] improved considerably the accuracy on
ImageNet database with Convolutional Neural Network (CNN) in 2012 . This
type of network skips some of the connections in order to simulate the con-
volution operation extracting features from images. The success of this model
attracted a lot of attention and new convolutional networks such as GoogleNet
[15], VGGNet [13], ResNet [6] followed. The same year, Hinton et al. [7] presented
another state-of-the-art Deep Neural Network application for speech recognition.

Recurrent neural networks (RNN) [8], another important type of neural net-
works models, rely on using a feedback mechanism in order to remember previous
states. This mechanism allows the network to sequentially process data and learn
spatial or time based information. Even though it is used mostly for sequential
problems, such as speech recognition or music composition, it can be used for
other types of tasks to process data sequentially.

At first glance an RNN does not look like a Deep Neural Network. But when
unfolded its depth becomes visible. This is due to the feedback mechanism that
gives the previous output as an input as well.

Recurrent Neural Networks are powerful tools in theory, however, they are
not working as well in practice. Back-Propagation Through Time algorithms
apply the idea of back-propagation of errors in feed forward networks. Errors
are back-propagated in time instead of between the layers of the RNN. This
propagated error tends to blow up or vanish if the sequence is too long, i.e.,
the network is too deep. The Long-Short Term Memory (LSTM) architecture
is proposed as remedy for this problem [8]. The LSTM architecture helps to
prevent losing information due to long time lag, thus allows such networks to
work with long sequences.

410 U. Önal and Z. Zafeirakopoulos

Autoencoders. Autoencoders are a type of neural networks which is used to
extract features from data in a unsupervised fashion. A particularly powerful
aspect of neural networks is feature extraction without any human supervision.
This unsupervised feature extraction enables inference capacity of neural net-
works given enough data, although it obscures the exact decision making process.
This idea is presented by Dai and Le [3] for a sentiment analysis model.

A network can be considered as an autoencoder when the input and the
output of the network is the same. The network only learns the patterns and
relations in the data itself and the weights or the intermediate output of this
network can be used as a set of extracted features.

An encoder-decoder model takes an input of variable length and encodes it in
the encoder layer into a fixed-size vector. Later, this fixed-size vector is decoded
to output which has variable length again. Sutskever et al. [14] and Cho et al. [2]
proposed this model (with slightly different implementations) for problems which
require to convert a sequence to another sequence, e.g., machine translation or
speech recognition.

Sequential problems, usually do not have fixed-length input, while most neu-
ral networks require fixed-length input. Since the representation of a polytope
is a sequence, encoder-decoder based models are applicable for the problem we
study. If the input and output of an encoder-decoder model is the same, it is
called autoencoder and is one of the methods for feature extraction.

1.1 Polytopes

Polytopes have two different and equivalent representations. They can be rep-
resented as the intersection of a finite set of half-spaces (H-polytope) or as the
convex hull of a finite set of vertices (V-polytope). A detailed description of the
related theory is out of the scope of this paper, for an excellent presentation
see [17].

In this work we consider V-polytopes, namely polytopes given by their ver-
tices. Given the vertices, one can represent the polytope as a list of lists. The
length of this list is the number of vertices and the length of each element is the
(ambient) dimension of the polytope. The fact that both dimension and num-
ber of vertices varies, is one of the main obstacles in using machine learning for
polytope related problems. As discussed above, a common practice is the use of
autoencoders to extract a feature set that represents the data well enough (or
even better) in order to improve the success of the machine learning model. We
will present different approaches on how to encode polytopes (and their vertices).

One of the fundamental problems in computational geometry is to compute
the volume of a polytope. Volume computation has many applications ranging
from financial models [1] to systems biology [9]. Dyer et al. [4] proved that exact
volume computation is #P-hard. This lead to the development of randomized
and approximation algorithms in order to compute the volume of high dimen-
sional polytopes. The current state-of-the-art is presented in Emiris et al. [5].

We choose volume computation as the problem of interest in this work
because:

A Machine Learning Framework for Volume Prediction 411

– an approximation is the best we expect in polynomial time,
– it has natural prediction (regression) and comparison (classification) versions
– there are reliable means to produce data.

1.2 Our Goal and Structure of the Paper

The goal of this work is is to propose a framework allowing the use of machine
learning for geometric and algebraic problems. Among the abundance of geo-
metric and algebraic problems, that can be considered for such applications, we
choose to focus on polytopes and the computation of their volume. The reason
is that this problem already encounters some of the fundamental obstacles in
applying machine learning to geometric and algebraic problems, namely that
the dimensions of the input are not fixed.

The rest of this paper is structure as follows: In Sect. 2 we present the pro-
posed models and in Sect. 3 we describe the datasets we used. Section 4 contains
an analysis of the experiments and the experimental comparison of the proposed
models. Finally, in Sect. 5 we conclude the paper.

2 Description of the Models

In this work we consider V-polytopes, namely polytopes given by their vertices.
Given the vertices, one can represent the polytope as a list of lists. But a list
of lists is ordered, while the vertices of the polytope do not have a natural
order. Even though it is possible to give an arbitrary order, since this will not
be natural, it may cause failure in our models. For the rest of this work, we
consider the polytope given by the list of its vertices. We will present different
approaches on how to encode polytopes (and their vertices).

2.1 Encoding a Polytope

An essential difficulty of the encoding of a polytope is the variable length of input
both in terms of how many vertices a polytope has and what is the dimension
of the polytope.

We will indicate whether a model assumes the dimension is fixed or variable,
by the first letter of the model name, i.e., F or V respectively.

Fixed Dimension. As we saw in Sect. 1, traditionally the dimensions of the
input tensor are fixed, while with RNNs we can have one varying dimension if
we think that dimension as timesteps. In order to exploit existing models, we
have to restrict the generality of the problem.

If we fix an upper bound on the dimension of the polytope, then we can
pad with zeroes the vertices of any polytope of dimension smaller than the
bound. This allows us to use standard RNN/LSTM solutions and build end-to-
end models with ease.

412 U. Önal and Z. Zafeirakopoulos

Variable Dimension - Autoencoder for Vertices. One way to achive encod-
ing without fixing the dimension is by using an autoencoder for vertices. This
autoencoder works in a way similar to word embeddings in NLP. It is used to
encode vertices into a fixed size representation, in order to fix the vertex dimen-
sion. This way we don’t lose dimension information. However the lack of context,
i.e., that a set of vertices belongs to a polytope, may hinder the performance.
After encoding, we use the encoded vertices to construct polytopes again. We
use this approach as a preporcessing step, before training an end-to-end model
for fixed dimensional polytopes.

Polytopes with Fixed Dimensions and Number of Vertices. Inspired by
our fixed dimensional model, we also train a model with both fixed dimension
and number of vertices. We achieve this by padding data with zeros up to some
maximum number of vertices or dimension. One of the important aspects of
training with this data is that it removes the need of sequential processing with
RNNs. We only used feed forward networks with 2 inputs for different polytopes.
This approach is much simpler in many ways compared to the previously men-
tioned models, but it lacks generality and can only be used for polytopes within
its predefined limits.

Flatten. Another way to use RNN/LSTM to encode a polytope is to flatten
its list of vertices. One of the major problems with this approach is the loss of
dimension information. We use this approach in modular models.

2.2 The Problems

In this work we consider two problems related to volumes of polytopes. The first
is the regression problem of approximating the volume of a given V-polytope.
The second is the classification problem of deciding if polytope A has larger
volume than polytope B, given two V-polytopes A and B.

Volume Prediction. Volume prediction is the main problem we are trying to
solve in this work. This is a regression problem. In the first set of models we
predict the volume of a given polytope, while in the second set of models we
predict simultaneously the volumes of a pair of polytopes.

Volume Comparison. In order to define a classification problem related to
the regression problem of volume prediction, we study the volume comparison
problem. The goal is to observe the performance of the models in comparing
volumes. Given two polytopes as input, the model compares the volumes and
labels the pair of polytopes as 1 if the volume of the first polytope is larger and
0 otherwise. This is a binary classification problem.

A Machine Learning Framework for Volume Prediction 413

Coupling Prediction with Comparison. We also want observe the effect of
comparison and prediction on each other, by combining the two problems in one
model. This was the original motivation for studying the classification problem.
Generally, the classification problem is easier, and the question is whether pre-
dicting and comparing simultaneously, improves the performance of one or both
tasks. Having a model performing multiple tasks may be a useful tool.

2.3 Modular Vs End-to-End

Concerning the training of the models, in general, there are two approaches we
employ. The first is to train an autoencoder for polytopes and then separately
train a network for prediction/comparison. We will mark such solutions by APC .
The second approach is to perform end-to-end learning and we will use E2E to
mark models following this approach.

An important effect of using modular encoder and regressor models is that it
may work with different machine learning algorithms like Random Forest as well.
As we will see in Sect. 4, those algorithms may produce better results. However,
it is expected to have overall better results with E2E neural network models.

2.4 The Models

In what follows we present different solutions to these problems and for clarity
we will name the models in the following way:

– the first part declares if the dimension is fixed or variable by F or V respec-
tively,

– the second part is F if input is flatened, L if a list of lists, and P if completely
padded,

– the third part declares the training scheme by E2E or APC and
– the fourth part is C for volume comparison, P volume prediction or PC for a

coupled model.

For every model, we describe the coupled version * * *** PC and in the
corresponding figures we give also the outline of the comparison only (* * *** C)
and prediction only (* * *** P) architectures.

In Fig. 1 we see model F L E2E PC. The input of the model is a fixed dimen-
sional polytope. The dimensions are fixed by padding the input vectors to the
highest dimension in the data. However, it still employs an encoder to generate
a fixed representation of a polytope because the number of vertices still variable.

The F P E2E PC model (see Fig. 2) requires a fixed number of vertices as well
as fixed dimensions. Thus, it only uses dense layers and requires no RNNs to
process the input. After the input polytopes are encoded in a fixed size represen-
tation, the representation vectors of the two input polytopes are concatenated
and fed to the next layer (Fig. 3).

The V L E2E PC model (see Fig. 4) differentiates from previous models by
keeping both dimension and number of vertices variable. We use two encoders,

414 U. Önal and Z. Zafeirakopoulos

Concatenate

Flatten

Dense x 128

Dense x 128

Volume QVolume P Comparison

Encoder
LSTM x 128 LSTM x 128

Fixed Vector

Fixed Dim. Fixed Dim. Fixed Dim.

Encoder
LSTM x 128 LSTM x 128

Fixed Vector

Fixed Dim. Fixed Dim. Fixed Dim.

Fig. 1. Fixed dimensional end-to-end models

Dense x 128 Dense x 128

Concatenate

Flatten

Dense x 128

Dense x 128

Volume QVolume P Comparison

Fixed VectorFixed Vector

Fixed Dim. & Fixed
Vertices

Fixed Dim. & Fixed
Vertices

Fig. 2. Padded model

A Machine Learning Framework for Volume Prediction 415

Concatenate

Flatten

Dense x 128

Dense x 128

Volume QVolume P Comparison

Encoder

LSTM x 128 LSTM x 128

Fixed Vector

Fixed Dim. Fixed Dim. Fixed Dim.

Encoder
LSTM x 128 LSTM x 128

Encoder

LSTM x 128 LSTM x 128

Fixed Vector

Fixed Dim. Fixed Dim. Fixed Dim.

Encoder
LSTM x 128 LSTM x 128

Fig. 3. End-to-end model for both volume predictions and comparison.

Dense x 128 Dense x 128

Concatenate

Flatten

Dense x 128

Dense x 128

Volume QVolume P Comparison

Fixed VectorFixed Vector

Fixed Vector Fixed Vector

Fig. 4. Feed-forward Neural Network for modular solution.

416 U. Önal and Z. Zafeirakopoulos

one for vertices and one for polytopes, in order to achieve this. Apart from having
one more encoder for input, this model is similar to F L E2E PC.

The last model we introduce is V F APC PC. The input of this model is flat-
tened and it is our only modular model. It consists of an autoencoder that takes
the input and a regression/classification model. The autoencoder part of the
model (see Fig. 5) takes a flattened list of vertices and encodes it into a fixed
size vector. Then, this fixed size vector respresentation of the polytope is used
as input of the second part of the model. For the second part of the model, any
machine learning model can be used. We used Feed-Forward Neural Networks
and Random Forest in this part. In Sect. 4, we will indicate what is the model
used for the second part in the experiments.

Encoder
LSTM x 128 LSTM x 128

Decoder
LSTM x 128 LSTM x 128

Fixed Vector

Fig. 5. The autoencoder model using LSTM

3 Description of Data

One of the biggest challenges when designing machine learning experiments is
to find data. Although it is easy to create artificial datasets, it is important to
make sure that the choice of instances is meaningful.

Data Sources and Generation. In this work, we used two types of data,
namely, random polytopes and polytopes from specific families.

A random polytope is generated by first choosing at random (within a pre-
defined range) the number of vertices of the polytope and then create a random
polytope with that many vertices using SageMath [16]. The dataset generator
creates a random vector with integer coordinates (indicating the numbers of ver-
tices of each polytope in the dataset). The length of this vector indicates the size
of the dataset. In this process, the dimension of the polytopes is fixed. Different
sets of polytopes of different dimensions are generated by changing this fixed
value.

Concerning polytopes from specific families, we use cubes, hypercubes, cross-
polytopes and Fano polytopes. We use SageMath to generate cubes, hypercubes,
cross-polytopes, while Fano polytopes are taken from [11].

A Machine Learning Framework for Volume Prediction 417

Datasets. We use Fano polytopes paired with each other based on dimension in
our experiments. This is a requirement of the comparison problem we described
before. This also increases the the number of data instances even though we start
with a limited number of polytopes from this data set. We used 200 polytopes
and this produced more than 19.000 pairs in the end.

Our second data generator uses predefined families of polytopes in SageMath.
We chose several base polytopes, such as unit cube, and we create new polytopes
by applying random transformation to these base polytopes. Random transfor-
mations include scaling up to 10 times and replacing the center from the origin
to another point and applying slight rotations.

A summary of the data can be seen in Table 2. We have three sets of polytopes
coming from randomly generated polytopes and a set of polytopes only consists
of Fano polytopes. We name these sets as A, B, C an D. Table 2 shows which
data set includes which family of polytopes.

In Table 1 we give a statistical analysis of volumes in the datasets we used.

Table 1. Volume statistics

Polytope
set

Dimensions Instances Min Max Mean Variance

Set A 3,4,5 15000 8.0 1889568.0 113619.3272 62416457013.52322

Set B 3,4,5 7500 8.0 1889568.0 151488.8789 120202038886.83537

Set C 3 2500 8.0 5832.0 1845.8047 3814934.1211

Set D 3,4,5,6 200 6.0 123.0166 28.35704 510.43171

We split all the data sets into three sets before training phases. 30% of the
data goes into validation and 10% goes to test set as rest of the data goes
into training set. We make this split once and use the same splits in all of the
experiments later. We use training and validation during training but we use the
test set only for the evaluation of the models.

Table 2. Dataset summary

Polytope family Dimension Set A Set B Set C Set D

Cube 3 yes yes yes no

Hypercube 4 yes yes no no

Hypercube 5 yes yes no no

Cross-polytope 4 yes no no no

Cross-polytope 5 yes no no no

Random 3 yes no no no

Fano 3,4,5,6 no no no yes

418 U. Önal and Z. Zafeirakopoulos

3.1 Normalization

Normalization of data is very important for machine learning in general. Feature
values are usually compressed into the [−1, 1] range in order to remove range
differences. However, actual values have importance when dealing with geometric
and algebraic problems. This lead us to use different normalizations on volume
by multiplying it by a scalar value. We have variations of out data sets with
different normalization multipliers applied before training (see Table 3).

4 Experimental Results

In this section we present the training setup and results of the experiments.

Metrics and Parameters. Volume prediction is a regression problem and
there are several different metrics to measure the performance of a regression
model. A standard metric is the mean squared error (MSE). Although we use
MSE during training as a loss function, it is hard to compare the performance of
different models based on MSE. For example, applying different normalizations
results in vastly different values for MSE. The same is true for mean absolute
error. Since it is important that the metric is not affected by such changes, we use
R2 (R-squared) as regression measure. In R2, the best score is 1, while 0 means
the model produces the same output regardless of the input. It is possible to get
negative values, meaning that the model performs worse than giving always the
same output.

For the classification problem, the label distribution is totally balanced, since
for every pair of polytopes (A,B), we also include (B,A) in the dataset. The
balanced distribution of both labels makes accuracy a good and simple enough
metric to measure performance. During training, we use Binary Cross Entropy
as loss function.

Another important evaluating criterion to consider is overfitting. Overfitting
occurs when a model memorizes too much from the training data and cannot
perform well with new inputs. Datasets are split into training, validation and
test sets in order to evaluate the fit of the model to the data. We do not see
overfit in the experiments as the results from training and testing are similar.

Concerning the rest of the training parameters (unless stated otherwise),
we use Adam as optimizer with a learning rate of 0.001. All of the models are
trained for 20 epochs with the exception of autoencoders when a model has one.
Autoencoders are trained for 30 epochs, with the same optimizer and learning
rate.

Modular Framework. The first part of experiments uses randomly generated
polytopes and the V F APC P model to predict volume. Note that this part of
experiments is significantly different from the following part, since it does not
perform volume comparison and the datasets used have a wide range of volumes
between 0 and 106. We use stochastic gradient descent (SGD) as optimizer with

A Machine Learning Framework for Volume Prediction 419

learning rate of 0.321 for autoencoders and Adam with learning rate of 0.001
for feed-forward networks. We train the autoencoder for 10 epochs and the feed-
forward networks for 30 epochs. The results can be found in Table 3.

The main observation from this set of experiments is that it is hard to predict
volume when the dataset contains polytopes with a wide range of volumes. Even
when we use Dataset C, which only consists of cubes, scores are still lower than
0.5 due to the wide range of the volume values. However, results are better
compared to results from other datasets as the range of the volume is relatively
limited. We also tried to train the models without volume normalization, but
the models failed to learn.

Using the insights gained from the first set of experiments, we design a new
experiment. In addition to volume prediction, we consider volume comparison
as a related problem and we also consider the two problems simultaneously
(see Sect. 2). In terms of data, in dataset D we restrict to a specific family of
polytopes, with a smaller range of volume values (see Sect. 3).

The modular framework performs better with this new experimentation
setup. The coupled model V F APC PC has better comparison accuracy com-
pared to V F APC C due to the effect of volume prediction. Both V F APC PC and
V F APC P give bad results for volume prediction. When normalization is removed
from input data, although volume prediction improves, there is no improvement
for volume comparison.

End-to-End. We also experiment with end-to-end network architectures in
addition to our modular model with the second experimentation setup.

Fixed dimensional models obtain decent performance in accuracy, but vol-
ume prediction is not successful with normalization. An interesting observation is
that volume prediction is worse in F L E2E PC compared to F L E2E P. However,
both of them are still below zero which means none of them succeed in vol-
ume prediction. Another interesting situation we observe is that F L E2E PC has
slightly better accuracy for comparison than F L E2E C. This becomes even more
obvious when we change the normalization multiplier to 0.08 and 1 and leave
other parameters such as optimizer and learning rate unchanged. For unnormal-
ized data, F L E2E PC reaches 0.9 accuracy and 0.97 volume score. This allows
us to assume that the more the model learns from volume prediction the more
accurate it will get on comparison. The accuracy and volume scores make it a
feasible model for such problems when limiting the dimension is an option.

F P E2E PC and its variations are the models with the best performance
regardless of normalization. Again, the coupled model F P E2E PC has slightly
better accuracy compared to the comparison only model F P E2E C. However,
this time F L E2E PC has a volume score above 0, which means that it learns
about volume as well (even though not enough). The previous observation, that
learning from volume makes comparison better, is supported by the high score
of F P E2E P. F P E2E PC produces close results to F P E2E P with different nor-
malization multipliers. The overall performance of the model also improves when
there is no normalization on volume. However, an interesting point to consider is

420 U. Önal and Z. Zafeirakopoulos

that F P E2E P produce good results even with normalization. This model may
be a good solution when the data is within the limits.

The training of V L E2E PC includes an additional encoder, but this time the
autoencoder works in a way similar to word embeddings in natural language
processing (NLP). We used an autoencoder trained independently to encode our
vertices in order to fix their dimension. It is trained for 30 epochs with Adam as
optimizer and MSE as loss function. The rest of the model is trained similarly
to F L E2E PC as dimensions are fixed now. The reason of such training method
instead of a complete end-to-end is that we could not find a way to train such
model with LSTM.

V L E2E PC and V L E2E C offer acceptable performance for the comparison
problem. However the results for volume are not good for either V L E2E P or
V L E2E PC. The results do not seem to change much unless normalization is
removed. When normalization is removed V L E2E PC has a decrease in its com-
parison accuracy and increase in volume score. However, these are not especially
good results.

4.1 Comparison of the Models

We propose four different approaches to solve volume prediction and volume
comparison for polytopes.

We can divide our models into two groups based on their performances.
The F L E2E PC and F P E2E PC models produce good results with over 0.90
accuracy and over 0.97 prediction score. On the other hand, V L E2E PC and
V F APC PC models produce relatively worse results with around 0.80 accuracy
and 0.7 prediction score. One key difference between these two groups is their
input data format. Better results come when we fix the data size instead of
trying to keep it variable. It is also possible that autoencoders do not learn a
good feature set for these problems.

A general observation we can make is that almost all models produce bet-
ter comparison accuracy and worse R2 score when both of the problems are
combined in a model (coupled models). The only exception is V L E2E PC. We
conclude that the two problems can affect each other, improving comparison
while learning to predict volumes.

Another interesting result is the effect of volume normalization on all of the
models. In contrast to our initial failure without normalization, our second set of
experiments without normalization on volume produces better results. Training
with lower normalization multiplier produces better results overall and the best
results came when normalization was removed by setting the multiplier to 1. All
the models can have significant increase in their R2 scores due to this.

A Machine Learning Framework for Volume Prediction 421

Table 3. Results from experiments with different model, normalization, encoding data,
prediction data combinations. We will name the models in the following way: the first
part declares if the dimension is fixed or variable by F or V respectively,the second
part is F if input is flatened, L if a list of lists, and P if completely padded, the third
part declares the training scheme by E2E or APC and the fourth part is C for volume
comparison, P volume prediction or PC for a coupled model.

Model Normalization Enc.

Data

Pred.

Data

Accuracy Volume Q Volume P

V F APC P+NN 2 Layer 0.000001 A A N/A 0.10 N/A

V F APC P+NN 2 Layer 0.000001 A B N/A 0.40 N/A

V F APC P+NN 2 Layer 0.000001 A C N/A −2.91 N/A

V F APC P+NN 2 Layer 0.000001 B B N/A 0.15 N/A

V F APC P+NN 2 Layer 0.000001 B C N/A −0.01 N/A

V F APC P+NN 2 Layer 0.000001 C C N/A 0.35 N/A

V F APC P+NN 4 Layer 0.000001 A A N/A 0.11 N/A

V F APC P+NN 4 Layer 0.000001 A B N/A 0.42 N/A

V F APC P+NN 4 Layer 0.000001 A C N/A 0.22 N/A

V F APC P+NN 4 Layer 0.000001 B B N/A 0.30 N/A

V F APC P+NN 4 Layer 0.000001 B C N/A −0.11 N/A

V F APC P+NN 4 Layer 0.000001 C C N/A 0.30 N/A

V F APC P+RF(100,5) 0.000001 A A N/A 0.05 N/A

V F APC P+RF(100,5) 0.000001 A B N/A 0.15 N/A

V F APC P+RF(100,5) 0.000001 A C N/A 0.39 N/A

V F APC P+RF(100,5) 0.000001 B B N/A 0.21 N/A

V F APC P+RF(100,5) 0.000001 B C N/A 0.38 N/A

V F APC P+RF(100,5) 0.000001 C C N/A 0.36 N/A

V F APC P+RF(100,15) 0.000001 A A N/A 0.16 N/A

V F APC P+RF(100,15) 0.000001 A B N/A 0.40 N/A

V F APC P+RF(100,15) 0.000001 A C N/A 0.49 N/A

V F APC P+RF(100,15) 0.000001 B B N/A 0.45 N/A

V F APC P+RF(100,15) 0.000001 B C N/A 0.42 N/A

V F APC P+RF(100,15) 0.000001 C C N/A 0.46 N/A

F L E2E PC 0.0001 N/A D 0.8624 −42.48 −43.58

F L E2E C 0.0001 N/A D 0.8401 N/A N/A

F L E2E P 0.0001 N/A D N/A −0.1268 −0.0089

F P E2E PC 0.0001 N/A D 0.9266 0.1986 0.1419

F P E2E C 0.0001 N/A D 0.9106 N/A N/A

F P E2E P 0.0001 N/A D N/A 0.9785 0.9925

V L E2E PC 0.0001 D D 0.8510 −4.5031 −8.0108

V L E2E C 0.0001 D D 8559 N/A N/A

V L E2E P 0.0001 D D N/A −0.5204 −0.0005

V F APC PC 0.0001 D D 0.8152 0.1260 −0.5238

V F APC C 0.0001 D D 0.7849 N/A N/A

V F APC P 0.0001 D D N/A −0.0301 −0.4150

F L E2E PC 0.008 N/A D 0.7957 0.0163 0.0115

F L E2E PC 1 N/A D 0.9084 0.9774 0.9975

F P E2E PC 0.008 N/A D 0.9111 0.9269 0.9547

F P E2E PC 1 N/A D 0.9631 0.9980 0.9982

V L E2E PC 0.008 N/A D 0.8223 −0.1644 −0.2701

V L E2E PC 1 N/A D 0.7226 0.7013 0.7135

V F APC PC 1 D D 0.8277 0.5857 0.7754

422 U. Önal and Z. Zafeirakopoulos

5 Conclusion

In this paper we propose a framework allowing the use of machine learning
for geometric and algebraic problems. The framework has similarities to mod-
els developed for other sequential problems employing RNNs, and in particular
autoencoders.

We focus on two volume related problems, namely the prediction of polytope
volume and the comparison of volumes of a pair of polytopes. The choice of
problems is convenient since it provides naturally a regression problem and a
related classification problem.

One of the important differences between the problems and solutions in the
literature and the ones presented in this work is the effect of data normaliza-
tion. In general, data normalization is essential for the success of most machine
learning models. On the contrary, for the volume prediction problem and the
proposed models, data normalization is catastrophic. If the range of volumes in
the training data is too wide and the dataset not large enough, then the model
fails to train due to lack of normalization. Nevertheless, as shown in our experi-
ments, if the range is not too wide, unnormalized training data provide the best
results.

To the best of our knowledge, this is the first attempt to employ machine
learning in this type of problem. Our goal was to show that it is possible to train
a model with input of two variable dimensions in a meaningful way. Although we
are far from the ideal solution, the results presented here are very encouraging.
We detect some important parameters that differentiate the problem from clas-
sical machine learning problems and we show how to overcome the issues raised
by these differences.

Naturally, we will also continue testing our better performing models with
different families of polytopes and more diverse datasets. Such experiments will
provide a better understanding on how to solve geometric and algebraic problems
with machine learning.

Acknowledgements. This work was supported by the project 117E501 under the
program 3001 of the Scientific and Technological Research Council of Turkey.

References

1. Calès, L., Chalkis, A., Emiris, I.Z., Fisikopoulos, V.: Practical volume computation
of structured convex bodies, and an application to modeling portfolio dependen-
cies and financial crises. In: Speckmann, B., Tóth, C.D. (eds.) 34th International
Symposium on Computational Geometry, SoCG 2018, 11–14 June 2018, Budapest,
Hungary. LIPIcs, vol. 99, pp. 19:1–19:15. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik (2018). https://doi.org/10.4230/LIPIcs.SoCG.2018.19

2. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for
statistical machine translation. In: Proceedings of the 2014 Conference on Empir-
ical Methods in Natural Language Processing (EMNLP), pp. 1724–1734. Associa-
tion for Computational Linguistics (2014). https://doi.org/10.3115/v1/D14-1179,
http://aclweb.org/anthology/D14-1179

https://doi.org/10.4230/LIPIcs.SoCG.2018.19
https://doi.org/10.3115/v1/D14-1179
http://aclweb.org/anthology/D14-1179

A Machine Learning Framework for Volume Prediction 423

3. Dai, A.M., Le, Q.V.: Semi-supervised sequence learning. In: Cortes, C., Lawrence,
N.D., Lee, D.D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information
Processing Systems, vol. 28, pp. 3079–3087. Curran Associates, Inc. (2015). http://
papers.nips.cc/paper/5949-semi-supervised-sequence-learning.pdf

4. Dyer, M.E., Frieze, A.M.: On the complexity of computing the volume of a polyhe-
dron. SIAM J. Comput. 17(5), 967–974 (1988). https://doi.org/10.1137/0217060

5. Emiris, I.Z., Fisikopoulos, V.: Efficient random-walk methods for approxi-
mating polytope volume. In: Proceedings of the Thirtieth Annual Sympo-
sium on Computational Geometry, SOCG 2014, pp. 318:318–318:327. ACM,
New York (2014). https://doi.org/10.1145/2582112.2582133, http://doi.acm.org/
10.1145/2582112.2582133

6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition,
pp. 770–778, June 2016. https://doi.org/10.1109/CVPR.2016.90

7. Hinton, G., et al.: Deep neural networks for acoustic modeling in speech recogni-
tion: the shared views of four research groups. IEEE Signal Process. Mag. 29(6),
82–97 (2012)

8. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997). https://doi.org/10.1162/neco.1997.9.8.1735

9. Jaekel, U.: A monte carlo method for high-dimensional volume estimation and
application to polytopes. In: Sato, M., Matsuoka, S., Sloot, P.M.A., van Albada,
G.D., Dongarra, J.J. (eds.) Proceedings of the International Conference on Com-
putational Science, ICCS 2011. Procedia Computer Science. Nanyang Technolog-
ical University, Singapore, 1–3 June 2011, vol. 4, pp. 1403–1411. Elsevier (2011).
https://doi.org/10.1016/j.procs.2011.04.151

10. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger,
K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 25, pp. 1097–
1105. Curran Associates, Inc. (2012). http://papers.nips.cc/paper/4824-imagenet-
classification-with-deep-convolutional-neural-networks.pdf

11. Paffenholzr, A.: Smooth reflexive lattice polytopes. https://polymake.org/
polytopes/paffenholz/www/fano.html

12. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-
propagating errors. Nature 323, 533 (1986). https://doi.org/10.1038/323533a0

13. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. CoRR abs/1409.1556 (2014)

14. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural
networks. In: Proceeding of the NIPS. Montreal, CA (2014). http://arxiv.org/
abs/1409.3215

15. Szegedy, C., et al.: Going deeper with convolutions. In: Computer Vision and Pat-
tern Recognition (CVPR) (2015). http://arxiv.org/abs/1409.4842

16. The Sage Developers: SageMath, the Sage Mathematics Software System (Version
8.3.0) (2019). https://www.sagemath.org

17. Ziegler, G.M.: Lectures on polytopes. Springer, New York (1995). https://doi.org/
10.1007/978-1-4613-8431-1

http://papers.nips.cc/paper/5949-semi-supervised-sequence-learning.pdf
http://papers.nips.cc/paper/5949-semi-supervised-sequence-learning.pdf
https://doi.org/10.1137/0217060
https://doi.org/10.1145/2582112.2582133
http://doi.acm.org/10.1145/2582112.2582133
http://doi.acm.org/10.1145/2582112.2582133
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1016/j.procs.2011.04.151
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://polymake.org/polytopes/paffenholz/www/fano.html
https://polymake.org/polytopes/paffenholz/www/fano.html
https://doi.org/10.1038/323533a0
http://arxiv.org/abs/1409.3215
http://arxiv.org/abs/1409.3215
http://arxiv.org/abs/1409.4842
https://www.sagemath.org
https://doi.org/10.1007/978-1-4613-8431-1
https://doi.org/10.1007/978-1-4613-8431-1

Faster Biclique Mining
in Near-Bipartite Graphs

Blair D. Sullivan, Andrew van der Poel(B), and Trey Woodlief

North Carolina State University, Raleigh, NC 27607, USA
{blair sullivan,ajvande4,adwoodli}@ncsu.edu

Abstract. Identifying dense bipartite subgraphs is a common graph
data mining task. Many applications focus on the enumeration of all
maximal bicliques (MBs), though sometimes the stricter variant of max-
imal induced bicliques (MIBs) is of interest. Recent work of Kloster et al.
introduced a MIB-enumeration approach designed for “near-bipartite”
graphs, where the runtime is parameterized by the size k of an odd
cycle transversal (OCT), a vertex set whose deletion results in a bipar-
tite graph. Their algorithm was shown to outperform the previously best
known algorithm even when k was logarithmic in |V |. In this paper, we
introduce two new algorithms optimized for near-bipartite graphs - one
which enumerates MIBs in time O(MI |V ||E|k), and another based on the
approach of Alexe et al. which enumerates MBs in time O(MB |V ||E|k),
where MI and MB denote the number of MIBs and MBs in the graph,
respectively. We implement all of our algorithms in open-source C++
code and experimentally verify that the OCT-based approaches are faster
in practice than the previously existing algorithms on graphs with a wide
variety of sizes, densities, and OCT decompositions.

Keywords: Bicliques · Odd cycle transversal · Bipartite ·
Enumeration algorithms · Parameterized complexity

1 Introduction

Bicliques (complete bipartite graphs) naturally arise in many data mining appli-
cations, including detecting cyber communities [18], data compression [1], epi-
demiology [23], artificial intelligence [30], and gene co-expression analysis [15,16].
In many settings, the bicliques of interest are maximal (not contained in any
larger biclique) and/or induced (each side of the bipartition is independent in
the host graph), and there is a large body of literature giving algorithms for enu-
merating all such subgraphs [3,5,6,20,22,23,26,32]. Many of these approaches
make strong structural assumptions on the host graph; the case when the host
graph is bipartite has been particularly well-studied, and the iMBEA algorithm

This work was supported by the Gordon & Betty Moore Foundation’s Data-Driven
Discovery Initiative under Grant GBMF4560 to Blair D. Sullivan and the NC State
College of Engineering REU program.

c© Springer Nature Switzerland AG 2019
I. Kotsireas et al. (Eds.): SEA2 2019, LNCS 11544, pp. 424–453, 2019.
https://doi.org/10.1007/978-3-030-34029-2_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34029-2_28&domain=pdf
https://doi.org/10.1007/978-3-030-34029-2_28

Faster Biclique Mining in Near-Bipartite Graphs 425

of Zhang et al. has been empirically established to be state-of-the-art [32]. Until
recently, the only known non-trivial algorithm for enumerating maximal induced
bicliques (MIBs) in general graphs was that of Dias et al. which did so in lex-
icographic order [5]. In [17], Kloster et al. presented a new algorithm for enu-
merating MIBs in general graphs, OCT-MIB, which extended ideas from iMBEA
to work on non-bipartite graphs by using an odd cycle transversal (OCT set):
a set of nodes O such that G[V \ O] is bipartite. This yielded an algorithm
with runtime O(MInmn2

O3nO/3) where nO = |O|, MI is the number of MIBs
in G = (V,E), and n and m denote |V | and |E|, respectively. The 3nO/3 term
arises from OCT-MIB’s dependence on the number of maximal independent sets
(MISs) in O. In this paper, we give new algorithms for enumerating both MIBs
and maximal, not necessarily induced bicliques (MBs) in general graphs. We
first present OCT-MIB-II which again leverages odd cycle transversals to enu-
merate MIBs in time O(MInmnO). In contrast to OCT-MIB, the worst-case run-
time of OCT-MIB-II is not dependent on the number of MISs in O, making it
better than OCT-MIB when nO ∈ ω(1). We also give a second algorithm for MIB-
enumeration, Enum-MIB, which has runtime O(MInm). Enum-MIB is essentially
a modified version of the algorithm of Dias et al. [5], which achieves a faster
runtime by dropping the lexicographic output requirement.

In the setting considering non-induced bicliques, the state-of-the-art app-
roach is MICA of Alexe et al. [3]. MICA employs a consensus mechanism to
iteratively find maximal bicliques by combining them together, resulting in
an O(MBn3) algorithm, where MB is the number of MBs. We introduce a
new algorithm OCT-MICA which leverages odd cycle transversals and runs in
O(MB(n2nO + mn)) time.

Since all graphs have OCT sets (although they can be size O(n), as in cliques),
OCT-MIB, OCT-MIB-II, and OCT-MICA can all be run in the general case; their
correctness does not require minimality or optimality of the OCT set. Further,
we implement OCT-MIB-II, Enum-MIB and OCT-MICA in open source C++ code,
and evaluate their performance on a suite of synthetic graphs with known OCT
decompositions. Our experiments show that OCT-MICA and OCT-MIB-II are the
dominant algorithms for their respective problems in many settings. Their effi-
ciencies allow us to run on larger graphs than in [17].

We begin with preliminaries and a brief discussion of related work in Sect. 2,
then describe each of our three new algorithms and provide proofs of their cor-
rectness and runtimes in Sect. 3. We highlight several implementation details in
Sect. 4, before presenting our experimental evaluation in Sect. 5.

2 Preliminaries

2.1 Related Work

The complexity of finding bicliques is well-studied, beginning with the results
of Garey and Johnson [7] which establish that in bipartite graphs, finding the
largest balanced biclique is NP-hard but the largest biclique can be found in

426 B. D. Sullivan et al.

polynomial time. Particularly relevant to the mining setting, Kuznetsov showed
that enumerating MBs in a bipartite graph is #P-complete [19]. Finding the
biclique with the largest number of edges was shown to be NP-complete in gen-
eral graphs [31], but the case of bipartite graphs remained open for many years.
Several variants (including the weighted version) were proven NP-complete in [4]
and in 2000, Peeters finally resolved the problem, proving the edge maximization
variant is NP-complete in bipartite graphs [25].

For the problem of enumerating MIBs, the best known algorithm in general
graphs is due to Dias et al. [5]; in the non-induced setting, approaches include a
consensus algorithm MICA [3], an efficient algorithm for small arboricity [6], and
a general framework for enumerating maximal cliques and bicliques [8], with
MICA the most efficient among them, running in O(MBn3). We note that, as
described, the method in [5] may fail to enumerate all MIBs; a modified, correct
version was given in [17].

There has also been significant work on enumerating MIBs in bipartite
graphs. We note that since all bicliques in a bipartite graph are necessarily
induced, non-induced solvers for general graphs (such as MICA) can be applied,
and have been quite competitive. The best known algorithm however, is due to
Zhang et al. [32] and directly exploits the bipartite structure. Other approaches
in bipartite graphs include frequent closed itemset mining [20] and transforma-
tions to the maximal clique problem [22]; faster algorithms are known when a
lower bound on the size of bicliques to be enumerated is assumed [23,26].

Kloster et al. [17] extended techniques for bipartite graphs to the general
setting using odd cycle transversals, a form of “near-bipartiteness” which arises
naturally in many applications [10,24,27]. This work resulted in OCT-MIB, an
algorithm for enumerating MIBs in a general graph, parameterized by the size
of a given OCT set. Although finding a minimum size OCT set is NP-hard,
the problem of deciding if an OCT set with size k exists is fixed parameter
tractable (FPT) with algorithms in [21] and [14] running in times O(3kkmn)
and O(4kn), respectively. We note non-optimal OCT sets only affect the runtime
(not correctness) of our algorithms, allowing us to use heuristic solutions. Recent
implementations [9] of a heuristic ensemble alongside algorithms from [2,12]
alleviate concerns about finding an OCT decomposition creating a barrier to
usability.

2.2 Notation and Terminology

Let G = (V,E) be a graph; we set n = |V | and m = |E|. We define N(v) to be the
neighborhood of v ∈ V and write N(v) for v’s non-neighbors. An independent
set T ⊆ V (G) is a maximal independent set (MIS) if T is not contained in any
other independent set of G. Unless otherwise noted, we assume without loss of
generality that G is connected.

A biclique A × B in a graph G = (V,E) consists of non-empty disjoint sets
A,B ⊂ V such that every vertex of A is neighbors with every vertex of B. We
say a biclique A × B is induced if both A and B are independent sets in G. A
maximal biclique (MB) in G is a biclique not properly contained in any other;

Faster Biclique Mining in Near-Bipartite Graphs 427

a maximal induced biclique (MIB) is analogous among induced bicliques. We use
MB and MI to denote the number of MBs and MIBs in G, respectively. If O
is an OCT set in G, we denote the corresponding OCT decomposition of G by
G[L,R,O], where the induced subgraph G[L ∪ R] is bipartite. We write nL, nR,
and nO for |L|, |R|, and |O|, respectively.

3 Algorithms

In this section we provide three novel algorithms, two of which of solve Maximal

Induced Biclique Enumeration (Enum-MIB and OCT-MIB-II) and the other
of which solves Maximal Biclique Enumeration (OCT-MICA). Both Enum-MIB
and OCT-MIB-II follow the same general framework, which we now describe.

3.1 MIB Algorithm Framework

The MIB-enumeration algorithms both use two subroutines, MakeIndMaximal
and AddTo. MakeIndMaximal takes in (C,S), where C is an induced biclique and
S ⊆ V , and either returns a MIB C+ where C ⊆ C+, C+ ⊆ C ∪ S, C �= ∅,
or returns ∅. If it returns ∅ and C �= ∅ then there is another MIB D which
contains C and v ∈ (V \ S) \ C. AddTo takes in (C, v) where C = C1 × C2 is
an induced biclique and v ∈ V \ (C1 ∪ C2), and returns the induced biclique
where v is added to C1, N(v) is removed from C1, and N(v) is removed from
C2 if C2 ∩ N(v) �= ∅; otherwise, ∅ is returned. Both MakeIndMaximal and AddTo
operate in O(m) time. We defer algorithmic details and proofs of the complexity
and correctness for these routines to the Appendix.

The MIB-enumeration framework (shown in Algorithm 1) begins by finding
a seed set of MIBs CS . At a high level, it operates by attempting to add vertices
from the designated set IS to previously found MIBs to make them maximal.
We utilize a dictionary D to track which MIBs have already been found and a
queue Q to store bicliques which have not yet been explored. We now prove two
technical lemmas used to show the correctness of this framework.

Lemma 1. Let X ×Y be a MIB in graph G which contains a non-empty subset
of R×S, another MIB in G. Running AddTo with parameters X ×Y and v ∈ R\
(X ∪Y) returns a biclique which contains R ∩ X, S ∩ Y , and v if Y ∩ N(v) �= ∅.
Proof. By construction, v must be independent from R and completely con-
nected to S. Thus, none of R ∩ X will be removed from X and all of S ∩ Y
will remain in Y , as required. Therefore, as long as Y ∩ N(v) �= ∅, the desired
biclique is returned.

Lemma 2. In Algorithm 1, if there exists a MIB A′×B′ in D such that A\IS ⊆
A′, B \ IS ⊆ B′ and (A ∪ B) ∩ (A′ ∪ B′) �= ∅, for each MIB A × B in G, then
all MIBs in G are included in D.

428 B. D. Sullivan et al.

Algorithm 1. MIB-enumeration algorithm framework
1: Input: G = (V, E), IS

2: CS = FindSeedSet(G) � set of initial MIBs
3: Add each C ∈ CS to D and Q
4: while Q is not empty do
5: X × Y ← pop(Q)
6: for j ∈ IS \ (X ∪ Y) do
7: C1 = AddTo(X × Y, j)
8: C′

1 = MakeIndMaximal(C1, IS)
9: if C′

1 is not in D then
10: Add C′

1 to D and Q
11: C2 = AddTo(Y × X, j)
12: C′

2 = MakeIndMaximal(C2, IS)
13: if C′

2 is not in D then
14: Add C′

2 to D and Q
15: return D

Proof. Assume not. Let A×B be a MIB in G which is not in D with |(A∪B)\IS |
maximum. Let A′ × B′ be the MIB in D such that A \ IS ⊆ A′, B \ IS ⊆ B′ and
(A ∪ B) ∩ (A′ ∪ B′) �= ∅ and let v ∈ ((A ∪ B) \ (A′ ∪ B′)) ⊆ IS . Without loss of
generality assume B ∩ B′ �= ∅ and v ∈ A.

Consider the iteration of Algorithm1 when X × Y = A′ × B′ and j = v
(lines 5–6). By Lemma 1, one of the calls to AddTo returns an induced biclique
C which contains A \ IS , B \ IS , and v. Both sides of C are non-empty (since
B ∩ B′ �= ∅ and v ∈ A). If C = A × B we obtain a contradiction, as MakeInd-
Maximal (C, IS) would return C, resulting in its addition to D. Otherwise, either
MakeIndMaximal returns ∅ or a biclique C ′ = A′ ×B′ which is added to D. Since
both sides of C are nonempty, if MakeIndMaximal returns ∅, there exists a MIB
in G containing C and x ∈ (V \ IS) \ C . Let A′ × B′ be such a MIB; since it
has more vertices in V \ IS than C, it must be in D, and we set C ′ = A′ × B′.
In either case, C ⊆ (A′ ∪ B′), |(A ∪ B) \ (A′ ∪ B′)| < |(A ∪ B) \ (X ∪ Y)|. We
can repeat this argument for the new A′ × B′, noting that (A ∪ B) ∩ (A′ ∪ B′)
will include vertices on both sides. Thus, the argument still holds without any
assumption on the non-empty side of the intersection and |(A ∪ B) \ (A′ ∪ B′)|
will strictly decrease; when it reaches 0, A′ × B′ = A × B, a contradiction.

Note that as MakeIndMaximal only returns MIBs, this framework will only
include MIBs in D. Together with Lemma 2, this yields the following corollary.

Corollary 1. If for every MIB A × B ∈ G there is a MIB A′ × B′ ∈ CS such
that A\ IS ⊆ A′, B \ IS ⊆ B′ and (A∪B)∩ (A′ ∪B′) �= ∅, then upon completion
of Algorithm 1, D will contain exactly the MIBs in G.

Recall that AddTo and MakeIndMaximal each run in O(m) time. Combining
this with the fact that each MIB in G is popped at most once from Q we have:

Corollary 2. The time complexity of this framework is O(MImn + INIT),
where INIT is the time needed by FindSeedSet to compute CS.

Faster Biclique Mining in Near-Bipartite Graphs 429

3.2 Enum-MIB

We now present Enum-MIB, which follows the MIB-enumeration framework. To
form CS , for each vertex v ∈ V we run MakeIndMaximal ({v} × {x}, V) where
x ∈ N(v) and add it to CS . We also let IS = V . To show the correctness of this
approach, we note that V \ V = ∅ and any MIB contains the empty set. Thus all
that remains to show is that for each MIB there is a MIB in CS with which it has
a non-empty intersection. As every v ∈ V is in some MIB in CS , this condition is
met. Thus, via Corollary 1, Enum-MIBwill find all MIBs. There may be O(n) dupli-
cates in CS which can be removed in O(n) time per duplicate. As MakeIndMaximal
runs in O(m) time, by Corollary 2, the time complexity of Enum-MIB is O(MImn).
We note that Enum-MIB is essentially a simplified version of the LexMIB algorithm
from [17] which does not guarantee lexicographic order on output.

3.3 OCT-MIB-II

Next we describe OCT-MIB-II, an algorithm for enumerating all MIBs in a graph
with a given OCT decomposition G[L,R,O]. OCT-MIB-II also makes use of the
MIB-enumeration framework described in Sect. 3.1. In the calls to MakeInd-
Maximal we let IS = O. To form CS , we begin by running iMBEA [32] to find
the set CB of MIBs in G[L ∪ R]. For each CB ∈ CB we run MakeIndMaximal on
(CB , O). This creates a set XB of MIBs in G.

Then for each node o ∈ O, we find the set of MISs in N(o). This can be done in
O(mn) time per MIS using the algorithm of Tsukiyama et al. [28]. For each MIS
Io found, run MakeIndMaximal on the induced biclique {o} × Io. Let the multiset
of all MIBs produced by this process be denoted XQ. Note that a MIB may be in
XQ up to O(nO) times (once per o ∈ O, stemming from an MIS in N(o)), but
we can remove duplicates from XQ in O(n) per MIB, forming X ′

M . We then let
CS = XB ∪ X ′

M . Thus, FindSeedSet runs in O(mnnO) per unique MIB found,
and by Corollary 2, the total time complexity of OCT-MIB-II is O(MImnnO).

To show the correctness of OCT-MIB-II, we must show that for every MIB in
G, we include a MIB in CS which includes all of its non-OCT nodes and a node in
the MIB if the MIB is completely contained in O. If an entire MIB C is contained
in O, then any MIB containing {o} × Io for o ∈ C suffices. If a MIB has non-OCT
nodes on both sides, then there must be a MIB in XB which contains these non-
OCT nodes because there is a MIB in G[L ∪ R] containing them. If a MIB has all
of its non-OCT nodes on one side, then there is an OCT node o which is neighbors
with all of the non-OCT nodes, which thus must be contained in an MIS in N(o).
Thus, by Corollary 1, we find all of the MIBs in G.

3.4 OCT-MICA

OCT-MICA is an algorithm for enumerating the maximal bicliques (MBs) in a
general graph with a given OCT decomposition G[L,R,O]. We adapt the app-
roach of MICA [3], which relies on a seed set of bicliques which “cover” the graph.

430 B. D. Sullivan et al.

Algorithm 2. OCT-MICA
1: procedure Enumerate(G = (L, R, O))
2: MB′ = BipartiteSolve(L, R) � Implementation of iMBEA, O(m′nM ′

B)
3: for B ∈ MB′ do � O(M ′

B)
4: B = MakeMaximal(B) � Extend in place, O(m)

5: C0 = {}
6: for v in O do � Initialize Bicliques from stars, O(nO)
7: B = MakeMaximal(v × N(v)) � O(m)
8: C0.add(B)

9: C = MB′ ∪ C0.
10: sort(C) � O(M ′

B log(M ′
B))

11: found = true
12: while found do
13: found = false
14: for B1 in C0 do � O(nO)
15: for B2 in C do � O(MB)
16: for B3 in Consensus(B1, B2) do
17: B4 = MakeMaximal(B3) � O(m)
18: if B4 not in C then � O(n log(MB))
19: found = true
20: C.InsertInSortedOrder(B4)

21: return C

Specifically, we restrict MICA’s coverage requirement for the seed set to only the
OCT set and leverage iMBEA [32] to enumerate the MBs entirely within G[L∪R].
This reduces the runtime from O(n3MB) to O(n2nOMB).

OCT-MICA begins by running iMBEA (line 2 in Algorithm 2) to get MB′, the
MBs in G[L ∪ R], in time O(nm′M ′

B), where m′ is the number of edges in
G[L∪R] and M ′

B = |MB′|. Using MakeMaximal, we convert elements of MB′ to
be maximal with respect to G (lines 3–4). MakeMaximal runs in O(m) time and
its algorithmic details are deferred to the Appendix. OCT-MICA then initializes its
seed set of size O(nO) consisting of bicliques from the stars of the OCT set (lines
6–8), and adds these to the working set C of all identified MBs (line 9). Similar
to MICA, the remainder of the algorithm builds new bicliques by combining (via
Consensus, see Appendix) pairs of elements from the seed set CO and previously
identified MBs C (lines 11–20), until no new bicliques are generated. This runs
in time O(n2nOMB).

Lemma 3. OCT-MICA returns exactly MB, the set of maximal bicliques in G.

Proof. Running iMBEA and MakeMaximal ensures all maximal bicliques from
G[L ∪ R] were found and added to C. Thus, we restrict our attention to maxi-
mal bicliques with at least one node from O, and proceed similarly to the proof
of Theorem 3 in [3]. We say that a biclique B1 = X1 × Y1 absorbs a biclique
B2 = X2 × Y2 if X2 ⊆ X1 and Y2 ⊆ Y1 or Y2 ⊆ X1 and X2 ⊆ Y1.

Faster Biclique Mining in Near-Bipartite Graphs 431

We show that every biclique B∗ = X∗ × Y ∗ in G is absorbed by some
biclique in C by induction on k, the number of OCT vertices in B∗. In the
base case (k = 0), B∗ is contained in G[L ∪ R] and is absorbed by a biclique
in MB′ ⊆ C. We now consider k ≥ 1; without loss of generality, assume X∗

contains some OCT vertex v. Then B′ = {v} × Y ∗ is absorbed by some biclique
B1 = X1 ×Y1, v ∈ X1, Y

∗ ⊆ Y1, where B1 ∈ C0 is formed from the star centered
on v. Further, B′′ = (X∗ \{v})×Y ∗ has fewer vertices from OCT than B∗, so by
induction it is absorbed by some biclique B2 = X2×Y2, (X\{v}) ⊆ X2, Y

∗ ⊆ Y2,
where B2 ∈ C. Now B∗ is a consensus of B′ and B′′, and will be absorbed
by the corresponding consensus of B1 and B2, guaranteeing absorption by a
biclique in C.

Lemma 4. The runtime of OCT-MICA after iMBEA is O(n2nOMB).

Proof. We begin by noting that MB ≤ 2n, so log(MB) is O(n).
Finding the bicliques in MB′ requires time O(m′nM ′

B) for iMBEA (line 2);
making them maximal (lines 3–4) is O(mM ′

B). The bicliques generated by the
OCT stars (lines 6–8) can be found in O(mnO). Sorting the initial set C (line 10)
incurs an additional O(M ′

B log(M ′
B)). Since log(MB) is O(n), the total runtime

for our initialization (lines 2–10) is O(mnM ′
B + mnO).

The consensus-building stage of OCT-MICA contains nested loops over C0 (line
14) and C (line 15), which execute at most O(nO) and O(MB) times, respectively.
The Consensus operation (line 16) executes in O(n), and produces a constant
number of candidate bicliques to check. Each execution of the inner loop incurs
a cost of O(m) for MakeMaximal (line 17) and O(n log(MB)) to insert the new
MB in sorted order (lines 18–20). We note that the runtime of Consensus is
dominated by the cost of the loop. Thus, the total runtime of consensus-building
is O(nOMBn log(MB)), or O(n2nOMB).

This analysis leads to an overall runtime of O(m′nM ′
B + n2nOMB), as

desired. We note that for nO ∈ Θ(n), OCT-MICA’s runtime degenerates to the
O(n3MB) of MICA. Additionally, the stronger results for incremental polynomial
time described for MICA in [3] still apply; the proofs are similar and are omitted
for space. For bipartite graphs (nO = 0), OCT-MICA is effectively iMBEA, which
was empirically shown to be more efficient than MICA on bipartite graphs [32].

4 Implementation

In this section we describe several relevant implementation details and design
decisions.

432 B. D. Sullivan et al.

4.1 Algorithm Framework

We always (re-label and) store vertices as {0, 1, . . . n} and maintain internal
dictionaries as needed to recover original labels – e.g. when taking subgraphs.
This allows us to leverage native data types and structures; vertices are stored
as size t.

For efficiency in subroutines, we utilize two representations of G. One rep-
resentation is as adjacency lists, stored as sorted vectors (to improve union and
intersection relative to dictionaries or unsorted vectors). This representation is
essential in the performance of Consensus in MICA/ OCT-MICA and MakeInd-
Maximal and AddTo in OCT-MIB or OCT-MIB-II. We also store the graph as a
dictionary of dictionaries which is more amenable to taking subgraphs (as when
finding MISs in OCT-MIB, OCT-MIB-II). Deleting a node requires time O(N(v))
as compared to O(N(v)Δ(G)), where Δ(G) is the maximum degree, in the adja-
cency list representation.

4.2 MICA

The public implementation of MICA used in [32] is available at [13]. However, this
implementation is only suitable for bipartite graphs as it makes certain efficiency
improvements in storage, etc. which assume bipartite input. As such, we imple-
mented MICA from scratch in the same framework as OCT-MIB and OCT-MICA,
etc., using the data structures discussed above. This is incompatible with the
technique described in [3] for storing only one side of each biclique (since in the
non-induced case, maximality completely determines the other side). We note
this could improve efficiency of both MICA and OCT-MICA in a future version of
our software, and should not significantly affect their relative performance as
analyzed in this work.

5 Experiments

5.1 Data and Experimental Setup

We implemented OCT-MIB-II, Enum-MIB, MICA, and OCT-MICA in C++, and used
the implementation of OCT-MIB from [17]. All code is open source under a BSD
3-clause license and publicly available as part of MI-Bicliques at [11].

Data. For convenience, throughout this section, we assume nL ≥ nR and let
nB = nL + nR. Our synthetic data was generated using a modified version of
the random graph generator of Zhang et al. [32] that augments random bipartite
graphs to have OCT sets of known size. The generator allows a user to specify
the sizes of L, R, and O (nL, nR, and nO), the expected edge densities between
L and R, O and L ∪ R, and within O, and the coefficient of variation (cv; the
standard deviation divided by the mean) of the expected number of neighbors
in L over R and in L ∪ R over O. The generator is seeded for replicability. We
use the näıve OCT decomposition [L,R,O] returned by the generator for our

Faster Biclique Mining in Near-Bipartite Graphs 433

Fig. 1. Runtimes of the MIB-enumerating (left) and MB-enumerating (right) algo-
rithms on graphs where nB = 1000, nL/nR = 10, and nO = 10. The expected edge
density between O and L ∪ R was varied; all other densities were 0.05.

algorithm evaluation, but the techniques mentioned in Sect. 2 could also be used
to find alternative OCT sets. Unless otherwise specified, the following default
parameters are used: expected edge density d̄ = 5%, cv = 0.5, nB = 1000 and
nL/nR = 1/10; additionally, the edge density between O and L ∪ R is the same
as that between L and R.

To add the edges between L and R, the edge density and cv values are used to
assign vertex degrees to R, and then neighbors are selected from L uniformly at
random; this was implemented in the generator of [32]. Edges are added between
O and L∪R via the same process, only with the corresponding edge density and
cv values. Finally, we add edges within O with an Erdős-Rényi process based on
expected density (no cv value is used here).

In most experiments we limit nO to be O(3 log3 nB), and use a timeout of
one hour (3600 s). Unless otherwise noted we run each parameter setting with
five seeds and plot the average over these instances, using the time-out value as
the runtime for instances that don’t finish. If not all instances used for a plot
point finished, we annotate it with the number of instances that did not time
out.

We began by running our algorithms on the same corpus of graphs as in [17]
(see Sect. 5.2). As the new algorithms finished considerably faster than those
in [17], we were able to scale up both nB and nO to create new sets of experi-
ments, discussed in Sect. 5.3. We also ran our algorithms on computational biol-
ogy graphs from [29], which have been shown to be near-bipartite; these results
are in Sect. 5.4.

Hardware. All experiments were run on identical hardware; each server had four
Intel Xeon E5-2623 v3 CPUs (3.00 GHz) and 64 GB DDR4 memory. The servers
ran Fedora 27 with Linux kernel 4.16.7-200.fc27.x86 64. The C/C++ codes were
compiled using gcc/g++ 7.3.1 with optimization flag - O3.

434 B. D. Sullivan et al.

5.2 Initial Benchmarking

We begin by evaluating our algorithms on the corpus of graphs used in [17]. This
dataset was designed to independently test the effect of each parameter (the
expected densities in various regions of the graph, the cv values, nO, nB , and
nL/nR) on the algorithms’ runtime. We observe that OCT-MIB-II and OCT-MICA
are generally the best algorithms for their respective problems, and include com-
prehensive plots of all experiments in the Appendix.

For Maximal Induced Biclique Enumeration, we observe that in gen-
eral, OCT-MIB-II outperforms OCT-MIB and Enum-MIB. This is the case when the
varying parameter is the density within O, the cv between L and R, the size
of the OCT set nO, and the ratio between L and R, amongst other settings. In
these “near-bipartite” synthetic graphs, Enum-MIB unsurprisingly is slowest on
most instances. When nB = 1000 and nO = 3 log3(nB), Enum-MIB outperforms
OCT-MIB when the density within O increases above 0.05. This is likely due to the
adverse effect of the number of MISs in the OCT set on OCT-MIB. The most inter-
esting observation occurs when varying the edge density between O and L ∪ R
(left panel of Fig. 1). In the nO = 10 case, OCT-MIB-II is the fastest algorithm
until the density exceeds 0.11, when OCT-MIB becomes faster. We believe this
is likely due to OCT-MIB efficiently pruning away attempted expansions which
are guaranteed to fail, while the number of MISs in O does not increase. This
behavior is also seen in the case where nO = 3 log3 nB , though the magnitude of
the difference is not as extreme.

In the non-induced setting of Maximal Biclique Enumeration, OCT-MICA
consistently outperforms MICA on this corpus, typically by at least an order of
magnitude. The more interesting takeaway is that both MB-enumerating algo-
rithms run considerably faster than their MIB-enumerating counterparts (e.g.
right panel of Fig. 1), mostly because the number of MIBs is often one to two
orders of magnitude larger than the number of MBs in these instances.

5.3 Larger Graphs

Given the much faster runtimes achieved in Sect. 5.2 we created a new corpus of
larger synthetic graphs. For Maximal Induced Biclique Enumeration, we
scaled up nB to 10,000 and varied nO in two settings, increasing the timeout to
7200 s.

When the expected density was 0.03 and nL/nR = 100, OCT-MIB-II outper-
formed OCT-MIB for all values of nO by at least an order of magnitude and finished
on all instances, whereas OCT-MIB timed out on all instances with nO ≥ 13 (left
panel of Fig. 2). However, when the expected density was 0.01 and nL/nR = 9,
OCT-MIB was faster (right panel of Fig. 2). We speculated that this was due to
the sparsity of O, allowing for a speed-up due to the efficient pruning of OCT-MIB
similar to what was seen in Sect. 5.2. To test this theory, we increased expected
edge density within O to 0.05 while leaving the other parameters the same
(right panel of Fig. 2), and observed that once nO ≥ 9, OCT-MIB-II outperforms
OCT-MIB, confirming our hypothesis.

Faster Biclique Mining in Near-Bipartite Graphs 435

Fig. 2. Runtimes of the OCT-based MIB-enumeration algorithms on graphs where
nB = 10000 and nO varies. In the left panel, nL = 9901, nR = 99 (nL/nR ≈ 100) and
the expected edge density is 0.03. In the right panel, nL = 9091, nR = 909 (nL/nR ≈
10) and the expected edge density (excluding within O) is 0.01; the marker-type denotes
the expected edge density within O (see legend). For these larger instances we used 3
seeds and a 7200 s timeout.

For Maximal Biclique Enumeration, we also designed a new experiment
where nB = 10000 and nO was scaled up to 1000 (left panel of Fig. 3). OCT-MICA
finished on all instances, whereas MICA finished on none when nO was 1000.
We also tested how large we could scale the expected density between L and
R (right panel of Fig. 3). When nB = 100, OCT-MICA finished on all instances
with density at most 0.4, while MICA finished on two of five when density is
0.4. Neither algorithm finished in less than the timeout of an hour when the
density was 0.5 or greater, exhausting the hardware’s memory in many cases.
Thus OCT-MICA is able to scale to graphs with considerably larger OCT sets and
higher density than both MICA and the MIB-enumerating algorithms.

We additionally created graphs with nO > 3 log3 nB , which was not done
in [17], and ran the algorithms for both MIBs and MBs (Fig. 4). These graphs
had nB values up to 4000 and for each value of nB , we used three values of
nO; 10, 3 log3 nB , and

√
nB . The results were most interesting for the MIB-

enumerating algorithms (Fig. 4 top). OCT-MIB performed the worst of the three
algorithms when nO =

√
nB , but outperformed Enum-MIB in the other settings.

This verifies the analysis from [17] on the range in which OCT-MIB is most effec-
tive. In general, OCT-MIB-II once again was the fastest algorithm and did best
when nO was smaller. The impact of nO on OCT-MIB-II and Enum-MIB appeared
comparable. In the MB-enumeration case, OCT-MICA consistently outperforms
MICA, and there is a distinguishable difference in the runtime based on the value
of nO (Fig. 4 bottom). The value of nO has far less effect on MICA, which does
not finish on any graphs with nB = 4000.

436 B. D. Sullivan et al.

Fig. 3. Runtimes of the MB-enumerating algorithms on graphs with larger nB and
expected edge density. In the left panel, nL = 9091, nR = 909 (nL/nR ≈ 10), the
expected edge density is 0.05, and nO varied. In the right panel, nL = 91, nR = 9
(nL/nR ≈ 10), nO = 50, and the expected edge density varied.

5.4 Computational Biology Data

Finally, we tested performance on real-world data using the graphs from [29],
which come from computational biology. These graphs have previously been
exhibited to have small OCT sets [12], and we used the implementation from [9]
of Hüffner’s iterative compression algorithm [12] to find the OCT decomposi-
tions. Computing the OCT decomposition for each graph ran in less than ten
seconds, and often in less than one second. As can be seen in Table 1, OCT-MIB-II
performs the best of the MIB-enumerating algorithms and OCT-MICA is faster
than MICA. Full results are in the Appendix.

Table 1. A sampling of the runtimes of the biclique-enumeration algorithms on the
Wernicke-Hüffner computational biology data [29].

G nB m nO |MI | OCT-MIB-II OCT-MIB Enum-MIB |MB | OCT-MICA MICA

aa-24 258 1108 21 3890 2.108 9.140 14.167 1334 0.237 2.477

aa-30 39 71 4 56 0.002 0.007 0.006 36 0.002 0.007

aa-41 296 1620 40 11705 16.519 82.439 50.205 20375 9.059 47.789

aa-50 113 468 18 1272 0.322 0.778 1.098 1074 0.132 0.612

j-20 241 640 1 274 0.013 0.065 0.484 228 0.009 0.188

j-24 142 387 4 150 0.013 0.027 0.089 104 0.007 0.025

Faster Biclique Mining in Near-Bipartite Graphs 437

Fig. 4. Runtimes of the MIB-enumerating (top) and MB-enumerating (bottom) algo-
rithms on graphs where nL/nR = 9 and all expected edge densities are 0.05. nB is
varied (x-axis) and the marker-type denotes the value of nO ∈ {10,

√
nB , 3 log3(nB)}

(see legend). The time-out value is set to 7200 s for the MIB-enumerating algorithms
and 3600 s for the MB-enumerating algorithms.

6 Conclusion

We present a suite of new algorithms for enumerating maximal (induced)
bicliques in general graphs, two of which are parameterized by the size of an
odd cycle transversal. It is particularly noteworthy that the parameterized algo-
rithms empirically outperform the general approaches even when their asymp-
totic worst-case complexities are worse. This highlights a weakness of standard
complexity analysis, as many aspects of an algorithm get “swept under the rug”.

438 B. D. Sullivan et al.

It is also interesting that even though Maximal Induced Biclique Enu-

meration and Maximal Biclique Enumeration are closely related prob-
lems, the MB-enumerating algorithms are often an order of magnitude faster
than their MIB-enumerating counterparts. The reason for this can likely be
attributed to two causes: the number of MBs is significantly less than the num-
ber of MIBs in sparse graphs, and that the stricter structure of MIBs requires
more work to ensure. For S ⊆ V , there is exactly one MB of the form S ×T ⊆ V
in G, but there can be many MIBs with this structure.

We implement and benchmark all of the algorithms on a corpus of synthetic
and real-world computational biology graphs, and establish that parameterized
approaches are often at least an order of magnitude faster than the general
approaches. This remains true even when nO ∈ O(

√
n). It would be interesting

to experimentally evaluate as nO increases, at what point the standard methods
outperform those optimized for near-bipartite graphs. Finally, we note as in [17],
the current implementations of the algorithms could be improved by replacing
the MIS-enumeration algorithm with that of [28], and the M(I)B-enumeration
on bipartite graphs with the implementation used in [32].

Appendices

A MIB-Enumeration Framework Subroutines

We now provide algorithmic details and proofs of the complexity and correctness
of MakeIndMaximal and AddTo.

A.1 MakeIndMaximal

Recall that MakeIndMaximal takes in (C,S), where C is an induced biclique and
S ⊆ V , and either returns a MIB C+ where C ⊆ C+, C+ ⊆ C ∪ S, C �= ∅, or
returns ∅. If it returns ∅ and C �= ∅ then there is another MIB D which contains
C and v ∈ (V \S)\C. We give pseudo-code of MakeIndMaximal in Algorithm 3.

Lemma 5. MakeIndMaximal returns a MIB C+ where C ⊆ C+, C+ ⊆ C ∪ S,
C �= ∅, or returns ∅.
Proof. Referring to the pseudo-code in Algorithm 3, it is clear that C ⊆ C+, as
no vertices are ever removed from the input biclique C. Furthermore, the only
vertices added to C+ are from S, so C+ ⊆ C ∪ S and C+ is the only biclique
returned by MakeIndMaximal. Note that neither side of C is empty and the
only vertices added are independent from the side of the biclique which they are
added to, so if we do not return ∅ the object returned is an induced biclique. If
no node from outside of S can be added to C+, then we will not return ∅ and
thus C+ is maximal.

Lemma 6. If MakeIndMaximal returns ∅ and C �= ∅ then there is another MIB
D in G which contains C and v ∈ (V \ S) \ C.

Faster Biclique Mining in Near-Bipartite Graphs 439

Algorithm 3. MakeIndMaximal
1: Input: G = (V, E), C = C1 × C2, S
2: Let CS = S \ (C1 ∪ C2)
3: if C == ∅ then
4: return ∅
5: for v ∈ CS do
6: if |N(v) ∩ C1| == |C1| & |N(v) ∩ C2| == 0 then
7: C2 = C2 ∪ {v}
8: CS \ {v}
9: for v ∈ CS do

10: if |N(v) ∩ C2| == |C2| & |N(v) ∩ C1| == 0 then
11: C1 = C1 ∪ {v}
12: VS = V \ (S ∪ C1 ∪ C2)
13: for v ∈ VS do
14: if |N(v) ∩ C1| == |C1| & |N(v) ∩ C2| == 0 then
15: return ∅
16: for v ∈ VS do
17: if |N(v) ∩ C2| == |C2| & |N(v) ∩ C1| == 0 then
18: return ∅
19: return C+ = C1 × C2

Proof. Note that C ⊆ C∗ = C1 × C2 at line 12. As MakeIndMaximal returns ∅
there must be a vertex v ∈ VS = V \ (S ∪ C∗) which can be added to C∗. Let D
be a MIB containing C∗ and v, thus D suffices to prove the lemma.

Lemma 7. MakeIndMaximal runs in O(m) time.

Proof. Note that because G is connected, n ∈ O(m). Setting CS and VS can be
done in O(n) time. In each for loop, we can scan all of the edges incident to each
v in the iterated-over set and keep count of how many nodes from Ci have been
seen (checking for inclusion can be done in O(1) time with an O(n) initialization
step). Thus, each edge is scanned at most once per for loop.

A.2 AddTo

Recall that AddTo takes in (C, v) where C = C1 × C2 is an induced biclique and
v ∈ V \ (C1 ∪ C2), and returns the induced biclique where v is added to C1,
N(v) is removed from C1, and N(v) is removed from C2 if C2 \ N(v) �= ∅ and ∅
otherwise. We give pseudo-code of AddTo in Algorithm 4.

Lemma 8. AddTo returns the induced biclique where v is added to C1, N(v)
is removed from C1, and N(v) is removed from C2 if C2 \ N(v) �= ∅, and ∅
otherwise.

Proof. Referring to the pseudo-code in Algorithm 4, it is clear that v is added to
C1 and N(v) is removed from C1. Additionally v’s non-neighbors are effectively
removed from C2 by intersecting it with N(v). If C ′

2 = ∅ then C2 \ N(v) = ∅

440 B. D. Sullivan et al.

Algorithm 4. AddTo
1: Input: G = (V, E), C = C1 × C2, v ∈ V \ (C1 ∪ C2)
2: C′

1 = (C1 ∪ {v}) \ N(v)
3: C′

2 = C2 ∩ N(v)
4: if C′

2 == ∅ then
5: return ∅
6: return C′

1 × C′
2

and ∅ is returned. Otherwise C ′
1 �= ∅ since it includes v and thus C ′

1 × C ′
2 is a

biclique. C ′
1 × C ′

2 must be an induced biclique as C ′
2 ⊆ C2, C ′

1 \ {v} ⊆ C1, and
C1 × C2 is an induced biclique and (N(v) ∩ C ′

1) = ∅ by definition.

Lemma 9. AddTo runs in O(m) time.

Proof. Note that because G is connected, n ∈ O(m). AddTo can be completed by
scanning all of v’s O(m) incident edges in tandem with an O(n) preprocessing
step to allow for constant-time look-ups when checking for inclusion in a set.

B MB-Enumeration Framework Subroutines

We give a detailed description of the MakeMaximal and Consensus subroutines
used in OCT-MICA, along with arguments of their correctness and complexity.

B.1 MakeMaximal

Extending a biclique to be maximal is different in the non-induced case from the
induced case, since MBs are completely characterized by one side of the biclique.

Algorithm 5. MakeMaximal
1: Input: G = (V, E), B = X × Y
2: X∗ = ∩i∈Y N(i)
3: Y ∗ = ∩i∈X∗N(i)
4: return B∗ = X∗ × Y ∗

Lemma 10. MakeMaximal runs in O(m) time.

Proof. In order to form X∗, we can scan the edges incident to each v ∈ Y and
keep count of how many nodes from X∗ have been seen (checking for inclusion
can be done in O(1) time with an O(n) initialization step). The same can be
done for Y ∗, where instead we scan the edges incident to each v ∈ X∗. Thus,
each edge is scanned at most twice in MakeMaximal.

Faster Biclique Mining in Near-Bipartite Graphs 441

B.2 Consensus

The MICA section of OCT-MICA relies heavily on the Consensus operation intro-
duced in [3] for finding new candidate bicliques. For each pair of bicliques, there
are four candidate bicliques which form the consensus of the pair. Note that any
of the four candidates may be empty and if so discarded. Consensus runs in
O(n) time using standard techniques for set union and intersection.

Algorithm 6. Consensus
1: Input: G = (V, E), Bα = Xα × Yα, Bβ = Xβ × Yβ

2: B1 = (Xα ∪ Xβ) × (Yα ∩ Yβ)
3: B2 = (Xα ∩ Xβ) × (Yα ∪ Yβ)
4: B3 = (Yα ∪ Xβ) × (Xα ∩ Yβ)
5: B4 = (Xα ∩ Yβ) × (Yα ∪ Xβ)
6: S = {}
7: for Bi = Xi × Yi ∈ {B1, B2, B3, B4} do
8: if |Xi| > 0 & |Yi| > 0 then
9: S.add(Bi)

10: return S

C Additional Enumeration Experiments

Here we include figures corresponding to additional experimental results of our
initial benchmarking and on the computation biology data from [29] described
in Sects. 5.2 and 5.4 respectively (Figs. 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22 and Tables 2, 3).

Fig. 5. Runtimes of the MIB-enumerating (left) and MB-enumerating (right) algo-
rithms on graphs where nB = 1000 and nO = 10. The ratio nL/nR was varied.

442 B. D. Sullivan et al.

Fig. 6. Runtimes of the MIB-enumerating (left) and MB-enumerating (right) algo-
rithms on graphs where nB = 200 and nO = 10. The ratio nL/nR was varied.

Fig. 7. Runtimes of the MIB-enumerating (left) and MB-enumerating (right) algo-
rithms on graphs where nB = 1000 and nO = 19 ≈ 3 log3(nB). The ratio nL/nR was
varied.

Faster Biclique Mining in Near-Bipartite Graphs 443

Fig. 8. Runtimes of the MIB-enumerating (left) and MB-enumerating (right) algo-
rithms on graphs where nB = 200 and nO = 14 ≈ 3 log3(nB). The ratio nL/nR was
varied.

Fig. 9. Runtimes of the MIB-enumerating (left) and MB-enumerating (right) algo-
rithms on graphs where nB = 1000 and nO = 10. The coefficient of variation between
L and R was varied.

444 B. D. Sullivan et al.

Fig. 10. Runtimes of the MIB-enumerating (left) and MB-enumerating (right) algo-
rithms on graphs where nB = 200 and nO = 10. The coefficient of variation between
L and R was varied.

Fig. 11. Runtimes of the MIB-enumerating (left) and MB-enumerating (right) algo-
rithms on graphs where nB = 1000 and nO = 19 ≈ 3 log3(nB). The coefficient of
variation between L and R was varied.

Faster Biclique Mining in Near-Bipartite Graphs 445

Fig. 12. Runtimes of the MIB-enumerating (left) and MB-enumerating (right) algo-
rithms on graphs where nB = 200 and nO = 14 ≈ 3 log3(nB). The coefficient of
variation between L and R was varied.

Fig. 13. Runtimes of the MIB-enumerating (left) and MB-enumerating (right) algo-
rithms on graphs where nB = 1000 and nO was varied.

446 B. D. Sullivan et al.

Fig. 14. Runtimes of the MIB-enumerating (left) and MB-enumerating (right) algo-
rithms on graphs where nB = 1000 and nO = 19 ≈ 3 log3(nB). The expected edge
density between O and {L, R} was varied.

Fig. 15. Runtimes of the MIB-enumerating (left) and MB-enumerating (right) algo-
rithms on graphs where nB = 1000 and nO = 10. The expected edge density within O
was varied.

Faster Biclique Mining in Near-Bipartite Graphs 447

Fig. 16. Runtimes of the MIB-enumerating (left) and MB-enumerating (right) algo-
rithms on graphs where nB = 1000 and nO = 19 ≈ 3 log3(nB). The expected edge
density within O was varied.

Fig. 17. Runtimes of the MIB-enumerating (left) and MB-enumerating (right) algo-
rithms on graphs where nB = 150, nL = nR and nO = 5. The expected edge density
in the graph was varied except for the expected edge density within O which was fixed
to 0.05.

448 B. D. Sullivan et al.

Fig. 18. Runtimes of the MIB-enumerating (left) and MB-enumerating (right) algo-
rithms on graphs where nB = 150, nL = nR and nO = 5. The expected edge density
in the graph was varied, including the expected edge density within O.

Fig. 19. Runtimes of the MIB-enumerating (left) and MB-enumerating (right) algo-
rithms on graphs where nB = 200, nL = nR and nO = 5. The expected edge density
in the graph was varied except for the expected edge density within O which was fixed
to 0.05.

Faster Biclique Mining in Near-Bipartite Graphs 449

Fig. 20. Runtimes of the MIB-enumerating (left) and MB-enumerating (right) algo-
rithms on graphs where nB = 200, nL = nR and nO = 5. The expected edge density
in the graph was varied, including the expected edge density within O.

Fig. 21. Runtimes of the MIB-enumerating (left) and MB-enumerating (right) algo-
rithms on graphs where nB = 300, nL = nR and nO = 5. The expected edge density
in the graph was varied except for the expected edge density within O which was fixed
to 0.05.

450 B. D. Sullivan et al.

Fig. 22. Runtimes of the MIB-enumerating (left) and MB-enumerating (right) algo-
rithms on graphs where nB = 300, nL = nR and nO = 5. The expected edge density
in the graph was varied, including the expected edge density within O.

Table 2. The runtimes (rounded to nearest thousandth-of-a-second) of the biclique-
enumeration algorithms on the Afro-American subset of the Wernicke-Hüffner compu-
tational biology data [29].

G nB m nO |MI | OCT-MIB-II OCT-MIB Enum-MIB |MB | OCT-MICA MICA

aa-10 69 191 6 178 0.008 0.023 0.057 98 0.007 0.031

aa-11 102 307 11 424 0.055 0.115 0.259 206 0.018 0.120

aa-13 129 383 12 523 0.083 0.239 0.470 269 0.028 0.166

aa-14 125 525 19 1460 0.366 0.902 1.254 605 0.090 0.485

aa-15 66 179 7 206 0.010 0.019 0.053 113 0.011 0.030

aa-16 13 15 0 15 0.000 0.000 0.000 8 0.000 0.000

aa-17 151 633 25 2252 1.023 2.132 3.457 1250 0.242 1.137

aa-18 87 381 14 660 0.100 0.173 0.389 823 0.090 0.351

aa-19 191 645 19 1262 0.449 1.569 2.385 519 0.069 0.450

aa-20 224 766 19 1607 0.705 2.431 3.809 949 0.154 1.061

aa-21 28 90 9 116 0.006 0.013 0.008 213 0.019 0.030

aa-22 167 641 16 1520 0.423 1.387 2.629 560 0.074 0.638

aa-23 139 508 18 1766 0.435 0.788 1.651 1530 0.210 1.000

aa-24 258 1108 21 3890 2.108 9.140 14.167 1334 0.237 2.477

aa-25 14 15 1 10 0.000 0.001 0.001 10 0.000 0.000

aa-26 92 284 13 583 0.084 0.186 0.309 370 0.030 0.128

aa-27 118 331 11 458 0.054 0.270 0.343 229 0.015 0.114

aa-28 167 854 27 2606 1.464 2.201 4.162 2814 0.755 3.250

aa-29 276 1058 21 3122 1.909 8.418 10.707 1924 0.382 3.344

aa-30 39 71 4 56 0.002 0.007 0.006 36 0.002 0.007

aa-31 30 51 2 37 0.002 0.002 0.002 22 0.001 0.002

aa-32 143 750 30 4167 2.286 7.694 5.290 3154 0.684 2.635

aa-33 193 493 4 578 0.046 0.204 0.993 218 0.012 0.218

aa-34 133 451 13 705 0.132 0.316 0.756 275 0.031 0.226

Faster Biclique Mining in Near-Bipartite Graphs 451

Table 2. (continued)

G nB m nO |MI | OCT-MIB-II OCT-MIB Enum-MIB |MB | OCT-MICA MICA

aa-35 82 269 10 459 0.037 0.108 0.178 215 0.019 0.081

aa-36 111 316 7 248 0.015 0.076 0.155 143 0.011 0.078

aa-37 72 170 5 135 0.005 0.018 0.054 82 0.005 0.022

aa-38 171 862 26 4270 2.428 5.223 7.586 4964 1.136 5.179

aa-39 144 692 23 2153 0.872 1.574 3.034 1177 0.237 1.009

aa-40 136 620 22 2727 1.022 2.086 2.973 1911 0.301 1.324

aa-41 296 1620 40 11705 16.519 82.439 50.205 20375 9.059 47.789

aa-42 236 1110 30 6967 5.646 45.560 21.244 8952 2.428 13.479

aa-43 63 308 18 905 0.137 0.294 0.311 875 0.116 0.302

aa-44 59 163 10 211 0.014 0.024 0.051 158 0.008 0.037

aa-45 80 386 20 1768 0.336 0.775 0.859 1716 0.244 0.796

aa-46 161 529 13 719 0.157 0.438 0.922 374 0.036 0.257

aa-47 62 229 14 572 0.057 0.082 0.138 451 0.051 0.127

aa-48 89 343 17 896 0.144 0.338 0.497 519 0.060 0.230

aa-49 26 62 5 50 0.004 0.002 0.003 74 0.006 0.013

aa-50 113 468 18 1272 0.322 0.778 1.098 1074 0.132 0.612

aa-51 78 274 11 429 0.035 0.082 0.174 250 0.020 0.078

aa-52 65 231 14 690 0.073 0.135 0.200 431 0.040 0.122

aa-53 88 232 12 340 0.036 0.186 0.162 199 0.011 0.052

aa-54 89 233 12 286 0.027 0.063 0.113 177 0.015 0.039

Table 3. The runtimes (rounded to nearest thousandth-of-a-second) of the biclique-
enumeration algorithms on the Japanese subset of the Wernicke-Hüffner computational
biology data [29].

G nB m nO |MI | OCT-MIB-II OCT-MIB Enum-MIB |MB | OCT-MICA MICA

j-10 55 117 3 52 0.002 0.009 0.010 39 0.001 0.010

j-11 51 212 5 63 0.003 0.014 0.011 36 0.003 0.012

j-13 78 210 6 224 0.015 0.028 0.074 90 0.009 0.032

j-14 60 107 4 44 0.004 0.007 0.003 38 0.003 0.003

j-15 44 55 1 13 0.001 0.000 0.004 10 0.001 0.000

j-16 9 10 0 10 0.000 0.000 0.000 3 0.000 0.000

j-17 79 322 10 317 0.025 0.051 0.127 126 0.014 0.056

j-18 71 296 9 154 0.011 0.038 0.053 91 0.012 0.028

j-19 84 172 3 105 0.002 0.010 0.019 46 0.002 0.013

j-20 241 640 1 274 0.013 0.065 0.484 228 0.009 0.188

j-21 33 102 9 107 0.006 0.012 0.008 197 0.017 0.024

j-22 75 391 9 221 0.020 0.051 0.080 113 0.009 0.048

j-23 76 369 19 682 0.095 0.404 0.217 459 0.057 0.132

j-24 142 387 4 150 0.013 0.027 0.089 104 0.007 0.025

j-25 14 14 0 14 0.000 0.000 0.000 3 0.000 0.000

j-26 63 156 6 156 0.007 0.019 0.035 67 0.003 0.013

j-28 90 567 13 492 0.073 0.130 0.244 416 0.044 0.193

452 B. D. Sullivan et al.

References

1. Agarwal, P., Alon, N., Aronov, B., Suri, S.: Can visibility graphs be represented
compactly? Discret. Comput. Geom. 12, 347–365 (1994)

2. Akiba, T., Iwata, Y.: Branch-and-reduce exponential/FPT algorithms in practice:
a case study of vertex cover. Theoret. Comput. Sci. 609, 211–225 (2016)

3. Alexe, G., Alexe, S., Crama, Y., Foldes, S., Hammer, P., Simeone, B.: Consensus
algorithms for the generation of all maximal bicliques. Discret. Appl. Math. 145,
11–21 (2004)

4. Dawande, M., Keskinocak, P., Swaminathan, J., Tayur, S.: On bipartite and mul-
tipartite clique problems. J. Algorithms 41, 388–403 (2001)

5. Dias, V., De Figueiredo, C., Szwarcfiter, J.: Generating bicliques of a graph in
lexicographic order. Theoret. Comput. Sci. 337, 240–248 (2005)

6. Eppstein, D.: Arboricity and bipartite subgraph listing algorithms. Inf. Process.
Lett. 51, 207–211 (1994)

7. Garey, M., Johnson, D.: Computers and Intractability: A Guide to NP-
Completeness. Freeman, San Fransisco (1979)

8. Gély, A., Nourine, L., Sadi, B.: Enumeration aspects of maximal cliques and
bicliques. Discret. Appl. Math. 157(7), 1447–1459 (2009)

9. Goodrich, T., Horton, E., Sullivan, B.: Practical graph bipartization with applica-
tions in near-term quantum computing,. arXiv preprint arXiv:1805.01041, 2018

10. Gülpinar, N., Gutin, G., Mitra, G., Zverovitch, A.: Extracting pure network sub-
matrices in linear programs using signed graphs. Discret. Appl. Math. 137, 359–372
(2004)

11. Horton, E., Kloster, K., Sullivan, B.D., van der Poel, A., Woodlief, T.: MI-bicliques:
Version 2.0, August 2019. https://doi.org/10.5281/zenodo.3381532

12. Hüffner, F.: Algorithm engineering for optimal graph bipartization. In: Nikoletseas,
S.E. (ed.) WEA 2005. LNCS, vol. 3503, pp. 240–252. Springer, Heidelberg (2005).
https://doi.org/10.1007/11427186 22

13. Chang, W.: Maximal biclique enumeration, December 2004. http://genome.cs.
iastate.edu/supertree/download/biclique/README.html

14. Iwata, Y., Oka, K., Yoshida, Y.: Linear-time FPT algorithms via network flow. In:
SODA, pp. 1749–1761 (2014)

15. Kaytoue-Uberall, M., Duplessis, S., Napoli, A.: Using formal concept analysis for
the extraction of groups of co-expressed genes. In: Le Thi, H.A., Bouvry, P., Pham
Dinh, T. (eds.) MCO 2008. CCIS, vol. 14, pp. 439–449. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-87477-5 47

16. Kaytoue, M., Kuznetsov, S., Napoli, A., Duplessis, S.: Mining gene expression data
with pattern structures in formal concept analysis. Inf. Sci. 181, 1989–2011 (2011)

17. Kloster, K., Sullivan, B., van der Poel, A.: Mining maximal induced bicliques using
odd cycle transversals. In: Proceedings of the 2019 SIAM International Conference
on Data Mining (2019, to appear)

18. Kumar, R., Raghavan, P., Rajagopalan, S., Tomkins, A.: Trawling the web for
emerging cyber-communities. Comput. Netw. 31, 1481–1493 (1999)

19. Kuznetsov, S.: On computing the size of a lattice and related decision problems.
Order 18, 313–321 (2001)

20. Li, J., Liu, G., Li, H., Wong, L.: Maximal biclique subgraphs and closed pattern
pairs of the adjacency matrix: a one-to-one correspondence and mining algorithms.
IEEE Trans. Knowl. Data Eng. 19, 1625–1637 (2007)

http://arxiv.org/abs/1805.01041
https://doi.org/10.5281/zenodo.3381532
https://doi.org/10.1007/11427186_22
http://genome.cs.iastate.edu/supertree/download/biclique/README.html
http://genome.cs.iastate.edu/supertree/download/biclique/README.html
https://doi.org/10.1007/978-3-540-87477-5_47

Faster Biclique Mining in Near-Bipartite Graphs 453

21. Lokshtanov, D., Saurabh, S., Sikdar, S.: Simpler parameterized algorithm for OCT.
In: Fiala, J., Kratochv́ıl, J., Miller, M. (eds.) IWOCA 2009. LNCS, vol. 5874, pp.
380–384. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10217-
2 37

22. Makino, K., Uno, T.: New algorithms for enumerating all maximal cliques. In:
Hagerup, T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp. 260–272.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27810-8 23

23. Mushlin, R., Kershenbaum, A., Gallagher, S., Rebbeck, T.: A graph-theoretical
approach for pattern discovery in epidemiological research. IBM Syst. J. 46, 135–
149 (2007)

24. Panconesi, A., Sozio, M.: Fast hare: a fast heuristic for single individual SNP
haplotype reconstruction. In: Jonassen, I., Kim, J. (eds.) WABI 2004. LNCS, vol.
3240, pp. 266–277. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-30219-3 23

25. Peeters, R.: The maximum edge biclique problem is NP-complete. Discret. Appl.
Math. 131, 651–654 (2003)

26. Sanderson, M., Driskell, A., Ree, R., Eulenstein, O., Langley, S.: Obtaining maxi-
mal concatenated phylogenetic data sets from large sequence databases. Mol. Biol.
Evol. 20, 1036–1042 (2003)

27. Schrook, J., McCaskey, A., Hamilton, K., Humble, T., Imam, N.: Recall per-
formance for content-addressable memory using adiabatic quantum optimization.
Entropy 19, 500 (2017)

28. Tsukiyama, S., Ide, M., Ariyoshi, H., Shirakawa, I.: A new algorithm for generating
all the maximal independent sets. SIAM J. Comput. 6, 505–517 (1977)

29. Wernicke, S.: On the algorithmic tractability of single nucleotide polymorphism
(SNP) analysis and related problems (2014)

30. Wille, R.: Restructuring lattice theory: an approach based on hierarchies of con-
cepts. In: Rival, I. (ed.) Ordered Sets. NATO Advanced Study Institutes Series
(Series C– Mathematical and Physical Sciences), vol. 83, pp. 445–470. Springer,
Dordrecht (1982). https://doi.org/10.1007/978-94-009-7798-3 15

31. Yannakakis, M.: Node-and edge-deletion NP-complete problems. In: STOC, pp.
253–264 (1978)

32. Zhang, Y., Phillips, C.A., Rogers, G.L., Baker, E.J., Chesler, E.J., Langston, M.A.:
On finding bicliques in bipartite graphs: a novel algorithm and its application to
the integration of diverse biological data types. BMC Bioinform. 15, 110 (2014)

https://doi.org/10.1007/978-3-642-10217-2_37
https://doi.org/10.1007/978-3-642-10217-2_37
https://doi.org/10.1007/978-3-540-27810-8_23
https://doi.org/10.1007/978-3-540-30219-3_23
https://doi.org/10.1007/978-3-540-30219-3_23
https://doi.org/10.1007/978-94-009-7798-3_15

k-Maximum Subarrays for Small k:
Divide-and-Conquer Made Simpler

Ovidiu Daescu and Hemant Malik(B)

University of Texas at Dallas, Richardson, TX 75080, USA
{daescu,malik}@utdallas.edu

Abstract. Given an array A of n real numbers, the maximum subarray
problem is to find a contiguous subarray which has the largest sum.
The k -maximum subarrays problem is to find k such subarrays with the
largest sums. For the 1−maximum subarray the well known divide-and-
conquer algorithm, presented in most textbooks, although suboptimal,
is easy to implement and can be made optimal with a simple change
that speeds up the combine phase. On the other hand, the only known
divide-and-conquer algorithm for k > 1, that is efficient for small values
of k, is difficult to implement, due to the intricacies of the combine phase.
In this paper, we show how to simplify the combine phase considerably
while preserving the overall running time.

In the process of designing the combine phase of the algorithm we
provide a simple, sublinear, O(

√
k log3 k) time algorithm, for finding the

k largest sums of X + Y , where X and Y are sorted arrays of size n
and k ≤ n2. The k largest sums are implicitly represented and can be
enumerated with an additional O(k) time.

Our solution relies on simple operations such as merging sorted arrays,
binary search and selecting the kth smallest number in an array. We
have implemented our algorithm and report excellent performance as
compared to previous results.

Keywords: k-Maximum subarrays · Divide and conquer · X + Y ·
Sublinear

1 Introduction

The well-known problem of finding the maximum sum (contiguous) subarray of
a given array of real numbers has been used in various applications and received
much attention over time. Some of the applications are in data mining [1,13],
pattern recognition [14], and image processing and communication [6].

Given an array A of n real numbers and an integer k, such that 1 ≤ k ≤
n(n+1)/2, the k-maximum subarrays problem is to find k contiguous subarrays
with the largest sums (not necessarily in sorted order of the sums). If k = 1,
Kadane’s algorithm [5] solves the maximum subarray problem in O(n) time using
an iterative method. On the other hand, the well-known divide and conquer

c© Springer Nature Switzerland AG 2019
I. Kotsireas et al. (Eds.): SEA2 2019, LNCS 11544, pp. 454–472, 2019.
https://doi.org/10.1007/978-3-030-34029-2_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34029-2_29&domain=pdf
https://doi.org/10.1007/978-3-030-34029-2_29

k-Maximum Subarrays for Small k: Divide-and-Conquer Made Simpler 455

algorithm [10], found in virtually all algorithms textbooks, has a suboptimal
O(n log n) running time. An O(n) time divide-and-conquer algorithm is briefly
presented in [4].

For k > 1, Bengtsson and Chen [3] presented an algorithm that takes time
O(min{k+n log2 n, n

√
k}), where the second term, O(n

√
k), comes from a divide-

and-conquer solution. That divide-and-conquer algorithm is difficult to imple-
ment, due to the intricacies of the combine phase.

In this paper we propose a competitive, O(n
√

k) time divide and conquer
solution to find the k -maximum subarrays, which is optimal for k = O(1) and
k = θ(n2). Our algorithm is much simpler than the one in [3] due to a more
direct way of performing the combine phase. Specifically, the combine phase we
propose is itself a simple recursive procedure. To this end, we also address the
following subproblem: Given two sorted arrays of real numbers, X and Y, each
of size n, let S be the set S = {(x, y)|x ∈ X and y ∈ Y }, with the value of
each pair in S defined as V al(x, y) = x + y. Find the k pairs from S with largest
values. This problem is closely related to the famous pairwise sum (X + Y)
problem [11,12], that asks to sort all pairwise sums. Our main contribution is a
sublinear, O(

√
k log3 k) time algorithm, for finding the k largest sums of X +Y .

The k largest sums are implicitly represented and can be enumerated with an
additional O(k) time. A key feature of our solution is its simplicity, compared to
previous algorithms [11,12], that find and report the k largest sums in O(k+

√
k)

time. Our algorithm uses only operations such as merging sorted arrays, binary
search, and selecting the kth largest number of an array.

We have implemented our algorithms in JAVA and performed extensive
experiments on macOS High Sierra with 3.1 GHz Intel i5 processor and 8 GB of
RAM, reporting excellent performance. For example, on random arrays of size
106, with k = 106, we can find the k maximum subarrays in about 52 s.

The rest of the paper is organized as follows. In Sect. 2 we discuss previous
results. In Sect. 3 we describe the divide and conquer algorithm for k maximum
subarray and continue on to present a O(n

√
k) time algorithm, in Sect. 4. We also

describes a O(
√

k log3 k) time solution for finding the k largest sums of X + Y .
We discuss the implementation details, experimental results and the comparison
with previous results in Sect. 5.

2 Previous Work

Bengtsson, and Chen [3] provided a complex, O(min{k + n log2 n, n
√

k}) time
algorithm to solve the k -maximum subarray problem. Their main algorithm, for
general k, has five phases. First, the problem is reduced to finding the top k
maximum values over all the “good” elements in some matrix of size n × n.
In the second phase, repeated constraint searches are performed, which decrease
the number of candidate elements to O(min{kn, n2}). In the third phase, a range
reduction procedure is performed to reduce the number of candidates further to
θ(k). In the fourth phase, a worst-case linear-time selection algorithm is used
on the remaining candidates, resulting in an element x, that is the kth largest

456 O. Daescu and H. Malik

sum. The final phase involves finding the “good” elements with values not less
than x. The O(n

√
k) part of the running time comes from a divide-and-conquer

solution, and is useful for small values of k. The combine phase of the divide
and conquer algorithm uses the O(

√
k) time algorithm from [12] to find the kth

largest element in a sorted matrix, which is fairly difficult to understand and
tedious to implement. A trivial lower bound for this problem is O(n + k).

In the same year (2006), Bae and Takaoka [2] provided an O((n + k) log k)
solution that reports the k maximum subarrays in sorted order.

Still in 2006, Cheng, Chen, Tien, and Chao [9] provided an algorithm with
O(n+k log(min{n, k})) running time. The authors adapted an iterative strategy
where the table of possible subarray sums is built partially after every iteration,
and the algorithm terminates in O(log n) iterations, which yields a time com-
plexity of O(n + k log(min{n, k})).

Finally, in 2007, Bengtsson and Chen [4] provided a solution that takes time
O(n + k log n) in the worst case to compute and rank all k subsequences. They
also proved that their algorithm is optimal for k = O(n), by providing a matching
lower bound. Their approach is different from the previous ones. In particular,
although only briefly described, their solution provides an O(n) time algorithm
for the maximum subarray (k = 1) problem. They give a tree-based algorithm
that uses a full binary tree, augmented with information about prefix sums, suffix
sums, sums, and ranking among subsequences concerning their sums. There are
two phases of this algorithm. In the first phase, initial information (prefix sum,
suffix sum, sum, largest elements) is computed and stored in the tree. The tree
is constructed in a bottom-up fashion. The algorithm is based on the well-known
observation that the maximum sum can be obtained from the left branch or the
right branch, or from a subsequence spanning over the left and right branches
(subarrays). The second phase is the query phase which uses a binary heap to
compute the k -maximum subarrays. A special property of this algorithm is that
if l largest sums are already computed then the (l + 1)th largest sum can be
found in O(log n) time.

Frederickson and Johnson [12] provided an efficient algorithm to find the kth

maximum element of a matrix with sorted rows and columns. When the sorted
matrix has k rows and k columns, their algorithm finds the kth largest element
in O(

√
k) time. It can then be used to find and report the k largest values in the

matrix in an additional O(k) time. This corresponds to finding and reporting
the k largest values of X + Y . The algorithm is not simple and is tedious to
implement.

Very recently, in 2018, Kaplan et al. [15] provided a simple, comparison-based,
output sensitive algorithm to report the kth smallest element from a collection of
sorted lists, and from X +Y , where both X and Y are two unordered sets. They
show that we only need O(m+

∑m
i=1 log(ki+1)) comparisions for selecting the kth

smallest item or finding the set of k smallest items from a collection of m sorted
lists, where the ith list has ki items that belong to the overall set of k smallest
items. They use the “soft heap” data structure introduced by Chazelle [8] in
2000. A soft heap is a simple variant of the priority queue. The data structure

k-Maximum Subarrays for Small k: Divide-and-Conquer Made Simpler 457

supports all operations of the standard heap and every operation can be done in
constant time except for insert, which takes O(log 1/ε) time, where ε is an error
rate (0 ≤ ε ≤ 1/2) ensuring that, at any time, at most εn elements have their
keys raised.

3 k-Maximum Subarrays by Divide and Conquer

Given an array A of n numbers and an integer k, where 1 ≤ k ≤ n(n + 1)/2, the
k-maximum subarrays problem is to find the k contiguous subarrays with the
largest sums. A detailed description of a simple, linear time divide and conquer
algorithm to find the maximum subarray (k = 1) is provided in Appendix 1. In
this section, we provide an O(n

√
k log(1/ε)) time divide and conquer algorithm

to address the k-maximum subarrays problem. The divide part of the algorithm
is similar as of [3] where the array is recursively divided into two subarrays with
equal number of elements until a base case (of size

√
k) is reached. The main

difference between our algorithm and [3] is that recursive calls return information
about k largest subarrays from corresponding subproblems, including k largest
sums from the left and the right, and we are finding k largest subarray values in
the combine step. A detailed description of the generic algorithm is given in [3].
Our primary goal is to simplify the combine phase.

In this paper, notations like max left, max right, max cross, and max sub
refer to arrays of size k, holding the corresponding k largest sum values. Except
for max cross, these arrays are sorted in non-increasing order.

Consider the left and right subarrays, Al and Ar, of some internal node v in
the recursion tree. The k largest sums at v are among the k largest sums from Al,
the k largest sums from Ar, and the k largest sums of contiguous subarrays that
cross between Al and Ar (we call these last sums crossing sums). The difficult
part is to efficiently compute the k crossing sums and the various k largest sums
that need to be passed up to the parent node.

In this section, we provide a solution for the combine step that is simple
yet efficient, easy to implement. The function MERGE used in the following
algorithms is similar to the one in the merge-sort sorting algorithm, except that
we stop after finding the largest k values, and takes O(k) time. By a slight abuse,
we allow the MERGE function to work with a constant number of arrays in the
input, rather than just two arrays. If there are more than two arrays passed to
the MERGE function we perform a pairwise merge to find the k largest numbers.
Similarly, function SELECT, whenever mentioned, is the standard linear time
selection function [7], that finds the kth (and thus k) largest number(s) of a given
set of (O(k) in our case) numbers.

The function SUM (a, A) used below takes in the input an array A of size
k and an integer a and adds a to each entry of A. It is used to add the value of
the sum of elements of the left (or right) child of v to the k largest sum prefix
(suffix) values of the right (resp., left) child of v.

The function MAX SUM CROSS (A, B) takes as input two arrays, A
and B, each of size k, sorted in non-increasing order and outputs the k -maximum

458 O. Daescu and H. Malik

sums of the pairwise addition of A and B. We can use priority queues to find k
maximum sums which takes O(k log k) time as mentioned in Appendix 2. How-
ever, soft heap [8] recently used by Kaplan [15] can find the kth largest sum, and
the k maximum sums in O(k log(1/ε)) time.

The Max-k algorithm below computes the k -maximum sums (subarrays) of
the given array A. The values low and high correspond to the start index and
end index of the subarray A[low . . . high]. The following algorithm is also used
in [3] with a different combine phase, MAX SUM CROSS.

Algorithm 1. Max-k (A, low, high)

1. if (low +
√

k ≥ high) then find max left,max right, sum,max sub by
brute force and return (max left,max right, sum,max sub)

2. mid = � low+high
2 �

3. (max left1,max right1, sum1,max sub1) = Max-k (A, low,mid)
4. (max left2,max right2, sum2,max sub2) = Max-k (A,mid + 1, high)
5. max left = MERGE(max left1, SUM (sum1,max left2));
6. max right = MERGE(max right2, SUM (sum2,max right1))
7. sum = sum1 + sum2
8. max cross = MAX SUM CROSS(max right1,max left2)
9. max sub = MERGE(max cross,max sub1, max sub2)

10. return (max left,max right, sum,max sub)

Running Time of Max-k: It can be easily seen that the running time of
algorithm Max-k is described by the recurrence:

T (n, k) = 2T (n/2, k) + O(k log(1/ε)), with T (
√

k, k) = O(k).
Using substitution method, we have

T (n, k) = 2iT (n/2i, k) + O(
i−1∑

j=0

2jk log 1/ε)

Letting (n/2i)2 = k results in 2i = n/
√

k.

T (n, k) = (n/
√

k)T (
√

k, k) + O(n
√

k log 1/ε)

Since T (
√

k, k) = O(k) the overall time complexity is O(n
√

k log 1/ε). The algo-
rithm is an O(log 1/ε) factor slower than the one in [3], while being simple to
describe and implement.

In the next section we provide a simple, O(k) time prune-and-search algo-
rithm for the MAX SUM CROSS procedure, which improves the overall time
complexity of algorithm Max-k to O(n

√
k) and also finds the kth maximum

sum in O(
√

k log3 k).

k-Maximum Subarrays for Small k: Divide-and-Conquer Made Simpler 459

4 An Improved Algorithm for k-Maximum Subarrays

In this section, we improve the results in the previous section by providing an
O(k) time divide-and-conquer solution for the combine phase. To this end, we
first find the kth largest element x of the pairwise sum A + B [11,12], and
then scan A and B for elements in A + B greater than or equal to x. If this
output would be sorted, then it leads to an O(k log k) running time. However,
as explained later in this section, there is no need to sort these elements, that
correspond to the values of the crossing sums.

Frederickson and Johnson [12] provided an algorithm that can find the kth

maximum element of a matrix consisting of k rows and k columns, each sorted
in nonincreasing order, in O(

√
k) time. Given a sorted matrix M, the algorithm:

1. Extracts a set S of submatrices of different shapes which guarantee to contain
all elements greater than or equal to the kth largest element of M. These
matrices also contain elements which are less than the kth largest element.

2. Given a set of sorted submatrices, the algorithm forms a new matrix with
the help of dummy matrices (matrices where all entries are −∞). The new
matrix is also a sorted matrix. The submatrices are referred to as cells, and for
each cell C, min(C) and max(C) represent the smallest and largest elements
in this cell. Initially, there is a single cell which is the matrix formed from
dummy matrices and the set S.

3. After each iteration, a cell is divided into four subcells. From all the subcells
formed in the previous steps, the algorithm computes some values that allow
to discard a few cells guaranteed not to contain the kth largest element.

The algorithm is not easy to follow especially in the second step where sorted
submatrices are combined with dummy matrices to form another sorted matrix.
In step 1, the authors are creating submatrices from a given matrix. This is done
efficiently by storing the start and end indices of each submatrix. For the second
step, new dummy matrices are combined with the submatrices from previous
steps to create a sorted matrix. Storing indices for all these sub-matrices and
finding the sorted matrix is not practical. In contrast, for our algorithm, men-
tioned in the rest of the section, the only operations required are binary search
and sorting which are easy to implement. We do not create new sub-matrices
and our algorithm does not involve large amounts of matrix manipulations.

Intuitively, for our problem, the rows and columns of the matrix are generated
by the sums in A + B, where A and B are sorted arrays of size k each. In row i,
A[i] is summed over the entries in array B. Similarly, in column j, B[j] is summed
over the entries in the array A. The matrix does not have to be explicitly stored
as the matrix entries can be generated as needed from the values in A and B.
Thus, using the algorithm in [12] one can compute the kth maximum element
x of A + B in O(

√
k) time. Retrieving the elements of A + B that are greater

than (or equal) to x takes an additional O(k) time. This makes the algorithm
MAX SUM CROSS in previous section run in O(k) time. Since the k largest
crossing sum values are no longer sorted, we replace the MERGE call in line 9

460 O. Daescu and H. Malik

of algorithm Max-k with a SELECT call. The algorithm, as presented above,
has been described in [3].

The only place where the k largest crossing sum values are used as an internal
node u of the recursion tree is in the calculation of the k largest sum values at
u, given the k largest sum values from the left and the right children of u. Let v
be the parent node of u. Node u needs to pass up to v the k largest sum values
of subarrays that start at the leftmost entry, and the k largest sum values of
subarrays that start at the rightmost entry (max left and max right arrays at
u) and these subarrays are either distinct from the crossing subarrays at u or
computed independently of those subarrays by function MAX SUM. See Fig. 3
in Appendix 1.

The following lemma is implicitly used in [3].

Lemma 1. The k largest crossing sum values do not need to be sorted for algo-
rithm Max-k to correctly report the k largest sum values of A.

Then, the running time of the Max-k algorithm is now described by the
recurrence

T (n, k) = 2T (n/2, k) + O(k)

with T (
√

k, k) = O(k). As described in [3], using the substitution method, we
have

T (n, k) = 2iT (n/2i, k) + O(
i−1∑

j=0

k2j)

Letting (n/2i)2 = k results in 2i = n/
√

k.

T (n, k) = (n/
√

k)T (
√

k, k) + O(n
√

k)

Thus, T (n) = O(n
√

k).

As mentioned earlier, the algorithm for finding the kth largest entry in A+B
presented in [12], is complex and tedious to implement. In what follows, we
provide a simple algorithm to find the kth largest element in A+B, which takes
O(

√
k log3 k) time and is easy to implement. Moreover, unlike the algorithm

in [12], our algorithm is a simple prune-and-search procedure. Also, unlike in [12],
our algorithm implicitly finds the k largest elements of A + B in the process. The
total time needed to report all k largest elements in A+B is then O(k+

√
k log3 k)

which is still O(k), and thus the final time complexity of algorithm Max-k
remains O(n

√
k).

Let A and B be arrays of size n and let k be an integer such that k ≤ n2.
We now show how to find the kth-largest element of A + B and an implicit
representation of the k largest elements of A + B in sublinear, O(

√
k log3 k)

time.
Consider a matrix M with n rows and n columns, such that the element

M [i, j] in matrix is the sum A[i] + B[j]. Without loss of generality, assume that
k ≤ n. We call M a sorted matrix. Note that for the k-maximum subarray

k-Maximum Subarrays for Small k: Divide-and-Conquer Made Simpler 461

Fig. 1. Sorted matrix M of size k × k where k = 16. kth largest element will not lie in
shaded region; therefore the shaded region of M is irrelevant.

problem, matrix M is of size k × k. The notation M [i][0 : j] denotes the entries
in row i of the matrix M , columns 0 to j. The notation M [0 : i][j] denotes the
entries in column j of matrix M , rows 0 to i.

Matrix M is only considered for better understanding of the algorithms pre-
sented in this section, but there is no need to store it explicitly. Instead, it’s
entries are computed only as needed. The only information required is the start
and end index of each row ∈ [1,

√
k] and each column ∈ [1,

√
k], that define the

“active” entries of M at a given step. Let sri , eri be the start and end index of row i
and scj , ecj be the start and end index of column j. For each row i ∈ [1,

√
k], initial-

ize value of sri with 1 and eri with 	k/i
). Similarly, for each column j ∈ [1,
√

k],
initialize value of scj with 1 and ecj with 	k/j
. It is easy to observe that all rows
and columns in matrix M are sorted and for each row i ∈ [1,

√
k] and,

1. The k largest values will not lie in M [i][eri + 1,min{n, k}].
2. For each column j ∈ [1,

√
k], the k largest values will not lie in M [ecj +

1,min{n, k}][j].
3. The k largest values will not lie in submatrix M [

√
k,

√
k][min{k, n},

min{k, n},].

This irrelevant region is shaded in Fig. 1. We can globally store the start and end
indexes of these rows and columns and update them as necessary which takes
O(

√
k) time.

462 O. Daescu and H. Malik

A staircase matrix MS is a subset of adjacent rows and columns of M , where
each row and each column are described by a start and end index. Initially, all
entries of max cross are set to minus infinity. Let p ≤ √

k be a positive integer.
Given a matrix M and an element x, the following algorithm find and return:

1. a staircase matrix of M where all elements are greater than or equal to x
2. the total number T of elements in the staircase matrix.

Algorithm 2. STAIRCASE(M, x, p)

1. For each row i ∈ [1, p] of M , use binary search on elements in M [i][sri , e
r
i]

to find the maximum index αi such that M [i][sri : αi] ≥ x.
2. For each column j ∈ [1, p] of M , use binary search on elements in

M [scj , e
c
j][j] to find the maximum index βj such that M [scj : βj][j] ≥ x.

3. Let MS be the (implicitly defined, staircase) submatrix of M formed by
elements larger or equal than x found in step 2 and step 3.

4. Let T be the total number of elements in MS

5. return MS , T

In algorithm STAIRCASE, binary search on each row i requires O(log(eri −
sri)) time while binary search on each column j requires O(log(ecj − scj)) time
which is bounded by O(log k). There are p rows and p columns, and p ≤ √

k.
The staircase matrix MS is defined implicitly, by start-end pairs for rows and
columns. Therefore the total time of algorithm STAIRCASE is O(p log k).

Fig. 2. (a) Two staircase matrices M1 and M2. Matrix M1 has total number of elements
less than or equal to k while matrix M2 has more than k elements.(b) Illustrating
M2 \ M1

k-Maximum Subarrays for Small k: Divide-and-Conquer Made Simpler 463

Notice that we need to pay attention to not double count the entries in
M [0 : p][0 : p], which can be quickly done in O(p) time.

The idea behind the following algorithm is to find two consecutive diagonal
index d and d+1 of matrix M such that the staircase matrix computed by
STAIRCASE(M,M [d, d], d) contain only elements which are greater than or
equal to the kth largest element of matrix M, while elements which are not part
of the staircase matrix STAIRCASE(M,M [d + 1, d + 1], d + 1) are guaranteed
to be less than the kth largest element of M. It is easy to notice that the kth

largest element lies in the subtraction of the matrices STAIRCASE(M,M [d +
1, d + 1], d + 1) and STAIRCASE(M,M [d, d], d).

The following algorithm takes as input a sorted matrix M and computes a
staircase submatrix of M containing the k largest entries in M . As we will see,
it does that in O(p log3 k) time, using an implicit representation of submatrices
of M . The k largest entries can then be reported in an additional O(k) time.

Algorithm 3. MAX SUM CROSS-1(M)

1. Use binary search on 1, 2, . . . ,
√

k to find index d such that the total number
of elements returned by STAIRCASE(M,M [d, d], d) is at most k and the
total number of elements returned by STAIRCASE(M,M [d+1, d+1], d+
1) is greater than k (This binary search on the diagonal of matrix M is
illustrated in Figure 2-a).
(a) Let M1, T1 = STAIRCASE(M,M [d, d], d).
(b) Let M2, T2 = STAIRCASE(M,M [d + 1, d + 1], d + 1)

2. if T1 = k
3. return M1

4. totalElementsLeft = k − T1 //elements to be found in M2 \ M1

5. MS = M2 \ M1

6. Mfinal = FIND INDEX(MS , totalElementsLeft, d + 1)
7. return Mfinal

In algorithm MAX SUM CROSS-1, M2 \M1 corresponds to the staircase
matrix formed by deleting elements of matrix M1 from M2. We don’t need to
create matrix MS , instead update the value of sri , eri for each row i ∈ [1, d + 1]
and scj , ecj for each column j ∈ [1, d + 1]. Whenever we subtract two matrices,
we update the start and end index of each row and column in [1, d + 1] which
takes O(d) time where d ≤ √

k. Step 1 requires O(
√

k log2 k) and finds the
tuples (M1, T1) and (M2, T2). In step 5, we store O(d) indexed pairs into MS ,
which takes O(d) time. Let Γ be the running time for algorithm FIND INDEX
(step 6). The total time taken by algorithm MAX SUM CROSS-1 is then
O(max{√

k log2 k,Γ}).
Let MS be the staircase matrix which corresponds to M2 \M1. MS is implic-

itly defined and stored. The median value of each row i ∈ [1, d+1] can be found
in constant time, at entry (sri + eri)/2). Similarly, we can find the median value
of each column of MS .

464 O. Daescu and H. Malik

Algorithm FIND INDEX below takes as input MS , an integer which stores
the rank of the element we need to find in MS , and an index p useful for com-
puting staircase matrices, and returns the kth largest elements of matrix M in
an implicit representation.

Algorithm 4. FIND INDEX(MS, totalElementsLeft, p)

1. Find the median value in each row 1 to p and in each column 1 to p of
MS and place them into an array X. Let size of array X be m where
m = O(p).

2. Sort X in non-increasing order. For element xi at i-th position in array
X, let αi be the total number of elements of MS greater than or equal
to xi which can be found via function STAIRCASE(MS , xi, p) and let
βi be the total number of elements of MS strictly greater than xi which
can be found via function STAIRCASE(MS , xi + 1, p).

3. Use binary search on X together with the STAIRCASE function to find
the maximum index i and the minimum index j in array X such that
totalElementsLeft − αi ≥ 0 and totalElementsLeft − αj < 0. Find
corresponding βi and βj . Notice that j = i + 1. When searching, the last
argument passed to the STAIRCASE function is p.

4. if ∃ i, j in step 3, //kth largest element lie in range [xi, xj)
(a) if totalElementsLeft − αi = 0 //kth largest element is xi

i. Let Mfinal = STAIRCASE(M,xi, p)
ii. Return staircase matrix Mfinal

(b) else if totalElementsLeft − βj = 0 //k-maximum values consist of
all elements greater than xj

i. Let Mfinal = STAIRCASE(M,xj + 1, p)
ii. Return staircase matrix Mfinal

(c) else if totalElementsLeft − βj < 0 //kth largest element lies in
range (xi, xj)
i. Let M

′
= STAIRCASE(MS , xi, p) and M

′′
=

STAIRCASE(MS , xj + 1, p)
ii. Mnew = M

′ \ M
′′

iii. totalElementsLeft = totalElementsLeft - αi

iv. FIND INDEX(Mnew, totalElementsLeft, p)
(d) else if totalElementsLeft − βj > 0 //k largest values contain all

elements greater than xj

i. totalElementsLeft = totalElementsLeft - βj

ii. Let Mfinal = STAIRCASE(M,xj + 1, p)
iii. Let Mnew be new matrix formed by adding totalElementsLeft

number of elements equal to xj to Mfinal

iv. return Mnew

5. else if ∃ j and � ∃ i //kth largest element is less than x0

(a) if totalElementsLeft − βj = 0

k-Maximum Subarrays for Small k: Divide-and-Conquer Made Simpler 465

i. Let Mfinal = STAIRCASE(M,xj + 1, p)
ii. Return staircase matrix Mfinal

(b) else if totalElementsLeft − βj < 0
i. Let M

′
= STAIRCASE(MS , xj + 1, p) //Update end indexes

for each row and column in [1, p]
ii. FIND INDEX(M

′
, totalElementsLeft, p)

(c) else if totalElementsLeft − βj > 0 //k largest values contain all
elements greater than xj

i. totalElementsLeft = totalElementsLeft - βj

ii. Let Mfinal = STAIRCASE(M,xj + 1, p)
iii. Let Mnew be new matrix formed by adding totalElementsLeft

number of element equal to xj to Mfinal

iv. return Mnew

6. else if ∃ i and � ∃ j //kth largest element is greater than xm

(a) if totalElementsLeft − αi = 0
i. Mfinal = STAIRCASE(M,xi, p)
ii. Return staircase matrix Mfinal

(b) else
i. Let M

′
= STAIRCASE(MS , xi, p)

ii. totalElementsLeft = totalElementsLeft - αi

iii. FIND INDEX(MS \ M
′
, totalElementsLeft, p)

In algorithm FIND INDEX, we update the value of start index of each
row and column with range in [1, p] to 1 before computing the STAIRCASE
matrix Mfinal. We now analyze the running time of algorithm FIND INDEX.
Step 1 requires O(p) time, Step 2 requires O(p log p) time, and Step 3 requires
O(p log2 k) time. Computing the staircase matrix and the total elements in steps
4, 5, and 6 requires O(p log k) time. In steps 4, 5, and 6, half of elements are
removed before function FIND INDEX is called recursively. With p = O(

√
k),

the time complexity is then described by

T (k, p) = T (k/2, p) + p log2 k,

with T (1, p) = O(1)
Using substitution method, we have

T (k, p) = T (k/2i, p) + O(
i−1∑

j=0

p log2(k/2j))

Letting k/2i = 1 results in i = log k and

T (k, p) = T (1, p) + O(
log k−1∑

j=0

p log2(k/2j))

466 O. Daescu and H. Malik

which solves for
T (k, p) = O(p log3 k)

With Γ = O(p log3 k), algorithm MAX SUM CROSS-1 thus takes O(p log3 k)
time where p = O(

√
k). We summarize our result below.

Theorem 1. Algorithm MAX SUM CROSS-1 finds the k largest elements
in A+B (and thus the k largest crossing sums) in O(k log3 k) time. The k sums
are implicitly represented and can be report with an additional O(k) time.

Recall that there is no need to sort the elements in the max cross since the
arrays contributing in the combine step are max left and max right. Therefore,
instead of using MERGE, we can use the SELECT algorithm in line 9 of
algorithm Max-k to find k max sub in O(k) time.

Plugging in the new procedure for finding crossing sums, MAX SUM
CROSS-1, the running time of the divide and conquer algorithm Max-k is
now described by the recurrence

T (n, k) = 2T (n/2, k) + O(k),

with T (
√

k, k) = O(k) which solves for T (n) = O(n
√

k).

Theorem 2. Algorithm MAX-k finds the k largest subarrays of an array A of
size n in O(n

√
k) time, where 1 ≤ k ≤ n(n + 1)/2.

5 Implementation and Experiments

We have implemented our algorithms and performed multiple experiments,
reporting excellent results. For comparison, we also implemented the algorithm
presented in [12] which is used in the combine phase in [3]. The implementation
is in JAVA on macOS High Sierra with 3.1 GHz Intel i5 processor and 8 GB of
RAM, while the data sets have been randomly generated.

For experimentation, we generated two random sorted arrays of size n which
consist of integer values and defined an integer k. For comparison both n and k
are power of 4 as assumed in [12]. Table 1 shows the comparison results between
the two algorithms and it is clear that our algorithm outperformed [12]. The time
complexity of our algorithm depends upon the value of p ≤ √

k. At each step of
our algorithm, we eliminate many elements which are not candidates for the kth

largest element. For example, while computing a staircase matrix, we know each
row and column (elements in submatrix M [1,m; 1, r] are greater than or equal
to M [m, r]).

For better accessing our algorithm, we performed further experiments by
varying the size of the input array (101 to 106). Results of the MAX SUM
CROSS- 1 procedure are shown in Table 2. The input arrays are generated ran-
domly for each iteration. It is easy to notice that even for the large value of k, our
algorithm takes only a few milliseconds. Tables 3, 4 and 5 shows the time taken
to compute the k-maximum subarray. As it can be seen, our algorithm is very
efficient: for arrays with size 106 and k = 106, we can obtain the k maximum
subarrays in about 52 s.

k-Maximum Subarrays for Small k: Divide-and-Conquer Made Simpler 467

Table 1. Comparison between our algorithm and [12] (k = n).

Size of input array Average time for 102 test cases (in milliseconds)

Algorithm in [12] Our algorithm

44 0.18 0.03

45 0.91 0.12

46 1.2 0.14

47 2.6 0.17

Table 2. Average time taken to find the k -maximum values of A + B (k = n).

Size of
input
array

Average time (in milliseconds)

Number of tests = 102 Number of tests = 103 Number of tests = 104

10 0.03 0.01 0.02

102 0.07 0.03 0.04

103 0.18 0.08 0.09

104 0.37 0.23 0.27

105 1.35 1.44 1.39

106 16.21 15.78 15.85

Table 3. Average time taken to find the k -maximum subarrays when k = n.

Size of
input
array

Average time (in milliseconds)

Number of tests = 102 Number of tests = 103 Number of tests = 104

10 0.08 0.03 0.01

102 0.44 0.363 0.10

103 4.19 3.63 1.60

104 91.28 98.56 93.43

105 1729.78 1890.03 1780.13

106 52101.62 - -

468 O. Daescu and H. Malik

Table 4. Average time taken to find the k -maximum subarrays for small k.

Size of input array Average time (in milliseconds)

k = 5 k = 15 k = 25 k = 35 k = 45

10 0.07 0.04 0.02 0.03 0.02

102 0.31 0.33 0.24 0.31 0.28

103 0.81 2.03 1.45 1.21 0.88

104 4.03 4.78 6.2 5.39 5.02

105 34.63 45.11 46.33 51.58 46.94

Table 5. Average time taken to find the k -maximum subarrays.

Size of input array Average time (in milliseconds)

k = 105 k = 205 k = 405 k = 605 k = 805 k = 1005

102 0.54 0.4 0.69 0.24 0.31 0.93

103 2.52 1.63 2.06 1.61 1.39 2.68

104 10.29 8.4 9.96 14.24 13.65 15.16

105 71.06 76.49 114.97 123.29 160.73 192.22

6 Conclusion

In this paper, we studied the k -maximum subarray problem and proposed a sim-
ple divide-and-conquer algorithm for small values of k. Our algorithm matches
the best known divide-and-conquer algorithm, while considerably simplifying
the combine step. As part of our solution, we provided a simple prune-and-
search procedure for finding the largest k values of X + Y , where X and Y are
sorted arrays of size n each. These values are computed and stored implicitly in
O(

√
k log3 k) time, and can be reported in additional O(k) time. Our solutions

benefit from simplicity and fast execution time, even for large values of n and k.
We implemented our algorithms and reported excellent results.

Appendix-1: Linear Time Divide-and-Conquer Maximum
Subarray

In this section we give a detailed description of a simple, linear time divide
and conquer algorithm to find the maximum subarray (k = 1), by placing the
algorithm in [4] in a standard divide-and-conquer framework.

Given an array A of n real numbers, the maximum subarray problem is to
find a contiguous subarray whose sum of elements is maximum over all possible
subarrays, including A itself. The divide and conquer algorithm divides A into
two subarrays of equal size, makes two recursive calls, and then proceeds with
the combine step while keeping track of the maximum subarray sum found in
the process.

k-Maximum Subarrays for Small k: Divide-and-Conquer Made Simpler 469

Fig. 3. Illustration of combine phase

In the combine phase, at an internal node, we have two subarrays, A1 (from
the left child) and A2 (from the right child). We define the following variables
which are used to find the maximum subarray (see also Fig. 3):

max left ← − inf maximum subarray starting from leftmost index

max right ← − inf maximum subarray starting from rightmost index

sum ← 0 sum of all elements in array

max cross ← − inf maximum crossing subarray

max sub ← − inf maximum subarray

The idea is to make the combine phase run in O(1) time instead of the
O(n) time, as described in [10]. For that, the values (and corresponding array
indexes) of max left, max right, and sum must also be passed up from the
recursive calls. The sum value at a given node can be found by adding up the
sums from the children. The value max left is either the max left from the
left child or the sum value from the left plus the max left value from the right
child. Similarly, the value max right is either the max right from the right child
or the sum value from the right plus the max right value from the left child.
The following divide and conquer algorithm, Maximum Subarray, takes in the
input an array A of size n and two integers, low and high, which correspond to
the start index and end index of subarray A[low . . . high], and finds and returns
the maximum subarray of A[low, high].

470 O. Daescu and H. Malik

Algorithm 5. Maximum Subarray (A, low, high)

1. if (low == high)
2. max left = A[low];
3. max right = A[low];
4. sum = A[low];
5. max sub = A[low];
6. return (max left,max right, sum,max sub)
7. mid = � low+high

2 �
8. (max left1,max right1, sum1,max sub1)=

Maximum Subarray(A, low,mid)
9. (max left2,max right2, sum2,max sub2)=

Maximum Subarray(A,mid + 1, high)
10. max left = max(max left1, sum1 + max left2);
11. max right = max(max right2, sum2 + max right1)
12. sum = sum1 + sum2
13. max cross = max right1 + max left2
14. max sub = max(max cross,max sub1,max sub2)
15. return (max left,max right, sum,max sub)

In above algorithm, steps 1-7 take O(1) time. Steps 8-9 correspond to
the recursive calls. Steps 10-15 take O(1) time. Therefore, the time taken by
Algorithm 1 is:

T (n) = 2T (n/2) + O(1) = O(n)

Appendix-2: An O(k logK) Algorithm for X + Y

Given two input arrays, A and B, each of size k, sorted in non-increasing order,
and outputs the k -maximum sums of the pairwise addition of A and B. For
our purpose, A would contain the k largest sums of Al for subarrays starting
at the rightmost entry of Al, while B would contain the k largest sums of Ar

for subarrays starting at the leftmost entry of Ar. We use a priority queue Q
implemented as a binary heap to store pairwise sums, as they are generated. An
AVL tree T is also used, to avoid placing duplicate pairs (i, j) in Q.

k-Maximum Subarrays for Small k: Divide-and-Conquer Made Simpler 471

Algorithm 6. MAX SUM CROSS (A, B)

1. k = sizeof(A)
2. Q ← null //Max Priority Queue
3. M[k] ← null; //Output Array
4. T ← null; //AVL Tree
5. m ← 0;
6. add (0, 0) to Q with priority A[0] + B[0]
7. store (0, 0) in T
8. while k > 0:
9. (i, j) = pop Q

10. M[m] = A[i] + B[j]
11. m = m + 1; k = k - 1
12. if (i < k and (i + 1, j) �∈ T)
13. store (i+1, j) in T
14. add (i + 1, j) to Q with priority (A[i + 1] + B[j])
15. if (j < k and (i, j + 1) �∈ T)
16. store (i, j + 1) in T
17. add (i, j + 1) to Q with priority (A[i] + B[j + 1])
18. return M

Time Complexity of Algorithm MAX SUM CROSS: Lines 12, 15 take
O(log k) time for searching T, lines 13, 16 take O(log k) time to store indices
in T, lines 9, 14, 17 take O(log k) to add or remove an element in the priority
queue, and the while loop in line 8 runs k times. Therefore, the time complexity
for algorithm MAX SUM CROSS is O(k log k).

References

1. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of
items in large databases. In: Acm SIGMOD Record, vol. 22, pp. 207–216. ACM
(1993)

2. Bae, S.E., Takaoka, T.: Improved algorithms for the k-maximum subarray problem.
Comput. J. 49(3), 358–374 (2006)

3. Bengtsson, F., Chen, J.: Efficient algorithms for k maximum sums. Algorithmica
46(1), 27–41 (2006)

4. Bengtsson, F., Chen, J.: Ranking k maximum sums. Theor. Comput. Sci. 377(1–3),
229–237 (2007)

5. Bentley, J.: Algorithm design techniques. Commun. ACM 27(9), 865–871 (1984)
6. Bentley, J.: Programming pearls: algorithm design techniques. Commun. ACM

27(9), 865–873 (1984)
7. Blum, M., Floyd, R.W., Pratt, V.R., Rivest, R.L., Tarjan, R.E.: Time bounds for

selection. J. Comput. Syst. Sci. 7(4), 448–461 (1973)
8. Chazelle, B.: The soft heap: an approximate priority queue with optimal error rate.

J. ACM (JACM) 47(6), 1012–1027 (2000)

472 O. Daescu and H. Malik

9. Cheng, C.H., Chen, K.Y., Tien, W.C., Chao, K.M.: Improved algorithms for the k
maximum-sums problems. Theor. Comput. Sci. 362(1–3), 162–170 (2006)

10. Cormen, T.H.: Introduction to Algorithms. MIT press, Cambridge (2009)
11. Frederickson, G.N., Johnson, D.B.: The complexity of selection and ranking in x+

y and matrices with sorted columns. J. Comput. Syst. Sci. 24(2), 197–208 (1982)
12. Frederickson, G.N., Johnson, D.B.: Generalized selection and ranking: sorted

matrices. SIAM J. Comput. 13(1), 14–30 (1984)
13. Fukuda, T., Morimoto, Y., Morishita, S., Tokuyama, T.: Data mining using two-

dimensional optimized association rules: scheme, algorithms, and visualization.
ACM SIGMOD Record 25(2), 13–23 (1996)

14. Grenander, U.: Pattern analysis: lectures in pattern theory 2. Appl. Math. Sci. 24
(1978)

15. Kaplan, H., Kozma, L., Zamir, O., Zwick, U.: Selection from heaps, row-sorted
matrices and x + y using soft heaps. arXiv preprint arXiv:1802.07041 (2018)

http://arxiv.org/abs/1802.07041

A Faster Convex-Hull Algorithm
via Bucketing

Ask Neve Gamby1 and Jyrki Katajainen2,3(B)

1 National Space Institute, Technical University of Denmark,
Centrifugevej, 2800 Kongens Lyngby, Denmark

aknvg@space.dtu.dk
2 Department of Computer Science, University of Copenhagen,

Universitetsparken 5, 2100 Copenhagen East, Denmark
3 Jyrki Katajainen and Company, 3390 Hundested, Denmark

jyrki@di.ku.dk

http://hjemmesider.diku.dk/~jyrki/

Abstract. In the convex-hull problem, in two-dimensional space, the
task is to find, for a given sequence S of n points, the smallest convex
polygon for which each point of S is either in its interior or on its bound-
ary. In this paper, we propose a variant of the classical bucketing algo-
rithm that (1) solves the convex-hull problem for any multiset of points,
(2) uses O(

√
n) words of extra space, (3) runs in O(n) expected time

on points drawn independently and uniformly from a rectangle, and (4)
requires O(n lg n) time in the worst case. Also, we perform experiments
to compare bucketing to other alternatives that are known to work
in linear expected time. In our tests, in the integer-coordinate setting,
bucketing was a clear winner compared to the considered competitors
(plane-sweep, divide&conquer, quickhull, and throw-away).

Keywords: Computational geometry · Convex hull · Algorithm ·
Bucketing · Linear expected time · Experimental evaluation

1 Introduction

Bucketing is a practical method to improve the efficiency of algorithms. As an
example, consider the sorting problem under the assumption that the elements
being sorted are integers. In bucketsort [1], the elements are sorted as follows:
(1) Find the minimum and maximum of the elements. (2) Divide the closed
interval between the two extrema into equal-sized subintervals (buckets). (3)
Distribute the points into these buckets. (4) Sort the elements in each bucket.
(5) Concatenate the sorted buckets to form the final output. A data structure is
needed to keep track of the elements inside the buckets, so this is not an in-place
sorting method. The key is to use a worst-case optimal sorting algorithm when
processing the buckets. This way the worst-case performance remains unchanged
since the bucketing overhead is linear.

In our exploratory experiments, we could confirm that for integer sorting
bucketsort, which used the C++ standard-library std::sort to sort the buckets,

c© Springer Nature Switzerland AG 2019
I. Kotsireas et al. (Eds.): SEA2 2019, LNCS 11544, pp. 473–489, 2019.
https://doi.org/10.1007/978-3-030-34029-2_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34029-2_30&domain=pdf
http://orcid.org/0000-0002-2839-166X
http://orcid.org/0000-0002-7714-5588
https://doi.org/10.1007/978-3-030-34029-2_30

474 A. N. Gamby and J. Katajainen

was often faster than std::sort itself. In our implementation we followed the
guidelines given by Nevalainen and Raita [27]. Their advice can be summed up
as follows:

1. Do not make the distribution table too large! According to the theory, the
number of buckets should be proportional to the number of elements. Often
this is too large and may lead to bad cache behaviour. According to our
experience, the memory footprint of the distribution table should not be much
larger than the size of the second-level cache in the underlying computer.

2. Do not use any extra space for the buckets when distributing the elements
into the buckets! Permute the elements inside the input sequence instead.

In geometric applications, in two-dimensional space, bucketing can be used in
a similar manner: (1) Find the smallest rectangle covering the input points. (2)
Divide this rectangle into equal-sized rectangles (cells). (3) Solve the problem by
moving from cell to cell while performing some local computations. The details
depend on the application in question.

In the 1980s, bucketing was a popular technique to speed up geometric algo-
rithms (for two surveys, see [5,13]). In the 1990s, the technique was declared
dead, because of the change in computer architectures: caching effects started to
dominate the computational costs. Today, bucketing can again be used, provided
that the distribution table is kept small. In this work, we only study bucketing
algorithms that use a small distribution table and that avoid explicit linking by
permuting the elements inside the sequence.

More specifically, we consider the problem of finding the convex hull for a
sequence S of n points in the plane. Each point p is specified by its Cartesian
coordinates (px, py). The convex hull H(S) of S is the boundary of the smallest
convex set enclosing all the points of S. The goal is to find the smallest descrip-
tion of the convex hull, i.e. the output is the boundary of a convex polygon, the
vertices of which—so-called extreme points—are from S.

Throughout the paper, we use n to denote the size of the input, h the size
of the output, and lg x as a shorthand for log2(max {2, x}). Our specific goal is
to develop a convex-hull algorithm that (1) requires O(n lg n) time in the worst
case, (2) runs in O(n) time in the average case, (3) uses as little extra space as
possible, and (4) is efficient in practice. In the integer domain, good average-case
performance may be due to various reasons [7]:

1. The points are chosen uniformly and independently at random from a
bounded domain.

2. The distribution of the points is sparse-hulled [11, Exercise 33-5], meaning
that in a sample of n points the expected number of extreme points is O(n1−ε)
for some constant ε > 0.

In the book by Devroye [14, Section 4.4], a bucketing algorithm for finding
convex hulls was described and analysed. It could improve the efficiency of any
worst-case-efficient algorithm such that it runs in linear expected time without
sacrificing the worst-case behaviour. According to Devroye, this algorithm is

A Faster Convex-Hull Algorithm via Bucketing 475

due to Shamos. This algorithm needs a distribution table of size Θ(n) which
may lead to bad cache behaviour. We describe a variant of this algorithm that
reduces the consumption of extra memory to O(

√
n), which was low enough to

not contribute significantly to cache misses in our computing environment.
Many convex-hull algorithms are known to run in linear expected time.

Therefore, we also compared the practical performance of the new bucketing
algorithm to that of other algorithms. The competitors considered were plane-

sweep [4] (using bucketsort as proposed in [3]; the average-case analysis of
bucketsort can be found, e.g., in [14, Chapter 1]); divide&conquer [29]
(for the analysis, see [7]); quickhull [10,16,20] (for the analysis, see [28]); and
throw-away [2,4,12] (for the analysis, see [12]).

The contributions of this paper can be summarized as follows:

– We describe a space-efficient bucketing algorithm that solves the convex-hull
problem for any multiset of points in the plane (Sect. 2).

– We perform micro-benchmarks to show which operations are expensive and
which are not (Sect. 3). The results of these micro-benchmarks give an indi-
cation of how different algorithms should be implemented.

– We provide a few enhancements to most algorithms to speed up their straight-
forward implementations (Sect. 4). It turns out that, with careful program-
ming, most known algorithms can be made fast.

– We perform experiments, in the integer-coordinate setting, to find out what
is the state of the art when computing the convex hulls in the plane (Sect. 5).

– We report the lessons learned while doing this study (Sect. 6). Many of the
guidelines are common-sense rules that can be found from the texts discussing
experimentation (see, e.g. [8, Chapter 8]).

2 Bucketing

In one-dimensional bucketing, when the values come from the interval [min, max]
and the distribution table has m entries, the bucket index i, 0 ≤ i ≤ m − 1, of
value v is computed using the formula

i =
⌊

(v − min) ∗ (m − 1)
max − min

⌋
.

In two-dimensional bucketing, such a formula is needed for both x- and y-
coordinates. Normally, geometric primitives only use addition, subtraction, and
multiplication, but here we also need whole-number division.

Old Version. The bucketing algorithm described in [14, Section 4.4] for solv-
ing the convex-hull problem works as follows: (1) Determine a bounding rectangle
of the n input points. (2) Divide this rectangle into rectangular cells using a grid
of size �√n �×�√n � and distribute the points into these cells. (3) Mark all outer-
layer cells that may contain extreme points. (4) Collect all points in the marked
cells as the extreme-point candidates. (5) Finally, use any known algorithm to
compute the convex hull of the candidates.

476 A. N. Gamby and J. Katajainen

In a naive implementation, the data at each cell are stored in a linked list and
a two-dimensional array is used to store the headers to these lists. In the book [14,
Section 4.4], the computation of the outer-layer cells was described as follows.
(1) Find the leftmost non-empty column of cells and mark all the occupied cells
in this column. Recall the row index j of the northernmost occupied cell. (2)
After processing column i, mark one or more cells in column i + 1 as follows:
(a) Mark the cell at row number j. (b) Mark all cells between this cell and the
northernmost occupied cell on that column provided that its row number is at
least j + 1. (c) Update j if we moved upwards. This way we get a staircase of
at most 2 �√n � marked cells. As to the correctness, all extreme points in the
north-west quadrant must be in a marked cell. The other three quadrants are
processed in a similar manner. Eventually at most 8 �√n� cells are marked.

Devroye proved [14] that this algorithm runs in linear expected time when the
points are independently and uniformly distributed in a rectangle. The worst-
case running time depends on the algorithm used in the last step; with the
plane-sweep algorithm this is O(n lg n) [4].

New Version. We call the columns slabs. There are �√n � slabs, each storing
two y-values; we call them min and max, but their meaning depends on in which
step of the algorithm we are. We only use bucketing for the x-coordinates when
determining in which slab a point is; we do not materialize the cells. In the ±y
directions, we maintain a staircase of y-values instead of a staircase of cells.

In detail, the algorithm works as follows:

(1) Find the minimum and maximum x-coordinate values of the points. These
values are needed in the formula determining the slab of a point.

(2) If all points are on a vertical line, solve this special case by finding the points
with the extreme y-coordinates, move these two points (or one point) to
the beginning of the input sequence, and report them as the answer.

(3) Allocate space for the slab structure and initialize it so that in each slab
the max value is −∞ and the min value +∞.

(4) Determine the extreme y-coordinates in each slab by scanning the points,
calculating their slab index, and updating the stored min and max values
within the slabs whenever necessary (random access needed).

(5) Determine the indices of the slabs where the topmost and bottommost
points lie. This information can be extracted by examining the slab struc-
ture. After this the quadrants are uniquely determined. For example, when
processing the west-north quadrant, the slabs are visited from the leftmost
slab to the one that contains the topmost point and the max values are
reset.

(6) In the west-north quadrant, form a staircase of y-values that specifies in
each slab where the extreme points can lie. Initially, the roof, keeping track
of the highest y-value seen so far, is set to the max value of the first slab and
the max value at that slab is reset to −∞. When visiting the following slabs,
both the max value and the roof are updated such that the roof becomes
the maximum of itself and max of the current slab, while max takes the value
of the roof at the previous slab.

A Faster Convex-Hull Algorithm via Bucketing 477

Table 1. Hardware and software in use.

Processor. Intel Core i7-6600U CPU @ 2.6GHz (turbo-boost up to 3.6GHz)× 4
Word size. 64 bits
First-level data cache. 8-way set-associative, 64 sets, 4× 32KB
First-level instruction cache. 8-way set-associative, 64 sets, 4× 32KB
Second-level cache. 4-way set-associative, 1 024 sets, 256KB
Third-level cache. 16-way set-associative, 4 096 sets, 4.096MB
Main memory. 8.038 GB
Operating system. Ubuntu 18.04.1 LTS
Kernel. Linux 4.15.0-43-generic
Compiler. g++ 8.2.0

(7) The other quadrants are treated in the same way to form the staircases
there.

(8) Partition the input by moving all the points outside the region determined
by the staircases (above or below) to the beginning of the input sequence,
and the points that were inside and could be eliminated to the end of the
sequence. For each point, its slab index must be computed and the slab
structure must be consulted (which involves random access).

(9) Release the space allocated for the slab structure.
(10) Apply any space-efficient convex-hull algorithm for the remaining points

and report the convex hull first in the sequence.

Since the region that is outside the staircases computed by the new algorithm
is smaller than the region covered by the marked cells in the original algorithm,
the runtime analysis derived for the old version also applies for the new version.
The critical region covers at most 8 �√n � cells (that are never materialized) and
the expected value for the maximum number of points in a cell is O(lg n/ lg lg n).
Hence, the work done in the last step is asymptotically insignificant. The amount
of space required by the slab structure is O(

√
n). All the other computations can

be carried out using a workspace of constant size (in place) or logarithmic size
(in situ); for a space-efficient variant of plane-sweep, see [17].

3 Micro-benchmarking

When tuning our implementations, we based our design decisions on micro-
benchmarks. These benchmarks should be understood as sanity checks. We
encourage the reader to redo some of the tests to see whether the same con-
ditions are valid in his or her computer system.

Test Environment. All the experiments were run on a Linux computer. The
programs were written in C++ and the code was compiled using the g++ com-
piler. The hardware and software specifications of the test computer are sum-
marized in Table 1. In the micro-benchmarks the same data set was used:

478 A. N. Gamby and J. Katajainen

Square Data Set. The coordinates of the points were integers drawn randomly
from the range �−231 . . 231 � (i.e. random ints).

The points were stored in a C array. We report the test results for five values
of n: 210, 215, 220, 225, and 230. All the reported numbers are scaled: For every
performance indicator, if X is the observed measurement result, we report X/n.
That is, a constant means linear performance. To avoid the problems with inad-
equate clock precision, a test for n = 2i was repeated �227/2i� times; each
repetition was done with a new input array.

Orientation Tests. As an example of a geometric computation, where cor-
rectness is important, let us consider Graham’s scan [19] as it appears in the
plane-sweep algorithm [4]: We are given n points sorted according to their
x-coordinates. The task is to perform a scan over the sequence by repeatedly
considering triples (p, q, r) of points and eliminate q if there is not a right turn at
q when moving from p to r via q. After this computation the points on the upper
hull are gathered together at the beginning of the input. The scan is carried out
in place. Typically, about 2n orientation tests are done in such a scan.

For three points p = (px, py), q = (qx, qy), and r = (rx, ry), the orientation
test boils down to the question of determining the sign of a 3 × 3 determinant:

⎡
⎣px py 1

qx qy 1
rx ry 1

⎤
⎦

If the sign of this determinant is positive, then r is on left of the oriented line
determined by p and q. If the sign of the determinant is negative, then r is on
right of the oriented line. And if the sign is zero, then r is on that line.

Formulated in another way, one can calculate lhs = (qx − px) ∗ (ry − py) and
rhs = (rx − px) ∗ (qy − py), and then determine whether lhs > rhs, lhs < rhs, or
lhs == rhs. When doing these calculations, we considered three alternatives:

Multiple-precision arithmetic. It is clear that (1) a construction of a signed
value from an unsigned one may increase the length of the representation by
one bit, (2) a subtraction may increase the needed precision by one bit, and (3)
a multiplication may double the needed precision. Hence, if the coordinates of
the points are w bits wide, it is sufficient to use (2w+4)-bit integers to get the
correct value of lhs and rhs. For this purpose, we used the multiple-precision
integers available at the CPH STL [24].

Double-precision arithmetic. By converting the coordinates to double-length
integers and by handling the possible overflows in an ad-hoc manner, the
calculations can be done with 2w-bit numbers and some if statements.

Floating-point filter. Many computers have additional hardware to accelerate
computations on floating-point numbers. Therefore, it might be advantageous
to perform the calculations on floating-point numbers and, only if the result
is not known to be correct due to accumulation of rounding errors, use one of
the above-mentioned exact methods to redo the calculations. In the present
case, we employed Shewchuk’s filter coded in [31].

A Faster Convex-Hull Algorithm via Bucketing 479

In this micro-benchmark the coordinates were 32-bit integers of type int.
Hence, in the multiple-precision solution the numbers were 68 bits wide. In
the double-precision solution we could rely on 64-bit built-in integers of types
long long and unsigned long long. For randomly generated data, the floating-
point filter worked with 100 % accuracy. Table 2 shows how Graham’s scan per-
formed for different right-turn predicates. Generally, this linear-time computa-
tion is by no means critical compared to the cost of sorting. Since the floating-
point filter gave the best results, we used it in all subsequent experiments.

Table 2. Performance of Graham’s scan for different right-turn predicates for the x-
sorted square data set [ns per point]. The width w of the coordinates was 32 bits. In
the multiple-precision solution, intermediate calculations were done with numbers of
type cphstl::Z<2 ∗ w + 4>.

n Multiple precision Double precision Floating-point filter

210 30.8 17.7 15.7

215 30.8 17.8 15.3

220 30.7 17.7 15.3

225 30.9 17.9 15.4

230 55.8 39.8 48.8

Distribution. To explore different options when implementing distributive
methods, consider the task of producing a histogram of bucket sizes along the
x-axis when we are given n points and a distribution table of size m. This involves
a scan over the input and, for each point. the calculation of its bucket index and
an increment of the counter at that bucket. In the micro-benchmark we varied
the table size and the data type used in arithmetic operations. For each of the
considered types, the x-coordinates were first cast to this type, the calculations
were done with them, and the result was cast back to an index type.

The results of these experiments are reported in Table 3 for several different
table sizes and data types. For multiple-precision integer arithmetic, the package
from the CPH STL was used [24]. These results confirm two things:

1. The distribution table should not be large; otherwise, caching effects will
become visible.

2. It is preferable to do the bucket calculations using floating-point numbers.

Scanning. Next, let us consider what is the cost of sequential scanning. Three
tasks reappear in several algorithms: (1) Find the minimum and maximum of
the points according to their lexicographic order. For n points, this task can be
accomplished with about (3/2)n point comparisons using the standard-library
function std::minmax_element. (2) Use two points p and r to partition a sequence
of n points into two parts so that the points above and on the line determined

480 A. N. Gamby and J. Katajainen

Table 3. Performance of the histogram creation along the x-axis for the square data
set [ns per point]. In all runs, n was fixed to 220. The coordinates were of type int;
their width w was 32 bits. With integers of width 2w+ 3, all arithmetic overflows could
be avoided. Integers of width 2w were also safe since lg m ≤ w − 3.

m double cphstl::Z<2 ∗ w + 3> cphstl::Z<2 ∗ w>

210 3.90 37.91 10.96

211 3.85 39.04 11.05

212 3.90 38.99 10.87

213 3.92 38.97 10.76

214 4.19 39.14 11.07

215 4.07 38.90 10.96

216 4.74 39.10 11.81

217 5.03 39.27 11.98

218 5.21 38.97 12.09

219 7.77 48.81 18.86

220 13.31 75.94 35.82

by p and r come on the left and those below the line on the right. For this task,
the standard-library function std::partition can be employed. The orientation
predicate is needed to determine on which side of the line a point lies. (3) Copy
a sequence of size n to an array. The function std::copy is designed for this task.

Table 4 shows the performance of these functions in our test environment:
std::minmax_element is very fast, whereas std::partition is slower since it involves
point moves and orientation tests. Especially, for the largest instance, when the
size of the input is close to the maximum capacity of main memory, the slowdown
is noticeable. The performance is linear up to a certain point, but after that
point the memory operations became more expensive. In the test computer, the
saturation point was reached for n = 228; for n = 227, the cost per point was
still about the same as that for n = 225. For the largest instance, copying failed
since there was not space for two point arrays of size 230 in main memory.

Table 4. Performance of scanning for the square data set [ns per point].

n std::minmax_element std::partition std::copy

210 0.22 11.2 0.73

215 0.20 10.3 0.80

220 0.20 10.4 1.41

225 0.20 11.6 3.13

230 0.20 34.5 out of memory

A Faster Convex-Hull Algorithm via Bucketing 481

Sorting. Most industry-strength sorting algorithms are hybrids. The C++
standard-library introsort [26] is a typical example: It uses median-of-three
quicksort [32] (see also [23]) for rough sorting and it finishes its job by a final
insertionsort scan. If the recursion stack used by quicksort becomes too
deep, the whole input will be processed by heapsort [33]. Now, small inputs
are processed fast due to insertionsort, the worst case is O(n lg n) for an input
of size n due to heapsort, and the performance is good due to quicksort.

We wanted to test whether a combination, where the input elements are dis-
tributed into buckets and the buckets sorted by introsort, can improve the
performance even further. In our implementation we followed closely the guide-
lines given in [27]. We name the resulting algorithm one-phase bucketsort.
This algorithm has two drawbacks: (1) Its interface is not the same as that of the
library sort. Namely, it has one additional functor as a parameter that is used to
map every element to a numerical value. In our application this is not a problem
since the coordinates of the points are integers. (2) For an input of size n, the
algorithm—as implemented in [27]—requires an extra array for n elements and
a header array for m = min {n/5, max m} integers. The bucket headers are used as
counters to keep track of the size of the buckets and as cursors when placing the
elements into the buckets. We selected the constant max m such that the whole
header array could be stored in the second-level cache.

To make the distributive approach competitive with respect to space usage,
we also implemented two-phase bucketsort that distributes the input elem-
ents into O(

√
n) buckets and sorts each of them using one-phase bucketsort.

This version permutes the elements inside the input sequence before sorting the
buckets. For the two-phase version the linear running time is valid as long as

√
n

is not significantly larger than max m.
In the benchmark we sorted an array of n points according to their x-

coordinates using the above-mentioned sorting algorithms. As seen from Table 5,
both versions of bucketsort worked reasonably well compared to introsort

until the size of the input reached that of main memory. In this situation, most
of the other memory intensive programs had troubles as well—either they failed
due to excessive memory usage or became slow.

Table 5. Performance of sorting for the square data set [ns per point].

n introsort one-phase bucketsort two-phase bucketsort

210 36.5 14.2 33.4

215 53.5 19.9 29.4

220 70.7 33.1 43.7

225 89.1 58.9 63.0

230 173 out of memory 324

482 A. N. Gamby and J. Katajainen

4 Competitors

Any algorithm solving the convex-hull problem should read the whole input and
report the extreme points in the output in sorted angular order. Thus, if scan(n)
denotes the cost of scanning a sequence of size n sequentially and sort(h) the
cost of sorting a sequence of size h, Ω(scan(n) + sort(h)) is a lower bound for
the running time of any convex-hull algorithm.

Many algorithms have been devised for the convex-hull problem, but none of
them is known to match the above-mentioned lower bound on the word RAM
[21]—when the coordinates of the points are integers that fit in one word each.
The best deterministic algorithms are known to run in O(n lg lg n) worst-case
time (for example, the plane-sweep algorithm [4] combined with fast integer
sorting [22]) or in O(n lg h) worst-case time (the marriage-before-conquest

algorithm [25]). On the other hand, when the input points are drawn according
to some random distribution, which is a prerequisite for the analysis, there are
algorithms that can solve the convex-hull problem in linear expected time. This
is not in conflict with the Ω(scan(n) + sort(h)) bound, since integers drawn
independently at random from a uniform distribution in a bounded interval can
be sorted in linear expected time by bucketsort.

The most noteworthy alternatives for a practical implementation are:

Plane sweep. The plane-sweep algorithm [4] is a variation of rotational-

sweep [19] where the points are sorted according to their x-coordinates.
The problem is solved by computing the upper-hull and lower-hull chains
separately. To start with, two extreme points are found—one on the left and
another on the right. Then the line segment determined by these two is used
to partition the input into upper-hull candidates and lower-hull candidates.
Finally, the upper-hull candidates are scanned from left to right and the lower-
hull candidates from the right to left as in Graham’s algorithm [19]. To work
in linear expected time, bucketsort (see, for example, [1]) could be used
when sorting the candidate collections. If introsort was used to sort the
buckets, the worst-case running time would be O(n lg n).

Divide and conquer. As is standard in the divide&conquer scheme [29],
if the number of given points is less than some constant, the problem is
solved directly using some straightforward method. Otherwise, the problem
is divided into two subproblems of about equal size, these subproblems are
solved recursively, and the resulting convex hulls of size h1 and h2 are merged
in O(h1+h2) worst-case time. An efficient merging procedure guarantees that
the worst-case running time of the algorithm is O(n lg n) and, for sparse-hulled
distributions, the average-case running time is O(n) [7]. For the theoretical
analysis to hold, two properties are important: (1) the division step must be
accomplished in O(1) time and (2) the points in the subproblems must obey
the same distribution as the original points. This can be achieved by storing
the points in an array and shuffling the input randomly at the beginning of
the computation.

Quickhull. This algorithm, which mimics quickersort [30], has been rein-
vented several times (see, e.g. [10,16,20]). It also starts by finding two extreme

A Faster Convex-Hull Algorithm via Bucketing 483

points p and r, one on the left and another on the right, and computes the
upper-hull chain from p to r and the lower-hull chain from r to p separately.
For concreteness, consider the computation of the upper chain from p to r.
In the general step, when the problem is still large enough, the following is
done: (1) Find the extreme point q with the largest distance from the line
segment pr. (2) Eliminate the points inside the triangle pqr from further con-
sideration. (3) Compute the chain from p to q recursively by considering the
points above the line segment pq and (4) the chain from q to r by considering
the points above the line segment qr. (5) Concatenate the chains produced
by the recursive calls and return that chain.
Eddy [16] proved that in the worst case quickhull runs in O(nh) time.
However, Overmars and van Leeuwen [28] proved that in the average case the
algorithm runs in O(n) expected time. Furthermore, if the coordinates of the
points are integers drawn from a bounded universe of size U , the worst-case
running time of quickhull is O(n lg U) [17].

Throw-away elimination. When computing the convex hull for a sequence of
points, one has to find the extreme points at all directions. A rough approxi-
mation of the convex hull is obtained by considering only a few predetermined
directions. As discussed in several papers (see, e.g. [2,4,12]), by eliminating
the points falling inside such an approximative hull, the problem size can
often be reduced considerably. After this preprocessing, any of the above-
mentioned algorithms could be used to process the remaining points.
Akl and Toussaint [2] used four equispaced directions—those determined by
the coordinate axes; and Devroye and Toussaint [12] used eight equispaced
directions. The first of these papers demonstrated the usefulness of this idea
experimentally and the second paper verified theoretically that for certain
random distributions the number of points left will be small. Unfortunately,
the result depends heavily on the shape of the domain, from where the points
are drawn at random. A rectangle is fine, but a circle is not.

Our implementations of these algorithms are available from the website of
the CPH STL [http://www.cphstl.dk] in the form of a pdf file and a tar archive
[18]. To ensure the reproducibility of the experimental results, the package also
contains the driver programs used in the experiments.

5 Experiments

As the micro-benchmarks indicated, the performance of the memory system
became an issue when the problem size reached the capacity of main memory.
Therefore, it became a matter of honour for us to ensure that our programs
can also handle large problem instances—an “out-of-memory” signal was not
acceptable if the problem instance fitted in internal memory.

Briefly stated, the improvements made to the algorithms were as follows:

Plane sweep. As our starting point, we used the in-situ version described in
[17]. To achieve the linear expected running time, two-phase bucketsort

was used when sorting the points according to their x-coordinates.

http://www.cphstl.dk

484 A. N. Gamby and J. Katajainen

Divide and conquer. As in plane-sweep, the upper and lower hulls were com-
puted separately. When merging two sorted chains of points, we used an in-
place merging algorithm (std::inplace_merge). The library routine was adap-
tive: If there was free memory available, it was used; if not, an in-place merging
routine was employed. It must be pointed out that the emergency routine did
not run in linear worst-case time [15]—although it relied on sequential access.
Therefore, when the memory limit was hit, the worst-case running time of
the divide&conquer algorithm was O(n(lg n)2).

Quickhull. We implemented this algorithm recursively by letting the runtime
system handle the recursion stack. Otherwise, we relied on many of the same
in-place routines as those used in the other algorithms. The extra space
required by the recursion stack is O(lg U) words when the coordinates come
from a bounded universe of size U [17].

Bucketing. The bucketing was done by maintaining information on the min

and max y-values in each of the �√n � slabs. After determining the staircases,
the points outside them were moved to the beginning of the sequence and
in-situ plane-sweep was used to finish the job. The elimination overhead
was three scans: one min-max scan to find the extreme points in the ±x
directions, one scan to determine the outermost points at each slab in the
±y directions, and one partitioning scan to eliminate the points that were
inside the region determined by the staircases. The slab structure used O(

√
n)

words of space and, except the above-mentioned scans, its processing cost was
O(

√
n). Bucket indices were calculated using floating-point numbers.

Throw-away elimination. We found the extreme points in eight predeter-
mined directions, eliminated all the points inside the convex polygon deter-
mined by them, and processed the remaining points with in-situ plane-

sweep. Thus, the elimination overhead was two scans: one max-finding scan
to find the extrema and another partitioning scan to do the elimination.

We wanted to test the performance of these heuristics in their home ground
when the input points were drawn according to some random distribution. We
run the experiments on the following data sets—the first one was already used
in the micro-benchmarks:

Square data set. The coordinates of the points were integers drawn randomly
from the range �−231 . . 231 �. The expected size of the output is O(lg n) [6].

Disc data set. As above, the coordinates of the points were random ints, but
only the points inside the circle centred at the origin with the radius 231 − 1
were accepted to the input. Here the expected size of the output is O(n1/3).

In earlier studies, the number of orientation tests and that of coordinate
comparisons have been targets for optimization. Since the algorithms reorder
the points in place, the number of coordinate moves is also a relevant perform-
ance indicator. In our first experiments, we measured the performance of the
algorithms with respect to these indicators. The purpose was to confirm that
the algorithms execute a linear number of basic operations. Due to hardware
effects, it might be difficult to see the linearity from the CPU-time measure-
ments.

A Faster Convex-Hull Algorithm via Bucketing 485

Table 6. The number of orientation tests executed [per n] for the square data set.

n plane-sweep divide&conquer quickhull bucketing throw-away

210 2.31 2.76 4.95 0.16 2.04

215 2.34 2.79 4.86 0.02 2.01

220 2.34 2.80 4.82 0.00 2.00

225 2.39 2.85 4.70 0.00 2.00

230 2.09 2.56 5.37 0.00 2.00

Table 7. The number of coordinate comparisons done [per n] for the square data set.

n plane-sweep divide&conquer quickhull bucketing throw-away

210 11.0 8.81 2.26 6.31 15.0

215 9.45 8.84 2.25 5.65 15.0

220 9.01 8.88 2.25 5.53 15.0

225 8.91 8.80 2.25 5.51 15.1

230 8.88 8.88 2.25 5.50 15.2

Table 8. The number of coordinate moves performed [per n] for the square data set.

n plane-sweep divide&conquer quickhull bucketing throw-away

210 26.5 32.4 5.14 2.49 1.21

215 29.1 32.7 4.59 0.42 0.20

220 29.0 32.6 4.51 0.08 0.04

225 29.0 32.6 4.72 0.01 0.00

230 29.1 32.7 4.91 0.00 0.00

The operation counts are shown in Table 6 (orientation tests), Table 7 (coor-
dinate comparisons), and Table 8 (coordinate moves). The results are unambigu-
ous: (1) There are no significant fluctuations in the results. For all competitors,
the observed performance is linear—as the theory predicts. For the elimination
strategies, the number of coordinate moves is sublinear; for bucketing this is
even the case for orientation tests. (2) For bucketing some of the observed
values are frighteningly small compared to others albeit casts to floating-point
numbers and operations on them were not measured.

Both bucketing and throw-away eliminate some points before apply-
ing in-situ plane-sweep. To understand better how efficient these elimination
strategies are, we measured the average fraction of points left after elimination.
The figures are reported in Table 9. For the square data set, both methods
show extremely good elimination efficiency. For the disc data set, bucketing
will be better since the expected number of points in the outer layer is at most
O(

√
n (lg n/ lg lg n)) [14, Section 4.4], whereas for throw-away the expected

486 A. N. Gamby and J. Katajainen

Table 9. The average fraction of points left after elimination [%] for the two data sets.

n bucketing (square) bucketing (disc) throw-away (square) throw-away (disc)

210 8.07 12.2 4.29 12.2

215 1.18 2.07 0.71 10.2

220 0.19 0.36 0.12 9.99

225 0.03 0.06 0.01 9.97

230 0.00 0.01 0.00 9.97

number of points left is Ω(n) [17, Fact 3]. Although the elimination efficiency
can vary, the performance of these algorithms can never be much worse than
that of plane-sweep since the elimination overhead is linear.

Table 10. The running time of the competitors for the square data set [ns per point].

n plane-sweep divide&conquer quickhull bucketing throw-away

210 60.5 73.2 49.5 14.3 20.4

215 56.9 70.0 46.0 6.98 16.4

220 62.6 69.7 45.7 5.88 16.4

225 85.9 69.8 48.4 5.50 15.2

230 189.9 114.2 124.5 75.4 45.5

Table 11. The running time of the competitors for the disc data set [ns per point].

n plane-sweep divide&conquer quickhull bucketing throw-away

210 57.7 71.0 60.4 16.8 29.2

215 53.7 68.4 57.8 7.64 27.4

220 56.9 67.0 57.6 5.86 28.5

225 80.2 66.7 57.8 5.53 30.1

230 183.9 116.9 128.3 75.9 77.2

In our final experiments, we measured the CPU time used by the competi-
tors for the considered data sets. The results are shown in Table 10 (square) and
Table 11 (disc). We can say that (1) plane-sweep had mediocre performance;
(2) divide&conquer worked at about the same efficiency; (3) throw-away

improved the performance with its preprocessing; (4) quickhull was not effec-
tive because it performed many expensive orientation tests; and (5) bucketing
showed outstanding performance compared to its competitors thanks to its effec-
tive preprocessing. However, throw-away that uses less space and has better
memory-access locality behaved well when almost all memory was in use.

A Faster Convex-Hull Algorithm via Bucketing 487

6 Reflections

When we started this work, we were afraid of that this would become a study on
sorting in new clothes. But the essence turned out to be how to avoid sorting.

When writing the programs and performing the experiments, we made many
mistakes. We have collected the following checklist of the most important issues
to prevent ourselves and others from repeating these mistakes.

Compiler options. Switch all compiler warnings on when developing the pro-
grams and use full optimization when running the experiments.

Library facilities. Use the available library resources; do not reinvent them.
Techniques. Keep bucketing in your toolbox. While the other convex-hull algo-

rithms are busily partitioning the input into upper-hull and lower-hull candi-
dates, bucketing has already solved the problem. Partitioning is also needed
in bucketing, but it is fast since the partitioning criterion is simpler and
only a small fraction of the points will be moved.

Robustness. Implement geometric primitives in a robust manner. The simplest
way to achieve this is to do intermediate calculations with multiple-precision
numbers. We found it surprising that multiple-precision arithmetic is not
provided by the C++ standard library.

Floating-point acceleration. Use floating-point numbers wisely. These can
speed up things; we used them in bucket calculations and orientation tests.

Space efficiency. Do not waste space. As one of the micro-benchmarks showed,
an innocent copying can generate an “out-of-memory” signal when the prob-
lem size reaches the capacity of main memory. It is known that the plane-

sweep algorithm can be implemented in place (see [9,17]). On the other hand,
a program can be useful even though its memory usage is not optimal; it is
quite acceptable to use O(

√
n) words of extra space.

Correctness. Use an automated test framework. Our first checkers could verify
the correctness of the output in O(n2) worst-case time. After refactoring, the
checkers were improved to carry out this task in O(n lg n) worst-case time (for
more details, see [17,18]). But the checkers do some copying which means that
they cannot be used for the largest problem instances.

Quality assurance. Try several alternatives for the same task to be sure about
the quality of the chosen alternative.

References

1. Akl, S.G., Meijer, H.: On the average-case complexity of “bucketing” algorithms.
J. Algorithms 3(1), 9–13 (1982). https://doi.org/10.1016/0196-6774(82)90003-7

2. Akl, S.G., Toussaint, G.T.: A fast convex hull algorithm. Inf. Process. Lett. 7(5),
219–222 (1978). https://doi.org/10.1016/0020-0190(78)90003-0

3. Allison, D.C.S., Noga, M.T.: Some performance tests of convex hull algorithms.
BIT 24(1), 2–13 (1984). https://doi.org/10.1007/BF01934510

4. Andrew, A.M.: Another efficient algorithm for convex hulls in two dimensions. Inf.
Process. Lett. 9(5), 216–219 (1979). https://doi.org/10.1016/0020-0190(79)90072-3

https://doi.org/10.1016/0196-6774(82)90003-7
https://doi.org/10.1016/0020-0190(78)90003-0
https://doi.org/10.1007/BF01934510
https://doi.org/10.1016/0020-0190(79)90072-3

488 A. N. Gamby and J. Katajainen

5. Asano, T., Edahiro, M., Imai, H., Iri, M., Murota, K.: Practical use of bucketing
techniques in computational geometry. In: Toussaint, G.T. (ed.) Computational
Geometry. North-Holland (1985)

6. Bentley, J.L., Kung, H.T., Schkolnick, M., Thompson, C.D.: On the average num-
ber of maxima in a set of vectors and applications. J. ACM 25(4), 536–543 (1978).
https://doi.org/10.1145/322092.322095

7. Bentley, J.L., Shamos, M.I.: Divide and conquer for linear expected time. Inf.
Process. Lett. 7(2), 87–91 (1978). https://doi.org/10.1016/0020-0190(78)90051-0

8. Berberich, E., Hagen, M., Hiller, B., Moser, H.: Experiments. In: Müller-
Hannemann, M., Schirra, S. (eds.) Algorithm Engineering: Bridging the Gap
between Algorithm Theory and Practice. Springer-Verlag (2010)

9. Brönnimann, H., Iacono, J., Katajainen, J., Morin, P., Morrison, J., Toussaint, G.:
Space-efficient planar convex hull algorithms. Theoret. Comput. Sci. 321(1), 25–40
(2004). https://doi.org/10.1016/j.tcs.2003.05.004

10. Bykat, A.: Convex hull of a finite set of points in two dimensions. Inf. Process.
Lett. 7(6), 296–298 (1978). https://doi.org/10.1016/0020-0190(78)90021-2

11. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.
The MIT Press, 3rd edn. (2009)

12. Devroye, L., Toussaint, G.T.: A note on linear expected time algorithms for
finding convex hulls. Computing 26(4), 361–366 (1981). https://doi.org/10.1007/
BF02237955

13. Devroye, L.: Expected time analysis of algorithms in computational geometry. In:
Toussaint, G.T. (ed.) Computational Geometry. North-Holland (1985)

14. Devroye, L.: Lecture Notes on Bucket Algorithms. Birkhäuser Boston, Inc. (1986)
15. Dvor̆ák, S., D̆urian, B.: Stable linear time sublinear space merging. Comput. J.

30(4), 372–375 (1987). https://doi.org/10.1093/comjnl/30.4.372
16. Eddy, W.F.: A new convex hull algorithm for planar sets. ACM Trans. Math.

Software 3(4), 398–403 (1977). https://doi.org/10.1145/355759.355766
17. Gamby, A.N., Katajainen, J.: Convex-hull algorithms: Implementation, test-

ing, and experimentation. Algorithms 11(12) (2018). https://doi.org/10.3390/
a11120195

18. Gamby, A.N., Katajainen, J.: Convex-hull algorithms in C++. CPH STL report
2018–1, Dept. Comput. Sci., Univ. Copenhagen (2018–2019), http://www.diku.
dk/∼jyrki/Myris/GK2018S.html

19. Graham, R.L.: An efficient algorithm for determining the convex hull of a finite
planar set. Inf. Process. Lett. 1(4), 132–133 (1972). https://doi.org/10.1016/0020-
0190(72)90045-2

20. Green, P.J., Silverman, B.W.: Constructing the convex hull of a set of points in
the plane. Comput. J. 22(3), 262–266 (1979). https://doi.org/10.1093/comjnl/22.
3.262

21. Hagerup, T.: Sorting and searching on the word RAM. In: Morvan, M., Meinel, C.,
Krob, D. (eds.) STACS 1998. LNCS, vol. 1373, pp. 366–398. Springer, Heidelberg
(1998). https://doi.org/10.1007/BFb0028575

22. Han, Y.: Deterministic sorting in O(n log log n) time and linear space. J. Algorithms
50(1), 96–105 (2004). https://doi.org/10.1016/j.jalgor.2003.09.001

23. Hoare, C.A.R.: Quicksort. Comput. J. 5(1), 10–16 (1962). https://doi.org/10.1093/
comjnl/5.1.10

24. Katajainen, J.: Class templates for fixed-precision
arithmetic. Work in progress (2017–2019)

https://doi.org/10.1145/322092.322095
https://doi.org/10.1016/0020-0190(78)90051-0
https://doi.org/10.1016/j.tcs.2003.05.004
https://doi.org/10.1016/0020-0190(78)90021-2
https://doi.org/10.1007/BF02237955
https://doi.org/10.1007/BF02237955
https://doi.org/10.1093/comjnl/30.4.372
https://doi.org/10.1145/355759.355766
https://doi.org/10.3390/a11120195
https://doi.org/10.3390/a11120195
http://www.diku.dk/~jyrki/Myris/GK2018S.html
http://www.diku.dk/~jyrki/Myris/GK2018S.html
https://doi.org/10.1016/0020-0190(72)90045-2
https://doi.org/10.1016/0020-0190(72)90045-2
https://doi.org/10.1093/comjnl/22.3.262
https://doi.org/10.1093/comjnl/22.3.262
https://doi.org/10.1007/BFb0028575
https://doi.org/10.1016/j.jalgor.2003.09.001
https://doi.org/10.1093/comjnl/5.1.10
https://doi.org/10.1093/comjnl/5.1.10

A Faster Convex-Hull Algorithm via Bucketing 489

25. Kirkpatrick, D.G., Seidel, R.: The ultimate planar convex hull algorithm? SIAM
J. Comput. 15(1), 287–299 (1986). https://doi.org/10.1137/0215021

26. Musser, D.R.: Introspective sorting and selection algorithms. Software Pract.
Exper. 27(8), 983–993 (1997)

27. Nevalainen, O., Raita, T.: An internal hybrid sort algorithm revisited. Comput. J.
35(2), 177–183 (1992). https://doi.org/10.1093/comjnl/35.2.177

28. Overmars, M.H., van Leeuwen, J.: Further comments on Bykat’s convex hull algo-
rithm. Inf. Process. Lett. 10(4–5), 209–212 (1980). https://doi.org/10.1016/0020-
0190(80)90142-8

29. Preparata, F.P., Hong, S.J.: Convex hulls of finite sets of points in two and three
dimensions. Commun. ACM 20(2), 87–93 (1977). https://doi.org/10.1145/359423.
359430

30. Scowen, R.S.: Algorithm 271: Quickersort. Commun. ACM 8(11), 669–670 (1965).
https://doi.org/10.1145/365660.365678

31. Shewchuk, J.R.: Adaptive precision floating-point arithmetic and fast robust predi-
cates for computational geometry (1996), http://www.cs.cmu.edu/∼quake/robust.
html

32. Singleton, R.C.: Algorithm 347: An efficient algorithm for sorting with minimal
storage [M1]. Commun. ACM 12(3), 185–187 (1969). https://doi.org/10.1145/
362875.362901

33. Williams, J.W.J.: Algorithm 232: Heapsort. Commun. ACM 7(6), 347–348 (1964).
https://doi.org/10.1145/512274.512284

https://doi.org/10.1137/0215021
https://doi.org/10.1093/comjnl/35.2.177
https://doi.org/10.1016/0020-0190(80)90142-8
https://doi.org/10.1016/0020-0190(80)90142-8
https://doi.org/10.1145/359423.359430
https://doi.org/10.1145/359423.359430
https://doi.org/10.1145/365660.365678
http://www.cs.cmu.edu/~quake/robust.html
http://www.cs.cmu.edu/~quake/robust.html
https://doi.org/10.1145/362875.362901
https://doi.org/10.1145/362875.362901
https://doi.org/10.1145/512274.512284

Fixed Set Search Applied
to the Minimum Weighted Vertex

Cover Problem

Raka Jovanovic1 and Stefan Voß2,3(B)

1 Qatar Environment and Energy Research Institute (QEERI),
Hamad bin Khalifa University, PO Box 5825, Doha, Qatar

rjovanovic@hbku.edu.qa
2 Institute of Information Systems, University of Hamburg,

Von-Melle-Park 5, 20146 Hamburg, Germany
stefan.voss@uni-hamburg.de

3 Escuela de Ingenieria Industrial,
Pontificia Universidad Católica de Valparáıso, Valparáıso, Chile

Abstract. Fixed set search (FSS) is a novel metaheuristic adding a learn-
ingmechanism to enhanced greedyapproaches. In this paperweuseFSS for
solving the Minimum Weighted Vertex Cover Problem (MWVCP). First
we define a Greedy Randomized Adaptive Search Procedure (GRASP) by
randomizing the standard greedy constructive algorithm and combine it
with a local search. The used local search is based on a simple downhill
procedure. It checks if substituting a single or a pair of elements from a
solution with ones that need to be added to keep the solution a vertex
cover decreases the value of the objective function. The performance of
the GRASP algorithm is improved by extending it towards FSS. Compu-
tational experiments performed on standard test instances from literature
show that the proposed FSS algorithm for the MWVCP is highly competi-
tive with state-of-the-art methods. Further, it is shown that the FSS man-
ages to significantly improve the GRASP algorithm it is based on.

Keywords: Metaheuristics · Minimum Weighted Vertex Cover
Problem · GRASP · Fixed set search

1 Introduction

The Minimum Vertex Cover Problem (MVCP) is one of the standard combina-
torial optimization problems that has been extensively researched. The decision
version of the MVCP is one of Karp’s 21 NP-complete problems [9]. It is defined
for a graph G(V,E) having a set of vertices V and a set of edges E. A vertex
set C ⊂ V is called a vertex cover if for every edge {u, v} ∈ E at least one of
the vertices u or v is an element of C. The objective of the MVCP is to find a
vertex cover C that has minimum cardinality. In this paper, we focus on solving
the Minimum Weighted Vertex Cover Problem (MWVCP) which is a variation
of the MVCP in which for each node u ∈ V there is a corresponding weight wu.

c© Springer Nature Switzerland AG 2019
I. Kotsireas et al. (Eds.): SEA2 2019, LNCS 11544, pp. 490–504, 2019.
https://doi.org/10.1007/978-3-030-34029-2_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34029-2_31&domain=pdf
https://doi.org/10.1007/978-3-030-34029-2_31

Fixed Set Search Applied to the Minimum Weighted Vertex Cover Problem 491

The objective in the MWVCP is to find the vertex cover having the minimum
total weight. Formally, the objective is to find a set C ⊂ V which minimizes:

∑

u∈V

wuxu (1)

In (1), variables of type xu are equal to 1 if u ∈ C and zero otherwise. The
variables xu need to satisfy the following constraints:

xu + xv ≥ 1 ({u, v} ∈ E) (2)

The MWVCP well represents a large number of real-world problems related to
wireless communication, circuit design, and network flow [11,15] which resulted
in an extensive amount of research dedicated to finding optimal and near opti-
mal solutions. It should be noted that the vast majority of research solves the
MWVCP with positive coefficients. It has been shown that it can be solved
as fast as the unweighted vertex cover in O(1.2738p + pNV), with exponential
memory use [3,4] (here NV is the size of the vertex set and p the size of the
prospective cover, if it exists). Due to the NP-Hardness of the MWVCP a wide
range of methods have been developed for finding near optimal solutions ranging
from greedy algorithms to different types of metaheuristics.

In [12], an ant colony optimization (ACO) is presented. The performance of
the ACO method has been further improved using a pheromone correction strat-
egy as presented in [7]. The problem has also been solved using genetic algorithms
combined with a greedy heuristic [13], a population-based iterated greedy (PBIG)
algorithm [1] and a reactive tabu search hybridized with simulated annealing [14].
One of the most successful approaches is the multi-start iterated tabu search (MS-
ITS) algorithm [16]. The most successful methods incorporate some types of local
searches [10]. In this paper a dynamic scoring strategy is incorporated to improve
the local search performance, which produces a computationally very effective
method being capable to solve problem instances having hundreds of thousands
of nodes and edges. Another method designed to solve problem instances on mas-
sive graphs can be found in [2], in which first an initial vertex cover is generated
that is later improved using an advanced local search.

Due to the fact that the use of local searches has proven very efficient in
case of the MWVCP, in this paper the potential effectiveness of the Greedy
Randomized Adaptive Search Procedure (GRASP) [5] is explored. To be more
precise, our objective is to see the effectiveness of combining a simple to imple-
ment greedy algorithm and local search. Two local searches are presented based
on a downhill procedure using swap operations which remove one or two vertices
from the solutions and add necessary vertices. The basic idea of the swap opera-
tions is very similar to the ones used in [10,14]. The performance of the proposed
GRASP algorithm is further improved by extending it to the novel Fixed Set
Search metaheuristic [8], which has previously been successfully applied to the
Traveling Salesman Problem (TSP). The FSS uses a simple approach to add a
learning mechanism to GRASP based on elements frequently appearing in high
quality solutions. The performed computational experiments show that the FSS
is highly competitive with the state-of-the-art methods in the quality of found

492 R. Jovanovic and S. Voß

solutions. Further, we show that the FSS produces a significant improvement
when compared to the GRASP algorithm on which it is based.

The paper is organized as follows. In Sect. 2, we give a brief description
of the randomized greedy algorithm for the MWVCP. In the following section
details of the local searches are presented. In Sect. 4, an outline of the GRASP
metaheuristic is given. In the next section, we give details of the FSS and how it
is applied to the MWVCP. In Sect. 6, we discuss the performed computational
experiments. The paper is finalized with concluding remarks.

2 Greedy Algorithm

In this section, the standard greedy constructive algorithm for the MWVCP is
presented. The basic idea of the method is to start from a partial solution S = ∅
and at each step expand it with the vertex that has the most desirable properties
based on a heuristic function h. To be more precise, it is preferable to expand
the solution with a vertex u that covers the largest number of non-covered edges
and has the minimal weight wu. Formally, the heuristic function for a partial
solution S and a node n has the following form.

Cov(n, S) = {{n, v} | ({n, v} ∈ E) ∧ (v /∈ S)} (3)

h(n, S) =
|Cov(n, S)|

wn
(4)

In (3), Cov(n, S) is the set of edges in E that contain node n but are not
already covered by S. An edge is covered if at least on of its vertices is in S. The
heuristic function, defined in (4), is proportional to the number of elements of
Cov(S, n), and reversely proportional to the weight wn of the vertex n.

Since, our goal is to use the presented greedy algorithm as a part of the
GRASP metaheuristic it is necessary to include randomization. In the proposed
algorithm we use the standard approach of a restricted candidate list (RCL) as
follows. Let us define R as the set of N elements from v ∈ V \ S that have
the largest value of h(v, S). Now, we can expand the partial solution with a
random element of set R. The pseudocode for the proposed randomized greedy
constructive algorithm (RGC) can be seen in Algorithm 1. In it, the partial
solution S is initially set to an empty set. At each iteration S is expanded with
a random element from the RCL. This is repeated until all the edges E are
covered. The proposed RGC has computational complexity of |S||V |, where S is
the generated solution.

3 Local Searches

In this section, two local searches based on a correction procedure are presented.
The basic idea of the proposed local searches is based on the concept of swapping
elements of a solution S with elements of V \ S that produce a vertex cover but
decrease the objective function. This approach has proven to be very successful
on the closely related dominating set problem.

Fixed Set Search Applied to the Minimum Weighted Vertex Cover Problem 493

Algorithm 1. Pseudocode for the RGC for the MWVCP
S = ∅
while Not all edges covered do

Generate RCL based on h and S
Select random element n ∈ RCL
S = S ∪ n

end while

3.1 Element Swap

Assume that we aim to improve a solution S. Since S is a vertex cover of G, for
each edge {u, v} at least one of u or v is an element of S. Let us define Un(v, S),
for a solution S and vertex v ∈ S, as the set of vertices that correspond to edges
that are uniquely covered by vertex vS as

Un(v, S) = {u | u /∈ S ∧ {u, v} ∈ E} (5)

It is evident that if we swap a vertex v with all the elements Un(v, S) a new
vertex cover will be created. For simplicity of notation let us define the swap
operation for a vertex v as

Swap(v, S) = (S ∪ Un(v, S)) \ {v} (6)

Now, a swap operation for a vertex v can be evaluated as

EvSwap(v, S) = wv −
∑

i∈Un(v,S)

wi (7)

In Eq. (7), EvSwap(v) gives the change in the solution weight when v ∈ S is
swapped. More precisely, it is equal to the weight wv of vertex v that is removed
from the solution minus the total sum of weights of vertices that are added to
the solution. Now, we can define Imp(S) as the set of all vertices of S for which
a swap operation produces an improvement

Imp(S) = {v | v ∈ S ∧ EvSwap(v, S) > 0} (8)

3.2 Pair Swap

The basic idea of the swap operation can be extended to pairs of vertices. In
case of a local search based on swap pairs it generally is the case that the com-
putational cost will increase |S| times, where S is the solution being improved.
Although this cannot be changed asymptotically, it can be greatly decreased
in practical applications. It is important to note that in case of the MWVCP
swap operations of this type are more effective than for other problems since the
elements that are used for substitution are uniquely defined. In designing the
local search based on swap pairs, we focus on two objectives. Firstly, to have a

494 R. Jovanovic and S. Voß

very small overlap with a local search based on element swaps and secondly to
increase computational efficacy.

In our application, we assume that in a pair swap operation involving {u, v}
both elements will be removed and none of them will be re-added. In case this
constraint is not used the same effect can be achieved using an element swap.
In case such a constraint exists, if {u, v} ∈ E such a pair can never be swapped
since the edge {u, v} will not be covered. Additional positive effects of a pair
swap {u, v} can only occur if u and v have overlapping neighborhoods, or in
other words in case there is a node w that is adjacent to both u and v. Using
this idea, let us formally define the set of improving swap pairs for a solution S.
Based on the previous discussion the set of all vertex pairs that should be tested
for a graph G can be defined as follows:

Cp = {{u, v} | (u, v ∈ V) ∧ (N(v) ∩ N(u) 	= ∅)} \ E (9)

In (9), the notation N(v) is used for the open neighborhood of v, i.e., all nodes
adjacent to v not including itself. Using this set of candidate swap pairs for graph
G, we can define the set of improving swap pairs in a similar way as a set of
improving elements using the following set of equations.

Un(u, v, S) = Un(u, S) ∪ Un(v, S) (10)
Swap(u, v, S) = (S ∪ Un(u, v, S)) \ {u, v} (11)

EvSwap(u, v, S) = wu + wv −
∑

i∈Un(u,v,S)

wi (12)

ImpPair(S) = {{u, v} | ({u, v} ∈ Cp ∩ S2) (13)
∧(EvSwap(u, v, S) > 0)}

In (10), Un(u, v, S) corresponds to the set of nodes that correspond to the set
of edges that are uniquely covered by one of the vertices u or v. Note, that
this set excludes vertices u and v. In (11), the effect of the swapping elements
u and v from a solution S is given. To be more precise, the vertices u and v
are removed from the solution S, and all the nodes corresponding to uniquely
covered edges are added. EvSwap(u, v, S), given in (12), is equal to the change
on the weight of the solution if the vertex pair {u, v} is swapped. Finally, in the
next equation ImpPair(S) is the set of all swap pairs that improve the quality of
the solution from the set of the restricted list of candidate pairs. The restricted
set of candidate pairs is equal to the intersection of the unordered product of
set S with itself S2 and the set of all candidate pairs for graph G.

3.3 Local Search

In this subsection, we present the local search based on the presented improve-
ment using element swaps and pair swaps. It should be noted that these two
types of improvement explore different neighborhoods of a solution S. Because
of this, as in the case of the variable neighborhood search [6], it is advantageous

Fixed Set Search Applied to the Minimum Weighted Vertex Cover Problem 495

Algorithm 2. Pseudocode for the local search based on swap operations
repeat

while Imp(S) �= ∅ do
Select random v ∈ Imp(S)
S = Swap(v, S)

end while
if ImpPair(S) �= ∅ then

Select random {v, u} ∈ ImpPair(S)
S = Swap(u, v, s)

end if
until (Imp(S) = ∅) ∧ (ImpPair(S) = ∅)

to use both of them interchangeably. The pseudocode for the local search based
on swap operations can be seen in Algorithm 2.

In Algorithm 2, a solution S is interchangeably improved based on swap
elements and swap pairs. Firstly, all the possible improvements are performed
using swap elements since this operation is computationally less expensive. This
is done by repeatedly performing swap element improvements until no further
improvement of this type is possible. Next, we test if an improvement can be
achieved using swap pairs. If this is true, the improvement is performed. As there
is a possibility, that after applying a swap pair improvement new element swaps
can produce improvement, the main loop is repeated until no such improvement
exists. It should be noted that for both types of improvements there are sev-
eral different ways to select the swap that will be performed; in the proposed
implementation we simply select a random one.

4 GRASP

To enhance the performance of the proposed greedy algorithm and local search,
we extend them to the GRASP metaheuristic as illustrated in Algorithm 3. In the
main loop of Algorithm 3, a new solution S to the MWVCP is generated using
the RGC algorithm. The local search is applied to the solution S and tested if it
is the new best solution. This procedure is repeated until some stopping criterion
is satisfied, usually a time limit or a maximal allowed number of solutions has
been generated.

Algorithm 3. Pseudocode for the GRASP
while Not Stop Criteria Satisfied do

Generate Solutions S using randomized greedy algorithm
Apply local search to S
Check if S is the new best

end while

496 R. Jovanovic and S. Voß

5 Fixed Set Search

The fixed set search (FSS) is a novel metaheuristic that adds a learning mecha-
nism to the GRASP. Literally it uses elite solutions, consistent solution elements
or alike to direct the search. It has previously been successfully applied to the
TSP [8]. The FSS has several important positive traits. Firstly, there is a wide
range of problems on which it can possibly be applied (this paper tries to put
evidence on it) since the only requirement is that the solution of the problem is
represented in a form of a set. The learning mechanism is simple to implement
and many existing GRASP algorithms can easily be extended to this form. In
this section the general concepts used in the FSS are presented as well as details
of its application to the MWVCP. A more detailed explanation of the concepts
used in the FSS can be found in [8].

The main inspiration for the FSS is the fact that generally many high qual-
ity solutions for a combinatorial optimization problem contain some common ele-
ments. The idea is to use such elements to steer the search of the solution space. To
be more precise, we wish to force such elements in a newly generated solution and
dedicate computational effort to finding optimal or near optimal solutions in the
corresponding subset of the solution space. The selected set of common elements
will be called the fixed set. In the FSS, we are trying to find the additional elements
to complete the partial solution, corresponding to the fixed set, or in other words
to “fill in the gaps.” In practice, we are intensifying the search around such fixed
sets. This can be achieved through the following steps. Firstly, a method for gener-
ating fixed sets needs to be implemented. Next, the randomized greedy algorithm
used in the corresponding GRASP needs to be adapted in a way to be able to use a
preselected set of elements. Lastly, the learning mechanism which gains experience
from previously generated solutions needs to be specified.

5.1 Fixed Set

Let us first define a method that will make it possible to generate random fixed
sets. As previously stated the FSS can be applied to a problem for which a
solution can be represented in a form of a set S having elements in some set
W , or in other words S ⊂ W . In case of the MWVCP this concerns a solution
S ⊂ V . In the following the notation P will be used for the set of all the generated
solutions (population). Next, let us define Pn ⊂ P as the set of n solutions having
the best value of the objective function inside P.

One of the requirements of the FSS is that the method used to generate a
fixed set F has the ability to control its size |F |. Further, such fixed sets need to
be able to produce high quality feasible solutions. This can be achieved using a
base solution B ∈ Pm. If the fixed set satisfies F ⊂ B, it can be used to generate
the base solution. In practice this means it can generate a feasible solution at
least of the same quality as B, and F can contain arbitrary elements of B. It
is preferable for F to contain elements that frequently occur in some group of
high quality solutions. To achieve this, let us define Skn as the set of k randomly
selected solutions out of the n best ones Pn.

Fixed Set Search Applied to the Minimum Weighted Vertex Cover Problem 497

Using these building blocks it is possible to define a function
Fix(B,Skn, Size) for generating a fixed set F ⊂ B that consists of Size
elements of the base solution B = {v1, ...vl} that most frequently occur in
Skn = {S1, .., Sk}. Let use define the function C(vx, S), for an element vx ∈ V
and a solution S ⊂ V , which is equal to 1 if vx ∈ S and 0 otherwise. We can
define a function that counts the number of occurrences of element vx in the
elements of the set Skn using the function C(vx, S) as follows.

O(vx,Skn) =
∑

S∈Skn

C(vx, S) (14)

Now, we can define Fix(B,Skn, Size) as the set of Size elements vx ∈ B
that have the largest value of O(vx,Skn).

5.2 Learning Mechanism

The learning mechanism in the FSS is implemented through the use of fixed
sets. To achieve this it is necessary to adapt the RGC algorithm used in the
corresponding GRASP to a setting where some elements are preselected (the
newly generated solution must contain them). Let us use the notation RGF (F)
for the solution generated using such an algorithm with a preselected (fixed) set
of elements F . In case of the MWVCP, the RGC algorithm is trivially adapted
to a RGF (F) by setting the initial partial solution S to F instead of an empty
set.

In the FSS, as in the case of the GRASP, solutions are repeatedly generated
and a local search is applied to each of them. The first step is generating an
initial population of solutions P by performing N iterations of the corresponding
GRASP algorithm. The initial population is used to generate a random fixed set
F having some size Size, using the method from the previous section. The fixed
set F is used to generate a new solution S = RGF (F) and the local search is
applied to it. The population of solutions is expanded using the newly generated
locally optimal solutions. This procedure is repeated until no new best solutions
are found for a long period by some criteria, or in other words until stagnation
has occurred. In case of stagnation the size of the fixed set is increased. In case
the maximal allowed size of the fixed set is reached, the size of the fixed set
is reset to the minimal allowed value. This procedure is repeated until some
stopping criterion is reached. An important part of the algorithm is defining the
array of allowed fixed set sizes, which is related to the part of the solution that
is fixed. In our implementation this array is defined as follows:

Sizes[i] = (1 − 1
2i

) (15)

The size of the used fixed sets is proportional to the used base solution B. More
precisely, at the i-th level it is equal to |B| · Size[i].

The pseudocode for FSS can be seen in Algorithm 4. In it, the first step
is initializing the sizes of fixed sets using (15). The current size of the fixed

498 R. Jovanovic and S. Voß

Algorithm 4. Pseudocode for the Fixed Set Search
Initialize Sizes
Size = Sizes.Next
Generate initial population P using GRASP (N)
while (Not termination condition) do

Set Skn to random k elements of Pn

Set B to a random solution in Pm

F = Fix(B,Skn, Size|B|)
S = RGF (F)
Apply local search to S
P = P ∪ {S}
if Stagnant Best Solution then

Size = Sizes.Next
end if

end while

set Size is set to the smallest value. The next part of the initialization stage is
generating the initial population of N solutions by performing N iterations of the
basic GRASP algorithm. Each iteration of the main loop consists of the following
steps. A random set of solutions Skn is generated by selecting k elements from Pn

and a random base solution B is selected from the set Pm. Next, the function
Fix(B,Skn, Size|B|) is used to generate a fixed set F . A new solution S =
RGF (F) is generated using the randomized greedy algorithm with preselected
elements and the local search is applied to it. Next, we check if S is the new best
solution and add it to the set of generated solutions P. In case stagnation has
occurred, the value of Size is set to the next value in Sizes. Let us note, that the
next size is the next larger element of array Sizes. In case Size is already the
largest size, we select the smallest element in Sizes. This procedure is repeated
until some termination criterion is satisfied.

In our implementation of the proposed algorithm for the MWVCP, the cri-
terion for stagnation was that no new best solution has been found in the last,
say, Stag iterations. As previously stated the adaptation of the randomized con-
structive greedy algorithm to the RGF (F) consists of simply setting the initial
partial solution to the fixed set instead of an empty set. The set of candidate
swap pairs Cp is calculated in the initialization stage. At this time the set of all
neighboring vertices for valid candidate pairs {u, v} are also calculated with the
intention of speeding the calculation of ImpPair(S).

6 Results

In this section we give details of the performed computational experiments. Their
objective is to evaluate the performance of the proposed GRASP and FSS in
combination with the element- (GRASP-E and FSS-E) and pair- (GRASP-P
and FSS-P) based local searches. Note that the pair-based local search is only

Fixed Set Search Applied to the Minimum Weighted Vertex Cover Problem 499

used in combination with the element-based one. This has been done in com-
parison with the ACO algorithm from [12] and its improvement version (ACO-
SEE) [7]. Further, a comparison is with the population-based iterated greedy
(PBIG) algorithm [1], the multi-start iterated tabu search (MS-ITS) algorithm
[16] and the Diversion Local Search based on Weighted Configuration Checking
(DLSWC) [10] which are the best performing methods. Note that the reactive
tabu search hybrid produces about the same quality of results than DLSWC,
but in [14] results are only presented for a small subset of instances.

The comparison is done on the set of test instances introduced in [12], that
have been also used to evaluate the other mentioned methods. The test instances
are divided into three groups: small, medium and large. In case of the small and
medium test instances, random graphs having 10–300 nodes and 10–5000 edges
are used for evaluation. For each pair (NV , NE) with NV and NE being the
number of vertices and edges, respectively, there are ten different graph instances.
The test instances are divided into Type 1 where there is no correlation between
the weight of a vertex and number on incident edges, and Type 2 where some
weak correlation exists; details can be found in [12]. In case of large test instances
the graphs have between 500 and 1000 vertices and between 500 and 20 000 edges,
and there is only one instance for each pair (NV , NE).

The used parameters for FSS are the following, k = 10 random solutions
are selected from the best n = 100 ones for the set of solutions Skn. The base
solution is selected from the m = 100 best solutions. The size of the initial
population is 100. The stagnation criterion is that no new best solution is found
in the last Stag = 100 iterations for the current fixed set size. The used size of
the RCL in the randomized greedy algorithm is 10. The stopping criterion for
all the proposed methods is that 5000 solutions are generated or a time limit
of 10 minutes has been reached. The FSS and GRASP have been implemented
in C# using Microsoft Visual Studio 2017. The calculations have been done on
a machine with Intel(R) Core(TM) i7-2630 QM CPU 2.00 Ghz, 4 GB of DDR3-
1333 RAM, running on Microsoft Windows 7 Home Premium 64-bit.

In Tables 1 and 2 the results for the medium-size problem instances are given
for graphs of Type 1 and Type 2, respectively. For each pair (NV , NE), the
average weight of all the vertex covers of this type are evaluated. With the
intention of having a clearer presentation, the average value of the objective
function is only given for DLSWC, while for the other methods only the difference
to this value is presented. The values for the methods used for comparison are
taken from the corresponding papers. Note that we did not include the results
for small problem instances since all the methods except the two ACO methods
manage to find all the optimal solutions. From the results in these tables it can
be seen that the two ACO algorithms have a substantially worse performance
than the other methods. Further, the FSS-P had the overall best performance
of all the methods except DLSWC, having on average only 0.8 and 0.1 higher
value of the objective function. It should be noted that although FSS overall has
a worse performance than DLSWC in case of two pairs (NV , NE) it managed to
find higher quality average solutions. The experiments performed on large test

500 R. Jovanovic and S. Voß

Table 1. Comparison of the methods for medium-size problem instances of Type 1.

NV × NE ACO Element Pair PBIG MS-ITS DLSWC

Basic SEE GRASP FSS GRASP FSS

50 × 50 2.1 0.9 0.0 0.0 0.0 0.0 0.0 0.0 1280.0

50 × 100 5.8 5.4 0.0 0.0 0.0 0.0 0.0 0.0 1735.3

50 × 250 15.1 8.3 0.0 0.0 0.0 0.0 0.0 0.0 2272.3

50 × 500 17.1 7.4 0.0 0.0 0.0 0.0 0.0 0.0 2661.9

50 × 750 8.0 6.3 0.0 0.0 0.0 0.0 0.0 0.0 2951.0

50 × 1000 17.5 6.1 0.0 0.0 0.0 0.0 0.0 0.0 3193.7

100 × 100 18.7 9.8 0.0 0.0 0.0 0.0 3.4 0.0 2534.2

100 × 250 24.8 13.3 0.0 0.0 0.0 0.0 1.1 0.0 3601.6

100 × 500 91.5 35.8 0.0 0.0 0.0 0.0 0.0 0.0 4600.6

100 × 750 30.9 37.3 0.0 0.0 0.0 0.0 0.0 0.0 5045.5

100 × 1000 25.9 14.5 0.0 0.0 0.0 0.0 1.2 0.0 5508.2

100 × 2000 43.8 16.4 0.0 0.0 0.0 0.0 0.0 0.0 6051.9

150 × 150 18.0 9.9 1.4 0.4 0.9 0.0 0.4 0.1 3666.9

150 × 250 49.8 35.0 1.8 0.0 0.0 0.0 0.4 0.0 4719.9

150 × 500 58.6 63.3 6.7 0.0 0.0 0.0 0.3 0.0 6165.4

150 × 750 58.3 39.9 7.6 6.8 0.0 0.0 7.3 10.6 6956.4

150 × 1000 82.1 23.9 8.0 1.6 1.6 1.6 9.1 0.0 7359.7

150 × 2000 81.8 47.8 0.0 0.2 0.0 0.0 12.6 0.0 8549.4

150 × 3000 50.4 40.4 0.0 0.0 0.0 0.0 0.0 0.0 8899.8

200 × 250 37.1 20.8 3.6 0.0 0.0 0.0 0.3 0.0 5551.6

200 × 500 67.3 41.8 2.6 1.1 0.0 0.0 0.5 3.2 7191.9

200 × 750 79.9 30.4 6.6 2.5 1.2 1.2 4.6 0.0 8269.9

200 × 1000 116.7 62.9 23.6 4.5 5.3 1.8 5.1 4.5 9145.5

200 × 2000 86.5 61.1 10.8 3.9 0.3 0.4 1.0 0.0 10830.0

200 × 3000 93.3 84.6 0.2 0.0 0.0 0.0 4.4 3.8 11595.8

250 × 250 49.1 20.5 4.6 0.0 0.0 0.0 0.0 0.0 6148.7

250 × 500 102.6 59.7 20.9 7.0 6.7 3.1 4.5 2.6 8436.2

250 × 750 123.5 69.6 24.8 6.4 1.9 -0.3 6.9 0.0 9745.9

250 × 1000 114.9 39.3 14.7 1.1 1.7 0.0 2.0 0.4 10751.7

250 × 2000 166.2 75.5 25.8 3.1 3.2 2.2 6.1 4.4 12751.5

250 × 3000 159.2 107.3 23.2 6.4 0.0 0.0 0.2 0.0 13723.3

250 × 5000 132.1 66.2 8.0 0.0 0.0 0.0 7.0 0.0 14669.7

300 × 300 46.9 30.8 7.0 0.2 0.0 0.0 0.2 0.0 7295.8

300 × 500 114.3 88.8 55.1 11.4 8.3 7.7 0.0 7.7 9403.1

300 × 750 137.6 127.2 60.9 14.0 13.3 2.2 8.8 2.7 11029.3

300 × 1000 143.2 65.2 40.2 8.9 4.6 4.4 10.4 9.2 12098.5

300 × 2000 162.7 102.4 49.7 15.4 6.7 2.7 17.7 5.5 14732.2

300 × 3000 213.3 69.7 42.3 1.7 1.0 1.0 7.4 0.6 15840.8

300 × 5000 202.5 136.9 31.6 19.3 2.3 1.9 7.7 0.0 17342.9

Average 78.18 45.70 12.35 2.97 1.51 0.77 3.35 1.42

Found Best 0 0 14 19 24 27 12 25

Fixed Set Search Applied to the Minimum Weighted Vertex Cover Problem 501

Table 2. Comparison of the methods for medium-size problem instances of Type 2.

NV ×NE ACO Element Pair PBIG MS-ITS DLSWC

Basic SEE GRASP FSS GRASP FSS

50 × 50 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.0 83.7

50 × 100 5.0 3.2 0.0 0.0 0.0 0.0 0.0 0.0 271.2

50 × 250 33.4 16.9 0.0 0.0 0.0 0.0 0.0 0.0 1853.4

50 × 500 90.8 51.6 0.0 0.0 0.0 0.0 0.0 0.0 7825.1

50 × 750 55.1 8.6 0.0 0.0 0.0 0.0 0.0 0.0 20079.0

100 × 50 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 67.2

100 × 100 2.5 1.2 0.0 0.0 0.0 0.0 0.0 0.0 166.6

100 × 250 15.2 8.8 0.0 0.0 0.0 0.0 0.0 0.0 886.5

100 × 500 33.1 13.4 0.0 0.0 0.0 0.0 0.0 0.0 3693.6

100 × 750 74.3 62.1 0.0 0.0 0.0 0.0 0.0 0.0 8680.2

150 × 50 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 65.8

150 × 100 0.7 0.1 0.0 0.0 0.0 0.0 0.0 0.0 144.0

150 × 250 9.9 9.0 0.2 0.0 0.0 0.0 0.2 0.0 615.8

150 × 500 43.5 27.1 1.1 0.0 0.0 0.0 0.0 0.0 2331.5

150 × 750 100.7 8.5 0.9 0.0 0.0 0.0 0.2 0.0 5698.5

200 × 50 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 59.6

200 × 100 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 134.5

200 × 250 5.6 4.8 0.3 0.0 0.0 0.0 0.0 1.4 483.1

200 × 500 39.7 14.8 0.2 0.0 0.0 0.1 0.4 0.0 1803.9

200 × 750 69.3 33.5 0.0 0.2 0.2 0.2 0.1 0.0 4043.5

250 × 250 4.2 2.2 0.0 0.0 0.0 0.0 0.0 0.0 419.0

250 × 500 23.2 20.1 1.9 0.4 0.5 0.0 1.5 0.5 1434.2

250 × 750 59.8 33.3 3.1 0.0 0.0 0.0 4.9 0.3 3256.1

250 × 1000 71.8 53.6 7.7 −0.1 −0.3 −0.3 3.0 1.8 5986.4

250 × 2000 512.6 295.6 42.1 6.2 0.0 0.0 22.0 9.9 25636.5

250 × 5000 1648.2 1231.7 120.2 28.9 0.1 0.1 0.1 0.1 170269.0

300 × 250 4.5 3.3 0.4 0.0 0.1 0.0 0.1 0.2 399.4

300 × 500 22.7 20.9 2.1 0.0 0.2 0.0 0.0 0.8 1216.4

300 × 750 38.9 34.8 4.5 0.6 0.4 0.0 0.1 1.3 2639.3

300 × 1000 100.5 72.9 17.2 1.8 6.6 1.8 1.3 1.2 4795.0

300 × 2000 413.9 226.4 60.6 6.6 0.0 2.5 10.3 5.1 20881.3

300 × 5000 2023.1 1072.2 109.9 11.5 4.8 4.8 44.9 6.4 141220.4

Average 171.96 104.09 11.64 1.75 0.39 0.29 2.78 0.91

Found Best 2 2 16 23 24 26 18 20

502 R. Jovanovic and S. Voß

Table 3. Comparison of best found solutions over 10 independent runs for large prob-
lem instances by different methods.

NV ×NE ACO Element Pair PBIG MS-ITS DLSWC

SEE GRASP FSS GRASP FSS

500 × 500 59.0 43.0 5.0 5.0 0.0 0.0 7.0 12616.0

500 × 1000 51.0 36.0 2.0 1.0 0.0 0.0 15.0 16465.0

500 × 2000 137.0 204.0 10.0 0.0 0.0 0.0 0.0 20863.0

500 × 5000 53.0 387.0 0.0 21.0 0.0 77.0 0.0 27241.0

500 × 10000 0.0 165.0 0.0 0.0 0.0 0.0 0.0 29573.0

800 × 500 24.0 44.0 0.0 0.0 0.0 0.0 21.0 15025.0

800 × 1000 45.0 99.0 0.0 15.0 0.0 0.0 13.0 22747.0

800 × 2000 379.0 472.0 144.0 102.0 16.0 54.0 8.0 31301.0

800 × 5000 277.0 518.0 159.0 163.0 62.0 112.0 0.0 38553.0

800 × 10000 148.0 290.0 45.0 41.0 6.0 45.0 0.0 44351.0

1000 × 1000 133.0 288.0 36.0 34.0 9.0 23.0 12.0 24723.0

1000 × 5000 243.0 460.0 62.0 79.0 61.0 52.0 27.0 45203.0

1000 × 10000 497.0 742.0 61.0 92.0 0.0 0.0 0.0 51378.0

1000 × 15000 400.0 670.0 133.0 169.0 61.0 20.0 20.0 57994.0

1000 × 20000 359.0 523.0 128.0 84.0 27.0 139.0 24.0 59651.0

Average 187.00 329.40 52.33 53.73 16.13 34.80 9.80

Found Best 1 0 4 3 8 7 6

Table 4. Comparison of average quality of found solutions over 10 independent runs
for large problem instances by different methods.

NV ×NE ACO Element Pair PBIG MS-ITS DLSWC

SEE GRASP FSS GRASP FSS

500 × 500 71.7 68.0 5.0 5.0 2.0 4.0 19.0 12616.0

500 × 1000 109.9 56.8 5.6 2.0 0.0 5.1 18.1 16465.0

500 × 2000 226.8 226.4 12.2 −3.2 −3.2 4.6 0.7 20866.2

500 × 5000 344.5 411.0 91.2 64.8 0.0 187.2 0.0 27241.0

500 × 10000 223.4 199.4 86.8 3.0 0.0 93.8 0.0 29573.0

800 × 500 44.9 53.6 0.0 0.0 0.0 0.0 29.1 15025.0

800 × 1000 105.1 119.4 0.0 19.0 0.0 16.0 13.0 22747.0

800 × 2000 481.9 502.6 227.4 157.2 17.6 117.6 40.7 31305.0

800 × 5000 337.6 561.7 149.3 171.9 72.5 149.6 −12.0 38569.1

800 × 10000 337.8 350.9 42.1 51.1 15.1 43.9 6.0 44353.9

1000 × 1000 202.4 315.6 45.8 34.0 29.0 40.1 43.1 24723.0

1000 × 5000 349.8 469.3 73.9 92.3 25.3 56.5 18.0 45238.9

1000 × 10000 724.6 755.2 88.4 128.0 −2.4 160.5 42.6 51380.4

1000 × 15000 659.8 723.8 132.0 223.4 77.0 150.2 73.9 57995.0

1000 × 20000 612.9 597.3 148.7 149.5 80.3 192.6 64.6 59655.3

Average 322.21 360.73 73.89 73.20 20.88 81.45 23.79

Fixed Set Search Applied to the Minimum Weighted Vertex Cover Problem 503

instances can be seen in Tables 3 and 4 where the values of the best found and
average weight over 10 runs of each algorithm are given, respectively. In case of
problems instances of this size a similar behavior can be seen as for medium-size
instances.

From the computational results it is evident that the methods FSS-P and
GRASP-P in which the local search includes pair swaps manages to find signifi-
cantly better solutions than the element-based ones. The use of pair swaps in the
local search produces a more significant improvement than the addition of the
learning mechanism used in the FSS. It should be noted that GRASP-P has a
better performance than FSS-E for medium-size instances, while FSS-E manages
to have a slightly better performance for large instances with FSS-P being con-
sistently better in both cases. The improvement that is achieved by FSS is more
significant in case of the weaker local search based on element swaps. However,
it is most important to note that the improvement achieved by FSS compared
to the corresponding GRASP is very consistent, and it only has worse average
quality of found solutions for 1 or 3 of the (NV , NE) pairs, when the used local
search was based on elements or pairs, respectively.

The convergence speed of the FSS-P is competitive to other methods, in case
of medium-size instances it needs an average time of 0.76 and 0.43 s to find the
best solution for Type 1 and Type 2 graphs, respectively. This is a very similar
result to MS-ITS which needed between 0.51 and 0.45 s to solve instances of
Type 1 and Type 2, and better than PBIG which needs 2.49 and 4.23 s. DLSWC
has a substantially better performances; on average it needs only 0.03 and 0.4 s.
The FSS-P scales well, and for large graphs needs an average of 5.05 s to find the
best solution for an instance which is similar to 5.20 of DLWSC, but it should
be noted that the quality of solutions is of lower quality. The scaling of PBIG
and MS-ITS is significantly worse and the methods on average need 126.94 and
74.80 s to solve large problem instances, respectively. It is interesting to point
out that although the asymptotic computational cost of the local search based
on pairs is greater than the one based on elements, the time for finding the best
solutions for GRASP-P and FSS-P is generally 2–5 times lower than for GRASP-
E and FSS-E. The FSS, on average, needs around half the time of GRASP with
the same type of local search to find the best solution. The pair swap local
search proves to be very efficient; for graphs having up to 100 nodes GRASP-P
generally needs less than 20 iterations to find the best known solutions.

7 Conclusion

In this paper we have presented an efficient easy to implement method for finding
near optimal solutions for the MWVCP. This has been done by developing two
local searches based on a correction procedures which switches one or two vertices
from a solution with new ones which produces a new vertex cover having a lower
weight. These local searches have been used as a part of a GRASP algorithm.
The performance of the developed GRASP has been improved by extending
it to the novel Fixed Set Search metaheuristic. The conducted computational

504 R. Jovanovic and S. Voß

experiments have shown that the proposed FSS is highly competitive with the
state-of-the-art methods. The results also indicate that the learning mechanism
in the FSS manages to significantly enhance its performance when compared
to the GRASP on which it is based. Importantly, the positive effect is most
significant on large-scale problem instances on which the effectiveness of GRASP
algorithms is generally decreased. For future research we aim to extend the
application of the FSS to other types of problems.

References

1. Bouamama, S., Blum, C., Boukerram, A.: A population-based iterated greedy algo-
rithm for the minimum weight vertex cover problem. Appl. Soft Comput. 12(6),
1632–1639 (2012)

2. Cai, S., Li, Y., Hou, W., Wang, H.: Towards faster local search for minimum weight
vertex cover on massive graphs. Inf. Sci. 471, 64–79 (2019)

3. Chen, J., Kanj, I.A., Xia, G.: Improved upper bounds for vertex cover. Theor.
Comput. Sci. 411(40–42), 3736–3756 (2010)

4. Cygan, M., Kowalik, �L., Wykurz, M.: Exponential-time approximation of weighted
set cover. Inf. Process. Lett. 109(16), 957–961 (2009)

5. Feo, T.A., Resende, M.G.: Greedy randomized adaptive search procedures. J. Glob.
Optim. 6(2), 109–133 (1995). https://doi.org/10.1007/BF01096763

6. Hansen, P., Mladenović, N.: Variable neighborhood search: principles and applica-
tions. Eur. J. Oper. Res. 130(3), 449–467 (2001)

7. Jovanovic, R., Tuba, M.: An ant colony optimization algorithm with improved
pheromone correction strategy for the minimum weight vertex cover problem. Appl.
Soft Comput. 11(8), 5360–5366 (2011)

8. Jovanovic, R., Tuba, M., Voß, S.: Fixed set search applied to the traveling sales-
man problem. In: Blesa Aguilera, M.J., Blum, C., Gambini Santos, H., Pinacho-
Davidson, P., Godoy del Campo, J. (eds.) HM 2019. LNCS, vol. 11299, pp. 63–77.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05983-5 5

9. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,
Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of computer computations, pp.
85–103. Springer, Boston (1972). https://doi.org/10.1007/978-1-4684-2001-2 9

10. Li, R., Hu, S., Zhang, H., Yin, M.: An efficient local search framework for the
minimum weighted vertex cover problem. Inf. Sci. 372, 428–445 (2016)

11. Pullan, W.: Optimisation of unweighted/weighted maximum independent sets and
minimum vertex covers. Discrete Optim. 6(2), 214–219 (2009)

12. Shyu, S.J., Yin, P.Y., Lin, B.M.: An ant colony optimization algorithm for the
minimum weight vertex cover problem. Ann. Oper. Res. 131(1–4), 283–304 (2004).
https://doi.org/10.1023/B:ANOR.0000039523.95673.33

13. Singh, A., Gupta, A.K.: A hybrid heuristic for the minimum weight vertex cover
problem. Asia-Pac. J. Oper. Res. 23(02), 273–285 (2006)

14. Voß, S., Fink, A.: A hybridized tabu search approach for the minimum weight
vertex cover problem. J. Heuristics 18(6), 869–876 (2012)

15. Wang, L., Du, W., Zhang, Z., Zhang, X.: A PTAS for minimum weighted con-
nected vertex cover P3 problem in 3-dimensional wireless sensor networks. J. Comb.
Optim. 33(1), 106–122 (2017)

16. Zhou, T., Lü, Z., Wang, Y., Ding, J., Peng, B.: Multi-start iterated tabu search
for the minimum weight vertex cover problem. J. Comb. Optim. 32(2), 368–384
(2016)

https://doi.org/10.1007/BF01096763
https://doi.org/10.1007/978-3-030-05983-5_5
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1023/B:ANOR.0000039523.95673.33

Automated Deep Learning for Threat
Detection in Luggage from X-Ray Images

Alessio Petrozziello and Ivan Jordanov(&)

University of Portsmouth, Portsmouth, UK
{Alessio.petrozziello,ivan.jordanov}@port.ac.uk

Abstract. Luggage screening is a very important part of the airport security risk
assessment and clearance process. Automating the threat objects detection from
x-ray scans of passengers’ luggage can speed-up and increase the efficiency of
the whole security procedure. In this paper we investigate and compare several
algorithms for detection offirearm parts in x-ray images of travellers’ baggage. In
particular, we focus on identifying steel barrel bores as threat objects, being the
main part of the weapon needed for deflagration. For this purpose, we use a
dataset of 22k double view x-ray scans, containing a mixture of benign and threat
objects. In the pre-processing stage we apply standard filtering techniques to
remove noisy and ambiguous images (i.e., smoothing, black and white thresh-
olding, edge detection, etc.) and subsequently employ deep learning techniques
(Convolutional Neural Networks and Stacked Autoencoders) for the classifica-
tion task. For comparison purposes we also train and simulate shallow Neural
Networks and Random Forests algorithms for the objects detection. Furthermore,
we validate our findings on a second dataset of double view x-ray scans of courier
parcels. We report and critically discuss the results of the comparison on both
datasets, showing the advantages of our approach.

Keywords: Baggage screening � Deep learning � Convolutional neural
networks � Image filtering � Object detection algorithms � X-ray images

1 Introduction

Identifying and detecting dangerous objects and threats in baggage carried on board of
aircrafts plays important role in ensuring and guaranteeing passengers’ security and
safety. The security checks relay mostly on X-ray imaging and human inspection,
which is a time consuming, tedious process performed by human experts assessing
whether threats are hidden or occluded by other objects in a closely packed bags.
Furthermore, a variety of challenges makes this process tedious, among those: very few
bags actually contain threat items; the bags can include a wide range of items, shapes
and substances (e.g., metals, organic, etc.); the decision needs to be made in few
seconds (especially in rush hours); and the objects can be rotated, thus presenting a
difficult to recognize view. Due to the complex nature of the task, the literature suggests
that human expert detection performance is only about 80-90% accurate [1].
Automating the screening process through incorporating intelligent techniques for
image processing and object detection can increase the efficiency, reduce the time, and
improve the overall accuracy of dangerous objects recognition.

© Springer Nature Switzerland AG 2019
I. Kotsireas et al. (Eds.): SEA2 2019, LNCS 11544, pp. 505–512, 2019.
https://doi.org/10.1007/978-3-030-34029-2_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34029-2_32&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34029-2_32&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34029-2_32&domain=pdf
https://doi.org/10.1007/978-3-030-34029-2_32

Research on threat detection in luggage security can be grouped based on three
imaging modalities: single-view x-ray scans [2], multi-view x-ray scans [3, 4], and
computed tomography (CT) [5]. Classification performance usually shows improve-
ments with the number of utilised views, with detection performance ranging from 89%
true positive rate (TPR) with 18% false positive rate (FPR) for single view imaging [2]
to 97.2% TPR and 1.5% FPR in full CT imagery [5].

The general consensus in the baggage research community is that the classification
of x-ray images is more challenging than the visible spectrum data, and that direct
application of methods used frequently on natural images (such as SIFT, RIFT, HoG,
etc.) does not always perform well when applied to x-ray scans [6]. However, iden-
tification performance can be improved by exploiting the characteristics of x-ray
images by: augmenting multiple views; using a coloured material image or employing
simple (gradient) density histogram descriptors [7–9]. Also, the authors of [10] discuss
some of the potential difficulties when learning features using deep learning techniques,
on varying size images with out-of-plane rotations.

This work aims to develop a framework to automatically detect firearms from x-ray
scans using deep learning techniques. The classification task focusses on the detection
of steel barrel bores to determine the likelihood of firearms being present within an x-
ray image, using a variety of classification approaches. Two datasets of dual view x-ray
scans are used to assess the performance of the classifiers: the first dataset contains
images of hand-held travel luggage, while the second dataset comprises scans of
courier parcels. We handle the varying image size problem by combining the two views
in one unique sample, while we do not explicitly tackle the out-of-plane rotation
problem, instead, we rely on data augmentation techniques and on a dataset containing
the threat objects recorded in different poses.

We investigate two deep learning techniques, namely Convolutional Neural Net-
works (CNN) and Stacked Autoencoders, and two widely used classification models
(Feedforward Neural Networks and Random Forests) and the results from their
implementation are critically compared and discussed.

Fig. 1. A sample image containing a steel barrel bores (top left cylinder in the top row) from the
baggage dataset. The left image (in both rows) is the raw dual view x-ray scan, in the middle, the
grey scale smoothed one, and on the right, the b/w thresholded one.

506 A. Petrozziello and I. Jordanov

The remainder of the paper is organized as follows. Section 2 describes the datasets
used in the empirical experimentation and illustrates the proposed framework; Sect. 3
reports details on the carried experiments and results; while conclusion and future work
are given in Sect. 4.

2 Threat Identification Framework

The proposed framework for automated weapon detection consists of three modules:
pre-processing, data augmentation and threat detection. The pre-processing stage
comprises four steps: green layer extraction, greyscale smoothing, black and white
(b/w) thresholding and data augmentation.

The original dataset consists of over 22000 images of which approximately 6000
contain a threat item (i.e., a whole firearm or a component). The threat images are
produced by a dual view x-ray machine: one view from above, and one from the side.
Each image contains metadata about the image class (i.e., benign or threat), and firearm
component (i.e., barrel only, full weapon, set of weapons, etc.). From the provided
image library, a sample of 3546 threat images were selected containing a firearm barrel
(amongst the other items), and 1872 benign images only containing allowed objects.
The aim of the classification is to discriminate only the threat items - as common
objects are displayed in both ‘benign’ and ‘threat’ samples (e.g., Figs. 1 and 2). During
the pre-processing phase, each image is treated separately and the two views are
combined before the classification stage.

The raw x-ray scans are imported in the framework as a 3-channel images
(RGB) and scaled to 128 � 128 pixels in order to have images of same size for the
machine learning procedure, and to meet memory constraints during training.

From the scaled image, the green colour channel is extracted as the one found to
have the greatest contrast in dense material.

The resulting greyscale image is intended to reflect more accurately the raw x-ray
data (i.e., measure of absorption). This step is performed to enable subsequent filtering
and better identification of a threshold for dense material and eventually to facilitate the
recognition of the barrel.

Fig. 2. A sample image containing a steel barrel bores (top right cylinder in the top row) from
the parcel dataset. The left image (both rows) is the raw dual view x-ray scan, in the middle, the
grey scale smoothed one, and on the right, b/w thresholded one. The parcel dataset usually
contains a higher amount of steel objects and the barrels are better concealed.

Automated Deep Learning for Threat Detection in Luggage from X-Ray Images 507

A smoothing algorithm is applied on the greyscale image in order to reduce the
low-level noise within it, while preserving distinct object edges. A number of
smoothing algorithms were tested and a simple 3 � 3 kernel Gaussian blur was found
to generate the best results. Then, on the smoothed image we apply a thresholding
technique to isolate any dense material (e.g., steel). The chosen threshold is approxi-
mated within the algorithm to the equivalent of 2 mm of steel, which ensures that metal
objects, such as firearm barrels and other components are kept. This step removes much
of the benign background information within the image, such as organic materials and
plastics. The resulting image is normalised to produce a picture where the densest
material is black and the image areas with intensity below the threshold are white. At
this point, the instances for which the produced image lacks any significant dense
material, can be directly classified as benign. From cursory examination of the oper-
ational benign test set, this is a significant proportion of the samples for the baggage
dataset, while only filtering out a small portion of images on the parcels one (mainly
because in the courier parcels there is a higher variety of big and small metallic objects
compared to the hand-held travel luggage). When applying deep learning techniques on
images, it is often useful to increase the robustness of the classification by adding
realistic noise and variation to the training data (i.e., augmentation), especially in the
case of high imbalance between the classes [11]. There are several ways in which this
can be achieved: object volume scaling: scaling the object volume V by a factor v;
object flips/shifts: objects can be flipped/shifted in the x or y direction to increase
appearance variation. This way, for every image in the training set, multiple instances
are generated, combining different augmentation procedures and these are subsequently
used by the models during the learning phase. Lastly, the two views of each sample are
vertically stacked to compose one final image (Figs. 1 and 2).

The four machine learning methods incorporated and critically compared in this
work include two from the deep learning area, namely Convolutional Neural Networks
(CNN) and Stacked Autoencoders; and two shallow techniques: Neural Networks and
Random Forests.

The CNN are considered state-of-the-art neural network architectures for image
recognition, having the best results in different applications, e.g.: from a variety of
problems related to image recognition and object detection [12], to control of
unmanned helicopters [13], x-ray cargo inspection [7], and many others. A CNN is
composed of an input layer (i.e., the pixels matrix), an output layer (i.e., the class label)
and multiple hidden layers. Each hidden layer usually includes convolution, activation,
and pooling functions, and the last few layers are fully connected, usually with a
softmax output function. A convolutional layer learns a representation of the input
applying a 2D sliding filters on the image and capturing the information of contingent
patches of pixels. The pooling is then is used to reduce the input size, aggregating (e.g.,
usually using a max function) the information learned by the filters (e.g., a 3 � 3 pixels
patch is passed in the learned filter and the 3 � 3 output is then pooled taking the
maximum among the nine values). After a number of hidden layers (performing
convolution, activation, and pooling), the final output is flattened into an array and
passed to a classic fully connected layer to classify the image.

Stacked Autoencoders, also called auto-associative neural networks, are machine
learning technique used to learn features at different level of abstraction in an

508 A. Petrozziello and I. Jordanov

unsupervised fashion. The autoencoder is composed of two parts: an encoder,whichmaps
the input to a reduced space; and a decoder which task is to reconstruct the initial input
from the lower dimensional representation. The new learned representation of the raw
features can be used as input to another autoencoder (hence the name stacked). Once each
layer is independently trained to learn a hierarchical representation of the input space, the
whole network is fine-tuned (by performing backpropagation) in a supervised fashion to
discriminate among different classes. In this workwe use sparse autoencoders, that rely on
heavy regularization to learn a sparse representation of the input.

3 Experimentation and Results

After the pre-processing and filtering off the images not containing enough dense
material, we ended with 1848 and 1764 samples for classification of the baggage and
parcel datasets respectively. The baggage dataset comprises 672 images from the
benign class and 1176 containing threats; while the parcel dataset 576 and 1188
samples for the benign and threat classes respectively. Each dataset was split in 70%
for training and 30% as independent test set. Due to their different operational envi-
ronments, the baggage and parcel scans were trained and tested separately.

In this experiment we used a three layer stacked autoencoder with 200, 100, 50
neurons respectively, followed by a softmax output function to predict the classes
probability. For the CNN we emploed a topology with three convolutional layers (with
128, 64 and 32 neurons) followed by a fully connected neural network and a softmax
output function.

The RF was trained with 200 trees while the shallow NN had a topology of n-n-2,
where n was the input size. Since both RF and shallow NN cannot be directly trained
on raw pixels, a further step of feature extraction was performed. In particular, we used
histograms of oriented Basic Image Features (oBIFs) as a texture descriptor (as sug-
gested in [6]), which has been applied successfully in many machine vision tasks. The
Basic Image Features is a scheme for classification of each pixel of an image into one
of seven categories, depending on local symmetries. These categories are: flat (no
strong symmetry), slopes (e.g., gradients), blobs (dark and bright), lines (dark and
bright), and saddle-like. Oriented BIFs are an extension of the BIFs, that include the
quantized orientation of rotationally asymmetric features [14], which encode a compact
representation of images. The oBIF feature vector is then fed as input into the RF and
the shallow NN classifiers.

To evaluate the classification performance we employ three metrics: area under the
ROC curve (AUC), the false positive rate at 90% true positive rate (FPR@90%TPR),
and the F1-score. The AUC is a popular metric for classification tasks and the
FPR@90%TPR is one cut-off point from the AUC, which describes the amount of false
positives we can expect when correctly identifying 90% of all threats. The cut-off at
90% is suggested by [6] for the classification of x-ray images in a similar context. The
F1-score is also a widely used metric for classification of imbalanced datasets that takes
into account the precision (the number of correctly identified threats divided by the
number of all threats identified by the classifier) and the recall (the number of correctly
identified threats divided by the number of all threat samples).

Automated Deep Learning for Threat Detection in Luggage from X-Ray Images 509

As it can be seen from Table 1, the CNN outperformed the other methods with
AUC ranging between 93% and 96%, depending on the pre-processing stage. The
second best method was the shallow NN with AUC values between 85% and 94%,
while the worst performance was achieved by the RF with 66%–80% AUC. Similar
results were achieved when considering the FPR@90%TPR and F1-score metrics.
The CNN reached the best FPR (6%) when trained on the b/w thresholded images,
while still having only 9% FPR when using raw data. On the other hand, while
achieving 14% FPR with the last stage of pre-processing, the NN performance dropped
drastically when employing the raw and the smoothed data, with 50% and 31% FPR
respectively. The same can be observed when using the F1-score: the CNN achieving
up to 93%, followed by the Stacked Autoencoders and the shallow NN with 81% and
79% respectively. Once again, it is worth noticing that the CNN was the only technique
able to score high classification accuracy across all used pre-processing approaches,
while the other methods needed more time spent on the features engineering and
extracting steps.

Table 1. Baggage dataset results for the AUC, FPR@90%TPR and F1-Score metrics. The
results are reported for the four classification techniques and three pre-processing step: raw data,
grey scale smoothing and b/w thresholding.

Metric Technique Raw Smoothing B/w thresholding

AUC CNN 93 95 96
Autoencoder 75 78 90
oBIFs + NN 85 87 94
oBIFs + RF 66 72 80

FPR @ 90% TPR CNN 9 7 6
Autoencoder 70 60 26
oBIFs + NN 50 31 14
oBIFs + RF 86 66 53

F1-Score CNN 91 93 93
Autoencoder 60 65 81
oBIFs + NN 64 67 79
oBIFs + RF 36 41 56

Table 2. Parcel dataset results for the AUC, FPR@90%TPR and F1-Score metrics. The results
are reported for the four classification techniques and three pre-processing step: raw data, grey
scale smoothing and b/w thresholding

Metric Technique Raw Smoothing B/w Thresholding

AUC CNN 80 79 84
Autoencoder 65 66 75
oBIFs + NN 65 69 84
oBIFs + RF 63 63 79

(continued)

510 A. Petrozziello and I. Jordanov

Table 2 shows the performance metrics on the parcel dataset, illustrating generally
lower performance across all techniques. This can be explained by the larger variety of
metal items contained in the courier parcels, when compared to the objects contained in
a hand-held airport luggage. Again, the CNN outperformed the other considered
methods, with an AUC ranging from 79% to 84%, followed by the NN with 65% to
84%, RF with 63% to 79%, and the Stacked Autoencoders with 65% to 75%. The AUC
achieved on the parcel dataset by the shallow NN, RF and Stacked Autoencoders are
much closer than those achieved on the baggage one, where the best performing
method outstands more.

Yet again, the CNN achieved the lowest FPR (37%), followed by the shallow NN
with 40% FPR, the RF with 56% FPR and the Stacked Autoencoders with 70% FPR.
Lastly, the F1-score metric produced the largest difference in values across the meth-
ods, with the CNN achieving up to 87% F1-score, followed by shallow NN with 63%,
RF with 58% and Stacked Autoencoders with 55%. Also, in this case the CNN was the
only technique able to classify threats with high accuracy, just using the raw images,
where all other techniques performed very poorly (e.g., the AUC on raw data for the
CNN was 15 percentage points better than the NN, while holding similar performance
on the b/w thresholded one; 20 percentage points better in FPR@90% TPR when
compared to the second best (Autoencoder); and even 46 percentage points better than
the Autoencoder for the F1-score).

4 Conclusion

In this work we investigated a deep learning framework for automated identification of
steel barrel bores in datasets of X-ray images in operational settings such as airport
security clearance process and courier parcel inspections. In particular we compare two
deep learningmethods (Convolutional Neural Networks and StackedAutoencoders), and
twowidely used classification techniques (shallowNeural Networks and RandomForest)
on two datasets of X-ray images (baggage and parcel datasets). We evaluated the
methods performance using three commonly accepted metrics for classification tasks:
area under the ROC curve (AUC), the false positive rate at 90% true positive rate
(FPR@90%TPR), and the F1-score. The obtained results showed that theCNN is not only
able to consistently outperform all other compared techniques over the three metrics and

Table 2. (continued)

Metric Technique Raw Smoothing B/w Thresholding

FPR @ 90% TPR CNN 46 46 37
Autoencoder 66 69 70
oBIFs + NN 71 75 40
oBIFs + RF 91 88 56

F1-Score CNN 86 83 87
Autoencoder 40 43 55
oBIFs + NN 36 32 63
oBIFs + RF 34 42 58

Automated Deep Learning for Threat Detection in Luggage from X-Ray Images 511

on both datasets, but it is also able to achieve good prediction accuracywhen using the raw
data (whether the other techniques need multiple steps of data pre-processing and feature
extraction to improve their performance). Furthermore, the CNN also achieved higher
accuracy than the reported in literature results from human screening [1] (although, the
employed datasets have not been screened by human experts, so an accurate direct
comparison cannot be reported). Future work will explore application of different
architectures for the CNN and Stacked Autoencoders, based on simulations on larger
datasets to further investigate the result of this initial experimentation.

References

1. Michel, S., Koller, S.M., de Ruiter, J.C., Moerland, R., Hogervorst, M., Schwaninger, A.:
Computer-based training increases efficiency in X-ray image interpretation by aviation
security screeners. In: 41st Annual IEEE International Carnahan Conference on Security
Technology (2007)

2. Riffo, V., Mery, D.: Active X-ray testing of complex objects. Insight-Non-Destructive Test.
Condition Monit. 54(1), 28–35 (2012)

3. Mery, D., et al.: The database of X-ray images for nondestructive testing. J. Nondestr. Eval.
34(4), 1–12 (2015)

4. Mery, D., Riffo, V., Zuccar, I., Pieringer, C.: Automated X-ray object recognition using an
efficient search algorithm in multiple views. In: IEEE Conference on Computer Vision and
Pattern Recognition Workshops (2013)

5. Flitton, G., Mouton, A., Breckon, T.: Object classification in 3D baggage security computed
tomography imagery using visual codebooks. Pattern Recogn. 48(8), 2489–2499 (2015)

6. Jaccard, N., Rogers, T.W., Morton, E.J., Griffin, L.D.: Tackling the X-ray cargo inspection
challenge using machine learning. In: Anomaly Detection and Imaging with X-Rays (ADIX)
(2016)

7. Rogers, T.W., Jaccard, N., Griffin, L.D.: A deep learning framework for the automated
inspection of complex dual-energy x-ray cargo imagery. In: Anomaly Detection and Imaging
with X-Rays (ADIX) II (2017)

8. Li, G., Yu, Y.: Contrast-oriented deep neural networks for salient object detection. IEEE
Trans. Neural Networks Learn. Syst. 29(1), 6038–6051 (2018)

9. Shen, Y., Ji, R., Wang, C., Li, X., Li, X.: Weakly supervised object detection via object-
specific pixel gradient. IEEE Trans. Neural Networks Learn. Syst. 29(1), 5960–5970 (2018)

10. Bastan, M., Byeon, W., Breuel, T.M.: Object recognition in multi-view dual energy x-ray
images. In: BMVC (2013)

11. Zhang, C., Tan, K.C., Li, H., Hong, G.S.: A cost-sensitive deep belief network for
imbalanced classification. IEEE Trans. Neural Networks Learn. Syst. 30(1), 109–122 (2019)

12. Zhao, Z.-Q., Zheng, P., Xu, S.-T., Wu, X.: Object detection with deep learning: a review.
IEEE Trans. Neural Networks Learn. Syst. 1–21 (2019)

13. Kang, Y., Chen, S., Wang, X., Cao, Y.: Deep convolutional identifier for dynamic modeling
and adaptive control of unmanned helicopter. IEEE Trans. Neural Networks Learn. Syst. 30
(2), 524–538 (2019)

14. Newell, A.J., Griffin, L.D.: Natural image character recognition using oriented basic image
features. In: International Conference on Digital Image Computing Techniques and
Applications (2011)

512 A. Petrozziello and I. Jordanov

Algorithmic Aspects on the Construction
of Separating Codes

Marcel Fernandez1 and John Livieratos2(B)

1 Department of Network Engineering, Universitat Politecnica de Catalunya,
Barcelona, Spain

2 Department of Mathematics, National and Kapodistrian University of Athens,
Athens, Greece

jlivier89@math.uoa.gr

Abstract. In this paper, we discuss algorithmic aspects of separating
codes, that is, codes where any two subsets (of a specified size) of their
code words have at least one position with distinct elements. More pre-
cisely we focus on the (non trivial) case of binary 2-separating codes.
Firstly, we use the Lovász Local Lemma to obtain a lower bound on the
existence of such codes that matches the previously best known lower
bound. Then, we use the algorithmic version of the Lovász Local Lemma
to construct such codes and discuss its implications regarding compu-
tational complexity. Finally, we obtain explicit separating codes, with
computational complexity polynomial in the length of the code and with
rate larger than the well-known Simplex code.

Keywords: Separating codes · Lovász Local Lemma · Moser-Tardos
constructive proof

1 Introduction

Separating codes [16] have a long tradition of study in the areas of coding theory
and combinatorics. This type of codes have been proven useful in applications
in the areas of technical diagnosis, construction of hash functions, automata
synthesis and traitor tracing.

We can represent a code as a matrix of symbols over a finite alphabet. The
length of a code is the number of its columns, while its size that of its rows. The
rate of a code is the fraction of (the logarithm of) its size over its length. A code
is called c-separating if for any two sets of at most c disjoint rows each, there
is a column where the symbols in the first set are different from the symbols
in the second. This turns out to be a really strong requirement. Consequently,
although there is a vast research focused on obtaining lower and upper bounds
to the rates of such codes, these bounds are weak. Also, explicit constructions
of such codes are very scarce.

The work of Marcel Fernandez has been supported by TEC2015-68734-R
(MINECO/FEDER) “ANFORA” and 2017 SGR 782.

c© Springer Nature Switzerland AG 2019
I. Kotsireas et al. (Eds.): SEA2 2019, LNCS 11544, pp. 513–526, 2019.
https://doi.org/10.1007/978-3-030-34029-2_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34029-2_33&domain=pdf
http://orcid.org/0000-0001-6409-4286
https://doi.org/10.1007/978-3-030-34029-2_33

514 M. Fernandez and J. Livieratos

For instance, for the already non trivial case of binary 2-separating codes, the
best lower bound for the rate obtained so far is 0.064 [2,16,19], whereas the best
upper bound is 0.2835 given by Korner and Simonyi in [12]. One immediately
sees that these bounds are not by any means tight. The lower bound is obtained
by the elegant technique of random coding with expurgation. The drawback of
the random coding strategy is that it gives no clue whatsoever about how to
obtain an explicit code matching the bound.

An alternate route one can take in trying to show the existence of combina-
torial objects, is the Lovász Local Lemma (LLL). This powerful result was first
stated by Erdos and Lovász in [4]. In its simple and symmetric form, the LLL
gives a necessary condition on the chance of avoiding a certain number of unde-
sirable events, given a constant upper bound on the probability of each event to
occur and on the number of dependencies between them.

Our interest in the LLL lies in its algorithmic proofs. The first such proof was
given by Moser [14] and applied solely to the satisfiability problem. Later, Moser
and Tardos [15] gave a proof for the stronger asymmetric version of the lemma in
the general case, based on the entropic method (see [21]). More recently, Giotis
et al. [7,9] applied a direct probabilistic approach to prove various forms of the
LLL (for an analytic exposition of the various forms of the LLL, see Szegedy’s
review in [20]). Both of the above approaches (as most algorithmic approaches to
the LLL), use what is known as the variable framework, where all the undesirable
events are assumed to depend on a number of independent random variables. For
algorithmic approaches not in the variable framework, see for example the work
of Harvey and Vondrak [10] and Achlioptas and Illiopoulos [1].

The LLL has been frequently used to prove the existence of combinatorial
objects with desired properties. To name some examples, one can see the work
of Gebauer et al. [5,6] in bounding the number of literals in each clause of a
formula, in order for it to be satisfiable, and the work of Giotis et al. [8] in
bounding the number of colors needed to properly color the edges of a graph so
that no bichromatic cycle exists. Closer to the subject of the present work, we
find the work of Sarkar and Colbourn [17] on covering arrays and that of Deng
et al. [3] on perfect and separating hash families.

Our Contribution: In this paper we focus on 2-separating binary codes. The
generalization to larger alphabets and larger separating sets is straightforward
and will be done elsewhere.

In Sect. 3, we prove a lower bound of such codes using the Lovász Local
Lemma in the style of Deng et al. in [3]. In Sect. 4, we move on and provide
explicit constructions of such codes, using the work of Giotis et al. [7] and
Kirousis and Livieratos [11]. Although the straightforward application of those
results leads to constructions of exponential complexity, we show how we can
explicitly obtain codes better than the current known constructions, by appro-
priately changing the conditions required in the LLL.

Algorithmic Aspects on the Construction of Separating Codes 515

2 Definitions and Previous Results

In this section we provide some definitions and results, about both separating
codes and the Lovász Local Lemma, that will be used throughout the paper.

2.1 Separating Codes

We start with some basic definitions. Let Q denote a finite alphabet of size q.
Then Qn denotes the set of vectors of length n, of elements from Q. We call
such vectors words. An (n,M)q code C ⊂ Qn is a subset of size M . A word in
C will be called a code word. The Hamming distance between two code words is
the number of positions where they differ. The minimum distance of C, denoted
by d, is defined as the smallest distance between two different code words.

In algebraic coding theory, Q is usually Fq, the finite field with q elements.
In this case, a code C is a linear if it forms a subspace of F

n
q . An (n, k, d)-code

is a code with length n, dimension k and minimum distance d.
Let U = {u1, . . . ,uc} ⊂ C be a subset of size |U | = c, where ui = (ui

1, . . . , u
i
n),

i = 1, . . . , c. Then Uj = {u1
j ,u

c
j} is the set of the alphabet elements in the

j-th coordinate of the words in U . Consider now the following definitions.

Definition 1 (Sagalovich [16]). A code C is a c-separating code if for any two
disjoint sets of code words U and V with |U | ≤ c, |V | ≤ c and U ∩ V = ∅, there
exists at least one coordinate j such that Uj and Vj are disjoint, i.e. Uj ∩Vj = ∅.
We say that the coordinate j separates U and V .

Throughout this paper, we will be interested in the case where c = 2.

Definition 2. Let C be an (n,M)q code over Q. The rate R of C is defined as

R =
logq M

n
. (1)

Let R(n, c)q be the optimal rate of a c-separating (n,M)q code. We are
interested in the asymptotic rate:

Rq(c) = lim inf
n→∞ Rq(n, c). (2)

For the binary case there exist codes of positive asymptotic rate, as shown
in [2]. For completeness we provide the proof here:

Proposition 1 (Barg et al. [2]). There exist binary c-separating codes of
length n and size 1

2 (1 − 2−(2c−1))−(n/(2c−1)), i.e.

R(n, 2)2 ≥ − log2(1 − 2−(2c−1))
2c − 1

− 1
n

. (3)

516 M. Fernandez and J. Livieratos

Proof. Let C be a random binary (n, 2M) code. We consider pairs of code words
of C. The probability Pr[U � V] that a pair of pairs of code words U and V are
not separated is:

Pr[U � V] =
(
1 − 2−(2c−1)

)n

.

Then the expected number E(Ns) of pairs of pairs in C that are not separated
is:

E(Ns) ≤
(

2M

c

)(
M − c

c

)
Pr[U � V].

By taking:

2M =
(

c!c!
−n

· 1
Pr[U � V]

)1/(2c−1)

we have:

E(Ns) <
(2M)2c

c!c!
Pr[U � V] = M.

Now, from the random binary (n, 2M) code C, we remove at most M code
words in order to destroy the non separated pairs. Finally, since we have that
(c!c!/2)(1/(1−2c) ≥ 1, the result on the size of the code follows.

Focusing on the rate of the binary 2-separating codes, we have the following
corollary:

Corollary 1 (Sagalovich [16]). There exist binary 2-separating codes of rate:

R2(2) ≥ 1 − log2(7/8) = 0.0642

The Simplex Code. A well known example of a 2-separating code is the
Simplex code:

Definition 3 (MacWilliams and Sloane [13]). The binary simplex code Sk

is a (2k −1, k, 2k−1)-code which is the dual of the (2k −1, 2k −1−k, 3)-Hamming
code.

Sk consists of 0 and 2k − 1 code words of weight 2k−1. It is called a simplex
code, because every pair of code words is at the same distance apart.

For this family of codes, we have the following lemma, which we give here
without proof.

Lemma 1. The binary simplex code is 2-separating.

2.2 Algorithmic Lovász Local Lemma

Let E1, . . . , Em be events defined on a common probability space Ω, which are
considered undesirable. We assume the events are ordered according to their
indices. Consider a (simple) graph G with vertex set [m] := {1, . . . , m} and
where two vertices i, j ∈ [m] are connected by an (undirected) edge if Ei and Ej

are dependent. In the literature, such graphs are called dependency graphs.

Algorithmic Aspects on the Construction of Separating Codes 517

Let Γj be the neighborhood of vertex j in G and assume that no vertex
belongs to its neighborhood (j /∈ Γj , j = 1, . . . , m). We will sometimes say that
an event Ei such that i ∈ Γj is an event in the neighborhood of Ej . Let also
s ≥ 1 be the maximum degree of G (thus |Γj | ≤ s for j = 1, . . . , m) and suppose
that there is a number p ∈ (0, 1) such that Pr[Ej] ≤ p, j = 1, . . . ,m.

In its simple, symmetric version, the Lovász Local Lemma provides a suffi-
cient condition, depending on p and s, for avoiding all the events E1, . . . , Em.

Theorem 1 (Symmetric Lovász Local Lemma). Suppose E1, . . . , Em are
events, whose dependency graph has degree s and such that there exists a p ∈
(0, 1) such that Pr[Ej] ≤ p, j = 1, . . . , m. If

ep(s + 1) ≤ 1, (4)

then

Pr

[
m⋂

i=1

Ei

]
> 0.

We are interested in constructive approaches to the LLL. We will thus use what
is known as the variable framework, which first appeared in a work by Moser and
Tardos [15]. Let Xi, i ∈ [t] be mutually independent random variables, defined
on the probability space Ω and taking values in a finite set Q. An assignment of
values to the random variables is a t-ary vector α = (a1, . . . , at), with ai ∈ Q,
i = 1, . . . , t. In what follows, we assume that Ω = Qt.

Recall the events E1, . . . , Em defined on Ω. We assume each event depends
only on a subset of the random variables, which we call its scope. The scope of
Ej is denoted by sc(Ej).

The LLL provides a sufficient condition for the existence of a point in the
probability space Ω, that is, an assignment of values to the random variables,
such that none of the events occurs. We are interested in finding this assignment
efficiently. Consider Algorithm 1 below:

Algorithm 1. M-Algorithm.

1: Sample the variables Xi, i = 1, ..., t and let α be the resulting assignment.
2: while there exists an event that occurs under the current assignment, let Ej be

the least indexed such event and do
3: Resample(Ej)
4: end while
5: Output current assignment α.

Resample(Ej)

1: Resample the variables in sc(Ej).
2: while some event in Γj ∪ {j} occurs under the current assignment, let Ek be the

least indexed such event and do
3: Resample(Ek)
4: end while

518 M. Fernandez and J. Livieratos

Using M-Algorithm, Giotis et al. [7] proved the following Theorem:

Theorem 2 (Algorithmic LLL). Assuming p and s are constants such that(
1+ 1

s

)s

ps < 1 (and therefore if ep(s+1) ≤ 1), then there exists an integer N0,
which depends linearly on m, and a constant t ∈ (0, 1) (depending on p and s)
such that if N/ log N ≥ N0, then the probability that M-Algorithm lasts for at
least N rounds is < cN (is inverse exponential in N).

We can deduce two things from the above result. First, since by the while-
loop of line 2, if and when M-Algorithm terminates we have an assignment
such that no undesirable event occurs, Theorem2 implies the existence of such
an assignment. Furthermore, M-Algorithm finds such an assignment in time
polynomial in N .

3 A Lower Bound on the Rate of 2-Separating Binary
Codes

Our aim is to use the Lovász Local Lemma to obtain a lower bound on the
rate of 2-separating binary codes. The bound we obtain is of the same order
of magnitude that the bound in Proposition 1. However, as we will see in the
following section, the use of the LLL will allow us to make the construction
explicit.

Let Xij 1 ≤ i ≤ M , 1 ≤ j ≤ n, be nM independent random variables,
following the Bernoulli distribution, where:

Pr(Xij = 0) = Pr(Xij = 1) =
1
2
.

Let also Ω = {0, 1}nM be the set of all (nM)-ary binary vectors. It will be
convenient to think about Ω as the set of M×n matrices with binary entries. This
will allow for the matrix obtained by assigning values to the random variables
Xij 1 ≤ i ≤ M , 1 ≤ j ≤ n, to be seen as an (n.M) binary code. Let us denote
such a code by C. Recall that M is the size of the code, i.e. the number of code
words it contains and n is the length of these code words.

Let u = {u1, u2} be a set of two distinct code words ui = (ui
1, . . . , u

i
n) of C,

i = 1, 2, and let:
PC := {{u,v} | u ∩ v = ∅},

be the set of disjoint pairs of distinct code words of C. For each {u,v} ∈ P,
we define the event Eu,v to occur when u,v are not separated. There are m =(
M
2

)(
M−2

2

)
such events, which we assume to be ordered arbitrarily.

We will need two lemmas. We begin by computing the probability of each
event to occur.

Lemma 2. The probability of any event Eu,v is:

Pr[Eu,v] =
(

7
8

)n

. (5)

Algorithmic Aspects on the Construction of Separating Codes 519

Proof. Consider the j-th indices of u1, u2, v1 and v2. The probability of the event
Ej

u,v, which is the event that u and v are not separated in the j-th coordinate,
is equal to the probability that u1

j �= u2
j plus the probability that u1

j = u2
j �= vi

j ,
for at least one i ∈ {1, 2}:

Pr[Ej
u,v] =

1
2

+
1
2

· 3
4

=
7
8
.

Now, since each coordinate of a code word takes values independently, we have
the required result. 	

It can be easily seen that two events are dependent if they have at least one
common code word. Thus:

Lemma 3. The number of events depending on Eu,v is at most:

s = 5M3 − 1. (6)

Proof. By subtracting the number of events that share no common code word
with Eu,v, we get that the number of dependent events of Eu,v is equal to:

(
M

2

)(
M − 2

2

)
−

(
M − 4

2

)(
M − 6

2

)
− 1.

Now, by elementary operations, this number is bounded by s = 5M3 − 1. 	

Armed with the previous lemmas and Theorem 1, we can state the following

theorem:

Theorem 3. For every n > 0 there exists a binary 2-separating code of size:

M ≤ 1
3
√

5e

(
8
7

)n/3

. (7)

Proof. Indeed, (4) requires that:

ep(s + 1) ≤ 1.

Substituting p and s we get, by Lemmas 2 and 3, and by solving for M, that:

e
(7

8

)n

(5M3) ≤ 1 ⇔

M ≤ 1
3
√

5e

(
8
7

)n/3

.

Thus, by Theorem 1, we get the required result. 	

Theorem 3 implies the following corollary:

Corollary 2. There exist binary 2-separating codes of rate R ≈ 0.064.

520 M. Fernandez and J. Livieratos

Proof. By Definition 2 and since the code is binary, we have that:

R =
log2 M

n

=
log2

(
1

3√5e

(
8
7

)n/3
)

n

=
log2

(
1

3√5e

)

n
+

n log2(
8
7)

3n

=
log2

(
1

3√5e

)

n
+

log2(
8
7)

3
,

which, for n → ∞, gives R ≈ 0.064. 	

Remark 1. Note that there is a strong symmetry in our problem. First, by
Lemma 2, all the events have exactly the same probability of occurring. Fur-
thermore, the number s of Lemma 3 is again the same for every event, although
in reality, it could be refined to a polynomial with a lower coefficient to M3,
containing also terms of degree 1 and 2. As this would not drastically change
our results, we opted for the simpler bound of 5M3 − 1.

Due to this symmetry we described, we know that the stronger asymmetric
version of the lemma (see for example [15]) cannot provide any improvement to
our result. There our however other versions of the LLL that could, in principle,
be applied here in hopes of producing better results.

4 Explicit Constructions

Now that we have established a lower bound for 2-separating binary codes, we
turn our attention to obtaining explicit constructions of such codes. We first see
that to obtain a code of positive rate, the computational complexity of our algo-
rithm turns out to necessarily be exponential in the code length (see Remark 2).
We then show that we can tune the algorithm to be polynomial in the code
length, at the cost of having non positive code rate. Nevertheless, the code we
construct has a better rate than that of a Simplex code of equivalent length.

4.1 Direct Application of the Algorithmic LLL for Constructing
2-Separating Codes

Let t = nM and m =
(
M
2

)(
M−2

2

)
. By the discussion above and by renaming the

random variables Xij and events Eu,v, we have t random variables X1, . . . , Xt (in
some arbitrary ordering) and m events E1, . . . , Em (again ordered arbitrarily),
with p = (78)n and s = 5M3. Thus, we can directly apply the M-Algorithm

and the analysis of Giotis et al. [7] to algorithmically obtain the results of Sect. 3.
Here, we briefly highlight some parts of this analysis, based on the proof of [11]
(the discussion there concerning lopsidependency can be omitted).

Algorithmic Aspects on the Construction of Separating Codes 521

Theorem 4. For every n > 0, there is a randomized algorithm, such that the
probability of it lasting for at least N rounds is inverse exponential in N , and
that outputs a 2-separating code of size:

M ≤ 1
3
√

5e

(
8
7

)n/3

.

Proof. Consider the M-Algorithm (Algorithm 1). First observe that if the algo-
rithm terminates, then by line 2, it produces an assignment of values to the
random variables such that no undesirable event occurs. This translates, as we
have already seen, to a 2-separating code C.

We say that a root call of Resample is any call made from line 3 of the main
algorithm, while a recursive call is one made from line 3 of another Resample

call. A round is the duration of any Resample call.
It can be shown that any event that did not occur at the beginning of a

Resample(Ej), i.e., any disjoint pair of distinct code words that were separated,
continues to be separated if and when that call terminates: any event that is made
to happen at any point during Resample(Ej), will be subsequently checked and
resampled by some Resample sub-routine called from within Resample(Ej).
Also, by line 2, it is straightforward to see that if and when Resample(Ej)
terminates, Ej does not occur, although it did at the beginning. Thus, there
is some progress made from the algorithm in every round, that is not lost in
subsequent ones (for the full proof the reader is referred to [11]).

Given an execution of M-Algorithm, we construct a labeled rooted forest
F (i.e. forest comprised of rooted trees), in the following way:

(i) For each Resample(Ej) call, we construct a node labeled by Ej .
(ii) If Resample(Er) is called from line 3 of Resample(Ej), then the corre-

sponding node labeled by Er is a child of that labeled by Ej .

It is not difficult to see that the roots of F correspond to root calls of Resam-

ple, while the rest of the nodes to recursive calls. Furthermore, by the above
discussion, we have that the labels of the roots are pair-wise district. The same
holds for the labels of siblings. Finally, if a node labeled by Er is a child of one
labeled by Ej , then r ∈ Γj .

We call the forest created in the above way, the witness forest of the algo-
rithm’s execution. Given an execution that lasts for N steps, its witness forest
has N nodes. We order the nodes of the forest in the following way: (i) trees and
siblings are ordered according to the indices of their labels (ii) the nodes of a
tree are ordered in pre-order, respecting the ordering of siblings. Thus, from each
witness forest F with N nodes, we can obtain its label-sequence (Ej1 , . . . , EjN).

Now, letting PN be the probability that M-Algorithm lasts for at least N
rounds, we have that:

PN = Pr[some witness forest F with N nodes is constructed]. (8)

Consider now the following validation algorithm, that takes as input the label
sequence of a witness forest:

522 M. Fernandez and J. Livieratos

Algorithm 2. ValAlg.

Input: Label sequence (Ej1 , . . . , EjN) of F
1: Sample the variables Xi, i = 1, ..., t.
2: for i = 1, . . . , N do
3: if Eji occurs under the current assignment then
4: Resample the variables in sc(Eji)
5: else
6: Return failure and exit
7: end if
8: end for
9: Return success

Observe that the success or failure of ValAlg has nothing to do with whether
or not all the events have been avoided and thus on whether we have a separable
code.

By observing that the event that an execution of M-Algorithm produced
the witness forest F , implies the event that ValAlg succeeded on input F
(ValAlg can make the same random choices as M-Algorithm), we can bound
the probability that M-Algorithm lasts for at least N rounds by:

PN ≤
∑

|F|=n

Pr[ValAlg succeeds on input F], (9)

where |F| denotes the number of nodes of F . For the rhs of (9), let Vi(F) be
the event that ValAlg does not fail on round i, on input F . It can be shown
that, given a forest F whose label sequence is (Ej1 , . . . , EjN), it holds that:

Pr[ValAlg succeeds on input F] =
N∏

i=1

Pr[Vi(F) |
i−1⋂
r=1

Vr(F)]

=
N∏

i=1

Pr[Eji]

=pN .

Thus, to bound the rhs of (9), we need to count the number of forests with
N internal nodes. It can be shown that to do that, we can instead count the
number fN of rooted planar forests with N internal nodes, comprised of m full
(s + 1)-ary rooted planar trees (for the necessary details, the reader is again
referred to [11]).

Denote the number of full (s + 1)-ary rooted planar trees with N internal
nodes by tN . It holds that tN = 1

sN+1

(
(s+1)N

N

)
(see [18, Theorem 5.13]), which,

by Stirling’s approximation gives that there is some constant A, depending only
on s, such that:

tn < A

((
1 +

1
s

)s

(s + 1)

)N

. (10)

Algorithmic Aspects on the Construction of Separating Codes 523

Finally, by (10), we get:

fN =
∑

N1+···+Nm=N
N1,...,Nm≥0

tN1 · · · tNm
< (AN)m

((
1 +

1
s

)s

(s + 1)

)N

. (11)

Thus, taking Eqs. (9) and (11), we have that:

PN < (AN)m

((
1 +

1
s

)s

(s + 1)p

)N

, (12)

which concludes the proof. 	

Remark 2. Consider line 2 of M-Algorithm. For the algorithm to find the
least indexed event, it must go over all the approximately 2M4 elements of P
and check if they are separated. Accordingly, in line 2 of a Resample(Ej) call
of M-Algorithm, the algorithm must check all the approximately 5M3 events
in the neighborhood of Ej . Given the bound we proved for M , it is easy to see
that in both cases, the number of events that need to be checked is exponentially
large in n. In the next subsection, we will deal, in a way, with this problem.

4.2 Constructions of Polynomial Complexity

In Remark 2 above, we have exposed the drawback of applying in a straightfor-
ward way the algorithmic version of the LLL. Since we are aiming for a code
with asymptotic positive rate, this means that the number of code words has
to be exponential in the code length, which implies that the algorithmic com-
plexity is exponential in the code length too. If we insist in building positive
rate 2-separating codes and use the algorithmic version of the LLL for it, this
exponential dependence seems to be unavoidable.

For explicit binary 2-separating codes, one can refer to [2] and the references
therein. Known constructions are somewhat particular and rare. For instance,
there exists a 2-separating binary [35,6] code, there exists a 2-separating binary
[126,14] code, and of course as stated in Lemma 1 the Simplex code is also 2-
separated.

We now take a step into constructing 2-separating binary codes with rate
better than the Simplex code for any code length and in polynomial time to
their length. The following lemma is a weaker result than Theorem 3 and follows
from the fact that in Theorem 1 one only needs an upper bound of the probability
of the bad events.

Lemma 4. For every n > 0 and any α > 0, there exists a binary 2-separating
code of size:

M ≤ 1
3
√

5e
nα/3. (13)

524 M. Fernandez and J. Livieratos

Proof. The proof follows the lines of the proof of Theorem3 by taking p =
1

nα
.

Referring to Sect. 2, the rate of a Simplex code of length n is

RSimplex(n) =
log2(n + 1)

n
. (14)

With little algebraic manipulation one can see that for any n = 2k − 1 with
k > 0, and any α > 0 such that:

nα > 5e(n + 1)3,

the codes in Lemma 4 have better rate than the Simplex code of the same length
and with a polynomial number of code words.

Recall the observations made in Remark 2. In M-Algorithm we have to:

– go over the approximately 2M4 elements of P in line 2 and
– check all the approximately 5M3 events in the neighborhood of Ej in line 2

of a Resample(Ej) call.

Observe that, with the value of M ≤ 1
3
√

5e
nα/3 given by Lemma 4, this can be

done in polynomial time in the code length. Furthermore, by taking this value
for M , Theorem 4 applies verbatim. Thus, we have proven the following:

Theorem 5. For every n > 0, there is a randomized algorithm such that the
probability of it lasting for at least N rounds is inverse exponential in N and
that outputs a 2-separating code of length n and size:

M ≤ 1
3
√

5e
nα/3,

with rate larger than the Simplex code of the same length. The computational
complexity is O(n4α/3) for any α such that nα > 5e(n + 1)3.

5 Conclusions

Let us summarize our results. We have first shown that the Lovász Local Lemma
can be used to establish bounds on separating codes, and that for this matter,
it is as effective as the random coding with expurgation technique.

Moreover, it has also been shown that, using the algorithmic version of the
LLL, the construction of a separating code with positive rate has exponential
complexity in the length of the code. Looking at the results in Sect. 3 it seems
difficult to move away from such a complexity.

Finally, by relaxing the restriction of obtaining positive rate codes, we show
that 2-separating codes with rates better than Simplex codes of the same length
can be built. This time, with complexity polynomial in the code length.

Algorithmic Aspects on the Construction of Separating Codes 525

References

1. Achlioptas, D., Iliopoulos, F.: Random walks that find perfect objects and the
Lovász local lemma. J. ACM (JACM) 63(3), 22 (2016)

2. Barg, A., Blakley, G.R., Kabatiansky, G.A.: Digital fingerprinting codes: problem
statements, constructions, identification of traitors. IEEE Trans. Inf. Theory 49(4),
852–865 (2003)

3. Deng, D., Stinson, D.R., Wei, R.: The Lovász local lemma and its applications to
some combinatorial arrays. Des. Codes Crypt. 32(1–3), 121–134 (2004)

4. Erdős, P., Lovász, L.: Problems and results on 3-chromatic hypergraphs and some
related questions. Infin. Finite Sets 10, 609–627 (1975)

5. Gebauer, H., Moser, R.A., Scheder, D., Welzl, E.: The Lovász local lemma and
satisfiability. In: Albers, S., Alt, H., Näher, S. (eds.) Efficient Algorithms. LNCS,
vol. 5760, pp. 30–54. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-03456-5 3

6. Gebauer, H., Szabó, T., Tardos, G.: The local lemma is tight for SAT. In: Pro-
ceedings 22nd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pp. 664–674. SIAM (2011)

7. Giotis, I., Kirousis, L., Psaromiligkos, K.I., Thilikos, D.M.: On the algorith-
mic Lovász local lemma and acyclic edge coloring. In: Proceedings of the
Twelfth Workshop on Analytic Algorithmics and Combinatorics. Society for Indus-
trial and Applied Mathematics (2015). http://epubs.siam.org/doi/pdf/10.1137/1.
9781611973761.2

8. Giotis, I., Kirousis, L., Psaromiligkos, K.I., Thilikos, D.M.: Acyclic edge coloring
through the Lovász local lemma. Theoret. Comput. Sci. 665, 40–50 (2017)

9. Giotis, I., Kirousis, L., Livieratos, J., Psaromiligkos, K.I., Thilikos, D.M.: Alterna-
tive proofs of the asymmetric Lovász local lemma and Shearer’s lemma. In: Pro-
ceedings of the 11th International Conference on Random and Exhaustive Genera-
tion of Combinatorial Structures, GASCom (2018). http://ceur-ws.org/Vol-2113/
paper15.pdf

10. Harvey, N.J., Vondrák, J.: An algorithmic proof of the Lovász local lemma via
resampling oracles. In: Proceedings 56th Annual Symposium on Foundations of
Computer Science (FOCS), pp. 1327–1346. IEEE (2015)

11. Kirousis, L., Livieratos, J.: A simple algorithmic proof of the symmetric lopsided
Lovász local lemma. In: Battiti, R., Brunato, M., Kotsireas, I., Pardalos, P.M. (eds.)
LION 12 2018. LNCS, vol. 11353, pp. 49–63. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-05348-2 5

12. Körner, J., Simonyi, G.: Separating partition systems and locally different
sequences. SIAM J. Discrete Math. 1(3), 355–359 (1988)

13. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes, vol. 16.
Elsevier, Amsterdam (1977)

14. Moser, R.A.: A constructive proof of the Lovász local lemma. In: Proceedings 41st
Annual ACM Symposium on Theory of Computing (STOC), pp. 343–350. ACM
(2009)

15. Moser, R.A., Tardos, G.: A constructive proof of the general Lovász local lemma.
J. ACM (JACM) 57(2), 11 (2010)

16. Sagalovich, Y.L.: Separating systems. Problems Inform. Transmission 30(2), 105–
123 (1994)

17. Sarkar, K., Colbourn, C.J.: Upper bounds on the size of covering arrays. SIAM J.
Discrete Math. 31(2), 1277–1293 (2017)

https://doi.org/10.1007/978-3-642-03456-5_3
https://doi.org/10.1007/978-3-642-03456-5_3
http://epubs.siam.org/doi/pdf/10.1137/1.9781611973761.2
http://epubs.siam.org/doi/pdf/10.1137/1.9781611973761.2
http://ceur-ws.org/Vol-2113/paper15.pdf
http://ceur-ws.org/Vol-2113/paper15.pdf
https://doi.org/10.1007/978-3-030-05348-2_5
https://doi.org/10.1007/978-3-030-05348-2_5

526 M. Fernandez and J. Livieratos

18. Sedgewick, R., Flajolet, P.: An Introduction to the Analysis of Algorithms.
Addison-Wesley, Boston (2013)

19. Staddon, J.N., Stinson, D.R., Wei, R.: Combinatorial properties of frameproof and
traceability codes. IEEE Trans. Inf. Theory 47(3), 1042–1049 (2001)

20. Szegedy, M.: The Lovász local lemma – a survey. In: Bulatov, A.A., Shur, A.M.
(eds.) CSR 2013. LNCS, vol. 7913, pp. 1–11. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38536-0 1

21. Tao, T.: Moser’s entropy compression argument (2009). https://terrytao.
wordpress.com/2009/08/05/mosers-entropy-compression-argument/

https://doi.org/10.1007/978-3-642-38536-0_1
https://doi.org/10.1007/978-3-642-38536-0_1
https://terrytao.wordpress.com/2009/08/05/mosers-entropy-compression-argument/
https://terrytao.wordpress.com/2009/08/05/mosers-entropy-compression-argument/

Lagrangian Relaxation in Iterated Local
Search for the Workforce Scheduling

and Routing Problem

Hanyu Gu(B), Yefei Zhang, and Yakov Zinder

School of Mathematical and Physical Sciences, University of Technology,
Sydney, Australia

hanyu.gu@uts.edu.au

Abstract. The efficiency of local search algorithms for vehicle routing
problems often increases if certain constraints can be violated during the
search. The penalty for such violation is included as part of the objec-
tive function. Each constraint, which can be violated, has the associated
parameters that specify the corresponding penalty. The values of these
parameters and the method of their modification are usually a result of
computational experiments with no guarantee that the obtained values
and methods are equally suitable for other instances. In order to make
the optimisation procedure more robust, the paper suggests to view the
penalties as Lagrange multipliers and modify them as they are modi-
fied in Lagrangian relaxation. It is shown that such modification of the
Xie-Potts-Bektaş Algorithm for the Workforce Scheduling and Routing
Problem permits to achieve without extra tuning the performance com-
parable with that of the original Xie-Potts-Bektaş Algorithm.

Keywords: Iterated local search · Lagrangian relaxation · Workforce
Scheduling and Routing

1 Introduction

It is known that the efficiency of local search algorithms often can be improved
if the violation of some constraints is allowed [1,2,6,8]. Such violation attracts
a certain penalty, which is part of the augmented objective function. The values
of the parameters, specifying the penalty for the violation of constraints, are
changed in the course of optimisation. The choice of these values and the algo-
rithms of their modification usually are a result of computational experiments.
This approach often involves tedious computational experimentation with no
guarantee that these values and the methods of their modification will be equally
suitable for other instances. In order to make the optimisation procedure more
robust, this paper suggests to view the parameters, specifying the penalties,
as Lagrange multipliers and to modify them using the methods of the modifi-
cation of Lagrange multipliers in Lagrangian relaxation [4]. This replaces the

c© Springer Nature Switzerland AG 2019
I. Kotsireas et al. (Eds.): SEA2 2019, LNCS 11544, pp. 527–540, 2019.
https://doi.org/10.1007/978-3-030-34029-2_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34029-2_34&domain=pdf
https://doi.org/10.1007/978-3-030-34029-2_34

528 H. Gu et al.

largely subjective tuning by an algorithm which is based of the mathematical
programming formulation, which remains the same for all instances of the prob-
lem on hand and therefore reflects its the specific features. Furthermore, since
the optimisation procedure utilises predefined algorithms of the modification
of Lagrange this approach significantly reduces the burden of tuning, although
the Lagrangian relaxation itself requires certain tuning and the corresponding
computational experimentation.

The merits of this approach are demonstrated below by a Lagrangian relax-
ation modification of the highly efficient algorithm, presented in [8] for the Work-
force Scheduling and Routing Problem (WSRP). In this modification, the param-
eters, specifying the penalty for the violation of the constraints, are computed
using the subgradient method. According to Workforce Scheduling and Routing
Problem, a group of technicians should be assigned to a set of tasks at different
locations. Each task has the associated time window and skill requirement. Each
technician has certain skills and can be assigned to a task only if these skills
satisfy the task’s requirement. Since the tasks have time windows, which restrict
the time when the service can be provided, and since the tasks are at different
locations with a given travel time between locations, the problem requires not
only to allocate the tasks to the technicians but also to determine the order in
which each technician should attend the allocated tasks. In addition, there exists
a restriction on the shift duration for each technician. More detailed description
of this problem will be given in Sect. 2. Some versions of the Workforce Schedul-
ing and Routing Problem and alternative solution algorithms can be found in
[3] and [5]. The optimisation procedure, presented in [8], is an implementation
of the iterated local search where the restrictions imposed by the time windows
and the maximal permissible shift duration can be violated. At each iteration
of the local search, this violation attracts a certain penalty which is part of the
augmented objective function. The penalty for the violation of the time windows
is the total violation of this restriction multiplied by some coefficient (weight).
Similarly, the penalty for the violation of the shift duration is the total violation
of this restriction multiplied by some coefficient (weight). These coefficients are
modified during the optimisation depending on the level of violation.

In what follows, the algorithm, presented in [8], will be referred to as the
Xie-Potts-Bektaş Algorithm. The Lagrangian relaxation based modification of
this algorithm relaxes the same constraints as in the Xie-Potts-Bektaş Algorithm,
that is, the constraints imposed by the time windows and the constraints imposed
by the restriction on the duration of shifts. The resultant relaxation is solved by
the iterated local search procedure in [8], but the penalty weights are modified
according to the subgradient method commonly used in Lagrangian relaxation.

The remaining part of the paper is structured as follows. A mathematical
programming formulation of WSRP is given in Sect. 2. Section 3 describes the
Xie-Potts-Bektaş Algorithm. Section 4 presents a Lagrangian relaxation based
modification of the Xie-Potts-Bektaş Algorithm. Section 5 presents the compu-
tation experiments. Section 6 concludes the paper.

Lagrangian Relaxation in Iterated Local Search 529

2 Problem Description

Following [8], consider a complete graph G = {V,A}, where V = {0, 1, ..., n, n +
1} is the set of vertices and A = {(i, j) : i, j ∈ V, i �= j} is the set of arcs.
Vertex 0 represents the depot and vertex n + 1 is a copy of this depot. The set
C = V \ {0, n + 1} represents the set of customers. Each arc (i, j) ∈ A has the
associated travel cost ci,j and travel time ti,j . The service of each customer i ∈ C
should commence within the time window [ei, li], specified for this customer, and
its duration will be denoted by di.

The customers are to be served by technicians. Let K be the set of these
technicians. A technician can not depart from the depot (vertex 0) earlier than
e0 and can not return to the depot (vertex n + 1) later than ln+1. For each
technician, the length of the time interval between the departure from the depot
and the return to the deport can not exceed a given time D.

For each technician k ∈ K and each customer i ∈ C, a given binary parameter
qk
i determines whether or not technician k can be assigned to customer i. If

qk
i = 1, then technician k can be assigned to customer i, whereas if qk

i = 0, then
this assignment is not allowed. If no technician is assigned to a customer i, then
the corresponding service is outsourced at the cost oi.

As has been shown in [8], the problem can be formulated as a mixed integer
program as follows. Let

xk
i,j =

{
1 if customers i and j are consecutive customers visited by technician k,
0 otherwise,

yi =

{
1 if service of customer i is outsourced,
0 otherwise.

For each customer i ∈ C and each technician k ∈ K, let bk
i be the time when the

service commences, if technician k is assigned to customer i, and be any number
in [ei, li] otherwise. For each technician k ∈ K, let bk

0 be the time when technician
k leaves the depot (vertex 0), and let bk

n+1 be the time when technician k returns
to the depot (vertex n + 1).

minimise f =
∑

k∈K

∑

(i,j)∈A

ci,jx
k
i,j +

∑

i∈C

oiyi (1)

Subject to: ∑

k∈K

∑

j∈V

xk
i,j + yi = 1, ∀i ∈ C (2)

∑

j∈V

xk
i,j ≤ qk

i , ∀k ∈ K,∀i ∈ C (3)

∑

j∈V

xk
0,j = 1, ∀k ∈ K (4)

∑

i∈V

xk
i,n+1 = 1, ∀k ∈ K (5)

530 H. Gu et al.

∑

i∈V

xk
i,h −

∑

j∈V

xk
h,j = 0, ∀k ∈ K,∀h ∈ C (6)

bk
i + (di + ti,j)xk

i,j ≤ bk
j + li(1 − xk

i,j), ∀k ∈ K,∀(i, j) ∈ A (7)

ei ≤ bk
i ≤ li, ∀k ∈ K,∀i ∈ V (8)

bk
n+1 − bk

0 ≤ D, ∀k ∈ K (9)

xk
i,j ∈ {0, 1}, ∀k ∈ K,∀(i, j) ∈ A (10)

yi ∈ {0, 1}, ∀i ∈ C (11)

bk
i ≥ 0, ∀k ∈ K,∀i ∈ V (12)

Constraints (2) guarantee that each customer either is assigned to a techni-
cian or is outsourced. By virtue of Constraints (3), each technician is assigned to
a customer only if this is permissible. Constraints (4) and (5) ensure that each
technician departs from the depot and returns to the depot. Constraints (6) stip-
ulate that after visiting a customer a technician must travel to another customer
or to the depot. Constraints (7) ensure that if customer i and customer j are two
consecutive customers for some technician, then the difference between arrival
times is not less than the duration of service, required by customer i, plus the
travel time between these two customers. Constraints (8) enforce time windows.
According to the Constraints (9), any technician does not work longer than D.

3 Xie-Potts-Bektaş Algorithm

Xie-Potts-Bektaş Algorithm starts with a randomly generated initial feasible
solution, which is to be improved by iterated local search. This process is
repeated several times in the hope of finding the global optimal solution. The
implementation details of this approach are described in Algorithm1. At step
8 a local search procedure is utilised to greedily improve the current solution,
while perturbation is exploited at step 13 to escape a locally optimal solution.

The local search procedure alternates between the Inter-route search and
Intra-route search. During the Inter-route search, a Swap-and-Relocate operation
is applied repeatedly until a local optimum is found. The Swap-and-Relocate
operation exchanges sub-paths from two different route, and each sub-path can
contain at most 2 customers. During the Intra-route search, three commonly
used operations (Op1, Opt2 and 2-Opt) are applied repeatedly until a local
optimum is found. Opt1 removes a single customer from its current position and
inserts it back into a different position within the same route; Opt2 selects two
consecutive customers and inserts them back into a different position within the
same route; 2-Opt selects a sub-path of any length, reverse its order, and then
insert it back into the same position. Different search strategies can be applied
with all these operations, but it is recommended in [8] that intra-route search
should be applied as a post-optimisation when a local optimum has been found
by the inter-route search.

Lagrangian Relaxation in Iterated Local Search 531

Algorithm 1. Xie-Potts-Bektaş Algorithm Procedure [8]
1: f(s∗) ← +∞ {s∗ records the best solution found so far}
2: i ← 0
3: while i < 5 do
4: construct solution si

5: s̄ ← si, ŝ ← si {ŝ records the local best solution found at each iteration of ILS}
6: ItNon−Imp = 0
7: while ItNon−Imp ≤ MaxNII do
8: s′ ←Local Search(s̄)
9: if (s′ is feasible)AND(f(s′) < f(ŝ)) then

10: ŝ ← s′

11: ItNonImp = 0
12: end if
13: s̄ ←Perturb(ŝ)
14: ItNon−Imp + +
15: end while
16: if f(ŝ) < f(s∗) then
17: s∗ ← ŝ
18: end if
19: end while
20: return s∗

The local search procedure at step 9 of Algorithm 1 allows the violation of
time window constraints and working duration constraints. However, the objec-
tive function is modified as

f ′(x) = f(x) + α ∗ TW (x) + β ∗ WD(x) (13)

where f(x) is the original objective function; TW (x) is the total time window
violation by solution x, and WD(x) is the total working duration violation; α
and β are the penalty weights for violating the corresponding constraints. At
the beginning of local search, α and β are initialised to 1, and are updated at
each iteration until local search gets trapped at a local optimum. The formula
for updating the weights at iteration i is as follows:

αi+1 =

{
αi ∗ (1 + δ), TW (x) > 0

αi

(1+δ) , otherwise
βi+1 =

{
βi ∗ (1 + δ),WD(x) > 0

βi

(1+δ) , otherwise

where δ is a parameter which controls the strength of updating penalty.
The details of the local search procedure are described in Algorithm 2.

532 H. Gu et al.

Algorithm 2. Xie-Potts-Bektaş Local Search Procedure
1: αo ← 1, β0 ← 1
2: ŝ ← input solution
3: local optimal = false
4: while local optimal == false do
5: s′ ←neighbourhood search(ŝ)
6: if f ′(s′) < f ′(ŝ) then
7: ŝ ← s′

8: compute TW (s′), WD(s′) and update α, β
9: else

10: local optimal =true
11: end if
12: end while

4 Lagrangian Relaxation Based Modification of the
Xie-Potts-Bektaş Algorithm

To present the Lagrangian relaxation based modification of the Xie-Potts-Bektaş
Algorithm, we first reformulate the original mathematical formulation as follows:

minimise f =
∑

k∈K

∑

(i,j)∈A

ci,jx
k
i,j +

∑

i∈C

oiyi (14)

Subject to:
∑

k∈K

∑

j∈V

xk
i,j + yi = 1, ∀i ∈ C (15)

∑

j∈V

xk
i,j ≤ qk

i , ∀k ∈ K,∀i ∈ C (16)

∑

j∈V

xk
0,j = 1, ∀k ∈ K (17)

∑

i∈V

xk
i,n+1 = 1, ∀k ∈ K (18)

∑

i∈V

xk
i,h −

∑

j∈V

xk
h,j = 0, ∀k ∈ K,∀h ∈ C (19)

bk
i + (di + ti,j)xk

i,j ≤ bk
j + li(1 − xk

i,j), ∀k ∈ K,∀(i, j) ∈ A (20)

ei ≤ bk
i ≤ li + ρi, ∀k ∈ K,∀i ∈ V (21)

bk
n+1 − bk

0 ≤ D + dk, ∀k ∈ K (22)
∑

i∈V

ρi = 0, ∀i ∈ V (23)

Lagrangian Relaxation in Iterated Local Search 533

∑

k∈K

dk = 0, ∀k ∈ K (24)

xk
i,j ∈ {0, 1}, ∀k ∈ K,∀(i, j) ∈ A (25)

yi ∈ {0, 1}, ∀i ∈ C (26)

bk
i ≥ 0, ∀k ∈ K,∀i ∈ V (27)

ρi ≥ 0, ∀i ∈ V (28)

dk ≥ 0, ∀k ∈ K (29)

where ρi is the time window violation for late arrival at customer i ∈ C; dk is the
working duration violation for technician k. Constraints (21) are modified from
Constraints (7) to allow the violation of time window constraints; Constraints
(22) are modified from Constraints (8) to allow the violation of working duration
constraints as well. Constraints (23) and (24) guarantee that total violations are
zero.

Constraints (23) and (24) can be dualised, and the objective function of the
corresponding Lagrangian relaxation problem is

f ′ =
∑

k∈K

∑

(i,j)∈A

ci,jx
k
i,j +

∑

i∈C

oiyi + α
∑

i∈V

ρi + β
∑

k∈K

dk (30)

where α and β are the Lagrangian multipliers for the time window and work
duration constraints respectively.

While the time window and working duration constraints are relaxed, the
resulting Lagrangian relaxation problem remains NP-hard. And it is impossible
to decompose it into easier sub-problem like ordinary Lagrangian relaxation
approach. In our Lagrangian relaxation based modification of the Xie-Potts-
Bektaş Algorithm, we use the same iterated local search procedure described
in Xie-Potts-Bektaş Algorithm. However, the local search inside iterated local
search is modified so that the penalty weights are updated according to the
approximate subgradient algorithm. The modified local search is described in
Algorithm 3.

At the beginning of the procedure, the approximate subgradient guided
local search will initialise Lagrangian multipliers to 0. Instead of applying local
search when multipliers are 0, a greedy heuristic Phase1 is run to insert all
unallocated customers. Phase1 should not dramatically change the input solu-
tion in order that the effect of perturbation at step 14 of Algorithm1 is not
lost. At each iteration, if the current solution is infeasible, the approximate
subgradient and step size will be computed to update Lagrangian multipliers.
λk = η∗(f(x∗)− f(x))

(
∑

i∈V ρi)2 +(
∑

k∈K dk)2
is the formula to calculate the step size that sug-

gested by [4]. η is a parameter which controls the step length, f(x∗) is an upper
bound which record the objective value for current best feasible solution. f(x)
is the lower bound obtained from solving the Lagrangian problem at current
iteration. Since local search is an approximate approach, there is no guarantee

534 H. Gu et al.

Algorithm 3. Approximate Subgradient Guided Local Search
1: s ←Input solution
2: feasible solution= false
3: α0 ← 0, β0 ← 0
4: ŝ ←Phase1(s)
5: if ŝ is not feasible then
6: compute

∑
i∈V ρi,

∑
k∈K dk for ŝ and step size λ0

7: α0=λ0 ∗ ∑
i∈V ρi; β0=λ0 ∗ ∑

k∈K dk

8: end if
9: j ← 1

10: while (j <100)AND(feasible solution==false) do
11: s′ ← Search Strategy (ŝ)
12: compute

∑
i∈V ρi,

∑
k∈K dk for s′ and step size λj

13: αj+1=αj+λj ∗ ∑
i∈V ρi; βj+1=βj+λj ∗ ∑

k∈K dk

14: ŝ ← s′

15: if s′ is feasible then
16: feasible solution = true
17: end if
18: j + +
19: end while
20: return ŝ

that the Lagrangian relaxation problem can be exactly solved. It is even possi-
ble that the obtained f(x) is larger than the upper bound. Therefore we replace
(f(x∗)−f(x)) with an estimation of this difference. In what follows, the formula
to calculate step size becomes, λk = η ∗ 0.1 ∗ f(x∗)

(
∑

i∈V ρi)2+(
∑

k∈K dk)2
. The approximate

subgradient guided local search uses the same neighbourhood structures and
search strategy recommended by [8]. Our goal is to study the behaviour of these
two different ways of adjusting penalty.

5 Computational Experiment

Both, Xie-Potts-Bektaş Algorithm and Lagrangian relaxation based modification
of the Xie-Potts-Bektaş Algorithm, were implemented in C++ by the second
author. The computational experiments were run on a computer with Intel Xeon
CPU E5-2697 v3 2.60 GHz and 8 GB Memory (RAM).

The instances, used in the computational experiment, originate from [5].
They are an adaptation of Solomon’s benchmark instances [7] for Vehicle Rout-
ing Problem with Time Window (VRPTW) and ROADEF 2007 challenge [3]
for Technician and Task Scheduling Problem (TTSP). The base of the computa-
tional experiments was data R101, R103, R201, R203, C101, C103, C201, C203,
RC101, RC103, RC201, RC203 in [7]. The number of customers and the number
of technicians used in the computer experiments are given in the tables below
that report the results of these experiments.

For each customer i and each technician k, the parameters qk
i was specified

using the skill requirement matrices in [5]. The rows of such matrix correspond

Lagrangian Relaxation in Iterated Local Search 535

to the different skills that may be required by a customer or a technician can
possess. The columns correspond to different levels of skills. So, a customer may
require a certain level of a certain skill. A technician k can be assigned to a
customer i (in this case qk

i is given value 1) only if this technician possesses the
required skills each at the required or higher level.

The cost of service in the case when this service is outsourced was also calcu-
lated using the information on what skills and at what levels the corresponding
customer requires.

5.1 Setting of the Algorithms

In the course of computational experimentation, both, the Xie-Potts-Bektaş
Algorithm and the Lagrangian relaxation based modification of the Xie-Potts-
Bektaş Algorithm, used the same settings that are recommended in [8]. More
specifically:

– The maximal permissible number of iterations that failed to improve the value
of the objective function (the parameter MAX-NII) was chosen as follows

MAX-NII = |C| + 10 ∗ |K|,

where |C| is the number of customers that are to be served and |K| is the
number of technicians who should provide this service.

– The maximum number of swaps of the randomly chosen segments of the
routes in a perturbation was five.

– The minimal number of swaps of the randomly chosen segments of the routes
in a perturbation was set initially to one and was increased by one (if this
number becomes five it ceases increasing) each time when twenty consecutive
applications of the local search subroutine fail to produce a feasible solution
with a better value of the objective function.

5.2 Evaluation of Different Step Length η

Table 1 presents the results of our Lagrangian relaxation based approach for the
instances with 25 customers. Different step length η is used ranging from 0.2 to
3. The algorithm is run five times for each instance and the averages of the best
found solutions are taken for comparison. We report the average objective value
under the column titled “Avg”. Column |C∗| has the average number of allocated
customers. Column |K∗| contains the average number of used technicians. The
average of the objective value over all the instances ranges from 2100.18 to
2120.06, which suggests that our approach is not sensitive to the parameter η.
In practice this means that our algorithm is easy to tune the parameter. For the
25-customer instances, the best average objective value is achieved when η = 2.0.
Therefore, we will use this setting for the following studies.

536 H. Gu et al.

5.3 Comparison of the Performance

In this section we compare the performance of our Lagrangian relaxation based
approach with the Xie-Potts-Bektaş Algorithm. Columns below heading “ILS”
are the Xie-Potts-Bektaş Algorithm’s results reported in [8]. We also imple-
mented Xie-Potts-Bektaş Algorithm by ourselves. Columns below heading “Self-
imp ILS” are the results produced from our self-implemented of the Xie-Potts-
Bektaş Algorithm. Columns below heading “Mod-ILS” are the results pro-
duce from Lagrangian relaxation based modification of the Xie-Potts-Bektaş
Algorithm.

Table 1. Evaluation of different η setting

η = 0.2 η = 0.6 η = 1.0

Instances |C| |K| Avg |C∗| |K∗| Avg |C∗| |K∗| Avg |C∗| |K∗|
C101 5x4 50 6 830.00 49 6 830.00 49 6 830.00 49 6

C201 5x4 50 4 859.54 49 4 859.54 49 4 859.54 49 4

R101 5x4 50 6 4515.37 31 6 4507.87 31 6 4507.87 31 6

R201 5x4 50 4 1107.51 49 4 1107.51 49 4 1107.51 49 4

C101 6x6 50 6 1154.84 47 5 1154.84 47 5 1154.84 47 5

C201 6x6 50 4 1203.93 47 3 1203.93 47 3 1203.93 47 3

R101 6x6 50 6 5194.89 28 6 5190.32 28 6 5190.32 28 6

R201 6x6 50 4 1647.7 47 3 1647.7 47 3 1647.7 47 3

C101 7x4 50 6 1449.55 46 6 1356.54 47 6 1453.39 46.2 6

C201 7x4 50 4 1312.21 47 3 1312.21 47 3 1312.21 47 3

R101 7x4 50 6 4611.95 31 6 4505.3 31.8 6 4501.81 31.8 6

R201 7x4 50 4 1553.23 47 4 1553.23 47 4 1553.23 47 4

Average 2120.06 43.17 4.67 2102.42 43.32 4.67 2110.19 43.25 4.67

η = 1.4 η = 2.0 η = 3.0

Instances |C| |K| Avg |C∗| |K∗| Avg |C∗| |K∗| Avg |C∗| |K∗|
C101 5x4 50 6 830.00 49 6 830.00 49 6 830.00 49 6

C201 5x4 50 4 859.54 49 4 859.54 49 4 859.54 49 4

R101 5x4 50 6 4507.87 31 6 4510.6 31 6 4507.87 31 6

R201 5x4 50 4 1107.51 49 4 1107.51 49 4 1107.51 49 4

C101 6x6 50 6 1154.84 47 5 1154.84 47 5 1154.84 47 5

C201 6x6 50 4 1203.93 47 3 1203.93 47 3 1203.93 47 3

R101 6x6 50 6 5197.67 28 6 5190.32 28 6 5195.89 28 6

R201 6x6 50 4 1647.7 47 3 1647.7 47 3 1647.7 47 3

C101 7x4 50 6 1413.04 46.6 6 1356.54 47 6 1356.54 47 6

C201 7x4 50 4 1312.21 47 3 1312.21 47 3 1312.21 47 3

R101 7x4 50 6 4483.18 32 6 4475.75 32 6 4498.31 31.8 6

R201 7x4 50 4 1553.23 47 4 1553.23 47 4 1553.23 47 4

Average 2105.89 43.3 4.67 2100.18 43.33 4.67 2102.30 43.32 4.67

Lagrangian Relaxation in Iterated Local Search 537

The results for the 25-customer instances are reported in Table 2. The result
from self-implemented Xie-Potts-Bektaş Algorithm is worse than the results
listed in [8]. However, using the same implementation skill and same comput-
ing environment. It is clear that the overall solution quality produced by our
Lagrangian relaxation based modification of the Xie-Potts-Bektaş Algorithm is
very competitive. More important, our Lagrangian relaxation based approach
can actually find the optimal solution for instance “R201 6x6” on each of the five
runs. The solution is proved to be optimal from CPLEX. The solution obtains
from [8] require 2 technicians, where our approach only cost 1 technician.

Fig. 1. Comparison of the objective value

Table 3 presents the results for 50-customer instances. Our Lagrangian relax-
ation based approach can find the optimal solution for instance “R201 5x4”
on each of the five runs. And compare the overall solution quality with results
reported in [8], the Lagrangian relaxation based approach produce competitive
results.

Overall, it is worth noting that, although the same neighbourhood structures
and search strategy are used in our implementation of the Xie-Potts-Bektaş
Algorithm, it performs much worse than the other two algorithms. It could
possibly indicate that the parameters in the Xie-Potts-Bektaş Algorithm are
sensitive to the computing environment.

Figures 1 and 2 present an investigation of the behaviour for self-implemented
Xie-Potts-Bektaş Algorithm and Lagrangian relaxation based approach. These
figures plot the value for the first 100 iterations of local search for Instance “R201
5x4”.

Figure 1 presents how the objective value behaves during the iterations of the
self-implemented Xie-Potts-Bektaş Algorithm and Lagrangian relaxation based

538 H. Gu et al.

algorithm. Figure 2 presents how the penalty for time window violation behaves
during the iterations of the self-implemented Xie-Potts-Bektaş Algorithm and
Lagrangian relaxation based algorithm.

Fig. 2. Comparison of penalty for time window violation

Table 2. Comparison of performance for 25 customers

ILS [8] Self-imp ILS Mod-ILS (η =2.0)

Instances |C| |K| Avg |C∗| |K∗| Avg |C∗| |K∗| Avg |C∗| |K∗|
C101 5x4 25 4 272.96 25 4 271.7 25 4 271.7 25 4

C201 5x4 25 2 863.08 22 2 863.08 22 2 863.077 22 2

C203 5x4 25 2 835.83 22 1 843.33 22 1.4 835.828 22 1

R101 5x4 25 4 2195.04 16 4 2301.1 15.6 4 2195.04 16 4

R201 5x4 25 2 1091.07 22 2 1091.07 22 2 1091.07 22 2

RC101 5x4 25 4 862.21 23 4 869.56 23 4 868.386 23 4

RC201 5x4 25 3 465.31 25 3 465.25 25 3 465.254 25 3

C101 6x6 25 4 927.35 22 3 927.35 22 3 927.349 22 3

C201 6x6 25 2 1217.1 21 1 1217.1 21 1 1217.1 21 1

C203 6x6 25 2 930.6 22 1 930.60 22 1 930.598 22 1

R101 6x6 25 4 2868.19 13 4 3102.81 12 4 2864.96 13 4

R201 6x6 25 2 1422.57 21 2 1530.04 20.6 2 1377.42 21 1

RC101 6x6 25 4 1361.80 21 4 1837.02 18.6 4 1361.8 21 4

RC201 6x6 25 3 1228.89 22 2 1228.89 22 2 1228.89 22 2

C101 7x4 25 4 789.08 23 4 789.08 23 4 815.6608 22.8 4

C103 7x4 25 4 671.06 23 3 673.13 23 3 673.99 23 3

C201 7x4 25 2 738.35 23 2 738.35 23 2 738.347 23 2

C203 7x4 25 2 684.98 23 2 684.98 23 2 684.977 23 2

R101 7x4 25 4 2447.74 15 4 2459.48 15 4 2447.74 15 4

R201 7x4 25 2 959.51 23 2 964.52 23 2 964.52 23 2

R203 7x4 25 2 849.47 23 2 849.47 23 2 849.465 23 2

RC101 7x4 25 4 1669.63 19 4 1900.694 18 4 1669.63 19 4

RC201 7x4 25 3 967.6 23 3 968.16 23 3 967.60 23 3

Average 1144.32 21.39 2.74 1195.95 21.17 2.76 1143.93 21.38 2.70

Lagrangian Relaxation in Iterated Local Search 539

Table 3. Comparison of performance for 50 customers

ILS [8] Self-imp ILS Mod-ILS (η =2.0)

Instances |C| |K| Avg |C∗| |K∗| Avg |C∗| |K∗| Avg |C∗| |K∗|
C101 5x4 50 6 830.00 49 6 886.01 49 6 830.00 49 6

C201 5x4 50 4 859.54 49 4 859.54 49 4 859.54 49 4

R101 5x4 50 6 4511.36 31 6 5757.17 25 6 4510.6 31 6

R201 5x4 50 4 1112.25 49 4 1142.70 49 4 1107.51 49 4

C101 6x6 50 6 1154.84 47 5 1398.802 46.4 6 1154.84 47 5

C201 6x6 50 4 1203.93 47 3 1203.93 47 3 1203.93 47 3

R101 6x6 50 6 5190.32 28 6 5567.07 26.2 6 5190.32 28 6

R201 6x6 50 4 1649.95 47 3 1683.25 47 3 1647.7 47 3

C101 7x4 50 6 1367.75 47 6 1899.54 44 6 1356.54 47 6

C201 7x4 50 4 1312.21 47 3 1312.21 47 3 1312.21 47 3

R101 7x4 50 6 4469.31 32 6 5089.86 28.8 6 4475.75 32 6

R201 7x4 50 4 1553.23 47 4 1594.364 47 4 1553.23 47 4

Average 2101.22 43.33 4.67 2366.95 42.12 5 2100.18 43.33 4.67

According to the Xie-Potts-Bektaş Algorithm, the penalty is adjusted by a
constant factor. Each time the local search is trapped at local optimum, the
algorithm initialises the penalty to 1. In our approach, the penalty is adjusted
according to the information received from solving the corresponding Lagrangian
relaxation problem. The algorithm sets the penalty to 0 in the case of local
optimum.

In general, our approach has much larger values for the penalty, but initialise
the penalties less frequently. The implication of this behaviour requires further
investigation.

6 Conclusion

This paper present an approach aimed at making more robust the local search
algorithms that permit, during the search, violation of some constraints by intro-
ducing penalties for such violation. The key idea is to treat the parameters, spec-
ifying the penalty for the violation of constraints, as Lagrange multipliers and to
modify these parameters using one of the techniques of Lagrangian relaxation.

The merits of the suggested approach are demonstrated by the results of com-
putational experiments with the highly efficient algorithm, presented in [8] for
the Workforce Scheduling and Routing Problem, and its Lagrangian relaxation
based modification. This modification utilises the subgradient method which is
commonly used in Lagrangian relaxation. The future research will include other
optimisation problems and algorithms and other Lagrangian relaxation tech-
niques.

References

1. Cordeau, J.F., Gendreau, M., Laporte, G.: A tabu search heuristic for periodic and
multi-depot vehicle routing problems. Netw.: Int. J. 30(2), 105–119 (1997)

540 H. Gu et al.

2. Cordeau, J.F., Laporte, G., Mercier, A.: A unified tabu search heuristic for vehicle
routing problems with time windows. J. Oper. Res. Soc. 52(8), 928–936 (2001)

3. Cordeau, J.F., Laporte, G., Pasin, F., Ropke, S.: Scheduling technicians and tasks
in a telecommunications company. J. Sched. 13(4), 393–409 (2010)

4. Fisher, M.L.: The Lagrangian relaxation method for solving integer programming
problems. Manag. Sci. 27(1), 1–18 (1981)

5. Kovacs, A.A., Parragh, S.N., Doerner, K.F., Hartl, R.F.: Adaptive large neighbor-
hood search for service technician routing and scheduling problems. J. Sched. 15(5),
579–600 (2012)

6. Nagata, Y., Bräysy, O., Dullaert, W.: A penalty-based edge assembly memetic algo-
rithm for the vehicle routing problem with time windows. Comput. Oper. Res. 37(4),
724–737 (2010)

7. Solomon, M.M.: Algorithms for the vehicle routing and scheduling problems with
time window constraints. Oper. Res. 35(2), 254–265 (1987)

8. Xie, F., Potts, C.N., Bektaş, T.: Iterated local search for workforce scheduling and
routing problems. J. Heuristics 23(6), 471–500 (2017)

Approximation Algorithms and an Integer
Program for Multi-level Graph Spanners

Reyan Ahmed(B), Keaton Hamm, Mohammad Javad Latifi Jebelli,
Stephen Kobourov, Faryad Darabi Sahneh, and Richard Spence

University of Arizona, Tucson, USA
abureyanahmed@email.arizona.edu

Abstract. Given a weighted graph G(V, E) and t ≥ 1, a subgraph H is
a t–spanner of G if the lengths of shortest paths in G are preserved in H
up to a multiplicative factor of t. The subsetwise spanner problem aims to
preserve distances in G for only a subset of the vertices. We generalize the
minimum-cost subsetwise spanner problem to one where vertices appear
on multiple levels, which we call the multi-level graph spanner (MLGS)
problem, and describe two simple heuristics. Applications of this prob-
lem include road/network building and multi-level graph visualization,
especially where vertices may require different grades of service.

We formulate a 0–1 integer linear program (ILP) of size O(|E||V |2)
for the more general minimum pairwise spanner problem, which resolves
an open question by Sigurd and Zachariasen on whether this problem
admits a useful polynomial-size ILP. We extend this ILP formulation to
the MLGS problem, and evaluate the heuristic and ILP performance on
random graphs of up to 100 vertices and 500 edges.

Keywords: Graph spanners · Integer programming · Multi-level
graph representation

1 Introduction

Given an undirected edge-weighted graph G(V,E) and a real number t ≥ 1, a
subgraph H(V,E′) is a (multiplicative) t–spanner of G if the lengths of short-
est paths in G are preserved in H up to a multiplicative factor of t; that is,
dH(u, v) ≤ t · dG(u, v) for all (u, v) ∈ V × V , where dG(u, v) is the length of
the shortest path from u to v in G. We refer to t as the stretch factor of H.
Peleg et al. [12] show that determining if there exists a t–spanner of G with
m or fewer edges is NP–complete. Further, it is NP–hard to approximate the
(unweighted) t–spanner problem to within a factor of O(log |V |), even when
restricted to bipartite graphs [15].

In the pairwise spanner problem [11], distances only need to be preserved for
a subset P ⊆ V ×V of pairs of vertices. Thus, the classical t–spanner problem is

This work was supported in part by NSF grants CCF-1740858, CCF-1712119, and
DMS-1839274.

c© Springer Nature Switzerland AG 2019
I. Kotsireas et al. (Eds.): SEA2 2019, LNCS 11544, pp. 541–562, 2019.
https://doi.org/10.1007/978-3-030-34029-2_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34029-2_35&domain=pdf
https://doi.org/10.1007/978-3-030-34029-2_35

542 R. Ahmed et al.

a special case of the pairwise spanner problem where P = V ×V . The subsetwise
spanner problem is a special case of the pairwise spanner problem where P =
S ×S for some S ⊂ V ; that is, distances need only be preserved between vertices
in S [11]. The case t = 1 is known as the pairwise distance preserver or sourcewise
distance preserver problem, respectively [10]. The subsetwise spanner problem
where t is arbitrarily large is known as the Steiner tree problem on graphs.

Fig. 1. An interactive road map serves as a good analogy for the MLGS problem, where
the top level graph G� represents the network of major highways, and zooming in to
G�−1 shows a denser network of smaller roads.

1.1 Multi-level Graph Spanners

In many network design problems, vertices or edges come with a natural notion
of priority, grade of service, or level; see Fig. 1. For example, consider the case of
rebuilding a transportation infrastructure network after a natural disaster. Fol-
lowing such an event, the rebuilding process may wish to prioritize connections
between important buildings such as hospitals or distribution centers, making
these higher level terminals, while ensuring that no person must travel an exces-
sive distance to reach their destination. Such problems have been referred to by
names such as hierarchical network design, grade of service problems, multi-level,
multi-tier, and have applications in network routing and visualization.

Similar to other graph problems which generalize to multiple levels or grades
of service [8], we extend the subsetwise spanner problem to the multi-level graph
spanner (MLGS) problem:

Definition 1. [Multi-level graph spanner (MLGS) problem] Given a graph
G(V,E) with positive edge weights c : E → R+, a nested sequence of terminals,
T� ⊆ T�−1 ⊆ . . . ⊆ T1 ⊆ V , and a real number t ≥ 1, compute a minimum-cost
sequence of spanners G� ⊆ G�−1 ⊆ . . . ⊆ G1, where Gi is a subsetwise (Ti ×Ti)–
spanner for G with stretch factor t for i = 1, . . . , �. The cost of a solution is
defined as the sum of the edge weights on each graph Gi, i.e.,

∑�
i=1

∑
e∈E(Gi)

ce.

We refer to Ti and Gi as the terminals and the graph on level i. A more
general version of the MLGS problem can involve different stretch factors on

Approximation algorithms and an ILP 543

each level or a more general definition of cost, but for now we use the same
stretch factor t for each level.

An equivalent formulation of the MLGS problem which we use interchange-
ably involves grades of service: given G = (V,E) with edge weights, and required
grades of service R : V → {0, 1, . . . , �}, compute a single subgraph H ⊆ G with
varying grades of service on the edges, with the property that for all u, v ∈ V , if u
and v each have required a grade of service greater than or equal to i, then there
exists a path in H from u to v using edges with a grade of service greater than or
equal to i, and whose length is at most t·dG(u, v). Thus, T� = {v ∈ V | R(v) = �},
T�−1 = {v ∈ V | R(v) ≥ � − 1}, and so on. If ye denotes the grade of edge e
(or the number of levels e appears in), then the cost of a solution is equivalently∑

e∈H ceye, that is, edges with a higher grade of service incur a greater cost.
This interpretation makes it clear that more important vertices (e.g., hubs) are
connected with higher quality edges; see example instance and solution in Fig. 2.

Fig. 2. Left: Input graph G with edge weights, � = 2, |T2| = 4, |T1| = 3, and t = 3.
Required grades of service R(v) are shown in red. Center: A valid MLGS G2 ⊆ G1 ⊆ G
is shown. Right: The equivalent solution, where dark edges e have ye = 2 and light
edges have ye = 1. The cost of this solution is 2 × (4 + 2 + 5) + 1 × (1 + 2) = 25. (Color
figure online)

If t is arbitrarily large, the MLGS problem reduces to the multi-level Steiner
tree (MLST) problem [1]. However it is worth noting that the problem of com-
puting or approximating spanners is significantly harder than that of computing
Steiner trees, and that a Steiner tree of G may be an arbitrarily poor spanner; a
cycle on |V | vertices with one edge removed is a possible Steiner tree of G, but is
only a (|V |−1)-spanner of G. The techniques used here have similarities to those
used in the MLST problem, but more sophisticated methods are needed as well,
including the use of approximate distance preservers and a new ILP formulation
for the pairwise spanner problem.

1.2 Related Work

Spanners and variants thereof have been studied for at least three decades, so we
focus on results relating to pairwise or subsetwise spanners. Althöfer et al. [2]
provide a simple greedy algorithm that constructs a multiplicative r–spanner
given a graph G and a real number r > 0. The greedy algorithm sorts edges

544 R. Ahmed et al.

in E by nondecreasing weight, then for each e = {u, v} ∈ E, computes the
shortest path P (u, v) from u to v in the current spanner, and adds the edge to
the spanner if the weight of P (u, v) is greater than r · ce. The resulting subgraph
H is a r–spanner for G. The main result of [2] is that, given a weighted graph G
and t ≥ 1, there is a greedy (2t+1)–spanner H containing at most n�n1/t	 edges,
and whose weight is at most w(MST (G))(1 + n

2t) where w(MST (G)) denotes
the weight of a minimum spanning tree of G.

Sigurd and Zachariasen [17] present an ILP formulation for the minimum-
weight pairwise spanner problem (see Sect. 3), and show that the greedy algo-
rithm [2] performs well on sparse graphs of up to 64 vertices. Álvarez-Miranda
and Sinnl [3] present a mixed ILP formulation for the tree t∗–spanner problem,
which asks for a spanning tree of a graph G with the smallest stretch factor t∗.

Dinitz et al. [13] provide a flow-based linear programming (LP) relaxation
to approximate the directed spanner problem. Their LP formulation is similar
to that in [17]; however, they provide an approximation algorithm which relaxes
their ILP, whereas the previous formulation was used to compute spanners to
optimality. Additionally, the LP formulation applies to graphs of unit edge cost;
they later take care of it in their rounding algorithm by solving a shortest path
arborescence problem. They provide a Õ(n

2
3)–approximation algorithm for the

directed k–spanner problem for k ≥ 1, which is the first sublinear approximation
algorithm for arbitrary edge lengths. Bhattacharyya et al. [6] provide a slightly
different formulation to approximate t–spanners as well as other variations of
this problem. They provide a polynomial time O((n log n)1− 1

k)–approximation
algorithm for the directed k–spanner problem. Berman et al. [5] provide an
alternative randomized LP rounding schemes that lead to better approximation
ratios. They improved the approximation ratio to O(

√
n log n) where the approx-

imation ratio of the algorithm provided by Dinitz et al. [13] was O(n
2
3). They

have also improved the approximation ratio for the important special case of
directed 3–spanners with unit edge lengths.

There are several results on multi-level or grade-of-service Steiner trees, e.g.,
[1,4,8,9,16], while multi-level spanner problems have not been studied yet.

2 Approximation Algorithms for MLGS

Here, we assume an oracle subroutine that computes an optimal (S×S)–spanner,
given a graph G, subset S ⊆ V , and t. The intent is to determine if approximating
MLGS is significantly harder than the subsetwise spanner problem. We formulate
simple bottom-up and top-down approaches for the MLGS problem.

2.1 Oracle Bottom-Up Approach

The approach is as follows: compute a minimum subsetwise (T1 × T1)–spanner
of G with stretch factor t. This immediately induces a feasible solution to the
MLGS problem, as one can simply copy each edge from the spanner to every
level (or, in terms of grades of service, assign grade � to each spanner edge). We

Approximation algorithms and an ILP 545

then prune edges that are not needed on higher levels. It is easy to show that
the solution returned has cost no worse than � times the cost of the optimal
solution. Let OPT denote the cost of the optimal MLGS G∗

� ⊆ G∗
�−1 ⊆ . . . ⊆ G∗

1

for a graph G. Let MINi denote the cost of a minimum subsetwise (Ti × Ti)–
spanner for level i with stretch t, and let BOT denote the cost computed by the
bottom-up approach. If no pruning is done, then BOT = �MIN1.

Theorem 1. The oracle bottom-up algorithm described above yields a solution
that satisfies BOT ≤ � · OPT.

Proof. We know MIN1 ≤ OPT, since the lowest-level graph G∗
1 is a (T1 × T1)–

spanner whose cost is at least MIN1. Further, we have BOT = �MIN1 if no
pruning is done. Then MIN1 ≤ OPT ≤ BOT = � · MIN1, so BOT ≤ � · OPT. �

The ratio of � is asymptotically tight; an example can be constructed by
letting G be a cycle containing t vertices and all edges of cost 1. Let two adjacent
vertices in G appear in T�, while all vertices appear in T1, as shown in Fig. 3. As
t → ∞, the ratio BOT

OPT approaches �. Note that in this example, no edges can be
pruned without violating the t–spanner requirement.

Fig. 3. Left: Tightness example of the top-down approach. Consider the lattice graph
G with pairs of vertices of grade � (|T�| = 2), �−1, and so on. The edge connecting the
two vertices of grade i has weight 1, and all other edges have weight ε, where 0 < ε � 1.
Set t = 2. The top-down solution (middle) has cost TOP ≈ �+(�−1)+ . . .+1 = �(�+1)

2
,

while the optimal solution (bottom) has cost OPT ≈ �. Right: Tightness example of
the bottom-up approach. Consider a cycle G containing two adjacent vertices of grade
�, and the remaining vertices of grade 1. The edge connecting the two vertices of grade
� is 1 + ε, while the remaining edges have weight 1. Setting t = |E| yields BOT = �|E|
while OPT = (1 + ε)� + 1(|E| − 1) ≈ |E| + �.

We give a simple heuristic that attempts to “prune” unneeded edges without
violating the t–spanner requirement. Note that any pruning strategy may not
prune any edges, as a worst case example (Fig. 3) cannot be pruned. Let G1

be the (T1 × T1)–spanner computed by the bottom-up approach. To compute
a (T2 × T2)–spanner G2 using the edges from G1, we can compute a distance

546 R. Ahmed et al.

preserver of G1 over terminals in T2. One simple strategy is to use shortest paths
as explained below.

Even more efficient pruning is possible through the distant preserver liter-
ature [7,10]. A well-known result of distant preservers is due to the following
theorem:

Theorem 2. ([10]). Given G = (V,E) with |V | = n, and P ⊂ (
V
2

)
, there exists

a subgraph G′ with O(n +
√

n|P |) edges such that for all (u, v) ∈ P we have
dG′(u, v) = dG(u, v).

The above theorem hints at a sparse construction of G2 simply by letting
P = T2 ×T2. Given G1, let Gi be a distance preserver of Gi−1 over the terminals
Ti, for all i = 2, . . . , �. An example is to let G2 be the union of all shortest paths
(in G1) over vertices v, w ∈ G2. The result is clearly a feasible solution to the
MLGS problem, as the shortest paths are preserved exactly from G1, so each Gi

is a (Ti × Ti)–spanner of G with stretch factor t.

2.2 Oracle Top-Down Approach

A simple top-down heuristic that computes a solution is as follows: let G� be
the minimum-cost (T� ×T�)–spanner over terminals T� with stretch factor t, and
cost MIN�. Then compute a minimum cost (T�−1 × T�−1)–spanner over T�−1,
and let G�−1 be the union of this spanner and G�. Continue this process, where
Gi is the union of the minimum cost (Ti × Ti)–spanner and Gi+1. Clearly, this
produces a feasible solution to the MLGS problem.

The solution returned by this approach, with cost denoted by TOP, is not
worse than �+1

2 times the optimal. Define MINi and OPT as before. Define OPTi

to be the cost of edges on level i but not level i+1 in the optimal MLGS solution,
so that OPT = �OPT� +(�−1)OPT�−1 + . . .+OPT1. Define TOPi analogously.

Theorem 3. The oracle top-down algorithm described above yields an approxi-
mation that satisfies the following:
(i) TOP� ≤ OPT�,
(ii) TOPi ≤ OPTi + OPTi+1 + . . . + OPT�, i = 1, . . . , � − 1,
(iii) TOP ≤ �+1

2 OPT.

Proof. Inequality (i) is true by definition, as we compute an optimal (T� × T�)–
spanner whose cost is TOP�, while OPT� is the cost of some (T� × T�)-spanner.
For (ii), note that TOPi ≤ MINi, with equality when the minimum-cost (Ti×Ti)–
spanner and Gi+1 are disjoint. The spanner of cost OPTi +OPTi+1+ . . .+OPT�

is a feasible (Ti ×Ti)–spanner, so MINi ≤ OPTi + . . .+OPT�, which shows (ii).
To show (iii), note that (i) and (ii) imply

TOP = �TOP� + (� − 1)TOP�−1 + . . . + TOP1

≤ �OPT� + (� − 1)(OPT�−1 + OPT�) + . . . + (OPT1 + OPT2 + . . . + OPT�)

=
�(� + 1)

2
OPT� +

(� − 1)�

2
OPT�−1 + . . . +

1 · 2

2
OPT1

≤ � + 1

2
OPT,

Approximation algorithms and an ILP 547

as by definition OPT = �OPT� + (� − 1)OPT�−1 + . . . + OPT1. �

The ratio �+1
2 is tight as illustrated in Fig. 3, left.

2.3 Combining Top-Down and Bottom-Up

Again, assume we have access to an oracle that computes a minimum weight (S×
S)–spanner of an input graph G with given stretch factor t. A simple combined
method, similar to [1], is to run the top-down and bottom-up approaches for the
MLGS problem, and take the solution with minimum cost. This has a slightly
better approximation ratio than either of the two approaches.

Theorem 4. The solution whose cost is min(TOP,BOT) is not worse than
� + 2

3
times the cost OPT of the optimal MLGS.

The proof is given in Appendix A.

2.4 Heuristic Subsetwise Spanners

So far, we have assumed that we have access to an optimal subsetwise spanner
given by an oracle. Here we propose a heuristic algorithm to compute subsetwise
spanner. The key idea is to apply the greedy spanner to an auxiliary complete
graph with terminals as its vertices and the shortest distance between terminals
as edge weights. Then, we apply the distance preserver discussed in Theorem 2
to construct a subsetwise spanner.

Theorem 5. Given graph G(V,E), stretch factor t ≥ 1, and subset T ⊂ V ,
there exists a (T ×T)–spanner for G with stretch factor t and O(n+

√
n|T |1+ 2

t+1)
edges.

Proof. The spanner may be constructed as follows:

1. Construct the terminal complete graph Ḡ whose vertices are V̄ := T , such
that the weight of each edge {u, v} in Ḡ is the length of the shortest path
connecting them in G, i.e., w(u, v) = dG(u, v).

2. Construct a greedy t−spanner H̄(V̄ , Ē′) of Ḡ. According to [2], this graph
has |T |1+ 2

t+1 edges. Let P = Ē′.
3. Apply Theorem 2 to obtain a subgraph H of G such that for all (u, v) ∈ P we

have dH(u, v) = dG(u, v). Therefore, for arbitrary u, v ∈ T we get dH(u, v) ≤
t dG(u, v).

4. Finally, let shortest-path(u, v) be the collection of edges in the shortest path
from u to v in H, and

E =
⋃

(u,v)∈P

{e ∈ E | e ∈ shortest-path(u, v). }

548 R. Ahmed et al.

According to Theorem 2, the number of edges in the constructed spanner
H(V,E) is O(n +

√
n|P |) = O

(
n +

√
n|T |1+ 2

t+1

)
. �

Hence, we may replace the oracle in the top-down and bottom-up approaches
(Sects. 2.1 and 2.2) with the above heuristic; we call the resulting algorithms
heuristic top-down and heuristic bottom-up. We analyze the performance of all
algorithms on several types of graphs.

Incorporating the heuristic subsetwise spanner in our top-down and bottom
up heuristics has two implications. First, the size of the final MLGS is dom-
inated by the size of the spanner at the bottom level, i.e., O(n +

√
n|P |) =

O
(
n +

√
n|T1|1+ 2

t+1

)
. Second, since the greedy spanner algorithm used in the

above subsetwise spanner can produce spanners that are O(n) more costly than
the optimal solution, the same applies to the subsetwise spanner. Our experi-
mental results, however, indicate that the heuristic approaches are very close to
the optimal solutions obtained via our ILP.

3 Integer Linear Programming (ILP) Formulations

We describe the original ILP formulation for the pairwise spanner problem [17].
Let K = {(ui, vi)} ⊂ V × V be the set of vertex pairs; recall that the t–spanner
problem is a special case where K = V × V . Here we will use unordered pairs
of distinct vertices, so in the t–spanner problem we have |K| =

(|V |
2

)
instead of

|V |2. This ILP formulation uses paths as decision variables. Given (u, v) ∈ K,
denote by Puv the set of paths from u to v of cost no more than t · dG(u, v),
and denote by P the union of all such paths, i.e., P =

⋃
(u,v)∈K Puv. Given a

path p ∈ P and edge e ∈ E, let δe
p = 1 if e is on path p, and 0 otherwise. Let

xe = 1 if e is an edge in the pairwise spanner H, and 0 otherwise. Given p ∈ P ,
let yp = 1 if path p is in the spanner, and zero otherwise. An ILP formulation
for the pairwise spanner problem is given below.

Minimize
∑

e∈E

cexe subject to (1)

∑

p∈Puv

ypδ
e
p ≤ xe ∀e ∈ E;∀(u, v) ∈ K (2)

∑

p∈Puv

yp ≥ 1 ∀(u, v) ∈ K (3)

xe ∈ {0, 1} ∀e ∈ E (4)
yp ∈ {0, 1} ∀p ∈ P (5)

Constraint (3) ensures that for each pair (u, v) ∈ K, at least one t–spanner
path is selected, and constraint (2) enforces that on the selected u-v path, every
edge along the path appears in the spanner. The main drawback of this ILP
is that the number of path variables is exponential in the size of the graph.
The authors use delayed column generation by starting with a subset P ′ ⊂ P

Approximation algorithms and an ILP 549

of paths, with the starting condition that for each (u, v) ∈ K, at least one
t–spanner path in Puv is in P ′. The authors leave as an open question whether
this problem admits a useful polynomial-size ILP.

We introduce a 0–1 ILP formulation for the pairwise t–spanner problem based
on multicommodity flow, which uses O(|E||K|) variables and constraints, where
|K| = O(|V |2). Define t, ce, dG(u, v), K, and xe as before. Note that dG(u, v)
can be computed in advance, using any all-pairs shortest path (APSP) method.

Direct the graph by replacing each edge e = {u, v} with two edges (u, v) and
(v, u) of weight ce. Let E′ be the set of all directed edges, i.e., |E′| = 2|E|. Given
(i, j) ∈ E′, and an unordered pair of vertices (u, v) ∈ K, let xuv

(i,j) = 1 if edge
(i, j) is included in the selected u-v path in the spanner H, and 0 otherwise. This
definition of path variables is similar to that by Álvarez-Miranda and Sinnl [3]
for the tree t∗–spanner problem. We select a total order of all vertices so that the
path constraints (8)–(9) are well-defined. This induces 2|E||K| binary variables,
or 2|E|(|V |

2

)
= 2|E||V |(|V |−1) variables in the standard t–spanner problem. Note

that if u and v are connected by multiple paths in H of length ≤ t · dG(u, v), we
need only set xuv

(i,j) = 1 for edges along some path. Given v ∈ V , let In(v) and
Out(v) denote the set of incoming and outgoing edges for v in E′. In (7)–(11)
we assume u < v in the total order, so spanner paths are from u to v. An ILP
formulation for the pairwise spanner problem is as follows.

Minimize
∑

e∈E

cexe subject to (6)

∑

(i,j)∈E′
xuv
(i,j)ce ≤ t · dG(u, v) ∀(u, v) ∈ K; e = {i, j} (7)

∑

(i,j)∈Out(i)

xuv
(i,j) −

∑

(j,i)∈In(i)

xuv
(j,i) =

⎧
⎪⎨

⎪⎩

1 i = u

−1 i = v

0 else
∀(u, v) ∈ K;∀i ∈ V (8)

∑

(i,j)∈Out(i)

xuv
(i,j) ≤ 1 ∀(u, v) ∈ K;∀i ∈ V (9)

xuv
(i,j) + xuv

(j,i) ≤ xe ∀(u, v) ∈ K;∀e = {i, j} ∈ E (10)

xe, x
uv
(i,j) ∈ {0, 1} (11)

Constraint (7) requires that for all (u, v) ∈ K, the sum of the weights of
the selected edges corresponding to the pair (u, v) is not more than t · dG(u, v).
Constraints (8)–(9) require that the selected edges corresponding to (u, v) ∈ K
form a simple path beginning at u and ending at v. Constraint (10) enforces
that, if edge (i, j) or (j, i) is selected on some u-v path, then its corresponding
undirected edge e is selected in the spanner; further, (i, j) and (j, i) cannot both
be selected for some pair (u, v). Finally, (11) enforces that all variables are binary.

The number of variables is |E| + 2|E||K| and the number of constraints is
O(|E||K|), where |K| = O(|V |2). Note that the variables xuv

(i,j) can be relaxed
to be continuous in [0, 1].

550 R. Ahmed et al.

3.1 ILP Formulation for the MLGS Problem

Recall that the MLGS problem generalizes the subsetwise spanner problem,
which is a special case of the pairwise spanner problem for K = S × S. Again,
we use unordered pairs, i.e., |K| =

(|S|
2

)
.

We generalize the ILP formulation in (6)–(11) to the MLGS problem as
follows. Recall that we can encode the levels in terms of required grades of
service R : V → {0, 1, . . . , �}. Instead of 0–1 indicators xe, let ye denote the
grade of edge e in the multi-level spanner; that is, ye = i if e appears on level i
but not level i + 1, and ye = 0 if e is absent. The only difference is that for the
MLGS problem, we assign grades of service to all u-v paths by assigning grades
to edges along each u-v path. That is, for all u, v ∈ T1 with u < v, the selected
path from u to v has grade min(R(u), R(v)), which we denote by muv. Note that
we only need to require the existence of a path for terminals u, v ∈ T1, where
u < v. An ILP formulation for the MLGS problem is as follows.

Minimize
∑

e∈E

ceye subject to (12)

∑

(i,j)∈E′
xuv
(i,j)ce ≤ t · dG(u, v) ∀u, v ∈ T1; e = {i, j} (13)

∑

(i,j)∈Out(i)

xuv
(i,j) −

∑

(j,i)∈In(i)

xuv
(j,i) =

⎧
⎪⎨

⎪⎩

1 i = u

−1 i = v

0 else
∀u, v ∈ T1;∀i ∈ V (14)

∑

(i,j)∈Out(i)

xuv
(i,j) ≤ 1 ∀u, v ∈ T1;∀i ∈ V (15)

ye ≥ muvxuv
(i,j) ∀u, v ∈ T1;∀ e = {i, j} (16)

ye ≥ muvxuv
(j,i) ∀u, v ∈ T1;∀ e = {i, j} (17)

xuv
(i,j) ∈ {0, 1} (18)

Constraints (16)–(17) enforce that for each pair u, v ∈ V such that u < v,
the edges along the selected u-v path (not necessarily every u-v path) have a
grade of service greater than or equal to the minimum grade of service needed
to connect u and v, that is, muv. If multiple pairs (u1, v1), (u2, v2), . . . , (uk, vk)
use the same edge e = {i, j} (possibly in opposite directions), then the grade of
edge e should be ye = max(mu1v1 ,mu2v2 , . . . ,mukvk

). It is implied by (16)–(17)
that 0 ≤ ye ≤ � in an optimal solution.

Theorem 6. An optimal solution to the ILP given in (6)–(11) yields an optimal
pairwise spanner of G over a set K ⊂ V × V .

Theorem 7. An optimal solution to the ILP given in (12)–(18) yields an opti-
mal solution to the MLGS problem.

We give the proofs in AppendicesB and C.

Approximation algorithms and an ILP 551

3.2 Size Reduction Techniques

We can reduce the size of the ILP using the following shortest path tests, which
works well in practice and also applies to the MLGS problem. Note that we are
concerned with the total cost of a solution, not the number of edges.

If dG(i, j) < c(i, j), for some edge {i, j} ∈ E, then we can remove {i, j} from
the graph, as no min-weight spanner of G uses edge {i, j}. If H∗ is a min-cost
pairwise spanner that uses edge {i, j}, then we can replace {i, j} with a shorter
i-j path pij without violating the t–spanner requirement. In particular, if some
u-v path uses both edge {i, j} as well as some edge(s) along pij , then this path
can be rerouted to use only edges in pij with smaller cost.

We reduce the number of variables needed in the single-level ILP formulation
((6)–(11)) with the following test: given u, v ∈ K with u < v and some directed
edge (i, j) ∈ E′, if dG(u, i) + c(i, j) + dG(j, v) > t · dG(u, v), then (i, j) cannot
possibly be included in the selected u-v path, so set xuv

(i,j) = 0. If (i, j) or (j, i)
cannot be selected on any u-v path, we can safely remove {i, j} from E.

Conversely, given some directed edge (i, j) ∈ E′, let G′ be the directed graph
obtained by removing (i, j) from E′ (so that G′ has 2|E| − 1 edges). For each
u, v ∈ K with u < v, if dG′(u, v) > t ·dG(u, v), then edge (i, j) must be in any u-v
spanner path, so set xuv

(i,j) = 1. For its corresponding undirected edge e, xe = 1.

4 Experimental Results

4.1 Setup

We use the Erdős–Rényi [14] and Watts–Strogatz [18] models to generate random
graphs. Given a number of vertices, n, and probability p, the model ER(n, p)
assigns an edge to any given pair of vertices with probability p. An instance of
ER(n, p) with p = (1 + ε) lnn

n is connected with high probability for ε > 0 [14]).
For our experiments we use n ∈ {20, 40, 60, 80, 100}, and ε = 1.

In the Watts-Strogatz model, WS(n,K, β), initially we create a ring lattice of
constant degree K, and then rewire each edge with probability 0 ≤ β ≤ 1 while
avoiding self-loops and duplicate edges. The Watts-Strogatz model generates
small-world graphs with high clustering coefficients [18]. For our experiments we
use n ∈ {20, 40, 60, 80, 100}, K = 6, and β = 0.2.

An instance of the MLGS problem is characterized by four parameters: graph
generator, number of vertices |V |, number of levels �, and stretch factor t. As
there is randomness involved, we generated 3 instances for every choice of param-
eters (e.g., ER, |V | = 80, � = 3, t = 2).

We generated MLGS instances with 1, 2, or 3 levels (� ∈ {1, 2, 3}), where
terminals are selected on each level by randomly sampling |V | · (� − i + 1)/(�+
1)� vertices on level i so that the size of the terminal sets decreases linearly.
As the terminal sets are nested, Ti can be selected by sampling from Ti−1 (or
from V if i = 1). We used four different stretch factors in our experiments,
t ∈ {1.2, 1.4, 2, 4}. Edge weights are randomly selected from {1, 2, 3, . . . , 10}.

552 R. Ahmed et al.

Algorithms and Outputs. We implemented the bottom-up (BU) and top-
down (TD) approaches from Sect. 2 in Python 3.5, as well as the combined
approach that selects the better of the two (Sect. 2.3). To evaluate the approx-
imation algorithms and the heuristics, we implemented the ILPs described in
Sect. 3 using CPLEX 12.6.2. We used the same high-performance computer for
all experiments (Lenovo NeXtScale nx360 M5 system with 400 nodes).

For each instance of the MLGS problem, we compute the costs of the MLGS
returned using the bottom-up (BU), the top-down (TD), and the combined
(min(BU, TD)) approaches, as well as the minimum cost MLGS using the ILP
in Sect. 3.1. The three heuristics involve a (single-level) subroutine; we used both
the heuristic described in Sect. 2.4, as well as the flow formulation described in
Sect. 3 which computes subsetwise spanners to optimality. We compare the algo-
rithms with and without the oracle to assess whether computing (single-level)
spanners to optimality significantly improves the overall quality of the solution.

We show the performance ratio for each heuristic in the y-axis (defined as
the heuristic cost divided by OPT), and how the ratio depends on the input
parameters (number of vertices |V |, number of levels �, and stretch factors t).
Finally, we discuss the running time of the ILP. All box plots show the mini-
mum, interquartile range and maximum, aggregated over all instances using the
parameter being compared.

4.2 Results

We first discuss the results for Erdős–Rényi graphs. Figures 4, 5, 6 and 7 show the
results of the oracle top-down, bottom-up, and combined approaches. We show
the impact of different parameters (number of vertices |V |, number of levels �,
and stretch factors t) using line plots for three heuristics separately in Figs. 4,
5 and 6. Figure 7 shows the performance of the three heuristics together in box
plots. In Fig. 4 we can see that the bottom-up heuristic performs slightly worse
for increasing |V |, while the top-down heuristic performs slightly better. In Fig. 5
we see that the heuristics perform worse when � increases, consistent with the
ratios discussed in Sect. 2. In Fig. 6 we show the performance of the heuristics
with respect to the stretch factor t. In general, the performance becomes worse
as t increases.

The most time consuming part of the experiment is the execution time of the
ILP for solving MLGS instances optimally. The running time of the heuristics
is significantly smaller compared to that of the ILP. Hence, we first show the
running times of the exact solution of the MLGS instances in Fig. 8. We show
the running time with respect to the number of vertices |V |, number of levels
�, and stretch factors t. For all parameters, the running time tends to increase
as the size of the parameter increases. In particular, the running time with
stretch factor 4 (Fig. 8, right) was much worse, as there are many more t-spanner
paths to consider, and the size reduction techniques in Sect. 3.2 are less effective
at reducing instance size. We show the running times of for computing oracle
bottom-up, top-down and combined solutions in Fig. 9.

Approximation algorithms and an ILP 553

(a) Bottom up (b) Top down (c) min(BU, TD)

Fig. 4. Performance with oracle on Erdős–Rényi graphs w.r.t. |V |. Ratio is defined as
the cost of the returned MLGS divided by OPT.

(a) Bottom up (b) Top down (c) min(BU, TD)

Fig. 5. Performance with oracle on Erdős–Rényi graphs w.r.t. the number of levels

(a) Bottom up (b) Top down (c) min(BU, TD)

Fig. 6. Performance with oracle on Erdős–Rényi graphs w.r.t. stretch factor

Fig. 7. Performance with oracle on Erdős–Rényi graphs w.r.t. the number of vertices,
the number of levels, and the stretch factors

554 R. Ahmed et al.

Fig. 8. Experimental running times for computing exact solutions on Erdős–Rényi
graphs w.r.t. the number of vertices, the number of levels, and the stretch factors

Fig. 9. Experimental running times for computing oracle bottom-up, top-down and
combined solutions on Erdős–Rényi graphs w.r.t. the number of vertices, the number
of levels, and the stretch factors

The ILP is too computationally expensive for larger input sizes and this
is where the heurstic can be particularly useful. We now consider a similar
experiment using the heuristic to compute subsetwise spanners, as described
in Sect. 2.4. We show the impact of different parameters (number of vertices |V |,
number of levels �, and stretch factors t) using scatter plots for three heuristics
separately in Figs. 10, 11 and 12. Figure 13 shows the performance of the three
heuristics together in box plots. We can see that the heuristics perform very well
in practice. Notably when the heuristic is used in place of the ILP, the running
times decrease for larger stretch factors (Fig. 14).

(a) Bottom up (b) Top down (c) min(BU, TD)

Fig. 10. Performance without oracle on Erdős–Rényi graphs w.r.t. |V |

We also analyzed graphs generated from the Watts–Strogatz model and the
results are shown in Appendix D.

Approximation algorithms and an ILP 555

(a) Bottom up (b) Top down (c) min(BU, TD)

Fig. 11. Performance without oracle on Erdős–Rényi graphs w.r.t. the number of levels

(a) Bottom up (b) Top down (c) min(BU, TD)

Fig. 12. Performance without oracle on Erdős–Rényi graphs w.r.t. the stretch factors

Fig. 13. Performance without oracle on Erdős–Rényi graphs w.r.t. the number of ver-
tices, the number of levels, and the stretch factors

Fig. 14. Experimental running times for computing heuristic bottom-up, top-down and
combined solutions on Erdős–Rényi graphs w.r.t. the number of vertices, the number
of levels, and the stretch factors

556 R. Ahmed et al.

Our final experiments test the heuristic performance on a set of larger
graphs. We generated the graphs using the Erdős–Rényi model, with |V | ∈
{100, 200, 300, 400}. We evaluated more levels (� ∈ {2, 4, 6, 8, 10}) with stretch
factors t ∈ {1.2, 1.4, 2, 4}. We show the performance of heuristic bottom-up and
top-down in AppendixE. Here, the ratio is determined by dividing the BU or
TD cost by min(BU, TD) (as computing the optimal MLGS would be too time-
consuming). The results indicate that while running times increase with larger
input graphs, the number of levels and the stretch factors seem to have little
impact on performance.

5 Discussion and Conclusion

We introduced a generalization of the subsetwise spanner problem to multiple
levels or grades of service. Our proposed ILP formulation requires only a polyno-
mial size of variables and constraints, which is an improvement over the previous
formulation given by Sigurd and Zachariasen [17]. We also proposed improved
formulations which work well for small values of the stretch factor t. It would be
worthwhile to consider whether even better ILP formulations can be found for
computing graph spanners and their multi-level variants. We showed that both
the approximation algorithms and the heuristics work well in practice on several
different types of graphs, with different number of levels and different stretch
factors.

We only considered a stretch factor t that is the same for all levels in the
multi-level spanner, as well as a fairly specific definition of cost. It would be
interesting to investigate more general multi-level or grade-of-service spanner
problems, including ones with varying stretch factors (e.g., in which more impor-
tant terminals require a smaller or larger stretch factors), different definitions
of cost, and spanners with other requirements, such as bounded diameters or
degrees.

A Proof of Theorem 4

Proof. We use the simple algebraic fact that min{x, y} ≤ αx + (1 − α)y for all
x, y ∈ R and α ∈ [0, 1]. Here, we can also use the fact that MIN1 ≤ OPT1 +
OPT2 + . . .+OPT�, as the RHS equals the cost of G∗

1, which is some subsetwise
(T1 × T1)-spanner. Combining, we have

min(TOP,BOT) ≤ α

�∑

i=1

i(i + 1)
2

OPTi + (1 − α)�
�∑

i=1

OPTi

=
�∑

i=1

[(
i(i + 1)

2
− �

)

α + �

]

ρOPTi

Approximation algorithms and an ILP 557

Since we are comparing min{TOP,BOT} to r ·OPT for some approximation
ratio r > 1, we can compare coefficients and find the smallest r ≥ 1 such that
the system of inequalities

(
�(� + 1)

2
− �

)

α + �ρ ≤ �r

(
(� − 1)�

2
− �

)

α + �ρ ≤ (� − 1)r

...
(

2 · 1
2

− �

)

α + �ρ ≤ r

has a solution α ∈ [0, 1]. Adding the first inequality to �/2 times the last inequal-
ity yields �2+2�

2 ≤ 3�r
2 , or r ≥ �+2

3 . Also, it can be shown algebraically that
(r, α) = (�+2

3 , 2
3) simultaneously satisfies the above inequalities. This implies

that min{TOP,BOT} ≤ �+2
3 ρ · OPT. �

B Proof of Theorem 6

Proof. Let H∗ denote an optimal pairwise spanner of G with stretch factor t,
and let OPT denote the cost of H∗. Let OPTILP denote the minimum cost of
the objective in the ILP (6). First, given a minimum cost t–spanner H∗(V,E∗),
a solution to the ILP can be constructed as follows: for each edge e ∈ E∗, set
xe = 1. Then for each unordered pair (u, v) ∈ K with u < v, compute a shortest
path puv from u to v in H∗, and set xuv

(i,j) = 1 for each edge along this path, and
xuv
(i,j) = 0 if (i, j) is not on puv.

As each shortest path puv necessarily has cost ≤ t · dG(u, v), constraint (7)
is satisfied. Constraints (8)–(9) are satisfied as puv is a simple u-v path. Con-
straint (10) also holds, as puv should not traverse the same edge twice in opposite
directions. In particular, every edge in H∗ appears on some shortest path; oth-
erwise, removing such an edge yields a pairwise spanner of lower cost. Hence
OPTILP ≤ OPT.

Conversely, an optimal solution to the ILP induces a feasible t–spanner H.
Consider an unordered pair (u, v) ∈ K with u < v, and the set of decision
variables satisfying xuv

(i,j) = 1. By (8) and (9), these chosen edges form a simple
path from u to v. The sum of the weights of these edges is at most t · dG(u, v)
by (7). Then by constraint (10), the chosen edges corresponding to (u, v) appear
in the spanner, which is induced by the set of edges e with xe = 1. Hence
OPT ≤ OPTILP .

Combining the above observations, we see that OPT = OPTILP . �

C Proof of Theorem7

Proof. Given an optimal solution to the ILP with cost OPTILP , construct an
MLGS by letting Gi = (V,Ei) where Ei = {e ∈ E | ye ≥ i}. This clearly gives

558 R. Ahmed et al.

a nested sequence of subgraphs. Let u and v be terminals in Ti (not necessarily
of required grade R(·) = i), with u < v, and consider the set of all variables of
the form xuv

(i,j) equal to 1. By (13)–(15), these selected edges form a path from u

to v of length at most t · dG(u, v), while constraints (16)–(17) imply that these
selected edges have grade at least muv ≥ i, so the selected path is contained in
Ei. Hence Gi is a subsetwise (Ti × Ti)–spanner for G with stretch factor t, and
the optimal ILP solution gives a feasible MLGS.

Given an optimal MLGS with cost OPT, we can construct a feasible ILP
solution with the same cost in a way similar to the proof of Theorem 6. For each
u, v ∈ T1 with u < v, set muv = min(R(u), R(v)). Compute a shortest path in
Gmuv

from u to v, and set xuv
(i,j) = 1 for all edges along this path. Then for each

e ∈ E, consider all pairs (u1, v1), . . . , (uk, vk) that use either (i, j) or (j, i), and
set ye = max(mu1v1 ,mu2v2 , . . . ,mukvk

). In particular, ye is not larger than the
grade of e in the MLGS, otherwise this would imply e is on some u-v path at
grade greater than its grade of service in the actual solution. �

D Experimental Results on Graphs Generated Using
Watts-Strogatz

The results for graphs generated from the Watts–Strogatz model are shown in
Figs. 15, 16, 17, 18, 19, 20, 21, 22 and 23, which are organized in the same way
as for Erdős–Rényi.

E Experimental Results on Large Graphs Using
Erdős-Rényi

Figure 24 shows a rough measure of performance for the bottom-up and top-
down heuristics on large graphs using the Erdős-Rényi model, where the ratio
is defined as the BU or TD cost divided by min(BU, TD). Figure 25 shows the
aggregated running times per instance, which significantly worsen as |V | is large.

(a) Bottom up (b) Top down (c) min(BU, TD)

Fig. 15. Performance with oracle on Watts–Strogatz graphs w.r.t. the number of ver-
tices

Approximation algorithms and an ILP 559

(a) Bottom up (b) Top down (c) min(BU, TD)

Fig. 16. Performance with oracle on Watts–Strogatz graphs w.r.t. the number of levels

(a) Bottom up (b) Top down (c) min(BU, TD)

Fig. 17. Performance with oracle on Watts–Strogatz graphs w.r.t. the stretch factors

Fig. 18. Performance with oracle on Watts–Strogatz graphs w.r.t. the number of ver-
tices, the number of levels, and the stretch factors

Fig. 19. Experimental running times for computing exact solutions on Watts–Strogatz
graphs w.r.t. the number of vertices, the number of levels, and the stretch factors

560 R. Ahmed et al.

(a) Bottom up (b) Top down (c) min(BU, TD)

Fig. 20. Performance without oracle on Watts–Strogatz graphs w.r.t. the number of
vertices

(a) Bottom up (b) Top down (c) min(BU, TD)

Fig. 21. Performance without oracle on Watts–Strogatz graphs w.r.t. the number of
levels

(a) Bottom up (b) Top down (c) min(BU, TD)

Fig. 22. Performance without oracle on Watts–Strogatz graphs w.r.t. the stretch fac-
tors

Fig. 23. Performance without oracle on Watts–Strogatz graphs w.r.t. the number of
vertices, the number of levels, and the stretch factors

Approximation algorithms and an ILP 561

Fig. 24. Performance of heuristic bottom-up and top-down on large Erdős–Rényi
graphs w.r.t. the number of vertices, the number of levels, and the stretch factors.
The ratio is determined by dividing the objective value of the combined (min(BU,
TD)) heuristic.

Fig. 25. Experimental running times for computing heuristic bottom-up, top-down
and combined solutions on large Erdős–Rényi graphs w.r.t. the number of vertices, the
number of levels, and the stretch factors.

References

1. Ahmed, A.R., et al.: Multi-level Steiner trees. In: 17th International Symposium on
Experimental Algorithms, (SEA), pp. 15:1–15:14 (2018). https://doi.org/10.4230/
LIPIcs.SEA.2018.15

2. Althöfer, I., Das, G., Dobkin, D., Joseph, D.: Generating sparse spanners for
weighted graphs. In: Gilbert, J.R., Karlsson, R. (eds.) SWAT 90, pp. 26–37.
Springer, Heidelberg (1990)

3. Álvarez-Miranda, E., Sinnl, M.: Mixed-integer programming approaches for the
tree t*-spanner problem. Optimization Letters (2018). https://doi.org/10.1007/
s11590-018-1340-0

4. Balakrishnan, A., Magnanti, T.L., Mirchandani, P.: Modeling and heuristic worst-
case performance analysis of the two-level network design problem. Manag. Sci.
40(7), 846–867 (1994). https://doi.org/10.1287/mnsc.40.7.846

5. Berman, P., Bhattacharyya, A., Makarychev, K., Raskhodnikova, S., Yaroslavtsev,
G.: Approximation algorithms for spanner problems and directed steiner forest.
Inf. Comput. 222, 93–107 (2013). 38th International Colloquium on Automata,
Languages and Programming (ICALP 2011), https://doi.org/10.1016/j.ic.2012.10.
007, http://www.sciencedirect.com/science/article/pii/S0890540112001484

6. Bhattacharyya, A., Grigorescu, E., Jung, K., Raskhodnikova, S., Woodruff, D.P.:
Transitive-closure spanners. SIAM J. Comput. 41(6), 1380–1425 (2012). https://
doi.org/10.1137/110826655

7. Bodwin, G.: Linear size distance preservers. In: Proceedings of the Twenty-Eighth
Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 600–615. Society for
Industrial and Applied Mathematics (2017)

https://doi.org/10.4230/LIPIcs.SEA.2018.15
https://doi.org/10.4230/LIPIcs.SEA.2018.15
https://doi.org/10.1007/s11590-018-1340-0
https://doi.org/10.1007/s11590-018-1340-0
https://doi.org/10.1287/mnsc.40.7.846
https://doi.org/10.1016/j.ic.2012.10.007
https://doi.org/10.1016/j.ic.2012.10.007
http://www.sciencedirect.com/science/article/pii/S0890540112001484
https://doi.org/10.1137/110826655
https://doi.org/10.1137/110826655

562 R. Ahmed et al.

8. Charikar, M., Naor, J.S., Schieber, B.: Resource optimization in QoS multicast
routing of real-time multimedia. IEEE/ACM Trans. Networking 12(2), 340–348
(2004). https://doi.org/10.1109/TNET.2004.826288

9. Chuzhoy, J., Gupta, A., Naor, J.S., Sinha, A.: On the approximability of some
network design problems. ACM Trans. Algorithms 4(2), 23:1–23:17 (2008). https://
doi.org/10.1145/1361192.1361200

10. Coppersmith, D., Elkin, M.: Sparse sourcewise and pairwise distance preservers.
SIAM J. Discrete Math. 20(2), 463–501 (2006)

11. Cygan, M., Grandoni, F., Kavitha, T.: On pairwise spanners. In: Portier, N., Wilke,
T. (eds.) 30th International Symposium on Theoretical Aspects of Computer Sci-
ence (STACS 2013). Leibniz International Proceedings in Informatics (LIPIcs),
vol. 20, pp. 209–220. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl,
Germany (2013). https://doi.org/10.4230/LIPIcs.STACS.2013.209, http://drops.
dagstuhl.de/opus/volltexte/2013/3935

12. David, P., Alejandro, S.A.: Graph spanners. J. Graph Theory 13(1), 99–116
(1989). https://doi.org/10.1002/jgt.3190130114. https://onlinelibrary.wiley.com/
doi/abs/10.1002/jgt.3190130114

13. Dinitz, M., Krauthgamer, R.: Directed spanners via flow-based linear programs. In:
Proceedings of the Forty-third Annual ACM Symposium on Theory of Comput-
ing. STOC 2011, pp. 323–332. ACM, New York (2011). https://doi.org/10.1145/
1993636.1993680, http://doi.acm.org/10.1145/1993636.1993680

14. Erdős, P., Rényi, A.: On random graphs, i. Publicationes Mathematicae (Debrecen)
6, 290–297 (1959)

15. Kortsarz, G.: On the hardness of approximating spanners. Algorithmica 30(3),
432–450 (2001). https://doi.org/10.1007/s00453-001-0021-y. https://doi.org/10.
1007/s00453-001-0021-y

16. Mirchandani, P.: The multi-tier tree problem. INFORMS J. Comput. 8(3), 202–218
(1996)

17. Sigurd, M., Zachariasen, M.: Construction of minimum-weight spanners. In: Albers,
S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 797–808. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-30140-0 70

18. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature
393(6684), 440 (1998)

https://doi.org/10.1109/TNET.2004.826288
https://doi.org/10.1145/1361192.1361200
https://doi.org/10.1145/1361192.1361200
https://doi.org/10.4230/LIPIcs.STACS.2013.209
http://drops.dagstuhl.de/opus/volltexte/2013/3935
http://drops.dagstuhl.de/opus/volltexte/2013/3935
https://doi.org/10.1002/jgt.3190130114
https://onlinelibrary.wiley.com/doi/abs/10.1002/jgt.3190130114
https://onlinelibrary.wiley.com/doi/abs/10.1002/jgt.3190130114
https://doi.org/10.1145/1993636.1993680
https://doi.org/10.1145/1993636.1993680
http://doi.acm.org/10.1145/1993636.1993680
https://doi.org/10.1007/s00453-001-0021-y
https://doi.org/10.1007/s00453-001-0021-y
https://doi.org/10.1007/s00453-001-0021-y
https://doi.org/10.1007/978-3-540-30140-0_70

Author Index

Ahmed, Reyan 541
Ameranis, Konstantinos 343

Baldo, Fabiano 202
Bonnet, Édouard 167
Borradaile, Glencora 98

Çalık, Çağdaş 332
Cleve, Jonas 317

Daescu, Ovidiu 454
Denzumi, Shuhei 265
Dufossé, Fanny 248
Dworkin, Morris 332
Dykas, Nathan 332

Ekim, Tınaz 21
Emiris, Ioannis Z. 1

Fălămaş, Diana-Elena 167
Fernandez, Marcel 513
Fotakis, Dimitris 343
Funke, Stefan 158

Gamby, Ask Neve 473
Gelashvili, Koba 114
Geppert, Hanna 359
Ghosh, Anirban 142
Godinho, Noé 69
Grdzelidze, Nikoloz 114
Greco, Alessio 392
Gu, Hanyu 527

Hamm, Keaton 541
Hicks, Brian 142
Hu, Qifu 82

Jordanov, Ivan 505
Jovanovic, Raka 490

Kampel, Ludwig 300
Katajainen, Jyrki 376, 473
Katsamaki, Christina 1

Kawahara, Jun 125
Kaya, Kamer 248
Kobourov, Stephen 541
Krishnaa, Prem 51
Kumar, Neeraj 35

Latifi Jebelli, Mohammad Javad 541
Le, Hung 98
Li, Angsheng 82
Liu, Jun 82
Livieratos, John 513

M. Perera, Sirani 184
Malik, Hemant 454
Malík, Josef 283
Matsuda, Kotaro 265
Mendel, Thomas 158
Mulzer, Wolfgang 317

Nakamura, Kengo 265
Nasre, Meghana 51
Nicosia, Giuseppe 392
Nishino, Masaaki 265

Ogle, Austin 184
Önal, Umutcan 408

Pan, Yicheng 82
Panagiotas, Ioannis 248
Paquete, Luís 69
Parpinelli, Rafael S. 202
Peralta, Rene 332
Petrozziello, Alessio 505
Phan, Duc-Minh 237

Riccio, Salvatore Danilo 392

Sahneh, Faryad Darabi 541
Saitoh, Toshiki 125
Schmitt, João P. 202
Şeker, Oylum 21
Shalom, Mordechai 21
Shevchenko, Ronald 142

Silverio, Daniel 184
Simos, Dimitris E. 300
Somani, Vedant 51
Spence, Richard 541
Suchý, Ondřej 283
Sullivan, Blair D. 424
Suzuki, Hirofumi 125

Tamaki, Hisao 219
Timmis, Jon 392
Tutberidze, Mikheil 114

Uçar, Bora 248
Utture, Akshay 51

Valla, Tomáš 283
van der Poel, Andrew 424

Vathis, Nikolaos 343
Viennot, Laurent 237
Voß, Stefan 490

Wagner, Michael 300
Watrigant, Rémi 167
Wilhelm, Martin 359
Woodlief, Trey 424

Yasuda, Norihito 265
Yoshinaka, Ryo 125

Zafeirakopoulos, Zafeirakis 408
Zhang, Yefei 527
Zheng, Baigong 98
Zinder, Yakov 527

564 Author Index

	Preface
	Organization
	Contents
	Voronoi Diagram of Orthogonal Polyhedra in Two and Three Dimensions
	1 Introduction
	2 Basic Definitions and Properties
	3 Subdivision Algorithm in Two Dimensions
	3.1 Subdivision Phase
	3.2 Reconstruction Phase
	3.3 Primitives, Data-Structures, Complexity

	4 Subdivision Algorithm in Three Dimensions
	5 Implementation and Concluding Remarks
	References

	The Complexity of Subtree Intersection Representation of Chordal Graphs and Linear Time Chordal Graph Generation
	1 Introduction
	2 Preliminaries
	3 Contraction-Minimal Representations
	3.1 Chordal Graph Generation in Linear Time
	3.2 Experimental Studies

	4 Arbitrary Representations
	5 Conclusion
	References

	Computing a Minimum Color Path in Edge-Colored Graphs
	1 Introduction
	1.1 Our Contribution

	2 Hardness of Approximation
	3 An O(n2/3)- Approximation Algorithm
	4 Fast Heuristic Algorithms and Datasets
	4.1 Min-color Path in Uniformly Colored Random Graphs
	4.2 Constructing Hard Instances
	4.3 ILP Formulation
	4.4 Greedy Strategies
	4.5 Experiments and Results

	5 Conclusion
	References

	Student Course Allocation with Constraints
	1 Introduction
	2 Algorithm Description
	2.1 Iterative Algorithm Framework
	2.2 Gale-Shapley Algorithm in the Iterative Algorithm Framework
	2.3 First Preference Allotment in the Iterative Algorithm Framework
	2.4 Extending the Iterative Algorithm Framework to additionally allow downward feasible constraints for courses

	3 Theoretical Guarantees
	3.1 Characterization of Pareto Optimality in the Many-to-Many Setting
	3.2 Proof of Pareto Optimality from the Student Side
	3.3 Time Complexity

	4 Evaluation Metrics
	4.1 Mean Effective Average Rank
	4.2 Other Metrics

	5 Experimental Results
	5.1 Input Data Generator
	5.2 Effect of Varying Instance Size
	5.3 Effect of Increasing Competition
	5.4 Effect of Varying Preference List Sizes
	5.5 Discussion

	6 Conclusion
	References

	A Combinatorial Branch and Bound for the Min-Max Regret Spanning Tree Problem
	1 Introduction
	2 A Framework for a Branch and Bound
	2.1 A Lower Bound
	2.2 An Upper Bound

	3 A Combinatorial Branch and Bound Algorithm
	4 Numerical Experiments
	4.1 Effect of Pruning
	4.2 Effect of Edge Density and Number of Scenarios
	4.3 Comparison with the Approach in ch5minspsmaxspspseudo

	5 Discussion and Conclusion
	References

	Navigating a Shortest Path with High Probability in Massive Complex Networks
	1 Introduction
	1.1 Related Works
	1.2 Our Methods
	1.3 Outlines

	2 Preliminary
	3 Algorithm Description
	3.1 Navigator
	3.2 Navigation Algorithms

	4 Experiments
	4.1 Datasets and Environment Description
	4.2 Evaluation Metrics
	4.3 Analysis

	5 Conclusion
	References

	Engineering a PTAS for Minimum Feedback Vertex Set in Planar Graphs
	1 Introduction
	1.1 Case Study: Feedback Vertex Set

	2 Preliminaries
	2.1 Balanced Separator
	2.2 Kernelization Algorithm

	3 Corrected Reduction Rule
	4 Polynomial-Time Approximation Scheme
	5 Engineering Considerations
	5.1 Kernelization Algorithm
	5.2 Balanced Separators
	5.3 Heuristics

	6 Experimental Results
	6.1 Runtime
	6.2 Solution Quality
	6.3 Effects of Parameters on Performance

	7 Conclusions
	References

	On New Rebalancing Algorithm
	1 Introduction
	2 qBalance Algorithm Over Binary Search Tree. The Comparison with DSW Algorithm
	3 qBalance Algorithm over Ordered Search Tree (OST). The Comparison with Sedgewick Algorithm
	4 qBalance Algorithm Over Doublestructured RB Tree. The Comparison with the Modified Sedgewick Algorithm
	5 qBalane Algorithm for Standard RB Tree. The Comparison Between Sequential and Parallel (Two Threads) Implementations
	6 Conclusion
	References

	Colorful Frontier-Based Search: Implicit Enumeration of Chordal and Interval Subgraphs
	1 Introduction
	2 Preliminaries
	2.1 Forbidden Induced Subgraphs and Chordal and Interval Graphs
	2.2 Multi-valued Decision Diagrams
	2.3 Frontier-Based Search

	3 Graph Classes Constructed by Colorful Frontier-Based Search
	3.1 Colorful FBS for Colored Degree Specified Graphs
	3.2 Coloring Graphs in X31, XF21 and XF30
	3.3 Decolorization

	4 Induced Subgraph and FIS-Characterization
	4.1 Colorful FBS for Edge-Inducing
	4.2 Recursive Algorithm
	4.3 2-DDs for Interval and Proper Interval Subgraphs

	5 Experiments
	6 Conclusion
	References

	Unit Disk Cover for Massive Point Sets
	1 Introduction
	2 Algorithms
	2.1 HM-1985: Hochbaum and Mass (1985)
	2.2 G-1991: Gonzalez (1991)
	2.3 CCFM-1997: Charikar, Chekuri, Feder, and Motwani (1997)
	2.4 FCB-2001: Franceschetti, Cook, and Bruck (2001)
	2.5 LL-2014: Liu and Lu (2014)
	2.6 BLMS-2017: Biniaz, Liu, Maheshwari, and Smid (2017)
	2.7 DGT-2018: Dumitrescu, Ghosh, and Tóth (2018)
	2.8 GHS: A Fast 7-Approximation Algorithm

	3 Experimental Results
	4 Conclusion
	References

	Improved Contraction Hierarchy Queries via Perfect Stalling
	1 Introduction
	1.1 Contribution and Outline

	2 Preliminaries
	2.1 Contraction Hierarchies
	2.2 CH-Based Hub Labels

	3 Perfect Stalling
	3.1 Precomputing Perfect Stalling Decisions

	4 Experiments
	4.1 Data Sets, CH and HL Precomputation
	4.2 Stalling Trace Construction
	4.3 Queries

	5 Conclusion
	References

	Constraint Generation Algorithm for the Minimum Connectivity Inference Problem
	1 Introduction and Related Work
	2 Constraint Generation Algorithm for MCI
	2.1 Presentation
	2.2 Choice of Cuts

	3 Experimental Evaluation
	3.1 Generation of Instances
	3.2 Comparison with the Flow-Based MILP Formulation

	4 Enumeration Algorithm
	5 Conclusion
	References

	Efficient Split-Radix and Radix-4 DCT Algorithms and Applications
	1 Introduction
	2 Simple, Self-recursive, Split-Radix and Radix-4 DCT Algorithms
	2.1 Frequently Use Notations
	2.2 Self-enclosed, Sparse, and Scaled Orthogonal Factors for DCT II/III
	2.3 Self Recursive Split-Radix and Radix-4 DCT II/III Algorithms

	3 Complexity of the Proposed DCT II/III Algorithms
	3.1 Arithmetic Complexity of Self-recursive Split-Radix and Radix-4 DCT II/III Algorithms
	3.2 Complexity Comparison of DCT II/III Algorithms
	3.3 Performance and Execution Time of the Split-Radix and Radix-4 DCT Algorithms

	4 Signal Flow Graphs for Split-Radix and Radix-4 DCT II/III Algorithms
	5 Conclusion
	References

	Analysis of Max-Min Ant System with Local Search Applied to the Asymmetric and Dynamic Travelling Salesman Problem with Moving Vehicle
	1 Introduction
	2 Related Work
	3 Problem Formulation and Modeling
	3.1 The Asymmetric and Dynamic Travelling Salesman Problem with Moving Vehicle (ADTSPMV)
	3.2 Max-Min Ant System (MMAS)
	3.3 MMAS with Local Search
	3.4 MMAS with Memory

	4 Protocol of Experiments, Results and Analysis
	4.1 ADTSP Results
	4.2 ADTSPMV Results

	5 Conclusions and Future Work
	References

	Computing Treewidth via Exact and Heuristic Lists of Minimal Separators
	1 Introduction
	2 Preliminaries
	3 Dynamic Programming for Tree-Decompositions with a Given Set Of available Minimal Separators
	4 Listing Minimal Separators
	4.1 A Minimal a-b Separator Algorithm
	4.2 Nibble and Conquer
	4.3 Heuristic Listing of Minimal Separators

	5 Treewidth Algorithms
	6 Experimental Results
	6.1 Graph Instances
	6.2 Minimal Separator Listing Algorithms
	6.3 Treewidth Algorithms

	References

	Fast Public Transit Routing with Unrestricted Walking Through Hub Labeling
	1 Introduction
	2 Preliminaries
	3 HLRaptor: RAPTOR with Two-Hop Transfers
	4 HLCSA: Connection Scan with Two-Hop Transfers
	5 Public Transit Data
	6 Experiments
	7 Conclusion
	References

	Effective Heuristics for Matchings in Hypergraphs
	1 Introduction
	2 Background and Notation
	3 Heuristics for Maximum d-Dimensional Matching
	3.1 A Greedy Heuristic for Max-d-DM
	3.2 Karp-Sipser for Max-d-DM
	3.3 Karp-Sipser-scaling for Max-d-DM
	3.4 Hypergraph Matching via Pseudo Scaling
	3.5 Reduction to Bipartite Graph Matching
	3.6 Performing Local Search

	4 Experiments
	4.1 Experiments on Random Hypergraphs
	4.2 Evaluating Algorithmic Choices
	4.3 Experiments with Real-Life Tensor Data
	4.4 Experiments with an Independent Set Solver

	5 Conclusion and Future Work
	References

	Approximated ZDD Construction Considering Inclusion Relations of Models
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Zero-Suppressed Binary Decision Diagrams
	3.2 False Positives/False Negatives

	4 Approximation of a Given ZDD
	4.1 Node Merging Without False Negatives
	4.2 Finding All Inclusion Relations in Each Layer
	4.3 Finding Inclusion Relations Under Monotonicity
	4.4 Greedy Reduction by Selecting Nodes to Be Incorporated

	5 On-the-Fly Approximation in the Construction of a ZDD
	5.1 ZDD Construction by Depth-First Dynamic Programming
	5.2 Approximated Construction in Depth-First Manner

	6 Experiments and Results
	6.1 Approximation of a Given ZDD
	6.2 On-the-Fly Approximation

	7 Conclusion
	A Speeding Up Finding Inclusion Relations Under Monotonicity
	References

	Efficient Implementation of Color Coding Algorithm for Subgraph Isomorphism Problem
	1 Introduction
	1.1 Related Work
	1.2 Basic Definitions

	2 Algorithm Description
	2.1 Idea of the Algorithm
	2.2 Initial Algorithm Modification
	2.3 Further Implementation Optimizations

	3 Experimental Results
	3.1 Algorithm Properties and Performance
	3.2 Comparison on Real World Graphs and Fixed Graph Patterns
	3.3 ICPR2014 Contest Graphs
	3.4 Erdős-Rényi Graph Setup

	4 Conclusion
	References

	Quantum-Inspired Evolutionary Algorithms for Covering Arrays of Arbitrary Strength
	1 Introduction
	2 Evolutionary Algorithms and Quantum Computing
	3 A Quantum-Inspired Evolutionary Algorithm for CAs
	3.1 Simplified Qubit-Representation
	3.2 Algorithmic Description

	4 Experimental Results
	4.1 Parameter Tests for Rotation and Mutation
	4.2 Algorithm Evaluation

	5 Conclusion and Future Work
	References

	An Experimental Study of Algorithms for Geodesic Shortest Paths in the Constant-Workspace Model
	1 Introduction
	2 The Four Shortest-Path Algorithms
	2.1 The Classic Algorithm by Lee and Preparata
	2.2 Using Constrained Delaunay-Triangulations
	2.3 Using Trapezoidal Decompositions
	2.4 The Makestep Algorithm

	3 Our Implementation
	3.1 General Implementation Details
	3.2 Implementing the Algorithm by Lee and Preparata
	3.3 Implementing Delaunay and Trapezoid
	3.4 Implementing Makestep

	4 Experimental Setup
	4.1 Generating the Test Instances
	4.2 Executing the Tests
	4.3 Test Environment

	5 Experimental Results
	6 Conclusion
	A Tables of Experimental Results
	References

	Searching for Best Karatsuba Recurrences
	1 Introduction
	2 Finding Minimum-Size Spanning Bilinear Forms
	2.1 Description of the Problem
	2.2 Method for Finding Spanning Sets of Bilinear Forms

	3 Finding Small Circuits for the Linear Maps Determined by each Bilinear Form
	4 Experimental Results
	4.1 6-way Split
	4.2 7-way Split
	4.3 8-way Split

	5 Implications for the Circuit Complexity of Binary Polynomial Multiplication
	References

	Minimum and Maximum Category Constraints in the Orienteering Problem with Time Windows
	1 Introduction
	2 Previous Work
	3 Problem Formalization
	4 Algorithmic Approaches
	4.1 Iterated Local Search
	4.2 Supervised Learning Iterated Local Search
	4.3 Replace-Based Local Search
	4.4 IP Solutions

	5 Experimental Results
	5.1 Datasets
	5.2 Unconstrained Setting
	5.3 Constrained Setting

	6 Conclusion and Future Work
	References

	Internal Versus External Balancingpg in the Evaluation of Graph-Based Number Types
	1 Introduction
	2 Concepts
	2.1 Graph Restructuring
	2.2 Error Bound Balancing

	3 Experiments
	3.1 List-Like Expression Dags
	3.2 Blocking Nodes
	3.3 Balanced Expression Dags
	3.4 Common Subexpressions
	3.5 A Note on Floating-Point Primitives

	4 Conclusion
	References

	Hacker's Multiple-Precision Integer-Division Program in Close Scrutiny
	1 Introduction
	2 Long-Division Algorithm
	2.1 Software Stack
	2.2 Algorithm Description
	2.3 Asymptotic Analysis

	3 Implementation
	3.1 Function is_less
	3.2 Function difference
	3.3 Function product
	3.4 Main Loop

	4 Meticulous Analysis
	5 Integration with the Library
	6 Benchmarking
	6.1 Computing Environment
	6.2 Small Numbers
	6.3 Large Numbers

	7 Final Remarks
	References

	Assessing Algorithm Parameter Importance Using Global Sensitivity Analysis
	1 Introduction
	2 Experimental Setup
	2.1 Non-dominated Sorting Genetic Algorithm III (NSGA-III)
	2.2 Multi-objective Evolutionary Algorithm Based on Decomposition (MOEA/D)
	2.3 Metrics
	2.4 Sensitivity Analysis Techniques
	2.5 The Problems
	2.6 The Design Automation Framework

	3 Results
	4 Conclusions
	References

	A Machine Learning Framework for Volume Prediction
	1 Introduction
	1.1 Polytopes
	1.2 Our Goal and Structure of the Paper

	2 Description of the Models
	2.1 Encoding a Polytope
	2.2 The Problems
	2.3 Modular Vs End-to-End
	2.4 The Models

	3 Description of Data
	3.1 Normalization

	4 Experimental Results
	4.1 Comparison of the Models

	5 Conclusion
	References

	Faster Biclique Mining in Near-Bipartite Graphs
	1 Introduction
	2 Preliminaries
	2.1 Related Work
	2.2 Notation and Terminology

	3 Algorithms
	3.1 MIB Algorithm Framework
	3.2 Enum-MIB
	3.3 OCT-MIB-II
	3.4 OCT-MICA

	4 Implementation
	4.1 Algorithm Framework
	4.2 MICA

	5 Experiments
	5.1 Data and Experimental Setup
	5.2 Initial Benchmarking
	5.3 Larger Graphs
	5.4 Computational Biology Data

	6 Conclusion
	A MIB-Enumeration Framework Subroutines
	A.1 MakeIndMaximal
	A.2 AddTo

	B MB-Enumeration Framework Subroutines
	B.1 MakeMaximal
	B.2 Consensus

	C Additional Enumeration Experiments
	References

	k-Maximum Subarrays for Small k: Divide-and-Conquer Made Simpler
	1 Introduction
	2 Previous Work
	3 k-Maximum Subarrays by Divide and Conquer
	4 An Improved Algorithm for k-Maximum Subarrays
	5 Implementation and Experiments
	6 Conclusion
	References

	A Faster Convex-Hull Algorithm via Bucketing
	1 Introduction
	2 Bucketing
	3 Micro-benchmarking
	4 Competitors
	5 Experiments
	6 Reflections
	References

	Fixed Set Search Applied to the Minimum Weighted Vertex Cover Problem
	1 Introduction
	2 Greedy Algorithm
	3 Local Searches
	3.1 Element Swap
	3.2 Pair Swap
	3.3 Local Search

	4 GRASP
	5 Fixed Set Search
	5.1 Fixed Set
	5.2 Learning Mechanism

	6 Results
	7 Conclusion
	References

	Automated Deep Learning for Threat Detection in Luggage from X-Ray Images
	Abstract
	1 Introduction
	2 Threat Identification Framework
	3 Experimentation and Results
	4 Conclusion
	References

	Algorithmic Aspects on the Construction of Separating Codes
	1 Introduction
	2 Definitions and Previous Results
	2.1 Separating Codes
	2.2 Algorithmic Lovász Local Lemma

	3 A Lower Bound on the Rate of 2-Separating Binary Codes
	4 Explicit Constructions
	4.1 Direct Application of the Algorithmic LLL for Constructing 2-Separating Codes
	4.2 Constructions of Polynomial Complexity

	5 Conclusions
	References

	Lagrangian Relaxation in Iterated Local Search for the Workforce Scheduling and Routing Problem
	1 Introduction
	2 Problem Description
	3 Xie-Potts-Bektaş Algorithm
	4 Lagrangian Relaxation Based Modification of the Xie-Potts-Bektaş Algorithm
	5 Computational Experiment
	5.1 Setting of the Algorithms
	5.2 Evaluation of Different Step Length
	5.3 Comparison of the Performance

	6 Conclusion
	References

	Approximation Algorithms and an Integer Program for Multi-level Graph Spanners
	1 Introduction
	1.1 Multi-level Graph Spanners
	1.2 Related Work

	2 Approximation Algorithms for MLGS
	2.1 Oracle Bottom-Up Approach
	2.2 Oracle Top-Down Approach
	2.3 Combining Top-Down and Bottom-Up
	2.4 Heuristic Subsetwise Spanners

	3 Integer Linear Programming (ILP) Formulations
	3.1 ILP Formulation for the MLGS Problem
	3.2 Size Reduction Techniques

	4 Experimental Results
	4.1 Setup
	4.2 Results

	5 Discussion and Conclusion
	A Proof of Theorem 4
	B Proof of Theorem 6
	C Proof of Theorem7
	D Experimental Results on Graphs Generated Using Watts-Strogatz
	E Experimental Results on Large Graphs Using Erdős-Rényi
	References

	Author Index

