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Abstract
Altered metabolism is one of the key hall-
marks of cancer. The development of sensi-
tive, reproducible and robust bioanalytical 
tools such as Nuclear Magnetic Resonance 
Spectroscopy and Mass Spectrometry tech-
niques offers numerous opportunities for can-
cer metabolism research, and provides 
additional and exciting avenues in cancer 
diagnosis, prognosis and for the development 
of more effective and personalized treatments. 
In this chapter, we introduce the current state 
of the art of metabolomics and metabolic phe-
notyping approaches  in cancer research and 
clinical diagnostics.
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19.1	 �Metabolic Alterations 
in Cancer

It is well known that cancer cells undergo meta-
bolic reprogramming in order to sustain the ana-
bolic requirements of tumorigenesis and cellular 
proliferation. This can be achieved by mutations 
in genes regulating oncogenic signaling path-
ways ultimately interfering with the expression 
of key metabolic enzymes (Pavlova and 
Thompson 2016). Generally speaking, cancer 
cells tend to display enhanced uptake of glucose, 
amino acids such as glutamine and other nutri-
ents, increased reliance on glycolysis for ATP 
production, TCA cycle intermediates for biosyn-
thesis and NADPH production (Pavlova and 
Thompson 2016). These metabolic changes also 
bring about alterations in metabolite-driven gene 
regulation and metabolic interactions with the 
tumor microenvironment (Pavlova and Thompson 
2016), which in turn will have implications in 
tumor progression and invasiveness.

The most well known metabolic change in 
cancer occurs in central metabolism with the 
increased use of aerobic glucose metabolism in 
which cellular glucose import is increased to 
generate ATP and lactic acid, known as the 
Warburg effect (Sanderson and Locasale 2018). 
The enhanced glucose consumption was the basis 
of the positron-emission tomography (PET) 
imaging in which a glucose analogue, 18F-fluoro-
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2-deoxyglucose (FDG), is used to detect tumor 
activity, enabling cancer diagnosis, staging and 
treatment follow-up (Zhu et  al. 2011). Another 
important metabolic alteration is the increased 
glutamine uptake, which was shown to be impli-
cated in important pathways such as the synthesis 
of NADPH and as a source of nitrogen in the bio-
synthesis of non-essential amino acids and nucle-
otides (Pavlova and Thompson 2016). Glutamine 
can also play an important role in the cellular 
import of essential amino acids such as leucine, 
isoleucine, valine, methionine, tyrosine, trypto-
phan, and phenylalanine by acting as an anti-
porter through the LAT1 membrane transporter 
(Pavlova and Thompson 2016). Similarly to PET-
FDG, 18F-fluoroglutamine, a compound analo-
gous to glutamine has been tested in diagnostic 
PET imaging (Dunphy et  al. 2018), and is par-
ticularly useful as an alternative to FDG in tissues 
where glucose utilization is physiologically high, 
such as in brain tissue. The described applica-
tions are some examples of techniques aimed at a 
few metabolic alterations that motivated the 
development of diagnostic imaging techniques 
which are nowadays in current clinical practice. 
By looking simultaneously to all possible metab-
olites in a tissue or body fluid, metabolomics, 
metabolic profiling and phenotyping techniques 
aim at exploring other tissue- or tumor-specific 
metabolic alterations, ultimately contributing to 
the knowledge of disease mechanisms and to the 
development of diagnostic tools. The current 
chapter aims at introducing the reader to the field 
of metabolomics and metabolic phenotyping and 
illustrate some of the most important applications 
in the study of cancer metabolism and 
diagnostic.

19.2	 �Metabolomics and Metabolic 
Phenotyping

Metabolic phenotyping/metabolomics aims to 
take a holistic view of a biological sample and is 
broadly defined as the comprehensive measure-
ment and fingerprinting of low molecular weight 
compounds in biological samples to understand 
their roles in cellular functions and diseases. 

Whilst the terminology of metabolomics/meta-
bonomics were introduced in the late 1990s, the 
concept of utilizing the distinctive color, odor or 
taste of human urine for clinical applications 
were documented as early as the sixteenth cen-
tury. However, it was not until the twentieth cen-
tury when molecular entities were effectively 
elucidated from biological samples. Separation 
of metabolites in urine samples achieved by 2D 
paper chromatography was reported in 1956 
(Dalgliesh 1956) and the technique was success-
fully applied to identify metabolites associated 
with cystinuria, argininosuccinic aciduria and 
Hartnup disease. Development of gas chromatog-
raphy meant that by the 1970s up to around 250 
volatile components could be detected in urine 
and breath samples. NMR spectroscopy was first 
applied in 1967 to identify a urinary metabolite 
associated with  an inborn error of metabolism 
(Tanaka and Isselbacher 1967), and the profiling 
of multiple chemicals in urine or blood samples 
by NMR were first reported by Nicholson et al. 
in  1984. The advent of information technology 
and the explosion of computational infrastruc-
tures in the early 1990s meant statistical tech-
niques were now being developed in earnest to 
address the data analytics challenges – helping to 
analyze and visualize the multivariate datasets. 
Wishart et al. have made great progress in defin-
ing the composition of the human serum metabo-
lome, and later the human urine metabolome, and 
in setting up the Human Metabolome Database 
(HMDB) containing background information 
and spectral data of a large collection of com-
pounds (Wishart et al. 2013). More recently, we 
see a number of well-resourced specialist meta-
bolic phenotyping centers being setup to support 
large-scale, high-throughput metabolomics serv-
ing researchers across the biomedical research 
communities.

The first studies that look for a large set of 
metabolites in the context of cancer can be dated 
to the 1980s, but the technical developments and 
recognizing the importance of metabolic altera-
tions in cancer, lead to an increased interest in 
metabolomics applied to cancer research since 
2004 (Fig. 19.1). In the first years the number of 
publications using MS or NMR approaches were 
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very similar. However since 2012 the number of 
papers with a MS approach outperforms the stud-
ies using NMR (Fig.  19.1). The preference for 
MS in metabolomics studies results from its 
higher sensitivity, smaller sample size demands 
and relatively lower operational costs. The tech-
nology developments in MS instrumentation, 
software databases and tools introduced in the 
last decade, has also permitted an increase in 
resolution and ease of analysis (Amberg et  al. 
2017; Emwas 2015; Bingol 2018). Nevertheless, 
NMR spectroscopy continues to have an impor-
tant role in cancer metabolomics and more 
importantly, the combination of NMR and MS 
approaches provides additional metabolite cover-
age (Psychogios et al. 2011; Wishart et al. 2013).

Important information about metabolic path-
ways and fluxes can be drawn from metabolic 
studies using stable isotope tracers, which can be 
considered as one of the next-generation applica-
tions of metabolomics. In this field, NMR meth-
odologies have unique advantages, since it allows 
the determination of the position of the isoto-
pomers from isotopically enriched metabolites, 
the identification and structure elucidation of 
unknown metabolites as well as the analysis of 
metabolic pathways dynamics in vivo and in situ 

in cell culture, tissues and whole organisms (Fan 
et al. 2012; Fan and Lane 2016).

Metabolomics studies are usually divided into 
two categories: targeted, where only selected 
metabolites are analyzed, e.g. from one single 
metabolic pathway; and untargeted studies which 
do not focus on any particular set of metabolites 
and all signals from either NMR or MS are 
analyzed.

19.2.1	 �Nuclear Magnetic Resonance 
(NMR) Spectroscopy

Nuclear Magnetic Resonance Spectroscopy 
(NMR) is a powerful and versatile analytical 
technique. It is used in diverse fields from the 
structural elucidation of macromolecules and 
small molecules to the quantification of metabo-
lites present in a sample. NMR was discovered in 
the mid 1940s, by two different groups (Purcell 
et al. 1946; Bloch et al. 1946) and from the begin-
ning it was used to characterize molecules, with 
the first commercial spectrometer developed in 
1952 (Marion 2013). The basic principle of NMR 
involves the atomic nucleus. A nucleus with a 
non-zero nuclear spin (an odd atomic number), 

Fig. 19.1  Number of papers using metabolomic 
approaches in cancer research by year (search was per-
formed on March 2019  in Scopus limited to original 
papers that mention ((“nuclear magnetic resonance” OR 
NMR) AND Cancer AND (metabolomics OR metabo-

nomics OR “metabolic profile”)) or ((“Mass spectrome-
try” OR MS) AND Cancer AND (metabolomics OR 
metabonomics OR “metabolic profile”)) in the title, 
abstract or keyword)
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Fig. 19.2  Example of NMR spectra of different bioflu-
ids used in cancer NMR metabolomics: (a) Ascitic fluid 
from an ovarian tumor patient; (b) Cerebrospinal fluid 
(CSF) from a non-Hodgkin lymphoma patient; (c) Serum 

from an ovarian tumor patient; and (d) Urine from a 
paraganglioma patient. All spectra were acquired in an 
800 MHz spectrometer at 298 K, except the serum which 
was acquired in a 600  MHz spectrometer at 310  K. 
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when placed in an external magnetic field can 
absorb and re-emit radiofrequency with a fre-
quency characteristic of the magnetic field acting 
on the nucleus. The magnetic field of each 
nucleus in the sample depends on the action of 
the external magnetic field and the weak mag-
netic fields each nucleus in its vicinity (Marion 
2013). As a result, each nucleus in a molecule has 
a resonance at a characteristic frequency, which 
allows the identification and structural character-
ization of a molecule.

NMR spectroscopy is extremely useful for 
studying biological systems, since one of the 
most sensitive nuclei, the hydrogen isotope (1H 
or proton), has a natural abundance of almost 
100%. The protons with similar molecular envi-
ronment are called equivalent and produce sig-
nals in the 1H-NMR spectrum at specific 
frequencies (Fig.  19.2). The signal intensity is 
directly proportional to the number of protons 
that originate the signal, and also to the concen-
tration of the molecule in the sample. The prox-
imity of other nuclei inside the molecule also 
produces signal splitting (multiplicity) which 
varies according to the number of nuclei in the 
vicinity. These characteristics make NMR spec-
troscopy a very popular and powerful technique 
for metabolomics. Moreover, NMR is highly 
reproducible even between different spectrome-
ters (at the same magnetic field strength and simi-
lar hardware configurations) and/or operators 
(Dona et al. 2014). It is also a very versatile tech-
nique, making it possible to analyze intact tissues 
or biofluids, in most of the cases, with minimal 
sample preparation (Fig. 19.2). The sample is not 
consumed in the analysis, thus it can be reana-
lyzed for as long as it remains stable. The appli-
cation of different NMR techniques enables the 
identification of unknown compounds and its 
structure elucidation (Graça et  al. 2019). NMR 
versatility to study biological systems is extended 

beyond proton to other magnetic nuclei present in 
organic molecules (e.g. 31P, 13C or 15N) (Gowda 
and Raftery 2017). An example is the use of 31P-
NMR in prostate cancer, which can be used to 
measure the changes in phospholipid contents in 
the prostate tissues induced by the carcinoma 
(Cornel et al. 1993; Komoroski et al. 2011). The 
major drawback of NMR is the low sensitivity 
when compared to MS techniques, as it detects 
compounds with concentrations of >50 μM while 
MS compounds with concentrations >10–100 nM 
(Emwas et al. 2019). Recent advances to improve 
NMR sensitivity included developments of novel 
pulse sequences, new probes, spectrometers with 
higher magnetic fields strengths and by applying 
enhanced signal polarization techniques such as 
dynamic nuclear polarization (DNP) (Ardenkjaer-
Larsen et al. 2015).

Another challenge in NMR metabolomics is 
spectral resolution. Biological samples contain 
hundreds to thousands of metabolites which pro-
duce hundreds of NMR signals leading to signifi-
cant signal overlap (Fig.  19.2), which makes 
metabolite identification and concentration deter-
mination difficult tasks. These challenges have 
been tackled through the development of spectral 
deconvolution software such as Chenomx 
(Chenomx Inc., Edmonton, Canada) and 
BATMAN (Hao et al. 2012) and comprehensive 
spectral databases, such as HMDB (Wishart et al. 
2013). Two-dimensional NMR experiments (2D 
NMR), where signals are dispersed into more 
than one frequency dimension, constitute also an 
essential tool for metabolite identification in such 
complex samples (Emwas 2015; Graça et  al. 
2019). Despite their advantages, the use of 2D 
NMR as a profiling platform in metabolomics 
has been hindered by the long experimental times 
of 1 to several hours. For this reason, 1D NMR 
experiments are still routinely used and reported 
in vast majority of the studies. Nevertheless, new 

Fig. 19.2 (continued)  A noesygppr1d pulse program was 
used for the CSF and urine, while in serum and ascitic fluid 
a cpmgpr1d pulse program was used to suppress the sig-
nals from macromolecules (proteins and lipoproteins). 
Some of the metabolites detected are indicated: 1-formate, 
2-histidine, 3-phenylalanine, 4-tyrosine, 5-urea, 6-glucose, 

7-ascorbate, 8-lactate, 9-creatinine 10-myo-inositol, 
11-creatine, 12-phosphocreatine, 13-glycine, 14-choline, 
15-phosphocholine, 16-dimethylamine, 17-citrate, 18-glu-
tamate, 19-pyruvate, 20-acetoacetate, 21-acetone, 22-ace-
tate, 23-glutamine, 24-alanine, 25-3-hydroxybutyrate, 
26-valine, 27-leucine, 28-isoleucine
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fast 2D techniques which reduce significantly the 
2D spectral acquisition time, have been intro-
duced in biofluids NMR metabolomics with very 
promising results. These include ultrafast (UF) 
NMR and non-uniform sampling (NUS) 
(Guennec et al. 2014; Marchand et al. 2017).

19.2.2	 �Mass Spectrometry Methods

Mass spectrometry (MS) is a very popular and 
powerful analytical technique which has found 
particular use for the elucidation of molecular 
structures and quantitative analysis of small mol-
ecules such as metabolites. MS was introduced in 
the beginning of the twentieth century and gained 
widespread popularity in the late 1950s. The tech-
nique is based on the detection of charged mole-
cules in the gas phase (Glish and Vachet 2003). 
Because, not all compounds are easily ionizable 
and volatile, the technique was limited to gaseous 
samples for several years since its introduction. It 
was not until the late 1980s that new ionization 
techniques such as electrospray ionization (ESI) 
and matrix-assisted desorption-ionization 
(MALDI) enabled the direct ionization of mole-
cules from the liquid and solid samples, respec-
tively, into the gas phase (Glish and Vachet 2003). 
While ESI enables the generation of ions from 
liquid samples by generation of charged micro-
particles after passing the sample through a 
charged needle, in MALDI, the sample is mixed 
with a light absorbing compound (matrix) which, 
when excited with laser light promotes de ioniza-
tion and displacement of ions from the sample 
(Glish and Vachet 2003; Bodzon-Kulakowska and 
Suder 2016). Other important group of ionization 
techniques are the ambient-pressure ionization 
techniques which enable, for instance, the with-
drawal of ions directly from solid samples into the 
mass spectrometer (Glish and Vachet 2003; Hänel 
et al. 2019). Among these, desorption-electrospray 
ionization (DESI) technique has special impor-
tance in mass spectrometry imaging, as it will be 
described in more detail in Sect. 19.3.7.3. In 
DESI, ions are withdrawn from the sample by a 
jet of gas and charged micro droplets usually ori-
ented at an angle close to 45° to sample surface, 

then injected into the ESI MS source (Hänel et al. 
2019). Another ionization technique with impor-
tant applications in imaging is secondary ion MS 
(SIMS), in which ions are extracted from the sam-
ple surface (secondary ions) after collision with 
primary ions from an inorganic ion beam 
(Bodzon-Kulakowska and Suder 2016).

Ionization occurs at the inlet of the mass spec-
trometer, known as the source. After ionization, 
the ions are transmitted to the mass analyzer, 
which is composed of a series of charged metal 
plates under vacuum, where the ions are sepa-
rated according to their mass-to-charge ratio 
(m/z), before hitting the detector (Glish and 
Vachet 2003). A mass spectrum, a representation 
of the ion abundance as a function of each ion 
m/z is then produced (Fig. 19.3a).

In comparison to NMR spectroscopy, MS is 
more sensitive, also requiring lower amounts of 
sample. On the other hand, the sample is con-
sumed during analysis because the ions are lost 
after reaching the detector.

The MS spectrum of a pure compound can be 
very simple as the one shown in Fig.  19.3a. 
However, in applications such as metabolomics 
analysis, where complex mixtures are analyzed, 
the spectra can become quite convoluted and dif-
ficult to interpret. As an example of such complex-
ity an MS spectrum of negatively charged 
molecules from a human blood serum lipid extract 
is shown in Fig. 19.3b. Apart from the complexity 
stemming from the peak overlap, in practice the 
most abundant ions can suppress the ionization of 
other ions. To resolve such problems, MS is usu-
ally coupled with online compound physical sepa-
ration such as gaseous- or liquid-chromatography, 
the techniques being termed gas- or liquid- chro-
matography  – MS (GC-MS and LC-MS respec-
tively) or capillary electrophoresis (CE-MS). 
GC-MS is commonly applied to volatile samples, 
whereas LC-MS and CE-MS are usually employed 
to analyze liquid samples and solid sample extracts 
(Emwas 2015). An example of a LC-MS chro-
matogram from a human blood serum lipid extract 
sample is shown in Fig. 19.3c. It is clear that the 
resolution and number of observed peaks (ions) 
increased quite dramatically in comparison to the 
direct MS analysis (Fig. 19.3c).
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Another important feature to MS-based tech-
niques, is that multiple ions can be generated 
from a single compound. As an example, in ESI 
one organic compound can ionize by capturing or 
releasing a proton or by forming adducts with 
other ions already present in the sample (e.g. 
[M + H]+, [M + Na]+, [M-H]−, [M + Formate]−, 
where M represents the organic compound). 
After ionization, some molecules also break into 
charged fragments. Moreover, due to the sensitiv-
ity of the technique, several forms of each com-
pound containing one or more naturally occurring 
isotopes such as 13C (1% abundance), isotopo-
logues, can also be detected increasing the com-
plexity of the spectrum. These factors will lead to 
higher number of peaks than detected molecules 
in MS datasets, which is something that needs to 
be accounted for when interpreting the data. 
Metabolite identification from MS spectra is 
therefore a non-trivial task. Often, the analyst 
will need to perform searches with the measured 
m/z values on publicly available databases and, 
eventually, run additional ion fragmentation 
experiments to get more insight into the molecule 
identity (Emwas 2015).

19.2.3	 �Statistical Data Analysis

Metabolomics experiments generate large quan-
tities of data composed of thousands of variables 
if simultaneous measurements are collected as in 
untargeted metabolomics experiments. In most 
cases, metabolomics datasets need additional 
processing, such as spectral baseline correction, 
peak alignment, normalization and variable scal-
ing before statistical analysis can be performed. 
These operations are required to correct for sam-
ple dilution, sample preparation and/or analytical 
bias and to scale the relevant contributions of 
each variable (Emwas 2015). Adequate statistical 
analysis tools are then employed to extract mean-
ingful information from the data. Both univariate 
and multivariate statistical approaches can be uti-
lized for these purposes. However, care should be 
taken when using univariate analysis tests for 
untargeted metabolomics data. In those cases, 
multiple tests are usually performed simultane-
ously and the risk of false-discovery results is 
high. In those cases suitable multiple correction 
strategies should be used (Broadhurst and Kell 
2006).

Fig. 19.3  Mass spectra: (a) Leucine enkephalin peptide 
acquired by electrospray ionization in negative ion mode 
(ESI−); (b) human blood serum lipid extract acquired in 
ESI−, (c) LC-MS chromatogram of human blood serum 

lipid extract acquired in positive ion mode (ESI+), where 
mass spectra are acquired continuously during chromato-
graphic separation; RT retention time
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Multivariate analysis (MVA) are the most 
commonly used methods in untargeted metabolo-
mics. They have the double advantage of generat-
ing interpretable statistical summaries of the 
data, which are necessary to pursue biological 
and physiological interpretations, and also 
enabling the development of predictive models of 
the disease under investigation. MVA methods 
can be divided into unsupervised methods, where 
no a priori sample classification or patient infor-
mation is taken into account in the analysis; and 
supervised methods, where the information 
regarding patient diagnostic is included in the 
analysis (Trygg et al. 2007). Examples of unsu-
pervised analysis methods are Principal 
Component Analysis (PCA) and Hierarchical 
Clustering, which are used to investigate similari-
ties between samples and trends in the data. 
Supervised methods such as Partial Least 
Squares – Discriminant Analysis (PLS-DA) and 
related variants (e.g. Orthogonal PLS-DA), 
Random Forests, Support Vector Machines and 
other machine learning approaches are com-
monly used to develop classification models and 
look for metabolites that correlate with the dis-
ease studied (Trygg et  al. 2007; Gromski et  al. 
2015). Supervised methods are obtained in two-
stages: (1) model training, where samples of 
known class are used to generate classification 
models; and (2) model validation, where subsets 
of training data or an external sample set (cross-
validation and test-set validation, respectively) 
are used to test the model classification perfor-
mance (Trygg et al. 2007; Gromski et al. 2015).

19.3	 �Applications to Cancer 
Diagnostics

Metabolomics studies in cancer diagnosis usually 
involve the comparison of matched groups of 
patients (at one or more stages of cancer) versus 
healthy control or benign cases. One or several 
types of biological material are obtained and ana-
lyzed, whose selection is based on the affected 
organ(s). A remarkable collection of studies on 
the application of metabolomics to study cancer 
is available in the literature. It is beyond the scope 

of this chapter to provide a systematic review of 
all studies performed to date for all cancer types. 
Instead applications of metabolomics and meta-
bolic phenotyping to diagnosis, prognosis and 
treatment monitoring of major cancer types are 
illustrated with studies from 2008 to 2019 period, 
organized by sample type.

19.3.1	 �Blood Serum and Plasma

Blood serum and plasma are the most studied 
biological fluids in cancer metabolomics, as they 
reflect metabolite levels entering systemic circu-
lation and directly provide an accessible snapshot 
of the physiological condition of an individual 
without the need of tissue biopsies. Blood metab-
olites could be valuable biomarkers for early dis-
ease detection. For example, the median survival 
interval of patients with pancreatic cancer is cur-
rently less than 12  months and one study has 
identified elevated blood branched-chain amino 
acids as an early risk factor in human pancreatic 
adenocarcinoma development (Mayers et  al. 
2014). Using data from targeted LC-MS methods 
comparing plasma samples from 450 patients to 
their matched controls collected before the onset 
of the disease, the same study found that elevated 
blood branched-chain amino acids were associ-
ated with a twofold increase in future risk in 
developing pancreatic cancer (Mayers et  al. 
2014). Multiple reports indicated that alteration 
of circulating amino acids including tryptophan, 
glutamine, glutamate, phenylalanine and 
branched chain amino acids and lysophosphati-
dylcholine (C18:0, C18:2) could potentially 
serve as useful diagnostic biomarkers for pancre-
atic tumors (Sakai et  al. 2016; Fukutake et  al. 
2015; Akita et al. 2016) which may be linked to 
pancreatic adenocarcinoma-associated cachexia, 
insulin resistance or hyperglycemia.

Tumors located in different organ sites could 
have distinctive footprint on the blood metabo-
lome. For example elevated levels of circulating 
ketone bodies (including 3-hydroxybutyric acid), 
sugars and free fatty acids, and lower levels of 
glycolytic and TCA metabolites have previously 
been reported in ovarian cancer patients (N = 158) 
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which may be the consequence of increased 
activity of fatty acid oxidation in specific tumor 
organ sites (Hilvo et  al. 2016). Furthermore, it 
has been shown that metabolomics performed on 
plasma and serum samples could be applied to 
monitor treatment response in patients. A number 
of studies have demonstrated that pharmacody-
namic response to inhibitors targeting oncogenic 
signaling could be successfully monitored in 
patient’s plasma samples. One such study was 
able to show that changes in phosphatidylcho-
lines and sphingomyelins levels were observed in 
responder patients with advanced melanoma 
treated with a mitogen-activated protein kinase 
(MEK) inhibitor, and that pre-treatment levels of 
a panel of lipids were predictive of inhibitor treat-
ment response (Ang et al. 2017). Furthermore, it 
has been shown in a separate study that time and 
dose-dependent response to Phosphoinositide 
3-kinases (PI3K) inhibitor could be observed in 
patients enrolled in a phase I dose-escalation trial 
(Ang et al. 2016), demonstrating plasma metabo-
lomics could be a valuable resource for translat-
ing and validating preclinical findings in patients. 
Also, plasma metabolomics have been applied to 
predict future cancer risk. A Danish study ana-
lyzed plasma samples from 838 women by 1H-
NMR, where half of the women had developed 
breast cancer between the time of enrolment in 
the study and the follow-up date. The inclusion of 
the NMR data in the risk predictive model 
increased its sensitivity and specificity to above 
80%, and glycerol, ethanol and formate, were 
amongst the metabolites contributing to the pre-
diction model (Bro et al. 2015).

19.3.2	 �Urine

Urine is a noninvasive, accessible and concentra-
tion and volume-rich biofluid for clinicians to col-
lect, and many urinary metabolomics studies have 
focused on tumors located in the urinary tract. For 
example, it has been reported that the levels of 
metabolites involved in glycolysis and fatty acid 
oxidation are altered in patients with bladder 
tumors (N  =  138) compared to control subjects 
(N = 121) and this may be related to changes to 

carnitine transferase and pyruvate dehydrogenase 
complex expression in the patient group (Jin et al. 
2014). One study has identified dopamine 4-sul-
fate, aspartyl-histidine, and tyrosyl-methionine to 
be discriminatory between non-muscle invasive 
bladder cancer patients (N  =  167) and healthy 
controls (N = 117), with higher levels of trypto-
phan metabolites in urine found patients with 
higher grade tumor (Cheng et al. 2018). Kidney 
cancer has also been investigated, and in particu-
lar urinary levels of acylcarnitines have been 
found to discriminate patients with low- and high- 
grade tumors (Ganti et al. 2012).

In addition, urine has been applied to study 
tumors that are remote from the urinary tract, and 
has been successful in differentiating patients 
with malignancies ranging from prostate, lung 
and gastrointestinal cancers such as gastric can-
cer, from their healthy controls (Dinges et  al. 
2019). For example, with NMR metabolomics 
urinary 2-hydroxyisobutyrate, 3-indoxylsulfate, 
and alanine, were identified as discriminatory 
between patients with gastric cancer (N  =  43), 
healthy individuals (N  =  40) and nonmalignant 
gastric conditions (N = 40) with a classification 
accuracy of 95% as indicated through the area 
under the receiver operating characteristic curve 
(Chan et al. 2016). In addition, some reports have 
indicated that tumors of distinct organ systems 
could have unique urine metabolic signatures 
(Woo et  al. 2009; Slupsky et  al. 2010), which 
would be an important consideration if urine 
metabolomics were to be utilized for cancer diag-
nostics in clinics.

Urine metabolomics has also been applied to 
examine the treatment effects of chemotherapy. 
For example, one study used 2D 1H-1H J-resolved 
NMR data to follow the effects of cisplatin in 
patients with non-small-cell lung cancer (N = 5) 
and show that cisplatin alters urinary amino acids 
levels (Doskocz et al. 2015).

19.3.3	 �Cerebrospinal Fluid

Cerebrospinal fluid is traditionally the fluid of 
choice to study neurological conditions. However, 
it has been shown to be an important source of 
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biomarkers of malignant cell invasion to the lep-
tomeninges, which is a relatively rare condition 
of late stage solid and hematologic cancers. In 
this context, two separate studies inspected CSF 
metabolic composition by 1H-NMR spectroscopy 
in leptomeningeal invasion from lung cancer and 
B-cell non-Hodgkin lymphoma and found metab-
olite alterations related to the presence of malig-
nant cells in CSF (An et  al. 2015; Graça et  al. 
2017). An et  al. compared CSF samples from 
controls affected by neurologic conditions 
(N = 41) with samples from patients diagnosed 
with leptomeningeal carcinomatosis from lung 
adenocarcinoma (N = 26). Changes in the levels 
of myo-inositol, creatine, lactate, alanine and 
citrate were the most discriminatory CSF metab-
olites between the two groups of patients (An 
et al. 2015). These authors also reported a good 
correlation between the metabolic profile and the 
grading of radiological leptomeningeal enhance-
ment accessed by magnetic resonance imaging 
(MRI), suggesting the potential utility of CSF 
metabolic profile in grading of  leptomeningeal 
carcinomatosis (An et  al. 2015). Graça et  al. 
compared the CSF metabolic profiles of B-cell 
non-Hodgkin lymphoma patients with positive 
(N = 5) and negative (N = 13) diagnosis of lepto-
meningeal invasion. Among the most significant 
metabolite alterations glycine, alanine, pyruvate, 
acetylcarnitine, carnitine, phenylalanine as well 
as protein signals seemed to be increased in the 
positively diagnosed patients (Graça et al. 2017). 
The authors also found that leptomeningeal inva-
sion  chemotherapy treatment produced sharp 
decreases in the levels of those metabolites in a 
group of follow-up positively diagnosed patients 
(Graça et al. 2017).

19.3.4	 �Ascitic Fluid

Malignant ascites is the abnormal buildup of 
tumor-cell containing fluid in the abdomen, the 
ascitic fluid (Sangisetty and Miner 2012). The 
presence of malignant ascites is generally sig-
nal of an advanced stage of the disease and poor 
prognostic  in ovarian, uterine, colorectal and 
pancreatic cancers (Garrison et  al. 1986). 

Because ascitic fluid can also accumulate in 
other diseases, such as cirrhosis, it is important 
to devise a quick method to determine the 
causes of ascite origin in cases. Some studies 
investigated the origin of ascitic fluid using 
metabolomics, by comparing ovarian carci-
noma patients with cirrhotic patients showing 
promising results (Bala et  al. 2008; Shender 
et  al. 2014). Important differences were 
observed in the levels of fatty acids, choles-
terol, ceramide, glycerol-3-phosphate, glucose, 
and glucose-3-phosphate between ovarian can-
cer patients (N  =  10) and cirrhotic patient 
(N = 5) in a study using GC-MS (Shender et al. 
2014). In a study using 1H-NMR 3-hydroxybu-
tyric acid, lactate, citrate, and tyrosine were the 
metabolites that discriminated between ovarian 
cancer (N = 15) and cirrhotic patients (N = 47) 
(Bala et al. 2008). 1H-NMR metabolomics was 
also applied to identify the metabolic differ-
ences induced by chemotherapy in ovarian 
serous carcinoma effusions, indicating that the 
ascitic fluid levels of glucose and lipids increase 
while the levels of lactate and β-hydroxybutyrate 
decrease after chemotherapy (N  =  35) when 
compared with ascitic fluid before chemother-
apy (N = 44) (Vettukattil et al. 2013).

Animal models have also been used to investi-
gate the development of ascites and ascitic fluid 
in cancer. A metabolomics study of two murine 
xenograft ovarian carcinoma models, one with a 
mouse ID8-vascular endothelial growth factor 
(VEGF)-Defb29 cell line (N = 8) and the human 
OVCAR3 cell line (N  =  5), was carried out to 
characterize the malignant ascites metabolic fea-
tures (Bharti et  al. 2017). Despite the two cell 
lines lead to different metabolic profiles, some 
metabolites were common to both  xenograft 
models: β-hydroxybutyric acid, maleic acid and 
citrate (Bharti et al. 2017).

19.3.5	 �Exhaled Breath Analysis

The analysis of exhaled breath is an established 
non-invasive technique for specific applications 
such as alcoholemia and Helicobacter Pylori 
testing (measurement of 13C urea). Its application 
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to cancer diagnostic focuses on the measurement 
of endogenous volatile organic compounds 
(VOCs), which can be defined as carbon-
containing volatile compounds at room tempera-
ture (Hanna et  al. 2019). Due to their 
physico-chemical properties, VOCs are well 
detected and measured using MS-related tech-
niques, notably GC-MS but also direct-MS mea-
surements (Hanna et al. 2019).

Exhaled breath VOC analysis can provide 
means of early diagnosis and patient stratifica-
tion, particularly in population groups at higher 
risk for cancer development, e.g. smokers or indi-
viduals exposed to volatile and particulate con-
taminants; but also for patients presenting 
non-specific symptoms associated with cancer. 
Therefore, it can help clinicians decide on more 
invasive diagnostic or imaging procedures. The 
non-invasiveness of exhaled breath analysis can 
also lead to more patient enrolment (Hanna et al. 
2019).

Applications of exhaled breath analysis in 
cancer seem particularly suitable in early diagno-
sis of cancer from the respiratory and digestive 
systems such as lung (Fu et  al. 2014; Li et  al. 
2015), gastroesophageal (Kumar et  al. 2015), 
oral cavity (Bouza et al. 2017) and laryngeal can-
cers (Garcia et al. 2014) since the affected organs 
have direct contact with breath. Nevertheless, 
some authors have also explored the application 
to cancers from distant organs such as liver, 
breast, prostate or ovarian (Qin et  al. 2010; 
Barash et al. 2015; Peng et al. 2010; Amal et al. 
2015).

The most popular application is by far the dis-
crimination of groups of lung cancer patients 
from control subjects. Two representative studies 
have reported that VOCs analyses provided sensi-
tivity values close or above 90% and specificity 
values above 80% for discrimination between 
controls and lung cancer patients (Fu et al. 2014; 
Li et  al. 2015). Levels of carbonyl compounds 
levels were found elevated in patients with lung 
tumors (N  =  85) (Li et  al. 2015), whereas  
the concentrations of 2-butanone, 
2-hydroxyacetaldehyde, 3-hydroxy-2-butanone, 
and 4-hydroxyhexenal in the exhaled breath of 
lung cancer patients (N = 97) were found signifi-

cantly higher than in the exhaled breath of healthy 
smoker and non-smoker controls (N  =  88) (Fu 
et  al. 2014). Another interesting application is 
related to esophagogastric cancer. In a represen-
tative study, Kumar et  al. identified 12 VOCs 
(pentanoic acid, hexanoic acid, phenol, methyl 
phenol, ethyl phenol, butanal, pentanal, hexanal, 
heptanal, octanal, nonanal, and decanal) increased 
in exhaled breath from esophageal (N  =  48) and 
gastric adenocarcinoma (N  =  33) when compared 
to non-cancer controls (N = 129), which provides 
specificity and sensitivity values for patient dis-
crimination above 80% (Kumar et al. 2015).

Nanoarray-based sensor technology develop-
ments are also making it possible to measure 
breath VOCs. This technology has several advan-
tages over GC-MS, particularly regarding opera-
tional costs and portability. It has been tested in 
the analysis of breath analysis from patients with 
several types of cancers, such as ovarian cancer 
(Amal et al. 2015), gastric cancers (Amal et al. 
2016) as well as lung, breast, colorectal and pros-
tate cancers (Peng et al. 2010), with discrimina-
tion performances similar to those of GC-MS.

Regardless of the application of exhaled 
breath analysis in cancer, additional analytical 
bias assessment and the introduction of standard-
ized sampling procedures are key elements in the 
development and transitioning of the technique 
and its results to clinical applications (Hanna 
et al. 2019).

19.3.6	 �Other Noninvasive Biological 
Matrices: Saliva, Sputum, 
and Feces

In addition to the biological fluids/ matrices 
described above, metabolomics investigations 
have also been performed in numerous other 
matrix types. For example, saliva obtained from 
oral, breast and pancreatic cancer patients has 
successfully been analyzed (Sugimoto et  al. 
2010). Oncogenic MYC has been reported to 
regulate polyamine biosynthesis leading to accu-
mulation in cancer cells, and Asai et al. have used 
CE-MS for detecting polyamines, and found 
spermine, N-acetylspermidine, and 
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N-acetylspermine levels in saliva successfully 
discriminate patients with pancreatic cancer 
(N  =  39) from controls (N  =  26) (Asai et  al. 
2018). Similarly, the levels of several polyamines 
in saliva have also been found elevated in relapsed 
breast cancer patients (N = 22) in another study 
using targeted LC-MS (Tsutsui et al. 2013).

Sputum consists of mucus produced in the 
respiratory tract and is potentially relevant for the 
diagnosis of lung cancer. There are currently very 
limited cancer metabolomics literature available 
on sputum, however, one study has successfully 
utilized flow infusion MS and GC–MS for distin-
guishing their 34 lung cancer patients and 33 
healthy controls (Cameron et al. 2016).

Feces, rather like urine is readily available and 
information rich, as it contains undigested food 
passed from the gastrointestinal tract (GI) and 
metabolite compositions reflect dietary habits, 
mammalian– gut microbial interactions, as well 
as health status of the GI tract. Compared to 
health controls, colorectal cancer patients may 
have altered levels of acetate, butyrate, propio-
nate, isovalerate, isobutyrate, valerate, and bile 
acids in their feces (Lin et al. 2016; Le Gall et al. 
2018).

19.3.7	 �Biopsy and Cytology Material

Tissue biopsies and cytology aspirates are 
obtained from tumors and their metastases to 
confirm the diagnosis, molecular typing and 
staging which are performed at cyto- and histo-
pathological analysis. The metabolomic analysis 
of such materials offers complementary meta-
bolic information for further disease character-
ization and phenotyping. Moreover, it can be 
used as a diagnostic tool on its own. As men-
tioned in previous sections, both NMR and MS 
techniques are suitable for analysis of tissues and 
cells, either by analysis of extracts or intact 
material.

19.3.7.1	 �Analysis of Cells and Tissue 
Extracts

Cell and tissue extractions break up cellular 
structures and releases metabolites for in-depth 

or targeted biochemical analysis, for instance 
with focus on lipids or in hydrophilic metabo-
lites. However, extractions may have reproduc-
ibility issues. For this reason, extraction 
procedures must ensure an effective arrest of cel-
lular metabolism and minimize metabolite loss. 
Nevertheless, the analysis of cell and tissue 
extracts have been a valuable resource in in vitro 
tumor metabolism studies. One such studies is 
the study of isocitrate hydrogenase mutation in 
specific types of tumors. Isocitrate dehydroge-
nase 1 and 2 (IDH1/2) are enzymes important for 
energy metabolism, redox control and DNA 
methylation. Mutations in the genes encoding for 
these enzymes are frequent, including in majority 
of gliomas (Yan et al. 2009) and cartilage tumours 
(Pansuriya et al. 2011), and can be found in a sig-
nificant portion of acute myeloid leukaemia 
(Molenaar et  al. 2015). In a landmark paper, 
Dang et  al. has shown that tumors harboring 
IDH1/2 mutations gain the ability to convert 
α-ketoglutarate to 2-hydroxyglutarate, leading to 
accumulation in 2-hydroxyglutarate in tumor 
cells. Comparing to the wild type gliomas, 
2-hydroxyglutarate level in IDH mutant human 
tumors increased by 100-fold (Dang et al. 2009). 
The gain-of-function mutations are phenotypi-
cally specific and, in fact, 2-hydroxyglutarate 
could be detected directly in vivo in patients with 
glioma using magnetic resonance spectroscopy 
(MRS) acquired in MRI instruments (Choi et al. 
2012). The conversion of α-ketoglutarate to 
2-hydroxyglutarate could be measured in real 
time in vivo by using the same methodology with 
increased sensitivity through substrate dynamic 
nuclear polarization (DNP-MRS) (Chaumeil 
et al. 2013).

19.3.7.2	 �Analysis of Intact Tissues
A specific NMR technique, high-resolution 
magic-angle spinning (HRMAS), allows the 
analysis of micro-grams of tissue biopsies with 
similar resolution of liquid NMR (Emwas 2015). 
HRMAS can be used for the analysis of human 
and animal tumor tissues ex vivo, however, freez-
ing delay time should be minimized as it could 
adversely bias analysis. Significant metabolite 
changes have been observed in samples frozen 
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after 30 min of resection, and some metabolites 
are affected by prolonged experiment time due to 
sample spinning and degradation (Haukaas et al. 
2016). Nevertheless, HRMAS can be useful in 
identifying diagnostic markers if experiments 
were designed and samples were handled with 
care. This has been illustrated for some types of 
cancer such as prostate or colorectal. Indeed, 
using tissue samples, spermine, spermidine, cho-
line, kynurenine, sarcosine, citrate have been 
proposed as potential candidates as markers of 
diagnosis or staging in prostate tumors (de Vogel 
et al. 2014; Sreekumar et al. 2009; McDunn et al. 
2013; Liu et al. 2015; Giskeodegard et al. 2013). 
Increased levels of lactate, taurine, and isogluta-
mine and decreased levels of lipids/triglycerides 
have been found in colorectal cancer (N  =  88) 
relative to healthy mucosa (N = 83) (Mirnezami 
et al. 2014).

Surgical evaluation of tumor margins is rou-
tinely performed during tumor-extracting sur-
gery, in which the surgeon decides on the extent 
of malignant tissue to extract while trying to 
maintain healthy tissue intact. This delicate pro-
cess is usually assisted by a trained histopatholo-
gist who analyses the frozen surgically extracted 
tissues by light microscopy. The whole process 
needs to be done quickly while the patient is 
under anesthesia (Ifa and Eberlin 2016; Hänel 
et al. 2019).

Although HRMAS NMR could be applied in 
the analysis of tumor margins (Bathen et al. 2013; 
Paul et  al. 2018), there is a great advantage in 
using MS techniques due to their higher sensitiv-
ity and smaller sample amounts requirement. 
Ambient-ionization MS techniques seem the 
most useful as they allow the acquisition of MS 
spectra in real-time and are easily operated by 
non-specialists, which gives the technique great 
advantage in surgical tumor diagnostics (Ifa and 
Eberlin 2016; Hänel et al. 2019).

Several ambient-ionization MS techniques 
have been introduced in cancer tissue analysis 
such as DESI, rapid evaporative MS (REIMS), 
“MasSpec pen” and picosecond infrared laser 
(PIRL) with some promising results towards 
intact ex vivo sample analysis (Hänel et al. 2019). 
While all of them focus on the analysis of lipid 

content, each one has specific characteristics 
regarding the amount of sample consumed, cross-
contamination, preanalytical issues, surface scan-
ning and transferability towards clinical 
diagnostic application (Hänel et  al. 2019). 
REIMS is the most popular of ambient-ionization 
MS techniques because it is also applicable in 
vivo (Balog et al. 2013).

The most well known setup of REIMS, 
known as “iKnife” or “intelligent scalpel”, has 
been used intra-surgically. It consists of a hand-
held device connected to an electrosurgical 
instrument which transfers the aerosols pro-
duced by cutting through the tissue directly into 
the MS spectrometer. The MS spectrum pro-
duced contains a signature of the lipidome pro-
file of the tissue being cut (Fig.  19.4). MS 
spectra, collected in real-time, are immediately 
tested in a multivariate discriminant model 
(trained on real benign and malignant tissue 
spectra from samples classified via histopathol-
ogy) giving a classification of the tissue cut by 
the surgeon (Balog et al. 2013). The iKnife has 
been tested on hundreds of patients with several 
types of tumor such as liver, lung, colorectal, 
breast, gynecologic, glioma, glioblastoma as 
well as in metastasis from lung and colon cancer 
to the brain enabling classification of sampled 
tissues with high sensitivity (90–98%) and spec-
ificity (94–100%) values (Balog et al. 2013; St 
John et al. 2017; Phelps et al. 2018). A version 
of the iKnife procedure was also introduced in 
the endoscopic analysis of colon polyps (Balog 
et al. 2015). The major disadvantages of REIMS 
compared to the above mentioned methods are 
sample consumption, possible cross-
contamination and analyte degradation during 
tissue cutting due to the high temperatures gen-
erated (Hänel et al. 2019).

The PIRL method is a promising method for 
in vivo applications and it has some advantages 
over REIMS.  PIRL uses infrared laser to cut 
through tissue which enable MS spectra to be 
obtained from smaller areas of tissue and even 
single cells and avoid damaging adjacent tissue 
(Hänel et  al. 2019). It also has the potential to 
achieve better spatial resolution in vivo compared 
to REIMS (Hänel et al. 2019).
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19.3.7.3	 �MS Imaging of Intact Tissue
Perhaps one of the most interesting applications 
of MS is imaging (MSI). In MSI, samples are 
prepared into fine slices or smears, much like in 
histologic preparations. Then the sample surface 
is scanned in small areas (10–200  μm) corre-
sponding to image pixels, and ions are withdrawn 
and analyzed in the mass spectrometer (Bodzon-
Kulakowska and Suder 2016). One MS spectrum 
is acquired from every small area (pixel) of the 
sample. An image can be then generated by map-
ping the intensity of any selected ion into the 
optical image of the tissue (Fig. 19.5).

In order to get into the fine molecular imaging 
detail, MSI spectrometers are equipped with ion-

ization techniques such as MALDI, DESI or 
SIMS and very high resolution detectors such as 
time-of-flight (TOF), orbitrap or ion-cyclotron 
resonance, to ensure both high image and MS 
resolutions. Although SIMS provides higher 
sensitivity and resolution than MALDI and 
DESI, the latter two being “soft” ionization 
methods find more wide-spread application in 
tumor tissue MSI (Bodzon-Kulakowska and 
Suder 2016).

Due to the fine molecular detail provided, MSI 
has an enormous potential both as a diagnostic 
and research tool in cancer and can be viewed as 
a form of augmented histology. Indeed changes 
in metabolites such as lipids as those illustrated 

Fig. 19.4  Rapid evaporative mass spectrometry “iKnife” 
analysis of intact tissue applied to ovarian cancer. 
Electrical current, produced from the generator, is applied 
to the tissue and the resultant charged particles are 
extracted through the custom-designed hand-piece and 
drawn into the REIMS atmospheric inlet and analyzed in 
a Xevo G2-XS mass spectrometer to produce tissue-

specific mass spectra, which are then subjected to multi-
variate statistical analysis using Principal 
Component  – Linear Discriminant Analysis (PC-LDA). 
Within 1–2 s, real-time tissue diagnosis is displayed on a 
screen for the surgeon to see. Adapted with permission 
from Phelps et  al. (2018) under Creative Commons 
Attribution 4.0 License
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in Fig. 19.5 can be mapped into tumor tissue sec-
tions, providing finer detail about tumor hetero-
geneity and help in the diagnosis of invasive 
ductal carcinoma (Porcari et al. 2018). MSI also 
permits the in situ study of metabolic pathways 
that may be altered due to reprogramming. For 
instance, Sun et  al. effectively mapped several 
metabolites from tumor-associated metabolic 
pathways, including proline biosynthesis, gluta-
mine metabolism, uridine metabolism, histidine 
metabolism, fatty acid biosynthesis, and poly-
amine biosynthesis in tissues from 256 esopha-
geal cancer patients, thus helping to uncover 
abnormal expression of enzymes pyrroline-5-
carboxylate reductase 2 (PYCR2) and uridine 
phosphorylase 1 (UPase1) in esophageal squa-
mous cell carcinoma (Sun et al. 2019).

Finally, MSI has found an increasing applica-
bility in pharmaceutical research and drug devel-
opment in oncology, particularly in drug 
biodistribution, pharmacodynamic biomarker 
research and in toxicology assessment studies 
(Goodwin and Webborn 2015).

19.4	 �Final Remarks and Future 
Prospects

Metabolomics and metabolic phenotyping are 
established tools in the study of cancer metabo-
lism. They have benefited from technological 
developments in both NMR and MS analytical 
instrumentation coupled with state-of-the art data 
analysis, particularly in the last decade. Both 
analytical platforms seem well suited for the 
development of diagnostic methods in cancer. 
However, the higher investment and operational 
costs of NMR hinder its wide-spread adoption. 
One exception is in vivo NMR spectroscopy 
(MRS), which can be performed in diagnostic 
MRI instruments and, in fact, it is an approved 
diagnostic tool to investigate certain types of 
brain tumors (Horská and Barker 2010). However, 
in comparison with ex vivo NMR, in vivo MRS 
has limited resolution and sensitivity which are 
factors that may have limited the translation of ex 
vivo discoveries to in vivo diagnostic MRS. The 
introduction of hyperpolarized substrates using 

Fig. 19.5  Negative-ion-mode DESI-MS images of a 
breast tissue sample from an invasive ductal carcinoma 
patient. Upper panel shows images of specific fatty acid 
(FA) and phosphatidylinositols (PI) ions highlighting 
their distribution in the tissue slice. Bottom panel shows 
the Hematoxylin and Eosin staining optical imaging; 

expansions of the sectioned tissue shows the delimited 
stromal and tumoral cells areas and abundance of PI(36:1) 
and PI(38:4) ions. Lipid species are described by the num-
bers of fatty acid chain carbons and double bonds. 
Adapted with permission from Porcari, et  al. (2018). 
Copyright 2018 American Chemical Society
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DNP techniques, showed very promising results 
in preclinical studies and may form the basis for 
future metabolic imaging applications using 
NMR (Julià-Sapé et al. 2019). On the other hand, 
MS-based techniques have been present in clini-
cal chemistry laboratories as diagnostic tool for 
several decades, especially are used in drug mon-
itoring, newborn screening and in the diagnosis 
of metabolic diseases (Hänel et al. 2019), which 
make them ideally suited to metabolomics/meta-
bolic profiling based diagnostic applications. 
Major advances in MS-based approaches such as 
intra-operative MS and MS imaging are opening 
the door for real clinical applications. 
Nevertheless, there is still a long road ahead until 
the development of truly diagnostic metabolo-
mics approaches in cancer comes to fruition in 
the clinics, particularly if less-invasive and early 
diagnosis applications are to be considered.

The number of published studies in metabolo-
mics/ metabolic phenotyping applications in 
oncology is already vast, covering a wide range 
of malignancies at different stages of the disease, 
across numerous types of biological samples and 
diverse patient/subject background and of vary-
ing sample size. As the amount of scientific lit-
erature grows, putting all the information into 
context in order to draw meaningful conclusions 
useful for diagnostic application becomes a chal-
lenge. This is in part due to the varying study 
designs, different reporting details of patient 
data, diverging sample preparation and acquisi-
tion protocols as well as insufficient reporting of 
analytical bias, which makes knowledge integra-
tion (for instance through meta-analysis) a diffi-
cult task. Therefore, standardized reporting of 
study design, sampling, experimental protocols, 
metadata and rigorous metabolite identification 
and analytical bias reporting would facilitate 
knowledge integration and would also help pro-
mote replication studies which are needed for 
biomarker validation.
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