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Abstract Environmental deterioration and energy crisis caused by ever-increasing
exploitation of traditional fossil fuels are urgent problems that need to be addressed.
Microbial energy conversion technologies have attracted wide attentions since they
can convert chemical energy contained in wastes, like solid wastes and wastewater,
into biofuels or bioelectricity, realizing environmental remediation and energy
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production at the same time. But the conventional methods have many limitations,
like low mass transfer rate, uneven energy distribution, and strong product or
by-product inhibition. The introduction of membranes in the reaction system can
effectively relieve these technical bottlenecks by regulating the transfer and distri-
bution properties of mass, heat, and energy, which play important roles on bioenergy
productivity and quality.

We review (1) membrane application on liquid biofuels production, mainly on
biomass cultivation and harvesting, liquid biofuels generation, and liquid products
refining; (2) membrane application on gaseous biofuels production, mainly on
photo-dependent biohydrogen production, dark-fermentative biohydrogen produc-
tion, and gaseous products purification; (3) membrane application on microbial fuel
cell; (4) membrane biofouling; and (5) antibiofouling technologies. The membranes
mainly act as physical barrier, internal bridge, inhibitors separator, or products
extractor in microbial energy production processes, which varies according to the
detailed occasions. In overall, the membrane can effectively enhance microbial
energy productivity and quality. But biofouling is the vital problem for all cases.
Further researches and development on antifouling of membranes are still necessary.

Keywords Microbial biofuels · Membrane · Bioethanol · Biolipids · Microbial fuel
cell · Biohydrogen · Bioreactor · Biofouling · Fermentation · Recovery

9.1 Introduction

Currently, traditional fossil fuels like coal, natural gas, and petroleum are still
predominant fuel types for human beings. But limited reservoir, depleting supply,
and random consumption hinder the dependency on traditional fossil fuels as major
energy sources (Chang et al. 2018). In addition, vast utilization of fossil fuels has
caused many problems, such as global warming, energy crisis, and environmental
destruction (Fu et al. 2018; Guo et al. 2018; Tian et al. 2010). There are pressing
needs to develop renewable and environmental-friendly energy sources which are
derived from non-fossil sources in ways that can be replenished (Chang et al. 2018).
Renewable energy mainly includes solar, wind, hydro, geothermal, and biofuels.
Among these different renewable energy types, the biofuels produced via microbial
energy conversion are considered as one of the most promising energy types due to
its high energy conversion efficiency, mild operating conditions, and environmental
remediation ability (Chang et al. 2016a; Li et al. 2017; Liao et al. 2014; Lu et al.
2018).

A variety of materials can be used as feedstocks for biofuels production, and
based on that, the biofuels production can be mainly classified into first-, second-,
and third-generation biofuels (Nigam and Singh 2011), as shown in Table 9.1. The
first-generation biofuels are mainly generated from oil crops or starch-based food
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crops. For example, the oleaginous crops including soybean and sunflower can be
used as feedstocks for biolipid extraction through transesterification, and the starch-
containing grains like corn, sorghum, and sugarcane are used as substrates for
bioethanol and biohydrogen production through fermentation for the first-generation
biofuels. The advantages of the first-generation biofuels are relatively simple
pretreatment technologies since the starch and fats contained in food crops have
simpler structure which are easier to be decomposed than lignocellulose. But the
competition of arable land and freshwater for biofuels production with human
beings’ food demand strongly restricted its application (Correa et al. 2017). The
second-generation biofuel fulfills the impractical gap of the first-generation biofuel
due to its utilization of nonedible substrates from forestry and agricultural lignocel-
lulose, like wheat and maize crops, sawdust, and sugarcane bagasse (Tian et al.
2009). Through hydrolysis and fermentation of this lignocellulosic biomass, biofuels
like bioethanol and biohydrogen are produced in forms which can be utilized as
energy sources. However, due to the tightly connected structure of lignin–cellulose
association and crystalline structure of cellulose which resist enzymatic hydrolysis,
sophisticated processes are necessary to achieve potential biofuels outcome, greatly
increasing the energy cost of the second-generation biofuels (Kumari and Singh
2018; Raman et al. 2015). The third-generation biofuels which are derived from
microorganisms, like microalgae and microbes, are considered as promising alter-
native energy sources since they can avoid the major disadvantages of food

Table 9.1 Various generations of biofuel (Correa et al. 2017; Leong et al. 2018; Nigam and Singh
2011; Kumari and Singh 2018)

Biofuels
generations Feedstocks Advantages and disadvantages

The first
generation

Soybean, sunflower, sugarcane, corn,
etc.

Advantages:

Simple pretreatment process, pure
products, and high conversion rate of
feedstocks

Disadvantages:

Food and freshwater competition with
human beings, low economic efficiency

The second
generation

Agricultural and forestry residues, like
wheat and maize crops, sawdust, and
sugarcane bagasse

Advantages:

Abundant feedstocks, without competi-
tion with human beings for arable land,
waste utilization

Disadvantages:

Sophisticated pretreatment process, low
conversion rate, high energy cost,
impure products

The third
generation

Biofuels or electricity generation with
microorganisms, like microalgae and
microbes

Advantages:

High conversion rate, less by-products,
high products quality

Disadvantages:

High economy investment
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competition for the first-generation biofuels and non-degradability for the second-
generation liquid biofuels (Zhu et al. 2018). Many microorganism species have
abilities to accumulate fatty acids in the cells, like microalgae, yeast, and fungi
(Leong et al. 2018; Liao et al. 2014; Mathimani and Pugazhendhi 2019). The
intracellular fatty acids can be used as substrates for biodiesel production through
downstream processing of the microbial biomass.

Biofuels production mainly experiences three steps: feedstocks pretreatment,
biofuels generation, and biofuels refining. Until now, the biofuels productivity and
quality are still poor attributing to many technical limitations despite the feedstock
materials. The limitations are mainly confined to low pretreatment efficiency of the
feedstock, poor biomass to biofuels conversion efficiency, and hardness on products
separation and purification (Rodionova et al. 2017). Environmental conditions like
temperature, humidity, and pH; operating parameters like material proportion,
retention time, and inoculum density; and some other intrinsic properties like
material composition, yeast activity, and bioreactor structure have important roles
on biofuels productivity and quality (Srivastava et al. 2018; Liao et al. 2015; Pei
et al. 2017).

During biofuels production processes, transfer characteristic of mass, heat, and
energy determines its distribution in the system, which ultimately affects direction
and rate of the chemical reactions, like lignocellulose hydrolysis to produce sugars
and sugar fermentation to produce bioethanol or biohydrogen. Therefore, regulations
on mass, heat, and energy transfer and distribution can greatly improve effectiveness
of biomass to biofuels conversion. But conventional methods paid few attentions on
transfer regulation attributing to rough system structure, resulting in low biofuels
productivity and poor quality. The introduction of membrane modules in microbial
energy conversion system can significantly reduce the technological limitations by
acting as physical barrier, internal bridge, inhibitors separator, or products extractor.
The functions of membrane vary with its utilizing occasions. Major applications of
membranes on microbial energy production processes, i.e., liquid biofuels, gaseous
biofuels, and microbial fuel cell, are illustrated in Fig. 9.1 and discussed in the
following parts in detail.

9.2 Membrane Application on Liquid Biofuels Production

Liquid biofuels, like biolipids and bioethanol, are favored types of biofuels since
they can blend with petroleum for combustion, realizing partly replacement of fossil
energy by eco-friendly ways without sacrificing power output. In particular, the
bioethanol has gained wide attentions since it satisfies the necessities of clean
technology, like sustainability, biodegradability, abundant substrate, and reduction
in greenhouse gas emissions, and is suitable to be used in most diesel engines with
little or no modification (Enagi et al. 2018). In many countries, vehicles using
bioethanol and gasoline mixture for transportation have been successfully realized,
reducing greenhouse gas emissions to a large extent ranging from 20% to 85% (Wei
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et al. 2014). Therefore, developing liquid biofuel technologies are promising
approaches for environmental and energy sustainability in the present.

The process of liquid biofuels production mainly includes feedstocks preparation
like microalgae cultivation and harvesting, liquid biofuels generation like fermenta-
tion and the related processes, and products refining like bioethanol and biodiesel
recovery (Carrillo-Nieves et al. 2019). Among these steps, membrane can play an
important role on enhancement of liquid biofuels productivity over the traditional
technologies. Major applications of membranes in liquid biofuels production process
and its advantages are shown in Table. 9.2.

9.2.1 Membranes Used for Microalgae Cultivation
and Harvesting

Abundant biodegradable feedstocks are prerequisites for economically feasible
liquid biofuels production. Among different materials like corn, sugarcane, ligno-
cellulosic biomass, and microorganisms, microalgae biomass is a promising type
attributing to its intrinsic merits (Chang et al. 2018). Microalgae can be cultivated on
nonarable lands using CO2 as carbon source, wastewater as nutrients source, and
solar light as energy source to produce intracellular fatty acids and carbohydrates at a
photosynthetic efficiency over tenfold than terrestrial plants, realizing energy pro-
duction, carbon mitigation, and wastewater remediation at the same time

Fig. 9.1 Major application of membranes on microbial energy production processes
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(Georgianna and Mayfield 2012; Guo et al. 2018). It was reported that the lipid
content of many microalgae species are over 50 times of the terrestrial oil crops
(Chisti 2007). However, there are still many drawbacks that need to be addressed for
the traditional approaches of microalgae biomass production, like poor light pene-
tration, low carbon transfer rate, and inappropriate nutrients feeding, and from these
aspects, membranes are useful to enhance the performance of the microalgae
cultivation system (Chang et al. 2017; Fu et al. 2016).

Carbon is an important element for microalgae biomass, accounting for more than
50% of the microalgal dry cell weight (Chang et al. 2016b). However, the CO2

transfer rate was usually very low, resulting in low carbon availability in microalgae
culture and thus limiting microalgae growth and carbon fixation. To enhance CO2

transfer efficiency in microalgae cultivation system, hollow fiber membrane
(Mortezaeikia et al. 2016), selective CO2 transfer membrane (Rahaman et al.
2011), and integrated alkali-absorbent membrane system (Ibrahim et al. 2018; Li
et al. 2018b, 2018c; Zheng et al. 2016) were successfully adopted in their works.
Results demonstrated that the carbon availability in microalgae suspensions was
effectively improved and microalgae biomass was enhanced to some extents.

Table 9.2 Major application of membranes in liquid biofuels production process and its
advantages

Process Examples Advantages

Feedstocks prep-
aration and
pretreatment

Microalgae biomass cultivation
and harvesting

For carbon supply: higher CO2 transfer
rate with membrane module, like hollow
fiber membrane
For nutrients supply: effective separation
of microalgae with inhibitors in wastewa-
ter, like ion-exchange membrane
For biomass harvesting: cost-effective
microalgae biomass harvesting, like
microfiltration or ultrafiltration membrane

Liquid biofuels
generation

Fermentation for liquid
biofuels generation
(bioethanol, biolipids, etc.)

For enzyme recovery: enzyme recovery
without damaged enzymatic activity, like
microfiltration or ultrafiltration membrane
For sugar concentration and inhibitor
removal: simultaneously realize sugar
concentration and inhibitors removal with
low energy cost, like ultrafiltration,
nanofiltration, reverse osmosis, and mem-
brane distillation

Liquid biofuels
recovery

Liquid products concentrating
for downstream processing or
utilization

Membrane distillation or pervaporation:
low energy cost, pure products, and mild
operating conditions, like the porous
membrane for distillation and nonporous
membrane for pervaporation
Hybrid membrane process: realize more
functions at the same time, like
distillation–pervaporation system

358 H. Chang et al.



Besides carbon source, light and nutrients are also key factors influencing
microalgal biomass concentration (Liao et al. 2018; Sun et al. 2016a, 2018). To
exploit inorganic salts in wastewater as nutrients for microalgae cultivation, Chang
et al. (2016a) designed an annular photobioreactor based on ion-exchange mem-
branes for selectively transferring cations and anions from wastewater chamber to
microalgae cultivation chamber but preventing transport of suspended solids in
wastewater, ensuring high light penetration and proper nutrients availability in
microalgae culture. The biomass concentration was increased to 4.24, 3.15, and
2.04 g/L in the membrane photobioreactor from 2.34, 2.15, and 0 g/L in the
membraneless photobioreactor when using simulated agricultural, municipal, and
industrial wastewater as nutrients source. Besides, a scalable membrane-based
tubular photobioreactor was used in microalgae biomass and biofuels production,
which effectively enhanced economic and technical feasibility of microalgae culti-
vation with membrane photobioreactor (Chang et al. 2019).

In addition to microalgae biomass cultivation, membrane is also used in
microalgae harvesting for downstream fermentation or fatty acids extraction. As is
known, microalgae suspension contains more than 99% of water in weight ratio.
Recovery of biomass from microalgae suspension was estimated to contribute 20%–

30% of total energy cost for biomass production (Huang et al. 2019; Wei et al. 2018).
In contrast, membrane filtration with microfiltration or ultrafiltration membrane is
known as an energy saving method for microalgae biomass harvesting than other
methods like centrifugation or drying, since energy cost on transmembrane pressure
for membrane filtration is much lower than conventional methods. But the mem-
brane fouling is an inescapable problem for microalgae harvesting with membrane
filtration. To cope with the fouling problem of filtering membrane, many approaches
were proposed, like nanofiber membrane (Bilad et al. 2018), rotational-dynamic
filtration membrane (Hapońska et al. 2018), axial vibration membrane (Zhao et al.
2016), and composite membrane (Khairuddin et al. 2019). However, the antifouling
performance of the existing technologies is limited, which is not capable of greatly
reducing the energy cost. Further researches on membrane fouling control are still
necessary.

9.2.2 Membranes Used for Fermentation

Saccharification and fermentation are important steps for biomass conversion to
liquid biofuels, directly determining biofuels productivity and quality. During these
processes, membranes play important roles on enzyme recovery from hydrolysis
solution, sugar enrichment, and detoxification of the fermentation broth.

Before fermentation, the macromolecular organic matters in the biomass should
be firstly hydrolyzed into simple sugars by enzyme for fermentation. In detail, the
hexose sugar monomer contained in cellulose and the pentose sugar monomer
contained in hemicellulose should be released and hydrolyzed into simple sugars
like glucose, and the complex lipids- and proteins-containing organic matters in
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microalgae biomass should be hydrolyzed into simple structures like long-chain fatty
acids, glycerol, and amino acids (Kang et al. 2018). Then, the simple organics can be
utilized by microorganisms for fermentation to produce liquid biofuels like
bioethanol. Compared with chemical process for hydrolysis of cellulose like dilute
acid catalyzed, enzymatic hydrolysis of cellulose has many advantages, including
mild operation conditions, low energy cost, and low inhibitors formation (Li et al.
2019). But the cost on enzyme utilization is very high, accounting to almost half of
the total cost on hydrolysis process (Wooley et al. 1999).

Recovery and reuse of the hydrolysis enzyme can effectively reduce energy cost
on enzymatic hydrolysis process. Membrane-based technology, using various mem-
branes like microfiltration and ultrafiltration membrane as physical barrier, is
regarded as a promising approach for enzyme recovery from hydrolysis solution
since it can retain the catalytic activity of the enzyme, ensuring high efficiency and
low cost of biomass conversion to fermentative sugars (Saha et al. 2017). Mem-
branes used for enzyme recovery are mainly divided into microfiltration and ultra-
filtration membranes according to the pore size. Microfiltration membranes are
usually made of cellulose acetate, nylon, or polysulfone, which can efficiently
remove most of the remaining biomass in hydrolysis solution (Singh and Purkait
2019). And the ultrafiltration membranes which are made of polyethersulfone or
polysulfone are frequently used in enzyme separation and extraction from the
hydrolysis solution (Enevoldsen et al. 2007).

The fermentative sugar concentration in hydrolysate is usually low mainly due to
low hydrolysis efficiency, limiting bioethanol production. In addition, many inhib-
itors for bioethanol fermentation are produced along with the hydrolysis process,
which also plays negative effects on bioethanol output (Nguyen et al. 2018).
Therefore, sugar enrichment and inhibitors removal of the hydrolysate are important
steps to improve bioethanol productivity and reduce cost on downstream processing.
Some conventional methods for sugar concentration and inhibitors removal include
physical adsorption, thermal evaporation, solvent extraction, and ion exchange
(Sambusiti et al. 2016; Tanaka et al. 2019; Zhang et al. 2018a). But these methods
are energy intensive and cannot simultaneously realize sugar concentration and
inhibitors removal. The application of membrane process can greatly reduce the
energy cost and deal with the technological problems, like incompatible operation of
sugar concentration and inhibitors removal. Nowadays, the commonly used mem-
brane technologies for sugar concentration and inhibitors removal are ultrafiltration,
nanofiltration, reverse osmosis, and membrane distillation. The characteristics of
different membrane technologies have been reviewed by previous authors (Wei et al.
2014; Zabed et al. 2017). Although membrane technologies have many advantages
for fermentation process, membrane fouling is still a troublesome problem which
limits economic feasibility. Works to conquer the problem of membrane fouling is
vital to reduce cost of hydrolysate pretreatment.
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9.2.3 Membranes Used for Liquid Biofuels Recovery

The final liquid biofuels concentration is influenced by many factors, such as
feedstock compositions, fermentative sugar concentration in hydrolysate, activity
of the fermentative yeast, and operating parameters like pH and temperature. Taking
bioethanol as an example, the final bioethanol concentration in a fermenter is usually
low when using lignocellulose as feedstocks than that with food as feedstocks
(Ferreira et al. 2018). In general, the bioethanol concentration is lower than 5%
(in w/w) when using cellulose as feedstocks, meaning that the produced bioethanol
must be firstly concentrated to a higher concentration for downstream processing.
Besides, the products are usually inhibitive to yeast cells for continuous production.
Therefore, separation and recovery of the bioethanol from a fermenter are significant
for economical production of bioethanol at continuous mode. Among different
biofuels recovery processes, membrane-assisted bioethanol recovery has particularly
advantages of low energy requirement, pure products, and mild operating conditions
over the traditional processes like distillation (Balat et al. 2008). The known
membrane-based bioethanol recovery technologies include ultrafiltration, reverse
osmosis, membrane distillation, pervaporation, and hybrid process; among them
membrane distillation and evaporation are the two well-established methods nowa-
days (Bayrakci Ozdingis and Kocar 2018).

The working mechanism of membrane distillation is based on the differential
vapor pressure at microporous hydrophobic membrane surface, which acts as the
driving force for biofuels separation. For example, the ethanol partial pressure is
higher than water; thus, ethanol vapor can transfer across the membrane in priority,
and based on that, the separation of bioethanol from broth can be realized
(Tomaszewska and Białończyk 2013). The commonly used membrane types for
membrane distillation are prepared from low surface energy hydrophobic polymer
like polypropylene, polytetrafluorethylene, and polyvinylidene fluoride (Saha et al.
2017). And a nonporous membrane is usually used in the pervaporation process to
recover biofuels from solution by partial vaporization based on the solution–diffu-
sion model (Trinh et al. 2019). During pervaporation, permeation of a component
from solution to membrane and evaporation of the specific component from the
membrane to vapor stream successively happen. In this way, the biofuels in solution
can be selectively separated and recovered. Pervaporation membrane can be roughly
classified into two types, i.e., hydrophilic membrane and hydrophobic membrane.
The hydrophilic membrane is mainly used to remove water from the mixed solution,
while the hydrophobic membrane is mainly used to extract biofuels from the liquid
stream (Huang et al. 2008). Therefore, the hydrophobic membrane is more energy
efficient for biofuels recovery when biofuels concentration in liquid is low, espe-
cially in the case for bioethanol recovery from digestate in which bioethanol
concentration is usually less than 10% w/w.

In recent years, the hybrid processes have attracted wide attentions since it can
fulfill the requirements for high-efficiency continuous biofuels production. The
hybrid process integrates various units together for some specific functions. For
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example, the hybrid fermentation–pervaporation process can remove the produced
bioethanol in situ to offset product inhibition and avoid yeast cells washout by
holding back the yeast biomass with the membrane module (Santos et al. 2018). A
hybrid system integrating membrane fermentation and cogeneration was proposed
by Lopez-Castrillon et al. (2018), which effectively improved energy output effi-
ciency of the fermentation system with possibility of additional electricity generation
(275 kWh/t of cane). A hybrid extractive distillation column with high selectivity
pervaporation was implemented in alcohol dehydration process, which demonstrated
that the hybrid system could save up to 25%–40% of the total annual cost and energy
(Novita et al. 2018).

9.3 Membrane Application on Gaseous Biofuels Production

Gaseous biofuels, like biohydrogen and methane, are also important renewable
energy types which have been widely and practically used. For example, the biogas
digester is commonly constructed in medium or small size dispersedly for household
cases attributing to simple digester configuration and low investment (Chen et al.
2017). The bioreactors with sophisticated structure, like membrane-based bioreac-
tors, are not suitable to be used in rural places attributing to their high cost but are
frequently used in hydrogen production. Hydrogen is a clean energy than traditional
fossil fuels, which generates only water as a by-product with zero greenhouse gas
emissions during combustion while embracing larger energy content per unit mass
(142 kJ/g) over other fuel types (Di Paola et al. 2015; Zhong et al. 2017). Compared
with hydrogen production via thermochemical method like steam reforming and
electrochemical method like electrolysis, biological hydrogen production has
attracted particular interests due to its mild operating conditions, low energy con-
sumption, and abundant feedstocks (Aslam et al. 2018a). However, biohydrogen
productivity in large-scale application is still very low, hindering the commerciali-
zation of biohydrogen.

Many process parameters and environmental factors have significant influences
on biohydrogen productivity, such as pH, temperature, substrate and nutrients
availability, by-product and product concentration, microbial competition, and
other hazardous materials (Liao et al. 2013; Prabakar et al. 2018). Researches are
necessary to solve the remaining bottlenecks to practical applications of biohydrogen
energy. Among many emerging approaches for high-efficiency biohydrogen pro-
duction, membrane-integrated biohydrogen production system is for sure a promis-
ing technology allowing for dealing with various kinetic inhibitions in biohydrogen
production, like biomass washout and substrate or product inhibition, as shown in
Table. 9.3 (Aslam et al. 2018a).

Biological hydrogen production is a technology that produces hydrogen gas with
microorganisms. It can be roughly classified into photo-dependent biohydrogen
production via photolysis of water by algae and cyanobacteria or photo-fermentation
by decomposing organic matters with photosynthetic bacteria and dark fermentation
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for hydrogen production with facultative or obligate anaerobic bacteria (Trchounian
et al. 2017).

9.3.1 Membranes Used for Photo-dependent Biohydrogen
Production

During photolysis, which is the first case of the photo-dependent biohydrogen
production, some oxygenic photosynthetic microorganisms like algae or
cyanobacteria strains absorb solar energy and convert it into chemical energy by
splitting water to proton (H+) and molecular oxygen (O2) with intracellular pigments
(Yilanci et al. 2009). Then the generated H+ acts as electron acceptor for H2

production in the downstream combination with excessive electrons assisted by
intracellular enzyme of algal or cyanobacterial cells (He et al. 2017). Besides H2

generation, the technology also realizes high-efficiency carbon mitigation since the
growth and metabolism of algae or cyanobacteria can absorb ambient CO2 as carbon
source at solar energy conversion efficiency of tenfold than terrestrial plants
(Khetkorn et al. 2017). Thus, biohydrogen production via photolysis is regarded as
the cleanest way of hydrogen production, but its application is severely inhibited by
low hydrogen productivity, oxygen inhibition, and strict light requirement (Argun
and Kargi 2011). Many works were reported on enhancement of photolysis
biohydrogen production. Ban et al. (2018) found that Ca+ was capable of decreasing
the rate of chlorophyll reduction, maintaining the protein content at high level, and
scavenging most of reactive oxygen species, which improve direct and indirect
photolysis H2 production, with the maximum value of 306 ml/L H2 under Ca+

Table 9.3 Major application of membranes in gaseous biofuels production process

Process Target of membranes Characteristics

Photo-depen-
dent
biohydrogen

Algae, cyanobacteria, or photo-
fermentation with photosynthetic
bacteria

Membrane application mainly focused
on downstream products refining

Dark-fermen-
tative
biohydrogen

Anaerobic conditions that avoid
oxygen inhibition and light
inhibition

Submerged membrane bioreactor: low
energy cost but high membrane area
Side-stream membrane bioreactor: small
membrane area but high transmembrane
pressure, high energy cost

Products
purification

Remove impurities for quality
upgrading of gaseous biofuels

Gas transfer mechanisms of the mem-
brane: (1)viscous flow, (2) surface diffu-
sion, (3) Knudsen diffusion, (4) capillary
condensation, (6) molecular sieving,
(7) solution diffusion, (8) facilitated
transport, etc. (Bakonyi et al. 2018; Li
et al. 2015a; Lundin et al. 2017)
Key criteria for the membrane: (1) per-
meability and (2) selectivity
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adding amount of 5 mM. Rashid et al. (2013) applied mechanical agitation of culture
medium in the photobioreactor to enhance oxygen escape from suspensions to
reduce inhibiting effect of oxygen on biohydrogen production in microalgae system.

Unlike photolysis with algae or cyanobacteria, photo-fermentation with photo-
synthetic bacteria like non-sulfur purple photosynthetic bacterium, which is regarded
as the second case of photo-dependent biohydrogen production, is unable to derive
electrons from water. Photo-fermentation bacteria usually use simple sugars and
volatile fatty acids as feedstocks (Zhang et al. 2018b). And many problems like high
energy demand, low light conversion efficiency, and uneven light distribution in
bioreactors still need to be addressed for photo-fermentation. To enhance the light
conversion efficiency and improve the uneven light distribution in reactors, two
kinds of optical fibers with high surface luminous intensity have been developed by
using the polymer optical fiber and hollow quartz optical fiber (Xin et al. 2017;
Zhong et al. 2016, 2019), respectively, and the prepared fibers have been applied in
the photoreactors (Zhong et al. 2019). Tian et al. (2010) adopted a cell immobiliza-
tion technique to a biofilm-based photobioreactor to enhance light conversion
efficiency and biohydrogen production rate with photosynthetic bacteria
Rhodopseudomonas palustris CQK 01. By cultivating photosynthetic bacteria on
the surface of packed glass beads in the work by Tian et al. (2010), the maximum
biohydrogen production rate was improved to 38.9 mL/L/h and the light conversion
efficiency was enhanced to 56%. Fu et al. (2017) adopted light guide plate in photo-
fermentation system to realize uniform light distribution in the system and enhance
biohydrogen production. In the system, light was supplied from one side of the light
guide plate and then emitted from the surface of the plate, in which way the light was
elaborately dispersed in the culture. As a result, the hydrogen production rate was
improved to 11.6 mmol/h/m2.

Unfortunately, applications of membrane technology on photo-dependent
biohydrogen production system are relatively scarce up to date, which are mainly
focused on downstream purification of hydrogen products (Lin et al. 2018). Since
some membranes have the ability to selectively separate gas and liquid components
as well as regulate mass and heat transfer, membrane integrated photobioreactors for
biohydrogen production are expected to enhance photo-biohydrogen production.

9.3.2 Membranes Used for Dark-Fermentative Biohydrogen
Production

Compared with biohydrogen production via photolysis or photo-fermentation, dark-
fermentative biohydrogen production occupies more predominant status nowadays.
Dark fermentation presents many advantages over photo-fermentation. Since light is
unnecessary for dark fermentation process, reactors design is more flexible for dark
fermentation, and the volume utilization of the bioreactors can be fully exploited
(Łukajtis et al. 2018). In addition, oxygen inhibition is no longer a problem in

364 H. Chang et al.



anaerobic conditions; dark-fermentative biohydrogen production shows more reli-
able and faster hydrogen production rate.

For conventional dark fermentation process, continuous stirred-tank reactor
(CSTR) is widely used due to its simple construction, effective mixing, and ease
of operation. But low biomass density in fermentative broth of the CSTR caused by
high biomass washout rate and by-product and product inhibitions are crucial
shortcomings for feedstocks conversion and hydrogen production (Kariyama et al.
2018). The membrane modules in anaerobic membrane bioreactor (AnMBR) typi-
cally assist the biochemical conversion processes of feedstocks to hydrogen by
ensuring high solid retention time (SRT) and selectively removal of inhibiting
products (Shin and Bae 2018). In detail, membranes can separate liquid stream
from biomass and thus retain biomass in the bioreactor, in which way long SRT
required for efficient wastewater treatment and short hydraulic retention time (HRT)
for cost-effectiveness are satisfied at the same time (Aslam et al. 2018b). In addition,
membranes in the bioreactors can retain the metabolites in the system for further
conversion to produce biohydrogen, enhancing the substrate conversion efficiency
(Park et al. 2017). For example, Nielsen et al. (2001) used a heated palladium–silver
membrane reactor to separate hydrogen from the gas stream, in order to eliminate the
inhibiting effects of products (H2) on H2 generation. Teplyakov et al. (2002)
integrated active polyvinyl-trimethyl-silane membrane system with dark-
fermentative bioreactor for hydrogen removal to reduce partial pressure of hydrogen
in the gaseous units.

In general, the membrane bioreactor can be mainly classified into two types:
submerged membrane bioreactor and side-stream membrane bioreactor (as shown in
Fig. 9.2). Membrane modules are usually submerged in the liquid phase of the
reactor for the submerged membrane bioreactor, while they are set outside of the
reactor as a separate unit for the side-stream membrane bioreactor (Łukajtis et al.

Fig. 9.2 Configurations of (a) the submerged membrane bioreactor (MBR) and (b) the side-stream
MBR for gaseous biofuels production
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2018). The side-stream membrane bioreactor is characterized by small exchange
area of the membrane and easy conduction of membrane washing. However, a high
energy cost is required to supply enough transmembrane pressure for the filtration of
fermentative broth. On the contrary, the energy cost in the submerged membrane
bioreactor is much lower than the side-stream membrane bioreactor, but larger
membrane exchange area is necessary (Aslam et al. 2018a). Recently, many derived
types of membrane bioreactor are proposed for high-efficiency biohydrogen produc-
tion. Bakonyi et al. (2015) established a double-membrane bioreactor, in which a
commercial microfiltration membrane module was added into a membrane hydrogen
fermenter, which realized simultaneous biohydrogen production and purification. A
dynamic membrane bioreactor integrating a self-forming dynamic membrane with a
continuous fermenter was constructed by Park et al. (2017). In the dynamic mem-
brane bioreactor, the membrane module successfully retained effective hydrogen-
producing–bacterial consortia, resulting in a maximum hydrogen production rate of
51.38 L/L/day. Saleem et al. (2018) adopted a side-stream dynamic membrane
bioreactor using dynamic membrane as a solid–liquid separation media and signif-
icantly improved the dark-fermentative biohydrogen production under mesophilic
conditions.

9.3.3 Membranes Used for Biohydrogen Purification

Another important role of membrane in biohydrogen production system is purifica-
tion of the gaseous products to obtain high-quality hydrogen fuel. During
biohydrogen production via photo- or dark fermentation, large quantities of
by-products are generated along with hydrogen gas, like CO2, CO, SOx, and NOx,
which have great negative effects on combustion property of biohydrogen as fuel
(Khan et al. 2018). It is important to remove the impurities with CO2 as a major
target for gas upgradation. Membrane technology for biohydrogen purification is a
feasible approach because it avoids chemical conversion of the mixed gas.

In general, a membrane is a semipermeable separator which acts as a selective
mass transfer barrier to realize separation of different compositions (Bakonyi et al.
2018). According to membrane type (porous or nonporous membrane), gas transfer
mechanisms of the membrane mainly include (1) viscous flow, (2) surface diffusion,
(3) Knudsen diffusion, (4) capillary condensation, (6) molecular sieving, (7) solution
diffusion, and (8) facilitated transport, which are elaborately described in the previ-
ous paper (Bakonyi et al. 2018; Li et al. 2015a; Lundin et al. 2017). Superior
permeability and selectivity are two key criteria for the membrane applied in gas
purification, but it is unfortunate that these two factors are usually not compatible
with each other. This limits application of most available membrane types in
industrial production of biohydrogen. Many researchers have been dedicating so
much effort to enhance the gas separation characteristics of membranes for
biohydrogen purification. Ahmad et al. (2016) constructed a nearly
superhydrophobic and microporous membrane by blending amorphous poly-
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benzimidazole and semicrystalline polyvinylidene fluoride, which removed 67% of
CO2 in gas mixture of H2 and CO2 at highest CO2 flux of 4.16 � 10�4 mol/m2/s
across the membrane. Wu et al. (2017a) synthesized a membrane made of glassy
polymers, polyetherimide-coated bio-cellulose nanofibers, and a coconut shell active
carbon as adsorbent carriers for CO2 separation in dark-fermentative gas mixture.
The synthesized membrane was convinced to have CO2 permeability of 16.72 Barrer
and corresponding CO2/H2 selectivity of 0.15. Abd. Hamid et al. (2019) proposed a
synthesized polysulfone–polyimide membrane with the highest permeability of
348 GPU (gas permeation unit, 1 GPU equal to 1 � 10�6 cm3(STP)/(cm2

•s•cm
Hg)) for H2 and 86 GPU for CO2, H2/CO2 selectivity of 4.4, and H2 purification
efficiency of 80%.

However, many previous literatures also reported that the equipment cost, reli-
ability, and energy efficiency of the membrane bioreactor are unable to compete with
the traditional CSTR. Among various influencing factors, membrane fouling is one
of the most important problems, as seen in Fig. 9.3 (Buitrón et al. 2019). During
microorganism growth and metabolism, a quantity of soluble microbial products and
extracellular polymeric substances which consists of complex biopolymer mixtures
like proteins, polysaccharides, lipopolysaccharides, and lipoproteins, is produced in
the cultures (Zhang et al. 2015). With assistance of the excretive soluble microbial
products and extracellular polymeric substances, the biomass flocs are easily
attached and accumulated on membrane surface since the biomass flocs are usually

Fig. 9.3 Key limitations of
membrane application in
microbial biofuels
production process (Buitrón
et al. 2019)

9 Membrane Technologies for Sustainable and Eco-Friendly Microbial. . . 367



larger than the membrane pore size, resulting in pore blocking and membrane
fouling (Khan et al. 2019; Zhang et al. 2015).

In this regard, enhancement of physical–chemical properties of the membrane to
reduce foulant attaching on the membrane surface is a primary objective to prevent
membrane fouling. Membrane modifications with physical structural rearranging,
chemical coating, and functional material embedding are promising approaches for
antifouling membrane development (López-Cázares et al. 2018; Qin et al. 2018;
Shan et al. 2018). Schematic of some typical membrane modification methods for
antifouling technology is shown in Fig. 9.4, like physical structural modification
with nano-Ag cluster (Fig. 9.4a) and chemical solvents coating on the membrane
(Fig. 9.4b). For example, López-Cázares et al. (2018) enhanced the anti(bio)fouling
of cation exchange membranes (Nafion and Ultrex membranes) by immobilizing
nanocomposites of nanoparticles on graphene oxide as a thin film using a
polydopamine adhesive. Shan et al. (2018) explored a facile and biomimetic method
of amphiphobic surface with special structure and controllable wettability, which
enhanced the flux and antifouling performances of the membrane. Li et al. (2018a)
grafted thermo-responsive polymer chains on the surface of polyethersulfone, devel-
oping a modified membrane with rich porosity and well antifouling property.

Another important antifouling approach is dynamic membrane technology which
uses a physical barrier to prevent formation of cake layer on the membrane surface
(Yang et al. 2018). Compared with the conventional approaches to control mem-
brane fouling by air bubbling, the dynamic membranes can provide stronger shear
force on the phase interface of the liquid and membrane by mechanical vibration,
like rotating, vibrating, and oscillating (Bagheri and Mirbagheri 2018; Qin et al.
2018). The typical dynamic membrane system, like membrane rotating system, is
shown in Fig. 9.4c. Ruigómez et al. (2017) proposed a physical cleaning strategy

Fig. 9.4 Typical antifouling membrane system. (a) Membrane surface modification with nano-Ag
cluster, (b) chemical coating of membrane and (c) dynamic membrane system with rotating unit
(Qin et al. 2018)
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based on membrane rotation in a submerged anaerobic membrane bioreactor and
improved the fouling removal effectiveness, achieving a stable net permeate flux of
6.7 L/m2 h. Chatzikonstantinou et al. (2015) employed high-frequency powerful
vibration technique in both hollow fiber and flat sheet modules to prevent membrane
fouling. They reported that the strategy of high-frequency powerful vibration is
capable of reducing membrane fouling and is promising with respect to energy
savings. These emerging antifouling technologies provide great potential to reduce
membrane manufacturing and operating costs, which then enhance the commercial
feasibility of biohydrogen application as energy sources.

9.4 Membrane Application in Microbial Fuel Cells

Microbial fuel cells (MFCs), which are bioelectrochemical devices, have attracted a
particular interest in the energy field due to its environmental-friendly characteristic
by using microorganism as electrocatalyst to conduct an oxidation–reduction reac-
tion and convert chemical energy in wastewater into electrical energy (Leong et al.
2013; Zhong et al. 2018). The configuration of MFCs generally contains three parts,
anode, cathode, and electrolyte layer, in which the MFCs can be roughly classified
into two types, i.e., dual chamber MFC and single chamber MFC (as shown in
Fig. 9.5). The dual chamber MFC contains an anode and a cathode chamber, which
are separated by a proton exchange membrane that acts as electrolyte bridge. In
contrast, the single chamber MFC contains only anode chamber, with air as the
cathode of the system. The MFC has dual advantages of simultaneous electricity
generation and treating wastewater, but commercialization of this technology is still
hindered by high cost (Tender et al. 2008) and low power density (Tender et al.
2002).

The membrane is a major part of the MFC acting as separator that physically
divides the anode and cathode but keeping them chemically and ionically connected,
which significantly influences the MFCs’ overall investment and power density.

Fig. 9.5 Schematic diagram of (a) the dual chamber microbial fuel cell (MFC) and (b) the single
chamber MFC
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Until now, the possible types of membranes that can be used in the MFC include
cation exchange membrane (Daud et al. 2018), anion exchange membrane
(Elangovan and Dharmalingam 2017), porous membrane (Li et al. 2015b), poly-
mer/composite membrane (Ahilan et al. 2018), etc. Each type of membrane has its
advantages and disadvantages. For example, cation exchange membrane is the
preferential separator used in MFC since it directly conducts H+ from anode to
cathode, which enhances coulombic efficiency of the MFC (Chaudhuri and Lovley
2003). pH splitting between the anode and cathode chamber of the MFC easily
happened, attributing to transfer competition of other cations (like K+, Na+, NH4

+,
and Ca2+) with H+ across the cation exchange membrane, which may cause H+

accumulation in anolyte (Chae et al. 2008). The anion exchange membrane can
effectively diminish pH splitting since the AEM conduct OH� or carbonate anions
transfer from cathode to anode, promoting H+ transfer by acting as H+ carrier
(Varcoe et al. 2014; Ye and Logan 2018). However, the substrate crossover through
the AEM is a major drawback for MFC performance (Hernández-Flores et al. 2017).
Though the internal resistance of porous membrane is low, it is not a good candidate
for the MFC, attributing to high crossover rate of oxygen and substrate through the
pores, except for cases when aerobic bacterium in anode is intended to be cultivated
for removal of some specific organic matters, like azo bonds during azo dyes
treatment (Slate et al. 2019). Polymer/composite membrane is a newly emerging
type which combines merits of polymers and inorganic or organic fillers to realize
more abundant functions, but it is in cost of larger surface roughness, resulting in
higher possibility of biofouling (Antolini 2015). In general, the membrane affects
MFCs’ performance and cost from aspects of membrane internal resistance, oxygen
diffusion, substrate loss across the membrane, pH splitting, and membrane biofoul-
ing (Dharmalingam et al. 2019; Leong et al. 2013).

The membrane with high resistance is not conducive to proton diffusion from
anode to cathode due to low ion-exchange capacity of the membrane, resulting in
poor MFC performance, while low resistance membrane with porosity like
microfiltration membrane can also reduce the power density of the MFC, attributing
to high crossover rate of oxygen and substrate through the pore on the membrane
(Zhao et al. 2009). Therefore, the membrane with low internal resistance and low
oxygen and substrate crossover rate is an ideal type for improving coulombic
efficiency and power density of the MFC (Ji et al. 2011). Gao et al. (2018) developed
a novel carbon-based conductive membrane that had a lower internal resistance
(752 Ω) relative to the proton exchange membrane (937 Ω) and enhanced the power
density of the MFC to 228 mW/m3. Wu et al. (2017b) adopted an electroconductivity
aerated membrane (EAM) as biocathode in the MFC to enhance power density and
wastewater treatment. The EAM had superior property in controlling oxygen and
substrate diffusion as well as proton transfer, resulting in a power density of
4.20 � 0.13 W/m3 at a current density of 4.10 � 0.11 A/m2.

Oxygen and substrate diffusion across the membrane are important issues for
MFC which can significantly reduce MFC’s power density and coulombic efficiency
(Do et al. 2018). Oxygen transfers from cathode to anode and then competes with the
anode to accept electrons since oxygen is a more favorable electron acceptor. In
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contrast, the substrate transfers across the membrane from anode to cathode cham-
ber, which is in opposite direction of oxygen diffusion. The substrate is then
oxidized by aerobic bacteria, and extra electrons are generated for the oxygen
reduction reaction at the cathode, leading to an internal short circuit inside the
MFC and reducing coulombic efficiency (Kim et al. 2013). Thus, the occurrence
of oxygen and substrate diffusion across the membrane diminishes the power density
of the MFC. The membrane in the MFC acts as a physical barrier for oxygen and
substrate diffusion during operation. From this view, the performance of the MFC
with membrane is usually better than the membraneless MFC. For example, it was
reported that the coulombic efficiency of the MFC with membrane was 20% higher
than the membraneless one (Li et al. 2018b; Slate et al. 2019). Unfortunately, a
membrane that can totally avoid oxygen and substrate diffusion is still not yet
developed. Some auxiliary approaches are necessary to minimize negative effects
of oxygen and substrate crossover on MFC performance. For example, Ahilan et al.
(2018) modified ceramic membrane with montmorillonite–H3PMo12O40/SiO2 com-
posite to reduce the oxygen mass transfer coefficient to 5.62 � 10�4 cm/s, which is
near the commercia polymeric Nafion membrane. Logan et al. (2005) used chemical
oxygen scavenger, i.e., cysteine, in the anode chamber to remove the oxygen by
reacting with oxygen to form disulfide dime (cystine). Yousefi et al. (2018) assem-
bled a chitosan/montmorillonite nanocomposite film layer-by-layer over the surface
of commercial unglazed wall ceramics to be utilized as the separator of MFC, in
which the oxygen diffusion coefficient was one-sixth of the blank ceramic mem-
brane. To avoid substrate diffusion, a membrane which is nonporous and has high
selectivity for cations but does not allow anions transfer is the preferred approach
(Leong et al. 2013).

The oxygen and substrate diffusion can also induce biofouling of the membrane
and pH splitting of the MFC, which cause negative effects on MFC performance.
The membrane biofouling usually occurs on the membrane surface facing the anode
chamber due to the attachment of microbial and organic matter as a biofilm (Chae
et al. 2008). Besides, oxygen near the membrane in the anode side that transferred
from the cathode triggered biofilm formation of aerobic bacteria, which acts as
barrier for proton diffusion between the anode and cathode (Li et al. 2018b). Thus,
the produced H+ in the anode accumulates in the anolyte, making the anolyte more
acidic and the catholyte more alkaline. The phenomenon of pH splitting may
deteriorate bacterial growth and metabolism and then reduce power density and
coulombic efficiency. To ensure high performance of the MFC, the fouled mem-
brane must be replaced with new one for proton diffusion, but this dramatically
improved operating investment of the MFC. In recent years, researchers proposed
some approaches to reduce membrane biofouling, like antimicrobial approach and
anti-adhesion approach (Chatterjee and Ghangrekar 2014; Noori et al. 2018; Sun
et al. 2016b; Yang et al. 2016). Chatterjee and Ghangrekar (2014) constructed
antifouling MFC using vanillin as biocide. Yang et al. (2016) coated the membrane
with a silver nanoparticle–polydopamine to mitigate biofouling of the membrane by
taking advantage of antimicrobial effect of nano-Ag particle. Sun et al. (2016b) used
well-ordered multi-walled carbon nanotubes and its derivative modified with the
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carboxyl-modified to prevent microbial adhesion. However, the effectiveness of
these antifouling methods drastically reduced after a certain period of operation.
Until now, biofouling is still one of the biggest limitations for membrane application
in MFC field, which will deteriorate membrane performance and durability and then
negatively affect the power output and operational cost (Do et al. 2018; Gajda et al.
2018).

In conclusion, the membrane is a very important component for the MFC. The
properties of mass transfer like H+, oxygen, and substrate; energy transfer like
thermal, chemical, and electrical; and energy conversion between chemical, electri-
cal, and thermal power in the MFC system are closely related to the function and
structure of the membrane modules, which ultimately affects MFC’s performance.
Among various available membranes, the choice of an ideal type for the MFC
requires certain criteria, including internal resistance; ion conductivity; permeability;
physical, chemical, and thermal stability; biofouling; and cost (Dharmalingam et al.
2019; Rabaey and Verstraete 2005). A superior membrane with characteristics of
high ionic conductivity and high antibiofouling property but with low internal
resistance, low oxygen, low substrate diffusion rate, and low cost is needed to be
developed for large-scale application of MFC.

9.5 Conclusions

Microbial energy conversion technology is a potential method for simultaneous
realization of environmental remediation and energy production. Membranes play
very important roles in bioenergy production processes for enhancement of
bioenergy productivity and quality. This chapter presents a review on the roles and
mechanisms of membranes on bioenergy production processes, and the important
influencing factors are discussed. For liquid biofuels production, membranes can
enhance microalgae biomass productivity, concentrate sugar concentration, remove
inhibitors from the hydrolysate, and recover liquid biofuels from solution. For
gaseous biofuels production, the membranes can enhance bioenergy output by
ensuring high solid retention time (SRT) and purify the produced biogas for high-
quality fuel generation. For the microbial fuel cell, the membrane can avoid internal
short circuit and increase power density by acting as physical barrier and electrolyte
bridge. But biofouling of membrane caused by microbial attachment is a vital
problem that needs to be addressed. Antifouling technologies, like anti-adhesion
approach or antimicrobial growth approach, are discussed in the work. For future
prospect, antifouling technology of membranes is still the primary target to reduce
membrane cost. Some versatile membrane types coated with functionalized groups
or materials should be developed to fulfill various occasions. In addition, further
application of membrane on microbial energy conversion should be explored, like
membrane application on photo-dependent hydrogen production.
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