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Abstract Serious water contamination and freshwater shortage result in the urgent
requirements of advanced technologies for water treatment. Membrane separation is
an alternative technology to address the global water crisis. Hence the research for
membrane materials with excellent properties is being undertaken vigorously.
Recently, successful attempts have been made towards applying carbon-based
membrane materials, such as carbon membranes, carbon nanotube membranes,
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carbon fiber membranes, activated carbon membranes, graphene-based membranes,
etc. for achieving a high separation performance. The intrinsic properties of the
carbon materials can potentially lead to enhancements in fouling mitigation, hydro-
philicity, and permeate quality. This chapter provides a brief and comprehensive
overview of the fabrication and synthesis mechanisms of the carbon-based mem-
brane materials, characterization methods, and practical applications in water treat-
ment. The major points are:

1. Carbon membranes, derived from phenolic resin and coal as precursors, have
been widely used in water treatment, specifically utilizing the electrical conduc-
tivity of coal-based carbon membrane as the electrode and membrane filter
simultaneously demonstrate great potential on water treatment.

2. Four types of carbon nanotube membranes are presented and indicate high
separation performance due to the remarkable physicochemical properties of
carbon nanotubes.

3. Carbon fiber membranes possess abundant functional groups on the surface,
favoring high permeability in water treatment.

4. Activated carbon membranes are promising for organic matter removal owing to
high surface area, micro–meso and macroscopic structure, and various chemical
functional groups.

5. Graphene-based membranes as the novel carbon-based membrane materials with
unique laminar pores are attracting more and more attentions.

Keywords Membrane · Carbon materials · Wastewater treatment · Water
purification · Separation

4.1 Introduction

The industrial development and population growth have led to serious and sustain-
able challenge towards the water resources in the twenty-first century (Menachem
and William 2011; Ma et al. 2017; Salgot and Folch 2018). The prediction from the
United Nations indicates that half of the countries worldwide will be confronted with
water shortage in the coming decades (Goh and Ismail 2018). The World Health
Organization (WHO) also estimates that more than 1.2 billion people worldwide
have gotten sick or died through drinking contaminated water, and the number is
expected to significantly grow in the coming years (Montgomery and Elimelech
2007; Wilson et al. 2018). Hence, in order to reduce the hazards from water pollution
to humankind, various technologies and industrial processes for water treatment or
purification have been developed and applied rapidly in recent years (Zheng et al.
2015; Pintor et al. 2016; Hayat et al. 2017; Jiao et al. 2017).
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Among them, membrane separation has been accepted as a promising and
pervasive technology arising from its numerous advantages of no chemical additives
requirement, low energy demand, easy operation, high separation selectivity, and
good stability (Gin and Noble 2011; Li et al. 2016b; Thakur and Voicu 2016;
Chowdhury et al. 2018; Lau et al. 2018). To date, membrane separation has been
widely applied in industrial wastewater treatment and drinking water purification
and desalinization (Pendergast and Hoek 2011; Singh and Hankins 2016; Parimal
2017; Zhang et al. 2018). As one of the dominated factors to determine membrane
performance, membrane materials should be primarily concerned for exploring high-
performance membranes.

Recently, carbon-based materials have been used to develop membranes with
optimal structure and performance due to their excellent physicochemical properties
(Goh et al. 2016; Thines et al. 2017; Anand et al. 2018; Wei et al. 2018). The carbon-
based materials not only can improve the wetting ability and surface charges of the
membranes but also introduce additional functions such as antimicrobial ability and
photocatalytic and electrochemical reactions (Liu et al. 2011; Ong et al. 2018).
According to previous works, several kinds of carbon-based membrane materials
including carbon membranes, carbon nanotube membranes, carbon fiber mem-
branes, activated carbon membranes, graphene-based membranes, etc. (Inagaki
et al. 2014; Jiang et al. 2016; Lawler 2016; Vatanpour and Safarpour 2018) are
described. This chapter aims to provide an overview on recent developments of
carbon-based membrane materials for water treatment. A brief discussion of the
existing challenges and their prospects are also considered.

4.2 Carbon Membranes

Carbon membranes, as novel porous inorganic membranes, are usually prepared by
pyrolysis of carbonaceous materials, such as polyimide and its derivatives, polyac-
rylonitrile, poly(furfuryl alcohol), phenol–formaldehyde, coal, etc. In the past sev-
eral decades, carbon membranes have demonstrated excellent gas separation
performance (Hamm et al. 2017), however, only a few carbon membranes are
applied on water treatment due to their high cost and complex preparation process.
In the following parts, several kinds of carbon membranes used in water treatment
will be introduced.

4.2.1 Phenolic Resin-Based Carbon Membranes

Phenolic resins have presented suitable features to be applied as the precursors of
carbon membranes due to their low cost, thermosetting property, and high carbon
yield (Muylaert et al. 2012). Several scholars have successfully prepared carbon
membranes with phenolic resins for water treatment. Song et al. (2017) developed
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carbon alumina mixed-matrix membranes by impregnating phenolic resin in porous
alumina matrix via a vacuum-assisted method. Their results showed that carbon
alumina mixed-matrix membranes with high water fluxes and salt rejections could be
easily tailored. However, the carbon membrane, formed by dip coating a phenolic
resin solution on an alumina substrate, could not exclude small molecules of glucose
and sucrose. It only demonstrated high removal rates (80% and 100%, respectively)
for 36 kda and 400 kda of polyvinylpyrrolidone polymers (Abd et al. 2017). Wu
et al. (2016) prepared phenolic resin-based carbon membrane to treat oily wastewa-
ter. The oil concentration dramatically reduced from initial 200 mg/L in feed to
below 10 mg/L in permeate, with the oil rejection rate of 95.3%. Zhao et al. (2018)
prepared the original precursor membrane by compressing the mushy mixture
composed of phenolic resin, hexamethylenetetramine, carboxymethylcellulose
sodium, and distilled water. The results showed that these carbon membranes
could effectively remove phenol and phosphoric acid from water. The maximum
removal rates were 81.9% for phenol and 55.3% for phosphoric acid. In addition, the
carbon membrane derived from phenolic resin was also effective to treat dye
wastewater. Asymmetric tubular carbon membranes on an ultrafiltration substrate
were prepared by thermosetting phenolic resin and carbon black (Tahri et al. 2016),
and such carbon membranes could be applied efficiently to the treatment of indus-
trial dyeing effluent. According to the above research, carbon membranes made from
phenolic resin as raw material or part of raw material have been applied in many
aspects of water treatment and showed their unique performance.

4.2.2 Coal-Based Carbon Membranes

Coal, as a kind of natural mixture composed of macromolecular cross-linked poly-
mers and inorganic minerals, is a good candidate for preparing carbon membranes
because of its low price and abundant deposit. In the past two decades, our group
explored the preparation technology of carbon membranes derived from coal, which
was shown in Fig. 4.1. The coal was ground into fine particles first, and then mixed
with binder into a dough, which was extruded into a tube of 10 mm external diameter
by a hydraulic extruder at 2.5–3.0 MPa. After drying at ambient atmosphere, the
tubular membrane was carbonized in Ar up to 900

�
C at the rate of 3

�
C/min and held

for 1 h. The final product was cooled to room temperature naturally. A series of
systematic investigations on the controlled preparation of coal-based carbon mem-
branes were carried out, and the pore structure, mechanical strength, and electrical
conductivity of CBCMs were further optimized. As expected, the coal-based carbon
membranes showed excellent water treatment performance (Song et al. 2006).

During treatment, the retention and accumulation of pollutants on the membrane
surface and inside the membrane pores would give rise to serious membrane fouling.
In order to improve the antifouling ability of coal-based carbon membranes, an
electric field was exerted on the treatment system; our group utilized the electrical
conductivity of coal-based carbon membranes and designed a coupling system
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which employs coal-based carbon membranes as the anode and Ti plate surrounding
the membrane as the cathode. This system achieved significant improvement on
removal efficiency and antifouling ability under an external electric field due to the
electrochemical oxidation (Fig. 4.2). This system not only displayed excellent
removal efficiency for organic pollutants (such as oil droplets) larger than the
membrane pores (Li et al. 2016a) but also demonstrated great potential on those
pollutants with a smaller molecule size than the membrane pore size including dyes,
phenol, etc. (Yin et al. 2016); Tao et al. 2017b; Sun et al. 2018). Moreover,
microorganisms such as microalgae and Vibrio cholerae were also effectively
removed (Tao et al. 2017a). Compared with other membrane processes such as
ultrafiltration, nanofiltration, and reverse osmosis, this technology possessed obvi-
ous advantages on processing capacity and energy consumption.

Although the coupling system has been proved to be effective for organic
wastewater treatment, further potential for improvement in the removal efficiency
and life span of the coupling system is often limited by the relatively low electro-
chemical activity of membrane electrode materials. Therefore, improving electro-
chemical activity of the membrane electrode material is a key to make a significant
breakthrough in this field. Yang et al. (2011) presented the design of a novel
electrocatalytic membrane reactor by loading electrocatalyst on carbon membrane
(Fig. 4.3). In the research, TiO2 as the electrocatalyst and hydrophilic agent was
coated on the membrane surface by a sol–gel approach to enhance electron transfer

Fig. 4.1 Preparation
process of coal-based
carbon membranes.
(Reprinted with permission
of (Song et al. 2006))
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and improve membrane permeability. In this operation process, once the membrane
anode was electrified, excitation of electrons in the conduction band took place at the
TiO2 surface. The obtained electrons and holes not only electrochemically
decomposed H2O into O2 and H2, inducing gas and liquid microflows to reduce
concentration polarization and avoid membrane fouling, but also reacted with the
adsorbed H2O and O2 at the TiO2 surface to generate reactive intermediates, which
could indirectly decompose the organic foulants into CO2 and H2O or biodegradable
products, so as to realize the self-cleaning function of the electrocatalytic membrane.
Similarly, Wang et al. (2014) also used an electrocatalytic membrane reactor con-
stituted by TiO2 loading carbon membrane to treat phenol wastewater. Besides, the
Bi–SnO2/C electrocatalytic membrane was fabricated via a simple electrochemical

Fig. 4.2 Flow schematic diagram of carbonized membrane coupling with an electric field.
(Reprinted with permission of (Li et al. 2016a))

Fig. 4.3 Scheme of
electrocatalytic membrane
reactor. The figure shows an
electrocatalytic membrane
reactor with self-cleaning
function for industrial water
treatment. (Reprinted with
permission of (Yang et al.
2011))
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reduction and hydrothermal method by Wang et al. (2018b). The Bi–SnO2/C
membrane could continuously remove and inactivate E. coli in water through
flow-through mode. As a result, the sterilization efficiency reached more than
99.99% under the conditions of cell voltage of 4 V, flow rate of 1.4 mL/min, and
E. coli initial concentration of 1.0 � 104 CFU/mL, owing to the synergistic effect of
the membrane separation and electrocatalytic oxidation.

4.3 Carbon Nanotube Membranes

Carbon nanotubes (CNTs), as an important kind of carbon materials, have many
remarkable electrical, thermal, mechanical, and optical properties, which make them
be widely used in sensor, supercapacitor, lithium–ion battery, etc. (Ren et al. 2011;
Gupta et al. 2013; Yu et al. 2014; Apul and Karanfil 2015; Patino et al. 2015).
Generally, carbon nanotubes can be divided into single-walled carbon nanotubes and
multi-walled carbon nanotubes (Fig. 4.4) (Ahn et al. 2012; Ihsanullah 2019). As we
have known, carbon nanotubes were firstly discovered by Sumio Iijima (1991). Soon
after, researchers observed ultrahigh water flow rates in carbon nanotubes, and this
discovery produced great expectation that carbon nanotubes could be used as an
ideal material for water treatment (Whitby and Quirk 2007; Lee et al. 2011; Ahn
et al. 2012).

The concept of carbon nanotube membrane was introduced by Li and Richard
(2000) when they studied the mass transfer phenomenon in single-walled carbon
nanotubes. Recently, carbon nanotube membranes for water purification are getting
more and more attention. According to the arrangement patterns of carbon
nanotubes, carbon nanotube membranes are usually classified into vertically aligned
carbon nanotubes (VA-CNT) membranes, horizontally aligned carbon nanotubes
(HA-CNT) membranes, mixed-matrix carbon nanotube membranes, and electro-
chemical carbon nanotube membranes (as shown in Fig. 4.5).

Fig. 4.4 The structure of
multi-walled carbon
nanotubes and single-walled
carbon nanotubes.
(Reprinted with permission
of (Ihsanullah 2019))
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4.3.1 Vertically Aligned Carbon Nanotube Membranes

Bruce et al. (2004) firstly constructed a multi-walled vertically aligned carbon
nanotube membrane, and its typical preparation process was shown in Fig. 4.6
(Das et al. 2014), and the separation performance of vertically aligned carbon
nanotube membranes was listed in Table 4.1. The work from Baek et al. (2014)
showed the superiority of vertically aligned carbon nanotube membrane with the
water permeation almost three times higher than a typical ultrafiltration membrane.
Besides, the membrane prepared by Holt (2004) with silicon nitride (Si3N4)-filled
carbon nanotube array obtained much higher water flux which was three times larger
than that calculated by the Hagen–Poiseuille equation. This was mainly owing to the
effect of the compact nanotube forest and short nanochannel length. In addition,
some researchers prepared novel vertically aligned carbon nanotube membranes that
possessed certain antimicrobial and antifouling capacities (Lee et al. 2015). A key
challenge on preparing these kinds of membranes was to align the carbon nanotubes
over a sufficiently large area for comprehensive water treatment (Ali et al. 2019).
Instead of conventional preparation methods, Wu et al. (2014) utilized an electric
field to obtain vertically aligned carbon nanotube membranes. Electro-casting
allowed multi-walled carbon nanotubes to grow vertically and disperse more evenly.
However, complex manufacturing techniques were still major obstacle to make these
membranes suitable for large-scale applications (Ihsanullah 2019).

Fig. 4.5 Mechanism of water passing through the four types of carbon nanotube membranes: (a)
vertically aligned carbon nanotube membrane, (b) horizontally aligned carbon nanotube membrane
which is randomly arranged horizontally on a porous support layer, (c) mixed-matrix carbon
nanotube membrane which is directly doped into the polymer membranes by interfacial polymer-
ization or phase inversion, (d) electrochemical carbon nanotube membrane. (Reprinted with
permission of (Ali et al. 2019))

128 C. Li et al.



4.3.2 Horizontally Aligned Carbon Nanotube Membranes

In addition to vertically aligned pattern, carbon nanotubes can aggregate with each
other by the van der Waals interactions to form horizontally aligned carbon nanotube
membranes (Fig. 4.5B) (Ihsanullah 2019). This type of carbon nanotube membranes
possesses several advantages such as a high specific surface area, large porous 3D
network, etc. The most common methods for synthesizing horizontally aligned
carbon nanotube membranes are electrospinning, vacuum filtration, and layer-by-
layer deposition (Sears et al. 2010).

The preparation processes of horizontally aligned carbon nanotube membranes
usually involve two steps: the functionalization of carbon nanotubes and vacuum
filtration (Fig. 4.7). Firstly, the functionalized carbon nanotubes (horizontally
aligned carbon nanotubes) are ultrasonically treated for uniformly dispersing in
water or other solvents. Then, the dispersion is placed on the substrate membrane
by vacuum filtration, after drying in an oven to remove the solvent (Lee et al. 2016a).

The related works on horizontally aligned carbon nanotube membranes are listed
in Table 4.2. Due to the disordered arrangement of functionalized carbon nanotubes,
the horizontally aligned carbon nanotube membranes can provide rich porous
structure and large specific surface area (Sears et al. 2010), which makes the
horizontally aligned carbon nanotube membranes possess high adsorption capacity
to natural organic matter (Yang et al. 2013) and strong antimicrobial actions (Kang
et al. 2007). Li et al. (2015) found that a “slanted carbon nanotube membrane”
exhibited a higher water flux than a typical vertically aligned carbon nanotube
membrane, because this kind of art structure could obviously lower the energy
barrier for filling water into the carbon nanotubes. Brady Estevez et al. (2008)
reported that the horizontally aligned single-walled carbon nanotube membrane

Annealing

1. Block-copolymer
Film Deposition

2. PS-PMMA phase
separation      

3. Removal of PMMA
cylinder core      

7. PDMS infiltration 6. CNT Growth 5. PS template
lift off       

4. Deposition of Fe
  catalyst film      

UV radiation
& Wet etching

Evaporation

Toluene-
sonication

PECVDSpin-coating
PDMS

Fig. 4.6 Process flow for the fabrication of a vertically aligned carbon nanotube membrane using a
block copolymer lithography method. (Reprinted with permission of (Ahn et al. 2012))
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displayed high removal rate for the virus MS2 bacteriophage. Ihsanullah et al. (2015)
synthesized a silver-doped carbon nanotube membrane and demonstrated good
antibiofouling and antibacterial properties. Subsequently, they found that an iron
oxide composite carbon nanotube membrane could present excellent antifouling
property (Ihsanullah et al. 2016). Dumée et al. (2010) applied horizontally aligned
carbon nanotube membranes to direct contact membrane distillation. Their work
proved that horizontally aligned carbon nanotube membranes possessed high water
flux and good desalination ability. After that, they modified high-purity carbon
nanotubes by two chemical ways, and the resultant horizontally aligned carbon
nanotube membrane had a larger contact angle (140� compared with 125�), which
further improved the performance of the horizontally aligned carbon nanotube
membrane (Dumée et al. 2011).

Table 4.1 Membrane performance of some vertically aligned carbon nanotube membranes

Membrane material Membrane performance Reference

CNT/polystyrene The membrane flux of ruthenium bipyridine and
methyl viologen was 9.57 (�0.91) and 21.05
(�2.32) nmol/h, respectively

Mainak et al.
(2005)

CNT/stainless steel The flux of diesel and water was 4692 kg/(m2�h)
(400 Pa) and 85.6 kg/(m2�h) (1820 Pa) when the
membrane was used to separate diesel–water mixture

Lee and
Baik (2010)

CNT/polyethersulfone The water flux was �100 L/(m2�h) at 60 Psi Li et al.
(2014)

CNT/PS/epoxy resin The water flux was 1100 � 130 L/m2�h�bar (3 times
higher than a commercial membrane). The VA-CNT
membrane showed better biofouling resistance

Baek et al.
(2014)

CNT/
polytetrafluoroethylene/
Si

The water flux was 30,000 L/m2�h�bar (almost 12.5
times higher than the reported CNT membranes). The
carbon nanotube walls of the membrane were proved
to hinder the formation of biofilms and prevent bacte-
rial adhesion

Lee et al.
(2015)

CNT/Fe/Al2O3/Si The BSA rejection increased from 71% to 90% with
the modification of methacrylic acid. The pure water
flux was 1000 � 100 L/(m2�h�bar)

Park et al.
(2014)

CNT/Si wafer The rejection rate of NaCl was 41.4%. The water flux
was 1.31 � 10�3

– 6.57 � 10�2 L/(cm2�day�MPa)
Matsumoto
et al. (2017)

CNTs–TiO2/Al2O3 The rejection rate of polyethylene glycol was 70% and
the flux was 980 L/(m2�h)

Zhao et al.
(2013a)

Fe3O4/CNT Membranes with a 10 and 1% iron oxide exhibited the
best removal of 90 and 88% of SA after 3 h

Ihsanullah
et al. (2016)

CNT–carbon fabrics The hydrophobicity of the membrane increased; the
wetted surface fraction and adhesion were lower. The
separation efficiency of oil–water mixture was much
higher

Hsieh et al.
(2016)

PdO–CNT The removal efficiency of atrazine was almost 100% Vijwani
et al. (2018)
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However, carbon nanotubes usually tended to aggregate when they were dis-
persed in a polymer matrix or solvent. Therefore, it was difficult to prepare a uniform
dispersion. For this reason, several surfactants such as Triton X-100, sodium lauryl
sulfate, etc. were adopted to improve the dispersion of carbon nanotubes in aqueous
solution (Wu et al. 2010c). Besides, another efficient method was chemical
functionalization (Yang et al. 2013), which had been proved to increase the hydro-
philicity and stability of carbon nanotube suspensions (Ansón-Casaos et al. 2010).
For example, some researchers covalently grafted functional groups including

Fig. 4.7 Process flow for the fabrication of horizontally aligned carbon nanotube membrane. (a)
Flow of manufacturing horizontally aligned carbon nanotube membrane. (b) SEM image of the
membrane surface. (c) Fold it into a paper airplane to show its flexibility and mechanical robustness.
(Reprinted with permission of (Sears et al. 2010))

Table 4.2 Application and membrane performance of some horizontally aligned carbon nanotube
membranes

Membrane
material Membrane performance Reference

CNT The salt rejection was more than 95%. The water vapor flux
was 4.5 � 0.1 � 1012 kg/(m�s�Pa)

Dumée et al.
(2011)

CNT The salt rejection was more than 99%. Flux rate was�12 kg/
(m2 h) at a water vapor partial pressure difference of 22.7 kPa

Dumée et al.
(2010)

CNT/PP/PES/
PS/PVDF

The salt rejection was 95%. The water vapor flux was
3.3�10�12 kg/(m�s�Pa)

Dumée et al.
(2012)

f-CNT The rejection rate of humic acid was more than 93% Yang et al.
(2013)

CNT/PVDF The rejection rate of E. coli was 94% (exhibited good anti-
microbial capacity). The water flux was 13,800 L/m2�h�bar
and 6500 L/(m2�h�bar) at SWNT loading of 0.3 mg/cm2 and
0.8 mg/cm2

Brady Estevez
et al. (2008)

Cu–CNT/
PVDF

The rejection rate of As(III) was above 90%. The pure water
flux was 4639–4854 L/m2�h�bar).

Luan et al.
(2019)
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amines, fluorine, and sulfhydryl groups onto carbon nanotubes to help them disperse
in horizontally aligned carbon nanotube membranes (Ansón-Casaos et al. 2010;
Darryl et al. 2010).

4.3.3 Mixed-Matrix Carbon Nanotube Membranes

The main role of carbon nanotubes in mixed-matrix carbon nanotube membranes is
to improve the performance of conventional polymer membrane (Ihsanullah 2019).
Compared with the above two types of membranes, mixed-matrix membranes are
easier to be commercialized for their simple preparation procedures. For preparing
mixed-matrix carbon nanotube membranes, functional carbon nanotubes are gener-
ally added into polymeric membranes by several synthesis techniques (Ali et al.
2019; Ihsanullah 2019). The most common methods are phase inversion (Choi et al.
2006; Brunet et al. 2008; Majeed et al. 2012), interfacial polymerization (Shen et al.
2013; Kim et al. 2014), solution mixing (Ahmed et al. 2013), spray-assisted layer-
by-layer (Liu et al. 2013), polymer grafting (Shawky et al. 2011), in situ polymer-
ization (Zhao et al. 2014; Zarrabi et al. 2016), and in situ colloidal precipitation
(Ho et al. 2017). The prepared membranes often exhibit excellent properties for
reverse osmosis, ultrafiltration, and forward osmosis applications (Lee et al. 2016a).
Some researches about the membrane performance of mixed-matrix nanotube mem-
branes are listed in Table 4.3.

Mixed-matrix carbon nanotube membranes typically exhibited high removal
efficiency and water flux. Zheng et al. (2017) prepared a novel sulfonated multi-
walled carbon nanotube membrane by using the interfacial polymerization method.
By adding 0.01% multi-walled carbon nanotubes, the membrane showed high salt
rejection (96.8%) and water permeation (13.2 L/(m2�h�bar)). Moreover, a
polysulfone membrane (Choi et al. 2006) and a polyether sulfone membrane
(Celik et al. 2011b) doped with carbon nanotubes were more hydrophilic and
demonstrated an enhanced antifouling ability because of the hydrophilic carboxylic
groups of functionalized carbon nanotubes.

4.3.4 Electrochemical Carbon Nanotube Membranes

Electrochemical carbon nanotube membrane for wastewater treatment is a novel
technique which combines electrochemical degradation with conventional mem-
brane filtration to remove target contaminants (de Lannoy et al. 2012; Lalia et al.
2015; Ahmed et al. 2016; Elimelech and Boo 2017; Ho et al. 2018; Yi et al. 2018). In
this process, the electrochemical carbon nanotube membranes are used both as a
filter for contaminant sorption and an electrode for electrochemical degradation of
aqueous pollutants (Ali et al. 2019).
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The electrochemical carbon nanotube membranes exhibited great potential on
wastewater treatment due to high degradation efficiency, low energy consumption,
and simple operation process (Motoc et al. 2013; Bakr and Rahaman 2016, 2017;
Liu et al. 2017). Besides, by transferring electrons directly through the surface of the
electrochemical carbon nanotube membrane electrode, the solute transfer restriction
of the conventional batch electrochemical process was overcome. Therefore, this
method was more advantageous than conventional batch electrolysis. Table 4.4
provides some works on electrochemical carbon nanotube membranes. For example,
Wei et al. (2017b) prepared a novel carbon nanotube-based hollow fiber membrane
with a sandwich-like structure. Low concentration of microcystin-LR (0.5 mg/L)
was removed economically and efficiently (>99.8%) by simple switching with
adsorption and desorption as well as electrochemical oxidation by these carbon
nanotube ultrafiltration membranes.

4.4 Graphene-Based Membranes

Graphene, consisting of a compact accumulation of sp2 hybrid carbon atoms, was
reported for the first time by Geim and Novoselov (2004). Since then, graphene and
graphene-based materials have been extensively studied and used to synthesize
various multifunctional materials. As we know, graphene can be obtained by
chemical vapor deposition or chemical reduction of graphene oxide. Generally, it
is easy to fabricate single-layered or several-layered graphene on some catalytic
substrates via chemical vapor deposition. Compared with the tedious and expensive
chemical vapor deposition, reducing graphene oxide is more favorable for scale
production. Graphene oxide is usually prepared by oxidizing graphite through the
famous Hummer’s method, which has abundant oxygen-containing functional
groups on its surface and edges. After chemical reduction by hydrogen iodide
acid, hydrazine, or thermal treatment, the oxygen-containing groups are reduced to
obtain reduced graphene oxide which possesses similar properties to graphene. To
date, both graphene and graphene oxide have also been applied to construct novel

Table 4.4 Application of electrochemical carbon nanotube membranes

CNT
membrane

Voltage
(V)

Target
contaminant

Removal
efficiency Reference

COOH-
MWNT

2.0 Ibuprofen ~100% Bakr and Rahaman
(2016)

CNT-PTFE 8.0 Pb2+ 98.8% Gao et al. (2017b)

CNT-PVA 7.0 Cr (VI) >99% Duan et al. (2017)

N-CNT – TOC/NH4+ 95.2%/97.7% Zuo et al. (2016)

Fe-CNT 1.0 Metoprolol 97% Yanez et al. (2017)
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membranes with laminar pores. Besides, these materials are also used as blender to
improve the hydrophilicity, surface charges, and antifouling ability of the polymeric
membranes.

4.4.1 Support-Free Graphene Membranes

The ideal separation membrane should possess uniform pore size, ultrathin thick-
ness, high mechanical strength, and excellent physicochemical properties to provide
good permeability and selectivity. Graphene membrane may be a suitable candidate
to meet such requirements. According to the theoretical calculation, the single-
layered graphene membrane can completely desalinate brine water and seawater,
showing great potential for water treatment (Cohen-Tanugi and Grossman 2012).

Previous research suggested that salt rejection was negatively correlated to
improve pore size and applied pressure (Anand et al. 2018). Meanwhile, ionization
of functional groups surrounding nanopores could influence desalination efficiency
of single-layered graphene membrane (Chao et al. 2017). Therefore, single-layered
graphene membranes could achieve highly permeable desalination by controlling the
pore size and functional groups of nanopores (Cohen-Tanugi and Grossman 2012).
To date, the nanopores in single-layered graphene membranes were usually pro-
duced by ion beam and electron beam exposure, ion bombardment, UV-induced
oxidation etching, hydroxyl radical etching, oxygen plasma etching, etc. (Anand
et al. 2018). O’Hern et al. (2014) reported their works on the controllable high-
density subnanometer pores in single-layered graphene membranes which allowed
the transport of salt but rejected larger organic molecules.

Compared with single-layered graphene membranes, Celebi et al. (2014) reported
highly efficient mass transfer across physically perforated double-layered graphene
membrane. Wei et al. (2017a) reported a four-layered graphene membrane with
about 2 nm thickness, indicating outstanding permeability and selectivity. Cohen-
Tanugi et al. (2016) also reported a reverse osmosis membrane stacked by multilayer
nanoporous graphene for desalination by using classical molecular dynamic simu-
lation. They found that double-layered nanoporous graphene membranes with the
3.0 Å of nanopore radius exhibited full salt rejection. Compared to the single-layered
graphene membranes, the bilayer nanoporous graphene membranes showed excel-
lent salt rejection. Recently, the effects of pressure and wall interaction on the water
transport through multilayer nanoporous graphene membranes were carried out by
molecular dynamic simulation (Shahbabaei et al. 2017). They found the water flux
was mostly doubled in the multilayered hydrophilic pore membrane owing to strong
hydrogen bonds. And then Chang et al. (2017) reported the nanofiltration properties
of reduced graphene-based membrane with adjustable porous structure. Similarly,
Yi (2013) prepared ultrathin (�22–53 nm thick) graphene nanofiltration membranes
on microporous substrates. The performance of such ultrathin graphene
nanofiltration membranes was tested on a dead-end filtration device, and the pure
water flux of ultrathin graphene nanofiltration membranes was high (21.8 L/
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m2�h�bar). Furthermore, Kabiri et al. (2016) synthesized a thiol-functionalized
graphene composite with a unique three-dimensional porous structure to remove
mercury ions (Hg2+) from water. The results indicated that the removal efficiency of
the membrane reached almost 100% for low (4 mg/L) and high (120 mg/L) concen-
tration of Hg2+. Due to excellent permeability and selectivity, support-free graphene
membranes exhibited great potential in selective ion transportation and separation.

4.4.2 Graphene Oxide Membranes

Recently, graphene oxide has attracted increasing attention on membrane prepara-
tion and modification due to its excellent hydrophilic properties (Choi et al. 2013).
Graphene oxide is usually obtained by oxidizing graphite with a strong acid or
oxidant. Graphene oxide is a reforming form of graphene in which oxygen and
hydrogen atoms are bonded with carbon atoms (Hu and Mi 2013). Due to the
presence of oxygen- and hydrogen-based functional groups, graphene oxide can
be well dispersed in water and other organic solvents, which favors the preparation
of graphene oxide-based membranes (Stankovich et al. 2007).

Sun et al. (2014a) used graphene oxide membranes to recover acids from iron-
based electrolyte wastewater. The mechanism was that Fe3+ was blocked by
graphene oxide membranes, while H+ could migrate fast. Sun et al. (2014b) also
studied ion mobility and interactions with graphene oxide membranes. They found
that ion permeability exhibited the order of Mg2+> Na+>Cd2+ >Ba2+¼ > Ca2+ >K+ >
Cu3+ > Fe3+. Various interactions between ions and graphene oxide sheets, such as
chelation, static electricity, van der Waals forces, etc., were attributed to the selec-
tivity of graphene oxide membranes. Figure 4.8 showed the schematic diagram of

Fig. 4.8 Nanochannels in a graphene oxide membrane and hydrophilic pores for water flow in
desalination. (Reprinted with permission of (Wang et al. 2016a))
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graphene oxide membranes for water transport (Wang et al. 2016a). Water mole-
cules firstly arrived in the hydrophilic sites in graphene oxide and then slipped
through the hydrophobic nanochannel with low or no friction.

A dopamine-coated polysulfone membrane has been prepared to investigate the
dependence of water flux and charge effect on separation. They revealed that the
water flux was independent of the number of graphene oxide layers and salt
exclusion but depended on interlayer spacing (Hu and Mi 2013). However, the
volume of graphene oxide membrane would swell in the aqueous environment.
Nair et al. (2012) studied the water mobility in nanochannels between graphene
oxide tablets under different condition. They showed that the interlayer spacing
between the original graphene oxide membrane region and the stacked graphene
oxide membrane was about 0.6 nm in the dry conditions. Because of the diffusion of
water molecules to graphene oxide layer, the increased interlayer spacing between
graphene oxide membranes resulted in high mobility for water molecules. However,
when the graphene oxide membrane was immerged in an ionic solution, the
increased gap by the hydration cannot repel K + and Na + ions, making the membrane
inappropriate for desalination applications (Joshi et al. 2014). Addressing to this
issue, graphene oxide was functionalized with glycine and carboxylation for prepar-
ing membrane by pressure-assisted self-assembly to achieve high salt rejection
efficiency (Yuan et al. 2017). Xu et al. (2017a) reported that the water flux and
separation ability of graphene oxide membrane was related to the inner nanostruc-
ture of graphene oxide membrane. In addition to the interlayer spacing, it was found
that the morphological characteristics of graphene oxide membranes, such as corru-
gation, could improve the separation performance (Qiu et al. 2011). Wang et al.
(2012) presented that a graphene oxide/polyelectrolyte composite membrane had
obvious nanofiltration performance in removing dyes, separating monovalent and
divalent ions, and dehydrating solvent–water mixture. O’Hern et al. (2014) also
verified the water purification and ion permeation (rather selective) properties of the
graphene oxide membrane.

Similar to the study of graphene oxide membrane in ion transport, Chang et al.
(2017) reported that carboxylation could increase the hydrophilicity of graphene
oxide membrane, improving the efficiency of dye removal. Such improvement was
potentially attributed to surface charge density. On the contrary, it was found that
reduced preoxidized graphene membrane could increase the rejection efficiency of
methyl orange dye to >90%. In addition, a graphene oxide hydrogel membrane was
synthesized by Qin et al. (2012) via suspending the graphene oxide (graphene oxide)
in water. This graphene oxide hydrogel exhibited pH responsiveness and good
mechanical properties. Meanwhile, graphene oxide hydrogel had a good adsorption
capacity for organic dye Rhodamine B and anionic chromate.

Graphene oxide membrane also possessed superior metal ion adsorption char-
acteristics. The graphene oxide membranes, which were modified with
hyperbranched polyethylenimine, were applied to obtain high permeability and
rejection (>90%) of heavy metal ions (Zhang et al. 2015). The divalent metal ions,
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such as Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Pb2+, etc., could be chemically adsorbed by
graphene oxide membranes, and the membranes could be reused for up to ten
cycles (Sitko et al. 2016).

Nowadays, graphene oxide membranes were also applied to oil–water separation.
With vacuum-assisted filtration, Zhao et al. (2016) intercalated palygorskite
nanorods into adjacent graphene oxide nanosheets and assembled graphene oxide
nanosheets into laminate structures to prepare the freestanding graphene oxide
membranes. Under various conditions (different concentration, pH, or oil species),
the graphene oxide membranes showed excellent anti-oil performance in the sepa-
ration process of water-containing oil emulsion.

4.4.3 Graphene Oxide Hybrid Membranes

Although graphene oxide membranes with a good desalination capability can be
prepared by simple methods, these membranes could be trapped by the use of
pressure-driven systems. Liu et al. (2015) found that the composite membrane
prepared by adding graphene oxide to polysulfone displayed superior pressure-
resisted ability, mechanical strength, and water permeability.

In order to increase water flux further, Dai et al. (2015) introduced a large quantity
of nitrogen-containing and oxygen-containing groups into the surface of graphene
oxide membrane and filled the interlayer space with polypropylene. The novel
polypropylene-based composite membrane apparently improved the hydrophilicity
and adsorption capacity. With the development of materials science, membranes
consisted of polymeric materials, including nylon, aromatic polyamides,
polyvinylidene fluoride, polysulfone, and polyethersulfone, as well as
non-polymer materials, such as ceramics, metals, and composites, which have
been readily fabricated and applied on the filtration of diverse solutions. Compared
to pure polymer membranes, the polyamide membranes doped with graphene oxide
showed higher water flux and desalination rate (Bano et al. 2015). The resultant
increase in the permeate water flux was from 1.8 L/(m2� h1) to 22 L /(m2� h1), while
salt rejection maintained at essentially above 80%. Similarly, research conducted by
Lai et al. (2016) demonstrated that water flux and salt removal were improved by
integrating graphene oxide in polyamide membrane. Moreover, Ali et al. (2016)
prepared thin composite membranes embedded with graphene oxide to evaluate their
desalination performance. They found that adding a small amount of graphene oxide
(100 ppm) significantly improved water flux and mechanical stability and reduced
membrane fouling. For salt solution with 2000 ppm NaCl, the launching flux at
1.5 MPa was 29.6 L/m2, and the salt removal rate was 97%. Besides, Kochameshki
et al. (2017) synthesized a polysulfone nanocomposite membrane modified with
graphene grafted with diallyldimethylammonium chloride. The results showed that
the water flux increased to about 450 L/m2�h, the antifouling performance was
improved, and the heavy metal ion rejection rate increased to 86.68% (Cu2+) and
88.68% (Cd2+).
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In addition, polyethylenimine membrane integrated with tannic acid-
functionalized graphene oxide showed excellent ion separation performance against
NaCl and MgSO4 (Lim et al. 2017). A thin nanofiltration membrane was prepared by
aggregating piperazine and trimesoyl chloride with reduced graphene oxide/TiO2

composite, which demonstrated good separation performance and antifouling prop-
erty in cross-flow filtration system due to the hydrophilicity of reduced graphene
oxide (Safarpour et al. 2015b). Zhang et al. (2017c) synthesized a novel layered
structure membrane which was prepared by coating graphene oxide sheets on the
surface of electrospun aminated polyacrylonitrile (APAN) fibers, exhibiting
ultrahigh flux (10,000 L/(m2�h) ), promising rejection (98%) and excellent antifoul-
ing performance for the separation of oil–water emulsions. Besides, Choi et al.
(2013) also fabricated a dual-action barrier coating layer of graphene oxide on the
surface of polyamide reverse osmosis membrane. The antifouling tests indicated that
the graphene oxide coating layer can increase the surface hydrophilicity and
decrease the surface roughness, which promoted the significantly improved anti-
fouling performance against a protein foulant. Similarly, graphene oxide nanosheets
were successfully doped across 200-nm-thick polyamide membranes by He et al.
(2015). They observed the significant increase of water flux (80%) in the reverse
osmosis membranes modified with graphene oxide nanosheets. Moreover, polyam-
ide nanofiltration membranes modified with reduced graphene oxide–NH2 were
prepared by Li et al. (2017b) to enhance water flux and antifouling capability.
There were some researchers reporting the improvement in the chlorine resistance
of the polyamide membranes incorporated with graphene oxide (Safarpour et al.
2015a). In their opinion, the chemically stable graphene oxide plate embedded in the
polyamide layer acted as a barrier layer, protecting the polyamide from chlorine
erosion, as shown in Fig. 4.9 (Choi et al. 2013).

The researchers also identified that adding graphene to polymer membranes had
positive influences on dye absorption. Polypyrrole-hydrolyzed polyacrylonitrile
composite NF membrane doped with graphene oxide was prepared by Shao et al.
(2014). It is found that the effectiveness of Rose Bengal dye rejection was approx-
imately 99.0%, and the solvent permeability was enhanced. And the NF performance
of graphene oxide mixed polyether sulfone membrane used for dyestuff (Direct red
16) removal was higher than that of polyethersulfone membrane (99% vs. 90%)
(Zinadini et al. 2014). The NF membrane fabricated by multilayered deposition of
graphene oxide on a polysulfone support exhibited high water permeability and
superior rejection (93–95%) of Rhodamine B dye (Qiu et al. 2011). In addition, a
polyamide membrane assembled with carboxyl-functionalized graphene oxide
showed 98.1% dye rejection rate of the New Coccine (Zhang et al. 2017b).

Due to superior separation characteristic, graphene oxide-doped polymer mem-
branes were also applied on oil–water separation. Hu et al. (2015) successfully
fabricated a novel graphene oxide hybrid membrane on commercial 19-channel
ceramic by adopting a vacuum method. During the treatment, the water permeation
fluxes of modified membranes were about 667 L/(m2�h�bar) after 150-min operation,
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which was higher about 27.8% than that of the unmodified membrane (522 L/
(m2�h�bar)). These results showed that graphene oxide modification played a crucial
role on improving oil–water separation performance. Similarly, in addition to the
application of membrane in above wastewater treatment, the novel membranes were
more widely applied to more intricate wastewater (Huang et al. 2015). Zinadini et al.
(2015) synthesized three different hybrid membranes which were fabricated
in three concentrations of 13, 15, and 17 wt% of polyethersulfone polymer.
Polyethersulfone/graphene oxide membrane with 15 wt% of polyether sulfone and
graphene oxide content of 0.5 wt% showed the most superior performances and was
selected as optimal membrane for treatment of milk processing wastewater. Simi-
larly, Sun et al. (2015) developed an antibiofouling membrane by in situ fabrication
of graphene oxide–AgNPs onto cellulose acetate membranes. The presence of
graphene oxide–AgNPs composite on the membrane caused an inactivation of
86% Escherichia coli after contacting with the membrane for 2 h. Compared to
modifying graphene oxide with active substances, graphene oxide hybrid mem-
branes by adding graphene oxide into polymer membranes achieve more significant
advantages on improved water flux, mechanical stability, and fouling resistance.
There is no doubt that graphene oxide hybrid membranes will provide us the new
insight on the optimization of graphene-based membranes (Table 4.5).

Fig. 4.9 Graphene oxide protective layer against foulants and active chlorine in the polyamide
membrane. (Reprinted with permission of (Choi et al. 2013))
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Table 4.5 Application, membrane performance, and other conditions of mixed-matrix graphene
oxide membranes

Membrane
material

Synthesis
technique Application Membrane performance Reference

PES/GO/PAA Solution casting Remove syn-
thetic
melanoidin
solution

54% color removal Kiran et al.
(2015)

Polycation/
GO multilayer
membrane

Self-assembly-
assisted layer-
by-layer
deposition

Remove dye
from water

The flux and retention rate
could reach 6.42 kg/
(m2�h�bar) and 99.2%

Wang et al.
(2016b)

MgSi@RGO/
PAN compos-
ite membrane

Vacuum filtra-
tion and
deposition

Desalination,
wastewater
treatment, sepa-
ration, and
purification

The membranes can
effectively reject small
molecules

Liang et al.
(2016a)

PES-GO-4 Interfacial
polymerization

Water or waste-
water treatment
applications

The PES-GO-4 mem-
brane exhibited 2.6 times
greater flux recovery than
an unmodified PES-UF
membrane

Efosa et al.
(2016)

GO/APAN
membrane

Electrospinning-
assisted layer-
by-layer assem-
bly technique

Separation of
oil–water
emulsion

This membrane exhibited
ultrahigh flux
(~10,000 LMH), prefera-
ble rejection rate (	98%),
and remarkable antifoul-
ing performance

Zhang et al.
(2017c)

Polysulfone–
Fe3O4/GO
mixed-matrix
membrane

Immersion
phase inversion

Water treatment
during the
backwashing
procedure

The novel polysulfone–
Fe3O4/GO mixed-matrix
membrane was having
3 times higher permeate
flux than the neat PSf
membrane

Chai et al.
(2016)

GO-ZnO
membranes

Double-casting
phase inversion
(DCPI)

Wastewater
reclamation

The novel membranes
exhibited higher fluxes,
with less fouling and high
rejection rate of TOCs.

Mahlangua
et al. (2016)

TA/GOQDs
TFN
membrane

Interfacial
polymerization

Wastewater
treatment, sepa-
ration, and
purification

The TA/GOQDs TFN
membrane showed a pure
water flux up to 23.33 L/
(m2�h) (0.2 MPa), and
high dye rejection to
Congo red (99.8%) and
methylene blue (97.6%)
was kept

Zhang et al.
(2017a)
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Table 4.5 (continued)

Membrane
material

Synthesis
technique Application Membrane performance Reference

3D PPy@GO
membrane

One-step elec-
trochemical
co-deposition

Wastewater
treatment

The 3D PPy@GO
composite-coated elec-
trodes showed excellent
permselectivity of Pb2+

with a flux of 4.7 g/(m2�h)
, a current efficiency of
51.9%, and excellent
cycling stability

Gao et al.
(2017a)

PVA/PAA/
GO-
COOH@PDA

Electrospinning
technique

Wastewater
treatment and
dye removal

The PVA/PAA/GO-
COOH@PDA composite
materials showed efficient
adsorption capacity
towards the three model
dyes. The composite
membranes can be easily
separated and regenerated
from wastewater dye
solution and demon-
strated excellent
reusability

Xing et al.
(2017)

GPC ultrafil-
tration
membrane

Drop-coating
combined with
vacuum
filtration

Complex indus-
trial wastewater
streams

The membrane exhibited
an excellent rejection
coefficient of 99.2% for
methylene blue and the
permeation flux was 12 L/
(m2�h) at 0.1 bar

Wang et al.
(2018a)

CG RO
membranes

Embedding and
melting method

Desalination The RO membrane per-
formance showed that the
permeate flux of mem-
brane increased from
1.67 L/(m2�h) to 4.74 L/
(m2�h)

Chen et al.
(2017)

PVA–GA
composite
membranes

Cross-linking
and polymeriza-
tion methods

Removing an
industrial textile
dye from
wastewater

The nanofiltration mem-
brane showed lowest
fouling rate during
removal of the industrial
direct dye (flux recovery
ratio, 96.60%; reversible
fouling ratio, 23.82%; and
irreversible fouling ratio,
3.39%)

Liu et al.
(2018)
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4.5 Carbon Fiber Membranes

Since Shimpei (1986) accidentally found that carbon fibers facilitated microbial
attachment, and possessed excellent adsorption capacity for pollutants, the research
works focused on carbon fibers for water treatment were widely carried out. It was
believed that these advantages opened the “surprise door” for the application of
carbon fibers (Xu and Luo 2012; Manawi et al. 2018). Especially, carbon fiber
membranes, as one of the novel membrane materials, have been explored and
applied in recent years (Xiao et al. 2016).

4.5.1 Support-Free Carbon Fiber Membranes

The support-free carbon fiber membranes are generally obtained by forming carbon
fiber precursors into membrane shape and then stabilized and carbonized via thermal
treatment. Beck et al. (2017) prepared carbon nanofiber membranes by
electrospinning followed by carbonization (Fig. 4.10). The adsorption capacity,
permeability, and adsorption kinetics of the carbon nanofiber membranes were
about 10, 6, and 2 times larger than that of the traditional activated carbon

Fig. 4.10 SEM (top) and TEM (bottom) images of electrospun carbon nanofiber membranes
prepared from the precursors of lignin/PVA (left) and PAN (right). The insets in the TEM images
show the electron diffraction patterns. (Reprinted with permission of (Beck et al. 2017))
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membrane, respectively. However, such carbon fiber membranes usually suffered
from serious membrane fouling, limiting their application.

4.5.2 Carbon Fiber Hybrid Membranes

In order to expand the application of carbon fiber membrane in water treatment and
improve the removal efficiency of pollutants, researchers have developed a variety of
carbon fiber hybrid membranes, which combined the advantages of carbon fiber and
membrane technology, improving its treatment efficiency.

Yang and Tsai (2008, 2009) prepared carbon fibers/carbon/alumina tubular com-
posite membrane and applied it in a cross-flow electrocoagulation/electrofiltration
module for Cu chemical mechanical polishing wastewater treatment. Under the
optimal experimental conditions, the turbidity of the permeate was less than 1 NTU,
and the removal rates of total solid content, copper, total organic carbon, and silicon
were 72%, 92%, 81%, and 87%, respectively. Li et al. (2013a, b) reported their works
on domestic sewage treatment using biological carbon fiber membrane. The biological
carbon fiber membrane could effectively intercept sludge and most organic matter.
Moreover, the bio-carbon fiber inside the membrane had a strong adsorption perfor-
mance, which could further adsorb the organic matter across the membrane surface,
thus ensuring a higher and more stable removal rate of organic matter.

Besides, Tai et al. (2014) developed a novel freestanding and flexible electrospun
carbon–silica composite nanofibrous membrane. This composite membrane was more
tough than the original carbon nanofibers when the SiO2 concentration was 2.7 wt%.
They found that after coating with silicone oil, the composite membrane became ultra-
hydrophobic and superoleophilic, which enabled the membrane to serve as an effec-
tive substrate for separating free oil from water. Yue et al. (2018) fabricated layered
porous dynamic separation membranes containing primary and secondary
nanostructures by in situ growth of ZnO nanowires on carbon fibers (Fig. 4.11). The

Fig. 4.11 Fabrication process of ZnO–carbon fiber dynamic membrane. (Reprinted with permis-
sion of (Yue et al. 2018))
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membrane could switch wettability between high hydrophobicity and
superhydrophilicity by simply annealing alternatively in vacuum and air environment
(Fig. 4.12) and indicated more than 98% separation efficiency in deoiling and dewater
modes. Han et al. (2017) prepared 3D structural Fe2O3–TiO2@activated carbon fiber
membranes by a modified electrospinning process followed by a thermal treatment.
The membrane possessed high adsorption and visible light excitable photocatalytic
properties and could be used to remove dyes and heavy metal ions.

4.5.3 The Composite Membranes Using Carbon Fiber Cloth
as the Substrate

These composite membranes usually are obtained by loading various functional
materials on carbon fiber cloth, which is adopted as the substrate. They can combine
the advantages of functional materials and membrane technology. Meanwhile, the
carbon fiber substrate has good mechanical properties and can reduce the loss of
functional material in the process of water treatment.

Li et al. (2016c) successfully prepared a catalytic cathode membrane on the basis
of low-cost carbon fiber cloth with Pd-reduced graphene oxide–CoFe2O4 catalyst
(Fig. 4.13). The cathode membrane was used in microbial fuel cell/membrane
bioreactor coupling system, exhibiting great potential on simulated wastewater
treatment. Xiao et al. (2017) obtained carbon fiber/C3N4 cloth by a dip-coating
and thermal condensation method with carbon fiber cloth as substrate (Fig. 4.14).
The carbon fiber/C3N4 cloth possessed excellent flexibility and strong visible light
absorption, which displayed good treatment performance for the degradation of
flowing wastewater. To further improve the treatment efficiency, Shen et al.
(2018) inserted TiO2 between C3N4 and carbon fiber (Fig. 4.15). The carbon fiber/
TiO2/C3N4 cloth showed enhanced photocatalytic activity for degrading various
organic pollutants in comparison with carbon fiber/C3N4 cloth.

Fig. 4.12 The switchable wettability of ZnO–carbon fiber dynamic membrane when annealed in
different atmosphere and the corresponding separation capacities of oil–water mixtures. (Reprinted
with permission of (Yue et al. 2018))
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4.6 Activated Carbon Membranes

Activated carbon, as a unique multifunctional material with high surface area,
micro–meso and macroscopic structure, and various chemical functional groups, is
recognized worldwide as one of the most popular adsorbents in water treatment
(Amit et al. 2013; Danish and Ahmad 2018). Up to now, activated carbon has been
widely used in various industrial processes including food processing (Alvarez et al.
2011), chemical manufacturing (Jaria et al. 2018), pharmaceutical (Karelid et al.
2017), paper making (Ou Yang et al. 2013), etc. to remove water-soluble chemical

Fig. 4.13 The preparation process of cathode membrane. (Reprinted with permission of (Li et al.
2016c))

Fig. 4.14 Schematic illustration of the preparation process of carbon fiber/C3N4 cloth. (Reprinted
with permission of (Xiao et al. 2017))
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pollutants from inorganic and organic wastewater (Abdel-Nasser and El-Hendawy
2001; Mohammed 2011). Jacangelo (1995) found that activated carbon could adsorb
organics to prevent the formation of membrane fouling in membrane separation
processes. Several studies also demonstrated that membrane bioreactor achieved
high removal efficiency for trace organic pollutants in synthetic and real wastewater
by the use of granular activated carbon (Amaral et al. 2014; Jia et al. 2014). In this
section, the membrane materials integrated with activated carbon, including acti-
vated carbon-coated membranes, support-free activated carbon membranes, and
activated carbon mixed-matrix membranes for wastewater treatment, were described
as follows.

4.6.1 Activated Carbon-Coated Membranes

Activated carbon could be coated on membranes to enhance membrane separation
performance while removing contaminants from wastewater. Thiruvenkatachari et al.
(2006) prepared activated carbon pre-coated microfiltration hollow fiber membrane
using wood-based, coal-based, and coconut shell-based activated carbon for waste-
water treatment (Fig. 4.16). After 8 h of operation, 63% of organic pollutants were
removed by wood-based activated carbon-coated membrane, 57% by coal-based
activated carbon-coated membrane, and 56% by coconut shell-based activated
carbon-coated membrane, which were higher than that of non-pre-coated membrane.
Simultaneously, the decrease of membrane flux was prevented effectively (less than
20% of initial flux). This work strongly confirmed that the membranes coated by
activated carbon could significantly relieved membrane fouling, enhance membrane
treatment performance, and improve membrane life. Amaral et al. (2016) developed
microfiltration membranes coated by superfine powdered activated carbon for drink-
ing water treatment. The coated membranes achieved excellent removal efficiency
because superfine powdered activated carbon was more favorable for the adsorption of
pollutants due to its smaller particle size compared with conventional activated carbon.
Bae et al. (2007) designed activated carbon membrane with carbon whiskers for

Fig. 4.15 Schematic illustration of the preparation of TiO2/C3N4 heterojunctions on carbon fiber
cloth. (Reprinted with permission of (Shen et al. 2018))
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wastewater and drinking water treatments. The carbon whiskers on the activated
carbon membrane could significantly prevent the deposition and accumulation of
particles, extending membrane lifetime (Fig. 4.17).

4.6.2 Support-Free Activated Carbon Membranes

Activated carbon membrane is a novel carbon-based membrane, which not only has
excellent thermal stability and chemical stability of inorganic membrane materials

Fig. 4.16 Schematic of membrane hybrid system with pre-coated membrane. (Reprinted with
permission of (Thiruvenkatachari et al. 2006))

Fig. 4.17 Structure of an activated carbon membrane with carbon whiskers. (Reprinted with
permission of (Bae et al. 2007))
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but also has excellent electrical conductivity and rich pore structure of carbon
materials. Li et al. (2017a) designed and prepared a support-free activated carbon
membrane by mixing activated carbon, binder, pore former, and conductive agent
followed by compression modeling and carbonization. The activated carbon mem-
brane realized the integration of the triple function of adsorption/electrocatalysis/
membrane separation for deep water purification.

4.6.3 Activated Carbon Hybrid Membranes

In order to further improve membrane performance, activated carbon was also
adopted as function material to be mixed in membrane matrix. Aghili et al. (2017)
prepared a novel powdered activated carbon mixed-matrix membrane for cheese
whey wastewater treatment. This membrane integrated a powdered activated carbon
adsorption mechanism with the separation property of the polysulfone membrane,
indicating high treatment efficiency for organic matter removal. Ahmad et al. (2018)
fabricated high-performance hybrid ceramic/activated carbon symmetric membrane
to purify oily wastewater (Fig. 4.18). The hybrid Al2O3/activated carbon membrane

Fig. 4.18 Optical images of (a) Al2O3 membrane and Al2O3/activated carbon hybrid membrane.
Schematic illustration of (b) Al2O3 and (c) Al2O3/activated carbon hybrid membranes. (The SEM
image in (b) shows the particle size of the Al2O3 after sintering, while the SEM image in (c) shows
the morphological structure of the activated carbon with highly porous structure and distribution of
cylindrical-shaped pores.) (Reprinted with permission of (Ahmad et al. 2018))
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possessed complex microchannel–nanochannel networks, which achieved two times
higher porosity in comparison with Al2O3 membrane. As expected, the oil removal
efficiency of the hybrid Al2O3/activated carbon membrane could reach 99.02%. On
the whole, the development of a cost-effective membrane by doping a cheap
material, such as activated carbon, could create a complementary structure, produc-
ing strong competitiveness in wastewater treatment.

4.7 Other Carbon Materials Incorporated Membrane

In addition to these carbon materials mentioned above, several other carbon mate-
rials such as asphalt were also be adopted to prepare membranes for water treatment.
Liang et al. (2016b) used a tubular electrochemically reactive graphite membrane
acting as cathode and evidenced the advantages of coupled advanced oxidation
process (electro-Fenton reaction) for dynamic filtration. Liu et al. (2017) designed
a novel b-cyclodextrin (β-CD)-functionalized g–C3N4 composite membrane with the
integration of dual function of microfiltration and visible light-driven photocatalytic
degradation. The membrane could remove the organic dye by adsorption,
microfiltration, and photodegradation. Yvonne (2014) prepared a sulfonated asphalt
sodium alginate hybrid membrane.

4.8 Conclusion and Future Prospects

Numerous studies have been performed in membrane technologies with diverse
materials for highly efficient water treatment. Among them, carbon materials with
outstanding properties have been proven with potential benefits to prepare carbon-
based membranes and exhibit superiority over other membrane processes. To further
enhance membrane separation performance and antifouling properties, several kinds
of carbon-based membrane materials including carbon membranes, carbon nanotube
membranes, carbon fiber membranes, activated carbon membranes, graphene-based
membranes, etc. are explored for highly efficient water treatment. Various methods
including surface modification, operation parameter optimization, and technologies
combination are adopted to optimize membrane performance. All these attempts
have been proved with fruitful results and make great progress in this field.

Although these carbon-based membrane materials have exhibited promising
potential in the field of water treatment, further studies are still required to achieve
the commercial application level. The concerned challenges are listed below:

1. More advanced membrane preparation technology should be developed to fabri-
cate high-performance carbon-based membrane materials.

2. The electric assistance might speed up the corrosion of carbon-based membrane
materials, shorten the lifetime, and cause secondary pollution. Therefore,
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developing the modification technology of existing carbon materials and explor-
ing novel carbon materials with great potential are important to pursue higher
separation efficiency and better antifouling performance.

3. Besides electrochemical action, other innovative coupling processes should be
further extended.

4. The vast majority of carbon-based membrane materials are carried out in labora-
tory scale, while much efforts should be paid before the pilot- and industrial-scale
applications. In this process, the stability of carbon-based membrane materials
needs to be further investigated during long-term operation.

Thus, these issues deserve more attention for membrane researchers. Although it
would take a long time and quite great effort to resolve the remaining challenges, it is
worth affirming that carbon-based membrane materials have promising potential in
dealing with a large variety of industrial wastewater application in the future.
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