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Abstract. Mineral resource classification is of paramount importance for
mining industry. The main challenge for this, however, is related to the geo-
statistical modeling approach, in which there is no unique algorithm for such a
significant act. The deterministic approaches such as kriging, indeed is not
proper, because of its smoothing effect and ignoring the proportional effect that
lead to possible misinterpretation of kriging variance. As an alternative,
stochastic simulation based on modeling the continuous variable can be
employed. Besides of legitimate criticism against this approach, it is still usable
for mineral resource classification. One of the dispute is related to setting
parameters and choosing the optimum Gaussian simulation algorithm. In this
study, an alternative is proposed in reliance on stochastic modeling of cate-
gorical variables rather than continuous variables such as estimation domains
and rock types. The algorithm is founded on probability assumption, in which
definition of thresholds for different categories can be manipulated with refer-
ence to opinion of the competent person as defined in JORC code.

Keywords: Mineral resource classification - Plurigaussian simulation *
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1 Introduction

Mineral resource classification is necessary for public reporting and internal company
assessments, financial institutions etc. [1]. This approach is based on the level of
confidence inferred from geologically modeled block. Based on JORC code, a mineral
resource can be classified into “Measured”, “Indicated” and “Inferred”, depending on
the level of confidence (www.jorc.org). The modeling process for deriving the corre-
sponding category, can be either deterministic or stochastic. The conventional approach
of stochastic block categorization is mostly based on geostatistical simulation of
continuous variable such as grade of interest. Although this approach is trustworthy;
however, the choice of proper geostatistical simulation algorithm and setting the rel-
evant parameters may be challenging [2]. In this study, an alternative of mineral
resource classification is proposed on the basis of stochastic modeling of categorical
variables (e.g., lithologies, rock types) rather than continuous variables through a
probabilistic paradigm. The results are illustrated through an actual case study.
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2 Methodology

The proposed methodology is based on quantification of geological uncertainty. In this
technique, underlying categorical values are available through the boreholes and one
needs to calculate the uncertainty of each rock unit at unsampled locations. This step
can be implemented by any stochastic paradigms such as multiple-point statistics,
sequential indicator simulation and plurigaussian simulation [3], depending on the
complexity of geological formation and their contact relationships. Plurigaussian
simulation as an extension of the truncated Gaussian simulation is more capable of
handling the complex contacts relationship among the geo-domains. In this context, the
allowed and forbidden contacts can be injected into the modeling process. In a nutshell,
it has found wide acceptance between the practitioners for modeling the petroleum
reservoirs. Once the simulated categories are available at targeted locations, the
uncertainty or probability of finding that rock unit different form others can be
straightforwardly computed for each node. Through the probability maps, a model (one
unique map) can be constructed by selecting, for each grid node, the most probable
rock type domain. The value of this map is varying between O and 1, useful for
quantification of uncertainty at target nodes. The high amount of this measure (close to
1) indicates that one is certain about the simulated value for that location irrespective of
the type of simulated rock unit and low amount of this probability map (close to 0)
implies that one is uncertain about the availability of that simulated rock unit irre-
spective of the simulated category. This interpretation explicitly pronounce the level of
availability of the information such as sampled locations and boreholes, for which the
confidence in simulated rock unit can be defined in each node. The proposed approach
in this paper, takes into account this most probable map to classify the mineral
resources in each block into measured, indicated and inferred. This can be realized
through break points in the graph of probability plot where the global distribution of
most probable values are illustrated. The advantage of this approach is that, the
selection of the thresholds of interest for the purpose of classification depends on the
opinion of competent person and should be derived manually. The procedure of the
proposed algorithm is:

1. Exploratory data analysis of rock units through borehole data

2. Selection of optimum approach for probabilistically domaining of each rock unit
taking into account the complexity

3. Computation of most probable map through probability map of each rock unit

4. Inference of thresholds for mineral resource classification in the probability plot of
most probable values

5. Classification of each block based on the derived thresholds and underlying
breaking points

This algorithm is illustrated through an actual case study.
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3 Actual Case Study

In order to show the performance of the proposed approach for mineral resource
classification, a dataset from a porphyry copper deposit in Chile is now employed. The
data consist of 2,376 composites from an exploratory borehole campaign [4]. The
composites are 12 m long with semi-regular sampling pattern. Each composite is
assigned a geological domain which is related to lithology type. The rock codes were
originally six, however, they were grouped into three main types (Fig. 1):

(a) Granodiorite: this is host rock where breccia intruded. It is mostly located in
eastern and southern parts of the deposit.

(b) Tourmaline breccia: This breccia has granodiorite clasts with minerals correspond
to tourmaline and sulphides such as chalcopyrite, pyrite, molybdenite, and some
bornite. Its emplacement is related to the main alteration-mineralization event.
This rock has the highest mean grade and is centrally located in the deposit.

(c) Other breccias: They are organized by three different breccia types and outcrop in
the western and southern areas of the deposit. Their emplacement is simultaneous
or more recent than the intrusion of tourmaline breccia, relocating and diluting it.
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Fig. 1. Location map (horizontal plane) of drill hole samples showing the local distribution of
each rock type

Based on exploratory data analysis, roughly 15%, 69% and 17% are the proportion
of region that are dominated by Granodiorite, Tourmaline breccia and other breccia,
respectively. Based upon the geological interpretation and local distribution of these
three rock types, Granodiorite is in direct contact with Tourmaline Breccia and
Tourmaline Breccia is in contact with other breccia. Therefore, there is a forbidden
contact between Granodiorite and other breccia. This implies that there is a restriction
in contact relationship and justify applying the truncated Gaussian simulation approach
for probabilistically domaining the rock types. To do so, the flag of interest is illustrated
in Fig. 2. As can be seen, there exist one Gaussian random field for modeling purposes.
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For the theory of truncated Gaussian simulation, the interested readers are referred to
the reference therein [3, 5, 6].
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Fig. 2. The flag expressing the contact relationship among the rock types

The next step, following inference of flag and truncation rule, is to compute the
theoretical model of variogram for the Gaussian sought. This can be carried out through
an iterative manner between experimental variogram of indicator data and theoretical
variogram of Gaussian data [3, 6] (Fig. 3). The fitted model is spherical isotopic with
the range of 300 m and show a very long range relatively to the dimension of the
drilling grid, for which a non-stationary variability for each rock type may persist. This
also can be corroborated as well, when one is investigating the local distribution of
each rock type in the region (Fig. 1). For instance, Granodiorite can be just found in the
right side of the area whereas the other breccia can only be met along the left side of the
region. Therefore, such a long range of variogram modeling is apparently evident. The
underlying formulae is as follow:

y(h) = Spherical(300 m, 300 m, 300 m)

San]uile and modeled variogram for Gaussian random field n°]
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Fig. 3. Fitted theoretical variogram for Gaussian random field. Experimental variogram of
indicators and fitted theoretical variogram of Gaussian random filed are illustrated by black
crosses points and solid black line, respectively.
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Once the variogram model of Gaussian values is derived, the categorical data can
be converted to Gaussian values corresponding their truncation rule as presented in
Fig. 2 by Gibbs sampler. For this purpose, two thresholds defining each rock type can
be derived as —1.0407 and 0.9826 for the first and second threshold. The first threshold
is only taking into account the first rock type, Granodiorite and the second one
introduces the proportion of Granodiorite and Tourmaline breccia together. The inverse
of proportions can be inferred from normal standard Gaussian cumulative density
function. After this conversion, the Gaussian values at sample locations can be con-
sidered as conditioning data for multi-Gaussian conditional simulation. This step can be
implemented through any Gaussian simulation approach, however, in this study; we
use turning bands simulation for producing the realizations. Based upon the truncation
rule in Fig. 2, the Gaussian maps can be truncated to the categorical maps, so that each
grid node, show the possible occurrence of the rock types (Fig. 4). Following the
proposed approach in this study, we continue working on the calculation of probability
of finding each rock type at either grid nodes. This gives an insight about the probable
area for searching that specific rock type. The probability map for each rock type is
illustrated in Fig. 5.

The probability maps allow calculating the most probable maps at each block
location. For this, it is necessary to identify the maximum probable value at each block
over the probability of rock types. For instance, if the probability of Granodiorite is 0,
Tourmaline breccia is 19% and other breccia is 81% for block No. 1, then the most
probable value for this block will be 81%, showing the fact that satisfying density of
information (i.e., borehole data) of other breccia around this block exist and one is
certain about the availability of the surrounding information. In contrast, block No. 2,
may show different characteristics, in such a way that the probability for Granodiorite is
48%, Tourmaline breccia is 51% and other breccia is 1%. In this block, the most
probable value is 51%, which is quite low relatively to block No. 1. This corroborates
that the supporting information surrounding this block is poor or rather far from the
conditioning data.

Real-1; elevation = 66

Real-1; clevation = 66

o
=
3

1 Others 1 Others 500 Others

=
=
=

T'ourmaline
Breccia

‘ 2001
4 T o
Granodiorite 100 5
3

Granodiorite 100 ﬂ
ol eaflins

0 100 200 300 0 100 200 300
Easting Lasting

Tourmaline
Breccia

Tourmaline
Breccia

Northing
&
S
Northing
w
8
g

200

Granodiorite

0 _
0 100 200 300
Easting

Fig. 4. Three different realizations obtained from truncated Gaussian simulation approach
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Fig. 5. Probability map for each rock type, GD: Granodiorite, TB: Tourmaline breccia, OB:
Other breccia

Figure 6 shows the most probable map. The location close high probability indi-
cates that there are enough information for that block to be simulated and one is
confident in the derived value for that block. The location with low probability indi-
cates that one is not confident in the simulated value. As can be seen, comparing to
Fig. 4 that show the simulated rock types, the most probable areas are located on the
place that the borehole information is available, and the low values manifest themselves
through the boundary of the lithologies. Following the proposed approach for mineral
resource classification, the next step is to derive the thresholds that can capture three
zones based on the level of confidence, indicating measured, indicated and inferred
categories. One of the useful tools, for this purpose, however, can be showing the
distribution of the underlying variable i.e., most probable values on the probability plot.
In principle, this graph is for assessing the distribution whether or not a dataset follows
the normal or lognormal distribution. The data is plotted against a theoretical distri-
bution so as to the points should form approximately a straight line. In this graph, the
breaking points can show the different populations, for which in the case of resource
estimation, can introduce the area of each category (Fig. 7).
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Fig. 6. Most probable map calculated over the probability of each rock type
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Fig. 7. Probability plot of most probable values, the arrows show the thresholds indicating the
different categorization areas

As can be seen in Fig. 7, the breaking points show the thresholds, representing the
different populations and categories. Based on this graph, the blocks with most probable
value less than 0.52, between 0.53 and 0.94 and above 0.95 can be classified into
inferred, indicated and measured, respectively. The dashed green lines over this graph
provides this opportunity to identify the underlying thresholds in possible ranges (be-
tween two green lines). This can be corroborated in accordance with the opinion of
competent person who is responsible for this type of deposit. Once the block are cat-
egorized, the continuous variables can be estimated or simulated taking into account the
uncertainty quantified through the stochastic modeling of geological domains. Since the
category of all the blocks are identified, recovery functions such as tonnage, mean grade
above cut-off and metal quantity can be reported in either categories (Fig. 8).
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Fig. 8. Categorization based on most probable plot; the area with high density of boreholes
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4 Conclusion

Mineral resource classification is important in mining industry and is vital for public
reporting of mineral resources and ore reserves based on JORC code. In this study, an
algorithm is proposed for this classification based on modeling the geological domains.
In this approach, the categorical variables, introducing the estimation domain should be
first modeled in a stochastic manner. Second, through producing different scenarios,
one can calculate the probability maps for each category. Through these probability
measures, the third step, is to calculate the most probable value at each grid node and
produce the most probable map. Since, this value is obtained from the probability of
each categorical domain, the high values indicate that the simulated values irrespective
of the type of simulated rock type is significant and can show that the surrounding
information is good enough. In contrast, the low values show that one is less certain
about the simulated category and the supporting information for modeling that category
in that block may be poor. Based on this concept, different thresholds can be defined by
plotting the most probable values in a probability plot and infer the underlying
thresholds. The proposed algorithm showed that this method is capable of handling the
uncertainty even in the captured thresholds, in which the competent person can easily
comment on that and classify the resource sought based on JORC code.
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