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Abstract  Type-1 diabetes (T1D) is an autoimmune disease characterized by the 
loss of immune tolerance to the beta (β)-cells of the pancreas. In this disease, the 
islet infiltrating immune cells mainly comprising of autoreactive T cells target the 
β-cell associated antigens, such as preproinsulin (PPI) and in the process destroy 
β-cells, leading to insulin deficiency. Besides, genetically predisposing human leu-
kocyte antigen (HLA) alleles, several environmental factors have been proposed in 
the initiation of T1D, as the disease develop years before the actual presentation of 
clinical symptoms. However, loss of tolerance to β-cells is the central event in the 
pathogenesis of T1D for which various cellular entities and cellular mechanisms 
have been implicated. This chapter provides a detailed review of  involvement of 
these cells and mediators, right from the organogenesis of the pancreatic tissue till 
the destruction of the β-cells. Further, the chapter focuses on the role of various 
innate immune cells including, macrophages, monocytes, dendritic cells (DCs), 
neutrophils, natural killer (NK) cells, innate lymphoid cells (ILCs) and adaptive 
immune cells mainly different subsets of CD4+ and CD8+ T cells and B cells in 
causing β-cell damage with special focus on immune cells that infiltrate early in the 
pancreas during the disease process. Amongst the cellular mechanisms, factors such 
as endoplasmic reticulum (ER) stress and posttranslational modifications (PTM), 
neutrophil extracellular traps (NETosis), over-expression of major histocompatibil-
ity complex (MHC)-I, involvement of major chemokines and inflammatory cyto-
kines have also been discussed. The latter half of the chapter discusses about various 
immunomodulatory cells, mainly regulatory T cells (Tregs) that are involved in the 
protection of β-cells and efforts to replace functional β-cells or prevent β-cell 
destruction. While the complete treatment of T1D is still far in sight, this chapter 
attempts to refresh the current knowledge on the pathogenesis of the disease from 
the perspective of cellular players, which might be helpful in exploring newer thera-
peutic approaches.
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Abbreviations

EPC	 Endothelial progenitor cells
GZM	 Granzyme
HSC	 hematopoietic Stem cells
IDO	 indoleamine 2,3-dioxygenase
IFN	 Interferon-
IL-	 Interleukin-
iNKT	 Invariant NK T (iNKT) cells
mDC	 Myeloid dendritic cell
MSC	 Mesenchymal stem cell
MΦ	 Macrophage
NK	 Natural killer cell
NKT	 Natural killer T cell
NO	 Nitric oxide
pDC	 Plasmacytoid dendritic cell
PFN	 Perforin
PMN	 Polymorphonuclear leukocytes (neutrophils)
PP	 Perinatal period
Teff	 Effector T cell
TNF	 Tumour necrosis factor
Treg	 Regulatory T cell
W	 Weeks

1  �Introduction

Type-1 diabetes (T1D) or autoimmune diabetes is one of the most common autoim-
mune diseases affecting more than 11,10,100  children and adoloscents  worldwide 
(IDF 2019). The disease is characterized by the loss of immune tolerance to beta (β) 
cells associated antigens [1]. Because of an aberrant immunological response, the 
β-cells are attacked and destroyed by islet infiltrating immune cells mainly comprising 
of autoreactive T cells. Continuous β-cell destruction leads to insulin deficiency that 
results in impaired blood glucose metabolism and persistent hyperglycemia. Over time, 
the T1D patients become prone to micro- and macro-vascular complications like 
nephropathy, retinopathy, neuropathy, and cardiovascular diseases [2]. The primary 
risk factor for β-cell autoimmunity involves genetic factors i.e. individuals with either 
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human leukocyte antigen (HLA)-DR3-DQ2 or HLA-DR4-DQ8 haplotypes or both 
HLA class II alleles are at higher risk. Among the HLA class I alleles, HLA-A∗02 and 
HLA-B∗39 alleles further increase the risk in individuals possessing HLA class II 
DR3/4-DQ8 haplotype [3, 4]. However, development of clinical T1D typically requires 
a trigger from the environment as well, for which multiple factors have been implicated.

Till date, insulin replacement by exogenous insulin and oral anti-hyperglycemic 
drug remains the mainstay of T1D management. Although this approach is useful in 
preventing minor and early-onset complications, serious late-onset complications 
do pose a major challenge as they affect a large number of patients. Moreover, exog-
enous insulin therapy is never able to mimic physiological insulin responses leading 
to chaotic glucose profiles and life-threatening hypoglycemic episodes. Based upon 
the pathophysiology of diabetes, it appears that preserving insulin-secreting cells 
and stimulating their regeneration are the essential approaches for treating diabetes 
[2]. Since, the current management regimens are neither able to selectively elimi-
nate diabetogenic immune cells nor able to protect the newly formed β-cells for the 
long term, therefore, there is a need to develop effective treatment against major 
autoimmune mechanisms involved in T1D [5]. This target can be achieved by abol-
ishing the selective pathogenic reactivity of immune cells to β-cell auto antigens as 
well as preserving their full capacity to generate a normal immune response against 
foreign antigens. In addition to stopping the β-cell destruction process such a strat-
egy would be able to restore immune balance in a safe and long-lasting fashion [6].

2  �Role of Genetic Predisposition

T1D is a polygenic disorder with more than 40 different loci accounting for disease 
susceptibility. The HLA region located on chromosome 6 accounts for one-half of 
the genetic susceptibility [7]. HLA class II locus accounts for strongest association 
with T1D with DRB1∗04:01-DQB1∗03:02 and DRB1∗03:01-DQB1∗02:01 alleles 
conferring the greatest susceptibility. Their presence marks 55% chance for develop-
ing T1D [8]. On the other hand, some alleles such as, DRB1∗15:01 and DQA1∗01:02-
DQB1∗06:02 are associated with disease resistance [9]. HLA class I locus also 
influences risk for T1D, mostly attributed to HLA-A and HLA-B genes. The suscep-
tible alleles include HLA-B∗39, HLA-A∗02 and HLA-A∗24 while the protective 
HLA alleles are A∗11:01, A∗32:01, A∗66:01, B∗07:02, B∗44:03, B∗35:02, C∗16:01 
and C∗04:01 [10]. The study conducted by Type 1 Diabetes Genetics Consortium 
(T1DGC), showed that HLA-B∗57:01 is significantly protective for T1D [11]. 
Similarly, a study conducted on African population found haplotype HLA 
DRB1∗03:02-DQA1∗04:01-DQB1∗04:02, has protection for T1D [12]. Various 
HLA alleles associated with susceptibility to T1D are listed in Table 1.

The other susceptibility loci include polymorphism in variable number tandem 
repeat (VNTR) in the promoter region of insulin gene [25]. A gain of function 
mutation in the protein tyrosine phosphatase, non-receptor type 22 (PTPN22) gene, 
which encodes for lymphoid protein tyrosine phosphatase (LYP) suppresses T-cell 
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receptor (TCR) signaling during thymic development, thereby allowing autoreac-
tive T cells to escape negative selection [26]. A single nucleotide polymorphism 
(SNP) of the PTPN22 caused a A629T substitution in the biobreeding diabetes-
prone (BBDP) rat. This resulted in 50% decrease in C-terminal Src kinase binding 
affinity which contributed to T cell hyper-responsiveness [27]. A study carried out 
in the cohort of Caucasian subjects showed increased frequency of PTPN22 
C1858T polymorphism in diabetic patients [28]. A49G polymorphism has also 
been detected in the cytotoxic T lymphocyte associated protein (CTLA)-4 which 
causes a change in the primary amino acid sequence of CTLA-4 thereby reducing 
its surface expression on T cells [29]. Studies show that SNP CT60A/G in the 
CTLA-4 gene marks as a susceptibility factor for T1D [30]. A meta-analysis study 
involving 2238 participants from Chinese population showed a significant relation-
ship between CTLA4 + 49A/G gene polymorphism and T1D [31]. Another gene, 
interferon-induced helicase 1 (IFIH1) codes for an IFN induced helicase that rec-
ognizes dsRNA from picornavirus, thus serving as a sensor for viral infection. 
Coxsackievirus, which is proposed to be a causative agent for T1D pathogenesis, 
belongs to Picornaviridae family. Polymorphisms in the IFIH1 gene have shown its 
enhanced gene expression in peripheral blood mononuclear cells in patients with 
T1D [32]. Studies also confirm the association of the polymorphism in IFIH1 locus 
with susceptibility to T1D [33] Fig. 1.

 

Table 1  HLA susceptibility genes associated with risk of type-1 diabetes

S No: HLA gene Reference

1. HLA DRB1∗04:01 [13]
2. HLA B∗08:01 [14]
3. HLA DRB1∗03 and DRB1∗04 [15]
4. HLA DQA1∗05:01 and DQB1∗03:02 [16]
5. HLA DQA1:03:01 and DQB1∗02:01 [17]
6. HLA DPB1∗03:01 and DPB1∗02:02 [18–20]
7. HLA A∗24 [21]
8. HLA B∗39:06 [11, 22]
9. HLA DRB1∗07:01-DQA1∗03:01-DQB1∗02:02 [17, 23, 24]
10. HLA DRB1∗03-DQB1∗02:01, DQB1∗02/

DQA1∗03:01,DQB1∗03:02
[24]
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3  �Contribution of Environmental Factors

T1D develops years before the actual presentation of clinical symptoms [34, 35]. 
George S. Eisenberth in 1986, proposed a model, which suggests a steady progres-
sion in β-cell killing by autoreactive T cells that results in 80–90% of β-cell death 
[36]. Some of the extensive studies such as, The Environmental Determinants of 
Diabetes in the Young (TEDDY) [37], The Diabetes Auto Immunity Study in the 

Fig. 1  Initiation of type 1 diabetes (T1D) is marked by the infiltration of innate and adaptive 
immune cells in pancreatic islets. Infiltrating antigen presenting cells including macrophages and 
myeloid dendritic cells (mDCs) capture and process β-cell antigens released following initial dam-
age caused by inflammation, apoptosis, ER stress, viral infections or other environmental stimuli. 
Beta-cell destruction is primarily initiated by CD4+ T cells that recognize β-cell associated-
antigens and produce IL-2 and interferon-γ (IFNγ) to activate CD8+ T cells. Cytotoxic CD8+ T 
cells mainly mediate the destruction of β-cells by releasing perforins and granzymes. Natural killer 
(NK) cells contribute to β-cell killing via release of IFNγ, granzymes and perforin. Activated mac-
rophages can also cause β-cell death through secretion of tumour necrosis factor (TNF), IL-1β and 
nitric oxide. B cells present in and around the islets can present β-cell antigens to diabetogenic T 
cells and secrete auto-antibodies. pDCs infiltrate islets at early stages of T1D and are shown to 
produce IFN-α and augment Th1 responses. Neutrophils are also among the earliest islet infiltrat-
ing cells that are thought to play a role in pathogenesis through NETosis. Cells limiting β-cell 
damage include Tregs that inhibit effector T cells and inflammatory mDCs via various mecha-
nisms. Indoleamine 2,3-dioxygenase (IDO) producing tolerogenic pDCs check the proliferation of 
effector T cells by limiting the amount of IL-2 in the milieu and by expanding Tregs. Invariant NK 
T (iNKT) cells can promote recruitment of tolerogenic DCs and pDCs. In the β-cell replacement 
cellular therapies, besides whole pancreas transplantation, islet transplantation is a safe and prom-
ising approach. Attempts are underway to encapsulate isolated islets with semi-permeable mem-
branes or co-infuse them with accessory cells, such as endothelial progenitor cells (EPCs) or 
fibroblasts. Hematopoietic stem cells (HSCs) have been tried in β-cell regeneration and, MSCs due 
to their immunosuppressive nature are also being tried preserve the β-cell mass
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Young (DAISY) [38] and TrialNet [39], have been commenced to identify the pro-
spective environmental triggers and biomarkers for T1D.

Multiple environmental triggers can result in autoimmunity. Viral infection has 
long been considered as a predisposing factor leading to T1D due to the discordance 
in monozygotic twins [40]. Many papers suggest enteroviruses (EV) especially cox-
sackievirus B (CVB) as the prime viral candidate for the precipitation of T1D. Serum 
antibodies against coxsackieviruses have been found in recent onset patients with 
T1D versus healthy controls [41]. CVB4 strain isolated from the pancreas of a 
deceased diabetic child, after passaging through murine cells, was found to induce 
diabetes after inoculation in mice [42]. After examination of pancreatic autopsy 
sample in patients with T1D, CVB3 RNA was detected in the islets but not in the 
exocrine tissue [43]. Recently this was validated by evidence of CVB5 particles 
exclusively in the endocrine cells but not in the exocrine cells of T1D primary 
human pancreatic cells [44]. A possible explanation for this difference is the higher 
basal and induced expression of signal transducer and activator of transcription 
(STAT)-1 regulated genes in alpha cells thus being able to clear viral infection more 
efficiently than β-cells [45]. There are mainly three pathways by which EVs have 
been proposed to kill β-cells, direct cytolysis of infected β-cells, local virus-induced 
inflammation, and molecular mimicry. A direct cytolytic effect of EVswas sup-
ported by the finding that EV can infect human β-cells in vitro [46, 47] and has been 
discovered in the islets at onset of T1D [43, 48]. Infection of β-cells, or other cells 
in close association to the islets, induces an inflammatory milieu [49, 50] that can 
be directly toxic to the islets [51, 52] or attract immune cells to the site of infection 
[53, 54]. The molecular mimicry that results due to the sequence homology between 
the EV protein 2C and the islet autoantigen glutamic acid decarboxylase (GAD)65 
also results in β-cell killing [55]. The Diabetes Virus Detection study (DiViD) is the 
first study to examine the presence of virus in pancreatic tissue of T1D. The study 
was conducted on six type 1 diabetic patients, the findings of which revealed the 
presence of EV in pancreatic islets at the time of diagnosis [56]. Rotavirus infection 
has also been associated with progression of diabetes in children. Studies have 
shown that infection of non-obese diabetic (NOD) mice with rotavirus accelerated 
diabetes onset, which was evidenced by infection in the regional lymph nodes [57]. 
Apart from rotavirus, cytomegalovirus [58], parvovirus [59] and encephalomyocar-
ditis virus [60] have also been found to be contributing factors for T1D.

Other environmental factors suspected to be involved in T1D is early exposure to 
cow’s milk. The albumin in the milk cross reacts to islet cell autoantigen (ICA)-1 
(p69), which is a β-cell surface protein [61]. Recent studies using hydrolyzed casein 
diet showed promising results in lowering T1D.  Administering NOD mice with 
anti-diabetogenic casein hydrolyzed diet reduced the incidence of T1D. This result 
was corroborated with reduced levels of reactive oxygen and nitrogen species in the 
epithelial cells and distal intestine [62]. A study was conducted in Finland on infants 
with first-degree relatives with T1D. They received either hydrolyzed or conven-
tional formula during first 4–6 months of their life. It was observed that the infants 
receiving hydrolyzed formula developed less autoantibodies than their counterparts 
[63]. However, this effect on islet autoimmunity was not confirmed in a larger phase 
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3 Trial to Reduce IDDM in the Genetically at Risk (TRIGR) study [64]. The DAISY 
study showed that increased intake of cow’s milk in children with low/moderate 
HLA-DR genotype increases the risk of developing islet autoimmunity and further 
progression to T1D [65]. Another protein gluten, which is a storage protein present 
in several grains such as wheat, rye and barley, has also been implicated in T1D 
development. Gluten peptides are incompletely digested and reach the intestinal 
mucosa, where they are partly resistant to enzymatic degradation resulting in con-
tinuous exposure of the protein to the intestinal immune system [66]. Some of the 
gluten peptides, of which gliadin is most extensively studied are known to be immu-
nogenic in nature. Increased reactivity of peripheral blood T cells to wheat gluten 
has been seen in T1D especially in celiac disease and reports have shown produc-
tion of proinflammatory cytokines resulting from T cell activation [67, 68]. The use 
of animal models such as NOD mice has been able to provide a better understanding 
on the effect of dietary gluten on T1D progression. The occurrence of diabetes was 
reduced in offspring of NOD mice, which was supplemented with gluten-free diet 
during pregnancy [69]. Studies have also shown that gluten-free diet increased the 
percentages of CD11c+ dendritic cells (DCs) in NOD mice spleen, thus providing a 
new insight into the stimulatory effect of gluten-free diet on innate immune cells 
[70]. A pilot study carried out to assess the beneficial effects of gluten-free diet on 
newly diagnosed children with T1D, showed better outcomes on haemoglobin A1c 
(HbA1c) and insulin dose-adjusted A1c (IDAA1c) levels [71]. Studies also showed 
that gluten-free diet resulted in reduction in HbA1c level from 7.8% to 5.8–6.0% 
without insulin therapy in a subject with T1D. Even after 16 months of diagnosis the 
fasting blood glucose was maintained at 4.1 mmol/l [72].

Vitamin D plays a crucial role in immune modulation and thus could impact the 
early onset and disease progression of T1D. A nationwide Diabetes Incidence Study 
in Sweden (DISS) diagnosed low levels of plasma vitamin D concentration in T1D 
subjects, suggesting its role in disease development [73]. Supplementation of 1, 
25-dihydroxyvitamin D3 [1, 25(OH) 2D3] (an active form of vitamin D) in NOD 
mice promoted the generation of tolerogenic mature DCs that suppressed the activa-
tion of auto reactive T cells [74]. An in vitro treatment of T cells from T1D subjects 
as well as healthy subjects with TX527, a less calcemic analog of bioactive vitamin 
D, promoted the induction of CD4+CD25highCD127low Tregs [75, 76]. A Cross sec-
tional study on Caucasian children and adolescents with T1D demonstrated a high 
prevalence of low levels of 25-hydroxyvitamin D [77]. Low concentrations of vita-
min D during pregnancy time have also been implicated in the development of T1D 
in their offspring [78]. A genome wide association study discovered the expression 
of vitamin D binding protein (VDBP) on the alpha cells of pancreatic islets. The 
VDBP antibodies were detected in T1D subjects which suggest that they acquired 
auto-antigenicity during diabetic progression and hence could be a potential T1D 
biomarker [79]. Although many studies have shown reduced vitamin D levels in 
T1D subjects, there are few studies showing contradictory results as well. A study 
on Finnish and Estonian children participating in the DIABIMMUNE and Type 1 
Diabetes Prediction and Prevention (DIPP) studies showed no correlation of plasma 
25-hydroxyvitamin D [25(OH)D] concentrations with subjects positive or negative 
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for β-cell autoantibodies [80]. T1D prediction and prevention study carried out in 
Finland showed no variation in the circulating 25(OH)D concentrations between 
cases and control groups [81].

At present the incidence of T1D is increasing in developed countries highlight-
ing the influence of infections in disease protection. Infections may help in disease 
protection by skewing the response towards Th2, ameliorating the Th1 response 
[82]. Improved sanitation and infection control has hampered the immunoregula-
tory mechanism of our body. Strachan et  al. proposed the hygiene hypothesis in 
1989 that explained the rise of allergic conditions [83]. Recently an extension of this 
hypothesis suggested, greater access to antibiotics and vaccination and improved 
hygiene increased the susceptibility to autoimmune disease [84]. Studies in NOD 
mice show an inverse relationship between microbial exposure and incidence of 
diabetes [85]. NOD mice infected with live attenuated Salmonella typhimurium 
showed reduced incidence of T1D [86]. Helminth infection has shown to modulate 
inflammatory responses in NOD mice. Infection of Heligmosomoides polygyrus 
(helminth parasite) to NOD mice at 5  weeks of age reduced the incidence of 
T1D. There was marked reduction in pancreatic insulitis and the expression of IL-4, 
IL-10 and IL-13 as well as the frequencies of CD4+ Tregs were elevated in mesen-
teric lymph nodes (MLN) and pancreatic lymph nodes (PLN) in helminth infected 
mice [87]. Helminth infection has also been shown to prevent diabetes in NOD mice 
by inducing non Tregs that produce IL-10 independent of STAT 6 signaling [88]. 
Recently a combinatorial therapy with helminth antigen and proinsulin prevented 
the onset of diabetes in NOD mice. This protective effect was associated with 
increased frequency of Tregs within the PLNs [89].

3.1  �Obesity

Obesity is a disease which is caused by excess accumulation of body fat leading to 
predisposition to various cardiovascular and inflammatory diseases in an individual. 
Several factors influence the incidence of obesity, which includes a lack of physical 
activity, age pattern and various socioeconomic factors [90].

3.2  �Obesity and T1D

The epidemic of obesity is increasing throughout the world and is now also preva-
lent among young adults with T1D. Until recently, the role of obesity in the devel-
opment of T1D has not been a focus of active research but the field is picking up the 
pace recently. A study by Liu et al. (2010) observed that youth with T1D are more 
prone to be obese than their peers without T1D [91]. A time trend, of which was 
provided by 18 years’ follow-up study, which observed 47% increase in the preva-
lence of overweight whereas seven-fold increase in the prevalence of obesity [92]. 
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The risk for development of T1D is increased by obesity and may occur at an earlier 
age among obese individuals with a predisposition as shown by a recent mendelian 
randomization study that found association between 23 SNPs and childhood onset 
T1D [93]. Higher bodyweight, obesity and insulin resistance increases the risk of 
T1D development even though no longitudinal studies have simultaneously assessed 
their association during preclinical diabetes [94]. There could be a crucial link 
formed by inflammatory cytokine and adipokines between obesity and T1D. Obese 
patients have been shown to have high levels of IL-17, IL-23 and leptin, similarly 
the higher production of IL-17 is observed during the early stages of T1D [95, 96]. 
Several studies have shown that adipokines like leptin and resistin could play a role 
in the development of T1D as resistin, decreases beta cell viability and has increased 
levels in T1D patients [97, 98]. Similarly, in murine models leptin has shown to 
destruct beta cells through its proinflammatory effects [99]. Pancreatic adipocytes 
derived proinflammatory cytokines have a direct cytotoxic effects on pancreatic 
islets, additionally they also aid infiltration of Th1 and Th17 cells thereby inducing 
persistent inflammation in islets by increase chemokine ligand (CCL) 5 expression 
[100]. Obesity increases the risk for comorbidities like metabolic syndrome, along 
with macro- and microvascular diseases among individuals with T1D, collectively 
speaking, prevention of obesity may slow down the development of T1D and might 
also prevents the late complications in T1D [101].

3.3  �Gut Microbiota

The gut microbiota is a complex community of microbes belonging to at least nine 
divisions of Bacteria and one division of Archaea, which may vary for each indi-
vidual but mostly dominated by four phyla of bacteria like Firmicutes, Bacteroidetes, 
Actinobacteria and Proteobacteria, whereas archaea domain is dominated by 
Methanobrevibacter smithii, a methanogen that consumes hydrogen [102–104]. 
Most of them reside in large intestine which is home to estimated 1011 bacteria per 
gram of intestinal matter and plays an important role in various physiological func-
tions such as helping in digestion and metabolism, absorption of nutrients, synthesis 
of several vitamins and inhibiting the growth of pathogenic microorganisms.

3.4  �Gut Microbiota and Obesity

Studies in recent years especially those on germ free animals and transplant of 
microbiota have shed light on the influence of gut microbiota on human health and 
diseases and more importantly on metabolic disorders like obesity [102]. Many fac-
tors are known to affect composition of gut microbiome which can be linked to 
obesity like diet, genetic variations, use of antibiotics [105–107]. The initial evi-
dence of link between obesity and gut microbiota was provided by Wostmann et al. 
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(1983) by their experiments on germ free animals, demonstrating that these mice 
require 30% more calories for sustaining their body mass than their conventional 
counterparts [108]. Several studies have shown increased bacteria of Firmicutes 
phyla over Bacreroidetes phyla, this is believed to have an association with enhanced 
low-grade inflammation and increased absorption of energy from food [109, 110]. 
The gut microbiota also plays an important role in the metabolism via the produc-
tion of short chain fatty acids (SCFA) like acetate, propionate and butyrate. Several 
studies have shown the beneficial effects of SFCA on insulin resistance and glucose 
tolerance and obesity induced by diet etc. [111–113].

3.5  �Gut Microbiota and T1D

The human gut microbiome has density which is highest in nature and it outnum-
bers his own cell number by100:1 [114]. The perfect storm for the development of 
T1D has been hypothesised which includes the trio factors such as an aberrant intes-
tinal microbiota, a “leaky” intestinal mucosal barrier, and an altered intestinal 
immune responsiveness [115–117]. Recently gut microbial dysbiosis has been pro-
posed as the main factor contributing to the pathogenesis of T1D. The DIPP study 
carried out in Finland provided a first line of evidence showing gut microbial altera-
tions in T1D subjects with lower abundance of Firmicutes and increased abundance 
of phylum Bacteroidetes [118]. T1D subjects with proper glycemic control and 
good physical fitness displayed gut microbial profile comparable to that of matched 
subjects without diabetes. Faecalibacterium sp., Roseburia sp. and Bacteroides 
were the most abundant microbial species in the study cohort [119]. Studies were 
carried out to assess the gut microbiota in Infants from Finland and Estonia who are 
at risk for developing T1D. Significant alterations in the gut microbiota with shifts 
in both microbial phylogenetic and metabolic pathways were observed. Also 
increased intestinal inflammation characterized by high levels of human β-defensin 
2 (hBD2) (an antimicrobial product induced by colonic epithelial during inflamma-
tion) have been observed in the study cohorts [120]. A case control study carried out 
in Caucasian children with T1D showed a significant difference in Firmicutes to 
Bacteroidetes ratio as well as difference in the number of Bifidobacterium, 
Lactobacillus and Clostridium. These differences correlated with glycemic level in 
the group with diabetes [121]. A study conducted on the comparison of fecal micro-
biota of Mexican children with T1D with that of controls, reported high levels of 
Prevotella in controls while Bacteroides dominated T1D subjects. These results 
were attributed to the dietary intake, where Bacteroides were associated with high 
protein and fat diet while Prevotella is associated with carbohydrate rich diet. The 
role of Bacteroides in thinning of the mucin layer in intestinal epithelial cells (IEC) 
thereby causing increased gut permeability and inflammation also supports its role 
in T1D development. Studies have shown a low abundance of lactate producing as 
well as butyrate producing species in children with β-cell specific autoimmunity. 
These include Bifidobacterium adolescentis, Roseburia faecis (a member of 
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Clostridium cluster XIVa), and Fecalibacterium prausnitzii (a member of 
Clostridium cluster IV) [122]. Diet rich in plant polysaccharide and low in fat as 
well as animal proteins has been found to favor the development of tolerogenic 
commensal bacteria. This has been proved in a comparative study between African 
and European children. The African children’s diet comprised mainly of fiber and 
plant while the European children were fed on a high fat western diet. The fecal 
microbiota of African children consisted mainly of Actinobacteria, Prevotella and 
Xylanibacter, and more SCFA while the European children’s microbiota comprised 
of Proteobacteria [123].

The role of gut microbiota in T1D diabetes progression has been reported in 
animal models as well. The absence of Myeloid differentiation primary response 
gene 88 (Myd88), an essential signal transducer in toll like receptor (TLR) signaling 
in NOD mice protected it from diabetes development [124]. But the protection 
against diabetes was abrogated in Myd88−/− mice, when it was transferred to germ 
free environment, however under specific pathogen free conditions (SPF) NOD 
Myd88−/− mice were protected from T1D [125]. The oral administration of broad 
spectrum antibiotics such as streptomycin, colistin and ampicillin) or vancomycin 
alone from the time of conception until adulthood resulted in increased diabetes 
incidence in male NOD mice [126]. Also NOD mice receiving either continuous 
low-dose antibiotic or pulsed therapeutic antibiotics (PAT) early in life had higher 
incidence of T1D as well as gut microbial alterations [127].These data indicates that 
antibiotic treatment as well as germ free environment disrupts the commensal 
microbial population that plays a major role in disease protection. Lower abun-
dances of Lactobacillus and Bifidobacterium have been observed in BBDP as com-
pared with healthy diabetes-resistant BioBreeding (BB) rats [128].

The gastrointestinal tract is lined by intestinal epithelial cells that act as a protec-
tive barrier against harmful antigens as well as helps in nutrient absorption. In 
BioBreeding rats an increased intestinal permeability was observed at an early age. 
This was correlated with decreased expression of tight junction protein claudin 
[129]. An alteration in intestinal barrier function was observed in non-celiac T1D 
which was associated with mucosal ultra-structural alterations [130]. Dietary micro-
bial toxins have been shown to promote T1D by damaging beta cells thereby releas-
ing autoantigens. Injection of bafilomycin A1 extracted from Streptomyces into 
mice resulted in impaired glucose tolerance and, reduced islet size and relative beta 
cell mass [131]. A study carried out by Bosi et al. (2006) showed significant increase 
in intestinal permeability in subjects with T1D compared to healthy individu-
als [132].

In recent years there has been a drastic change in the dietary habits of individuals 
due to increased consumption of processed food which are rich in carbohydrates 
and fats. Hence the recommended intake of dietary fibers which is 30 g daily has 
been reduced to one half [133]. The fluids in the gastrointestinal tract cannot digest 
the dietary fibers; hence they are broken down by gut microbiota into metabolites 
such as SCFA. A study comparing intestinal microbial composition of T1D subjects 
positive for at least two autoantibodies revealed low abundance of bifidobacteria 
and butyrate-producing species [134]. The fecal transfer from male to female NOD 
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mice conferred diabetes protection in female with an associated increase in butyrate 
producing bacteria [135, 136]. These SCFA exerts anti-inflammatory effects by pro-
ducing immunosuppressive cytokines and Immunoglobulin A [137]). The SCFA 
especially butyrate stimulated the colonic mucus secretion in rats [138], in addition 
butyrate accelerated the assembly of tight junction proteins as well as increased the 
AMP-activated protein kinase (AMPK) activity in Caco-2 cell monolayer model 
[139]. In addition, SCFA can maintain immune homeostasis by modulating inflam-
matory responses. Butyrate and propionate suppressed the expression of lipopoly-
saccharide (LPS)-induced cytokines such as IL-16 and IL-12p40 [140]. Another in 
vitro study demonstrated that butyrate stimulated the DCs to express immunosup-
pressive enzymes such as indoleamine 2,3-dioxygenase 1 (IDO1) and aldehyde 
dehydrogenase 1A2 (Aldh1A2), which enabled the conversion of naïve T cells into 
FoxP3+ Tregs and eventually suppressed its conversion into IFNγ+ T cells [141]. 
Consumption of dietary fiber enhanced SCFA production in the small intestines, 
which induced the expression of the vitamin A-converting enzyme Aldehyde dehy-
drogenase 1 (RALDH1) on CD103+ tDCs in MLN. This in turn, promoted the dif-
ferentiation of FoxP3+ Tregs from naive T cells [142]. Intraperitoneal administration 
of butyrate to NOD mice increased the pancreatic cathelicidin-related antimicrobial 
peptide (CRAMP) production by the beta cells. CRAMP exerts immunoregulatory 
effects on pancreatic macrophages and cDCs thereby maintaining immune homeo-
stasis in pancreas via induction of Tregs. The induction of CRAMP by SCFA was 
mediated through G protein-coupled receptors (GPR) 43 and GPR41 expressed on 
beta cells [143]. Feeding NOD mice with acetate and butyrate releasing diet pro-
vided complete protection against T1D.  Interestingly these two diets had their 
respective mode of action such as markedly decreasing autoreactive T cells in the 
lymph nodes as well as boosting the number and function of Tregs [144].

It is a universally accepted that providing new born with human milk protect 
them from infections. Human milk has the unique composition of proteins, fats, 
carbohydrates, vitamins and minerals as well as essential fatty acids, enzymes, hor-
mones and many other biologically active compounds that provide health benefits 
[145]. Early life introduction of human milk oligosaccharides provides an interest-
ing strategy for T1D prevention. Two population based cohort study from Norway 
and Denmark supports the contention that prolonging the breast feeding for more 
than 12 months reduced the risk for T1D [146]. There are only a few reports avail-
able on the effect of Human milk oligosaccharide (HMOS) on T1D. In breast fed 
infants these complex oligosaccharides can influence the composition of intestinal 
microbiota with abundance of Bifidobacterium [147]. It has been shown that 
Bifidobacterium infantis and Bifidobacterium bifidum grow well on HMOS as it is 
their only carbohydrate source [148, 149]. The HMOS grown bifidobacteria can 
maintain gut integrity by reducing occluding relocalization and inducing the expres-
sion of cell membrane glycoprotein. They also cause higher expression of anti-
inflammatory cytokines such as IL-10 in Caco-2 cells [150]. A recent study showed 
the immune-modulatory potential of non-digestible short chain galacto- and long 
chain fructo-oligosaccharides (scGOS/lcFOS) on human monocyte derived den-
dritic cells (MoDC). These scGOS/lcFOS mimicked the HMOS and promoted 
MoDC to release IL-10 in vitro [151].
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It is said that the PLNs as well as the MLNs drain the pancreatic tissue. There is an 
immunologic connection between the gut associated lymphoid tissue (GALT) and the 
pancreatic islets since orally administered antigens are able to activate T cell responses 
in the PLNs [152]. Also the T cells activated in the gastrointestinal tract migrate to 
islets that express mucosal vascular addressin cell adhesion molecule-1 (MAdCAM-1) 
[153]. In NOD mice infection with Citrobacterium rodentum which disrupts intestinal 
epithelial barrier has been found to accelerate the development of diabetes and the 
administration of this antigen via gastric route was found in the PLN and MLN of 
infected NOD mice [154]. These data suggest that enteral antigens and immune 
responses arising in GALT may be able to target islet beta cells for destruction.

Whether Th17 cells plays a role in pathogenesis or provides protection from T1D 
remains a controversial issue. A study conducted by Martin et al. (2009) on NOD mice 
show increased expression IL-17A or IL-7F in islets that correlated with development of 
insulitis [155]. Further the deficiency of IL-17 in NOD mice reduced the severity of 
insulitis and delayed the onset of diabetes [156]. The gut microbial modulations pro-
foundly influence the balance between Th17 cells and Tregs that may influence intesti-
nal immunity. A study by Ivanov et al. (2008) found that specific commensal microbiota 
such as Cytophaga-Flavobacter-Bacteroidetes (CFB) bacteria was required for the Th17 
differentiation in Lamina Propria (LP) and the absence of these bacteria was accompa-
nied by increased Foxp3+ Tregs in the LP [157]. Later colonization of segmented fila-
mentous bacteria (SFB) in the small intestine of LP in mice has been found to be potent 
inducers of Th17 cells [158]. Although many studies are in favor of the pathogenic role 
of Th17 cells in T1D, some studies also show the protective effect Th17 cells in T1D 
when gut microbiota is manipulated. Feeding of BBDP rats with Lactobacillus johnso-
nii strain N6.2 (LjN6.2) from Bio-Breeding diabetes-resistant rat conferred diabetes 
resistance to BBDP. This was correlated with TH17 cell bias within the MLNs [159, 
160]. The SFB colonization in NOD female mice showed only 20% incidence in diabe-
tes development, while those without SFB colonization had 80% incidence by 30 weeks 
of age. The Th17 cells in SFB positive mice correlated with SFB levels in feaces. Indeed 
these Th17 cells are assumed to be Foxp3+/RORǖFE;t + IL-17-producing T regulatory 
cells that migrate to the site of inflammation and protect NOD mice from diabetes [161].

4  �Development of Pancreas and Beta-Cells

Since the pathogenesis of T1D involves destruction and regeneration of the islets, it 
is important to have some knowledge about various cells and cellular factors 
involved in the ontogeny of the pancreas. The pancreatic development starts when 
the embryonic foregut gives rise to surrounding mesenchymal tissue by endodermal 
budding [162]. The intricate interactions between mesenchyme-epithelium tissues 
give rise to branching of pancreatic ducts and differentiation, whereas morphogen-
esis results in the growth of the acini and pancreatic islets. Other organ systems, 
particularly the circulatory and nervous systems strongly influence pancreas devel-
opment [163]; signals like vascular endothelial growth factor (VEGF) are provided 
by blood vessels, resulting in the induction of pancreas organogenesis [164].
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4.1  �Beta-Cell Development in Mouse

Mouse pancreas development has been studied in much more detail and can be 
operationally divided in three major time periods: first, is a primary transition of 
embryonic day (E) (E9.5 to E12.5), second is a secondary transition (E12.5 to birth), 
and third and the final one is postnatal period from birth to weaning, which in mouse 
also coincides with adolescence onset. During the first phase, the development of 
pancreas initiates with endoderm thickening, followed by proliferation of the pan-
creatic progenitors cells at E9.5, and the evagination of dorsal and ventral pancreatic 
bud around E9.75 [165–167]. The pancreatic endocrine progenitor cells expressing 
neurogenin 3 (Ngn3) differentiate into β-cells [168]. Additionally, expression of 
several transcription factors [167] (Table 2) are required for the formation of a func-
tional glucose-sensing and insulin-secreting β-cells [169–171]. After initial differ-
entiation, maximum fetal β-cells remain functionally immature till late gestation 
period [172–174]. Beta-cells can be considered mature when they are capable of 
sensing physiological signals like glucose and secrete appropriate levels of insulin 
to match them. After birth, the β-cells of new-born mice rapidly mature to confront 
the new host energy sources and requirements [28]. A recent study by Sasson et al. 
(2016), suggested that pericytes plays an important role in the islet niche, and 
directly influence the maturity and functionality of β-cells. When the pericytes were 
depleted from the islets it resulted in the reduction of insulin content and expression. 
The pericyte devoid islets had impaired glucose-stimulated insulin secretion, along 
with a reduced expression of β-cell function and reduced levels of the MafA and 
Pdx1 transcription factors [175].

4.2  �Role of Immune Cells during Pancreas and Beta-Cell 
Development

Immune cells are present in the pancreatic islets during the neonatal periods in both 
mice and humans, but their role during the development of pancreas and β-cells was 
not given much focus. There is hardly any literature on whether there is a link 
between the early presence of immune cells during β-cell development and patho-
genesis of T1D.

4.2.1  �NOD Mice Neonates

The presence of macrophages is a well-recognized component of adult pancreas in 
rodents, although their presence in the neonatal and fetal pancreases are not well 
understood. Large number of several types of macrophages especially the mature 
BM8+ scavenger macrophages were found to be localizing around periphery of blood 
vessels, ducts, nerves and islets, and also scattered in the septa and exocrine tissue in 
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pancreas of NOD control and NOD/SCID mice [204–207]. At the time of birth, BM8+ 
and ER-MP23+ macrophages, and CD11c + DCs were more abundant in the pancreas 
of NOD/SCID and NOD than C57BL/6, DBA/2 and BALB/c controls, which is sug-
gestive of ongoing abnormal events in islet milieu [206]. Few weeks after birth, the 
number of macrophage progressively decline in all mouse strains till weaning and 
rebound subsequently only in NOD and NOD/SCID strains with diabetic background 
[206]. DC precursors like ER-MP581, Ly6Chi and Ly6Clow were present in fetal pan-
creases of prediabetic NOD and control mice. Ly6Chi and Ly6Clow DC precursors were 
capable of developing into CD11c  +  MHCII+ CD86+ DCs capable of processing 
DQ-OVA antigen. Additionally, ER-MP581 cells in the embryonic and pre-diabetic 
NOD pancreas had a higher proliferation capacity than controls [208].

Additionally, during the tissue remodeling in pancreas, apoptosis of β-cells peaks 
around 2 weeks of age and is significantly increased in NOD neonates as compared 
with controls. Although apoptosis is considered a non-immune response generating 
process, but certain studies have indicated that apoptotic cells can preferentially acti-
vate DCs capable of activating autoreactive T cells by presenting auto-antigens on 
their surface blebs and have also been shown to induce autoantibodies formation. In 
NOD and transgenic NOD mice, the immune cell infiltration into pancreatic islets 
appears around 15  days of age and coincides with neonatal β-cell apoptosis with 

Table 2  Factors involved in beta-cell development and maturation

Associated gene-expression changes
Factors increased References

Ldha [176–179]
Npy [179–183]
Mmp-2, Spd [184]
Ck-19 [179, 184]
Factors decreased References
Ins2 [185, 186]
Glut2 [186, 187]
Gck, Glp1r, Pcsk 1/3 [186]
Oxidative metabolism genes (Pyruvate carboxylase, mitochondrial shuttles, 
etc.)

[187]

Transcriptional regulators
NeuroD1 [179]
MafA [186, 

188–190]
MafB [190, 191]
Islet1 [192]
Ngn3 [193, 194]
Nkx2.2 [195, 196]
Pdx1 [197–200]
Vhl [201, 202]
Other factors
αvβ3 and αvβ5 integrin [203]
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accelerated onset of autoimmune diabetes [209]. The NOD mice younger than 15 days 
of age do not develop diabetes even after the transfer of functional T-cells from adult 
BDC 2.5 TCR transgenic mice to 10-day-old NOD recipients, the possible reason 
may be the lack of autoantigens or absence of antigen presenting cells (APC) [210].

4.2.2  �Human Neonates

There are very few reports on the infiltration of immune cells in humans especially 
during neonatal and fetal period. Infiltration of lymphocytes was observed parallel to 
the two successive waves of β-cell apoptosis/islet degeneration during the pancreatic 
development as reported in an early study of human pancreas [204, 206]. Another study 
by Jasen et al. (1993) showed the presence of large focal lymphocyte infiltrates, con-
taining primarily T cells in capsule and connective tissue of septa of fetal and neonatal 
human pancreas. Abundant endothelial venule-like structures, macrophages and DCs 
were also observed in periphery of fetal islets [211]. Presence of lymphocytes and 
expression of MHC class II antigens were also confirmed in pancreas of human fetuses 
[212]. Collectively, these reports suggest that presence of lymphocytes, macrophages 
and DCs during developmental periods is an essential part of the pancreatic milieu, 
which requires special attention in understanding T1D pathogenesis. These cells have 
also been shown to play a role during the development of limb, nervous system, retina, 
kidney, gut and thymus in rodents, during various stages of organogenesis, such as 
angiogenesis/vasculogenesis, neurogenesis/perinatal nerve degeneration and epithelial 
branching. Macrophages, in particular, are well-recognized for their role during tissue 
remodeling, phagocytosis during embryogenesis and their interaction with apoptotic 
cells during developmental periods and are also known to secrete numerous factors, 
including, growth factors, cytokines, and extracellular matrix proteins [213] (Table 3).

In fact, the mesenchymal compartment of every organ throughout embryogenesis is 
populated by macrophages, where they support tissue regeneration and organogenesis 
by regulating remodeling of the extracellular microenvironment. Mussar et al. (2014), 
shed some light on their specific role in islet development by describing that M2 macro-
phages regulate cell cycle progression and migration of pancreatic progenitors cells by 
modulating adhesion receptor, neural cell adhesion molecule (NCAM) and transcription 
factor, paired box protein (PAX6) in the epithelium [214]. Further, the role of macro-
phages was also observed in β-cell proliferation following injury, where their depletion 
blocked connective tissue growth factor (CTGF) mediated β-cell proliferation [215].

5  �Loss of Self-Tolerance

Immune tolerance is a state of unresponsiveness to antigens that can elicit an 
immune response. There are mainly two types of immune tolerance, central and 
peripheral tolerance. Central tolerance is generated at sites of lymphocyte develop-
ment, such as thymus and bone marrow for T and B cells respectively. This helps to 
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distinguish self and non-self-antigens, whereas peripheral tolerance is generated at 
sites of antigen recognition and processing mainly in the lymph nodes. This helps 
prevent over reactivity to environmental triggers such as gut microbes and allergens. 
Failure of central and peripheral tolerance can lead to development and expansion 
of effector T cells, which eventually lead to progression of autoimmunity. T1D 
ensues as a result of breakdown of this tolerance, which leads to commencement 
and progressive destruction of insulin producing β-cells. Self-reactive T cells are 
eliminated in the thymus by negative selection process. The thymic medulla express 
the transcription factor, autoimmune regulator (AIRE), which controls the tran-
scription of broad array of organ-specific genes, including preproinsulin, thereby 
creating an immunological umbra in the thymus [216, 217], thereby eliminating 
autoreactive T cells. Yet many autoreactive T cells escape this immune regulation in 
the thymus. This partial clearance of autoreactive T cells in the thymus could be 
attributed to lower HLA binding affinity of self-peptide epitopes [218], low avidity 
of the TCR recognizing self-epitopes presented on the HLA molecules, and vari-
ances in post-transcriptional [219, 220] and post-translational expression regulation 
in peripheral tissue versus thymus [221]. The autoreactive CD8+ T cell tolerance is 
achieved by immunological ignorance, if the avidity of self-peptide presentation in 
the draining lymph node is low or by anergy or death mediated by high expression 
of Bim, a pro-apoptotic protein [222]. The breakdown of tolerance depends on the 
phenotypic and functional characteristics of DC that is whether DCs promote toler-
ance or present antigens in an immunological manner. Also, the avidity of interac-

Table 3  Growth and differentiation factors produced by macrophages involved in islet 
development

Factors Synthesized by macrophages

Mesenchyme and extracellular matrix
Activin A +
β-Cellulin −
Fibronectin +
Follistatin −
Laminin ?
Matrix metalloproteases (MMPs) +
Cytokines and growth factors
Epidermal growth factor (EGF) +
Fibroblast growth factor (FGF) +
Hepatocyte growth factor (HGF) +
Insulin growth factors +
Interferon-γ (IFN-γ) +
Interleukin-6 (IL-6) +
Keratinocyte growth factor (KGF) −
Nerve growth factor (NGF) +
Transforming growth factor-α or -β (TGF-α or -β) +
Tumor necrosis factor-α or -β (TNF-α or -β) +
Vascular endothelial growth factor (VEGF) +
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tion between autoreactive TCRs and their respective cognate antigens presented by 
DCs must reach a certain threshold to trigger activation of autoreactive CD8 + T 
cells in PLNs [223]. Peripheral tolerance is also maintained by recognition of self-
antigens on APCs other than DCs. Stromal cells present tissue-specific antigens in 
lymph nodes in association with AIRE [224, 225]. Mutations in genes encoding 
AIRE and PTPN22 have been involved in T1D [226, 227]. A gain-of function muta-
tion in PTPN22 gene results in lower T-cell activation and IL-2 production [26] 
resulting in compromised immunoregulation by Tregs.

There is ambiguity regarding the factors involved in loss of β-cell tolerance, 
but it is evident that β-cells are themselves responsible for their demise rather 
than being an innocent victim of autoimmune attack [228]. Viral infection or ER 
stress provokes an immune response in β-cells leading to activation of immune 
system. Infiltration of leukocytes (insulitis) towards islets is preceded by hyper-
expression of MHC I, IFN-α, and CXCL10, that attracts immune cells express-
ing CXCR3 towards the islets [229–231]. The NOD mice develop autoimmunity 
with overt hyperglycemia (where 70% of the β-cell have been destroyed) by 
around 3–5 months of age much later than the actual development of insulitis, 
which begins at 3 weeks of age. This delayed disease onset and occurrence of 
β-cell destruction has been evidenced from a study where, adoptive transfer of 
pathogenic polyclonal CD4+ and CD8+ T cells from the spleen of diabetic NOD 
mice to syngeneic immune deficient recipients resulted in diabetes incidence in 
these mice [232–234]. It is still unclear whether a single antigen or a repertoire 
of antigens is responsible for autoimmunity. Also it is unknown which candidate 
antigen is responsible for pathogenic auto-reactivity or bystander islet autoim-
munity [235, 236]. There is still an enigma on why loss of tolerance to certain 
antigens expressed in islets and other tissues lead to tissue specific pathogene-
sis. Nonetheless, breakdown of this tolerance leads to activation and recruit-
ment of T lymphocytes, which have an important involvement in the disease 
process.

5.1  �Endoplasmic Reticulum (ER) Stress 
and Post-Translational Modifications (PTM)

During the initiation and progression of insulitis, immune cells move towards the 
pancreatic islets after sensing inflammation, although the factors causing this 
initial inflammation and infiltration are not well defined. Βeta-cells are predis-
posed towards ER stress due to their secretory nature and rapid turnover of insu-
lin molecules. Inflammation causes ER stress in β-cells which they try to resolve 
by activating unfolded protein response (UPR) pathways, but if ER stress remains 
prolonged and unresolved, the UPR switches from a pro-adaptive to pro-apop-
totic outcome leading to the death of β-cells [237]. Several studies have sug-
gested link between disruption of ER homeostasis and β-cell dysfunction and 
diabetes, as misfolded insulin was shown to induce diabetes in both mouse mod-
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els and humans [238, 239]. Also, mutations in genes critical for ER function 
results in β-cell failure and diabetes onset both in experimental models and 
humans [240–242].

ER stress and dysfunction also leads to abnormal protein folding and post-
translational modifications (PTM), affecting protein function and may give rise 
to “neo-antigens” with increased immunogenicity [243]. Coxsackie viral infec-
tion is also linked to ER stress and PTM via disruption of ER membrane and 
release of Ca2+ from the ER into the cytosol [244, 245]. The risk of developing 
T1D increases considerably with increase in number of target auto-antigens, 
which can happen via PTM. PTM includes phosphorylation, citrullination, acet-
ylation, carbamylation, amidation, and oxidation [246]. Once the β-cell ER stress 
increases, it leads to the release of β-cell related neo-antigens which are pro-
cessed and then presented by APCs to T cells in draining lymph nodes leading to 
the increased infiltration of auto-reactive T cells. Βeta-cells under ER stress may 
secrete cytokines and chemokine’s that attracts immune cells to islets [247]. 
With increase in immune infiltration into the islets the ER stress also increases 
progressively [248]. Increased ER stress could lead to rise in cytosolic Ca2+ that 
enhances the activity of tissue transglutaminase 2 (Tgase2) and Peptidylarginine 
deiminases (PAD) enzymes. PTM by the Ca2+ dependent enzymes Tgase2 
(deamidation) or PAD (deimidation) increases the immunogenicity of several 
β-cell proteins [246] (Table 4). Recent study by Marre et al. (2016) demonstrated 
that ER stress increases immunogenicity in the human β-cells. Induction of ER 
stress by thapsigargin in human islets and insulinomas increases the recognition 
of deamidated GAD65 by 135–360 fold by human T cells and increased activa-
tion of the PTM enzyme Tgase2 was found to accompany this increase in immu-
nogenicity [249].

Table 4  Post-translational 
modifications (PTM) in beta-
cell associated antigens 
occurring during endoplasmic 
reticulum (ER) stress

Autoantigen PTM References

Phogrin Deamidation [250]
Proinsulin Oxidation [219]
CHGA (WE14) Crosslinking/ Isospeptide bond [251, 252]
Preproinsulin Deamidation [250]
ICA69 Deamidation [250]
ZnT8 Deamidation [250]
IA-2 Deamidation [250]
IGRP Deamidation [250]
GAD65 Citrullination [253]

Deamidation [250, 253]
GRP78 Citrullination [254]

CHGA, Chromogranin A; GRP78, Glucose regulated protein 78; 
GAD65, glutamic acid decarboxylase 65; IA-2, insulinoma anti-
gen-2; ICA69, islet cell autoantigens; IGRP, islet-specific 
glucose-6-phosphatase catalytic subunit related protein; ZnT8, 
zinc transporter-8
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5.2  �Role of Chemokines, Cytokines and Cell Signaling 
Pathways

In T1D, disease onset is preceded by leukocyte infiltration to the pancreatic islets sug-
gesting the role of chemokines expressed in the pancreatic islets in disease pathogen-
esis. Pancreas produce numerous chemokines such as CXCL10, CCL5, CXCL9 and 
CCL2 [255, 256] implicating the recruitment of pathogenic [257] or Treg [258] cells 
into the pancreatic islets. Studies also indicate that chemokine receptor (CCR)7 and 
its ligands are important for T cell recruitment to pancreatic islets. During insulitis, 
β-cells secrete chemokines such as CXCL10 and CXCL9, which act as driving forces 
for the accumulation of cytotoxic T cells expressing CXCR3 [256]. Genes encoding 
chemokines, mainly CXCL10 and also CXCL9 and CXCL11 are the response genes 
in pancreatic β-cells that are elevated in inflammatory conditions. The circulatory 
levels of these chemokines are also elevated in NOD mice [259]. Islets obtained from 
4  weeks old NOD/SCID mice showed the basal expression of several chemokine 
ligands. CXCL10 was predominantly expressed followed by CCL22, CCL21, CCL3, 
CCL17 and CCL2 [260]. Gene expression analyses detected the presence of mRNA 
for CCR7 as well as its ligands CCL19 and CCL21 in inflamed islets but not in unin-
flamed islets of NOD mice, suggesting their role in disease pathogenesis [261]. In a 
population-based registry of children diagnosed with T1D from 1997 to 2005, the 
levels of five inflammatory chemokines (CCL2, CCL3, CCL4, CCL5 and CXCL8) 
were analyzed from the serum samples. The levels of CCL2, CCL3, CCL4 and 
CXCL8 varied based on seasonal variations with higher levels during summer period. 
The study also showed an inverse relationship of CCL4 chemokine with age [262]. 
Expression of CCL2 by β-cells, recruits monocytes and macrophages thereby causing 
insulitis and islet cell destruction [263]. CCL2 has also been shown to attract the 
tolerogenic CD11c + CD11b + DC (DCs) to pancreatic islets, thereby reducing diabe-
tes incidence in NOD mice [264]. Pancreatic islets release CXCR1/2 ligands such as 
CXCL1 and CXCL8 in response to inflammation [265] and the circulatory levels of 
these ligands are elevated in humans and mouse models of T1D reflecting an anti-islet 
autoimmune activity [266]. Neutrophils are the primary leukocytes expressing 
CXCR2 and the depletion of neutrophils in combination with CXCR1/2 inhibitors 
efficiently prevented diabetes in NOD mice [267].

During early islet inflammation, proinflammatory cytokines are released by a small 
number of early infiltrating immune cells, including, IL-1β, TNF-α, and IFN-γ. IL-1β 
and/or TNF-α plus IFN-γ induce β-cell apoptosis via the activation of β-cell gene net-
works under the control of the transcription factors nuclear factor-κB (NF-κB) and 
STAT(STAT-1), attracting the DCs and other immune cells to pancreatic islets [268]. 
NF-κB activation leads to production of nitric oxide and chemokines and depletion of 
ER calcium [269]. The execution of β-cell death then occurs through activation of 
mitogen-activated protein (MAP) kinases, via triggering of ER stress and by the release 
of mitochondrial death signals [268, 270]. Upon further activation, more mediators like 
Fas/FasL, perforin/granzyme, and pro-inflammatory cytokines come into play to pro-
duce their deleterious effects on β-cells secreted by islet invading immune cells [271].
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5.3  �Infiltration of Immune Cells during Early Stages of T1D

Early infiltration of immune cells in the pancreatic islets always precedes inflammation 
and onset of autoimmunity in both NOD mice and humans. The islets are normally 
encapsulated by a layer of peri-islet basement membrane and an interstitial matrix and 
this layer must be breached by the infiltrating immune cells to cause any β-cell damage 
[272]. At the same time, the islets are highly vascular in nature, providing abundant cell 
adhesion molecules for T cell interactions [272]. Pancreatic infiltration predominated by 
monocytes and B-lymphocytes indicates an early expression of autoimmune phenom-
ena in NOD mice [273]. Infiltrating mononuclear cells consists of CD4 + T cells, CD8+ 
T cells, B cells, and macrophages, out of which CD8 + T cells being predominant fol-
lowed by macrophages both in NOD mice and humans [274, 275]. Novel techniques 
like two photon and intravital microscopy gave much more clear and detailed insight of 
the islet infiltrates and their phenotype. T cell trafficking studies by Coppieters et al. 
(2010, 2012) gave us a much better insight of some of the happenings during onset of 
experimental T1D. According to these studies CD8+ T cells enters pancreatic islets by 
extravasation through post capillary venules in a random-walk fashion and they move 
freely in and out of the islets with no time-lag at the islet–exocrine interface [276–278].

The islets seem to be exposed to both antigen-specific and non-antigen-specific T 
cells, with both cell trafficking to and from the pancreas similarly [279]. One recent 
study by Lindsay et al. (2015) suggested that these cells halted and mostly interacted 
with APCs during early stages of disease [280]. These studies also suggest that some 
other signals in addition to chemokines and cytokines may be involved in the recruit-
ment of T cells to the islets as many of the T cells found at islets of both mouse models 
and humans are non-islet antigen-specific [278]. A recent study of population dynam-
ics of islet-infiltrating cells by Magnuson et al. (2016) found out that insulitic lesion is 
open to constant cell influx and turnover, predominated by B and T cells along with 
CD11b + c + myeloid cells. They have also shown that Tregs exist in peripheral lymph 
nodes but their migration towards the pancreas is slow and sluggish, which might be 
the reason for their decreasing proportion in islets as T1D progresses [281]. Innate 
immune cells, like plasmacytoid DC (pDCs) have also been implicated in initial pro-
gression of islet inflammation, especially in NOD mice, as early as 2 weeks of age [282].

6  �Cellular Players and Pathological Mechanisms Involved 
in Beta-Cell Destruction

6.1  �Innate Immune Cells

The innate immune system is the first line of defense that provides prompt response 
following infection or injury. The primary mediators of innate response are circulat-
ing factors and cells of non-lymphoid lineage like DCs, monocytes/macrophages, 
neutrophils and other rare lymphocytes. It recognizes threats by using cell surface, 
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intra-cellular and secreted, pattern recognition receptors (PPRs), like TLRs, 
nucleotide binding oligomerization domain (NOD)like receptors and RIG-I like 
receptors [283].

6.1.1  �Dendritic Cells (DCs)

DCs are APCs with functions extending to both innate and adaptive immunity. They 
play a crucial role during infections and in maintaining immune tolerance to self-
tissues and commensal microorganisms [284]. DCs can be divided into two main 
subtypes: myeloid DCs (mDCs) and pDCs.

6.1.2  �Myeloid DCs (mDCs)

mDCs are CD11c + and can be further divided into two major types according to 
their migratory and tissues localization properties namely, migratory mDCs and 
lymphoid tissue-resident mDCs. Migratory mDCs are immature and sample anti-
gens in peripheral tissues and subsequently migrate to local lymph nodes via the 
afferent lymphatics and develop into mature or semi-mature mDCs [285, 286]. 
Semi-mature mDCs are thought to induce tolerance whereas mature mDCs primar-
ily induce immunity and have a high expression of co-stimulatory molecules and 
MHC II [287]. DCs found in lymphoid organs like lymph nodes are called lymphoid 
tissue-resident mDCs and they play a major role in priming CD4+ and CD8+ T cells.

The role of DCs in T1D is well studied; their peri-islet accumulation can be seen 
in NOD mice as early as 4 weeks of age and was concomitant with the influx of 
lymphocytes. Earlier studies found yield, function and phenotype of DCs from sub-
jects at risk of developing T1D to be impaired. Lower yield of DCs from adherent 
peripheral blood mononuclear cells along with reduced expression of CD1a and 
co-stimulatory molecules like CD80 and CD86 was observed in T1D relatives com-
pared to controls. Additionally, abridged stimulation potential of DCs for autolo-
gous CD4+ T cells from relatives of T1D subjects and some recently diagnosed 
subjects was observed [288]. Saxena et al. (2007) have shown that, the ablation of 
CD11b + CD11c + DCs leads to the loss of T cell activation, insulitis, and diabetes 
mediated by CD4+ T cells, and the same was restored when the cells were added 
back [289]. Decreased numbers of mDCs and pDCs with, a reduced CCR2 expres-
sion in recent-onset T1D were also observed. This abnormality of DCs in T1D may 
have an effect on the initiation and intensity of auto-immune responses, due to the 
important role that CCR2 plays in DC chemotaxis and differentiation of Th1 subsets 
[290]. A recent study described that DCs can also guide islet autoimmunity via 
processing and presentation of restricted autoantigens in a unique and a highly 
immuno-dominant form by the high-risk HLA-DR [291]. It has also been demon-
strated that human BDCA1+ DCs from pancreas-draining lymph nodes and blood 
effectively engulf β-cells and induce interferon (IFN)-α/β responses and have sup-
pressed Th2 cytokines [292].
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6.1.3  �Plasmacytoid DCs (pDC)

The ability of pDCs to secrete copious amounts of IFN-α upon viral encounter has 
defined their role as front runners of virus induced adaptive immune responses 
[293]. pDCs once activated through TLR7 and TLR9 stimulation by CpG nucleo-
tides containing DNA, start releasing large amounts of IFN-α [294, 295]. pDCs can 
also play important role as APCs and the uptake and presentation of antigen to 
CD4+ T cells or CD8+ T by human pDCs enhances when stimulated in the presence 
of antigen-specific immunoglobulins [296, 297].

The role of pDCs in autoimmune diabetes has been proposed by several stud-
ies. Increased production of IFN-α and pDCs were detected in autoimmune diabe-
tes patients at diagnosis, along with high expression of IFN-α induced genes in 
prediabetic children [298–300]. One of the reasons for the infiltration of pDCs in 
islets during the initiation of autoimmune diabetes, could be the release of self-
nucleic acids (genomic DNA, mitochondrial DNA, RNA etc.) by dying β-cells. As 
pDCs and monocytes can capture β-cell specific nucleic acids during normal scav-
enging process akin to other autoimmune diseases like systemic lupus erythema-
tosus (SLE) and psoriasis, these cells might get activated to a pro-inflammatory 
phenotype [301–303]. In the islets of NOD mice accumulation of pDCs were 
observed as early as 2 weeks of age, where they get activated via TLR 9 by self-
DNA-cathelicidin-related antimicrobial peptide (CRAMP) complexes, leading to 
the production of IFN-α and induction of autoimmune diabetes. Their role in the 
initiation of autoimmune diabetes was also confirmed by depletion treatments 
[282]. T1D subjects both at risk and newly diagnosed were found to have increased 
pDCs compared to controls. Increased IFN-α production in T1D subjects by 
PBMCs upon stimulation with influenza viruses was observed that correlated 
positively with pDC numbers. Additionally by in vitro studies authors also dem-
onstrated that IFN-α produced by pDCs augments Th1 responses, as a greater 
proportion of IFN-γ-producing CD4+ T cells from T1D subjects were observed 
[304]. A potential role of TLR9 induced IFN-alpha in T1D development can be 
deduced, as CpG 2216 induced IFN-α production by pDCs was found to be high-
est in T1D relatives even though lower pDCs numbers were observed both in T1D 
patients and their relatives [305]. A disease-promoting role of E2–2 dependent 
pDCs was recently described during autoimmune diabetes in the NOD mice. After 
knocking out E2–2, abridged recruitment of pDCs was observed in pancreatic 
islets along with decreased CpG1585 induced IFN-α production that markedly 
reduced diabetes incidence [306].

A tolerogenic role of pDCs has also been suggested by some studies, Welzen-
Coppens et  al. (2013) reported the accumulation of pDCs and lymphocytes in 
pancreas of NOD mice 10 weeks onwards. These pDCs expressed Indoleamine-
pyrrole 2,3-dioxygenase (IDO) and were found to be responsible for reduced 
insulitis and slow disease development [307]. In another study, ablation of DCs 
from NOD mice lead to accelerated insulitis, marked by the loss of pDC and 
localized loss of IDO, which was restored on the return of pDCs to the depleted 
mice [289].
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6.1.4  �Monocytes and Macrophages

In addition to diabetogenic T cells and B cells, several studies suggest a role for 
monocytes/macrophages in autoimmune mediated β-cell destruction. In a study, 
passively transferred diabetogenic T cells failed to induce diabetes following deple-
tion of monocytes. Additionally, activated macrophages are also known to kill 
β-cells directly in vitro [308, 309]. Convincing evidence was provided by Martin 
et al. (2008) using multiple transgenic mouse models, that monocytes can induce 
diabetes by destroying β-cells even in the absence of functionally mature T and B 
cells, following their recruitment to pancreatic islets under the transgenic expres-
sion of chemokine CCL2  in β-cells [263]. Apart from their direct effect, macro-
phages also help in the recruitment of other cells to islets by producing chemokines 
CXCL1 and CXCL2, which recruit CXCR2-expressing neutrophils from the blood. 
This recruitment of neutrophils is important for the induction of diabetes as its 
blockade at early age by CXCR2 antagonist diminishes T cell responses and devel-
opment of the disease [310, 311].

6.1.5  �Neutrophils

Neutrophils are also part of the list of innate immune cells involved during the ini-
tial phases of T1D as their numbers are decreased in the peripheral circulation of 
recently diagnosed T1D subjects which may be attributed to their increased infiltra-
tion in the pancreas [312]. Additionally, neutrophil extracellular traps (apoptosis of 
neutrophils resulting in the release of DNA complexes or NETosis) and associated 
serum biomarkers like neutrophil elastase (NE) or proteinase 3 (PR3) are increased 
in recently diagnosed T1D subjects compared to controls [313]. Although a new 
study by Qin et  al. (2016) contradicts the previous study and has shown that, 
NETosis-associated serum biomarkers, NE and PR3 are decreased in T1D subjects 
in association with the reduced neutrophil count [314].

6.1.6  �Natural Killer (NK) Cells

NK cells are granular lymphocytes that lack B or T cell receptors and recognize 
their target cells via presence or absence of specific cell surface receptors like MHC 
molecules. They are cytotoxic in nature and destroy their target cells by exocytosis 
of perforin and granzyme, and are also known to secrete IFN-γ and TNF-α [315]. 
Some early studies suggested role of NK cells in TID by showing that NK cells are 
involved in destruction of islet cells in BB rat and NOD mice [315]. The mecha-
nism of β-cell killing was further explored by Gur et al. (2010), where they identi-
fied that presence of ligand to NKp46 or NCR1 on β-cells is responsible for 
activation of NK cell receptor which leads to their degranulation and onset of dia-
betes in NOD mice [316]. Tregs are capable of regulating NK cells in islets by 
limiting amounts of IL-2 [317]. In humans altered frequency and phenotype of NK 
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cells has been observed by many studies, the first of those observing slight reduc-
tion in blood NK cells at the time of onset with very high secretion of IFN-γ [318]. 
NK cells from T1D children were found to be reduced in number with reduced 
responses to IL-2 and IL-15; finally defects in activating NK cell receptor, NKG2D 
were also observed [319]. A recent study by Duangchan et al. (2016), showed that 
NK cell subsets in long standing T1D are skewed towards more activated or less 
regulatory phenotype [320].

6.1.7  �Natural Killer T (NKT) Cells

NKT cells are unconventional T cells that act as a link between innate and adaptive 
immune systems. Their best-known subset invariant-NKT (iNKT) cell expresses 
semi-invariant TCR, Vα14-Jα18 and Vα24-Jα18 in mice and humans respectively, 
and recognizes glycolipid ligands, presented by highly conserved CD1d molecule. 
In a recent study, they have been postulated to play regulatory role during T1D 
through various mechanisms [321]. Absence or abnormalities in their frequency and 
function relates to the acceleration of autoimmunity and diabetes, whereas their 
increased frequency or function prevents β-cell autoimmunity in both NOD mice 
and humans [322–325]. Studies on iNKT cells in NOD mice associates T1D protec-
tion with a Th2 shift in the effector T cell responses that involves IL-4 and IL-10, 
along with their ability to induce tolerogenic DCs that generates Tregs in PLNs 
[326–329]. Studies in humans have shown decreased IL-4 production by iNKT cells 
sourced from the PLNs and peripheral blood [330]. Additionally, defective Th2 
cytokine production and Th1 bias by iNKT cells was also observed by another study 
[331]. A recent study by Usero et al. (2016) found that iNKT cell suppression of 
effector T cells is defective in T1D patients. The mechanism involved was cell con-
tact independent and IL13 was described to exert the suppressive effect [332]. 
Collectively these studies support the notion that exploring iNKT cell alteration in 
T1D could open a new path in T1D intervention.

6.1.8  �Innate Lymphoid Cells (ILCs)

Innate lymphoid cells (ILCs) belong to a family of developmentally related cells 
that lack specific antigen receptors but can promptly mount an immune response on 
microbes by producing copious amounts of an array of effector cytokines. They 
have functions in tissue remodeling, lymphoid organogenesis, inflammation and 
antimicrobial immunity predominantly at mucosal barrier surfaces [333]. The fam-
ily of ILCs comprises of three subsets, named as group 1, 2 or 3 ILCs, on the basis 
of common of surface markers, transcription factors and cytokines produced. Group 
1 ILCs (ILC1s) constitutively express T-bet, secrete cytokines like IFN-γ and TNF 
and respond to IL-12. Group 2 ILCs (ILC2s) have high expression of GATA3, 
secrete IL-4, IL-5, IL-9, IL-13 and respond to IL-25, IL-33 and TSLP, Group 3 ILCs 
(ILC3s) expresses RORγt, secrete IL-17 and/or IL-22 and respond to IL-1β, IL-6 
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and IL-23 [334]. There is scant information on their role in T1D. NOD mice have 
an increased frequency of type 3 ILCs along with decreased frequency of type 1 
ILCs in the MLN at all stages of disease and in the PLNs at 8 weeks of age [335]. A 
novel CD25+ ILC population in the pancreas is also been identified, but more stud-
ies are required to ascertain its role if any in T1D [336].

6.1.9  �Mucosal Associated Invariant T (MAIT) Cells

Mucosal associated invariant T (MAIT) cells are innate like T cells in peripheral 
blood of humans and abundantly found in intestinal mucosa that display both innate 
and effector like functions to confer protection against microbial activity and infec-
tion. These cells express an invariant α-chain (TRAV1–2-TRAJ33/12/20 in humans 
and TRAV1-TRAJ33 in mice) coupled with a limited repertoire of β-chains, impart-
ing them with the ability to recognize precursors of riboflavin of bacterial origin 
(vitamin-B related antigens), presented by the MHC-I related protein MR1 [337]. 
Recently, Rouxel et al. (2017), have suggested an important role of MAIT cells in the 
development of T1D. Firstly, they discovered that in recent onset T1D children, the 
frequency of circulating MAIT cells is significantly lower and the phenotype of these 
cells was also different in the recent onset T1D children, than their age matched con-
trols [338]. In the recent onset T1D children, the MAIT cells had higher expression 
of activation marker, CD25 and exhaustion marker, programmed death-1 (PD-1), but 
lower expression of tissue homing chemokine receptor, CCR6 and adhesion mole-
cule CD56. Additionally, upon stimulation the MAIT cells derived from these chil-
dren showed lower expression of IFN-γ, but higher expression of TNF-α, IL-4 and 
granzyme-B, upon stimulation with PMA/ionomycin. The authors further showed 
that in an inflammatory milieu, as expected during islet inflammation, these cells 
secrete high levels of granzyme-B, in response to increased upregulation of MR1 by 
the pancreatic β cells, implicating their role in direct participation in β cell killing. In 
NOD mice as well progression to diabetes is associated with decreased production of 
IL-17A and IL-22 from MAIT cells in the ileum and an accumulation of IFNγ- and 
granzyme-B (GzB) –producing MAIT cells in the pancreatic islets. Compared to 
humans (6%) the frequency of MAIT cells is lower in NOD mice (0.1%) in periph-
eral circulation, however, such cells can be traced in pancreas or peripheral blood by 
using MR1 tetramers loaded with the riboflavin derivative 5-OP-RU [339, 340].

6.2  �Adaptive Immune Cells

6.2.1  �T Cells

T1D results from the destruction of insulin-producing pancreatic β-cells mainly by 
T cells recognizing the self-islet associated antigens. Best studied antigens include 
preproinsulin [341], GAD65 [342], insulinoma antigen-2 (IA-2) [343], ICA [344], 
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heat shock protein (HSP) [345], islet-specific glucose-6-phosphatase catalytic sub-
unit related protein (IGRP) [346], imogen-38 [347], zinc transporter-8 (ZnT8) 
[348], pancreatic duodenal homeobox factor 1 (PDX1) [349], chromogranin A 
(CHGA) [350] and islet amyloid polypeptide (IAPP) [351]. However, CD4+ T cells 
recognizing post translational modified peptides [246, 249] and hybrid insulin pep-
tide also have been detected in NOD mice and T1D subjects [352]. Recently, Delong 
et al. (2016) reported that CD4+ T cells recognizing epitopes formed by covalent 
cross-linking of proinsulin peptides to other peptides present in β-cell secretory 
granules such as CHGA and IAPP can be detected in islets of T1D subjects [352].

6.2.2  �CD4+ Helper T (Th) Cells and Subsets

The autoreactive CD4+ T cell is likely at the heart of this disease, as an orchestrator 
of the immune attack on β cells. Loss of CD4+ T cell tolerance to β-cell associated 
antigens is a key step involved in pathogenesis of T1D (221). CD4+ T-cells are 
activated upon interaction with APCs presenting β-cell autoantigens mainly in 
PLNs followed by a formation of specialized junction called immunological syn-
apse at the T-cell interface [353]. Recognition of antigen by CD4+ T cells can lead 
to activation or anergy/death depending upon the co-stimulatory molecule involved 
in process. Signaling through CD28, TNF family members, CD154 (CD40L) and 
OX40 leads to activation of CD4+ T cells whereas CTLA4 and PD-1 inhibit T cell 
activation [354, 355]. Following activation, CD4 + T cells (Th1) cells secrete IL-2, 
which activates CD8+ T cells. At late stages of disease, autoreactive T cells become 
resistant to suppression by Tregs that may also have diminished regulatory capacity, 
ultimately leading to complete β-cell destruction [356]. It has been reported that 
CD4 + T cells specific for β-cell auto-antigens present more proinflammatory phe-
notype and secret IFN-γ and IL-17[357].

6.2.3  �Th17 Cells

Several line of evidences from animal and human studies indicate that Th17 cells 
are involved in pathogenesis of T1D which were previously thought to be mediated 
by only Th1 cells [358]. Role of Th17 cells in β-cell destruction is now being 
explored in T1D subjects. Deficiency of IL-17 in NOD mice delayed the onset of 
diabetes [156]. Inhibition of Th17 cells using anti-IL-25 or anti-IL-17 decreased 
GAD65 autoantibody levels, increased the frequency of Tregs, significantly sup-
pressed development of diabetes in 90% of treated animals [359, 360]. IL-23, regu-
lator of IL-17, promotes development of diabetes in sub-diabetogenic doses of 
streptozotocin treatment by expansion of Th17 cells and IFN- γ production in male 
C57BL/6 mice [361]. Moreover, deficiency of IL-17A ameliorates streptozotocin-
induced diabetes [362]. Adoptive transfer of islet associated antigen-specific Th17 
cells induced diabetes in immunodeficient mice [363, 364]. Studies have reported 
that PLNs of T1D subjects possess increased population of Th17 cells [365]. 
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Furthermore, increased population of IL-17 secreting T cells were observed in new 
onset T1D children [366]. Interestingly, circulating memory CD4+ T cells from 
T1D subjects showed increased IL-17 secretion and expression of IL-17, IL-22 and 
retinoic acid-related orphan receptor C isoform 2 (RORC2) ex vivo, indicating acti-
vation of IL-17 pathway in vivo [96]. Upon in vitro stimulation with β-cell autoan-
tigens including proinsulin, insulinoma-associated protein, and GAD65 peptides, 
the circulating CD4+ T cells from T1D subjects have been shown to produce IL-17 
[367]. These observations clearly indicate a Th17 biased response in T1D patients.

6.2.4  �Th40 Cells and TCR Revision

A central paradigm of immunology holds that once T cells exit the thymus, TCR mol-
ecules do not undergo alteration. To the contrary, several laboratories have shown that 
peripheral T cells re-express recombination activating genes 1 (RAG1) and RAG2 pro-
teins and subsequently alter TCR expression [368–371]. Th40 cells are subsets of Th 
cells defined by expression of CD40 and capable of undergoing TCR revisions [372–
376], a process by which T cells can alter expression of TCR even in the periphery by 
inducing RAG1 and RAG2 [374–376]. Th40 cells have been shown to become highly 
pathogenic in autoimmune disease models [372–376]. CD40 acts as a co-stimulatory 
molecule on T cells, which upon engagement induces RAG1/RAG2 TCR recombina-
tion machinery via interaction with Ku proteins, DNA polymerases and helicases lead-
ing to alteration of TCR expression [374–378]. Alterations in the expression of TCR-α 
[73, 104] and TCR-β [370, 379, 380] in long-standing peripheral T cells occurs follow-
ing the induction of RAGs [369, 374, 381]. Th40 cell numbers in spleen and peripheral 
lymph nodes of young NOD mice are equivalent to non-autoimmune mice, but in 
PLNs, Th40 cell numbers are expanded significantly as early as 3 weeks of age [375]. 
Pathogenicity of Th40 cells is demonstrated by their ability to transfer T1D to NOD/
SCID recipients [373, 375–377]. Th40 cells are stimulated in the PLNs and are then 
recruited to infiltrate islets. Since Th40 cells are capable of TCR revision, the odds of 
increasing autoreactive T cells on site would be increased dramatically. Th40 cells are 
capable of producing IL-17 [377, 382, 383] and IFN- γ to drive diabetogenesis.

6.2.5  �CD8+ Cytotoxic T Cells

Infiltrating CD8+ T cells recognize epitopes presented with MHC-I molecules on the 
surface of β-cells and destroy them. During this period there is hyperexpression of 
MHC-I molecules on the surface of the β-cells, allowing enhanced epitope presenta-
tion to the infiltrating CD8+ T cells [384]. Among the major epitopes recognized by 
the autoreactive CD8+ T cells, preproinsulin derived epitopes are the primary ones to 
be recognized by the CD8+ T cells, during the progression of the disease [385].

These autoreactive CD8+ T cells kill target cells mainly by releasing cytotoxic 
granules or interaction with TNF family-related death receptors. Cytotoxic degran-
ulation involves release of perforin, which facilitates the entry of co-released gran-
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zymes with serine protease activity into cells and thus results in rapid cell death. Fas 
ligand (FasL) is the best-characterized TNF family-related death receptor, binding 
to Fas expressed on the target cell surface and initiating a series of intracellular 
pathways resulting in apoptosis. It has been well established in T1D that CD8+ T 
cell mediated killing of β-cells predominantly use cytotoxic degranulation pathway 
[386, 387]. This period is also marked by a change in the phenotype of autoreactive 
CD8+ T cells, whereby there is a shift towards the effector phenotype and an 
increase in the proliferative potential [388]. Destruction of β-cells results in shed-
ding of other islet associated antigens and presentation of these antigens leads to 
infiltration of pancreatic islets by diverse population of T cells (predominantly tis-
sue specific), by a process called epitope spreading [389]. Rate of progression of 
β-cell destruction may vary, depending upon frequency, proliferative and patho-
genic potential of CD8+ T cells [388]. Beta-cell associated antigen-specific CD8+ 
T cells have been characterized and shown to express memory cells markers [390]. 
Therefore, targeting memory T cells in T1D subjects to preserve residual β-cell 
mass seems plausible [391].

6.3  �B Cells

B cells play an additional key role in the pathogenesis of T1D, yet their functions are 
less explored. B cells produce autoantibodies against insulin, GAD-65, IA-2, and 
ZnT8 which are commonly used as biomarkers in predicting disease onset [392], 
besides routine clinical diagnosis of autoimmunity in diabetes. Although they produce 
antibodies, these are not thought to be pathogenic, rather their islet antigen presenting 
capabilities appear to be critical in disease pathogenesis [393]. To explore their role in 
antigen presentation, a transgenic NOD mouse was generated which could not secrete 
immunoglobulin but present the antigen. This resulted in increased insulitis and devel-
opment of diabetes in NOD mice [394]. Early therapy, with either anti-CD20 or anti-B 
cell activating factor (BAFF) mAb, before the onset of insulitis merely delayed dis-
ease progression in NOD mice [395, 396]. A recently identified subtype of B cells, 
immunosuppressive B cells, also known as B regulatory cells (Bregs) are CD1dhigh, 
CD5+ and produce IL-10 [397]. Studies have shown that expansion of Bregs by 
tolerogenic DCs, subsequently reversed new-onset T1D in NOD mice [398].

6.4  �Pathological Mechanisms Underlying Beta Cell Death 
in T1D

Heterogeneous population of immune cells infiltrates pancreatic islets during the 
progression of the disease. However, T cells comprise the major proportion of the 
cells causing damage to β-cells [399]. Following antigenic recognition in lymph 
nodes, naïve T cells expressing self-reactive TCRs become activated, proliferate and 

Microbiome and Cellular Players in Type 1 Diabetes: From Pathogenesis to Protection



190

differentiate into various subsets: central memory T cells and effector memory T 
cells and effector T cells. Effector T cells invade pancreatic islets and destroy β-cells. 
Central memory T cells persist in lymph nodes, exhibit high sensitivity to antigenic 
stimulation, are less dependent on co stimulation and are able to differentiate into 
IFN-γ producing effector cells. Effector memory T cells can home to inflamed tissue; 
express high levels of perforin and mount rapid effector responses [400]. Effector T 
cells are short lived, while long term survival of central memory and effector mem-
ory T cell subsets pose major hurdle for immunotherapeutic approaches [401]. On 
the other hand, CD4+ T cells also participate in activation of CD8+ T cells and B 
cells. Due to loss of self-tolerance to β-cell associated antigens, β-cells are targeted 
by immune cells by various effector mechanisms including, (1) Granzymes and per-
forin pathway (2) Fas-FasL pathway (3) Cytokine mediated death (4) Production of 
reactive oxygen species. Granzyme and perforin mediated apoptosis is the principle 
pathway used by CD8+ T cells to kill β cells [386]. In the presence of Ca2+ ions, 
perforin monomers inserted in membrane polymerize to form a cylindrical pore of 
5–20 nm through the membrane, which assist the entry of granzymes to cytoplasm. 
Granzymes activate the caspase cascade resulting in apoptosis of β-cells. Pretreatment 
of preproinsulin specific CD8+ T cells clones with concanamycin A, which results in 
perforin degradation, significantly reduce the β-cell death in vitro [386]. Quite sur-
prisingly, a recent report by Mollah et al. (2017), have demonstrated that Granzyme 
A, normally considered as a pro-apoptotic mediator of cell mediated cytotoxicity, 
may be associated with protection to T1D. In their finding, the authors demonstrated 
that Granzyme-A knock out NOD mice progressed towards diabetes much faster, 
implicating its role in maintenance of peripheral tolerance [402].

TNF receptor superfamily member Fas is expressed on the surface of β-cells. 
Islet infiltrating autoreactive T cells can also activate the caspase dependent path-
ways of β-cell death by binding of FasL expressed by them. Disruption of Fas-FasL 
signalling using targeted overexpression of a dominant negative form of Fas-
associated death domain adaptor protein in pancreatic β-cells significantly delays 
the onset of diabetes in NOD mice, implicating a role for Fas in the early stages of 
autoimmune β-cell destruction [403].

Pro-inflammatory cytokines such as type II interferons including, IFNγ, IL-1 β, 
TNFα also induce β-cell death [404]. IFNγ is mainly secreted by Th1 subset of 
CD4+ T cells. Binding of IFNγ to their receptor activates the JAK STAT signaling 
pathway, which induces β-cell death via regulating the expression of FAS, inducible 
nitric oxide synthase (iNOS) and caspases. In the absence of STAT 1, major down-
stream transcription factor of IFNγ signaling, IFNγ mediated destruction of β-cells 
is disrupted in NOD mice [405]. Apart from the role of IFN- γ in pathogenesis of 
disease, recent study by John P et al. (2017) also reported that IFN- γ can also limits 
the activation of diabetogenic CD8+ T cells implicating its role in induction of toler-
ance [406]. Type 1 interferons, IFNα and IFNβ, also provide signals responsible for 
accelerating the β-cell death. Type 1 interferons regulate the effector functions and 
augment the cytotoxity of CD8+ T cells by rapid phosphorylation of STAT4 and 
induction of Granzyme B. Additionally, studies revealed that overexpression of IFN 
α in pancreatic β-cells of non-diabetes-prone mice regulate the onset of diabetes in 
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mice with severe insulitis, while expression of IFNβ in islets of NOD mice acceler-
ated autoimmunity [407].

In another mechanism, signaling through IL-1β leads to activation of NF-κβ in 
rodent and human islet cells. Translocation of NF-κβ to nucleus induces the β-cell 
death. Prevention of NF-kβ activation by an inhibitory B (I B) “super-repressor” 
protects pancreatic cells against cytokine-induced apoptosis. It has been demon-
strated that overexpression of NF-κβ super-repressor in rodents protect pancreatic 
β-cells against cytokine-induced apoptosis [404] and transgenic mice expressing an 
NF-κβ super-repressor are resistant against experimental diabetes induced by mul-
tiple low-doses streptozotocin [408].

TNF-α causes destruction of β-cells by activation of NF-kβ and extrinsic path-
way of apoptosis. An important role for TNF-α in β-cell killing was demonstrated in 
TNF-R1 null mutant NOD mice, which fail to develop spontaneous diabetes [399]. 
Moreover, treatment of NOD mice with anti-TNF-α antibodies also prevents diabe-
tes development implicating the role of TNF-α in β-cells destruction [409]. Reactive 
oxygen species e.g. nitric oxide induce β-cell death by causing DNA damage and in 
turn activation of p53 in a concentration dependent manner. However, reactive oxy-
gen species seems to have a less relevant role for cytokine-induced β-cell death in 
humans and mice. Blocking of iNOS does not prevent cytokines induced β-cell 
death [410] while islets obtained from an iNOS knockout mouse are only partially 
protected against death induced by IL-1β and IFN- γ [411, 412].

7  �Protection of Beta-Cells

Targeting immune cells that are associated with β-cell destruction remains the main-
stay of most of the approaches in protecting β-cells. Initial attempts to target the 
immune cells were more generalized, had limited success and were associated with 
risks of infection. With time, as the information about the cells and factors involved 
in the disease process became clearer, targeted approaches have been pursued. 
However, till date, none of the treatment approaches has been able to achieve the 
goal of selective elimination of immune cells causing β-cell damage, without any 
compromise on the general immune responses.

7.1  �Immunosuppressive Agents

It has been proven in combined outcomes of several trials that blocking T cell function 
in T1D leads to β-cell preservation by the use of immune-suppressive agents such as 
cyclosporine (CsA) and azathioprine. Although the continuous CsA treatment in 
patients with new-onset T1D can eliminate the need for exogenous insulin for some 
duration, continuous treatment and chronic CsA therapy to maintain remission has 
been found to be associated with toxic effects in the kidneys leading to decline in the 
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enthusiasm for its use in T1D patients [413]. Another promising drug, rapamycin (siro-
limus) inhibits the critical mammalian target of rapamycin (mTOR) pathway which is 
involved in cell growth, proliferation, motility, and survival [414]. Rapamycin mono-
therapy has also been found to increase in serum C-peptide and a reduction in exoge-
nous insulin requirement in patients with long-term T1D [415]. However, rapamycin in 
combination with IL-2 has also been shown to impair β-cell function [5, 416].

7.2  �Monoclonal Antibodies (mAbs)

Among several newer immunotherapies developed in the recent past, selecting 
mAbs against different immune cell receptors appeared as another promising 
approach [5]. In an attempt to replace the use of immunosuppressive drugs globally, 
several agents like anti-CD3 mAb (teplizumab/otelixizumab), anti-CD20 mAb 
(rituximab), and CTLA-4-Ig (abatacept) directed at the co-inhibitory receptors have 
been evaluated in new onset T1D patients [417].

7.3  �Anti-CD3 mAbs

In contrast to pharmacological immunosuppression treatment, anti-CD3 therapy tran-
siently depletes T cells and exerts long-lasting immune regulatory effects [413]. 
Administration of anti-CD3 mAbs has shown substantial benefits in recently diagnosed 
T1D patients in the initial clinical stages. Another report revealed that this therapy 
particularly teplizumab and otelixizumab can help in preserving the β-cell function for 
more than 2 years in patients [418–420]. Otelixizumab treatment preserved insulin 
production for more than 3 years depending on patient age and baseline residual β-cell 
mass. Moreover, preservation of residual β-cell function was observed following brief 
teplizumab treatment as long as 5 years in a small group of patients [421]. Therefore, it 
seems that a short treatment course with Anti-CD3 mAbs may eliminate the need for 
chronic treatment by triggering lasting tolerance. However, the targeted permanent 
arrest of the C-peptide decline rate could not be achieved as observed in a series of 
immune modulation trials in new-onset T1D. Hence, it is to be evaluated whether fur-
ther optimization of therapeutic antibody concentration and timing of treatment would 
be able to provide better outcomes or not [413]. Furthermore, the risks of T cell deple-
tion in predisposing individuals to infectious diseases must also be evaluated.

7.4  �Anti-CD20 mAb (rituximab)

Being APCs, B cells play a crucial role in the pathogenesis of T1D as these cells 
themselves are involved in infiltrating the pancreatic islets, presenting autoantigens 
to T cells and secreting autoantibodies. Therefore, anti-human (h) CD20 mAb were 
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used to delay or revert diabetes by depleting B cells in transgenic NOD mouse hav-
ing human CD20 receptors on their B cells with positive outcomes [5, 395]. 
Rituximab has also been used in Phase II clinical trials. The study showed an initial 
improvement in T1D by promoting C-peptide levels, reducing HbA1c levels and 
reducing insulin dose, although this protective effect was short lived. However, con-
tinued B cell depletion and associated adverse events as well as the risk of lowering 
systemic immunity limit the utility of anti-hCD20 mAbs [417, 422].

7.5  �CTLA-4-Ig (abatacept)

Besides the main antigen-driven signal, co-stimulatory signals are required to keep 
immune T cells fully activated. In humans, the susceptibility of T1D has an associa-
tion with CTLA-4 locus and its immunopathogenesis is linked with T-cell autoim-
munity. Therefore, modulating this co-stimulatory signal is another promising 
strategy in treating T1D. The target can be achieved by using abatacept, which has 
been observed to modulate co-stimulation and prevent full T-cell activation, as an 
estimated 9.6 months delay in C-peptide reduction had been achieved with contin-
ued administration of abatacept. Despite this, a continued parallel deterioration of 
β-cell mass as well as function was also observed, inhibiting its further use [423].

7.6  �Antithymocyte Globulin (ATG)

ATG is an effective immune-depleting agent and a rabbit polyclonal gamma immu-
noglobulin (IgG) which is active against thymocytes of human. It is specific for 
various receptors presented on T cells as well as other immune cells. Short-term 
ATG therapy in recent onset T1D patients preserved residual C-peptide production 
and lowered the requirement of insulin but could not induce long-lasting remis-
sion [424].

7.7  �Low Doses of Interleukin-2 (IL-2)

IL-2 also called a T cell growth factor secreted by T cells itself, can stimulate both 
effector T cells and Tregs in a dose dependent manner. IL-2 activates primarily 
STAT5 in Tregs, whereas IL-2 also induces the MAP kinases and phosphoinositide 
3-kinase/protein kinase B (PI3K/AKT) pathways in effector T cells [425, 426]. Due 
to higher expression of IL-2 receptor, Tregs require less IL-2/Il-2R signaling [427]. 
It has also been reported that IL-2 mediated signaling is dispensable for effector T 
cells but not for Tregs [428]. Defects in IL-2 mediated signaling have been reported 
in T1D [429–431]. High dose of IL-2 is associated with many severe side effects 
[428, 432]. Besides side effects, high dose of IL-2 also carries risk of expansion of 
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effector T cells that mediate autoimmunity [428]. These key points permit the devel-
opment of targeted Tregs therapy using low-dose IL-2 administration. First trial 
with low dose IL-2 (0.33–1 MIU/day) reported that it is well tolerated in the T1D 
subjects with mild side effects [433]. The minimal doses that are required for the 
purpose are not fully known and are being investigated in an ongoing dose-finding 
trial in recently diagnosed T1D children (NCT01862120).

7.8  �Phytotherapeutic Approaches

As discussed earlier, prevention of the degeneration of β-cells and stimulation of 
endogenous islets regeneration are currently the essential approaches for the treat-
ment of T1D. Among several antidiabetic plants investigated so far, a small fraction 
has been shown to pose pancreatic β-cell protection and/or regenerative properties 
as well (2). Allium sativum [434], Azadirachta indica [435, 436], berberine [437], 
Crocus sativus [438], Gymnema sylvestre [439], Juglans regia [440, 441], 
Momordica charantia [442] and Nigella sativa [443–445] have been reported to 
possess β-cell regenerative property [446]. Many of these agents and their extracts 
have also been shown to reduce insulin resistance. Hence, their consumption may 
help in reducing insulin dependence in diabetic patients.

8  �Cell Based Treatments

As T1D is caused by functional loss in pancreatic β-cells, replacing them with 
functional β-cells from various sources provides a new hope for treating T1D. For 
this purpose, whole-pancreas transplantation, initiated in 1966 is a widely 
accepted therapeutic modality as evidenced by the fact that several thousand pan-
creatic transplants have been performed until now. Normal HbA1c levels 
achieved using this strategy allow long-term insulin independence over 2 years 
after transplant. However, pancreas transplantation is a surgical procedure that 
involves high risk of systemic infection that requires lifelong immunosuppres-
sion in the recipients. In order to overcome these complications, pancreatic islet 
cell transplantation has been introduced to replace whole organ transplantation 
due to new research efforts which presents as a better procedure requiring lesser 
invasive procedure [447]. However, the procedure requires harvesting the islet 
cells, preferably from the brain-dead donors and mostly requires two or three 
donors to achieve insulin independence. Also, to protect the transplanted islets 
from host’s anti-donor HLA and anti-islet responses, various immune-isolation 
strategies, such as encapsulation in semi permeable matrices are also being 
explored. Further, in view of the limited availability of pancreas donors, xeno-
grafts from other sources like pig islets, have also been considered and pursued 
further for research.
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8.1  �Stem Cell-Based Therapies

Stem cells have become an important therapeutic entity due to their inherent regen-
erative, differentiation capacities as well as their immunomodulatory potential. 
While the regenerative and differentiation potential can be utilized to avail a supply 
of glucose-responsive insulin-producing cells for transplantation, the immuno-
modulatory properties of multipotent mesenchymal stromal cells and hematopoi-
etic stem cells (HSCs) can be used to seize cell damage, preserve the remaining 
cell mass, promote the regeneration of endogenous cells as well as prevent graft 
rejection [448]. In view of these regenerative and immunomodulatory characteris-
tics, a variety of stem cells from different sources including, embryonic, bone 
marrow-derived HSCs and bone marrow-derived MSCs, umbilical cord blood-
derived MSCs, adipose tissue-derived MSCs (ADSCs) and pancreas-derived mul-
tipotent precursor cells as well as pancreatic cell progenitors have been tested and 
various studies have provided promising outcomes for the treatment of T1D as 
follows:

8.1.1  �Mesenchymal Stem Cells (MSCs)

Mesenchymal stem cells (MSCs) are multipotent progenitor cells that were origi-
nally identified in the bone marrow. MSCs can also be isolated from cord blood, 
peripheral blood, fallopian tube, fetal liver and lungs. In preclinical T1D studies 
[449–451], MSCs have been shown to induce and expand Tregs thereby suppressing 
the immune responses. MSCs can also induce immature IL-10-secreting DCs in 
vitro, thus they potentially interrupt the priming and amplification capacity of auto-
reactive T cells involved in tissue inflammation. These DCs can assist in the inhibi-
tion of inflammatory T cell responses to islet antigens and promoting the 
anti-inflammatory, regulatory responses exerted by MSCs [452]. Being non-
immunogenic in nature, MSCs can also provide protection after allogeneic trans-
plantation and hence they are more attractive for cell based therapies [453]. In spite 
of the source, whether bone marrow [454] or adipose tissue [455] used for their 
aspiration, MSCs have been proven to be well-tolerated in T1D patients. Moreover, 
MSCs have also been documented to improve T1D parameters such as C-peptide 
preservation [455].

8.1.2  �Hematopoietic Stem Cells (HSCs)

In contrast to MSCs, hematopoietic stem cells (HSCs) are found in stem cell 
niches such as bone marrow, which are situated in the entire body or in umbilical 
cord blood. HSCs are comprised with the ability to initiate and promote neovas-
cularization rather than an effective differentiation and therefore their prime use 
is to treat immune-related disorders [456]. Voltarelli et al. have reported increase 
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in β-cell function, prolonged independence from exogenous insulin in 80% of the 
patients after high-dose immunosuppression and autologous transplantation of 
hematopoietic bone marrow-derived stem cells with acceptable toxicity in newly 
diagnosed T1D patients [457]. Further, in another study by Couri et al. (2009) 
autologous nonmyeloablative HSCs transplanted in patients with newly diag-
nosed T1D resulted in significant increase in C-peptide levels and insulin inde-
pendence in most of the patients with good glycemic control [458]. In another 
study by Li et al. (2012), it has been reported that autologous HSCs transplanta-
tion helps in modulating lymphocytes and preserving β-cell function in Chinese 
patients with new onset of T1D and diabetic ketoacidosis [459].

8.2  �Regulatory T Cells (Tregs) Based Therapies

The discovery that CD4+ Tregs play indispensable role in maintaining self-
tolerance [460, 461] has led to the prospect of these cells in cell based treat-
ments to restore tolerance and treat autoimmune diseases such as T1D. These 
Tregs are CD4 + CD25 + Foxp3+ and suppress the proliferation of autoreactive 
T cells by producing cytokines, cytolysis, deprivation of cytokines and con-
tact-induced cell modulation [462]. Two types of Tregs are engaged in main-
taining the tolerance, natural Tregs (nTregs) and induced Tregs (iTregs). nTregs 
develop from thymic TCR high affinity T cells selection whereas iTregs are 
peripherally generated FoxP3+ T cells under immunogenic stimulation [463]. 
Both Treg subsets express CD25, FoxP3, GITR (glucocorticoid-induced TNF 
receptor) and CTLA-4 but nTregs exhibit a higher expression of programmed 
cell death-1 (PD-1), neuropillin 1(Nrp-1) and Helios compared with iTregs 
[464]. There are many evidences, which show that Tregs have the potential to 
prevent destruction of pancreatic islets, thereby protecting from T1D. Hence, 
strategies to increase Treg cell numbers and/or function are being explored as 
potential therapeutic approaches in treating T1D. In fact most of the antigenic/
immunosuppressive treatment approaches to reverse diabetes in NOD mice 
worked via induction of Tregs or proliferation of Tregs [465–467]. Trials on 
therapy of T1D subjects with Tregs have indeed shown to prolong survival of 
pancreatic islets [468].

8.2.1  �Polyclonal Versus Antigen-Specific Tregs

While considering therapy with Tregs, there are two available choices, poly-
clonal or antigen-specific (or epitope-specific) Tregs. Administration of poly-
clonal Tregs may be associated with significant off-target effects, including 
global immunosuppression that may compromise beneficial immune responses 
to infections and cancer cells. Therefore, the objective of research in recent times 
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has shifted to antigen-specific therapeutic approaches that can reverse the disease 
by selectively halting the harmful immune response without requiring lifelong 
immune suppression. Adoptive transfer studies suggest antigen-specificity is 
required by Tregs for trafficking and maintenance in inflammatory tissues such 
as the pancreas in T1D [389, 469]. Moreover, antigen-specific Tregs are much 
more potent in suppressing effector T cell responses, as demonstrated in a tumor 
rejection model, than polyclonal Tregs, which were only partially suppressive 
[470]. Another study has demonstrated that small number of in vitro expanded 
antigen-specific Tregs are sufficient to reverse T1D whereas large numbers of 
polyclonal Tregs are required to reverse the disease [471]. Antigen-specific Tregs 
have been reported to exhibit a much lower threshold for activation and may be 
activated by a broad range of loosely-defined analogs of their cognate antigen 
[472]. Besides, the site-specific mode of action, antigen-specific Tregs also have 
the ability to act as bystander suppressors locally in the organ under attack. It has 
also been shown in mice that antigen-specific Tregs treat autoimmunity without 
compromising antibacterial immune response [473]. However, isolation of suf-
ficient number of antigen-specific Tregs is a major challenge, particularly when 
sampling is limited to peripheral blood. Moreover, success in inducing antigen-
specific tolerance has been hampered by the inability to identify peptides trigger-
ing the diabetogenic versus the regulatory response. It has been established that 
islet-associated antigen-specific Tregs can be generated from CD4 + CD25- T 
cells. Alice et  al. (2009) observed that GAD65 derived epitope specific Tregs 
suppress not only proliferation of GAD specific effector cells but also of tetanus 
toxoid (TT) specific effector cells when the GAD was present. Suppression was 
not observed when TT was present alone [474]. Therefore, these observations 
indicate that it might be possible to reverse autoimmune diabetes by small num-
ber of epitope-specific Tregs rather than having Tregs specific for all the diabetes 
associated antigens.

8.3  �Dendritic Cells

Being the most specialized APCs, DCs have the ability to remove or inactivate dia-
betogenic T cells, convert them into Tregs or re-stimulate the preexisting Tregs 
[475]. Therefore, they have been chosen several times for immunomodulation in 
autoimmune diseases especially T1D. At present, phase 1 and phase 2 clinical trials 
are ongoing with the purpose to evaluate the safety and efficacy of this therapeutic 
strategy. Of these trials, phase 1 has been completed in one (NCT00445913), but 
study results have not yet been posted till date. This trial has included candidates of 
age ranging between 18–60 years with established diabetes. Another clinical trial 
(NCT02354911), which is in phase 2, is still ongoing and has included new onset 
T1D candidates aged between 12–35 years.
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8.4  �Cord Blood Derived Cells

Umbilical cord blood (UCB) is a rich source of Tregs [476, 477] besides other 
tolerogenic cells such as immature DC and MSCs, all of which have been shown 
to play key role in immune tolerance [478, 479]. UCB derived CD4 + CD25 + T 
cells have been shown to contain greater Foxp3 expression than their peripheral 
blood counterparts, suggesting the greater abundance of Tregs in UCB than 
peripheral blood [476]. Based upon preliminary observations, it has been found 
that autologous cord blood transfusion is helpful in slowing down the loss of 
endogenous insulin production and is a safe procedure in T1D children [480]. 
Further, it has also been documented that highly functional populations of Tregs 
are available in UCB and this increased Treg population may be available in the 
peripheral blood of subjects after more than 6 months of cord blood infusion as 
evidenced by mechanistic studies [480]. Autologous UCB transfusion in T1D 
pediatric patients has also been reported to be safe [481]. As the, collection and 
banking of UCB is becoming widespread all over the world, its utility as a source 
of therapeutic Tregs is expected to rise further.

8.5  �Fibroblasts

Attempts to determine efficacy of stable IDO-expressing dermal fibroblasts in cel-
lular therapy of autoimmune diabetes have been tried in NOD mice. IDO-expressing 
fibroblasts were found to significantly reduce islet infiltration by immune cells. 
Diabetes progression was reversed by inhibiting autoreactive CD8+ T cells and 
Th17 and through the induction of Tregs. Additionally, it was also observed that 
when IDO-expressing fibroblasts were cultured with islet β-cells they successfully 
reduced IL-1β levels and β-cell apoptosis [482].

9  �Combinatorial Therapies

The accessory cells and biomaterials can provide a definite therapeutic benefit to 
save islets and their functional improvement. Currently, majority of the combina-
torial approaches have been explored in islet transplantation, although, most of 
them are in experimental phases. The main goal is to recreate an islet friendly 
niche in a carrier or capsule to provide β-cell interactions within its native envi-
ronment i.e. creating a microenvironment that includes accessory cells, proteins, 
as well as the local immunosuppression enclosed within a biocompatible material 
along with the islet cells. For the purpose, several accessary cells and therapies 
have been proposed and tested to achieve successful transplantation.
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9.1  �Cell Encapsulation

Cell encapsulation is a concept by which cells are encased within a biocompatible 
matrix. In this way a barrier against immune cells and cytotoxic molecules is created 
to prevent injury and hence avoid rejection while still allowing the active diffusion of 
essential molecules like oxygen, nutrients and hormones [483]. This way, other β-cell 
sources (e.g., xenogeneic islets and stem cell–derived β-cells) can also be used for 
clinical therapy [484]. In a previous report, vortex-induced silk hydrogels have been 
documented to provide a 3D environment for islets encapsulation in vitro thereby 
allowing the co-encapsulation of proteins found in extracellular matrix and secondary 
stromal cells to maintain function and viability of islet cells [485]. In a study by Borg 
et al. (2011) star-PEG-heparin cryogel scaffolds which are tunable in architecture, 
mechanical characteristics and biomolecular functionalization, and having the ability 
to load accessory cells, have been reported as highly promising supportive carriers for 
pancreatic islets in the context of transplantation in various alternate sites [484].

Although encapsulated islet transplantation has been supported in various animal 
model studies, the process has several limitations such as biocompatibility of encapsu-
lation material, the damaging actions of cytokines, oxygen deficiency in implanted 
tissue at the transplantation sites and hindered secretion of insulin from capsules, which 
still remain to be solved [486]. The biggest of these problems is prevention of islet 
revascularization and oxygen transport to islets. This is associated with development of 
a hypoxic core within the islets that may result in reduced tissue function and ulti-
mately, death. Therefore, several approaches to enhance microencapsulated islet sur-
vival and function have been proposed. For instance, incorporating a perfluorocarbon 
emulsion into alginate microcapsules to enhance oxygen permeability may help protect 
islets from hypoxia. Another approach is scattering the islets and allowing them to re-
cluster into smaller size than the original islet. These smaller clusters are less likely to 
develop a necrotic core and they can function normally because of adequate oxygen 
supply and better cell-cell communication. Further, 10,000~20,000 IEQ/kg placed in a 
collagen matrix in stainless steel mesh tubes, with a polytetrafluoroethylene rod in the 
cassette have been successfully used in 11 T1D patients. This approach resulted in 
decrease in exogenous insulin requirements in more than 50% patients for up to 4 years 
[487]. Cadaveric human islets encapsulated in alginate microcapsules transplanted into 
T1D subject have also shown some beneficial effects [488]. However, fibrotic reactions 
still occur in alginate microcapsule leading to graft rejection.

9.2  �Use of Accessory Cells

As it is known that islet transplantation is gradually becoming a popular diabetes 
therapeutic strategy, therefore, another emphasis of research is promoting angiogen-
esis and increasing blood vessels density around transplanted islets. In a recent 
study by Cao et al. (2016) the combination of allogeneic islet transplantation and 
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bone marrow mesenchymal stem cells (BM-MSCs) was pursued into NOD mice to 
investigate the effect of BM-MSCs in transplanted islet function and neovascular-
ization. It was observed that BM-MSCs can migrate to transplanted islets along 
with promoting neovascularization. In addition, BM-MSCs enhanced immune tol-
erance of the allograft by improving lymphocytic chimerism of the donor [489]. The 
endothelium is also known to play an important role in the native islets function and 
revascularization process after islet transplantation. Endothelial progenitor cells 
(EPCs) are a population of rare circulating cells in the, cord blood, vessel walls, 
peripheral blood and bone marrow with the ability to adhere to endothelium at sites 
of hypoxia with subsequent differentiation into endothelial cells. EPCs/islet co-
transplantation, have shown beneficial effects on islet transplantation in rodent 
models of diabetes [490, 491]. EPCs mediate their functions via direct differentia-
tion into new vessels and pericytes, through secretion of paracrine factors (angio-
genic and β-cell mitogenic) [492], via thrombospondin (Tsp)-1-mediated activation 
of TGF-β1, [493, 494] and through modulation of the expression of the β-cell gap 
junction protein connexin, a key element in coordinating β-cell function [491] 
resulting in enhanced insulin secretion.

The adoptive transfer of Tregs as accessory cells can be used to improve islet 
graft survival, as inflammatory immune response to alloantigens and recurrence of 
autoimmunity following islet transplantation are the major contributors to pancre-
atic islet transplant dysfunction. Experimental studies in murine models demon-
strate that co-transfer of Tregs and islets can improve the graft survival [495]. Golab 
et al. (2014) have shown that, the anchoring of human ex vivo expanded Tregs to the 
surface of human pancreatic islets creates an immune barrier and decreased immu-
nogenicity of the islets was shown in vitro [496] and the group is currently working 
on translating this work in animal models.

Alternatively, immune privilege can also be induced locally by accumulating 
immune-suppressive Tregs at the site of islet transplantation as done by Vågesjö et al. 
(2015), they co-transplanted islets with a plasmid encoding the chemokine CCL22 
into the muscle of MHC-mismatched mice. Myocyte pCCL22 expression and secre-
tion resulted in  local accumulation of Tregs, which resulted in significantly fewer 
effector T-lymphocytes in close proximity to the islets, leading to delayed graft rejec-
tion [497]. However, data on human studies on efficacy of autologous Tregs in pre-
vention of effector T cell mediated destruction of islets is very scarce. Several clinical 
trials have been completed or in process to evaluate different strategies of cell-based 
therapies in T1D patients some of which are summarized in Table 5.

10  �Conclusions

The pathogenesis of T1D is a highly complex process involving various cellular 
entities and mechanisms, in addition to predisposing genetic factors and environ-
mental triggers. While it is still unknown that how the central tolerance to β-cells is 
broken, the role of various immune cells infiltrating the pancreas at various stages 
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of disease process is getting clearer. Availability of latest technologies such as two 
photon and intravital microscopy, multicolor flowcytometry, single cell analysis and 
proteomics have thrown more light and provided more clearer and detailed insight 
of the islet infiltrates and their phenotype. Studies with animal models, mainly NOD 
mice and human subjects have provided abundant information and data about the 
mediators of the disease. Most of the studies have confirmed the role of T cells as 
principle mediators of β-cell damage, however, at the same time the role of previ-
ously unknown immune cells such as pDCs, NKT cells, ILCs is also coming into 
picture. The previously known CD4+ T and CD8+ T effector cells are now charac-
terized in a better way and novel auto-antigens and modifications in antigens, such 
as PTM and peptide fusion have been identified. All this information has provided 
newer therapeutic targets and novel cellular modalities in targeting the disease. It is 
now becoming clear that antigen specific approaches, such as induction of PPI spe-

Table 5  Major clinical trials on cell-based therapies in type 1 diabetes

Study Intervention Phase Status

NCT00873925 Transfusion of autologous umbilical cord blood 
plus vitamin D and omega 3 fatty acids to preserve 
β-cells function in children with recent onset type 
1 diabetes

Phase 1 Completed 
(April 1, 2013)

NCT00468403 Islet transplantation in type I diabetes with 
LEA29Y (Belatacept) maintenance therapy 
(CIT-04)

Phase 2 Completed 
(march 9, 2016)

NCT01379729 Transplantation of encapsulated β-cells Phase 2 Ongoing
NCT02763423 Umbilical cord mesenchymal stem cell Phase 2 Ongoing
NCT00160732 Intraportal infusion of allogenic islet cells Phase 1 

& Phase 
2

Ongoing

NCT01897688 Islet cell transplant Phase 3 Ongoing
NCT00790257 Encapsulated human islets in a “Monolayer 

Cellular Device”
Phase 1 Completed 

(April 13, 2016)
NCT00708604 Islet after kidney transplantation (IAK) Phase 1 Completed (July 

2, 2014)
NCT02803905 Allogeneic islet cells transplanted into the 

Omentum
Phase 2 Ongoing

NCT00530686 Islet cell transplantation Phase 1 Ongoing
NCT01630850 Islet transplantation in patients with “Brittle” type 

I diabetes
Ongoing

NCT00014911 Islet transplantation using the Edmonton protocol 
of steroid free immunosuppression

Phase 2 Completed (June 
4, 2014)

NCT01210664 Ex vivo expanded human autologous polyclonal 
regulatory T cells

Phase 1 Ongoing

NCT00445913 Autologous dendritic cell therapy for type 1 
diabetes suppression: A safety study

Phase 1 Completed 
(February12, 
2016)

NCT02354911 Immunoregulatory dendritic cells Phase 2 Ongoing
NCT02772679 Treg+IL-2 Phase 1 Ongoing
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cific Tregs have better prospects in immunoprotection of β-cells, as compared to 
generalized approaches. Further, improvements in islet isolation and use of acces-
sory cells in various clinical studies have provided momentum in strategies aimed at 
β-cell replacement or regeneration. Although, we are still far away from the ultimate 
goal i.e. complete treatment of T1D, recent developments have been quite encour-
aging and show better prospects for the future.
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