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Preface iMIMIC 2019

The second edition of the workshop on Interpretability of Machine Intelligence in
Medical Image Computing (iMIMIC 2019)1 was held on October 17, 2019, as a half
day satellite event of the 22nd International Conference on Medical Image Computing
and Computer Assisted Intervention (MICCAI 2019), in Shenzhen, China. With its
second edition, this workshop aimed at introducing the challenges and opportunities of
interpretability of machine learning systems in the context of MICCAI, as well as
understanding the current state of the art in the topic and promoting it as a crucial area
for further research. The workshop program comprised oral presentations of the
accepted works and two keynotes provided by experts in the field.

Machine learning systems are achieving remarkable performances at the cost of
increased complexity. Hence, they become less interpretable, which may cause distrust.
As these systems are pervasively being introduced to critical domains, such as medical
image computing and computer-assisted intervention, it becomes imperative to develop
methodologies to explain their predictions. Such methodologies would help physicians
to decide whether they should follow/trust a prediction. Additionally, it could facilitate
the deployment of such systems, from a legal perspective. Ultimately, interpretability is
closely related with AI safety in healthcare. Besides increasing trust and acceptance by
physicians, interpretability of machine learning systems can be helpful for other
purposes, such as during method development, for revealing biases in the training data,
or for studying and identifying the most relevant data (e.g., specific MRI sequences in
multi-sequence acquisitions).

The iMIMIC 2019 proceedings include seven papers of eight pages each, carefully
selected from a larger pool of submitted manuscripts, following a rigorous
single-blinded peer-review process. Each paper was reviewed by at least two expert
reviewers. All the accepted papers were presented as oral presentations during the
workshop, with time for questions and discussion.

We thank all the authors for their participation and the Technical Committee
members for contributing to this workshop. We are also very grateful to our sponsors
and supporters.

September 2019 Mauricio Reyes
Ender Konukoglu

Ben Glocker
Roland Wiest

The original version of the book was revised: the display of the volume editor’s name on
SpringerLink was fixed. The correction to the book is available at
https://doi.org/10.1007/978-3-030-33850-3_11

1 https://imimic-workshop.com/.

https://imimic-workshop.com/
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Preface ML-CDS 2019

On behalf of the Organizing Committee, we welcome you to the 9th Workshop on
Multimodal Learning for Clinical Decision Support (ML-CDS 2019). The goal of these
series of workshops is to bring together researchers in medical imaging, medical image
retrieval, data mining, text retrieval, and machine learning/AI communities to discuss
new techniques of multimodal mining/retrieval and their use in clinical decision
support. Although the title of the workshop has changed slightly over the years, the
common theme preserved is the notion of clinical decision support and the need for
multimodal analysis. The previous seven workshops on this topic have been
well-received at MICCAI, specifically Granada (2018), Quebec City (2017), Athens
(2016), Munich (2015), Nagoya (2013), Nice (2012), Toronto (2011), and London
(2009).

Continuing on the momentum built by these workshops, our focus remains on
multimodal learning. As has been the norm with these workshops, the papers were
submitted in eight-page double-blind format and were accepted after review. The
workshop continues to stay with an oral format for all the presentations. There was a
lively panel composed of doctors, medical imaging researchers, and industry experts.
This year we also invited researchers to participate in a tubes and lines detection
challenge within the program.

With less than 5% of medical image analysis techniques translating to clinical
practice, workshops on this topic have helped to raise awareness of our field to clinical
practitioners. The approach taken in this workshop is to scale it to large collections of
patient data exposing interesting issues of multimodal learning and its specific use in
clinical decision support by practicing physicians. With the introduction of intelligent
browsing and summarization methods, we hope to also address the ease of use in
conveying derived information to clinicians to aid their adoption. Finally, the ultimate
impact of these methods can be judged when they begin to affect treatment planning in
clinical practice.

We hope that you enjoyed the program we assembled, and we thank you for your
active participation in the discussion on the topics of the papers and the panel.

September 2019 Tanveer Syeda-Mahmood
Yaniv Gur

Hayit Greenspan
Anant Madabhushi
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Testing the Robustness of Attribution
Methods for Convolutional Neural

Networks in MRI-Based Alzheimer’s
Disease Classification

Fabian Eitel1,2,3, Kerstin Ritter1,2,3(B),
and for the Alzheimer’s Disease Neuroimaging Initiative (ADNI)

1 Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin
Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin,

and Berlin Institute of Health (BIH), 10117 Berlin, Germany
kerstin.ritter@charite.de

2 Berlin Center for Advanced Neuroimaging, Charité – Universitätsmedizin Berlin,
corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin,

and Berlin Institute of Health (BIH), 10117 Berlin, Germany
3 Bernstein Center for Computational Neuroscience,

10117 Berlin, Germany

Abstract. Attribution methods are an easy to use tool for investigat-
ing and validating machine learning models. Multiple methods have been
suggested in the literature and it is not yet clear which method is most
suitable for a given task. In this study, we tested the robustness of
four attribution methods, namely gradient * input, guided backprop-
agation, layer-wise relevance propagation and occlusion, for the task of
Alzheimer’s disease classification. We have repeatedly trained a convolu-
tional neural network (CNN) with identical training settings in order to
separate structural MRI data of patients with Alzheimer’s disease and
healthy controls. Afterwards, we produced attribution maps for each sub-
ject in the test data and quantitatively compared them across models
and attribution methods. We show that visual comparison is not suf-
ficient and that some widely used attribution methods produce highly
inconsistent outcomes.

Keywords: Machine learning · Convolutional neural networks · MRI ·
Explainability · Robustness · Attribution methods · Alzheimer’s disease

1 Introduction

As machine learning becomes more and more abundant in medical imaging, it
is necessary to validate its efficacy with the same standards as other techniques.
On magnetic resonance imaging (MRI) data, several studies have reported clas-
sification accuracies above 90% when using machine learning to detect neuro-
logical and psychiatric diseases (for a review, see [17]). While these results seem
c© Springer Nature Switzerland AG 2019
K. Suzuki et al. (Eds.): ML-CDS 2019/IMIMIC 2019, LNCS 11797, pp. 3–11, 2019.
https://doi.org/10.1007/978-3-030-33850-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33850-3_1&domain=pdf
https://doi.org/10.1007/978-3-030-33850-3_1
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promising at first, an in-depth investigation of those results both in terms of gen-
eralizability as well as medical validity is necessary before they can enter clinical
practice. Medical validity can be examined by using attribution methods such as
saliency analysis. Specifically, the decision of a machine learning algorithm can
be visualized as a heatmap in the image space, in which the contribution of each
voxel is determined. To identify the relevance of specific brain areas, quantitative
and qualitative analyses on the heatmaps can be performed. Models that shift
importance to areas which are well known to be clinically relevant in specific
diseases might be more suitable for clinical practice in comparison with mod-
els that scatter relevance across the entire image or to seemingly random brain
areas. While it might not be necessary to understand the exact workings of a
model, similar to many drugs used in clinical practice, the causal mechanism of
a model should have at least a minimal coherence with the causal reasoning of
a clinical expert and should be interpretable by the expert.

In neuroimaging studies, where sample sizes are often extremely limited,
specific attention needs to be given to robustness. Small sample sizes can cause
model training to be rather fluctuating and varying between different runs. One
can avoid “cherry-picking” of final results easily by identically repeating training
procedures and reporting average scores. In doing so, the question arises whether
attribution methods suffer from similar variances. In the present study, we there-
fore propose to evaluate the robustness of attribution methods. Specifically, we
investigate whether multiple heatmap methods are coherent in their results over
identical training repetitions with a variety of measures. For this purpose, we
trained a convolutional neural network (CNN) several times to separate struc-
tural MRI data of patients with Alzheimer’s disease (AD) and healthy controls.
For each subject in the test data, we then produced heatmaps using four widely
used attribution methods, namely gradient * input, guided backpropagation,
layer-wise relevance propagation (LRP) and occlusion. All those methods have
been applied in MRI-based AD classification before [5,8,12]. As it was noted
in [16] specific criteria are needed in order to avoid artifacts from the data, the
model or the explanation method in order to empirically compare them. Here
we point out the issue of artifacts from model training and present a framework
to investigate them.

2 Related Work

Different criteria for evaluating visualization methods have been proposed in the
literature, including sensitivity, implementation invariance, completeness and
linearity [16], selectivity [3], conservation and positivity [10] as well as conti-
nuity [11]. Additionally, [1] has introduced two sanity checks of visualization
methods based on network and data permutation tests. Only [2] has investi-
gated robustness so far. We differ from [2] by repeating the training cycle and
comparing the outcomes without any perturbation.

In neuroimaging, only a few studies have compared attribution methods.
[12] has given an overview of four different attribution methods for MRI-based
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Alzheimer’s disease classification and introduced a modified version of occlusion,
in which brain areas according to an atlas are occluded. For the same task, [5]
has presented an in-depth analysis together with multiple metrics for evaluating
attribution methods based on LRP and guided backpropagation as a baseline
method. In [6], it has been shown that LRP and gradient * input led to almost
identical results for MRI-based multiple sclerosis detection.

3 Methods

The dataset used in this study is part of the Alzheimer’s Disease Neuroimag-
ing Initiative1 (ADNI) cohort. Specifically, we have collected 969 T1-weighted
MPRAGE sequences from 344 participants (193 AD patients and 151 healthy
controls) of up to three time-points. The full-sized 1 mm isotropic images were
non-linearly registered using the ANTs framework to the ICBM152 (2009c) atlas.
We have split the dataset patient-wise by sampling 30 participants from each
class into a test set and 18 participants from each class into a validation set. All
available time-points were then used to increase the total sample size. Addition-
ally, the data was augmented by flipping along the sagittal axis with a probability
of 50% and translated along the coronal axis between −2 and 2 voxels.

The 3D-CNN used to separate AD patients and healthy controls consists of
4 blocks of Conv-BatchNorm-ReLU-MaxPool followed by two fully-connected
layers, the first being activated by a ReLU as well. A dropout of 0.4 was applied
before each fully-connected layer. All convolutional layers use 3 × 3 × 3 filters,
with 8, 16, 31, 64 filters from bottom to top layers. Max pooling uses a pooling
size of 2, 3, 2, 3 voxels respectively. We used the ADAM optimizer with an initial
learning rate of 0.0001 and a weight decay of 0.0001. Furthermore, early stopping
with a patience of 8 epochs was employed. The training was repeated for 10 times
to create 10 identically trained models, albeit each randomly initialized. Note
that mini-batch ordering was not fixed between different runs.

For each trained model and each subject in the test set, we produced
heatmaps using the following attribution methods:

Gradient * input [13] multiplies the gradient, which has been backpropa-
gated into the input space, with the original input. It is an adaption of saliency
maps [14] and increases the sharpness of the resulting heatmaps.

Guided backpropagation [15] modifies the backpropagation in ReLU lay-
ers by only passing positive gradients. Since the backpropagation ignores features
in which the ReLU activation is zero, guided backpropagation requires both the
gradient and the activation to be non-zero.

Layer-wise relevance propagation (LRP) [3] backpropagates the clas-
sification score instead of the gradient and multiplies it with the normalized
activation for each neuron. LRP conserves the relevance under certain condi-
tions such that the sum of relevance for all neurons does not change between
layers.

1 http://adni.loni.usc.edu/.

http://adni.loni.usc.edu/
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Occlusion [18] is, unlike the other presented methods, not based on back-
propagation. In occlusion, the attribution is computed by the change in the out-
put score, when some part of the input example is “occluded” (i.e. set to zero).
Here, we occlude a volumetric patch which is shifted over the entire MRI volume.
Although the occlusion method results commonly in much coarser heatmaps
(depending on the size of the patch), we included this method because it has
been used several times in MRI-based AD classification [7–9,12].

Besides comparing the attribution maps directly, we have carried out atlas-
based comparisons using the Neuromorphometrics atlas [4] in which left and right
hemisphere regions have been combined. We computed the attribution within
each region based on three metrics: sum as the sum of absolute values in each
region, density as the regional mean, i.e. the sum normalized by the size of
the respective region, as well as gain as the ratio between the sum for patients
divided by the sum for healthy controls. The latter was defined in [5] arguing
that healthy controls typically also receive positive relevance. By normalizing
each region to a control average those regions which exhibit strong differences
between controls and patients are highlighted. When sorting brain areas by these
metrics, we therefore obtain three rankings for each repetition and method. We
then compare the intersection between the top 10 regions of each repetition in
order to see whether repeated runs highlight similar regions.

4 Results

The balanced accuracy of all 10 training runs on the test set is on average 86.74%
with a considerable range of 83.06% to 90.12% between runs.

Figure 1 shows the guided backpropagation attribution maps, averaged over
all true positives for each of the 10 training runs. Solely by visually inspect-
ing them, one can see clear differences between the various runs. While some
heatmaps seem to highlight the hippocampus (top row middle, bottom row 2nd to
4th) others do not (top row 1st and 4th, bottom row 5th). In almost all heatmaps
the edges of the brain are given attribution and in some a large amounts are
given to the cerebellum (bottom row 1st, 2nd and 5th). The heatmaps from the
other methods exhibit similar variances.
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Fig. 1. Different heatmap outcomes (averaged over all true positives) for guided back-
propagation and each of the 10 trained models.

In Fig. 2, we compare the four different attribution methods. Occlusion clearly
stands out by producing a much coarser attribution map than the other methods.
This is due to the fact that the size of the patch which is being occluded, scales
inversely with the run-time. Running the occlusion method for a 3D image with
a patch size of 1 × 1 × 1, in order to match the sharpness of the other methods,
would be computationally unfeasible. One can also note that gradient * input
seems to produce the least continuous regions. With exception of occlusion, all
methods seem to attribute importance to the hippocampus.

Fig. 2. Averages over all true positive attribution maps and all 10 runs for each attri-
bution method.
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Table 1. L2-norm between average attribution maps of all different runs for true
positive and true negative predictions.

Method True positives True negatives

Gradient * input 3102 3145

Guided backpropagation 2930 1992

LRP 2241 2196

Occlusion 25553 30774

An attribution method would be expected to produce similar heatmaps when
the model training is repeated identically. Table 1 shows the L2-norms for each
attribution method, between all of its average attribution maps. LRP and guided
backpropagation have the smallest L2-norms between their average heatmaps.
Occlusion has L2-norms by a magnitude larger than the other methods, which
might be due to the limited sharpness. Average heatmaps have been scaled by
their maximum value to produce comparable results.

When dividing the attributions into brain regions, large regions such as cere-
bral white matter and the cerebellum receive most attribution. Normalized by
region size, the basal forebrain, 4th ventricle, hippocampus and amygdala become
highlighted. Standardizing by attributions of healthy controls leads to rather
inconsistent orderings. In Fig. 3, we show how much the top 10 brain regions,
in terms of attribution, intersect with each other over repetitions. An intersec-
tion of 100% means that the regions between those two runs contain the same
regions in their top 10, ignoring the order within those 10. In Table 2, we aver-
aged the intersections separately for each attribution method and each metric.
All methods have their highest intersection in terms of region-wise sum, guided
backpropgation and LRP seem to reproduce the same regions almost perfectly.
Even though occlusion seemed to perform poorly in the other measures it has a
consistency higher than gradient * input. All methods perform worst in terms
of gain of relevance which might be due to the scarcity within healthy control
attribution maps as discussed in [5].

Table 2. Averages of top 10 region coherence.

Method Attribution sum Attribution density Gain of attribution

Gradient * input 72.60 % 69.00 % 46.40 %

Guided backpropagation 96.60 % 80.60 % 68.60 %

LRP 96.80 % 88.40 % 78.00 %

Occlusion 84.60 % 74.20 % 67.80 %
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Fig. 3. Intersection between the 10 regions with the highest attribution according to
the total sum, the size-normalized density and the control-normalized gain.
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5 Discussion

In this study, we have shown that attribution methods differ in robustness with
respect to repeated model training. In particular, we found that LRP and guided
backpropagation produce the most coherent attribution maps, both in terms
of distance between attribution maps as well as in terms of order of attribu-
tion awarded to individual regions. We also confirm that solely visually judging
heatmaps is a deficient criteria as pointed out by [1]. Especially in medical imag-
ing, it is important to acknowledge that the small sample sizes available lead to
variances in the output. These variances make it hard to compare and to repli-
cate outcomes of individual studies. Even though reporting metrics averaged over
repeated training runs is an effective tool to reduce the variances, it is rarely used
in the community. Here, we have extended the repetition to attribution meth-
ods and shown similar variances. Even though these variances likely stem from
the different local minima each training run ended up in, attribution methods
which cease the variances and report similar outcomes are highly preferable. In
conclusion, we think that domain specific metrics, as suggested in this study, are
essential for identifying suitable attribution methods.

Funding. We acknowledge support from the German Research Foundation (DFG,

389563835), the Manfred and Ursula-Müller Stiftung, the Brain & Behavior Research

Foundation (NARSAD grant, USA), the Deutsche Multiple Sklerose Gesellschaft

(DMSG) Bundesverband e.V. and Charité – Universitätsmedizin Berlin (Rahel-Hirsch

scholarship).
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Abstract. Understanding predictions in Deep Learning (DL) models is
crucial for domain experts without any DL expertise in order to jus-
tify resultant decision-making process. As of today, medical models are
often based on hand-crafted features such as radiomics, though their
link with neural network features remains unclear. To address the lack
of interpretability, approaches based on human-understandable concepts
such as TCAV have been introduced. These methods have shown promis-
ing results, though they are unsuited for continuous value concepts and
their introduced metrics do not adapt well to high-dimensional spaces.
To bridge the gap with radiomics-based models, we implement a regres-
sion concept vector showing the impact of radiomic features on the pre-
dictions of deep networks. In addition, we introduce a new metric with
improved scaling to high-dimensional spaces, allowing comparison across
multiple layers.

Keywords: Radiomics · Concept vector · Dimensionality ·
Interpretability

1 Introduction

The recent advances in Deep Learning (DL) have been rapidly changing the
landscape in many domains, improving results significantly as new models are
discovered. However, understanding the predictions of such models remains a
challenge: their size and complexity make them difficult to interpret. This is
especially true in healthcare applications, where explainability is essential for
decision-making processes.

Recently, Radiomic [1] analysis has emerged as a methodology to obtain key
predictive or prognostic information for cancer research. It consists of extracting
hand-crafted features from a segmented region of interest (ROI) for precision
diagnostic and treatment. Although Convolutional Neural Networks (CNNs)
c© Springer Nature Switzerland AG 2019
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have shown classification scores comparable to medical experts, their reliance
on interpretable clinical concepts or handcrafted features remains unclear.

Interpretability in DL is mainly based on attribution techniques such as
saliency maps [2,3]. They highlight the region of an image that influence the
classifier’s decision the most. However, such methods show limitations due to
their pixel-wise approach [5,6].

To avoid pixel-level methods, [4] propose a human interpretable approach
called Concept Activation Vector (CAV): a concept dataset is made by the user
to extract a vector (CAV), which is then used to compute the importance of the
concept for the network’s decision. However, having a dataset of concepts is fairly
uncommon and creating one introduces human-bias during the image-selection
step.

This problem was addressed by [7] with RCV, a method replacing the clas-
sifier of CAV by a linear regression model when dealing with continuous metric
concepts such as radiomics. [7] introduced the Br score, a more discriminat-
ing metric than the TCAV baseline [4]. However, this score is limited as its
magnitude is dependent on the current layer as well as the other concepts. Fur-
thermore, the Br score does not disentangle how well a concept is embedded in
the layer’s feature space from how important this concept is to the network’s
final prediction.

In this work, we introduce a new, layer-agnostic metric named the Uniform
Unit Ball Surface Sampling metric (UBS) allowing to compare the magnitude
of scores across all layers in a CNN, resulting in a clearer understanding of
the effect of consistency on a concept’s importance. In addition, we disentangle
a concept’s representation in a feature space from its impact on a network’s
prediction. From this we validate the importance of specific textural radiomic
features in the classification of nodules for mammographic images.

2 Related Work and Notations

In the following section, we clarify the notation adopted in the paper while
describing CAV [4] and RCV [7] approaches. For a layer l, fl is the function
mapping any input to l’s feature space. For categorical concepts we build a set of
images for each concept c, labelled Xc, and then we perform a classification task
between fl(Xc) and fl(Xr), where Xr is a set of random images. For a continuous
concept c(.), we fit a linear regression between fl(Xtest) and c(Xtest). For both
categorical and continuous concepts, a concept vector vc

l is then extracted. This
is the normal vector to the classifier’s hyperplane for categorical concepts and
the direction-vector of the regression for the continuous one. Finally, to measure
the impact of a concept c on predicting an image x with a label t, a sensitivity
score sCt,l(x) is computed:

sCt,l(x) = ∇pt,l(fl(x)) · vC
l (1)

where pt,l is the function returning the model’s prediction for a class t from
the activations at a layer l. From this sensitivity score per image, both methods
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propose a different metric per concept, each with their own limitations. [4] intro-
duce a TCAV baseline score such that:

TCAVbl(C, l, t) =

∑
x∈Xtest

δsCt,l(x)>0

|Xtest| (2)

where δH is equal to 1 if H is true and is 0 otherwise. Because of TCAV baseline’s
lack of discrimination, [7] introduce the Br score metric in the RCV approach:

Br(C, l, t) = R2 μ̂

σ̂
(3)

where R2 comes from the regression fitting step and μ̂ and σ̂ are the respec-
tive mean and variance from the sCt,l(Xtest) distribution. A normalization per
layer is then applied such that the highest magnitude is equal to 1, leading to
dependencies between the magnitude scores of the concepts.

3 Methods

The RCV approach entangles how well a concept is embedded to its impact on
the network’s prediction: By multiplying the R2 score with a function of the
sensitivity score, it is no longer possible to retrace the incidence of each on the
Br score. Thus, in our approach, we separate the way we build the concept
vectors, measured by the R2 metric, from the measurement of their impact on
the class’ prediction score, evaluated by our metric UBS.

3.1 Radiomics Extraction and Concept Vector Building

To extract radiomic features, [8] developed a python library, pyradiomics, used
to compute them for grayscale images from a segmented region of interest (ROI).
In this paper, we used the aforementioned library to extract all the 2D radiomic
features.

The RCV approach is suited for continuous values, hence its application to
radiomics. Every regression is fitted on a 10-fold splitting and evaluated by R2

scoring on the test section of the data. For clarity purposes, we only consider
radiomics with an average R2 score above 0.6, and a UBS is computed for each.
To compare the radiomic features, we compute the Br for all of them, how-
ever, we replace the sensitivity score with a cosine similarity as we focus on the
direction of the derivative rather than its magnitude.

As it will be further explained in the “Dataset and Implementation Details”
section, extracting shape-based radiomics in our dataset resulted in a R2 score
below 0.6. Consequently, we rejected them and focused on textural radiomics:
Gray Level Cooccurrence Matrix (GLCM [12]).
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3.2 UBS Metric

As previously mentioned, the Br score from [7] is concept-dependant whereas
the TCAV baseline metric introduced in [4] isn’t sufficiently discriminating. Both
issues arise from the effects of dimensionality on the cosine similarity: its mag-
nitude tends to zero as the dimension increases while its symmetry remains
unchanged. To cope with this issue, the TCAV baseline score takes into account
only the cosine’s sign while the Br score normalizes each cosine similarity score
by the highest magnitude score at a layer of interest, providing only a local
solution.

To allow the comparison of concepts across all layers, a normalization of
the cosine similarity that scales with the dimension of the space is required.
A threshold for the cosine similarity score’s magnitude is necessary to asses its
relative significance while considering the current space’s dimension. In Theorem
1, we propose an upper bound on the cosine’s magnitude between a unit vector
with a random direction and a fixed unit vector, which represents a concept
vector. We then use this bound to normalize the cosine similarity magnitude to
obtain a dimension-agnostic metric.

Theorem 1. For u ∈ R
n such that ||u||2 = 1 and v a random vector from

{ −1√
n
, 1√

n
}n we have:

P(| cos(u,v)| <

√
log(n)

n
) > 1 − 1

n

Proof. For u ∈ R
n and v, a random vector from { −1√

n
, 1√

n
}n sampled uniformly,

let’s consider a random variable X = cos(u,v), using that all the vi are inde-
pendent and centered as well as ||u||2 = ||v||2 = 1:

E(X) = E(
n∑

i=1

uivi) =
n∑

i=1

uiE(vi) = 0 (4)

{
i = j ⇒ E(vivj) = E( 1

n ) = 1
n

i �= j ⇒ E(vivj) = E(vi)E(vj) = 0 (5)

V(X) = E(X2) − E(X)2 = E(X2) =
n∑

i,j=1

uiujE(vivj) =
n∑

i=1

u2
i

n
=

1
n

(6)

Once we have obtained values for E(X) and V(X) we apply the Chernoff bound
to X such that:

P(|X| < t) > 1 − e
−t2

V (X) (7)

for t =
√

log(n)
n , we obtain the following bound:

P(| cos(u,v)| <

√
log(n)

n
) > 1 − 1

n
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As a result, we have a bound with a probability 1− 1
n for the cosine similarity

of a fixed vector with any vector from uniform distribution over { −1√
n
, 1√

n
}n,

which is a good approximation for sampling uniformly from the unit ball surface
in high dimension. As the dimension increases linearly, there is an exponential
increase in the number of points from which the samples are taken as they are
drawn from 2n points.

With this normalization constant for the cosine similarity scores, we build
our metric called the Uniform Unit Ball Surface Sampling metric (UBS):

⎧
⎪⎨

⎪⎩

UBS(C, l, t) = sign(C,l,t)
|St|

∑
x∈St

| cos(∇pt,l(fl(x)),v
C
l )|√

log(n)
n

s.t sign(Cl
t) =

∑
x∈St

cos(∇pt,l(fl(x)),v
C
l )

| ∑
x∈St

cos(∇pt,l(fl(x)),vC
l )|

(8)

where n is the dimension at the layer l and St is the set of test images. Note that
the sign is used due to the bound being based on the magnitude of the cosine.
When using the UBS metric, only concepts with score magnitudes above 1 are
considered relevant to the decision-making.

4 Experiments and Results

4.1 Dataset and Implementation Details

For our experiments, we used the publicly available dataset CBIS-DDSM
(Curated Breast Imaging Subset of DDSM) [9,10]; a database of 1644 scanned
film mammography study cases. The dataset contains calcifications and masses
with their corresponding ROI segmentation.

500 × 500 px centered patches were made from the segmentation masks, the
size is chosen through analysis of the variations in masses and calcifications size.
Manual analysis of the generated patches was done to reject ineligible samples
and improve accuracy. Rejected patches contained either masses that occupied
the entire image, calcifications that were invisible when the image was re-sized to
224 × 224 px, or both calcifications and masses. When using the same test/train
split as the original dataset, 155 calcifications + 179 masses were obtained for
the test set and 743 calcifications + 557 masses were obtained for the train set.

Patches were re-sized to 224×224 px, normalized, and subjected to data aug-
mentation (flipping and rotations) during the training phase. The used networks
included a CNN of 3 convolution layers followed by 3 dense layers (CNN-3) and a
Squeezenet v1.1 [11]. The networks were chosen not only for their high accuracy
and speed, but also for their low number of layers, facilitating the concept per
layer comparison (Figs. 1 and 3).

As shown in Fig. 2, the segmentations of the smaller calcifications are impre-
cise, encompassing groups of calcifications rather than individuals and generating
a large margin around the area. The resulting segmentation is larger and more
circular, making differentiating between single masses and clusters of calcifica-
tions based only on shape difficult. This makes it impossible to leverage the
shape radiomics, a feature frequently used by experts for sample discrimination.



UBS 17

Fig. 1. Representative mammographic images from CBIS-DDSM. 1 and 2 being calci-
fications and 2 and 3 masses.

Fig. 2. Representative patches, (a, b) being calci-
fication and (c, d) being masses.

Model Accuracy AUC
CNN-3 0.87 0.95

Squeeze Net 0.93 0.98

Fig. 3. Training Results for
CNN-3 and SqueezeNet.

4.2 Concept Vector for Radiomic Features Results

Fig. 4. Results at layer fire6/concat of SqueezeNet for GLCM radiomics, with corre-
sponding R2 scores (left) and Br scores (right) for calcification prediction. (Color figure
online)

We first demonstrate that by not distinguishing between the R2 score and the
sensitivity score, we are unable to tell which factor has an impact on the magni-
tude of the Br score. Figure 4 illustrates the computed R2 and Br scores on the
fire6 layer of a SqueezeNet1.1 for the GLCM features on mammographic images.
Two observations can be made from these results:

– The deviations between some Br scores can only be determined by the R2

score variations, as seen with the three concepts denoted by the purple star.
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– Contrastingly, some Br scores can only be determined by the sensitivity score,
as shown with the DifferenceVariance (yellow star).

As the concepts are all normalized in-between themselves, it is impossible
to assess their individual relevance. Two high-scoring concepts in two different
layers will have the same maximum score, however this does not imply that they
have the same impact on the final prediction.

Figures 5 and 6 illustrate the computed UBS scores of the GLCM features
across several layers in a SqueezeNet v1.1 and CNN-3 for the same dataset.
As previously mentioned, concepts with an R2 score below 0.6 at the fitting
step were rejected. As seen in Fig. 6, the plots for masses and calcifications are
symmetric due to the binary nature of the classification task and the symmetry
of the UBS metric. To emphasize the variation of scores across several layers in
the SqueezeNet, we chose to only show the calcification results.

In Fig. 5, we demonstrate that our metric is not biased by the inner layer
normalization. If bias was present, concepts such as DifferenceEntropy, Differ-
enceAverage and Contrast would have had a very high magnitude in the first
layers, then would have dropped considerably on the last layer due to the impor-
tance of the JointEntropy, despite them being even more relevant.

With our UBS metric, we see that radiomic features describing increased
entropy, such as DifferenceEntropy and JointEntropy, as well as those describing
variations of intensity, such as Contrast and DifferenceAverage, shift the model’s
prediction towards calcifications. Conversely, radiomic features based on homo-
geneity such as Id, Idm and InverseVariance lead to an increased prediction of
masses. These findings are consistent with those of [13,14]. The scores are also
consistent across numerous layers regardless of dimension.

Fig. 5. UBS scores for layer fire2/concat to fire6/concat on SqueezeNet model for
calcifications prediction. UBS scores are represented by the green points as the mean
of each distributions (Color figure online)
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Fig. 6.UBS scores on the CNN-3, for calcifications (left) and masses (right) predictions.
(Color figure online)

Finally, with the UBS metric it is observed that the last two convolutional
layers of the CNN-3 contain large variations in the most important concepts in
comparison with the SqueezeNet, which shows greater consistency across lay-
ers. This can be seen in Fig. 6 and is a possible explanation for the different
classification scores between the two models.

5 Conclusion

In conclusion, the UBS metric shows a layer-agnostic behavior, allowing us to
compare across all layers in the CNN. Not only it adds clarity to the concept’s
importance in the layers themselves, but it disentangles its representation in
a feature space from its relevance in the network’s prediction. Furthermore,
applying UBS over mammographic images validated [13,14] the importance of
specific textural concepts during the classification task, improving explainability
as their impact is comparable across all the layers.

Overall, in this paper we proposed a proof of concept of the UBS metric
over mammographic images, further works would involve applying our method-
ology to other datasets and different radiomic features, including examining
shape-based radiomics we were unable to evaluate. In addition, the bound we
uncovered in Theorem 1 can be improved to be more compatible with the smaller
dimensions that are found in the final dense layers.
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Abstract. The ambiguity of the decision-making process has been
pointed out as the main obstacle to practically applying the deep
learning-based method in spite of its outstanding performance. Inter-
pretability can guarantee the confidence of the deep learning system,
therefore it is particularly important in the medical field. In this study,
a novel deep network is proposed to explain the diagnostic decision with
visual pointing map and diagnostic sentence justifying result simultane-
ously. To increase the accuracy of sentence generation, a visual word con-
straint model is devised in training justification generator. To verify the
proposed method, comparative experiments were conducted on the prob-
lem of the diagnosis of breast masses. Experimental results demonstrated
that the proposed deep network can explain diagnosis more accurately
with various textual justifications.

Keywords: Explainable deep learning · Textual justification · Visual
explanation · Multimodal deep learning

1 Introduction

Thanks to the remarkable achievements of deep learning technology, Computer-
aided detection (CADe) and Computer-aided diagnosis (CADx) show notable
successes with deep learning based approaches [9,12]. On the contrary, difficulty
in understanding the cause of a decision still remain as a dominant limitation for
the application of deep learning based method in the real world. To cope with
this problem, the multimodal approach [4] has been devoted to developing the
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method for interpreting the decision via generating explanation in the form of
attentive pointing map and text.

In medical applications such as CADx, the method with interpretability
reflecting the reliability of result is more important, because it is mainly used in
a high-risk environment directly connected to human health. There are several
works which utilize additional information attached to the medical image for the
decision explanation. [5,6] introduced a critic network which exploits pre-defined
medical lexicon to elaborate visual evidence of the diagnosis. [22,24] proposed
the networks generating natural medical reports from various Recurrent Neural
Networks (RNNs) structure and pointing an informative area of input medical
image.

However, it is challenging to generate accurate sentences with large variation
because of the high complexity in the natural language. As addressed in [13], the
conventional captioning methods suffer a problem in which the model duplicates
a completely identical sentence of the training set even if the model is trained
on the large dataset. Since the duplicated sentences only describe the portraits
of training images, it cannot fully cover the variation of unseen images. This
problem becomes more serious in the medical research area due to the limited
number of medical report data.

In this study, we propose a novel deep network to provide visual and textual
justification interpreting the diagnostic decision. The main contribution of this
study is summarized as followings:

(1) We propose a new justification generator to interpret the diagnostic decision
of the deep network. The proposed justification generator provides the tex-
tual and visual justification for the diagnostic decision. It can apply to any
conventional CADx network (classifier of malignant mass and benign mass)
to interpret the decision of the deep network without diagnostic performance
degradation.

(2) To overcome the duplication problem in which the model generates a com-
pletely identical sentence of the training set, we devise a new learning
method utilizing a visual word constraint loss. For evaluating the proposed
method, a sentence dataset describing the characteristics (the shape and
the margin) of breast masses has been collected in this study. Experimental
results have shown that the proposed method can generate various textual
justifications which have higher similarity with human-made sentences.

2 Proposed Method

2.1 Overall Framework

An overall proposed network framework is shown in Fig. 1. As shown in the
figure, the overall architecture of the deep network was divided into two parts,
a diagnosis network (any conventional CADx network) and a justification gen-
erator. The justification generator employed a visual feature and a diagnostic
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decision of the diagnosis network. To avoid the sentence duplication of the train-
ing set, a visual word constraint loss was devised in the training stage. The
detailed structure of the justification generator and the learning strategy are
described in the following subsections.

Malignant

Diagnosis

Diagnosis 
Predictor

Diagnosis Embedded 
Feature

Justification Model

Justification
Generator

There are sharp 
lines on some 
part of complexly 
formed mass.

Textual Justification

Visual Justification

Visual Feature

Visual Feature 
Encoder

Embedding

Diagnosis Network

Original ROI Image

Fig. 1. Overall proposed deep network framework for producing textual justification
and visual justification.

2.2 Justification Generator

As shown in Fig. 2, in order to explain the diagnostic decision, the justification
generator made a textual justification and a visual justification from the diag-
nostic decision and the visual feature. From given image I(n,m), the visual fea-
ture fv(n,m, k) was extracted by the visual feature encoder. Using fv as input,
the diagnosis predictor made a diagnostic decision ŷd = {pbenign, pmalignant}.
pbenign and pmalignant denote the probability of the benign and the probabil-
ity of the malignant, respectively. Afterward, ŷd was embedded to k-dim vector
αd

embed(k). It was weight of the channel attention refining visual feature:

fembed(n,m, k) = fv(n,m, k) · αembed
d (k), (1)

where fembed denotes a diagnosis embedded feature and αd
embed(k) is the k-th

element of αd
embed. Through multiple convolutional layers, multi-channel feature

fembed was encoded into single-channel 2D map αva(n,m). The visual justifica-
tion αd

vis was generated as followings:

αd
vis(n,m) =

exp(αva(n,m))
∑

n

∑

m
exp(αva(n,m))

, (2)

The softmax operation in Eq. (2) was conducted to represent more focused
areas and suppress the activation on the background. For obtaining the textual
justification, a text generating feature ftext was encoded from fembed. ftext was
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used as the input of the textual justification generator which was designed with
the Long Short Term Memory (LSTM) module. The text generating feature ftext

was obtained by

fembed+vis(n,m, k) = fembed(n,m, k) · αd
vis(n,m) · αd

embed(k), (3)

ftext = Tϕtest
(fembed+vis + fembed), (4)
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Fig. 2. Detailed architecture of the justification generator.

where fembed+vis denotes the refined diagnosis embedded feature by the spatial
attention with αd

vis and the channel-wise attention with αd
embed. Tϕtest

(·) is a
function with learnable parameter ϕtest for encoding the text generating feature.
Tϕtest

(·) was implemented by multiple convolutional layers. Finally, the textual
justification W = [w1, w2, · · · ] was generated by using the two-hidden-layer-
stacked LSTM network fLSTM (·) as

ht = fLSTM (ftext, wt−1, ht−1), (5)

where wt denotes a t-th word obtained by converting the t-th hidden state ht

using a linear function with learnable parameters.

2.3 Network Training Using Visual Word Constraint

In the training stage, the textual difference loss LD was calculated from cross-
entropy loss function representing difference between the generated textual jus-
tification W and the ground truth of textual justification WGT . In order to
overcome the aforementioned duplication problem in the textual justification
generation, we devised a visual word constraint model Vcon(·). A sentence classi-
fier [7] was utilized to construct the visual word constraint model. Through the
visual word constraint model, the margin and the shape were predicted from the
given sentences W as

ŷcon = {ŷma, ŷsh} = Vcon(W), (6)
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where ŷma, ŷsh are a predicted margin and a predicted shape, respectively. The
visual word constraint model was pre-trained on sentences of the training set and
utilized to guide the textual justification generator with a visual word constraint
loss LC as

LC = cross-entropy(ŷma,yGT
ma ) + cross-entropy(ŷsh,yGT

sh ), (7)

where yGT
ma ,yGT

sh are ground truth of margin and shape. As a result, overall
network was trained by minimizing following loss function:

L = LD + αLC , (8)

where α is a balancing hyper-parameter. By introducing visual word constraint
loss, the textual justification can contain more various words. The proposed
model can also grasp similarity in meaning with the word describing the same
margin or shape even without an additional large word set embedding to vector
space.

3 Experiments

3.1 Experimental Condition

In the experiments, we used two mammogram datasets. The first dataset was the
public mammogram dataset, named Digital Database for Screening Mammogra-
phy (DDSM) dataset [3]. The BI-RADS descriptions and the location of masses
were annotated by the radiologist [3]. The dataset (605 masses) was split into a
training set (484 masses) and a test set (121 masses). The second dataset was
the Full-Field Digital Mammogram (FFDM) dataset from a hospital. A total
of 147 masses of 67 patients were collected and two-fold cross-validation was
conducted in this study. The deep network learned from the DDSM dataset was
used as the initial network for training with the FFDM dataset.

The sentence datasets were collected on both the DDSM dataset and the
FFDM dataset. Since BI-RADS mass lexicons (margin and shape) are widely
used to describing breast mass by medical doctors and closely related to malig-
nancy of the mass, we comprised sentences based on these lexicons. To make
sentence various and be close to the description of medical doctors, we inves-
tigated words and phrases, which describe margin and shape in the medical
papers and books [1,10,14,16,17,19,20], and its synonyms called visual words.
Visual words of each lexicon included 4–12 words or phrases. Three sentences
were annotated for each ROI mass image and each sentence contained at least
one visual word for mass margin and shape respectively. According to [4], every
sentence included at least 10 words and did not contain BI-RADS mass lexicon
as it is. In addition, the sentences contained individual details.

In order to increase the number of training data, data augmentation was
conducted. The two sizes of patches were cropped from the original ROI
image at five locations (top left, top right, center, bottom left, bottom right).
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Each cropped image was also flipped and rotated (0°, 90°, 180°, and 270°). The
size of mini-batch was set to 64 and an Adam optimizer [8] was used with learning
rate 0.0005. The balancing parameter was empirically set to 2.

For the diagnosis network at the front part of the proposed network, we used
VGG16 [18] based binary classifier. The weights of the pre-trained network with
ImageNet [2] was utilized as initial weights and the fine-tuning was conducted.
As the visual feature fv(n,m, k), the feature map after conv 5 3 in the VGG16
network was used in this study. The area under the ROC curve (AUC) was
calculated for evaluating the diagnostic performance and the AUC of 0.918 was
obtained from the trained diagnosis network on the DDSM dataset. During the
training of the justification generator, the parameters of the diagnosis network
were fixed.
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Fig. 3. Results of the textual and the visual justification of the proposed method. Diag-
nosis, margin, and shape denote ground truth. The sentences for textual justification
are compared with the proposed method and the method learned without LC .

3.2 Results

To validate the effect of our model, we compared the proposed method with
the method learned without visual word constraint loss LC . Figure 3 shows the
examples of the generated visual justification and the textual justification. As
shown in the figure, the proposed method can provide the textual justification
and the visual justification for the diagnostic decision. The sentences generated
by the method learned without visual word constraint loss LC were also com-
pared. LC enabled the textual justification generator to match the margin and
shape labels of the generated texture justification and input ROI mass image
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in the training phase. Therefore, the generated textual justification was more
accurate in the proposed method compared to the method without LC .

For quantitatively evaluating the quality of the textual justification, we
adopted BLEU [15], ROUGE-L [11], and CIDEr [21] metrics which calculated
the similarity between the generated sentence and the reference (ground truth)
sentence. Table 1 shows the results of the evaluation for the textual justifica-
tion on the DDSM and the FFDM datasets in terms of BLEU, ROUGE-L, and
CIDEr. As shown in the table, with the proposed method of learning the model
utilizing LC , the generated textual justifications were closer to reference sen-
tences composed by a human. Furthermore, following the evaluations in [23],
the ratio of the unique sentences and the ratio of the novel sentences were calcu-
lated in Table 2 on the DDSM and the FFDM datasets. The unique sentence was
defined as the sentence which was not repeated in all generated sentences and
the novel sentence was defined as the sentence which was unseen in the train-
ing set. These two metrics were calculated to evaluate the textual justification
regarding the duplication problem. If duplication occurred, the textual justifica-
tion could not accurately narrate the given test image. By calculating the ratio
of the novel and unique sentences, it was possible to measure how reliably the
textual justification was generated according to the given image. As shown in
the table, the number of novel sentences was dramatically improved with the
proposed method. The number of the unique sentences in the proposed method
was also increased compared to the method learned without LC .

Table 1. Evaluation of textual justification on the DDSM and FFDM dataset.

DDSM dataset FFDM dataset

Proposed method Without LC Proposed method Without LC

BLEU-1 0.3870 0.3687 0.4070 0.3835

BLEU-2 0.1968 0.1742 0.2296 0.2133

BLEU-3 0.1026 0.0887 0.1354 0.1187

BLEU-4 0.0586 0.0490 0.0871 0.0650

ROUGE L 0.2526 0.2439 0.2650 0.2596

CIDEr 0.1514 0.1469 0.1366 0.1185

Table 2. Ratios of the unique sentences and the novel sentences on the DDSM and
FFDM dataset.

DDSM dataset FFDM dataset

Proposed method Without LC Proposed method Without LC

Ratio of unique
sentence

93.39% 64.46% 54.42% 11.56%

Ratio of novel
sentence

43.80% 4.13% 65.99% 8.16%
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4 Conclusion

In this paper, we proposed the novel deep network to provide multimodal justifi-
cation for the diagnostic decision. The proposed method can explain the reason
for the diagnostic decision with the sentence and indicate the important areas on
the image. In the case of textual justification generation for medical purposes,
the network tended to generate templated results due to the limited number of
medical reports. To overcome this problem, the learning method utilizing visual
word constraint loss was devised. By the comparative experiments, the effec-
tiveness of the proposed method was verified. The proposed method generated
more diverse and accurate textual justifications. These results imply that the
proposed method can explain the diagnostic decision of the deep network more
persuasively. As future work, it would be a meaningful direction to evaluate the
effectiveness of the multimodal explanation in terms of helping users better trust
and understand CADx outputs.
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Abstract. Midline shift (MLS) is a well-established factor used for out-
come prediction in traumatic brain injury, stroke and brain tumors. The
importance of automatic estimation of MLS was recently highlighted
by ACR Data Science Institute. In this paper we introduce a novel deep
learning based approach for the problem of MLS detection, which exploits
task-specific structural knowledge. We evaluate our method on a large
dataset containing heterogeneous images with significant MLS and show
that its mean error approaches the inter-expert variability. Finally, we
show the robustness of our approach by validating it on an external
dataset, acquired during routine clinical practice.

Keywords: Neural networks · Midline shift · Interpretability ·
Confidence

1 Introduction

The brain midline can be viewed as a line on axial and coronal projections
of diverse imaging modalities (Fig. 1, left). As the human brain is approxi-
mately symmetrical, the midline is straight in healthy subjects. However, various
pathological conditions, such as traumatic brain injuries (TBI), stroke and brain
tumors, may break this symmetry and lead to midline shift (MLS) [8].

A major number of studies show that MLS has a prognostic value for outcome
prediction of various brain pathologies: level of consciousness in patients with
acute intracranial hematoma [16], median survival in patients with glioblastoma
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Fig. 1. Left: an axial slice from a MRI image with corresponding midline (red) and a
hypothetical normal midline (blue, dashed). Center: the midline shift. Right: a dubious
case with an ill-defined midline (red, dashed). (Color figure online)

multiforme [3], the outcome in patients with TBI [5]. Overall, early identification
of patients with severe midline shift would assist patients management [14].

However, definitions of significant MLS vary across studies. While the 5 mil-
limeters (mm) threshold is frequently used, other approaches are common. For
example, MLS larger than 9 mm was identified in [14]; the 5 mm threshold was
not justified within [5]. Such diversity is partly explained by the absence of a
robust objective methodology of MLS estimation. A recent study [13] suggests
that interrater variability of MLS estimation is rather high (intraclass correlation
coefficients 0.72–0.89).

The importance of MLS estimation and the need for its automation was
recently highlighted by The American College of Radiology Data Science Insti-
tute [10], and some promising results have already been achieved in this area
(Sect. 3). In this paper we propose a novel deep learning based approach1 for the
MLS detection task. We show that combining a standard segmentation approach
with task-specific structural knowledge yields results which are more accurate,
compared to straightforward CNNs for regression, and also interpretable, since
the key part of the method is the midline localization. Moreover, we show that
our method generalizes well on highly heterogeneous data and provide a natural
way of estimating its confidence.

2 Problem

We define the midline on an axial slice as a vertical curve that separates the
brain hemispheres (Fig. 1, left). The midline shift for an axial slice is then defined
as the maximal distance between the midline (which might be deformed) and
a hypothetical normal midline (Fig. 1, center). Finally, the midline shift for a
whole brain is the maximal midline shift across all axial slices where the midline
is present. The task is to determine, for a given brain image, the midline shift
as well as the corresponding axial slice on which it is manifested.
1 Full code for training and inference is available at GitHub: https://github.com/

neuro-ml/midline-shift-detection.

https://github.com/neuro-ml/midline-shift-detection
https://github.com/neuro-ml/midline-shift-detection
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It is worth noting that in some complicated cases even professional radiolo-
gists cannot confidently determine the localization of the midline (Fig. 1, right).
Taking into account such dubious cases, it is also desirable that the method for
MLS detection has a means of estimating its own confidence.

3 Related Work

Most of the methods for automatic MLS estimation are computer vision (CV)
based and rely on keypoints detection. The proposed approaches often have a
lot of “moving parts” which makes them hard to implement and fine-tune. For
example, in [9] the authors use a four-step pipeline (edge detection, morpho-
logical filtering, lines detection, rule-based filtering) just to detect the cerebral
falx. Another drawback of keypoints-based methods is that they require various
important regions to be present on the image, e.g. many methods can be applied
only to slices that contain ventricles [1] which makes them inapplicable to cases
where the midline shift is manifested on lower or higher slices.

There are also a few papers that propose deep learning methods. In [2] the
authors trained an adapted a version of ResNet to classify whether there is
a significant midline shift on a given slice. Another interesting approach that
combines deep learning with classical CV is described in [6]. Here the authors
use a U-Net [15] architecture for brain extraction, cisterns and acute intracranial
lesions segmentation, while MLS detection is based on keypoints.

4 Method

A straightforward deep learning approach is to directly predict the MLS via a
convolutional neural network. Following the authors of [2], we tested a ResNet-
based [4] network which predicted the MLS for each axial slice of given image.
The final prediction was obtained as the maximal MLS only among the slices
that contained an annotated midline. However, even in such a simplified design
(the model did not need to filter out the slices for which the MLS was undefined),
this method yields poor results as we show in Sect. 7.

Our intuition behind this is that the midline shift is a very high-level concept:
the network needs to learn to detect several keypoints located very far from each
other (Fig. 1), as well as take into account their relative positions. The latter
is a particularly difficult task for convolutional neural networks due to their
invariance to translation.

On the contrary, the midline has visual features, like continuity and local
symmetry, that are distinguishable on a smaller scale. This brings us to the
idea to reduce the task of MLS prediction to the task of midline estimation: for
a given slice we localize the midline while exploiting the structural knowledge
about the target, then we derive the MLS from the predicted curve based on the
definition given in Sect. 2. Normal midline is estimated as a straight line between
prediction endpoints.
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Fig. 2. The binary masks of the regions where the midline is defined (red). Note the
rightmost image, for which the midline is undefined everywhere. (Color figure online)

The key structural facts are: (1) for each coordinate y there is at most one
x-coordinate, which is refered as midliney, such that the pixel (midliney, y) is
situated on the midline; (2) midliney exists only for y-coordinates within certain
interval I on the Oy axis to which binary mask we refer as limits (Fig. 2).

These facts imply that our method must be capable of solving the regres-
sion problem of mildine estimation and the classification problem of limits
prediction. To solve these tasks, we propose a two-headed convolutional neu-
ral network with shared input layers (Fig. 3). As loss function, we optimize a
weighted combination of standard losses for regression and classification:

L = λ1 · 1
|I|

∑

y∈I

(midliney − midlinepredy )2 + λ2 · BCE(limits, limitspred),

where midlinepredy and limitspred are the network’s predictions, BCE is binary
cross-entropy.

4.1 Midline Estimation

In order to estimate the midline we adapt a segmentation approach. In a standard
setting (with sigmoid activation and binary cross entropy loss) the output can
be interpreted as “independent” probability of a particular pixel to be situated
on the midline. In this case the midline is obtained after applying argmax along
the Ox axis.

However, as we show in Sect. 7, significantly better results can be achieved
while imposing the following constraint on the output probability map

∑

x

outputmidline
xy = 1, (1)

which follows from the structural fact (1). Next, taking into account that for
any given y-coordinate the head’s output represents a probability distribution,
we propose to predict the midline as its expected value:

midlinepredy =
∑

x

x · outputmidline
xy .
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Fig. 3. Schematic representation of the proposed architecture.

The overall architecture for midline estimation is shown in Fig. 3 (top). For
our experiments we chose a UNet-based [15] architecture as a de facto standard
for medical image segmentation. We replaced plain convolutional layers by resid-
ual blocks [4] which are considered to improve the performance, as suggested by
[11]. Also, during feature maps concatenation we use linear interpolation to make
the output’s shape equal to the input’s shape. Finally, we apply a softmax non-
linearity to the network’s output along the Ox axis (instead of sigmoid), which
ensures that the constraint from (1) is respected. Note that because the head’s
output represents a probability distribution, at inference time we can calculate
various statistics based on this distribution, e.g. percentiles, which are needed to
estimate confidence intervals. This is a very important aspect of our approach
which gives us a natural means of estimating the model’s uncertainty.

4.2 Limits Prediction

Since the proposed midline estimation approach yields midlinepredy for all
y-coordinates, we need to filter out the predicted values for the regions where the
midline is not defined (Fig. 2, hatched). The corresponding limits are obtained
by thresholding the second head’s output (limitspred) and taking the convex
hull.

The architecture of the second head is shown in Fig. 3 (bottom). It has the
same input layers as the midline estimation network, which are followed by two
residual blocks [4]. Next, a global max pooling is applied along the Ox axis in
order to reduce the dimensionality of the 2D feature maps to 1D. Finally we
apply two 1D convolutions followed by the sigmoid activation function.

5 Experimental Setup

At train time in all of our experiments we used Adam optimizer [7] with default
parameters (β1 = 0.9, β2 = 0.999) and a learning rate of 10−3, which showed the
best results on the validation set. We used equal (λ1 = λ2 = 1) weights in the
final loss as we didn’t notice any loss imbalance at train time.
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Also, we applied a simple preprocessing in order to reduce the data variability:
resampling the axial slices to a 0.5 × 0.5 mm pixel spacing, background removal
by Otsu thresholding [12] and intensity normalization to zero mean and unit
variance. Additionally, at train time we used random flips along the Ox axis as
a cheap data augmentation technique.

The training was performed on batches of size 40 (which was simply deter-
mined by the amount of available GPU memory), until the validation scores
reached a plateau, which happened at approx. 32000 batches. For this reason we
used 32000 iterations for all our experiments.

6 Data

In our experiments we used data from two sources.
The first dataset (DS1) consists of 352 MRI series that come from a neu-

rosurgery hospital and belong to patients with severe brain damage caused by
tumors: 64% of the images have a significant midline shift (≥5 mm), the mean
MLS is 7.8 ± 5.0 mm. The dataset was labeled by an experienced neuroradiol-
ogist (exp1) and three specialists with limited background in neuroradiology
(exp2-4). Their inter- and intra-expert variability is shown in Table 2. We split
this dataset using 5-fold cross-validation. For each fold, we additionally leave 8
images out the training set to form a validation set.

The second dataset (DS2) comes from an out-patient clinic and represents
a homogeneous sample of 203 MRI series acquired in routine clinical practice.
For this dataset only the MLS is available but not the midline itself; only 8% of
images have a large MLS (≥5 mm), the mean MLS is 2.9 ± 1.5 mm. We use this
dataset only for final models’ quality assessment in a prospective fashion.

The series from both sources contain only axial slices but have various voxel
spacings, ranging from 0.2 × 0.2 × 1 mm to 1 × 1 × 5 mm, and modalities: T1
(25%), T2 (68%) and FLAIR (7%). The images were collected using scanners
from GE/Siemens and Toshiba/Siemens for DS1 and DS2 respectively.

7 Results

7.1 Midline Shift Detection

We compare the proposed method with a direct MLS regression via ResNet [4] on
two tasks: (1) MLS prediction; (2) significant MLS (≥5 mm) detection. In order
to evaluate the quality of both methods we use mean absolute error (MAE) and
the area under the ROC-curve (ROC AUC) for task 1 and 2 respectively. The
ROC-curve was obtained by thresholding the predicted MLS by different values
(from 0 to maximal MLS magnitude). The results are presented in Table 1.
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Table 1. Midline shift detection scores for various models (± std) calculated on 5-fold
cross-validation.

MAE, mm ROC AUC

DS1 DS2 DS1 DS2

ResNet-152 2.92 ± 3.15 1.84 ± 1.10 0.91 ± 0.03 0.80 ± 0.04

Proposed 1.54 ± 1.98 0.75 ± 0.04 0.95 ± 0.02 0.92 ± 0.02

7.2 Midline Estimation

In order to assess the midline estimation performance we use root-mean-square
error (RMSE) as well as maximal error (MAX):

RMSE(midliney,midlinepredy ) =
√

|I|−1
∑

y∈I
(midliney − midlinepredy )2,

MAX(midliney,midlinepredy ) = max
y∈I

|midliney − midlinepredy |.

These metrics, averaged along axial slices (MAXs, RMSEs) as well as entire
brain images (MAX, RMSE), are shown in Table 2.

Table 2. Top: midline estimation metrics (± std) calculated on 5-fold cross-validation
for DS1. Bottom: neuroradiologist (exp1) variability on DS1.

MAX RMSE MAXs RMSEs

Segmentation 7.45 ± 9.84 0.95 ± 0.61 2.12 ± 3.25 0.81 ± 0.64

Proposed 3.61 ± 2.62 0.79 ± 0.44 1.58 ± 1.39 0.69 ± 0.54

exp1 vs exp1 3.16 ± 2.16 0.66 ± 0.19 1.47 ± 1.05 0.62 ± 0.50

exp1 vs exp2-4 3.44 ± 2.13 0.77 ± 0.35 1.47 ± 0.97 0.66 ± 0.19

We compare our method with a näıve segmentation approach mentioned in
Sect. 4.1. Note that plain segmentation performs significantly worse in terms of
maximal error, which is a more important characteristic for MLS detection.
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8 Discussion

Fig. 4. Ground-truth (red) and predicted (yellow, dashed) midlines with their 95%
confidence intervals for 2 random samples (left) and 2 typical examples from the set of
cases with the largest errors (right). (Color figure online)

Figure 4 (right) shows several examples on which our method performs poorly.
Our analysis of such examples suggests that the main source of errors are some
really complicated cases that even professional radiologists have doubts with,
e.g. images on which the tumor is located directly in the middle of the brain, or
incorrect cases with an extracerebral tumor located in the medial longitudinal
fissure, e.g. falx meningioma. Note how in the areas of greatest error the model’s
uncertainty is much higher.

Our preliminary experiments with CT images show that the proposed method
can be easily adapted to work with CT, however we require a larger dataset to
support this claim, which might be the subject of our future work.
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Abstract. Machine Learning (ML) models have achieved remarkable
predictive capability in Computer-Aided Diagnosis (CAD) systems. How-
ever, a problem of such models is that they are regarded as black-box
models and lack of an explicit representation. In this work, a Guideline-
based Additive eXplanation (GAX) framework is proposed for interpret-
ing ML-based CAD systems. A medical guideline standardizes decision
making in disease diagnosis. The idea of GAX is generating understand-
able explanations according to the criteria of the guideline. It contains
two steps: anatomical features defined on the basis of the guideline
are first generated using rule-based segmentation and anatomical reg-
ularities, and perturbation-based analysis is then used for calculating
the importance of each feature. In addition, global explanation is also
obtained by analyzing the entire dataset, where measurements are cal-
culated from anatomical features, and a figure containing the overview
of which measurements are important is generated. The proposed GAX
is evaluated on a lung CT image dataset. The results demonstrate that
GAX can provide understandable explanations to gain trust in clinical
practice, and also present data bias for users to further improve the
model.

1 Introduction

Machine learning (ML) have demonstrated tremendous success in various appli-
cation domains. In medical domains, ML based Computer-Aided Diagnosis
(CAD) systems have been developed to assist clinicians in detecting and clas-
sifying nodules. Such systems may be able to reduce inter-observer variability
and improve decision making in image diagnosis. On the other hand, the grow-
ing availability of big data has increased the benefits of using complex models,
which brings a trade-off between accuracy and interpretability. This becomes a
serious problem in medical domains because it would be irresponsible to trust
predictions of a black-box system by default. Every decision should be made
accessible for appropriate validation by clinicians. Therefore, interpretability is
absolutely necessary to build systems with high reliability.

Various methods have been recently proposed to address the black-box issue.
These methods can be categorized into two types: (1) inherently interpretable
c© Springer Nature Switzerland AG 2019
K. Suzuki et al. (Eds.): ML-CDS 2019/IMIMIC 2019, LNCS 11797, pp. 39–47, 2019.
https://doi.org/10.1007/978-3-030-33850-3_5
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models [1,2] and (2) post-hoc analysis to provide additive insights. Since the
type one method usually needs to modify the algorithm and retrain the model,
users who already have a high performance model might prefer to use the type
two method. Saliency method [3–5] which visualizes ML predictions by high-
lighting important pixels is a popular post-hoc method. A limitation of such
method is the vulnerability to the changes of input image intensity. Activation
Maximization [6,7] method synthesize images to maximally invert a latent repre-
sentation. This method has a problem that it visualizes a model overall so there
is no prediction for specific input images. Perturbation-based method uses the
perturbation of data points [8,9] or features [10,11] to check how the model’s
response changes. A limitation is the region of interest it picks up might not
have a understandable meaning for the users.

Fig. 1. Framework of GAX for lung nodule diagnosis.

This work proposed a Guideline-based Additive eXplanation (GAX) method
to provide insights of a black-box model’s prediction for CT lung nodule classifi-
cation. A medical guideline is aimed for guiding decisions and criteria regarding
diagnosis, management, and treatment. For lung cancer CT, the American Col-
lege of Radiology presented a “Lung-RADS” guideline [12] to standardize nod-
ule classification. The idea of GAX is generating understandable explanations
according to the guideline. A framework of GAX is shown in Fig. 1.

In GAX, anatomical features such as size, margin, and air bronchogram, are
first generated according to the criteria of the guideline. These features are gener-
ated automatically by a combination of rule-based segmentation and anatomical
regularities. Second, kernel SHAP [11] based perturbation analysis is used for
calculating the importance of each feature. As a result, an importance map show-
ing the impact of each feature is generated. In addition, global explanation is
also obtained by analyzing the entire dataset, where measurements are selected
and calculated from anatomical features, and a figure containing the overview
of which measurements are important is generated.
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This work has two major contributions. First, it proposes GAX which incor-
porates guideline criteria to generate anatomical features (major difference from
SHAP) and use perturbation analysis to generate the feature importance. This
idea can be applied to any CAD system to provide understandable explana-
tions. Second, it presents both local and global explanations, not only providing
additive explanations to gain trust in clinical practice, but also giving sights to
further improve the model.

2 Guideline-Based Additive eXplanation (GAX)

2.1 Anatomical Feature Generation

According to the “Lung-RADS” guideline [12], features such as size, margin, air
bronchogram sign, are important to differentiate between benign and malignant
nodules. A way to interpret and verify the black-box model is to check whether
such anatomical features are important for a prediction or not. Therefore, our
first target is to segment regions with anatomical meaning. To avoid the black-
box problem happen in the segmentation, no learning method is used. Unlike
nature images, medical images always have anatomical regularities, i.e. similar
structures, components, and such regularizes are extremely important in improv-
ing segmentation performance. In this work, a two-step segmentation method is
proposed, where an intensity-based method called Watershed [13] is first used to
extract all possible regions, and the anatomical regularities are used to improve
each region as well as standardize each region label.

Watershed segmentation contains two steps. First, each pixel is connected to
its lowest neighbor pixel, and all pixels connected to same lowest neighbor pixel
are made as a region. Second, the region merging method [14] which merges
most similar pair of adjacent regions is used as the post-processing to remove
noise. The results usually suffer from three problems: (1) nodule and chest wall
cannot be segmented as seperated regions, (2) air bronchogram is regarded as
noise, and (3) standardized label for each region is difficult to generalize. The
anatomical regularities are used to solve these problems.

For problem 1, since the connections between nodule and chest wall are usu-
ally narrow shapes, morphological opening operator with a radius kernel can
be used to remove the connections. To preserve the nodule margin, the follow-
ing process is also applied. The region before and after the opening operation is
define as A and B. Once the nodule and chest wall region are separated, the space
C between these two can be regarded as background. Finally, OR operation is
applied between A and B (C is excluded) to recover the nodule margin.

Problem 2 can be solve by applying the noise reduction (second step of Water-
shed) outside the nodule. Please note most of the nodules is centered at the image
patch because the detection is usually designed to extract the bounding-box of
the nodules. Therefore, the nodule region can be easily located by searching the
largest region around the center, and air bronchogram can be determined by
searching small regions with low intensity inside the nodule.
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For the label standardization in problem 3, the nodule, chest wall and
air bronchogram have already been determined. Size less than 8 mm and size
8–15 mm region of the nodule (if existed) can also be easily determined by
image resolution and the center coordinate of the nodule. Small regions with
high intensity outside the nodule is determined as the blood vessel, and the
remained region is the background.

2.2 Perturbation-Based Analysis

Perturbation-based method uses perturbation to verify the change of the model’s
output. This work is based on Kernel SHAP [11] which uses sparse linear models
as explanations. The details are as follows.

An explainable sparse linear model is defined as g, and the complexity of g is
denoted as Ω(g). For linear models, Ω(g) means the number of non-zero weights.
The original representation of an instance is x, and a binary vector indicating
“presence” or “absence” is x′. A black-box model is defined as f . In classification,
f(x) is the probability that x belongs to a certain class. A proximity measure
between an instance z and x is denoted as πx(z). A loss enforces the faithfulness
of the explanation model g to the black-box model f is defined as L(f, g, πx).
The explanation can be produced by the following:

ξ(x) = argminL(f, g, πx) + Ω(g) (1)

In order to be model-agnostic, it is necessary to minimize the loss L without
any assumption about f . One way to approximate the loss L is to randomly
sample features, denoted as z′, from the binary vector representation x′, and
recovered in the original space z. Then the perturbed sample z passes through
the black-box model and generates probability f(z). Given the perturbed sample
and the associated probability, an explanation ξ(x) can be optimized.

On the other hand, since g is a sparse linear model, g(z′) = w · z′ can be
denoted, where w is the importance of each feature. The local kernel πx(z) can
be determined by shapely value estimation. Let M be the number of the features,
the loss can be represented as:

L(f, g, πx) = Σπx(z)(f(z) − w ∗ z′)2 (2)

πx(z) =
(M − 1)

(Mchoose|z′|)|z′|(M − |z′|) (3)

In this work, an improvement has been made in feature sampling. Since most
models cannot handle arbitrary missing data during the sampling, the “missing”
is simulated by replacing the feature with some values. To generate more realistic
samples, instead of using constant values, the background region segmented in
Sect. 2.1 is used to fill the missing value for each test.
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2.3 Global Explanation Generation

The local explanation can provide sights of a specific input data, while the global
explanation verifies and assesses the entire dataset. This work proposed a global
explanation method, where measurements are calculated from anatomical fea-
tures, and a figure containing the overview of which measurements are important
for the model is generated. Examples are shown in Sect. 3.2.

Five measurements are selected: nodule roughness, nodule diameter and air
bronchogram size which are strongly related to the classification, chest wall loca-
tion and background area which almost have no relation with the classification.
Nodule diameter, air bronchogram size and background area can be easily cal-
culated from the segmentation result. Nodule roughness is standard deviation
of the distances from the nodule center to the nodule contour. As for chest wall
location, the perimeter of the image patch is first divided into 12 equal parts, and
the image center and the division points are connected to divide the image into
12 parts (clock-wise). Next, the geometric center of the chest wall is calculated,
and chest wall location is the location of the geometric center in k ∈ (1, 12) part.

The process contains (1) calculating each feature importance, (2) calculating
each measurement, (3) drawing pairs of importance and measurement in a figure,
and (4) repeating for every test image. In the cases where features such as air
bronchogram and chest wall do not exist, the measurement and the importance
are set as 0. Although the measurement and feature are not matched one-to-one,
i.e. nodule roughness and nodule diameter come from same feature, the figure
still gives an overview of which feature has large impact on the prediction.

3 Experiments

The proposed method is evaluated on a lung CT image dataset (LIDC-IDRI)
that is available in [15]. This database contains 1018 cases with nodule anno-
tations. Since our target is to interpret the classification results of benign and
malignant, nodule patches are extracted from lung images in advance. There are
2650 images patches with a size of 64 * 64 pixels and a resolution of 1 mm * 1 mm
being extracted. These patches are annotated as benign or malignant by experts.
Since some of the comparison methods can only be applied to deep learning mod-
els, a same VGG16 model is used for all methods. The experiments are run in a
NVIDIA GeForce GTX 1080 GPU, and the running time of GAX is about 0.5 s
per image.

3.1 Additive Explanations to Gain Trust

In this experiment, GAX is compared with three widely used interpret methods:
LIME [10], SHAP [11] and Grad-CAM [4]. Both LIME and SHAP use super-
pixel method to segment features, and the number of feature is set as the same
with GAX. For Grad-CAM, the gradient information of the last convolutional
layer is used to generate a heat-map. Comparison results are shown in Fig. 2.
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In this example, the input image is classified as malignant with a probability of
99.8%. For each result except Grad-CAM (only shows important areas), red areas
increase the probability of malignant, and green areas decrease the probability.
The result of LIME and SHAP suffer from a problem that the region of interest
they pick up do not have an understandable meaning for the humans. The result
of Grad-CAM has a tendency that high intensity areas are easily picked up as
important areas. GAX is able to provide an understandable explanation, i.e.
margin and air bronchogram have positive influence for malignant class.

The consistency of the generated explanation with human intuition is also
compared. Reference features, i.e. margins shown in Fig. 3(a), is annotated
according to the guideline. They are considered as important features for clas-
sifying nodules. On the other hand, the region of top 1 feature is extracted for
LIME, SHAP and GAX, and the top 20% important region is extracted for
Grad-CAM. For each prediction on the test set, the fraction of the reference
features recovered by the explanations are calculated. The average recall over
all test samples are shown in Fig. 3(b). Since the Grad-CAM approach is likely
to focus on the high intensity region, it has the lowest recall. The results of
LIME and SHAP are comparable, however, since the features extracted are lack
of anatomical meanings, the overall recall is low. The proposed GAX provides
86.2% recall, demonstrating the consistency with human intuition.

Fig. 2. An example of explanation result by 4 different methods.

(a) Reference features (b) Recall on reference features

Fig. 3. Consistency between explanations and reference features.
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3.2 Insights to Improve the Model

In order to train a desirable model, data bias is usually one of the serious prob-
lems to overcome. However, this problem can be difficult to detect just by check-
ing the raw data and predictions. In this experiment, a biased dataset is first
generated, and GAX is then evaluated whether it can provide some insights to
detect the bias. To generate a biased dataset, 100 images with chest wall on
the right are picked up from malignant set, and 100 images with chest wall on
the left are picked up from benign set. These image are used to train a VGG16
model. During the test, 100 images without bias are used, and two examples are
shown in Fig. 4. In (a), the image is classified as malignant with a probability of
almost 100%. Compare to Fig. 2, a difference is that the chest wall on the right
shows a much larger influence. In (b), the image is also classified as malignant
but with a probability of 58%. The chest wall on the left shows a large negative
influence on malignant classification.

(a) Sample with right chest wall (b) Sample with left chest wall

Fig. 4. Explanation results showing the influence of data bias.

(a) Model trained on original data (b) Model trained on biased data

Fig. 5. Example of global explanation result. (Color figure online)

Global explanations are generated by the method in Sect. 2.3. For compari-
son, the model trained on the original dataset and the biased dataset are both
evaluated. The results for malignant classification are shown in Fig. 5. The color
of point represents the measurement value (red high, blue low). For the original
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dataset in Fig. 5(a), high value of nodule roughness, diameter and air bron-
chogram size have positive influence on malignant classification, while chest wall
and background have much less influence. For the biased dataset in Fig. 5(b),
the influence of chest wall location becomes much larger, where high value (7
to 12 o’clock direction: chest wall on the left) shows negative influence and low
value (1 to 6 o’clock direction: chest wall on the right) shows positive influence.
The biased chest wall location is successfully detected, therefore, GAX might be
useful for helping users to detect data bias and further improve the model.

4 Conclusions

In this work, a novel guideline-based explanation framework is proposed for inter-
preting black-box models in CAD systems. To the best of our knowledge, this is
the first work that incorporating medical guidelines to generate understandable
explanations for black-box model. As a major contribution, GAX can provide
additive explanations to gain trust in clinical practice, and also present data bias
to further improve the model. As a future direction, we plan to further evaluate
the influence of features such as solid and ground-glass component that cannot
be extracted in this work but are important.
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Abstract. Deep learning techniques have proven high accuracy for iden-
tifying melanoma in digitised dermoscopic images. A strength is that
these methods are not constrained by features that are pre-defined by
human semantics. A down-side is that it is difficult to understand the
rationale of the model predictions and to identify potential failure modes.
This is a major barrier to adoption of deep learning in clinical practice.
In this paper we ask if two existing local interpretability methods, Grad-
CAM and Kernel SHAP, can shed light on convolutional neural networks
trained in the context of melanoma detection. Our contributions are (i)
we first explore the domain space via a reproducible, end-to-end learn-
ing framework that creates a suite of 30 models, all trained on a publicly
available data set (HAM10000), (ii) we next explore the reliability of
GradCAM and Kernel SHAP in this context via some basic sanity check
experiments (iii) finally, we investigate a random selection of models
from our suite using GradCAM and Kernel SHAP. We show that despite
high accuracy, the models will occasionally assign importance to features
that are not relevant to the diagnostic task. We also show that mod-
els of similar accuracy will produce different explanations as measured
by these methods. This work represents first steps in bridging the gap
between model accuracy and interpretability in the domain of skin cancer
classification.

Keywords: Deep learning · Explainability · Melanoma

1 Introduction

Skin cancer is the most common form of cancer in the United States [11,17], and
melanoma is the leading cause of skin cancer related death [18]. Automated diag-
nosis of melanoma from digitized dermoscopy images thus represents an impor-
tant potential use case for deep learning methods. Inspired by a breakthrough
result by Esteva et al., [7], many recent publications claim “better than derma-
tologist” performance of convolutional neural networks (CNNs) on a variety of
skin cancer classification tasks [3,4,7–9,13]. If indeed such models have diagnos-
tic performance comparable to board certified dermatologists, this heralds a new
era in skin cancer care, with standardization of diagnosis and democratization

c© Springer Nature Switzerland AG 2019
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of access [10,14]. Early diagnosis of melanoma is associated with improved out-
comes but poor availability of well trained clinicians in many parts of the world
means too often diagnosis is made too late. CNNs represent an important new
technology to address this problem for social good.

How can we evaluate the veracity of these exciting new claims? Unfortu-
nately, privacy constraints typically make it difficult to access training, valida-
tion, test data, and final model weights. This makes it impossible to verify the
accuracy of these published models and reproduce their claims [4]. As is com-
mon in medical settings, there are inherent known biases in the data: lesion
classes are unevenly distributed, healthy images are over-represented, racial bias
is present (few lesions are from dark-skinned individuals) [3] and there is sig-
nificant variability in ground truth labelling [6]. Can we be confident the model
has not inherited any of these known biases? A further challenge is due to the
presence of unknown biases in the data. If an artifact is present in images from
two diagnostic classes but more prevalent in one, how do we know when the
model classifications are weighted by the presence or absence of this artifact?

In light of these problems, it is an open question as to the best strategy to
determine if a given model will generalize to future data where the distribution
of these biases may be different. Currently there are two approaches: (i) ad hoc
techniques that penalize model complexity (batch normalization and dropout, for
example), and (ii) training and testing models on larger and more complex data
sets. Importantly, neither of these techniques can identify, nor correct, specific
biases prior to model deployment.

In this paper, we investigate the possibility that current interpretability
methods may assist in this task. Interpretability methods seek to produce an
indication of features of the input data that the model regards as important for
weighting the final diagnostic decision. While they do not capture the entirety
of the predictive process, they can nonetheless provide some guidance to how a
given model makes decisions.

2 Experiments

2.1 Data

For this study we use publicly available data from HAM10000, a well curated
data set of dermoscopy images collected specifically for use in the machine learn-
ing context [22]. The full data set includes seven classes of skin lesions—in
this study we concentrate on differentiating between benign naevus (moles) and
melanoma, a particularly challenging clinical task. Our data set contains a total
of 6017 images, with significant class imbalance: 5403 naevi and 614 malignant
melanoma. We retain a balanced set of 200 images of each class as a hold out
test set. It is worth noting that in the clinical context false negatives (predict-
ing naevus when ground truth is melanoma) have far more serious consequences
than false positives (predicting melanoma when ground truth is naevus). This
means we need to ensure the class imbalance is addressed during training: a
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model trained and tested on the current distribution can achieve high accuracy
(88%) simply by always guessing naevus.

2.2 Models

The majority of publications in this area use transfer learning from Inception,
pre-trained on Imagenet with an added pooling layer, dense layer and dropout—
we follow suit for ease of comparison. We address class imbalance by first aug-
menting the melanoma images, obtaining a final set of 1656 melanoma images.
We then sample 15 random subsets of 818 images from both classes and train a
total of 30 models via a Bayesian hyper-parameter search—searching over learn-
ing rate, dropout, momentum, beta1, beta2, number of dense nodes, number of
epochs, SGD and Adam1. The aim is to survey the landscape of possible models,
giving us a selection of multiple networks to compare and explore rather than
a single, cherry-picked one. The mean AUC over the 30 models is 85% with a
variance of 1.8% and a mean recall of 87%—a performance comparable to other
published models in this context (e.g. the model of [9] achieved AUC of 86%)2.
Reported AUC for melanoma identification from dermoscopy images for derma-
tologists is around 79% [9] and for primary care physicians even lower [16]. These
results signal the fact that this is indeed a difficult task for which CNN decision
support may prove useful.

It is interesting to note that the variance across model accuracy (AUC) over
the 30 models is relatively small at 1.8%. While these models share the same basic
architecture, they have been trained on different sub-samples of the data using
different hyper-parameters—thus are likely converging on different local optima.
This is evidenced by the differences in mis-classified test images across the dif-
ferent models. Interestingly, seventeen images were consistently mis-classified: at
least 25/30 models got the class label wrong. For example, the naevus in Fig. 1
was mis-classified by all 30 models as melanoma. Interestingly, this lesion does
arguably satisfy one of the clinical criteria for melanoma. A small human eval-
uation trial by 3 primary care physicians suggests these images are challenging:
scores were 4/17, 5/17 and 6/17.

2.3 GradCAM and Kernel SHAP

GradCAM [19] and Kernel SHAP [12] are both model agnostic, local inter-
pretability methods. While both highlight pixels that the trained network deems
relevant for the final classification, they work in very different ways. GradCAM

1 Details of augmentation, random data sampling, Bayesian hyper-parameter search,
all code for training and experiments, including the final 30 trained models can be
found here: https://github.com/KyleYoung1997/DNNorDermatologist.

2 Note that differences in test set size and distribution mean that direct comparison
of model performance via AUC is of limited merit. However, as AUC is the standard
metric reported in the literature, we include it here. Further comment can be found
in the conclusions.

https://github.com/KyleYoung1997/DNNorDermatologist
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Fig. 1. Naevus mis-classified by all 30 models as a melanoma, with GradCAM and
kernel SHAP saliency maps. Note there is more than one type of network within the
lesion, a feature which can be a marker for melanoma. The GradCAM map (centre
image) highlights a key deficiency of the method in this context: almost all of the lesion
is obscured by the saliency map, rendering the “explanation” clinically meaningless.

computes the gradient of the class-score (logit) with respect to the feature map
of the final convolutional layer. Formally, consider each input image as a vector
x ∈ Rd where our model is a function S : Rd → Rc, with C the total number of
classes. GradCAM provides an “interpretability” map I : Rd → Rd that maps
inputs to objects of the same dimension. If Ak are feature maps obtained from
the last convolutional layer, global average pooling of the gradients gives us a set
of neuron importance maps αk

c = 1
Z

∑
i

∑
j

∂S
∂Ak

ij

and the final mask corresponds
to a ReLU applied to a weighted linear combination of the feature maps and the
importance maps: I(x) = ReLU(

∑
k αk

cAk). More details and examples can be
found in [19].

While there are a large variety of methods for applying saliency maps, recent
work has shown that many are in fact independent of both the model weights
and/or the class labels [2]. In these cases it is likely the model architecture itself
is constraining the saliency maps to look falsely meaningful: frequently the maps
just act as a variant of edge detector [2]. This is particularly dangerous in the
context of skin cancer detection as features at the borders of lesions are often
considered diagnostic for melanoma: saliency maps that highlight the edges of a
lesion may be misconstrued as clinically meaningful. We use GradCAM in our
analysis because it was one of the few methods that passed the recommended
sanity checks (we also perform our own to double-check this particular context).

We also investigate the use of Kernel SHAP [12], an interpretability method
that was not among those investigated in [2], but has strong theoretical justifi-
cation [15]. A stronger agreement was found between Shapley explanations and
human explanations when compared to two alternative popular saliency meth-
ods, LIME and DeepLIFT [12], further confirming that this is an appropriate
method to explore. Based on Shapley values from co-operative game theory [20],
the method assigns a fair attribution value to each feature based on the contri-
bution that feature makes to the total prediction. The method is proven to be
the unique mapping that satisfies a number of reasonable criteria and is calcu-
lated by considering interactions between all possible subsets of features. For d
features, calculating the Shapley value for a given feature k will need to account
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for all 2d−1 subsets containing k. Thus a downside to the original approach is
that it scales exponentially in the number of features. Consequently, we use an
approximate, computationally feasible method: Kernel SHAP [12].

Fig. 2. Explanations following randomization of selected layers in the model. Changes
demonstrate dependence of explanation on model weights. SSIM scores averaged over
all images for GradCAM degraded across layers by 23%, 4%, 3%, 2%, 4%. Differences
were also seen for kernel SHAP: 17%, 3%, 5%, 3%, 7%. Green signifies areas of positive
contribution to a diagnosis of melanoma, red signifies negative. (Color figure online)

2.4 Sanity Checks

We perform three simple sanity checks on GradCAM and Kernel SHAP to
explore their performance in this context. (i) Reproducibility: we run the algo-
rithms twice using the same randomly selected model and the same image, then
compare images visually and using SSIM3. GradCAM saliency maps were unsur-
prisingly visually identical, with a perfect SSIM of 1, reflecting the deterministic
nature of this algorithm. Kernel SHAP images were visually close to identical,
but with SSIM less than perfect (mean 0.92, standard deviation 0.028). This
small deviance is unsurprising given the method requires approximation via ran-
dom sampling of subsets of features. (ii) Model dependence: using techniques
inspired by [2] we randomize the weights of selective, progressively shallower
layers in a randomly chosen model and recompute the GradCAM and Kernel
SHAP images. The idea is to ensure that the saliency maps are not in fact inde-
pendent of model weights. Visual comparison and SSIM scores verify that the
maps are indeed model dependent, an example can be seen in Fig. 2. (iii) Sensi-
tivity: we compare saliency maps from three models with the same AUC. This
test serves to determine the sensitivity of the maps to model weights and also
provides insight into differences across models of similar performance. Visual
inspection shows variation across three models with identical AUCs of 85% for

3 Details on SSIM (Structural Similarity Index) can be found in [23].



Deep Neural Network or Dermatologist? 53

both methods, with average variation in SSIM of 20% for both GradCAM and
kernel SHAP. An example can be seen in Fig. 3.

2.5 Spurious Correlation

The saliency maps show that at this resolution the majority of images do
not unambiguously capture clinically meaningful information. However, several
images suggest that the model is indeed weighting the classification decision
using spurious correlations. Notable examples include those images that high-
light the dark corners of the images (e.g. Fig. 3).

Fig. 3. GradCAM and kernel SHAP from two models with AUC 85%. Model 1 cor-
rectly predicted melanoma with 0.999 confidence (first two images). Model 2 incorrectly
predicted naevus with 0.996 confidence (second two images). The saliency maps indi-
cate model 2 has learned to weight the class decision using a spurious correlation: the
dark corners of the image.

2.6 Limitations

There are a number of limitations of this study. The small data size makes over-
fitting more likely, thus increasing the chances that we would uncover spurious
correlations. Additionally, while our small data size made many tasks compu-
tationally and practically feasible, for large test data sets this will not be the
case—visual inspection to screen for spurious correlations will likely become
impractical. An alternative approach would be to use these methods to provide
feedback at the time of prediction: while a saliency map located on the lesion
can not yet be viewed as justification that clinically meaningful correlations have
been learned, a map that is clearly located on a clinically irrelevant region could
be used to signal a prediction that should be ignored. Our study was also limited
to models of a particular architecture, while we justify this as providing a point
of comparison with existing published research, future work could include model
architecture as a search hyper-parameter.

While the accuracy of our models is good and comparable to human accuracy,
it is likely ensembled methods will improve accuracy further. It is difficult to
envision how these interpretability methods could be applied meaningfully in this
context. One alternative could be to use the maps themselves to regularize each
of the models during training—methods such as GradMask suggest this may be
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possible [21]. Finally, there exists recent, alternative methods for implementing
Shapley analysis that may well produce better results and permit the use of
higher resolution images [1,5]. These experiments we leave for the future.

3 Conclusions

There is a significant literature comparing the performance of DNNs and der-
matologists on test sets of dermoscopy images. These studies provide credibility
for pursuing research in this area and the next task is to develop techniques that
enable DNNs to become valued clinical decision support tools. We have shown
that GradCAM and kernel SHAP maps pass some basic sanity checks and can
provide insight into potential sources of bias. However, it is clear that more work
is needed before these maps can provide clinically meaningful information. We
have also shown that evaluating models according to AUC alone provides lim-
ited insight into the true nature of the performance of the model: saliency maps
show that models with the same AUC can make predictions using completely
different rationales.

Acknowledgement. This work was supported by an Australian Research Council
Centre of Excellence for Quantum Engineered Systems grant (CE 110001013).
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Abstract. Interpretability of a neural network can be expressed as the
identification of patterns or features to which the network can be either
sensitive or indifferent. To this aim, a method inspired by DeepDream is
proposed, where the activation of a neuron is maximized by performing
gradient ascent on an input image. The method outputs curves that
show the evolution of features during the maximization. A controlled
experiment shows how it enables to assess the robustness to a given
feature, or by contrast its sensitivity. The method is illustrated on the
task of segmenting tumors in liver CT images.

Keywords: Interpretability · Deep Learning · DeepDream ·
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1 Introduction

Interpretability of deep neural networks is becoming more and more crucial as
deep learning algorithms perform critical tasks such as driving a car or assist-
ing a physician in establishing a diagnosis. In this work we are interested in
interpreting segmentation networks by appraising their sensitivity to high-level
features. Indeed, segmenting anatomical structures in medical images is one of
the tasks that hugely benefited from Convolutional Neural Networks (CNNs),
to the point that this framework is now state-of-the-art in most segmentation
tasks [5,6,8].

Research on interpretable Deep Learning has been very active for a few years
now. Thorough reviews [1,7] extensively describe the field, among which so-called
saliency methods are especially popular [4,14,16,17]. The understanding of
these methods has grown recently, with some works examining their limitations
[11,18]. More generally, saliency methods address the problem of feature attribu-
tion which, in the case of a segmentation network, boils down to pixel attribution
and is thus of limited value.

Another class of interpretability methods consists in visualizing patterns that
activate a particular neuron in the network. Most of them consist in maximizing
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the activation in the input space [13,17,19,20]. These visualizations are insight-
ful when the network is trained on natural images, as they generate natural
structures and appearances, but they are harder to interpret on medical images.

Fig. 1. Illustration of the method with a 2-dimensional classifier. Left: input space, ⊕
and � are resp. positive and negative samples; the classification function is the grey
line; the data is described by features f1 (green arrow) and f2 (orthogonal to f1).
Middle: features space; features are normalized w.r.t. the set of positive samples. Left
and middle: the path of steepest slope (or DeepDream path) is represented as a dotted
arrow. Right: projection of this path on f1 and f2 (DeepDream analysis). (Color figure
online)

The method in [10] is closer to our motivation, i.e. to analyze the influence
of human-understandable features on the output of a network. Using abstract
concepts defined by sets of example images is appealing, especially for complex
concepts that would be difficult to model. But this transfers the burden to the
creation of concept-labelled databases, which can be challenging in medical imag-
ing. On the other hand, image domain features such as radiomic features can be
used to directly evaluate relevant concepts in medical images when a segmenta-
tion mask is available, and seems therefore well suited to the interpretation of
segmentation networks.

We detail our method in Sect. 2, starting by giving an intuitive definition of
what the sensitivity and robustness to a feature might be for a network. Then we
describe our method based on activation maximization to highlight features that
the network is sensitive to (Sect. 2.2). We show in a controlled setting that the
method correctly assesses the robustness of a network to a specific feature. Other
experiments show how we can get insights about what a network has learned
using our method (Sect. 3).

2 Method

2.1 Overview

Segmentation networks achieve state-of-the-art performance on most segmenta-
tion tasks. They can extract complex features at multiple scales and successfully
perform challenging segmentation tasks where modeling approaches using hand-
crafted features would have failed. To interpret this complex decision function,
we want to determine how sensitive or robust a neural network is to a set of
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Fig. 2. Representation of an iteration as described in Sect. 2.2: the current image is
forwarded in a segmentation CNN. We retrieve the output map and the gradient w.r.t.
an arbitrary neuron activation from the output map. We compute the features from
the image and segmentation mask and update the image following the gradient for the
next iteration.

high-level features {fk}1≤k≤K , such as the size of the object, statistics on its
intensity distribution or its shape.

We consider that a network is sensitive to a feature fk if its alteration
impacts the network decision. Conversely, we say that the network is robust
- or indifferent - to a feature if it is not sensitive to it. However a feature of an
object cannot in general be modified without modifying others characteristics,
therefore such properties cannot be directly evaluated. Starting from a baseline
producing a negative response, we can find a minimal alteration that produces
a positive response by following the path of steepest slope in the input space
(the arrow in Fig. 1), using the network gradients. This procedure is similar to
activation maximization, also known as DeepDream [15]. If the features fk are
smooth functions, we can assume that the path of steepest slope in the input
space will favor features to which the network is the most sensitive.

In Fig. 1 we provide a schematic view of this process in two dimensions.
Intuitively, a network should be indifferent to a feature that is useless (here f2)
for characterizing an object, and sensitive to a feature that is essential (here f1).

2.2 Algorithm

Being given a trained binary segmentation network S of any architecture, we
compute the DeepDream analysis with an iterative algorithm, illustrated in
Fig. 2. It starts from an image X0 with no foreground (an image with no lesion
in the case of lesion segmentation for instance), and pick a neuron i we want to
maximize. At each iteration j and until convergence:

– We forward the image Xj through the network and retrieve the segmentation
mask Mj = S(Xj), as well the gradient of the neuron activation ∂i

∂X .
– We update the image for the next iteration Xj+1 = Xj + α ∂i

∂X .
– We compute features fk(Xj ,Mj).

The output is a plot of the curves j → fk(Xj ,Mj). These curves can be inter-
preted to assess the sensitivity of the network to those features.
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Fig. 3. Different steps of gradient ascent performed on a CT slice showing a healthy
liver, with a network trained to segment liver tumors from CT slices. The top row
shows the image being “DeepDreamed”, while the bottom row shows the output of the
network (high probabilities of a pixel being part of a tumor are white, low probabilities
are black). The red cross on the leftmost image shows the pixel maximized by gradient
ascent. We observe that a responding area appears during the procedure. (Color figure
online)

This procedure, derived from activation maximization also known as Deep-
Dream, has been shown to work on many classification network architectures
[13,17,19,20] and we found that it was easily applicable on several segmentation
architectures. Figure 3 shows how the image and segmentation mask respond to
the activation maximization.

Although any kind of features can be used, we chose to use radiomic features
as they are specifically designed to characterize segmented tissues in medical
images [2,9,21], and have shown to capture enough information for Computer-
Aided Diagnosis [3,9].

Our DeepDream analysis consists in computing a set of features fk(Xj ,Mj)
at each step j of the DeepDream path. As activation maximization produces
small changes in input but decisive changes in output, we expect the features
to be tweaked according to the sensitivity of the network to those features.
To interpret the evolution of feature values observed during the DeepDream
analysis, we normalize a particular feature with respect to the distribution of
this feature computed on the validation dataset used during training.

3 Experiments

We conduct three experiments to assess the potential of a DeepDream analysis to
interpret a segmentation network. We show that the sensitivity computed from
the DeepDream analysis is associated with the performance of the network, as
expected (Sect. 3.1). The second experiment shows how our method highlights
the difference of sensitivities between networks trained on different databases
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(Sect. 3.2). Finally we show what kind of insight we can get with our method by
applying it to the the real-world use case of liver tumor segmentation (Sect. 3.3).

Fig. 4. Controlled experiment. We trained 7 networks with different probabilities p of
marking the positively labeled zones. (a) DeepDream of the network for p = 100%.
(b) Evolution of the characteristic feature during the gradient ascent process. (c) Dice
score on the unmarked test set and characteristic feature at the end of the gradient
ascent process for the 7 networks. Networks that performed poorly on the unmarked
test set and thus relied on the marking showed a high characteristic feature in their
dream.

For all experiments we use basic contracting-expanding architectures with
3 × 3 convolutions, max-pooling or up-convolution every 2 convolution layers
and number of filters doubling at each level, trained with an Adam optimizer
until convergence.

3.1 DeepDream Sensitivity and Segmentation Performance

In order to get a setting where the actual sensitivity to a feature is known, we ran
the following experiment: For cat and dog classes from the COCO database [12],
each image is augmented with a marking with a probability p. We chose a syn-
thetic texture made of 135◦ line segments of random positions and intensities
as the marking. Then, for different values of p, we train several networks Gp to
segment cats and dogs on this training dataset.

A simple, intuitive way to assess the robustness of a network with respect
to the marking is then to compute its score on a test dataset with no marking.
Given the score of G0 as the baseline, a similar score indicates that a network is
robust to the marking.

We assess the presence of the marking in any DeepDream generated as
described in Sect. 2.2 by computing the maximum response of the convolution of
the dream with a 135◦ line segment. We call this feature the characteristic fea-
ture of the marking. Starting from the same realization of white noise, we then
compute the characteristic feature at each optimization step, for all networks
Gp. Results are illustrated in Fig. 4.

Networks reaching a Dice score close to the baseline (p ≤ 20%) did not see
the characteristic feature evolve during DeepDream, in contrast to those which
relied on the marking (p ≥ 90%). This shows that we are able to correctly assess
the sensitivity of a network to a particular feature by analyzing its DeepDreams.
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Fig. 5. DeepDream analysis of 3 networks trained on different datasets. (a) Root mean
squared intensity along the DeepDream Path. (b) Maximum diameter of the dreamed
tumor. (c) Elongation (1 means round, and 0 means elongated in the standard definition
of elgontation in radiomics.)

3.2 Sensitivity to Intensity and Shape Features

In the LiTS database1, tumors appear as hypointense areas in the liver
parenchyma. In this experiment we compare a network trained on real tumors
to a network trained on synthetic tumors, to test how our method highlights the
differences of two networks trained on seemingly similar tasks.

We generate synthetic tumors by lowering the intensities in random areas of
healthy livers. The DeepDream analysis shows that the network trained on real
tumors is more sensitive to low intensities in the liver (Fig. 5a) than the network
trained on synthetic tumors. This indicates that the synthetic network focuses
on other features than the intensity.

To determine if the DeepDream analysis is also able to assess the sensitiv-
ity to shape features, we train a network to segment only synthetic elongated
tumors, as opposed to the overall round shape of real tumors, as observed in
clinical environments. We observe that the network trained on elongated tumors
is indeed more sensitive to elongation (Fig. 5c).

3.3 Analysis of a Tumor Segmentation Network

To illustrate how one can use DeepDream analysis with radiomic features, we
analyze a network trained to segment liver tumors in CT scans. We visualize
the evolution of 6 relevant radiomic features, normalized so that 0 is the mean
value of the feature computed on the validation dataset, and 1 is one standard
deviation above the mean (Fig. 6).

The values of intensity and sphericity quickly evolve towards the normal
range, indicating that the network is sensitive to both features. By contrast, the
Grey-Level Co-occurrence Matrix (GLCM) Contrast, a texture feature that mea-
sures intensity disparity among neighboring pixels, as well as the entropy of the
intensities distribution, stay below the normal range, indicating that the network
is robust to heterogeneity. This is coherent with our intuition that the network
should react to flat hypointense areas in the liver, without significant texture

1 https://competitions.codalab.org/competitions/17094.

https://competitions.codalab.org/competitions/17094
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Fig. 6. Evolution of features along the DeepDream path of a liver tumors segmentation
network, starting from a healthy liver. Images and masks are shown in Fig. 3.

information. However we also notice that the value of the Large Dependence
Emphasis feature goes rapidly and strongly out of normal range, suggesting a
lack of robustness to this feature.

4 Conclusion

In this paper, we proposed a new approach to interpret segmentation networks.
We generate and analyze fake positive objects using a gradient ascent method.
This provides insights on the sensitivity and robustness of the trained network
to specific high-level features.

Future work will focus on formulating theoretically grounded definitions of
sensitivity and robustness and on providing theoretical guarantees that Deep-
Dream primarily modifies the most sensitive features. Other state-of-the-art
segmentation architectures (such as U-Nets, DeepLab or PSPNet) will also be
tested, as well as multiclass segmentation networks.
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Abstract. Many healthcare applications would significantly benefit
from the processing and analyzing of multi-modal data. In this paper, we
propose a novel multi-task, multi-modal, and multi-attention framework
to learn and align information from multiple medical sources. Based on
experiments on a public medical dataset, we show that combining fea-
tures from images (e.g. x-rays) and texts (e.g. clinical reports), sharing
information among different tasks (e.g. x-rays classification, autoencoder,
and diagnosis generation) and across domains boost the performance of
diagnosis generation (86.0% in terms of BLEU@4).

1 Introduction

In healthcare, there have been continuous efforts and progresses in the auto-
matic recognition and localization of specific diseases and organs, mostly on
radiology images. Meanwhile, recent image/video captioning techniques [1,2]
by deep learning enable the generation of a description about the content of a
medical image automatically like a report written by a human radiologist [3,4],
which have a big impact for countries like China where doctors have a very big
work load, and has vast potentials to renovate medical computer-aided diagnosis
(CAD).

On the other hand, in healthcare, different types of information are available
from different sources such as electronic health care records, patient summaries,
clinical test results, and imaging (e.g. x-rays, CT scans, etc.). This data can
be both structured and unstructured. Vast amount of information is currently
held in medical records in the form of free text. The fusion of healthcare data
from multiple sources could take advantage of existing synergies between data
to improve clinical decisions and to reveal entirely new approaches to treating
diseases.

Inspired by this fact, in order to learn and relate information from multiple
sources and identify implicit correlations not visible when considering only one
source of data, we build a multi-task, multi-modal, and multi-attention frame-
work in this paper. It treats the generation on diagnosis as a text generation
task, where the encoded information is from chest x-rays, patient’s indication,
and doctor’s observations of the image. We use a publicly available radiology
dataset of chest x-rays and reports [5]. The dataset contains 7, 470 pairs of x-ray
and report.
c© Springer Nature Switzerland AG 2019
K. Suzuki et al. (Eds.): ML-CDS 2019/IMIMIC 2019, LNCS 11797, pp. 67–74, 2019.
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Fig. 1. Overall illustration of the proposed multi-task, multi-modal, and multi-
attention framework. An LSTM model is utilized to hierarchically build embeddings for
a paragraph from embeddings for sentences and words. Combined with the joint visual
and textual attention mechanism, another hierarchical LSTM first generates topics,
and then decodes this embedding to generate sentences for diagnosis. This hierarchi-
cal encoder-decoder is co-opted by a second neural autoencoder (AE) for the input
sentences. The AE shares the same bidirectional LSTM (BiLSTM) for words.

Each report consists of the following sections: indication, findings, tags,
and impression, in line with a common radiology reporting format for diagnostic
chest x-rays study. The indication section is a simple, concise statement of the
reason for the study. The findings section of the report includes the description
of the results of the study. The tags section lists the keywords which represent
the critical information in the findings. In a radiology report, the summary
has been referred to as the impression, conclusion, ordiagnosis section. Most
physicians read only the impression section of a radiology report, which places
great importance on this section of the report.

As shown in Fig. 1, our model takes an x-ray, and multiple sentences
describing indication and findings as input, generates textual descriptions of
impression. The use of appropriate recommendations in the impression section
can greatly contribute to the management of patient care and can provide con-
sultative information that may not otherwise be available. The framework is
designed to take advantage of the compositional structure of both visual and
textual information.

2 Model

Our work draws on recent progresses in LSTM auto-encoder to preserve and
reconstruct multi-sentence paragraphs [6], hierarchical attention network for doc-
ument classification [7], and multi-task learning [8] and its application for video
encoder and language entailment generation [9].
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Fig. 2. Visual encoder architecture (best viewed in color). The number of channels is
denoted either on top of or below the box. The x-y size is provided at the lower left
edge of the box. (Color figure online)

2.1 X-ray Encoding and Multi Label Classification

The architecture of x-rays encoder is illustrated in Fig. 2. Visual features in Fig. 2
denote conv-feature maps with dimension 256×(16×16) generated by the image
model. It has two branches, one for predicting x-ray image tags, and another for
visual context for the text generation model.

We treat the tag prediction task as a multi-label classification (MLC). Specif-
ically, a fully connected layer and a sigmoid one are adopted after global average
pooling of the visual features, which generates a distribution over all of the tags.

The x-ray encoder compresses the visual information into a 16 × 16 feature
map, where each pixel has a 256-dimensional feature vector. The attention mod-
ule in Sect. 2.3 performs spatial attention over this feature map.

2.2 Hierarchical Textual Encoder and Decoder

Throughout the paper, we will denote by LSTM(ht−1,yt) the LSTM operation
on vectors ht−1 and yt to achieve ht. hw

t and hs
t denote hidden states from

LSTMs, the superscripts of which denote operation at word level w or sentence
level s, the subscripts of which indicate time step t. hw

t (en) specifies encoding
stage and hw

t (de) implies decoding one. yw
t and ys

t denote word level and sentence
level embedding at time t.

We first obtain representation at the sentence level by running one BiLSTM
on top of its containing words.

hw
t (en) = BiLSTMw

en(hw
t−1(en),yw

t (en)). (1)

The output at the ending time step is used to represent the entire sentence as
ys = hw

ends
.

To build representation for the whole paragraph, another layer of LSTM is
placed on top of all sentences, computing sequentially for each time step as

hs
t (en) = LSTMs

en(hs
t−1(en),ys

t (en)). (2)



70 J. Tian et al.

Representation computed at the final time step is used to represent the entire
paragraph yp = hs

endp
.

Furthermore, one BiLSTM operates at the word level, which leads to sentence
representations. These embedding vectors are then used as inputs into the LSTM
which acquires paragraph representation.

Similar to encoding, the decoding module operates on a hierarchical structure
with two layers of LSTMs. LSTM outputs at sentence level for time step t are
obtained by:

hs
t (de) = LSTMs

de(h
s
t−1(de),ys

t (de), zt), (3)

where zt is a context vector, which will be explained in detail in Sect. 2.3. It
allows for salient features to dynamically come to the forefront as needed. The
initial time step hs

0(de) is equal to yp, the output from the encoding procedure.
We use a deep output layer [10] to generate topic vector as follows.

ts = relu(Gt1(relu(Gt0hs
t (de)))), (4)

where Gt0 and Gt1 are parameter matrices. ts is used as the initial input into
LSTMw

de for subsequently predicting words sequentially within sentence t + 1.
The prediction stops when #end, which designates the end of a sentence, is
emitted. The process is summarized as follows.

hw
t (de) = LSTMw

de(h
w
t−1(de),yw

t (de)), (5)
p(w|hw

t (de)) ∝ exp(hw
t (de),yw

t (de)). (6)

During decoding, the hidden state of LSTMw
de computed at the final time

step is used to represent the current sentence, which is passed to LSTMs
de,

combined with hs
t (de) for the acquisition of hs

t+1(de), and outputted to the next
time step in sentence decoding.

For each time step t, LSTMs
de has to first decide whether decoding should

proceed or come to a stop. A linear projection from hs
t (de) and a logistic classifier

produce a distribution over [STOP = 1, CONTINUE = 0] as

p(stop|hs
t (de)) ∝ exp(Gstophs

t (de) + Bstop), (7)

where Gstop and Bstop are parameter matrices. If p(stop|hs
t (de)) is greater than

a predefined threshold (e.g. 0.5), then LSTMs
de will stop producing new topic

vectors and LSTMw
de will also stop producing words.

At the same time, we utilize the one − to − many approach [9] for tasks that
have an encoder in common. A separate decoder (AE Decoder in Fig. 1) is used
to generate the same sequence of words, which reconstructs the inputs, vector
representations from the aforementioned BiLSTMw

en, by predicting words within
sentences sequentially from an LSTMae

de .

2.3 Joint Textual and Visual Attention

Indication and findings in a report are encoded into a set of vectors as d =
{d0, · · · ,dΠ−1}, where Π is the total number of sentences.
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A textual context vector zd =
∑Π−1

i=0 αtidi is a dynamic vector that repre-
sents the relevant part of textual feature at time step t, where αti is a scalar
weighting of textual vector di at time step t, defined as follows.

αti = exp(eti)/
Π−1∑

k=0

exp(etk), eti = fatt(di,hs
t (de)), (8)

where fatt is a function that determines the amount of attention allocated to
textual feature di, conditioned on the LSTM hidden state hs

t (de). This function
is implemented as a multilayer perceptron as fatt = wT tanh(Udhs

t (de)+Wddi +
bd). Note that by construction

∑Π−1
i=0 αti = 1.

The visual encoder network encodes an x-ray image into a set of vectors
as a = {a0, · · · ,a255}. Similarly, we can construct a visual context vector za.
Finally, we combine the textual and visual context vectors using concatenation
as zt = [zd, za].

3 Experiments

Among the 7, 470 pairs of image and report, there are 6, 461 cases which have
both findings and impression in the report. We randomly select 500 samples
for validation and 500 cases for testing. Training is conducted on the remaining
5, 461 ones.

We preprocess the data through converting all tokens to lower cases, and
removing all of non-alpha tokens. It leads to 401 unique tags, each of which
appears at least twice, covering 96.0% tag occurrences in the dataset, and 1331
unique words, each of which appears at least three times in all sentences, cover-
ing 99.0% word occurrences in the dataset. The uncovered tags and words are
replaced with a special UNK token. On average, each x-ray image is associated
with 2.2 tags, 1.7, 4.7, 1.4 sentences for indication, findings, and impression,
respectively. The x-ray images are resized to a size of 256 × 256.

An illustration of diagnosis generation by our model is shown in Fig. 5. In our
experiments, the hidden state size from all LSTMs is empirically set to 512 as it
has a better tradeoff between performance and model complexity. We evaluate
the diagnosis generation performance on the BLEU(B) [11] and ROUGE(R) [12]
scores over all of the testing reports.

The results are given in Table 1. The first row (MTMA) lists results of our
major model defined in Fig. 1. The second row (MTMA-AE) presents a model
(Fig. 3) without adding AE Decoder to the BiLSTM encoder in the major model.
The third row (MTMA-IM) lists results from a configuration (Fig. 4) where diag-
nosis is from indication and findings only. The fourth row (Jing) shows results
from an x-ray captioning [13] for the same dataset as we use, wherein, a hier-
archical LSTM model is utilized to generate a paragraph on the contents in
impression and findings from encoding of the x-ray. By adding auxiliary task
connected to the encoder, we would expect to encourage encoder in the lower
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Table 1. BLEU@n and ROUGE scores on diagnosis generation. All values are reported
as percentage (%).

Method B1 B2 B3 B4 R

MTMA 88.2 87.4 86.7 86.0 92.9

MTMA-AE 55.8 51.6 47.6 43.2 82.2

MTMA-IM 52.1 48.1 44.1 39.8 82.2

Jing 51.7 38.6 30.6 24.7 44.7

Fig. 3. Illustration of the proposed multi-task, multi-modal, and multi-attention frame-
work without neural autoencoder (AE) for the input sentences. An LSTM model is
utilized to hierarchically build embeddings for a paragraph from embeddings for sen-
tences and words. Combined with the joint visual and textual attention mechanism,
another hierarchical LSTM first generates topics, and then decodes this embedding to
generate sentences for diagnosis.

stages provides additional regularization and better generalization. The com-
parison between MTMA and MTMA-AE indicates that by training on another
relatively small task jointly, the model improves its performance on its main
task. Employing joint visual and textual information for generating topics does
help diagnosis generation a lot by comparison between MTMA with MTMA-
IM and Jing. The reason might be that visual attention can capture sub-region
image information, and textual attention focuses on semantic context, which
is confirmed by visual input. It suggests that our framework provides better
alignment from impression output to the provided visual and textual features.
In summary, MTMA achieves the best results on all of the evaluation metrics,
which demonstrates the effectiveness of the proposed multi-task, multi-attention
model using multi-modal data fusion.
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Fig. 4. Illustration of the proposed multi-task framework without x-ray input. An
LSTM model is utilized to hierarchically build embeddings for a paragraph from embed-
dings for sentences and words. With textual attention mechanism, another hierarchical
LSTM first generates topics, and then decodes this embedding to generate sentences
for diagnosis.

Fig. 5. Illustration of diagnosis generated by the model defined in Fig. 1. GT represents
ground truth impression from the report.

4 Conclusion

This paper proposes a multi-task, multi-modal, and multi-attention framework
to learn and align medical information from multiple sources. Due to different
types of information available from different sources in healthcare, it has a big
impact for CAD. Through experiments on a publicly available radiology dataset
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of chest x-rays and reports, we show that combining features from images and
text can improve the performance of diagnosis generation (86.0% in terms of
BLEU@4).
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10. Pascanu, R., Gülçehre, Ç., Cho, K., Bengio, Y.: How to construct deep recurrent
neural networks. In: International Conference on Learning Representations 2014
(2014)

11. Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: BLEU: a method for automatic
evaluation of machine translation. In: Proceedings of 40th Annual Meeting of the
Association for Computational Linguistics, pp. 311–318 (2002)

12. Lin, C.Y.: Rouge: a package for automatic evaluation of summaries. In: Text Sum-
marization Branches Out: Proceedings of the ACL-04 Workshop, pp. 74–81 (2004)

13. Jing, B., Xie, P., Xing, E.P.: On the automatic generation of medical imaging
reports. CoRR abs/1711.08195 (2017)

https://doi.org/10.1007/978-3-319-46723-8_14
https://doi.org/10.1007/978-3-319-66179-7_37


Deep Learning Based Multi-modal
Registration for Retinal Imaging

Mustafa Arikan1,2, Amir Sadeghipour1,2, Bianca Gerendas1,2, Reinhard Told2,
and Ursula Schmidt-Erfurt1,2(B)

1 Christian Doppler Laboratory for Ophthalmic Image Analysis,
Department of Ophthalmology and Optometry,
Medical University of Vienna, Vienna, Austria
ursula.schmidt-erfurth@meduniwien.ac.at

2 Department of Ophthalmology and Optometry,
Medical University of Vienna, Vienna, Austria

Abstract. The precise alignment of retina images from different
modalities allows ophthalmologists not only to track morphologi-
cal/pathological changes over time but also to combine different modal-
ities to approach the diagnosis, prognostication, management and mon-
itoring of a retinal disease. We propose an image registration algorithm
to trace changes in the retina structure across modalities using vessel
segmentation and automatic landmark detection. The segmentation of
the vessels is done using a U-Net and the detection of the vessel junc-
tions is achieved with Mask R-CNN. We evaluated the results of our
approach using manual grading by expert readers. In the largest dataset
(FA-to-SLO/OCT) containing 1130 pairs we achieve an average error
rate of 13.12%. We compared our method with intensity based affine
registration methods using original and vessel segmentation images.

1 Introduction

From a clinical perspective there is a need for observing retinal features and
pathologies across different imaging modalities for the patient’s diagnosis and
treatment [11]. Some structures and pathologies are better recognized in a par-
ticular modality than in other modalities. In retinal imaging, two common cat-
egories of imaging procedures are present. These are 2D imaging methods like
CF (color fundus photography), FA (fluorescein angiography), FAF (fundus aut-
ofluorescence), ICGA (indocyanine green angiography) or SLO (scanning laser
ophthalmoscopy) and 3D methods like SD-OCT (spectral domain optical coher-
ence tomography) or OCT-A (optical coherence tomography angiography). 2D
methods provide two-dimensional information of the human retina by means
of reflected light. OCT and OCT-A provide three-dimensional information of
retinal structures such as intraretinal layers and optic nerve head that are not
available via e.g. fundus imaging [10]. For example, the fovea position is easier
to find in 3D OCT images comparing to 2D modalities such as CF. Using multi-
modal registration, the fovea position can be annotated in OCT and precisely
c© Springer Nature Switzerland AG 2019
K. Suzuki et al. (Eds.): ML-CDS 2019/IMIMIC 2019, LNCS 11797, pp. 75–82, 2019.
https://doi.org/10.1007/978-3-030-33850-3_9
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transferred to other modalities. The distinct appearance of retinal structures
when imaged with different techniques and the increasing number of scans makes
the manual annotation for registration a challenging and time-consuming task.
Therefore automatic multi-modal image registration would be beneficial. The
goal is to warp a moving image to the coordinate frame of a reference image so
that the same point is visualized at the same coordinates in both modalities.
The topic of multi-modal image registration has been addressed by a few stud-
ies which relied on descriptor matching [7] and feature-based registration [6,10],
hough transform [17] or domain-specific landmarks [2].

Recently, convolutional neural networks (CNNs), have shown impressive per-
formance in both image segmentation [14] and detection tasks [1], and have found
good applications [3,5,8,15] in retinal imaging. Coupled with these improve-
ments we introduce a multi-modal registration algorithm. To sufficiently tackle
the challenge of multi-modal registration in retinal imaging over many different
modalities and vendors, vessel segmentation and finding of landmarks is crucial.

In this paper, we propose a novel framework to address the challenging task of
automatic multi-modal retinal 2D/3D image registration. The proposed frame-
work is superior to reference intensity based multi-modal registration methods
in terms of accuracy and robustness. Specifically, our approach is not limited to
a particular pair of modalities and utilizes deep learning for modality-specific
segmentation of vessels and detection of vessel junctions. We use vessel segmen-
tations and corresponding vessel junctions for a two-step registration approach,
where we first estimate scaling, rotation and translation using landmarks and
fine tuning using the vessel segmentation.

In summary, the main contributions of our approach include: high diver-
sity/variety of modalities, robustness against low-quality images where vessels
are not captured well, and robust registration. This paper is organized as follows.
Section 2 introduces the proposed method. Section 3 describes experiments and
the evaluation. Finally, Sect. 4 presents our conclusion and future work.

2 Method

Figure 1 shows the pipeline of the proposed registration framework. The seg-
mentation part is a U-Net [14] based network consisting of 11 layers, i.e., 6
convolutional layers, 2 max-pooling layers, 2 upsampling layers and 1 softmax
layer. The training is performed on patches, which are extracted from the train-
ing images with certain patch size. We trained five segmentation models for each
modality with its own configuration regarding number of epochs, patch height,
patch width, batch size and number of training samples. We collected between
12 and 15 image annotations - vessels and markers - for each modality for the
training. We extended the number of training samples using data augmenta-
tion. We have - while taking account the different image resolutions - generated
between 75 and 500 training samples for every modality.

The detection part is a Mask R-CNN [1] (regional CNN) based network for
finding automatic landmarks (bifurcations, branches and crossover). The detec-
tion part is trained for every modality on the same images as the segmentation
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part. Mask R-CNN is a network architecture aimed at finding instances of objects
in images. In our case we find vessel bifurcations, branches and crossover. We
rely on Mask R-CNN instead of ridge detection algorithms, thus we can train
modality-specific models for detection and don’t need parameter tuning for such
methods. The output of our detection models is a bounding box of found objects
and a mask representing the instance.

Our main method uses both (segmentation and detection) parts for the regis-
tration. We estimate scaling, rotation and translation using sets of points found
by the detection part. This is the initial registration between two images. In the
final part of the registration we use the vessel segmentations and apply affine
registration to do fine-tuning and finish the task of registration.

Fig. 1. Architecture of the proposed multi-modal registration pipeline, with the U-Net
based segmentation part (1–3), preparation of comparison images (4), the detection
part (5) based on Mask R-CNN for automatic markers and registration (6). The reg-
istration flow for a pair of scans including segmentation of vessels, finding automatic
markers and the step for the initial registration using markers and dice comparison are
indicated.
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2.1 Segmentation

The segmentation related parts of the pipeline consist of a U-Net based seg-
mentation, a connected component filtering and binary thinning. After the seg-
mentation we apply a connected component filter to remove noise and some
vessels, which are isolated and less connected than others. This is done as fol-
lowing: apply Otsu’s method [12] on segmentation result, assign a label to every
region in the binary image, count the number of pixels for every region, keep the
largest N (N = 10) regions and filter the rest of the regions. After the connected
component filter, we apply binary thinning to obtain a skeleton of the vessels.

2.2 Detection and Registration

The detection and registration parts consist of a Mask R-CNN to detect auto-
matic markers from the segmentation result, dilation filter applied on the skele-
ton image, initial registration and fine-tuning. We apply the detection algorithm
to detect automatic markers (bifurcations, branches and crossover) and create
two lists containing the coordinates of the found markers for the moving and
the fixed image. Afterwards, we compile a list of M (e.g. M = 6) neighbours
for every marker. For the purpose of initial registration we need at least three
corresponding markers between the fixed and the moving image to correctly esti-
mate scaling, rotation and translation. We iterate through every marker and its
neighbours and prepare a list of sets of points with size K (K = 3) for both
images. Using these sets of points from both images we estimate scaling, rota-
tion and the translation parameters. The skeleton image is prepared for dice
comparison: we apply a dilation filter on the skeleton image to gain images for
the purpose of comparison. After estimating the transformation we calculate the
dice value between the fixed image and the moving image. The combination with
the highest dice value is selected as the initial registration matrix. The calcula-
tion of dice for every possible combination between the sets of points from both
images is computationally expensive. The estimation part on the other hand
is computed much faster. Therefore we apply constraints for the parameters of
scaling, rotation and translation. For example we can limit the scaling factor
between 0.5 and 1.5 and calculate dice for only a subset of combinations. The
dice comparison for possible combinations is calculated in parallel to save time.
At the end, the combination which yields the highest dice value is selected for
the initial registration. The initial registration is used along the vessel images for
the final registration by applying intensity based affine registration. The metric
was set to Advanced Mattes Mutual Information [9] to measure the similarity
of the registration.

Implementation Details: Our registration framework was implemented in
Python. We implemented the segmentation network in Keras. The learning rate
was initialized as 0.1. The training took between 6 and 9 h for the different modal-
ities. The marker detection (Mask R-CNN) is implemented in Python3 and Caffe.
The training took between 12 and 17 h. The networks were trained using a GPU
of NVIDIA 1080Ti. The estimation of scaling, rotation and translation is done
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using nudged [13] (https://github.com/axelpale/nudged). The intensity based
affine registration is achieved using the elastix [4] framework (http://elastix.isi.
uu.nl/).

3 Experiments

We applied our registration framework on several modalities and data sets. To
be able to compare we used the elastix as a reference. We applied our algorithm
on FA, FAF, SLO/OCT, ICGA and OCT-A images. We registered pairs of FAF
and SLO/OCT images with 1130 examples. The data was acquired at the Oph-
thalmology Department of the Medical University of Vienna. We also registered
ICGA and FA with OCT-A images containing 25 examples. We compared our
algorithm with intensity based affine registrations from elastix. The overview of
the use cases can be seen in Table 1.

Registration Results. Figure 2 presents the registration results of our proposed
framework for a selected example (FAF-to-SLO).

Table 1. Overview of the data sets

Moving image Fixed image # of pairs Remarks

FAF SLO/OCT 1130 2D-to-2D/3D

FA OCT-A 25 2D-to-2D/3D

ICGA FA 25 2D-to-2D

3.1 FAF-to-SLO Registration

SLO is a non-invasive 2D technique to obtain high resolution en face images of
the retina. FAF is a non-invasive 2D technique, where vessels are characterized
by a reduced signal due to the absorption by blood [16].

We prepared a data set with 1130 pairs from 71 patients with FAF and
SLO/OCT images. We registered FAF images (moving image) to SLO images
(fixed image). Both the SLO and the FAF images have resolutions of 768 × 768
or 1536 × 1536 pixels. The SLO images were scanned together with the OCT
and therefore they were already co-registered. Thus in addition to FAF-to-SLO
registration we also achieved FAF-to-OCT registration. The registrations were
manually evaluated and compared to a reference intensity based affine registra-
tion [4]. For the manual evaluation we prepared checkerboard visualizations of
registration pairs. We visualized before and after images. The results were eval-
uated by four expert readers, who looked at every result of the 1130 image pairs.
The results of the evaluation were: 13.72%, 12.92%, 12.83% and 13.01% using our
method and 30.71%, 28.94%, 30.8% and 32.74% using the reference method. We
achieved an average error rate of 13.12% vs. 30.8% using the reference method.

https://github.com/axelpale/nudged
http://elastix.isi.uu.nl/
http://elastix.isi.uu.nl/
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Fig. 2. Registration result of our proposed multi-modal registration framework for
FAF-to-SLO/OCT. (a) Overlay visualization before registration of SLO (bright) and
FAF (dark). (b) Result of initial registration using Mask R-CNN for automatic mark-
ers. (c) Result of affine registration for fine-tuning using vessel segmentations. (d)
Transformation applied on original2 images and checkerboard visualization of both.

3.2 FA-to-OCT-A Registration

OCT and OCT-A are non-invasive 3D imaging techniques, that obtain pro-
jections of the retinal layers using low-coherence light waves. OCT-A utilizes
motion-contrast imaging, calculating differences in backscattered OCT signal
intensity between sequential scans of the same area. We used 25 FA images and
OCT-A volumes. The FA images have a resolution of 1536 × 1536 pixels while
the OCT-A slabs - projections on a 2D plane of an OCT-A volume between
two selected retinal layers - have a resolution of 500 × 500. The OCT-A slabs
cover a smaller area in the 2D plane than the FA images. We registered FA
images (moving image) to OCT-A slabs images (fixed image). The registration
for images with different resolutions and areas of interest is much more difficult
using intensity based affine registrations. We registered 21 out 25 image pairs
(error rate 16%) using our method with using ten neighbour landmarks (M =
10). We show in Fig. 3 the result of such a registration with different resolutions
and sizes using our method. We also highlight the set of points with the best
dice from the initial registration.



Deep Learning Based Multi-modal Registration for Retinal Imaging 81

Fig. 3. Registration result for images with different resolutions and sizes for FA-to-
OCT-A slab. From left to right: Overlay visualization before registration of FA (bright)
and resized OCT-A slab (dark), end result of registration and transformation applied on
original images and checkerboard visualization of both. In all three images we highlight
the sets of points resulting from our landmark detection and matching algorithm.

3.3 ICGA-to-FA Registration

We used 25 ICGA images and FA images. ICGA is a invasive 2D imaging tech-
nique like FA. In ICGA, retinal vasculature is also visualized and it normally
appears as a vascular network overlying the choroidal vessels. The ICGA images
have the same resolution of 1536 × 1536 pixels like the FA images. The ICGA
images cover a similar area as the FA images. We registered ICGA images (mov-
ing) to FA images (fixed). After the registration of ICGA to FA and FA to
OCT-A we indirectly registered ICGA to the OCT-A slabs and volumes as well.

4 Conclusion and Future Work

We proposed a novel framework for multi-modal registration of retinal images
using vessel segmentation and landmark detection. Intensity based registration
methods often fail when images have different resolutions, sizes or grey value
ranges. We relied on landmarks, vessels and a matching strategy to overcome the
limitations of intensity based affine registration methods. The proposed frame-
work can deal with different image modalities and resolutions. Finally, we applied
our method on different combinations of modalities and compared to a inten-
sity based affine registration method. The benefits of automatic landmarks and
matching strategies for registration is crucial for noisy and incomplete images.
A robust multi-modal registration will help medical doctors to include multiple
imaging modalities for disease diagnosis, progression and therapy. Therefore we
would like to apply our method on more data and more combinations of reti-
nal imaging modalities. This work constitutes a step towards constructing more
robust image registration methods for the high number of different modalities,
vendors and image resolutions in retinal imaging. We would like to investigate
registration errors using a quantitative evaluation with different number of neigh-
bour markers and the applicability to other medical imaging domains.
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Abstract. Decision support tools that rely on supervised learning
require large amounts of expert annotations. Using past radiological
reports obtained from hospital archiving systems has many advantages
as training data above manual single-class labels: they are expert annota-
tions available in large quantities, covering a population-representative
variety of pathologies, and they provide additional context to pathol-
ogy diagnoses, such as anatomical location and severity. Learning to
auto-generate such reports from images present many challenges such as
the difficulty in representing and generating long, unstructured textual
information, accounting for spelling errors and repetition/redundancy,
and the inconsistency across different annotators. We therefore propose
to first learn visually-informative medical concepts from raw reports,
and, using the concept predictions as image annotations, learn to auto-
generate structured reports directly from images. We validate our app-
roach on the OpenI [2] chest x-ray dataset, which consists of frontal
and lateral views of chest x-ray images, their corresponding raw tex-
tual reports and manual medical subject heading (MeSHR©) annotations
made by radiologists.

Keywords: NLP · Medical imaging · Deep learning

1 Introduction

Radiologists are faced daily with the very time-consuming and repetitive task of
looking at hundreds of radiography images and writing up radiological reports.
The fast turn-arounds they are expected to produce leads to fatigue that can neg-
atively affect diagnostic accuracy [18]. Supervised learning for automated pathol-
ogy detection from images has the potential for clinical-decision support, how-
ever, such image segmentation and classification learning tasks require detailed
annotations covering a large distribution of input data for the algorithms to be
able to make robust predictions. Such annotations must be made by qualified
radiologists, which, for the detail and breadth of annotation required, will be an
equally if not more time-consuming task than manually creating the reports. In
addition, classification and semantic segmentation tasks only solve for the predic-
tion of presence of pathologies, and not the generation of reports which contain
additional information such as severity, location, and absence of pathologies.
c© Springer Nature Switzerland AG 2019
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Recently, we have seen supervised learning approaches that aim to take
advantage of past radiological exams containing reports in order to either auto-
generate the reports [9,16,22], or to assist in classification tasks [15,19–21,23].
The noise present in medical reports in addition to the presence of non-visually
significant information, such as the negation of pathologies, make it difficult
to learn from them directly as done in natural image captioning frameworks.
Additionally, high recall/precision of pathologies is more crucial in the medical
domain where the risk of mis-labelling is much higher.

We therefore propose to use a limited number of manual medical concept
annotations in order to first learn to extract them from raw reports, and then
take advantage of the model predictions as image annotations, thus providing
a method for augmenting an image-annotation dataset. We then demonstrate
how these image-concept annotations can be learned through sequence models
conditioned on image features, and generate a more readable context for the
diagnosis that can be used as part of a clinical decision support system, thus
greatly alleviating the burden on radiologists. Our approach can be summarised
in the following steps:

1. We propose a network that learns to extract visually-significant medical con-
cepts from raw reports. To our knowledge, this is a first attempt to that goes
beyond simple pathology detection to include concepts such as anatomical
position and severity.

2. We explore several sequence-learning networks that aim to condition the
sequence generation process on image features in order to learn to auto-
generate structured reports from radiological images.

3. We use the predictions made by the structured report generation process
in step 1 to demonstrate how they can be used to create an image-report
training set for step 2.

2 Related Work

2.1 Data-Mining Image Labels

There are two common approaches to extracting image labels from raw reports:
statistical and tool based. Radiological text mapping tools such as DNorm [12]
and MetaMap [3] have been used to extract labels for multi-label classifica-
tion [21] and in weakly supervised localisation learning frameworks [20]. How-
ever, other biological concepts in the reports, such as location, severity, and
other visually descriptive features of the pathology are not taken advantage of.
Unsupervised, statistical methods such as latent Dirichlet allocation [15] and
clustering [19] have been used to implicitly define topics and cluster groups con-
taining key words and propose classification into these topics and groups. These
approaches are heavily dependent on the number of topics/groups providing the
lowest perplexity score, which can be a range of values. In addition, these are
not generative models, therefore reports can only be selected based on nearest-
neighbour methods. To this end, we propose instead to learn to generate reports
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comprised of medical concept from images, in a similar style to natural image
captioning.

2.2 Radiology Report Generation

Closest to our work, Shin et al. proposed a cascaded learning framework to auto-
generate MeSH annotations from chest X-rays [16] whereby image embeddings
are first extracted from a pre-trained classification network, and then used to
initialise a sequence prediction model to auto-generate MeSH sequences. Zhang
et al. [22,23] leverage manually created structured reports in a dual-attention
framework to improve features used for classifying histopathology images and to
provide interpretability to the classification. The reports used in both cases are
far more structured than their raw counterparts and so this approach cannot be
directly translated to hospital data. Training on raw hospital reports, Jing et
al. [9] demonstrated how they can be generated by first training a multi-label
CNN on the images and the Medical Text Indexer (MTI) tags identified in the
original raw reports of the Openi chest x-ray dataset. However, reports can be
very long and heterogeneous, and the authors do not evaluate the model’s ability
to determine whether visually and clinically-relevant medical concepts have been
identified. To address the challenges of learning from raw reports directly, we first
learn to generate structured reports made up of only visually-significant medical
concepts that correspond directly to features seen in the images. Being shorter
and vocabulary-controlled, the generation process is easier to evaluate for correct
identification of pathologies.

3 Method

3.1 Enriched Concept Extraction from Raw Reports

We approach learning structured reports from raw textual reports as a multi-
label classification task since the vocabulary of MeSH terms is consistent across
annotators, and limited. We modify the shallow CNN first introduced by Kim [10]
for multi-class text classification and later adapted for multi-label text classifi-
cation by Liu et al. [13] by introducing a learn-able embedding layer as we do
not have the advantage of pre-trained word embeddings for medical text, and
by introducing dropout followed by a fully-connected layer to each convolutional
output prior to the concatenation to aid regularisation.

Let xi ∈ R
d be the d-dimensional word vector for the i-th word of report p.

The textual report is thus represented as a concatenation of word embeddings:
p = [x0, ...xi, ...xM ] ∈ R

M×d where M is the maximum length of the reports.
A filter m ∈ R

hd is convolved with a window of h words to produce a new
feature ci:

cj = f(m ∗ xi:i+h−1 + b) (1)

where f is a non-linear activation function and b is a bias term. The filter is
applied consecutively to every h-word window in the sentence, resulting in a
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feature map c = [c0, ....ci, ...cM−h+1] ∈ R
M−h+1. Max-over-time pooling [4] is

applied over each feature map to capture the most important feature ĉ = max(c).
In this way we apply many filter operations with varying window widths in
order to obtain multiple features that are able to capture semantic information
of reports with varying word lengths. We use the sigmoid activation function
as we require an independent prediction for each class and train by minimising
the multi-class sigmoid cross-entropy (SCE) loss. In addition, we add terms to
balance maximising the true positive class prediction with true negative class
predictions as the positive label space is very sparse:

ŜCEi = −λ1

K∑

j=1

(yj log(f(sij)) + (1 − yj log(1 − f(sj)))

− λ2

K∑

j=1

yjf(sj)/
K∑

j=1

(yjf(sj) + yj(1 − f(sj)))

− λ3

K∑

j=1

(1 − yj)(1 − f(sj))/
K∑

j=1

((1 − yj)(1 − f(sj)) + (1 − yj)(f(sj)))

(2)
where K is the number of classes, yj is presence/absence of class label j for
instance i, f(sj) is the prediction for instance i on label j made through a
sigmoid activation:

f(si) =
1

1 + e−si
(3)

The weights of each loss term, λ1, λ2, λ3 are non-negative, sum to 1 and
chosen through cross-validation. Finally, the modified SCE loss is averaged over
batches.

3.2 Report Generation from Images

Given that it is possible to learn structured report outputs from raw reports, we
propose a method of learning to auto-generate structured reports directly from
images. We explore multiple ways of conditioning the MeSH sequence learning on
the image embeddings that aims to maintain the dependency between the word
generation process and the image embedding at every time-step. The MeSH
sequence is modelled using an RNN, specifically the Long Short-Term Memory
(LSTM) implementation proposed in [8]. Each LSTM unit has three sigmoid
gates to control the internal state: ‘input’, ‘output’ and ‘forget’. At each time
step, the gates control how much of the previous time steps is propagated through
to determine the output. For an input word sequence {x1, . . . , xn} where xi ∈ R

d,
the internal hidden state ht ∈ R

h and memory state mt ∈ R
m are updated as

follows:
ht = ft � ht−1 + it � tanh(W (hx)xt + W (hm)mt−1)
mt = ot � tanh(ht)

(4)
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where xt ∈ R
D is the word embedding, W (hx) and W (hm) are the trainable

weight parameters, and it, ot and ft are the input, output and forget gates
respectively. Bias terms are left out for readability.

The image embedding, imi = CNN(I) where imi ∈ R
g is extracted from

the final spatial-average pooling layer of the pre-trained CNN. We explore three
ways of conditioning the sequence learning process:

1. RNN0: The image embedding is projected into the same embedding space as
the word embeddings via a dense transition layer: im = relu(W (dg)CNN(I)).
The image embedding is concatenated with the word sequence and thus
treated as the first ‘word’ in the MeSH sequence.

2. RNN1: The image embedding is projected via a dense transition layer into
a fixed embedding width and combined with the output of the recurrent
layer through either concatenation or summation operation, and passed to
the decoder dec:

dect = relu(W (z)(ot ∗ relu(W (dg)CNN(I))) (5)

where ∗ represents concatenation or summation and W z are the weights of
the decoder.

3. RNN2: The image embedding is projected via a dense transition layer into a
fixed embedding width and combined with the input of the recurrent layer
through either concatenation or summation operation, and passed to the
encoder enc:

enct = relu(W (a)(xt ∗ relu(W (dg)CNN(I))) (6)

where W a are the weights of the encoder.

The model architectures are illustrated in Fig. 1. For all models, the decoder
outputs are passed to the prediction layer s(t) = f(WTxt) where f is the softmax
function. The models are all trained by minimising the cross-entropy loss between
the output and true sequence:

L(S, I) = −
T∑

t=0

log p(Pt = Tt|CNN(I), P0 . . . Pt−1) (7)

where p is the probability that the predicted word Pt equals the true word Tt at
time step t given image features CNN(I) and previous words P0 . . . Pt−1, and T
is the LSTM sequence length.
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Fig. 1. Image-MeSH sequence learning model architectures.

4 Experiments

4.1 Dataset

We evaluated our models on the OpenI [2] Indiana U. Chest X-ray Collection.
This dataset consists of 7,470 frontal and lateral chest x-ray images and 3,955
associated radiological reports from the hospital’s picture archiving systems.
They have all been fully anonymised to remove patient names. In addition to
the raw text reports, each exam has MeSH annotations made by qualified radi-
ologists. MeSH annotations are (with some exceptions) formatted as [pathol-
ogy/description, ... pathology/description] where description is a combination
of anatomy/position/severity. The number of captions per image is on average
2.33, with an average of 2.68 MeSH terms per caption.

Preprocessing. This involved lower-casing, punctuation and non-alpha-
numeric character removal from reports and MeSH. We limit the MeSH anno-
tations to just one pathology/description pair by selecting the caption with the
most common pathology. Additionally, as the negation of pathologies was gener-
ally standard across reports, we performed negation removal using regex. Finally,
the text reports were cropped/padded to 32 words based on the average of
20.23 + 1 std of 11.9. MeSH captions were cropped/padded to length 5 based
on average + 1 std. Empty reports were removed. This resulted in 3,023 unique
report-MeSH term pairs, of which 300 were randomly selected for validation and
300 for test.

4.2 Experimental Settings

We first investigate whether the structured reports can be learned from raw
reports by creating a sub-set of size = 1000 of the MeSH annotated reports, and
training the text CNN on the report-MeSH pairs in the sub-set. The trained text
CNN is then used to make MeSH prediction on the remaining set of raw reports,



Automated Enriched Medical Concept Generation for Chest X-ray Images 89

and these (together with the gold-standard annotated sub-set from the previous
step) are used to train the image-MeSH sequence model. We compare this to
training the image-MeSH sequence model on the entire gold-standard annotated
set of 3,023.

Text CNN. For the text CNN model, we use rectified linear units as activa-
tion function on the convolutional layers, one-dimensional convolutional filters
of width 3, 4, 5 with 512 feature maps for each filter, dropout rate [5] of p = 0.5,
with 254 hidden units for the dense layer, and with λ1 = 0.5, λ2 = 0.2, λ3 = 0.3
for the loss terms. The model was trained through batch backpropagation, batch
size = 128 and using Adam optimisation [11] with learning rate = 0.001 for 100
epochs with early-stopping. To compensate for the class imbalance of ‘normal’
vs. diseased cases, we select batches with uniform distribution over the classes,
augmenting the instances by sentence-shuffling.

Sequence Models. Image embeddings are extracted from the last average pool-
ing layers of Vgg16 [17] and Resnet50 [7] models, pre-trained on ImageNet [6]
to extract im ∈ R

4096 and im ∈ R
2048 respectively. For RNN0, the joint image-

word embedding dim is set to 2048 for the Vgg input, and 1024 for Resnet. For
RNN1 and RNN2, the dense transition layer dimension is set to 1024. For all the
sequence models, the LSTM hidden state is set to dim 512, and the LSTM units
are unrolled up to 6 time steps (1 for the start token, and 5 for MeSH sequence).
All models are trained with batch size 128, using Adam optimisation [11], learn-
ing rate = 0.001 and early-stopping.

Table 1. Text CNN classification metrics for sub-sampled and full gold-standard anno-
tated data. Metrics reported on test data.

All classes

Training sample size Acc. R R-OC R-OS P P-OC P-OS

1000 98.26 67.82 40.49 65.79 70.15 45.15 67.18

3023 (all) 99.48 92.07 84.50 91.77 89.90 84.82 89.47

Pathology classes

Training sample Acc. R R-OC R-OS P P-OC P-OS

1000 98.64 67.41 44.72 60.00 69.73 44.57 56.22

3023 (all) 99.54 90.74 86.94 80.67 88.45 86.35 78.72

5 Results

Enriched Concept Extraction from Reports. We evaluate the MeSH term
prediction from the text reports by calculating the total binary accuracy (Acc),
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Table 2. BLEU1–4 score comparisons on model in [16] and our RNN0, RNN1 and
RNN2 trained on all gold-standard MeSH annotations, and trained on 1000 gold-
standard MeSH annotations+textCNN predictions.

Model Train Val Test

B-1/B-2/B-3/B-4 B-1/B-2/B-3/B-4 B-1/B-2/B-3/B-4

Learning to read [16] 97.2/67.1/14.9/2.8 68.1/30.1/5.2/1.1 79.3/9.1/0.0/0.0

RNN0+vgg16+all 8.8/1.8/0.7/0.2 7.8/2.6/1.1/1.4 6.9/2.3/0.7/0.1

RNN0+resnet50+all 16.5/8.6/4.6/2.4 16.7/8.7/3.9/1.0 18.8/10.4/3.8/1.9

RNN1+resnet50+all 77.9/45.6/29.4/18.9 65.7/51.6/30.2/17.1 66.7/47.1/26.8/15.9

RNN2+resnet50+all 74.1/42.0/26.8/17.3 63.2/47.5/27.3/15.8 63.2/43.9/25.5/13.6

RNN0+resnet50+pred 22.9/15.5/7.8/4.0 13.6/8.3/4.0/0.9 14.7/9.3/2.7/1.5

RNN1+resnet50+pred 73.6/50.0/30.9/17.8 41.5/29.7/15.9/7.2 41.6/28.2/13.2/8.1

RNN2+resnet50+pred 69.4/47.6/29.6/16.7 39.4/28.0/14.6/6.7 39.8/26.4/12.7/8.0

precision (P) and recall (R), and the mean-over-class (P-OC, R-OC) and mean-
over-samples (P-OS, R-OS) precision and recall of the 102 classes. In addition, we
report metrics of the ‘pathology’ classes separately by manual allocation based
on the definitions on the MeSH term online library [1]. Complete metrics are
compared in Table 1.

Report Generation from Images. During inference, the first word is sam-
pled from the LSTM, concatenated to the input, and used to predict conse-
quent words. The quality of the generated reports was evaluated by measuring
BLUE [14] scores averaged over all the reports, which are a form of n-gram
precision commonly used for evaluating image captioning as they maintain high
correlation with human judgement. BLEU scores of RNN0, RNN1 and RNN2
trained on all gold-standard annotations and on the predictions made by the
text CNN are presented in Table 2. RNN0 is the same framework used in [16],
however, they additionally train their model in a cascaded fashion which signif-
icantly improves the model’s ability to predict the first word, but struggles to
maintain visual correspondence in generating subsequent words, hence the steep
reduction in higher n-gram precision. Additionally, cascaded models suffer from
error propagation during test time, hence the poor performance on test data.
RNN1 and RNN2 solve both problems by conditioning the word generation pro-
cess on the images at every time-step and by being trained end-to-end, hence
achieving higher n-gram scores on the test data. In addition, we have shown that
we can achieve comparably high BLEU metrics when training on the predicted
MeSH terms made by the text CNN.

6 Conclusion

We demonstrate how, given a small amount of manual annotations, clinically and
visually-important concepts can be learned from raw textual radiology reports.
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We then demonstrate how these concepts can be used as radiological image
annotations and used in an image-sequence learning model to auto-generate
reports as part of a clinical decision support system.
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