
Data Consistent Artifact Reduction
for Limited Angle Tomography with Deep

Learning Prior

Yixing Huang1(B), Alexander Preuhs1, Günter Lauritsch2, Michael Manhart2,
Xiaolin Huang3, and Andreas Maier1,4

1 Pattern Recognition Lab, Friedrich-Alexander-Universität Erlangen-Nürnberg,
91058 Erlangen, Germany
yixing.yh.huang@fau.de

2 Siemens Healthcare GmbH, 91301 Forchheim, Germany
3 Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong

University, Shanghai 200240, China
4 Erlangen Graduate School in Advanced Optical Technologies (SAOT),

91058 Erlangen, Germany

Abstract. Robustness of deep learning methods for limited angle
tomography is challenged by two major factors: (a) due to insufficient
training data the network may not generalize well to unseen data; (b)
deep learning methods are sensitive to noise. Thus, generating recon-
structed images directly from a neural network appears inadequate. We
propose to constrain the reconstructed images to be consistent with the
measured projection data, while the unmeasured information is comple-
mented by learning based methods. For this purpose, a data consistent
artifact reduction (DCAR) method is introduced: First, a prior image is
generated from an initial limited angle reconstruction via deep learning
as a substitute for missing information. Afterwards, a conventional itera-
tive reconstruction algorithm is applied, integrating the data consistency
in the measured angular range and the prior information in the missing
angular range. This ensures data integrity in the measured area, while
inaccuracies incorporated by the deep learning prior lie only in areas
where no information is acquired. The proposed DCAR method achieves
significant image quality improvement: for 120◦ cone-beam limited angle
tomography more than 10% RMSE reduction in noise-free case and more
than 24% RMSE reduction in noisy case compared with a state-of-the-art
U-Net based method.

Keywords: Deep learning · Limited angle tomography · Data
consistency · Poisson noise · Robustness · Generalization ability

1 Introduction

Recently, deep learning has achieved overwhelming success in various computed
tomography (CT) applications [1,2], including low-dose CT [3–5], sparse-view
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reconstruction [6–8], and metal artifact reduction [9,10]. In this work, we are
interested in the application of deep learning to limited angle tomography. Image
reconstruction from data acquired in an insufficient angular range is called lim-
ited angle tomography. It arises when the gantry rotation of a CT system is
restricted by other system parts, or a super short scan is preferred for the sake
of quick scanning time, low dose, or less contrast agent.

Conventionally, limited angle tomography is addressed by extrapolation
methods [11,12] or iterative reconstruction algorithms with total variation [13–
15]. In the past three years, various deep learning methods have been investigated
in limited angle tomography [16–21]. For example, Gu and Ye adapted the U-Net
architecture [22] to learn artifacts from streaky images in the multi-scale wavelet
domain [18]. Good quality images are obtained by this method for 120◦ limited
angle tomography. The results presented in the literature reveal promising devel-
opments for a clinical applicability of deep learning-based reconstructions.

However, the robustness of deep learning in practical applications is still a
concern. On one hand, deep learning methods may fail to generalize to new
test instances as these methods are trained only on an insufficient dataset. On
the other hand, due to the curse of high dimensional space [23], deep neural
networks have been reported to be vulnerable to small perturbations, including
adversarial examples and noise [24–26]. In the field of limited angle tomography,
our previous work [19] has demonstrated that the U-Net method is not robust
to Poisson noise as well. In this work, we devise an algorithm overcoming these
limitations by enforcing data consistency with the measured raw data.

Since generating reconstructed images directly from a neural network appears
inadequate, we propose to combine deep learning with known operators. The first
category of such approaches is to build deep neural network architectures directly
based on analytic formulas of conventional methods. In these neural networks,
each layer represents a certain known operator whose weights are fine tuned by
data-driven learning to improve precision. Therefore, they are called “precision
learning” [27,28]. In precision learning, maximal error bounds are limited by
prior information of the analytic formulas. Würfl et al. [16,20] proposed a neural
network architecture based on filtered back-projection (FBP) to learn the com-
pensation weights [29] for limited angle reconstruction. However, this particular
method is not suitable for small angular ranges, e.g. 120◦ cone-beam limited
angle tomography, since no redundant data are available to compensate missing
data. The second category is to use deep learning and conventional methods to
reconstruct different parts of an imaged object respectively. Bubba et al. [21] pro-
posed a hybrid deep learning-shearlet framework for limited angle tomography,
where an iterative shearlet transform algorithm [30] is utilized to reconstruct vis-
ible singularities of an imaged object while a U-Net based neural network with
dense blocks [31] is utilized to predict the invisible ones. This method achieves
better image quality than pure model or data-driven-based reconstruction meth-
ods. The third category is to use deep learning results as prior information for
conventional methods. Zhang et al.’s method [10] is such an example for metal
artifact reduction. To make the best of measured data, Zhang et al. used deep
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learning predictions as prior images to interpolate projection data in metal cor-
rupted areas [10].

In this work, we choose the third category for limited angle tomography.
In [19], the U-Net learns artifacts from streaky images in the image domain
only. Reconstruction images obtained by such image-to-image prediction are very
likely not consistent to measured data as the prediction does not have any direct
connection to measured data. To make predicted images data consistent, a data
consistent artifact reduction (DCAR) method is proposed: The predicted images
are used as prior images to provide information in missing angular ranges first;
Afterwards, a conventional reconstruction algorithm is applied to integrate the
prior information in the missing angular ranges and constrain the reconstruction
images to be consistent to the measured data in the acquired angular range.

2 Method

2.1 The U-Net Architecture

As displayed in Fig. 1, the same U-Net architecture as that in [19] is used for
artifact reduction in limited angle tomography, which is modified from [22] and
[18]. In this work, the input images are Ram-Lak-kernel-based FBP reconstruc-
tions from limited angle data, while the output images are artifact images. The
Hounsfield scaled images are normalized to ensure stable training. An �2 loss
function is used.

Fig. 1. The U-Net architecture for limited angle tomography (modified from [22]).

2.2 Data Consistent Artifact Reduction

Data Fidelity of Measured Data: We denote measured projections by pm

and the system matrix for the measured projections by Am in cone-beam limited
angle tomography. The FBP reconstruction from the measured data pm only is
denoted by fFBP. The artifact image, predicted by the U-Net, is denoted by
fartifact. Then an estimation of the artifact-free image, denoted by fU-Net, is
obtained by fU-Net = f limited − fartifact. Due to insufficient training data or
sensitivity to noise in the application of limited angle tomography [19], fU-Net
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is not consistent to the measured data. A data consistent reconstruction image
f follows the following constraint,

||Amf − pm|| < e1, (1)

where e1 is a parameter for error tolerance. When the measured data pm are
noise-free, e1 is ideally zero. When pm contains noise caused by various physical
effects, e1 is a certain positive value.

Because of the severe ill-posedness of limited angle tomography, the number
of images satisfying the above constraint is not unique. We aim to reconstruct
an image which satisfies the above constraint and meanwhile is close the U-Net
reconstruction fU-Net. For this purpose, we choose to initialize the image f with
fU-Net and solve it in an iterative manner, i.e.,

||Amf − pm|| < e1, and f (0) = fU-Net. (2)

In this way, the data consistency constraint is fully satisfied. Note that with such
initialization, the deep learning prior fU-Net contributes to the selection of one
image among all images satisfying Eq. (1).

Data Fidelity of Unmeasured Data: We further denote the system matrix
for an unmeasured angular range by Au and its corresponding projections by
pu. In cone-beam computed tomography, a short scan is necessary for image
reconstruction. Therefore, in this work, we choose Au such that Am and Au

form a system matrix for a short scan CT system. Although the projections pu

are not measured, they can be approximated by the deep learning reconstruction
fU-Net via forward projection. Making the best of such prior information, the
following constraint is proposed,

||Auf −AufU-Net|| = ||Au(f − fU-Net)|| < e2, (3)

where the error tolerance parameter e2 accounts for the inaccuracy of the deep
learning prior fU-Net. When fU-Net has bad image quality, a relative large value
should be set. This constraint indicates that the final reconstruction f is close
to the deep learning prior fU-Net in the unmeasured space and the difference
between them is controlled by the parameter e2.

Regularization: To further reduce noise and artifacts corresponding to the
error tolerance of e1 and e2, additional regularization is applied. In this work,
the following iterative reweighted total variation (wTV) regularization [15] is
utilized,

||f (n)||wTV =
∑

x,y,z

w(n)
x,y,z||Df (n)

x,y,z||,

w(n)
x,y,z =

1

||Df (n−1)
x,y,z || + ε

,
(4)

where f (n) is the image at the nth iteration, w(n) is the weight vector for the nth

iteration which is computed from the previous iteration, and ε is a small positive
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value added to avoid division by zero. A smaller value of ε results in finer image
resolution but slower convergence speed.

Overall Algorithm: Therefore, the overall objective function for our DCAR
method is as the following,

min ||f ||wTV, subject to

⎧
⎨

⎩

f (0) = fU-Net,
||Amf − pm|| < e1,
||Auf −AufU-Net|| < e2,

(5)

which is a constrained optimization problem.
To solve the above objective function, simultaneous algebraic reconstruction

technique (SART) + wTV is applied [15], i.e., SART is utilized to minimize
the data fidelity terms of Eqs. (1) and (3), while a gradient descent method is
utilized to minimize the wTV term. To minimize the data fidelity terms, SART
is adapted as the following,

f
(l+1)
j =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f
(l)
j + λ ·

∑
p i∈P β

Se1(p i−∑N
k=1 A i,k·f (l)

k )
∑N

k=1 A i,k
·Ai,j

∑
p i∈P β

Ai,j
, if pi is measured,

f
(l)
j + λ ·

∑
p i∈P β

Se2(
∑N

k=1 A i,k·(f U-Net−f
(l)
k ))

∑N
k=1 A i,k

·Ai,j

∑
p i∈P β

Ai,j
, otherwise,

(6)
where the system matrix A is the combination of Am and Au, the projection
vector p is the combination of pm and pu, and Sτ is a soft-thresholding operator
with threshold τ to deal with error tolerance. pu is estimated and substituted by
AufU-Net in the above formula. For other parameters, f j stands for the jth pixel
of f , pi stands for the ith projection ray of p, Ai,j is the element of A at the ith

row and the jth column, l is the iteration number, N is the total pixel number
of f , λ is a relaxation parameter, β is the X-ray source rotation angle, and P β

stands for the set of projection rays when the source is at rotation angle β. To
minimize the wTV term, the gradient of ||f ||wTV w.r.t. each pixel is computed
and a gradient descent method using backtracking line search is applied [15].

2.3 Experimental Setup

We validate the proposed DCAR algorithm using 17 patients’ data from the
AAPM Low-Dose CT Grand Challenge [32] simulated in 120◦ cone-beam limited
angle tomography without and with Poisson noise.

System Configuration: For each patient’s data, limited angle projections are
simulated in a cone-beam limited angle tomography system with parameters
listed in Table 1. In the noisy case, Poisson noise is simulated considering an
initial exposure of 105 photons at each detector pixel before attenuation.

Training and Test Data: To investigate the dependence of the U-Net’s per-
formance on training data, leave-one-out cross validation is performed. For each
validation, data from 16 patients are used for training while the data from the
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Table 1. The system configuration of cone-beam limited angle tomography to validate
the proposed DCAR algorithm, where the angular parameters in the brackets are for
a short scan configuration.

Parameter Value

Scan angular range 120◦(210◦)

Start angle 30◦(0◦)

End Angle 150◦(210◦)

Angular step 1◦

Source-to-detector distance 1200.0 mm

Source-to-isocenter distance 600.0 mm

Detector size 620× 480

Detector pixel size 1.0 mm× 1.0 mm

Image size 256 × 256 × 256

Image pixel size 1.25 mm× 1.25 mm× 1.0 mm

remaining one are used for test. Among the 16 patients, 25 slices from each
patient are chosen for training. For the validation patient, all the 256 slices from
the FBP reconstruction fFBP are fed to the U-Net for evaluation. As the arti-
facts are mainly caused by limited angle scan, the effect of cone-beam angle is
neglected. Therefore, 2-D slices are used for training and test instead of volumes
to avoid high computation. Both the training and test data are noise-free in the
noise-free case, while both the training data and test data contain Poisson noise
in the noisy case.

Algorithm Parameters: The U-Net is trained on the above data using the
Adam optimizer. The learning rate is 10−3 for the first 100 epochs, 10−4 for the
101−130th epochs, and 10−5 for the 131−150th epochs. The �2-norm is applied
to regularize the network weights. The regularization parameter is 10−4.

For reconstruction, in the noise-free case, the error tolerance value e1 is set to
0.001 in Eq. (1) for discretization error, while e1 is set to 0.01 for the noisy case.
The U-Net reconstructions fU-Net of each patient are reprojected in the angular
range of [0◦, 210◦]. Other system parameters are the same as those in Table 1. A
relatively large tolerance value of 0.5 is chosen empirically for e2 in Eq. (3). For
SART, the parameter λ in Eq. (6) is set to 0.8. For the wTV regularization, the
parameter ε is set to 5 HU for weight update. 50 iterations of SART + wTV are
applied using the U-Net reconstruction fU-Net as initialization to get the final
reconstruction. For comparison, the results of 100 iterations of SART + wTV
using zero images as initialization are presented.

3 Results

The results of three example slices in 120◦ noise-free cone-beam limited angle
tomography are displayed in Fig. 2. These three slices are from Patient NO. 17,



Data Consistent Artifact Reduction for Limited Angle Tomography 107

f reference fFBP fwTV fU-Net fDCAR

(a) (b) 328HU (c) 138HU (d) 105HU (e) 88HU

(f) (g) 333HU (h) 134HU (i) 71HU (j) 63HU

(k) (l) 317HU (m) 140HU (n) 122HU (o) 85HU

Fig. 2. Reconstruction results of three example slices by U-Net and DCAR in noise-
free 120◦ cone-beam limited angle tomography. The images from top to bottom are
from Patient NO. 17, 4, and 7, respectively. The areas marked by the arrows are
reconstructed incorrectly by the U-Net, which are rectified by DCAR. The RMSE
value for each slice is displayed in their subtitle. Window: [−1000, 1000] HU.

4, and 7, respectively. In each row, the reference image f reference, the FBP recon-
struction fFBP, the U-Net reconstruction fU-Net, the SART + wTV (using wTV
for short in the following) reconstruction fwTV, and the DCAR reconstruction
fDCAR are displayed in order. Comparing Fig. 4(b) with Fig. 4(a), the body out-
line of Patient 17 is severely distorted due to missing data. Moreover, many
streaks occur, obscuring anatomical structures such as the ribs and the ver-
tebra. Figures 4(c)–(e) demonstrate that wTV, U-Net, and DCAR all are able
to improve these corrupted anatomical structures. The root-mean-square error
(RMSE) is reduced significantly from 328 HU for fFBP to 138 HU for fwTV

w.r.t. the reference image. But the intensity values at the top body part are
still too low in fwTV. The RMSE is further reduced to 105 HU for fU-Net in
Fig. 4(d), while DCAR reaches the smallest RMSE value of 88 HU for this slice.
In the middle row and the bottom row, the U-Net is able to reconstruct most
anatomical structures well. However, the structures indicated by the red arrows
are apparently incorrect compared with reference images. In Fig. 4(i), the dark
holes indicated by the red arrows appear, very likely because the corresponding
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areas in Fig. 4(g) have low intensities due to dark streak artifacts. In contrast,
the two large holes in Fig. 4(n) occur without any clear clue, since no dark areas
are present in Fig. 4(l). Apparently Fig. 4(n) is not consistent to measured data
and by using DCAR, these two holes are reestablished, although some darkness
remains.

The comparison of the mean RMSE values for wTV, U-Net, and DCAR in
the leave-one-out cross-validation is plotted in Fig. 3. It indicates that wTV has
the largest mean RMSE values among these three methods and DCAR achieves
more than 10% improvement in mean RMSE values compared with the U-Net.
This convincingly demonstrates the benefit of DCAR in reducing artifacts for
limited angle tomography.

Fig. 3. Comparison of the mean RMSE values by wTV, U-Net, and DCAR for each
patient in 120◦ noise-free cone-beam limited angle tomography. The relative improve-
ment of DACR from the U-Net is marked for each patient.

In 120◦ cone-beam limited angle tomography with Poisson noise, the results
of three example slices are displayed in Fig. 4. These three slices are from Patient
NO. 17, 2, and 8, respectively. In the top row, Fig. 4(b) exhibits a high level of
Poisson noise especially for the areas where a lot of X-rays are missing. The Pois-
son noise is entirely reduced by wTV in Fig. 4(c). However, like the noise-free
cases, the top body area is still distorted. Figure 4(d) indicates that the U-Net
trained on noisy data is still able to reduce limited angle artifacts. In addition,
most Poisson noise is also prominently reduced and only a small portion of it
remains. However, many low/median contrast structures, e.g. fat and muscles
in the area marked by the red arrow, are blurred and cannot be distinguished
between each other. Figure 4(e) indicates that DCAR can further reduce Poisson
noise and improve low/median contrast structures, as no Poisson noise remains
at all and the fat and muscle tissues can be distinguished between each other. The
benefit of DCAR is also demonstrated by the RMSE value as it decreases from
138 HU in Fig. 4(d) to 102 HU in Fig. 4(e). For the slice in the middle row, the U-
Net also reduces most of the artifacts and Poisson noise, comparing Fig. 4(i) with
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f reference fFBP fwTV fU-Net fDCAR

(a) (b) 358HU (c) 141HU (d) 138HU (e) 102HU

(f) (g) 299HU (h) 123HU (i) 114HU (j) 85HU

(k) (l) 379HU (m) 120HU (n) 125HU (o) 74HU

Fig. 4. Reconstruction results of three example slices by U-Net and DCAR in 120◦

cone-beam limited angle tomography with Poisson noise. The images from top to bot-
tom are from Patient NO. 17, 2, and 8, respectively. The areas marked by the arrows
are reconstructed incorrectly by the U-Net, which are rectified by DCAR. The RMSE
value for each slice is displayed in their subtitle. Window: [−1000, 1000] HU. (Color
figure online)

Fig. 4(g). However, the cavities in the marked green box in Fig. 4(f) are missing
in Fig. 4(i). They are smoothed out by the U-Net. Instead, DCAR is still able to
reconstruct most of these cavities, as displayed in Fig. 4(j). For the slice in the
bottom row, many dark dots occur in the U-Net reconstruction in Fig. 4(n), due
to severe Poisson noise in the limited angle reconstruction in Fig. 4(l). However,
these dark dots are eliminated by DCAR in Fig. 4(o). Except for these example
slices, the comparison of the mean RMSE values for wTV, U-Net, and DCAR is
displayed in Fig. 5. The mean RMSE values for wTV stay similar for both the
noise-free and noisy cases. However, DCAR achieves more than 24% improve-
ment compared with the U-Net in the noisy case. These remarkable results have
demonstrated the robustness of DCAR to Poisson noise in 120◦ cone-beam lim-
ited angle tomography.
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Fig. 5. Comparison of the mean RMSE values by wTV, U-Net, and DCAR for each
patient in 120◦ cone-beam limited angle tomography with Poisson noise. The relative
improvement of DCAR from the U-Net is marked for each patient.

4 Discussion and Conclusion

In the cross-validation experiments, for each test, 16 patients’ CT data are used
to train the U-Net. Since only 13 slices are chosen from each patient, 400 slices in
total are used for training, which is very likely insufficient. Therefore, the U-Net
training on such data has a limited generalization ability to test data. That is
one potential cause to the dark holes in the U-Net reconstructions in Fig. 2 in
the noise-free case. The occurrence of such dark holes make deep learning recon-
structions not consistent to measured projection data. DCAR has the ability to
improve such reconstructions by constraining them consistent to measured data.

In the noisy case, due to the curse of high dimensional space, noise will
accumulate at each layer of the U-Net. Therefore, even if noise has a small
magnitude, it still has a severe impact on the output images. That is why the
U-Net is not robust to Poisson noise [19]. In this work, the U-Net is trained on
data with Poisson noise. This endows the U-Net to deal with Poisson noise to a
certain degree. Figure 4 indicates that the U-Net is able to reduce a certain level
of Poisson noise in a manner of smoothing structures. In such a manner, some fine
structures are also smoothed out, e.g., the small cavities in Fig. 4(f). In addition,
in our experimental setup for the noisy case, the initial photon number without
attenuation is relatively low. Hence, the Poisson noise in the FBP reconstruction
images is well observed. In some cases, e.g. in Fig. 4(g), the Poisson noise is so
strong that the U-Net is not able to reduce it. However, DCAR adapts the SART
algorithm using soft-thresholding operators, which is noise tolerant. In addition,
the wTV regularization further reduces the influence of Poisson noise as such
high frequency noise pattern contradicts a gradient-sparse image, which wTV
seeks.

In conclusion, the proposed DCAR method has better generalization abil-
ity to unseen data and is more robust to Poisson noise than the U-Net.
This is demonstrated by our experiments, achieving significant image quality
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improvement. Compared to the U-Net, our method reduces the RMSE by more
than 10% in the noise-free case and 24% in the noisy case for 120◦ cone-beam
limited angle tomography.

Disclaimer. The concepts and information presented in this paper are based on

research and are not commercially available.
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