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Preface

We are proud to present the proceedings for the Second Workshop on Machine
Learning for Medical Image Reconstruction (MLMIR 2019) which was held on
October 17, 2019, in Shenzhen, China, as part of the 22nd Medical Image Computing
and Computer Assisted Intervention (MICCAI 2019) conference.

Image reconstruction is currently undergoing a paradigm shift that is driven by
advances in machine learning (ML). Whereas traditionally transform-based or
optimization-based methods have dominated methods of image reconstruction, ML has
opened up an opportunity for new data-driven approaches which have demonstrated a
number of advantages over traditional approaches. In particular, deep learning tech-
niques have shown significant potential for image reconstruction and offer interesting
new approaches. Finally, ML approaches also offer the possibility for
application-specific image reconstruction, e.g. in motion-compensated cardiac or fetal
imaging.

After the first successful workshop last year, we observed the further need for a
scientific meeting addressing this emerging topic in image reconstruction. In particular,
we are very proud that we were able to attract researchers from various modalities
ranging from CT and MRI to Ultrasound and Molecular Imaging. It is great to see how
the progress in methods, mathematics, and algorithms brings those often independently
working communities closer together.

The aim of this year’s workshop was to drive scientific discussion on advanced ML
techniques for image acquisition and image reconstruction further, to identify new
opportunities for applications as well as challenges in the evaluation and validation of
ML based reconstruction approaches. We were fortunate that Markus Haltmeier
(University of Innsbruck), Dong Liang (Shenzhen Institute of Advanced Technology),
and Yong Long (Shanghai Jiao Tong University) gave fascinating keynote lectures that
summarized the state of the art in this emerging field. Finally, we received 32
submissions and accepted 24 papers for inclusion in the workshop. The topics of the
accepted papers cover the full range of medical image reconstruction problems, and
deep learning dominates the machine learning approaches that are used to tackle the
reconstruction problems.

September 2019 Florian Knoll
Andreas Maier

Daniel Rueckert
Jong Chul Ye
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Recon-GLGAN: A Global-Local Context
Based Generative Adversarial Network

for MRI Reconstruction

Balamurali Murugesan1,2(B) , S. Vijaya Raghavan2, Kaushik Sarveswaran2 ,
Keerthi Ram2, and Mohanasankar Sivaprakasam1,2

1 Indian Institute of Technology Madras (IITM), Chennai, India
2 Healthcare Technology Innovation Centre (HTIC), IITM, Chennai, India

balamurali@htic.iitm.ac.in

Abstract. Magnetic resonance imaging (MRI) is one of the best med-
ical imaging modalities as it offers excellent spatial resolution and soft-
tissue contrast. But, the usage of MRI is limited by its slow acquisi-
tion time, which makes it expensive and causes patient discomfort. In
order to accelerate the acquisition, multiple deep learning networks have
been proposed. Recently, Generative Adversarial Networks (GANs) have
shown promising results in MRI reconstruction. The drawback with the
proposed GAN based methods is it does not incorporate the prior infor-
mation about the end goal which could help in better reconstruction. For
instance, in the case of cardiac MRI, the physician would be interested
in the heart region which is of diagnostic relevance while excluding the
peripheral regions. In this work, we show that incorporating prior infor-
mation about a region of interest in the model would offer better per-
formance. Thereby, we propose a novel GAN based architecture, Recon-
struction Global-Local GAN (Recon-GLGAN) for MRI reconstruction.
The proposed model contains a generator and a context discriminator
which incorporates global and local contextual information from images.
Our model offers significant performance improvement over the baseline
models. Our experiments show that the concept of a context discrimina-
tor can be extended to existing GAN based reconstruction models to offer
better performance. We also demonstrate that the reconstructions from
the proposed method give segmentation results similar to fully sampled
images.

Keywords: Magnetic Resonance Imaging (MRI) · Reconstruction ·
Global local networks · Segmentation · Deep learning · Generative
Adversarial Networks · Cardiac MRI

1 Introduction

Medical imaging is the preliminary step in many clinical scenarios. Magnetic
resonance imaging (MRI) is one of the leading diagnostic modalities which can

Code available at https://github.com/Bala93/Recon-GLGAN.

c© Springer Nature Switzerland AG 2019
F. Knoll et al. (Eds.): MLMIR 2019, LNCS 11905, pp. 3–15, 2019.
https://doi.org/10.1007/978-3-030-33843-5_1
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http://orcid.org/0000-0002-3002-5845
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produce images with excellent spatial resolution and soft tissue contrast. The
major advantages of MRI include its non-invasive nature and the fact that it
does not use radiation for imaging. However, the major drawback of MRI is the
long acquisition time, which causes discomfort to patients and hinders appli-
cations in time critical diagnoses. This relatively slow acquisition process could
result in significant artefacts due to patient movement and physiological motion.
The slow acquisition time of MRI can be attributed to data samples not being
collected directly in the image space but rather in k-space. k-space contains
spatial-frequency information that is acquired line-by-line by the MRI hardware.
In order to accelerate the MRI acquisition process, various methods ranging from
Partial Fourier Imaging, Compressed Sensing and Dictionary Learning have been
developed [4].

Recently, deep learning based methods have shown superior performance in
many computer vision tasks. These methods have been successfully adapted for
the MRI reconstruction problem and have shown promising results. The deep
learning based methods [9] for MRI reconstruction can be broadly grouped into
two: (1) k-space to image domain: the fully sampled image is obtained from
zero-filled k-space. Examples include AUTOMAP and ADMM-Net. (2) image
to image domain: the fully sampled (FS) image is obtained from the zero-filled
(ZF) image. Our focus will be on the models of the latter kind. The work by
Wang et al. [14] was the first to use convolutional neural networks to learn the
mapping between ZF and FS images. Generative Adversarial Networks (GAN)
[6] have shown promising results in many ill-posed inverse problems such as
inpainting, super-resolution and denoising when compared to other deep learn-
ing based methods. The MRI reconstruction problem, having a similar prob-
lem formulation, has been approached with GANs and have shown encouraging
results. The main focus of our paper is thus the application of GANs for the
MRI reconstruction problem.

In the GANCS work [10], the generator is a residual network, the discrim-
inator is a general deep network classifier and a combination of L1 and adver-
sarial loss constitutes the loss function. Similarly, another work ReconGAN [11]
uses a multi-stage network as a generator; a simple deep network classifier for
the discriminator, and a combination of MSE loss in the image and frequency
domains, adversarial loss constitute the loss function. The addition of the fre-
quency domain loss adds data consistency. DAGAN [15] is another work which
uses U-Net as a generator, a deep learning classifier as the discriminator with
a combination of MSE loss in the image and frequency domains, adversarial
loss and perceptual loss as the loss function. It showed that incorporating the
perceptual loss term improved the reconstructed image quality in terms of the
visually more convincing anatomical or pathological details. CDFNet [3] pro-
posed the use of a combination of MSE loss in the image and frequency domains
along with the Structural Similarity Index Measure (SSIM) as a loss function.
This can be extended to a GAN setup. We will refer to this setup as ComGAN.
SEGAN [8] proposed a generator network called SU-Net and used a general deep
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GAN
(Baseline)

Recon-GLGAN
(Ours)

ZF Image

FS ImageReconstruction

Train/Test

Train

Train/Test

ROI

Reconstruction 
error

Fig. 1. Illustration depicting the comparison between the baseline GAN model and our
Recon-GLGAN model. In the training phase, the ZF image and the ROI are fed in as
inputs to the Recon-GLGAN model, while the baseline GAN only takes the ZF image
as input. In the testing stage, the ZF image is fed as input to either model to produce
the reconstruction (Note: ROI is not used during testing stage). The reconstruction
error of the Recon-GLGAN model is lesser than the baseline GAN model in the ROI

network classifier as the discriminator. The loss term used is a combination of
MSE in the image domain, SSIM and patch correlation regularization.

We refer to the concept of application-driven MRI as described in [2]: incor-
porating prior information about the end goal in the MRI reconstruction process
would likely result in better performance. For instance, in the case of cardiac
MRI reconstruction, the physician would be interested in the heart region, which
is of diagnostic relevance while excluding the peripheral regions. Using this prior
information about the region of interest (ROI) could lead to a better reconstruc-
tion. Another perspective is to note that the MRI reconstruction is not the goal
in itself, but a means for further processing steps to extract relevant informa-
tion such as segmentation or tissue characterisation. In general, segmentation
algorithms would be interested in the specific ROI. Thus, incorporating prior
information about the ROI in the reconstruction process would give two fold
benefits: (1) The reconstruction would be better, (2) The segmentation algo-
rithms consequently, could offer better results. The GAN based reconstruction
methods described above did not incorporate the application perspective of MRI.
Recently, [13] proposed a method in an application-driven MRI context, where
the segmentation mask is obtained directly from a ZF image. This work showed
encouraging results, but the model produces only the mask as output while the
physician would be interested in viewing the FS image. Incorporating the ideas
stated above, we propose a novel GAN based approach for MRI reconstruction.
A brief outline of our approach compared to baseline GAN approaches is shown
in Fig. 1. The key contributions of our work can be summarized as follows:

1. We propose a novel GAN architecture, Reconstruction Global-Local GAN
(Recon-GLGAN) with a U-Net generator and a context discriminator. The
context discriminator consists of a global feature extractor, local feature
extractor and a classifier. The context discriminator architecture leverages
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global as well as local contextual information from the image. We also pro-
pose a loss function which is a linear combination of context adversarial loss
and L1 loss in the image domain.

2. We conducted extensive experiments to evaluate the proposed network with
a context discriminator for acceleration factors of 2x, 4x and 8x. Our network
showed significantly better reconstruction performance when compared with
the baseline GAN and UNet architectures for the whole image as well as for a
specific region of interest. We also show that the concept of a context discrim-
inator can be easily extended to existing GAN based reconstruction architec-
tures. To this end, we replace the discriminator in the existing GAN based
reconstruction architectures with our context discriminator. This showed a
significant performance improvement across metrics for an acceleration fac-
tor of 4x.

3. We conduct preliminary experiments to show that our model produces recon-
structions that result in a better performance for the segmentation task.
We demonstrate this using UNet model for segmentation, pre-trained on
FS images and the corresponding masks. We observe that the segmentation
results produced by the images from our Recon-GLGAN model are similar
to FS images in comparison with the ZF and GAN images.

2 Methodology

2.1 Problem Formulation

Let xf ∈ CN be the fully sampled complex image with dimensions
√

N × √
N

arranged in column-wise manner. xf is obtained from fully sampled k-space
measurements (yf ∈ CN ) through a fully sampled encoding matrix Ff using the
relation yf = Ffxf . During undersampling, a subset of kspace measurements
(yu ∈ CM ) say (M � N) only are made. This corresponds to an undersampled
image xu by the relation xu = F−1

u yu. xu will be aliased due to sub-Nyquist
sampling. Reconstructing xf directly from yu is ill-posed and direct inversion
is not possible due to under-determined nature of system of equations. In our
approach, we use deep learning network to learn the mapping between xu and
xf . The neural network thus learns to minimize the error between predicted fully
sampled image (x̂f ) and the ground truth (xf ).

2.2 Generative Adversarial Networks (GAN)

The GAN [6] consists of a generator (G) and discriminator (D). The generator
(G) in GAN learns the mapping between two data distributions with the help of
discriminator. In the case of MRI reconstruction, the goal of the generator is to
learn the mapping between the data distribution of the ZF image (xu) and FS
image (xf ). The discriminator learns to distinguish between the generated and
target reconstruction.
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Fig. 2. Recon-GLGAN architecture

2.3 Proposed Reconstruction Global-Local GAN (Recon-GLGAN)

We propose a novel GAN architecture called Reconstruction Global-Local GAN
(Recon-GLGAN). The idea is inspired from a GAN based work [5] in the con-
text of image inpainting. The idea behind Recon-GLGAN is to capture both
the global and local contextual features. Recon-GLGAN consists of a genera-
tor and a context discriminator. The generator (G) tries to learn the mapping
between data distribution of ZF image xu and FS image xf with the help of the
context discriminator which can extract global and local features and classify it
as real/fake. The context discriminator consists of three components: global fea-
ture extractor, local feature extractor and classifier. The global feature extractor
(ΨG) takes the entire image as input while the local feature extractor (ΨL) takes
the region of interest (ROI) (Φ) from the entire image. The classifier network
(ΨC) takes the concatenated feature vector (ΨG(x)||ΨL(x)) to classify the input
image as real/fake. The overview of the proposed architecture is shown in Fig. 2.
The joint optimization of the generator and context discriminator parameters is
given by:

min
θG

max
θD

LRecon−GLGAN (θD, θG) =Exf∼ptrain(xf )[log DθD
(xf )]

+ Exu∼pG(xu)[− log(DθD
(GθG

(xu)))] (1)

DθD
(x) = ΨC(ΨG(x)||ΨL(Φ(x))) (2)
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2.4 Network Architecture

Generator (G): The most commonly used encoder-decoder architecture U-Net
[12] is used as the generator.

Context Discriminator (D)

– Global feature extractor (ΨG): The global feature extractor operates on the
whole image. In our case, the input image dimension is 160×160. The stack of
3 convolutional layers followed by 2 fully connected layers is used as the global
feature extractor. Leaky ReLu is used as an activation function for each layer.
Average pooling is applied after each convolutional layer. The kernel size
of convolutional layer is represented by: (Output channels, Input channels,
height, width, stride, padding). The three convolution layers have the follow-
ing parameters: (1) (32, 1, 9, 9, 1, 0) (2) (64, 32, 5, 5, 1, 0) (3) (64, 64, 5, 5, 1, 0).
The 2 fully connected layers converts the feature maps from convolutional
layer to 64-dimensional feature vector.

– Local feature extractor (ΨL): The local feature extractor operates on the spe-
cific ROI of an image. In our case, the dimension of the ROI is 60× 60. The
architecture is largely similar to that of the global feature extractor except
for the dimensions of the feature vector of the fully connected layer, which is
modified according to the image dimensions. The output is a 64-dimensional
feature vector.

– Classifier (ΨC): The outputs of the global and the local feature extractors
are concatenated together into a single 128-dimensional vector, which is then
passed to a single fully-connected layer, to output a single, continuous value.
A sigmoid activation function is used so that this value is in the [0, 1] range
and represents the probability that the reconstruction is real/fake.

2.5 Loss Function

The loss function to accommodate our network design is given below:

Ltotal = λ1Limag + λ2Lcontext (3)

Limag = Exu,xf
[||xf − G(xu)||1] (4)

Lcontext = Exf
[log(D(xf ))] + Exu

[−log(D(G(xu)))] (5)

where Limag is the L1 loss between predicted and target fully sampled image,
Lcontext is the context adversarial loss.

3 Experiments and Results

3.1 Dataset

Automated Cardiac Diagnosis Challenge (ACDC) [1] is a cardiac MRI segmen-
tation dataset. The dataset has 150 and 50 patient records for training and
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testing respectively. From the patient records, 2D slice images are extracted and
cropped to 160 × 160. The extracted 2D slices amount to 1841 for training and
1076 for testing. The slices are normalized to the range (0–1). In the context of
MRI reconstruction, the slice images are considered as FS images while the ZF
images are obtained through cartesian undersampling masks corresponding to
2x, 4x and 8x accelerations.

The MR images in training set have their corresponding segmentation masks
whereas the segmentation masks for MR images in test set are not publicly
available. The dimensions of the ROI is set to 60 × 60 based on a study of the
sizes of the segmentation masks in the training set. In the training phase, the
center of the ROI for each slice is the midpoint of the closest bounding box of
the corresponding segmentation mask.

3.2 Evaluation Metrics

Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), Nor-
malised Mean Square Error (NMSE) metrics are used to evaluate the recon-
struction quality for the entire image and its ROI. The segmentation quality is
evaluated using Dice similarity coefficient (DICE) and Hausdorff distance (HD).

3.3 Implementation Details

The models were implemented in PyTorch. All models were trained for 150
epochs on two Nvidia GTX-1070 GPUs. Adam optimizer was used for the gen-
erator, with a learning rate of 0.001. Stochastic Gradient Descent optimizer
was used for the discriminator, with a learning rate of 5e−3. For the loss term,
λ2 = 4e−4, and λ1 = 1.

The ROI for the MR images in the test set is obtained by following the
algorithm described in [7]. This ROI information is not used for inference, it is
used only to evaluate the ROI’s reconstruction quality.

3.4 Results and Discussion

Reconstruction. To evaluate the proposed network, we perform the following
experiments:

(1) We compare our proposed Recon-GLGAN with the baseline architecture
GAN, U-Net, and the ZF images. The metrics for each model for the whole
image as well as ROI are shown in Table 1. The results show that our model
Recon-GLGAN performs better than the baseline GAN and U-Net across all
metrics for all acceleration factors. We also note that our model offers appreciable
performance improvement for 4x and 8x acceleration factors compared to 2x.
This can be attributed to the fact that the image degradation in the case of 2x
is not severe when compared with 4x and 8x. The qualitative comparison of ZF,
GAN and Recon-GLGAN for different acceleration factors are shown in Fig. 3.
In the Figure, it can be observed that reconstruction error of Recon-GLGAN
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Table 1. Comparison of Recon-GLGAN with baseline architectures for 2x, 4x and 8x
accelerations (FI-Full image)

NMSE PSNR SSIM

2x FI Zero-filled 0.01997± 0.01 26.59± 3.19 0.8332± 0.06

UNet 0.00959± 0.00 29.7± 2.97 0.9069± 0.03

GAN 0.00958± 0.01 29.72± 3.03 0.9083± 0.03

Recon-GLGAN 0.00956±0.00 29.74±3.0 0.9108±0.03

ROI Zero-filled 0.01949± 0.02 25.48± 3.73 0.859± 0.05

UNet 0.00952± 0.01 28.48± 3.03 0.9036± 0.04

GAN 0.00942±0.00 28.53± 3.12 0.904± 0.04

Recon-GLGAN 0.00944± 0.01 28.54±3.19 0.9065±0.04

4x FI Zero-filled 0.03989± 0.03 23.65± 3.38 0.7327± 0.08

UNet 0.01962± 0.01 26.62± 3.209 0.8419± 0.05

GAN 0.01934± 0.01 26.68± 3.08 0.8465± 0.05

Recon-GLGAN 0.01905±0.01 26.8±3.25 0.8497±0.05

ROI Zero-filled 0.03886± 0.04 22.63± 3.87 0.7514± 0.07

UNet 0.01931± 0.01 25.46± 3.35 0.8242± 0.06

GAN 0.01925± 0.02 25.52± 3.38 0.8301± 0.06

Recon-GLGAN 0.01878±0.02 25.66±3.26 0.8327±0.06

8x FI Zero-filled 0.08296± 0.06 20.46± 3.24 0.6443± 0.09

UNet 0.03353± 0.02 24.26± 2.71 0.7547± 0.07

GAN 0.03359± 0.02 24.25± 2.71 0.7557± 0.07

Recon-GLGAN 0.03286±0.02 24.32±2.68 0.7562±0.07

ROI Zero-filled 0.07943± 0.08 19.47± 3.82 0.6435± 0.07

UNet 0.03147± 0.02 23.31± 2.88 0.72± 0.07

GAN 0.03129± 0.02 23.33± 2.92 0.7294±0.07

Recon-GLGAN 0.03102±0.02 23.34±2.82 0.7293± 0.07

for entire image and its ROI is better than GAN. But, it is evident that, the
reconstruction error of Recon-GLGAN is significantly better than GAN in the
ROI compared with the entire image. This behaviour can be attributed to the
design of context discriminator which has a separate feature extraction path
for specified ROI. The design of context discriminator enables the generator to
specifically learn the ROI along with the entire image during the training phase.

(2) We attempt to show that the concept of a context discriminator can be
extended to existing GAN based works for MRI reconstruction. The different
GAN based architectures and their corresponding loss functions can be found in
Table 2. In this experiment to ensure a fair comparison, the generator is set to U-
Net, discriminator is set to global feature extractor (ΨG) followed by a classifier
(ΨC) (basic discriminator) and the loss functions are taken from their respec-
tive works [3,8,10,15]. This arrangement means that the difference between the
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Fig. 3. From Left to Right: Ground Truth FS image, ZF image, GAN reconstructed
image, Recon-GLGAN reconstructed image, ZF reconstruction error, GAN reconstruc-
tion error and Recon-GLGAN reconstruction error. From Top to Bottom: Images cor-
responding to different acceleration factors: 2x, 4x and 8x.

Table 2. GAN based reconstruction architectures and their loss terms

Architecture Loss function terms

ReconGAN – Limag, Lglobal, Lfreq

GL-ReconGAN Limag, Lcontext, Lfreq

DAGAN – Limag, Lglobal, Lfreq, Lvgg

GL-DAGAN Limag, Lcontext, Lfreq, Lvgg

SEGAN – Limag, Lglobal, Lssim

GL-SEGAN Limag, Lcontext, Lssim

COMGAN – Limag, Lfreq, Lglobal, Lssim

GL-COMGAN Limag, Lfreq, Lcontext, Lssim

various GAN based architectures comes only from the generator loss. In this
experiment, we replace the basic discriminator of the GAN architectures with
our proposed context discriminator. The results comparing the GAN architec-
tures with basic discriminator and context discriminator are reported in Table 3.
From the Table, it is clear that the GAN with context discriminator have shown
improved results compared to GAN with basic discriminator for different gener-
ator loss. A few sample results comparing the GAN based reconstruction meth-
ods with basic and context discriminator are shown in Fig. 4. From the figure
we observe that the ROI’s reconstruction error for GAN with context discrimi-
nator is lesser compared to GAN with the basic discriminator. This shows that
the context discriminator can be extended to other GAN based reconstruction
methods.
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Table 3. Reconstruction metric comparison for full image and region of interest for
various GAN based reconstruction architecture for 4x accelerations (FI - Full Image)

NMSE PSNR SSIM

ReconGAN FI – 0.01857 ± 0.01 26.82 ± 2.89 0.8485 ± 0.05

GL-ReconGAN 0.01844 ± 0.01 26.91 ± 3.12 0.8498 ± 0.05

ROI – 0.018 ± 0.01 25.76 ± 3.06 0.832 ± 0.06

GL-ReconGAN 0.01836 ± 0.01 25.72 ± 3.24 0.8336 ± 0.06

SEGAN FI – 0.01862 ± 0.01 26.84 ± 3.10 0.8483 ± 0.06

GL-SEGAN 0.01817 ± 0.01 27.02 ± 3.4 0.8545 ± 0.05

ROI – 0.0185 ± 0.01 25.64 ± 3.19 0.8308 ± 0.07

GL-SEGAN 0.01793 ± 0.01 25.87 ± 3.56 0.838 ± 0.06

ComGAN FI – 0.01899 ± 0.01 26.78 ± 3.14 0.8481 ± 0.05

GL-ComGAN 0.01789 ± 0.01 27.06 ± 3.26 0.8505 ± 0.05

ROI – 0.01872 ± 0.01 25.64 ± 3.28 0.8315 ± 0.06

GL-ComGAN 0.01766 ± 0.02 25.91 ± 3.25 0.834 ± 0.06

DAGAN FI – 0.01903 ± 0.01 26.75 ± 3.06 0.8452 ± 0.06

GL-DAGAN 0.01851 ± 0.01 26.87 ± 3.03 0.845 ± 0.06

ROI – 0.01838 ± 0.01 25.68 ± 3.04 0.8272 ± 0.07

GL-DAGAN 0.01858 ± 0.01 25.62 ± 3.016 0.8277 ± 0.07

Fig. 4. From Left to Right: Ground Truth FS image, ZF image for 4x undersampling
factor, GAN with basic discriminator reconstructed image, GAN with context discrim-
inator reconstructed image, ZF reconstruction error, GAN with basic discriminator
reconstruction error and GAN with context discriminator reconstruction error. From
top to bottom: ReconGAN, SEGAN, ComGAN, DAGAN.

Segmentation. Image segmentation is an important task in medical imaging
and diagnosis. For instance, in the case of cardiac MRI, the segmentation of left
ventricle (LV), right ventricle (RV) and myocardium (MC) are used for cardiac



Recon-GLGAN: A Global-Local Context Based GAN 13

Fig. 5. From Left to Right: FS image, ZF image, GAN reconstructed image, Recon-
GLGAN reconstructed image, Ground Truth FS segmentation mask, Segmentation
mask for ZF, Segmentation mask for GAN reconstructed image and Segmentation
mask for Recon-GLGAN reconstructed image. From top to bottom: Sample 1, 2 and 3

function analysis. Advances in deep learning networks have produced state-of-
the-art results. These networks are trained on the FS images and, testing the
network with ZF images will result in an unsatisfactory segmentation. We note
that a better reconstruction, which is close to the FS image would result in better
segmentation performance. In this experiment, we would like to show that the
segmentation performance on the reconstructed images from our Recon-GLGAN
model is better than the baseline GAN model. To demonstrate this, we use the
most widely used segmentation network U-Net [12]. U-Net is trained on the FS
images to produce multi-class (LV, RV and MC) segmentation outputs. Since the
ground truth segmentation masks are unavailable for the test set of the ACDC
dataset, we instead use the outputs of the FS images in the test set as ground
truth. The reconstructed images from GAN and Recon-GLGAN are passed to
the UNet and the corresponding segmentation masks are obtained. The obtained
segmentation masks for sample images are shown in Fig. 5. It is evident from the
figure that our network’s performance is closest to FS followed by GAN and
ZF images. The same are quantified using the segmentation metrics Dice and
Hausdorff for the sample images in Fig. 6.

Fig. 6. Segmentation metrics: Dice and HD comparison for image samples 1, 2 and 3
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4 Conclusion

In this work, we proposed a novel GAN network, Recon-GLGAN. The context
discriminator proposed in Recon-GLGAN helps to capture both global and local
features enabling a better overall reconstruction. We showed the extensibility
of our discriminator with various GAN based reconstruction networks. We also
demonstrated that the images obtained from our method gave segmentation
results close to fully sampled images.
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Abstract. Accurately estimating and correcting the motion artifacts
are crucial for 3D image reconstruction of the abdominal and in-utero
magnetic resonance imaging (MRI). The state-of-art methods are based
on slice-to-volume registration (SVR) where multiple 2D image stacks
are acquired in three orthogonal orientations. In this work, we present a
novel reconstruction pipeline that only needs one orientation of 2D MRI
scans and can reconstruct the full high-resolution image without mask-
ing or registration steps. The framework consists of two main stages: the
respiratory motion estimation using a self-supervised recurrent neural
network, which learns the respiratory signals that are naturally embed-
ded in the asymmetry relationship of the neighborhood slices and cluster
them according to a respiratory state. Then, we train a 3D deconvolu-
tional network for super-resolution (SR) reconstruction of the sparsely
selected 2D images using integrated reconstruction and total variation
loss. We evaluate the classification accuracy on 5 simulated images and
compare our results with the SVR method in adult abdominal and in-
utero MRI scans. The results show that the proposed pipeline can accu-
rately estimate the respiratory state and reconstruct 4D SR volumes with
better or similar performance to the 3D SVR pipeline with less than 20%
sparsely selected slices. The method has great potential to transform the
4D abdominal and in-utero MRI in clinical practice.

1 Introduction

Due to its non-invasive nature and the superior soft-tissue contrast, magnetic
resonance imaging (MRI) is becoming increasingly more popular for the adjunct
pregnancy screening [1–4]. The typical scanning time for a 2D MR stack that
covers the whole fetus and placenta varies from 1 to 10 min per stack depending
on the MR sequences, field-of-view (FoV) and slice thickness. The long scan-
ning time inevitably introduces a series of motion artifacts, such as maternal
breathing, organ deformation, and fetal movement.
c© Springer Nature Switzerland AG 2019
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In Utero MR Image Reconstruction. To reconstruct a high quality 3D or
4D placenta and in-utero MRI, accurately estimating the respiratory motion
is a key step. The current state-of-the-art methods correct the through-plane
motion using slice-to-volume registration (SVR) reconstruction pipelines [5–9].
These methods require three to nine 2D image stacks to be acquired in orthog-
onal orientations; then a region-of-interest (ROI) mask needs to be generated
manually or automatically [8,9]; finally the 3D SR image is iteratively generated
based on the optimisation of the SVR results, robust statistics, intensity cor-
rection, and estimated point spread function (PSF). The acquisition of multiple
2D MR stacks in different orientations is time-consuming compared to the single
orientation and inevitably introduces motion artifacts. The registration meth-
ods in the SVR pipelines are rigid and cannot correct the non-rigid respiratory
motion. The SVR pipelines thus need enough redundant 2D images to reject all
the slices where deformation compared to the reconstructed volume occurred.
The overall image reconstruction performance will depend on the accuracy of
the ROI masking, registration and data redundancy.

Self-supervised learning is generally considered as a subset of unsupervised
learning, where the extensive cost of manual annotations is avoided and replaced
by supervisory signals or automatically generated labels. Compared to the pop-
ular supervised methods which train the neural network with paired data Xi
and label Y i, the self-supervised methods train with data Xi with its pseudo
label Pi, which is generated automatically without involving any human anno-
tation. Several recent papers have explored the usage of the temporal ordering
of frames/images as a supervisory signal for complex video analysis [10–12]. In
particular, Wei et al. [12] explored detecting and learning the direction of time
for action recognition and video forensics.

Contribution. In this work, we propose a respiratory motion resolved 4D
(3D+t) reconstruction pipeline of a single orientation stack of 2D MR slices,
based on an bidirectional self-supervised recurrent neural network (RNN) [13]
for identification of breathing states and efficient modified balanced steady state
free precession (bSSFP) sequence with the SWEEP technique [14]. The method
does not require masking or registration. Our experimental results show that the
SWEEP MR acquisition in combination with the proposed pipeline enables 4D
(3D+t) SR reconstruction of abdominal and in-utero images, and outperforms
the SVR for 3D reconstruction with using less than 20% total slices for each res-
piratory state. To the best of our knowledge, it is the first successful application
of self-supervised network for image-driven respiratory motion estimation and
4D(3D+t) MR SR reconstruction in the medical imaging community.

2 Method

2.1 Data Acquisition

A stack of MR slices is acquired sequentially using a modified bSSFP SWEEP
sequence [14] which allows fast acquisition of large number of densely spaced
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overlapping slices, thus providing sufficient information for local estimation of
respiratory motion. SWEEP continuously shifts the radiofrequency excitation
frequency so as to maintain a single stable signal state across a volume, negat-
ing the requirement for start-up cycles and resulting in a maximally efficient
acquisition for dense slice sampling applications. The acquisition time per slice
is 490 ms for the uterus scans and 442 ms for the kidney scans, which freezes
nearly all in-plane respiratory motion. The total scan time depends on the total
slice number which is 3 to 10 min. This sequence also minimises the effects of
fetal motion, by minimising the time between acquisition of the neighbouring
slices while maintaining high MR signal. This effectively removes the need for
masking, as the data is locally consistent except for the respiratory motion.

2.2 The Reconstruction Pipeline

The reconstruction pipeline consists of cascading a self-supervised RNN to esti-
mate the respiratory states for each slice and a three layer super-resolution (SR)
neural network (SR-net) for reconstruction respiratory-state specific 3D volumes
using the respiratory state classes predicted by RNN. The overall pipeline is sum-
marised in Fig. 1.

Fig. 1. Reconstruction pipeline for respiratory motion resolved 3D+t abdominal and
in-utero MRI.

2.3 Self-supervised RNN

Due to sequential acquisition of slices when using the SWEEP sequence, the
respiratory signal is embedded in the neighborhood slices in the arrow of acqui-
sition time. To separate the slices into different respiratory states, we train a
bi-directional self-supervised RNN (SRNN).
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We first generate a reference volume based on 1D convolution with a Gaus-
sian kernel along the acquisition axis (Z-axis). Intuitively, the reference volume
is most similar to the average states of inhale and exhale. We then calculate the
normalised cross-correlation (NCC) between each slice in the motion corrupted
volume and the reference volume and the average inhale and exhale states are
identified as the peaks of NCC sequence. We then separate those two average
states based on their timing orders. The remaining states are identified linearly
based on the distance between the average states. The approximate states auto-
matically determined by this approached are then used to train bi-directional
RNN.

Consider the input motion corrupted MRI scan as a group of 2D image
sequence I = {I1, I2, ..., IT }, where the slice number is equivalent to the arrow
of time. For analysing temporal features, we use the bidirectional LSTM network
to formulate the respiratory states that naturally embedded in the neighbour-
hood slices, where both past and future events is used for prediction [13]. Each
LSTM unit computes the hidden vector sequence h = {h1, h2..., hT } and mem-
ory cell C = {C1, C2..., CT } and output vector sequence y = {y1, y2, ...yT } by
bidirectional iterating from the sequence time t = 1 to T and t = T to 1. We
built a three layer bidirectional LSTM and set the total classes to 10 in the fully
connected layer. In this work, we automated annotate each slice with a respi-
ratory state, then segment the volume into multiple 20-slice subvolumes with 1
slice overlap, the input of SRNN is a 20 × 20 cosine similarity matrix and the
output is the last slice prediction.

2.4 Super-Resolution Reconstruction (SR-net)

Deep learning based SR methods which trained on paired low resolution and SR
images are reported to outperform the traditional ones [15]. Our method offer
the first time non-example based SR solution, which use PSF as downgrade
function and jointly penalize the MSE and TV losses. For each respiratory state,
the selected slices are used to perform SR reconstruction. As shown in Fig. 1,
we train a four layer 3D ConvNet with parametric rectified linear unit (PReLu),
where the loss function is defined as the combined reconstruction error and the
total variation (TV) regularisation [16]. As proposed previously [6], we treat PSF
as a 3D Gaussian function with Full width at half maximum (FWHM) equal to
the slice-thickness in the through-plane direction. The reconstruction error then
can be expressed as E(V ) =

∑
jk(Rjk − Sjk)2 where Rjk refers to the intensity

of the voxel j in each selected slice indexed by k and Sjk are that simulated from
isotropic super-resolved volume V using the PSF. The loss function of SR-net is
formulated as:

LSR = E(V ) +
∑

i

λi

∑

l

TV 1D(V (di)l) (1)

where λi is weighting coefficient that balances the TV loss in different orienta-
tions, and V (di) denotes every possible l-dimensional slice of V following dimen-
sion di. SRnet takes less than 1 min at test time for a 4D reconstruction of our
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data, while previously proposed methods that were build to handle randomly
oriented PSFs take around 40 min [5] and 5 h [6].

2.5 Implementation Details

The method was implemented using Python and Pytorch. The network was
trained in two steps, first the SRNN is trained with 1359 subvolumes from 2
subjects with 8 groups of breathing states. Then, the SRnet is trained on 24
3D volumes from 3 subjects. For both SRNN and SRnet training, we use Adam
as an optimisation tool. For SRNN, the learning rate has been tested from 0.01
to 1 and set to 0.1 based on empirical results. To avoid the over-fitting, we set
the weight decay to 0.01, which add L2 regularization of the weights into the
optimisation procedure. For SR-net, we set the TV loss weights to 0.01, 0.01,
and 0.1 to enforce the data smoothness in Z-axis. We set the total epoch to 5000.
The total training time is 5 h.

3 Results

3.1 Simulated Experiment

To validate the classification accuracy of the SRNN, we generated a simulated
dataset with 5 different respiratory states sampling. For a real in-utero dataset
we classified slices into motion states using combination of peak selection and
manual input. We then reconstructed the average motion state and registered it
to the acquired slices of the other respiratory states. A breathing cycle was then
simulated based on the choice of eight slices from each group with random start-
ing state. We tested the peak selection method and the SRNN to the simulated
dataset.

Table 1. Comparison respiratory state classification accuracy on the simulation dataset

Data ID 1 2 3 4 5 Mean± Stdev

Peak analysis 39.61% 41.03% 27.86% 69.30% 47.72% 45.10% ± 13.69%

SRNN 77.81% 77.00% 77.50% 77.60% 78.62% 77.71% ± 0.53%

Table 1 shows that SRNN achieved close to 80% accuracy for all five breathing
states, while original peak selection had much lower accuracy. This was mainly
due to confusion of the neighbouring classes or average inhale and exhale states.

3.2 Real Data Reconstructions

MRI data were acquired on a 3T clinical system (Achieva, Philips Healthcare,
Best, Netherlands) using a 2D bSSFP sequence with the SWEEP technique [14].
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Fig. 2. Comparison reconstruction results of an abdominal subject. The top row shows
the through-plane views: the original motion corrupted MRI scan (a), (d); the SVR
reconstruction (b), (e); and the propose reconstruction (c), (f). The bottom row shows
the Z-axis view of the original scan (h); the reconstruction results of inhale (i) and
exhale state (j) and their difference (k)

Informed consent was obtained from 2 healthy adult volunteers (kidney) and 10
pregnant volunteers (gestational ages: 23–36 weeks) who were scanned in the
supine position with routine blood pressure and pulse oximetry monitoring. For
kidney and uterus acquisitions, the TR/TE is 5.7/2.8 and 7.3/3.6 ms, the sweep
rate is 0.37 and 0.17 mm/s, and the slice thickness is 3 and 4 mm, respectively.

The reconstruction results of the abdominal scan is shown in Fig. 2. For single
orientation acquisition motion artifacts are present in SVR reconstruction in
spite of the automatic rejection of misaligned slices (b, e). On the other hand, SR
reconstruction of slices (c, f) selected using our proposed method resolved most
of the breathing artifacts. The bottom row demonstrate the proposed SRNN can
accurately separate the inhale and exhale respiratory states.

Figure 3 shows a similar comparison for abdominal MRI of a pregnant patient.
As highlighted in the red box, where the artifact is caused by a deep breath, due
to lack of a good target with only one stack of 2D MR images, the state-of-art
SVR method failed in the area with large motion corruption.

For quantitative analysis, we calculated the PSNR and SSIM between the
reconstruction and sparsely selected 2D images with three different respira-
tory groups including average, inhale and exhale breathing states. We compared
the proposed method with two state-of-the-art SVR software, the SVR [6] and
NiftyMic [8]. For fair comparison, we use the selected 2D images as a target and
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Fig. 3. Comparisons of perinatal subject with through-plane views: (a) the original
motion corrupted image; (b) SVR based reconstruction; (c) the proposed reconstruc-
tion. (Color figure online)

use free-form deformation (FFD) based method in MIRTK package.1 to register
the reconstructions from SVR and NiftyMic to each respiratory group. Our 4D
reconstruction results are listed as SRNN0. We then register the average state
in SRNN0 to the inhale and exhale states and report the results as SRNN1 in
Tables 2 and 3. The reported values in Tables 2 and 3 are the average results of
10 in-utero subjects. The results show that the proposed reconstruction pipeline
can generate SR images with high fidelity to the original MRI scan.

Table 2. Comparison PSNR results between the reference volume and the proposed
reconstruction pipeline with different respiratory states

Average Inhale Exhale Mean± Stdev

SVR [6] 32.82 32.48 31.59 32.30 ± 0.64

NiftyMic [8] 31.43 32.29 30.98 31.57 ± 0.67

SRNN0 36.87 36.95 35.28 36.37 ± 0.94

SRNN1 – 36.88 35.28 36.08 ± 1.13

4 Discussion and Conclusion

In this paper we proposed an efficient respiratory motion resolved 4D (3D+t)
reconstruction pipeline for abdominal and in-utero MRI. We investigated the
respiratory information naturally embedded in the neighborhood slices and use
it to train an bidirectional RNN.
1 https://mirtk.github.io/.

https://mirtk.github.io/
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Table 3. Comparison SSIM results between the reference volume and the proposed
reconstruction pipeline with different respiratory states

Average Inhale Exhale Mean± Stdev

SVR [6] 0.94 0.93 0.93 0.93 ± 0.01

NiftyMic [8] 0.92 0.93 0.91 0.92 ± 0.01

SRNN0 0.96 0.96 0.96 0.96 ± 0.01

SRNN1 – 0.96 0.96 0.96 ± 0.01

We propose a simple but effective motion correction and SR reconstruction
pipeline for abdominal and in-utero MRI. The proposed pipeline can accurately
cluster the respiratory motion of the acquired 2D images stack. The proposed
self-supervised RNN utilise the NCC scores between each 2D slice and Z-axis
blurred image. Such breathing motion indicator is very helpful to supervise the
respiratory state clustering. The SR reconstruction stage further improves the
reconstruction performances. Compared to SVRs, SRnet is a CNN pipeline that
takes less than 1 min for a 4D reconstruction, while the SVR ones take around
40 min [7] and 5 h [8]. The PSNR and SSIM comparison results show that with
such single orientation acquisition scenarios, the proposed pipeline with less than
20% of the sparsely selected slices outperformed the SVR methods with all the
slices.
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Abstract. Hadamard time-encoded pseudo-continuous arterial spin
labeling (te-pCASL) is a signal-to-noise ratio (SNR)-efficient MRI tech-
nique for acquiring dynamic pCASL signals that encodes the temporal
information into the labeling according to a Hadamard matrix. In the
decoding step, the contribution of each sub-bolus can be isolated result-
ing in dynamic perfusion scans. When acquiring te-ASL both with and
without flow-crushing, the ASL-signal in the arteries can be isolated
resulting in 4D-angiographic information. However, obtaining multi-
timepoint perfusion and angiographic data requires two acquisitions. In
this study, we propose a 3D Dense-Unet convolutional neural network
with a multi-level loss function for reconstructing multi-timepoint per-
fusion and angiographic information from an interleaved 50%-sampled
crushed and 50%-sampled non-crushed data, thereby negating the addi-
tional scan time. We present a framework to generate dynamic pCASL
training and validation data, based on models of the intravascular and
extravascular te-pCASL signals. The proposed network achieved SSIM
values of 97.3 ± 1.1 and 96.2 ± 11.1 respectively for 4D perfusion and
angiographic data reconstruction for 313 test data-sets.

Keywords: Pseudo-continuous arterial spin labeling (pCASL) ·
Hadamard time-encoded ASL · Convolutional neural network (CNN) ·
4D magnetic resonance angiography (MRA) · 4D perfusion · MRI
reconstruction

1 Introduction

Arterial spin labeling (ASL) is a non-invasive MRI technique which uses magnet-
ically labeled blood water as an endogenous tracer for assessing cerebral blood
flow (CBF) [1]. Hadamard time-encoded(te)-ASL is a time-efficient approach
which provides the possibility to combine the superior SNR of ASL to acquire
data at different inflow times to obtain dynamic ASL-data [2]. When Hadamard
c© Springer Nature Switzerland AG 2019
F. Knoll et al. (Eds.): MLMIR 2019, LNCS 11905, pp. 25–35, 2019.
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te-ASL is done with and without flow-crushing, 4D magnetic resonance angiog-
raphy (MRA) and arterial input function (AIF) measurements can be obtained
next to the perfusion scans [3]. While this approach improves quantification and
enhances information content, it is a factor two slower, since both crushed and
non-crushed data need to be acquired. Accelerating te-ASL quantification can
be done either by acquiring sub-sampled data in k-space or by reducing the rank
of the Hadamard matrix. However, these methods can end up reducing image
quality and/or signal-to-noise (SNR) ratio.

In this work, we propose an end-to-end 3D convolutional neural network
(CNN) for the reconstruction of multi-timepoint 4D MRA and perfusion scans
by using half-sampled crushed as well as half-sampled non-crushed Hadamard te-
ASL scans, to maintain image quality and provide accurate CBF quantification.
Recently, CNNs have shown outstanding performance in medical imaging [4–
6]. However, very few CNN reconstruction techniques have been proposed in
the context of MRA and perfusion reconstruction. In [7] a U-net shape CNN
for boosting SNR and resolution of ASL scans has been proposed. Guo et al.
proposed a CNN based method for improving 3D perfusion image quality by the
combined use of single- and multi-delay pseudo-continuous arterial spin labeling
(PCASL) and an anatomical scan [8]. In Guo’s study, ground truth perfusion
maps were obtained by positron emission tomography scans. In [9] a temporal
CNN approach was proposed for perfusion parameter estimation in stroke. The
proposed CNN takes in the signals of interest (i.e., concentration-time curves
and the AIF) to produce estimated perfusion parameter maps including cerebral
blood volume (CBV), CBF, time-to-maximum, and mean transit time.

In this work, different from the previous works, we employ CNNs in order
to accelerate the simultaneous acquisition of 4D MRA and perfusion measure-
ments. One of the challenging issues is the different properties of the outputs
of the proposed CNN since MRA is intrinsically sparse and has much more
elongated structures than the smooth perfusion map. We tackle this issue by
employing different weighting of the loss functions of these two output-types
and by balancing extracted samples during training. The proposed CNN lever-
ages the idea of dense blocks [10], arranging them in a typical U-shape [11]. Loop
connectivity patterns in dense blocks improve the flow of gradients throughout
the network and strengthen feature propagation and feature re-usability [4]. In
this investigation, we compare the performance of several loss functions: mean
square error (MSE), VGG-16 perceptual loss, structural similarity index (SSIM)
and multi-level SSIM (ML-SSIM). The main contributions of our work are:

– To the best of our knowledge, we are the first to propose acceleration of
the reconstruction of 4D MRA and perfusion images using interleaved sub-
sampled crushed and non-crushed Hadamard te-ASL scans. To allow sub-
sampling, we employed an end-to-end 3D CNN for decoding.

– We employed a framework for generating training and validation 4D MRA and
perfusion scans by generalizing the Buxton kinetic model for a Hadamard te-
ASL signal. Different from [12], we consider the kinetic arterial model to take
into account the arterial compartment.



Fast Deep Dynamic Perfusion and Angiography Reconstruction 27

– We propose a CNN with a multi-level loss function and compare the proposed
method with several loss functions, i.e. MSE, VGG-16 perceptual loss, and
SSIM.

2 Proposed Approach

2.1 Problem

Reconstruction of dynamic perfusion scans at H−1 time points can be performed
by the decoding of crushed te-pCASL scans of a Hadamard matrix of rank H
[2]. Reconstruction of dynamic MRA scans at H − 1 time points, next to the 4D
perfusion data, is performed by the decoding of non-crushed te-pCASL scans of
a Hadamard matrix of rank H and subtraction of the perfusion data from that
[3]. This process can be formulated as

M
(
{INCi }, {ICi }

)H

i=1
= {P(t),A(t)}H−1

t=1 , (1)

in which M is the decoding and subtraction function as described earlier [2,3],
INCi and ICi are the acquired scans of the ith row of non-crushed and crushed
Hadamard te-pCASL datasets, P and A denote perfusion and angiography scans
respectively.

As mentioned before, obtaining 4D-MRA and perfusion scans require two
acquisitions. To accelerate this process with a factor of two, we propose an end-
to-end 3D CNN, M ′, which reconstructs 4D-MRA and perfusion data by using
interleaved half sampled crushed and half sampled non-crushed Hadamard te-
pCASL scans. Therefore, the problem of reconstruction can be re-defined by

M ′
(
{INC2×i−1, I

C
2×i}

)H/2

i=1
= {P(t),A(t)}H−1

t=1 . (2)

2.2 Proposed Network

Figure 1 illustrates the proposed network, which takes 50% sub-sampled crushed
and 50% sub-sampled non-crushed interleaved ASL data as input and outputs
dynamic MRA and perfusion scans. For managing GPU memory, the network
was implemented patch-based. The input patches (of size 533) are extracted from
50% sub-sampled Hadamard te-crushed and te-non-crushed scans. The outputs
of the network are 14 patches of size 393 containing perfusion and angiogra-
phy patches, each at seven different time-points. In this study, we considered a
Hadamard matrix of rank 8, so the inputs are 8 patches in total (4 crushed, 4
non-crushed). In each dense block two (3× 3× 3) conv-BN-leaky ReLu and one
(1 × 1 × 1) conv-BN-leaky ReLu, as a bottleneck layer, are stacked. Loop con-
nectivity patterns in dense blocks are employed to improve the flow of gradients
[10]. The bottleneck layers are used to increase the number of feature maps in a
tractable fashion, which make the training process easier while leading to a more
compact model. A down-sampling unit is followed by one 2× 2× 2 max-pooling
layer with a stride of 2 × 2 × 2. In order to solve the well-known checkerboard



28 S. Yousefi et al.

c

533×8

Downsample

513×8

253×8

533

Upsample

393×40 393×14

Conv 3×3×3 + BN + Leaky ReLu

233×16

113×16 93×24

193×40 193×32

393×28

c

c Concatena on

Dense-block

Mixed-Hadamard te-pCASL

Control crushed

Label crushed

Control non-crushed

Label non-crushed

Scans

Conv 1×1×1 + BN + Leaky ReLu

Patch 
extrac on

1033

Loss level1

Loss level3

Loss level2

GT

393×14

Loss func on

393×14

393×14

Mul -level loss= w1 × Loss level1 + w2 × Loss level1+w3 × Loss level3

393×14
393×14

1300ms 600ms 3×400ms 2×300ms

Fig. 1. Proposed network with single- and multi-level loss functions. The training data
contains 50% sub-sampled and interleaved Hadamard-crushed and non-crushed scans.
For the single- and multi-level loss functions, Losslevel1 and

∑3
i=1 Lossleveli are con-

sidered respectively. GT stands for ground truth, which is the set of angiographic and
perfusion data reconstructed by the standard full-sampled decoding approach [2].

issue of the conv-transpose layer, for the up-sampling layer the feature maps are
re-sized by a constant trilinear resize convolution kernel, similar to [13]. In this
work we investigate the impact of several loss functions for the defined prob-
lem: MSE, which is the L2-norm, VGG-16 perceptual loss [14], SSIM which is
composed of luminance, contrast and structural error. Later it is shown that
among the mentioned loss functions, SSIM has a higher performance in terms of
SSIM metric value. Therefore, we propose ML-SSIM, which is calculated based
on weighting the SSIM loss function for different levels of the network, see Fig. 1.

2.3 Dataset Generation

In pCASL the arterial spins are magnetically labeled with a radiofrequency inver-
sion pulse applied below the imaging slices in the neck vessels. The labeled blood
then travels via the arteries towards the brain tissue, where they pass from the
capillary compartment into the extravascular compartment. After a certain delay
time after labeling which is known as the post-labeling delay (PLD) a so-called
labeled image is acquired. A control image is acquired without prior labeling and
by subtraction of these two images, the perfusion image can be generated. For
the Hadamard te-pCASL technique, the labeling module (the typical duration
of 3–4 s) is divided into several blocks (sub-boli) and a Hadamard matrix is used
to determine whether a block will be played-out in label or control condition.
For each voxel the Hadamard te-pCASL signal can contain both perfusion signal
as well as label still residing in the arteries, i.e. angiography signals.

Since it is difficult to acquire substantial amounts of real data, we propose to
model the input data, allowing to generate a sufficient amount of training data.
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The ground truth output data is created by decoding fully sampled Hadamard
te-ASL crushed and non-crushed data [2]. For this purpose, we create datasets
based upon a tracer kinetic model for the Hadamard time-encoded pCASL signal
that describes the signal a function of arterial arrival time (AAT), bolus arrival
time (BAT) and CBF. In this study, for calculating the signal, the AAT and BAT
information are obtained from in vivo data. The CBF maps are taken from the
BrainWeb dataset by assigning CBF-values to white matter (WM), gray matter
(GM) and cerebrospinal fluid (CSF).

Figure 2 shows the proposed framework for synthetically generating training
and validation datasets. For this goal, we leverage the well-known Buxton kinetic
model [15], which has been defined for normal ASL, and defined a tracer delivery
function (for tissue voxels and arteries) and a tracer accumulation (perfusion)
function for each bolus of Hadamard encoded labeling scheme. The final kinetic
model is then generated by performing the convolution of the AIF and the residue
function. Equations (3) and (4) define the obtained model for large arteries and
tissue signals for a Hadamard scheme of 8 encoding steps respectively. These
equations can be generalized for Hadamard matrices of higher rank.

Sartery =

⎧
⎪⎪⎨

⎪⎪⎩

0 if t < Δtb

M0a · aCBV · Lr(b) × e
−Δtb
T1b if Δtb +

∑b−1
b′=1 τb′ ≤ t < Δtb +

∑b
b′=1 τb′

0 if t ≥ Δtb +
∑N

b′=1 τb′

(3)

Stissue =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 if t < Δtb

γΓβ=0 if Δta ≤ t < Δta + τ1

γ [Γβ=1 + Ξ1:1] if Δta + τ1 ≤ t < Δta +
∑2

b=1 τb

γ [Γβ=B−1 + ΞB−1:1] if Δta +
∑B−1

b=1 τb ≤ t < Δta +
∑B

b=1 τb; B ∈ [3, 7]

γΞN :1 if t ≥ Δta +
∑N

b=1 τb; N = 7

(4)
in which τb is label duration for the bth sub-bolus, N is the number of sub-
boluses, M0a is the magnetization of arterial blood, Δta is AAT which represents
the arrival time of the labeled blood in the artery, Δtb is BAT which represents
the arrival time of labeled blood in the tissue, T1a is the arterial blood relaxation
time, f is CBF (millimeter per gram per second), κ is static tissue signal, aCBV
is arterial cerebral blood volume,

γ = M0a · f · e−Δta
T1a · T1a, (5)

Γβ = Lr(β + 1)

(
1 − e− t−Δta−∑β

b=1 τb
T1a

)
, (6)

and

Ξβ:β′ =
β′∑

b′=β

Lr(b′)

(
e− t−Δta−∑b′

b=1 τb
T1a − e− t−Δta−∑b′−1

b=1 τb
T1a

)
. (7)
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Fig. 2. Data generator framework for one subject, the inputs of the framework (shown
in bold) are: in vivo information (include BAT, AAT, and CBF) and anatomical data
from BrainWeb [16], the outputs are pCASL scans which by decoding the perfusion
and angiographic maps are obtained (see Sect. 2.3), Left: a map of the arrival time of
the label in arteries (‘arterial arrival time’ or AAT) is created from high resolution
4D MRA ASL scan (Cinema, 8 time-points with 200 ms temporal resolution, and a
spatial resolution of 0.82 × 0.82 × 1.02 mm) and the data are registered to a subject
from BrainWeb dataset, and leads to an AAT map for the subject, then the AAT map
is fed into Eq. (3) to calculate the kinetic arterial model. Middle pipeline: using the
GM and WM segmentation of the subject and assigning literature values to the flow
map (or CBF) of GM and WM the flow map is calculated, which serves as one of the
inputs to the kinetic model of the tissue (Eq. 4). Right: an in vivo te-crushed pCASL
data is registered to the same subject of BrainWeb and by Hadamard decoding the
registered data, the arrival of the label at tissue level (‘bolus arrival time’, or BAT-map)
is calculated. This serves as the other input to the kinetic model of the tissue (Eq. 4).
The tissue signal and arterial signal are summed together to form the te-pCASL.

Lr(b) is 0 if the bth bolus in the rth row is control, and it is 1 if the bth bolus in
the rth row is label. For voxels containing large arteries, the pCASL signal can
be computed by Svoxel = Stissue + Sartery. The calculated tracer kinetic model
is a function of AAT, BAT and CBF. In this study, the anatomic structures
are obtained from the BrainWeb database [16]. In order to obtain the tracer
signal, the AAT and BAT and blood maps are extracted from in vivo data, then
registered with a subject from the BrainWeb dataset by Elastix [17]. The ground
truth, i.e. 4D MRA and perfusion scans, are obtained by normal Hadamard
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decoding of the pCASL images [18]. To evaluate the generated data, the signal
evolution pattern was validated by the Buxton curve model [15].

In this study, the dataset was generated for a Hadamard-8 matrix with seven
blocks of respectively 1300, 600, 400, 400, 400, 300 and 300 ms with an additional
265 ms delay before the start of readout. Using the permuted in vivo information
(include 6 BAT, 4 AAT) and registering those with the anatomical information
from the BrainWeb dataset (consisting of 20 normal subjects and CBF) and
calculating the Hadamard te-pCASL (Eqs. (3) and (4)), this study contains 1564
distinct simulated data-sets each including crushed and non-crushed input data
for 8 Hadamard-encodings. By decoding each of the generated crushed and non-
crushed te-pCASL data, the corresponding angiographic and perfusion output
data at 7-time points, as the ground truth, are obtained. The scans were divided
into 1096 subjects for training, 155 for validation and 313 for testing.

3 Experimental Results

We implemented the proposed networks in Google’s Tensorflow. The patch
extraction was done parallel and randomly using a multi-threaded daemon pro-
cess on the CPU and then patches were fed to the network on the GPU during
the training process. To tackle the sparsity of MRA with respect to the perfu-
sion scans, 75% of the patches were extracted from the region containing arteries.

Table 1. Comparison of the different networks for perfusion and angiographic images
(in gray the perfusion and in white the angiographic results), the best results for
perfusion and angiography are shown in blue and green respectively, PL stands for
perceptual loss. A Wilcoxon signed-rank test is performed between ML-SSIM and other
loss functions for perfusion and angiography, where † indicates a statistically significant
difference with p < 0.05.
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Fig. 3. Boxplots for different metrics and CNNs for perfusion and angiographic results,
PL stands for VGG-16 perceptual loss. For (e) a few outliers smaller than 25 and for
(c)/(d) a few outliers larger than 0.45/4 are not shown.

The input patches were augmented by white noise extracted from a Gaussian
distribution with zero mean and random standard deviation between 0 and 5,
left-to-right flipping, and random rotation (up to ±18◦).

Evaluation of the proposed networks has been performed by calculating
SSIM, MSE, SNR, and peak signal to noise ratio (pSNR), comparing the ground
truth reconstruction using full sampling with that of the neural network using
50% subsampling. Table 1 tabulates a quantitative comparison between the
mentioned loss functions. A statistically significant difference (with p < 0.05)
between ML-SSIM and all the other methods, for perfusion and angiography,
can be observed.

Figure 3 depicts the boxplots of the metrics on the test set. The network using
the ML-SSIM loss function had a value of 97.3 ± 1.1, 6.2 ± 2.4 and 35.0 ± 3.2
for SSIM, SNR and pSNR respectively, and the best performance for perfusion
reconstruction. The network with the SSIM loss function had a SSIM of 96.7 ±
12.5 for angiography reconstruction, i.e. the best performance in terms of SSIM
while it does not show a statistically significant difference from the network with
the ML-SSIM loss function. Also for angiography reconstruction the network
with perceptual loss had the best value for SNR and pSNR while the network
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with the ML-SSIM loss function with the values of 1.67 ± 0.52 and 35.4 ± 23.2
for SNR and pSNR respectively had the second rank.

Fig. 4. Qualification results, 4D (a) MRA and (b) perfusion and error at multiple time
points after labeling of arterial spins in a single-slice for the different networks, GT
stands for ground truth which is obtained from fully sampled decoding and subtracting
(see Eq. 1).
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Figure 4 exemplifies the qualification compassion for 4D MRA and perfusion
reconstruction between the different CNNs. The lower SNR and higher pSNR
variance for the angiographic data is partially explained by the intrinsic sparsity
of that data, especially noticeable in the earlier time points, see Fig. 4a.

It takes an average of 205± 232 ms from the ML-SSIM network to recon-
struct all perfusion and angiography scans from the interleaved sparsely-sampled
crushed and non-crushed data of size 1073.

4 Conclusion

We proposed a 3D end-to-end fully convolutional CNN for accelerating 4D MRA
and perfusion reconstruction from half-sampled crushed and non-crushed pCASL
data. We leveraged loop connectivity patterns in the network architecture to
improve the flow of information during the gradient updates. For training and
validation purposes we developed a data generator framework based on the gen-
eralized kinetic model for the pCASL signal. The generated dataset included
1096 scans for training, 155 scans for validation and 313 for testing. The proposed
network with ML-SSIM loss function achieved a SSIM of 97.3± 1.1/96.2± 11.1,
MSE of 0.03 ± 0.15/0.44 ± 3.17, SNR of 6.18 ± 2.38/1.67 ± 0.52, and pSNR of
35.0 ± 3.2/35.4 ± 23.2 for perfusion/angiography reconstruction. The lower SNR
and higher variance in the pSNR for the angiographic data is partially explained
by the intrinsic sparsity of that data, especially noticeable in the earlier time
points, see Fig. 4a.

In conclusion, the proposed network obtained promising results for the chal-
lenging problem of 4D MRA and perfusion reconstruction. The method, there-
fore, may assist an accelerated MRI scanning workflow. A further step of this
study is enriching the training and validation datasets with in vivo data.
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Abstract. Deep learning has been successfully demonstrated in MRI
reconstruction of accelerated acquisitions. However, its dependence on
representative training data limits the application across different con-
trasts, anatomies, or image sizes. To address this limitation, we propose
an unsupervised, auto-calibrated k-space completion method, based on
a uniquely designed neural network that reconstructs the full k-space
from an undersampled k-space, exploiting the redundancy among the
multiple channels in the receive coil in a parallel imaging acquisition.
To achieve this, contrary to common convolutional network approaches,
the proposed network has a decreasing number of feature maps of con-
stant size. In contrast to conventional parallel imaging methods such
as GRAPPA that estimate the prediction kernel from the fully sampled
autocalibration signals in a linear way, our method is able to learn nonlin-
ear relations between sampled and unsampled positions in k-space. The
proposed method was compared to the start-of-the-art ESPIRiT and
RAKI methods in terms of noise amplification and visual image quality
in both phantom and in-vivo experiments. The experiments indicate that
APIR-Net provides a promising alternative to the conventional parallel
imaging methods, and results in improved image quality especially for
low SNR acquisitions.

Keywords: Magnetic resonance imaging · Reconstruction · Parallel
imaging · Neural network

1 Introduction

Magnetic resonance imaging (MRI) provides versatile contrast information for
clinical diagnosis. However, its long scan time remains a limitation. To reduce
scan time, parallel imaging [2,5] has been proposed to reconstruct subsampled
k-spaces acquired by multi-channel coils and is widely used in clinic. Recently,
deep learning was also demonstrated to enable fast imaging with the reconstruc-
tion model trained on representative data [3,9,10].
c© Springer Nature Switzerland AG 2019
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Despite the current success of deep learning in MRI reconstruction, most
methods are size, contrast, or anatomy specific. Also they depend on the cor-
responding training data, and may create inaccurate reconstruction for features
not seen in training data. Recurrent inference machines have been introduced
to iteratively reconstruct heterogeneous raw MRI data with different anatomies
and acquisition settings [4]. However, training data is still needed and influ-
ences reconstruction performance. A database-free deep learning approach for
fast imaging (RAKI) was proposed for parallel imaging reconstruction [1]. It
learns the prediction kernel with an artificial neural network from fully sampled
autocalibration signals (ACS) and subsequently uses the learned kernel to predict
the unsampled signals. In this method, the nonlinear estimation of the predic-
tion kernel enables improved noise resilience compared to the linear GRAPPA
method.

In this work, we propose a different unsupervised k-space completion method
for parallel imaging, called Autocalibrated Parallel Imaging Reconstruction using
a Neural Network (APIR-Net). Contrary to RAKI which as a 2D method pre-
dicts the unsampled signals for a 2D k-space using prediction kernels learned
from the ACS signals, APIR-Net predicts all signals of a 3D full k-space from
the subsampled k-space utilizing all sampled signals, including ACS signals and
beyond.

Most image based neural network architectures use downsampling (and sub-
sequent upsampling) operators with increasing number of feature maps to force
the network to use higher level image features. This assumes that such high
level features are present at rather small scales in the images. In k-space small
scale features represent large scale image features and hence such high level fea-
tures are less likely to be present, yet preservation of small scale information is
essential. On the other hand, for MRI using a multi-channel receive coil, signal
redundancy exists among the channels. Hence, inspired by, but in contrast to,
the U-net architecture, APIR-Net decreases the number of feature maps while
preserving their size throughout all layers.

To improve the computational efficiency, we propose to train APIR-Net in
a hierarchical process, starting from a small portion of k-space in the center
region until the full size k-space. The network trained at a lower level provides
initialized weights for a subsequent higher level’s training. The performance of

(a) Msampled (b) Mpattern (c) Macs

Fig. 1. An example of the masks of all sampled positions Msampled, regularly subsam-
pled positions Mpattern, and the ACS positions Macs in PE directions.
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APIR-Net was evaluated with phantom and in-vivo acquisitions with comparison
to GRAPPA [2], ESPIRiT [7], and RAKI [1] methods.

2 Methods

2.1 Conventional Parallel Imaging Reconstruction [2]

In a parallel imaging acquisition with a multi-channel receive coil, k-space is
subsampled regularly with a small fully sampled ACS region in k-space center.
We represent the masks of all sampled positions, regularly subsampled positions,
and the ACS positions in phase encoding (PE) directions as Msampled, Mpattern,
and Macs, respectively, as illustrated in Fig. 1. In GRAPPA, the unsampled
signals are predicted as

Spredicted = n � (S ◦ Mpattern), (1)

where � represents convolution operation and ◦ represents pixelwise multiplica-
tion. S represents all signals in k-space. n is the prediction kernel that is trained
on the ACS region Macs by the least squares fitting as

n̂ = arg min
n

‖(S − n � (S ◦ Mpattern)) ◦ Macs‖22 + λ‖In‖22, (2)

where λ is a scalar and I is the identity matrix. The second term in Eq. 2
represents Tikhonov regularization, and actual implementations may add terms
with shifted versions of Mpattern.

The final interpolated k-space is computed as

Sfinal = S ◦ Msampled + Spredicted ◦ (1 − Msampled), (3)

and the final image X is computed as

X =

√
1
C

∑
c

|iFFTc(Sfinal)|2, (4)

where C is the number of channels and iFFTc is the 3D inverse Fourier transform
on channel c.

2.2 APIR-Net Reconstruction

Problem Formulation. Instead of explicitly computing the convolution kernel
n and applying it over the full k-space as in GRAPPA [2] or RAKI [1], our
approach recovers the full k-space by training of a deep convolutional neural
network:

θ̂ = arg min
θ

‖(Aθ(S ◦ Mpattern) − S) ◦ Msampled‖22 , (5)

where Aθ is the function to predict the full k-space from S ◦ Mpattern and is
parametrized by θ as a neural network. With the input equal to S◦Mpattern, only
the regularly subsampled signals are effectively fed into the network, whereas
the loss is computed on all sampled positions Msampled. The final image X is
reconstructed by Eq. 4 with Sfinal = Aθ̂(S ◦ Mpattern).
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Fig. 2. The neural network architecture of APIR-Net.eps

Network Architecture. The detailed network architecture is shown in Fig. 2.
The real and imaginary components of the complex k-space are concatenated in
channel dimension, resulting in an input with 2C channels. Similarly, the output
with 2C channels is finally converted to a C-channel complex-valued k-space. As
the multi-channel k-space in a parallel imaging acquisition is highly correlated
across the channel dimension, in APIR-Net, the layers have progressively reduced
number of channels, or feature maps, as the depth of the encoder increases, while
the size of each feature map remains unchanged. The first and last convolutional
layers use a kernel size 5 × 5 followed by the linear activation function. The
remaining convolutional layers are with kernel size of 3 × 3 followed by the
ReLU activation function. Periodic padding is used for all convolutional layers,
such that the border of the input for each convolutional layer is padded from
the opposite border to maintain the size of output equal to the input.

Training. The network is trained in a hierarchical way. This is motivated by
the main aspect that allows parallel imaging reconstruction: the differences in
coil sensitivity of the multi-channel coil. In image domain the coil sensitivity is
multiplicative in k-space this appears as translation invariant convolution. Hence,
to accelerate training we start with the ACS part and progressively increase the
size until the full k-space is included. Details of the training are provided in
Algorithm 1.

3 Experiments

3.1 Evaluation with Phantom Acquisition

The 3D k-space of the ACR-NEMA MRI Phantom was fully acquired with
fast spin echo sequence using a 3T GE Discovery MR750 scanner and an
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Algorithm 1: The proposed hierarchical training method.
Input : S, Msampled, Mpattern, L ← number of levels in the hierarchical

training, kl ∈ Z
3 ← position vector indicating the k-space region being

used in training of level l
Output: θ̂

1 Normalize magnitude |S ◦ Msampled| to [0,1]

2 Initialize θ̂0 randomly with a uniform distribution within [-0.05, 0.05]
3 for l ← 1 to L do
4 Sin,l = S(kl) ◦ Msampled(kl), Min,l = Mpattern(kl), Mout,l = Msampled(kl)

5 θ̂l = arg minθ ‖(Aθ(Sin,l ◦ Min,l) − Sin,l) ◦ Mout,l‖2
2 starting from θ = θ̂l−1

until convergence
6 end

7 return θ̂ = θ̂L

eight-channel birdcage-like receive brain coil (8HRBRAIN). The scan param-
eters include repetition time (TR) = 2800 ms, echo train length (ETL) = 60,
bandwidth (BW ) = 83.33 kHz, field of view (FOV ) = 20.5 × 20.5 × 20.5 cm3,
Matrix size = 192 × 192 × 192. The cylindrical phantom was placed axially in
the coil array, with S/I as frequency encoding (FE) direction.

Reconstructions with GRAPPA [2], ESPIRiT [7], l1-ESPIRiT (ESPIRiT inte-
grating the regularization of the l1-norm with a sparsity transform) [7] and
APIR-Net were performed on a retrospectively subsampled k-space from the
full acquisition with a subsampling factor of 2 × 2 in two PE directions. The
k-space center with the size [25 × 25] in [PE1, PE2] was fully sampled as the
ACS region. To highlight the noise amplification suppression capability of both
methods, simulated Gaussian noise was added to the acquired positions in the
subsampled k-space.

For GRAPPA, a convolution kernel size of [5, 9, 9] in [FE, PE1, PE2] direc-
tions was selected from a range of options to obtain an optimal reconstruction.
To fairly compare GRAPPA we reconstructed both without Tikhonov regular-
ization (λ = 0) as well as with a value of λ for which aliasing artifacts started
to appear.

ESPIRiT reconstruction was performed using implementation from the
BART toolbox [8]. In the reconstruction, the eigenvector maps for the first two
eigenvalues were used. For l1-ESPIRiT reconstruction, a regularization term of
l1-norm with wavelet transform was used. The strength of the regularization was
selected towards a low noise level while avoiding visually obvious blurriness or
artifacts (r = 0.01).

In APIR-Net reconstruction, the training was converged with sufficient num-
ber of epochs. The settings of the hierarchical training are heuristically deter-
mined and are shown in Table 1. Adam was used as optimizer (β1 = 0.9,
β2 = 0.99, ε = 10−20) and no regularization was used in APIR-Net.
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The computation time was around 5 min for GRAPPA and around 10 min for
ESPIRiT with the CPU Intel Xeon E5503, and was around 120 min for APIR-Net
with the GPU NVIDIA GeForce GTX 1080Ti and the CPU Intel Core i7-8700.

Table 1. The settings for each level of the hierarchical training in APIR-Net.

Size (phantom) Size (in-vivo) Initial learning rate Number of epochs

Level 1 32 × 32 × 32 16 × 32 × 32 0.001 10000

Level 2 48 × 48 × 48 112 × 84 × 64 0.0001 5000

Level 3 96 × 96 × 96 224 × 164 × 126 0.00005 1000

Level 4 192 × 192 × 192 224 × 224 × 178 0.00005 500

The mean square error (MSE) of the phantom region in the reconstructed
image with regard to the reference image was computed for each method. The ref-
erence image for MSE computation was reconstructed by the root mean squares
of the inverse Fourier transform on the fully acquired k-space.

The noise amplification factor was computed with the pseudo multiple replica
method [6] with 50 iterations by adding Gaussian white noise to the acquired
positions in the subsampled k-space. The magnitude level of the simulated noise
was the same for all replica.

3.2 Comparison to RAKI

As the current version of RAKI is a 2D method, we performed a separate exper-
iment for comparison. The implementation of RAKI was kindly provided by
the authors of [1]. To fit a 2D reconstruction method, the same 3D k-space
was first fourier transformed in the FE direction to obtain k-spaces of 2D axial
(PE1 ×PE2) slices, which contains the most variation of the coil sensitivity. A
single slice was extracted and was further subsampled by a factor of 3 in the
first PE direction, with an ACS region of 25 lines. This data was reconstructed
by RAKI, APIR-Net, ESPIRiT, l1-ESPIRiT (r = 0.01), and GRAPPA, where
(obviously) 2D Convolution kernels of otherwise identical size were used in APIR-
Net (2D APIR-Net). To investigate the influence of increasing training size we
additionally reconstruct with APIR-Net the 3D k-space identically subsampled
by a factor 3 in the first PE direction.

3.3 Evaluation with In-Vivo Acquisitions

To evaluate the proposed method with in-vivo acquisitions, a brain scan from one
volunteer with FLAIR contrast was performed with the same scanner and coil as
the phantom acquisition. This study was approved by our Institutional Review
Board and informed consent was obtained from the volunteer. The prospectively
subsampled k-spaces skipped the corners in the PE plane. The subsampling
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(a) GRAPPA. (b) Regularized
GRAPPA.

(c) ESPIRiT. (d) l1-ESPIRiT. (e) APIR-Net.

Fig. 3. One axial slice of the reconstructed images (first row), the reconstruction
errors (second row), and the noise amplification factors (third row) of the phantom
experiment.

factors are [2, 3] in [PE1, PE2] directions. The ACS region with size [25 × 25] in
[PE1, PE2] was additional fully acquired as well. Other settings include TR =
5000 ms, inversion time (TI) = 1700 ms, ETL = 60, FOV = 22.4 × 22.4 ×
17.8 cm3, Matrix size = 224 × 224 × 178, BW = 41.67 kHz. The effective scan
time was 3.95 min.

Similar to the experiments with phantom data, Gaussian noise was added
to the acquired positions in k-spaces to investigate the noise amplification sup-
pression capability of the methods. The settings of the hierarchical training for
APIR-Net are shown in Table 1 as well. For APIR-Net reconstruction, prediction
using network weights trained on different levels of the hierarchical training was
also performed. Besides APIR-Net, reconstructions with GRAPPA, ESPIRiT
(eigenvectors of the first two eigenvalues used), and l1-ESPIRiT (r = 0.01) were
also performed.

4 Results

4.1 Evaluation with Phantom Acquisition

The images of the phantom reconstructed by all methods are shown in the first
row in Fig. 3. The reconstruction errors, i.e., the absolute difference between
the reconstructed images and the reference image, are shown in the second
row in Fig. 3. When using regularization with GRAPPA, SNR increases but
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(a) GRAPPA. (b) Regularized
GRAPPA.

(c) ESPIRiT. (d) l1-ESPIRiT.

(e) RAKI. (f) 2D APIR-
Net.

(g) 3D APIR-
Net.

Fig. 4. (a-f) 2D k-space reconstructions of one axial slice, (g) was reconstructed from
a 3D k-space.

aliasing artifacts start to appear. APIR-Net reconstruction shows higher SNR
than ESPIRiT reconstruction and the GRAPPA reconstruction without regu-
larization, and less aliasing artifacts than the regularized GRAPPA reconstruc-
tion while having higher SNR. By integrating a properly weighted regularization
term of l1-norm of wavelet coefficients of the reconstructed image, l1-ESPIRiT
reduced noise level of ESPIRiT without raising visually obvious artifacts, and
achieves the optimal image quality overall. MSEs of the reconstructed images are
shown in the reconstructed images in Fig. 3. APIR-Net reconstruction shows a
lower MSE than the other methods except l1-ESPIRiT. While l1-ESPIRiT out-
performs APIR-Net in the reconstruction quality, the same regularization, i.e.
the sparsity constraint in wavelet transform, of l1-ESPIRiT can be integrated in
APIR-Net as well to improve its reconstruction quality.

As shown in the third row in Fig. 3, with regularization, the noise ampli-
fication was reduced in GRAPPA reconstruction, but still clearly higher than
APIR-Net reconstruction. l1-ESPIRiT overall shows the optimal noise amplifi-
cation suppression with a substantial improvement over ESPIRiT.

4.2 Comparison to RAKI

As shown in Fig. 4, RAKI increased SNR substantially compared to GRAPPA.
Compared to regularized GRAPPA, with similar amount of aliasing artifacts,
RAKI still achieved higher SNR. With slightly lower SNR than RAKI and higher
than regularized GRAPPA, 2D APIR-Net achieved less aliasing artifacts and
visually better image quality. l1-ESPIRiT substantially increased SNR compared
to ESPIRiT, and achieved visually better quality than the previous ones. With
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more signals available for training, 3D APIR-Net shows improvement in both
SNR and artifacts than 2D APIR-Net and also better image quality than other
2D methods.

4.3 Evaluation with In-Vivo Acquisitions

The reconstructed in-vivo images are shown in Fig. 5. Regularized GRAPPA
reconstruction shows reduced noise compared to GRAPPA without regular-
ization, but aliasing artifacts appear. APIR-Net reconstruction achieves better
performance than GRAPPA in both noise and aliasing artifacts. Compared to
ESPIRiT, APIR-Net reduced the noise level of the image, though l1-ESPIRiT
achieves a further reduced noise level with slight blurring appears.

Figure 6 shows the images reconstructed using weights trained from different
levels in the hierarchical training. The image quality (in terms of noise and
aliasing artifacts) is improved with the fine tuning of higher levels training.

(a) GRAPPA. (b) Regularized
GRAPPA.

(c) ESPIRiT. (d) l1-ESPIRiT. (e) APIR-Net.

Fig. 5. One axial slice of the reconstructed images of the prospectively subsampled
in-vivo acquisition.

(a) Level 1. (b) Level 2. (c) Level 3. (d) Level 4.

Fig. 6. One axial slice of the reconstructed in-vivo images by APIR-Net. Reconstruc-
tion using weights of the first level training (a), second level (b), third level (c), and
fourth level (d).
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5 Discussion and Conclusion

This work presented a novel method, APIR-Net, to reconstruct images from
parallel imaging acquisitions using a neural network. While maintaining the non-
linear optimization capability of deep learning based reconstruction methods,
APIR-Net does not need representative training data of additional subject scans.
This enables flexibility of APIR-Net in image size, contrast, or anatomy.

Compared to GRAPPA, which estimates the unsampled signals in a linear
way, APIR-Net achieves better noise amplification suppression, and thus better
image quality and SNR. In GRAPPA noise amplification can be reduced by
including Tikhonov regularization. However, this may introduce artifacts. In
our results the regularized GRAPPA reconstruction had both stronger artifacts
and higher noise level than APIR-Net. Compared to ESPIRiT, where excessive
noise amplification exists, APIR-Net shows improvement of the image quality
with better SNR. l1-ESPIRiT, which integrates the assumption of sparsity in
the wavelet domain, substantially improves SNR and achieves (slightly) better
image quality than APIR-Net, though tuning of the regularization strength is
needed. As currently APIR-Net does not use any image based prior information,
we hypothesise that the APIR-Net results can be further improved by including
such prior information into the reconstruction, e.g. by adding the l1 norm of the
wavelet transform of the reconstructed image as additional cost term in Eq. 5.
The RAKI method [1] which trains a convolutional neural network from ACS to
predict the unsampled signals showed better results than GRAPPA. In APIR-
Net, which uses a substantially different network architecture and extends RAKI
in that all sampled signals (including signals beyond the ACS region) are used
in prediction, improved image quality is achieved.

Although it achieves the improved image quality, the current computation
time of APIR-Net is much longer than GRAPPA. The high levels of the hier-
archical training for APIR-Net are with typically very large size inputs (multi-
channel high resolution 3D k-space), which makes it computationally expensive.
We expect that by using patch generation techniques and stochastic optimiza-
tion, the computation time can be reduced substantially. Additionally, initializa-
tion of the network weights might be improved by pretraining with previously
acquired data; preferably with the same k-space pattern and receive coil. This
may enable reducing the number of epochs and thus the computation time, while
avoiding bias in reconstructed images due to the training dataset.

To conclude, APIR-Net provides a promising alternative to the conventional
parallel imaging methods, and results in improved image quality especially for
low SNR acquisitions.
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Abstract. Fast reconstruction of under-sampled acquisitions has always
been a central issue in MRI reconstruction. Recently years has seen mul-
tiple studies using deep learning as a de-aliasing framework to restore
the aliased image. However, restoration of fine details is still problem-
atic, especially when dealing with noisy image datasets. Sparked by the
Fourier transform relationship, this work proposed and tested a new
hypothesis: can regularization be directly added in the frequency domain
to correct the high-frequency imperfection? To achieve this, discrim-
inative networks are applied in both the image domain and the fre-
quency domain (so-called dual-domain GAN). Evaluation on multiple
datasets proved that the dual-domain GAN approach is an effective way
to improve the quality of accelerated MR reconstruction.

Keywords: Accelerated MRI reconstruction · Generative Adversarial
Network · Frequency constraint

1 Introduction

MRI is a widely used imaging modality in the clinical setting. For most MRI
applications, reducing the scanning time has multiple advantages, including
reducing motion artifacts, maximizing throughput and alleviating patients’ dis-
comfort. However, aggressively reducing the time under the Nyquist sampling
rate can introduce aliasing artifacts to the reconstructed image. Traditional de-
aliasing methods are mainly based on parallel imaging [5,17,23] and compressed
sensing technologies [4,10,12]. The former type of methods utilizes redundant
information from phased-array coils. However, it requires specialized hardware
and the acceleration rate is generally restricted to 4. The latter method exploited
the sparsity of acquisition in different transformation fields, and it can be also
combined with parallel imaging to further accelerate the acquisition [3,15,16].
c© Springer Nature Switzerland AG 2019
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To further accelerate reconstruction and improve image quality, in recent
years deep learning has been applied to MR reconstruction to solve the ill-
conditioned problem posed by aggressively under-sampled measurements. From
historical information, deep networks learn the mapping between different trans-
form domains, including k-space to image [2,29], k-space to k-space [6], under-
sampled image to fully sampled image [7,14,20,25]. For image domain-based
deep learning reconstruction frameworks, they mainly embody an encoder-
decoder structure like U-Net [18] and loss functions like norm loss or perceptual
loss [9,20]. The idea of generative adversarial networks (GANs) has also been
taken advantage of [14,20]. Currently, one major issue of DL-based reconstruc-
tion is the recovery of fine details, which is crucial for the diagnosis of multiple
kinds of lesions. Recently, there are works exploring the possibility of adding a
constraint in the frequency domain to solve this problem [27]. To be specific,
a norm loss is calculated between the generated k-space and fully sampled k-
space. However, directly adding a regularization (like L1/L2 norm loss) can be
sub-optimal for the following reasons. First, the high-frequency part of k-space
we care about is often noisy, making L1/L2 loss less effective. Second, Fourier
transform is a linear transformation. Frequency domain L1/L2 loss do not have a
clear perceptual effect different than the image domain L1/L2 loss. In this work,
it is hypothesized that the GAN approach can be more suitable, since energy
distribution in k-space always follows a certain pattern, especially for a specific
sequence, which is relatively easy to be learned by GANs. By enforcing the real-
istic energy distribution, the generator may better restore the high-frequency
imperfection. In the meantime, the image-domain discriminator is remained to
help generate sharp and visually favorable images [11].

To test this hypothesis, multiple datasets on both brain and knee were
employed, with different types of retrospective sampling patterns. Quantita-
tive comparison with fully sampled acquisitions was performed to evaluate the
model’s performance compared with image domain networks.

2 Methods

2.1 Accelerated MRI with Deep Generative Model

Similar to previous works, the model aims to restore images using the information
learned from historical data. To be specific, the input of the generative network
is aliased images directly reconstructed from the under-sampled data. In the
training process, the fully-sampled images are deemed as the ground truth, and
input images are synthesized retrospectively from original acquisitions. Different
loss functions measuring the distance between the aliased image and the fully-
sampled one are calculated and back-propagated to train the network.

2.2 Network Architecture

The network’s structure is detailed in Figs. 1 and 2, where k stands for the
kernel size. s stands for the stride size, and p stands for the padding size. For the
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Fig. 1. The architecture of the generator.

generator, the backbone inherits the structure of ResNet [11], which has been
proven to be efficient in MR reconstruction [14]. The number of Res-blocks is
set the 6 to balance the model’s representation power and size. Following the
encoder-decoder network, an affine k-space projection layer is added, in which
the real acquired k-space and the un-acquired part (which is 1-sampling mask)
of the generated k-space were linearly combined. Then the combined k-space
data go through several convolutional blocks before being Fourier transformed
into the final image, to avoid artifact of directly combining k-space together.

Fig. 2. The architecture of the frequency domain discriminator.
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Previous works prove that combine the generated data and original acquisition
can add a soft data-consistent constraint on the network, which may accelerate
and stabilize the training [2,14,28].

k = conv(α · (1 − m) · kg + (1 − α) · m · kr) (1)

m is the binary sampling mask, kr is the acquired data, and kg is the generated
data. α is usually set to 0.95.

In the frequency domain, a multi-level discriminator in introduced, meaning
the predictions of different output layers are all used. The design is based on the
hypothesis that presentation of different levels of k-space can represent differ-
ent levels of properties of k-space, and exert different effects on the generator’s
training. In the image domain, with trials it is found that multi-level discrimi-
nator formulation leads to a minor improvement. To minimize memory usage, a
patch-based discriminator [29] consisting of 6 convolutional layers is used.

2.3 Loss Function

The loss function consists of three components: content loss, perceptual loss,
and adversarial loss. Content loss measures the distance between the generated
image and the ground truth in different norm spaces. In this setting, we used two
sub-types, including L1/L2 norm loss and SSIM loss [8]. The L1 norm and L2
norm are mixed to balance the sharpness and stability. SSIM loss is also blended
to generate more visually favorable images.

min
θG

Ex,y [‖G(x) − y‖1 + λ1‖G(x) − y‖2 + λ2SSIM {G(x), y}] (2)

In our implementation, λ1 is set to 10 and λ2 is set to 0.025.
Perceptual loss is introduced as well to restore the details better and improve

the visual effect. A VGG-19 net pre-trained on ImageNet and fine-tuned on HCP
dataset acted as the feature extractor [21].

min
θG

Ex,y

[‖φj(G(x)) − φj(y)‖2
]

(3)

φj means the ith layer of the VGG net. The weight of the perceptual loss may
vary based on the layer selected.

Adversarial loss in both the image domain and frequency domain is formu-
lated as the LSGAN approach [13] to stabilize training.

min
θG

η1Ex

3∑

i=1

[
γi (1 − Dk i(FFT (G(x))))2

]
+ η2Ex

[
(1 − DI(G(x)))2

]
(4)

η1β min
θDk

Ex

3∑

i=1

[
γiDk i(FFT (G(x)))2

]
+ Ey

3∑

i=1

[
γi (Dk i(FFT (y)) − 1)2

]
(5)

η2β min
θDI

Ex

[
DI(G(x))2

]
+ Ey

[
(DI(y) − 1)2

]
(6)
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Equation 4 is the adversarial loss for the generator, Eq. 5 is for the k-space
discriminator, and Eq. 6 is for the image domain discriminator. In this setting,
η1 and η2 are usually set to 0.005. β is set to 0.25 to balance the training of the
generator and the discriminator. γ is set to [0.01, 0.1, 1].

Parameters were optimized via Adam optimizer. The initial learning rate
is set to 1e-4 and linearly decay to 0 after 200 epochs. β parameter of Adam
optimizer are set to [0.5, 0.999].

For purposes of comparison, we also reimplemented other setting of loss func-
tions: only content and perceptual loss (only generator, Gen.); content loss, per-
ceptual loss and image domain adversarial loss (I GAN); content loss, perceptual
loss and frequency domain adversarial loss (k GAN); content loss, perceptual loss
and dual-domain adversarial loss (I+k GAN). The weight of the same type of
loss function was tuned to its own best and remained the same across different
networks to control variables.

2.4 Sampling Patterns

To testify the generalizability of the model, two popular Cartesian sampling
masks, including one direction down-sampling (1D) and variable density passion-
disk sampling with radial view-ordering (VDRad) [1] are adopted. For both
styles, the central k-space is fully sampled to acquire more low-frequency struc-
tural information. The under-sampling rate (R) was set to 4 for both strategies.

2.5 Datasets

To evaluate the generalizability of this model, three datasets were used (Table 1).
The first dataset consists of real-valued T1w and T2w structural brain imaging
from the HCP project [24]. The data is acquired with MPRAGE and T2-SPACE
sequences. 100 cases were included. The second dataset is a private structural
brain dataset. The complex-valued images were acquired with a multi-echo sat-
uration recovery sequence (MDME) [22,26]. All 8 echoes of the sequence were
included. The third dataset is a complex-valued 3D FSE knee dataset, open-
sourced by Stanford and Berkley [19]. 20 cases were included.

The real part and imaginary part of the complex-valued images were decom-
posed into two input channels. For real-valued images, the phase was assumed
to be constant. Pre-processing included zero-padding and normalization. During
training, flipping and shifting were applied for purposes of data augmentation.
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Table 1. Datasets

Dataset FOV (mm) Num.

of slices

Thickness

(mm)

Resolution Sequence

HCP 224 * 224 256 N/A 0.7 (iso) 3D MPRAGE (T1w), T2-SPACE (T2w)

Knee 160 * 153.6 320 0.5 0.6 * 0.5 3D CUBE

MDME 240 * 216 31 4/4.5 0.83 Multi-dynamic, Multi-echo

2.6 Evaluation Metrics

Metrics, including peak signal-to-noise ratio (PSNR) and structural similar-
ity metrics (SSIM), were used to evaluate the similarity with fully sampled
acquisitions.

3 Results

The quantitative metrics are shown in Table 2. Compared with previous models,
including ResNet (only generator, Gen.) and image-domain GAN (I GAN), most
of the items were improved. Adding k-space adversarial loss only (k GAN) can
also improve the performance compared with the pure generator.

Table 2. Quantitative metrics

Dataset Sampling

pattern

SSIM PSNR(dB)

Gen. I GAN k GAN I+k GAN Gen. I GAN k GAN I+k GAN

HCP (n=1000) 1D 0.901 0.902 0.889 0.909 15.756 15.692 15.645 16.475

VDRad 0.943 0.946 0.944 0.948 17.403 17.477 17.462 17.509

Knee (n=640) 1D 0.860 0.865 0.861 0.864 13.606 13.784 13.790 13.795

VDRad 0.872 0.873 0.872 0.873 14.675 14.704 14.682 14.723

MDME (n=1000) 1D 0.948 0.950 0.957 0.958 16.682 16.816 16.996 17.065

VDRad 0.974 0.974 0.974 0.975 18.480 18.445 18.501 18.515

Examples of three datasets are shown in Figs. 3, 4 and 5. Compared with
previous models, less distortion, better sharpness, and contrast is achieved.

An example of restored k-space was displayed in Fig. 6. The un-acquired part
and high-frequency part are better recovered than image-domain models.
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Fig. 3. Comparison of reconstruction artifacts on MDME dataset. (a), (b) and (c) are
from three different echoes. In (a), the proposed method (I+k GAN) achieve the best
sharpness and tissue contrast. K-space GAN also improves tissue contrast. However, the
restoration of the putamen is still not perfect for all reconstruction methods. In (b), the
generator only (Gen.) leads to strong blurring. While image-domain GAN improved the
sharpness, strong aliasing artifacts remain. I+k GAN ensures both artifact suppression
and fidelity compared to previous models. In (c), the proposed model leads to less
distortion and increased sharpness of structures like sulcus.
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Fig. 4. Comparison of reconstruction artifacts of MDME dataset. Two T1w examples
are shown. Still, the dual-domain GAN leads to the least distortion.

Fig. 5. Comparison of reconstruction effect of 3D knee dataset.
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Fig. 6. An example of logarithmic k-space from HCP dataset. The high-frequency part
of k-space reconstructed by the dual-domain GAN is filled better, which corresponds
to better detail restoration. The sub-sampled part of k-space is also better recovered,
leading to less aliasing artifacts.

4 Discussion and Conclusions

This study validates the availability of frequency adversarial loss for DL-based
MR reconstruction. Quantitative comparison with full acquisitions demonstrates
that the additional frequency constraint leads to improved similarity. Visual
inspection also demonstrates less geometrical distortion and better tissue con-
trast brought by the dual-domain GAN.

Similar to other GAN-based image restoration tasks, the hyper-parameter
setting, especially weights of different loss functions, is still a tricky problem. It
is supposed that the norm loss (L1/L2 norm loss) recover the main structure and
adversarial loss contribute to the reconstruction of fine details. Therefore, the
value of norm loss should be larger than the adversarial loss to recover the main
anatomical structure better and avoid hallucination, and the weights were set
to meet this standard. As a test of generalizability, the same parameter setting
was used across all datasets.

Compared to the other two datasets, knee dataset is noisier, and consequently
are more challenging for reconstruction algorithms. Though the visual effect is
not obviously improved, the contrast between different tissues is still enhanced.
The quantitative comparison also confirms the improvement. With the variable
density radial sampling mask, the difference between different reconstruction
networks is also not very obvious. The reason may lie in that the sampling
pattern mainly introduces local blurring, which is easier to be resolved than the
global blurring brought by the one-direction Cartesian sampling mask. At the
same time, the better representation power and larger receptive field of deep
networks are not fully utilized to unwrap the local aliasing artifacts, and simple
L1/L2 norm loss is enough to train the network.

This technique can be seamlessly combined with many other DL-based recon-
struction studies, either image-based or kspace-based, since it only adds a dif-
ferentiable regularization to the generative model. Additionally, modern deep
learning frameworks like PyTorch and TensorFlow are adding the support of
FFT now; therefore, the differentiable FFT is also not an implementation bur-
den. The main practical concern of this technique is the larger computation
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memory usage in the training stage, which would be alleviated along with rapid
development of GPUs and ASICs.

For further studies, the multi-reader study should be conducted to evaluate
clinical performance. To testify the generalizability of this model, more datasets,
including more organs, scanning protocols, and pathological indications should
also be applied.
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Abstract. MR images scanned at low magnetic field (<1T) have lower
resolution in the slice direction and lower contrast, due to a relatively
small signal-to-noise ratio (SNR) than those from high field (typically
1.5T and 3T). We adapt the recent idea of Image Quality Transfer (IQT)
to enhance very low-field structural images aiming to estimate the res-
olution, spatial coverage, and contrast of high-field images. Analogous
to many learning-based image enhancement techniques, IQT generates
training data from high-field scans alone by simulating low-field images
through a pre-defined decimation model. However, the ground truth dec-
imation model is not well-known in practice, and lack of its specification
can bias the trained model, aggravating performance on the real low-field
scans. In this paper we propose a probabilistic decimation simulator to
improve robustness of model training. It is used to generate and augment
various low-field images whose parameters are random variables and sam-
pled from an empirical distribution related to tissue-specific SNR on a
0.36T scanner. The probabilistic decimation simulator is model-agnostic,
that is, it can be used with any super-resolution networks. Furthermore
we propose a variant of U-Net architecture to improve its learning per-
formance. We show promising qualitative results from clinical low-field
images confirming the strong efficacy of IQT in an important new appli-
cation area: epilepsy diagnosis in sub-Saharan Africa where only low-field
scanners are normally available.
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1 Introduction

Magnetic Resonance Imaging (MRI) is now ubiquitous in neurology with a strong
trend towards the use of high-field scanners, with 1.5T and 3T being the cur-
rent clinical standard. However, low-field MRI scanners, less than 1T, are still
common in low and middle income countries (LMICs), due to limited funds
and frequent power outages. Low-field scanners suffer from lower signal-to-noise
ratio (SNR) than high field at equivalent spatial resolution. To counteract the
SNR reduction, practitioners commonly acquire images with non-adjacent thick
slices to reduce the acquisition time and cross-talk artifacts in brain MRI sce-
nario [1]. This leads to resolution reduction in the slice direction compared with
the in-plane resolution and a loss of information due to gaps between slices;
see Fig. 1(a–b). Moreover, the contrast between grey matter (GM) and white
matter (WM) may be worse than in high field even at equivalent SNR and
spatial resolution as illustrated in Fig. 1(c–d).

weiVlaixAweiVlanoroC

High-field Low-field High-field Low-field

Fig. 1. High-field vs low-field MR scans: (a–b) Resolution change on coronal plane;
(c–d) Contrast change on axial plane. Data sources: (a, c) 3T MRI from Human Con-
nectome Project [2]; (b, d) 0.36T MRI acquired from University College Hospital,
Ibadan.

In this study, we aim to learn an image-translation mapping from low field
to high field to perform super-resolution and contrast enhancement. In the lit-
erature, mathematical models have been proposed to describe the variation of
MRI signal with the magnetic field [3,4], but such models are simplistic and
do not include all effects on the final images, such as variability in the acqui-
sition process. Furthermore, the reconstruction of missing information between
the acquired slices is severely ill-posed, which hinders the practical capability
of producing high-field like images. Several approaches in the literature aim to
solve related problems. Bahrami et al. [5] proposed a multi-level Canonical Cor-
relation Analysis for estimating 7T from 3T images using paired training data.
Wolterink et al. [6] used the idea of cycle consistency to leverage the abundance
of unpaired training sets and learn to synthesise CT from MRI. This approach is,
however, known to be susceptible to hallucinations and may introduce spurious
features in the output images [7].
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Image Quality Transfer (IQT) is a machine learning framework used to
enhance low-quality clinical data to the abundant neurological information in
high-quality images. Most implementations of IQT simulate low quality data
from high quality providing matched-paired for training. In [8–11] for instance,
the corresponding low-field data are synthesised by downsampling and matching
voxel-wise intensities coming from prior or empirical knowledge about actual
low-field data. However, the trained model strongly depends on the accuracy of
low-field synthesis. To improve model generalisability, the prediction of a trained
model should be built on unseen test data with less dependency of simulation.

In this paper, we build on the IQT framework to construct a mapping that
estimates high-field images from the matched low-field inputs. The paired data,
particularly in large numbers, are hard to acquire in one area due to the rare
availability of high-field scanners in LMICs and low-field scanners in high income
countries (HICs). Our key technical contribution is to propose a probabilis-
tic decimation (downsampling) model to improve robustness of IQT training
and to enhance images from low-field scanners. More specifically, low-field data
generation comes from a probabilistic model which comprises random tissue-
specific intensity statistics (e.g. SNR) and probabilistic semantic segmentation.
We assume that an a priori distribution related to the tissue-specific SNR is
available. The segmentation mask estimated by Statistical Parametric Map-
ping [12] is also probabilistic in terms of the tissue type. Therefore for one
high-field subject, we can simultaneously generate the corresponding multiple
low-field data and form the paired training data, a novel way of performing data
augmentation. We then learn the low-field-to-high-field transformation by adapt-
ing the U-Net architecture [13] with a super-resolution module, a “bottleneck
block”, extending its depth to enable it to capture more global features of image
contrast.

2 Methods

2.1 Formulation

Let a 3D low-field input patch x of size w×h×d be corrupted by smoothing, low
contrast, and random noise. It is randomly cropped from the original low-field
MR volume denoted by X. Our aim is to reconstruct the sub-voxel information in
the slice thickness direction and to attain the high SNR and contrast transferring
to the corresponding high-field output patch y of size w×h×kd, where k is an up-
sampling rate. Then we assemble all output patches into a high-field MR volume
denoted by Y . The relationship between x and y is modelled by a degradation
process of image quality, described by a function S such that

x = S(y,α) + ε, (1)

where α denotes a vector of SNR components corresponding to prior knowledge
of WM and GM in the low-field input volume, i.e. α = (SNRWM

X , SNRGM
X ). It

is randomly sampled from the Gaussian distribution N (μ, Σ) where μ is a mean
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vector and Σ is a covariance matrix. ε denoting background noise has a Gaussian
distribution N (0, σ2

BG). Section 2.2 will specify the formulation and algorithm for
modelling S. We then employ deep learning, specifically a convolutional neural
network, to estimate the inverse mapping S†.

We use a given M -paired training set TM = {(xi, yi)}M
i=1 with a fixed α to

train our convolutional neural networks over all sampled patches from all MR
volumes. We optimise the network parameters θ by minimising the average of
the pixel-wise mean squared error (MSE) denoted by ‖ · ‖22 over all training sets:

θ∗ = arg min
θ

1
M

M∑

i=1

‖S†
θ(xi) − yi‖22. (2)

2.2 Probabilistic Decimation Simulator

Equation (1) enables us to produce additional training data by randomly sam-
pling the coefficient α from an a priori distribution, forming the so-called
probabilistic decimation simulator. It translates the voxel-wise low-field SNRs,
related to the sampled α and the tissue category, to the high-field image
and down-samples with a factor of k. We use this simulator to generate N
low-field patches for each high-field patch yi and form a new training set
TM,N = {(xij , yi)|i = 1, · · · ,M, j = 1, · · · , N}. Henceforth, the new model is
trained on the augmented set TM,N with the following expression:

θ∗ = arg min
θ

1
MN

M∑

i=1

N∑

j=1

‖S†
θ(xij) − yi‖22. (3)

We develop Algorithm 1 for implementing the probabilistic decimation sim-
ulator for neural images. We transform high-field images Y (v) to synthetic low-
field images denoted by X̂(v) for any voxel coordinate v by adapting the SNR
in WM and GM to the values obtained in our reference low-field dataset. We
assume that SNRs of WM and GM have a 2D Gaussian distribution and the
background noise in the low-field or the high-field images has a 1D Gaussian dis-
tribution with a zero mean and a standard deviation of σX or σY , respectively.
We also assume σX � σY since the random noise in high field is negligible. The
simulation procedure starts with the skull-stripped Y (v) with isotropic voxels
of length ez. We then down-sample along the slice thickness direction (vertical,
or z-direction). A 1D Gaussian filter hσ(z) = 1

σ
√
2π

e−z2/(2σ2) is applied to the
high-field images along the z-direction, where the σ is linked to a full-width at
half maximum (FWHM): FWHM = 2

√
2 ln 2σ. The FWHM of the Gaussian

filter is set to the slice thickness, or in terms of σ: σ = kez/
√

8 ln 2. Then the
distance between slices is set to be larger than this slice thickness, emulating
the gap between slices. The slices of the original image falling in the gaps have
virtually no effect on the signal in the simulated image, similar to what happens
in real acquisitions. The high-field images Y (v) are first segmented into tissue
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Algorithm 1. Probabilistic Decimation Simulator for low-field Image
Input: high-field Images Y (v), masks M j(v) for j = WM, GM, others, downsampling
scale k ∈ N, background noise levels σX and σY , low-field SNR distribution N (μ, Σ).

1: Y↓k(v) = Y↓k(ṽ, v′) =
∑

v′′ Y (ṽ, kv′ − v′′)hσ(v′′); � Downsample on v′′ component.
2: Y j

↓k(v) = M j(v)Y↓k(v); � Apply masks.

3: SNRj
Y =

∑
v Y j

↓k(v)/
(
σY

∑
v M j(v)

)
; � Compute SNRs for high field.

4: (SNRWM
X , SNRGM

X ) ∼ N (μ, Σ); � Sample SNRs for low field.

5: lj =

{
SNRj

X/SNRj
Y , j = WM, GM,

1, others;
� Evaluate ratio of image intensity.

6: X̂(v) =
∑

j∈{WM,GM,others} ljY j
↓k(v); � Transfer contrast.

7: X̂ε(v) = X̂(v) + ε(v) where ε(v) ∼ N (0, σ2
X). � Add noise.

Output: Noisy synthetic low-field image X̂σ(v).

categories j = WM,GM, others (denoted by M j(v)) using the unified segmen-
tation algorithm in Statistical Parametric Mapping [12]. In this algorithm, the
mask M j(v) corresponds to the probability that each voxel v belongs to the tis-
sue category j. SNR of the high-field image with respect to the tissue category
j is defined as:

SNRj
Y =

∑
v M j(v)Y (v)

σY

∑
v M j(v)

. (4)

This allows us to evaluate ratios of low-field-to-high-field image intensity for both
WM and GM; see Step 5. We then re-scale the high-field images with the ratios
of image intensity according to tissue category, which results in the synthetic
low-field images X̂(v). We finally add Gaussian white noise to X̂(v), with a
standard deviation of σX .

2.3 Deep Learning Framework

The classical 3D isotropic U-Net [14] maps two identical-size cubes serving as
input and output through the encoder-decoder framework. Each level, defined
as a collection of operations in between two shape deformations, for a typical
U-Net consists of several convolutional layers together with a pooling layer. The
activation from each level in the encoder is concatenated to the input features to
the same level in the decoder, enabling the network to integrate both local and
global image features. U-Net uses the “same” zero-padding technique so that
feature sizes keep invariant during convolution.

In this work, we extend the U-Net architecture into mapping input and out-
put patches differing with up-scaling factor k in the slice direction. Considering
the case of k = 4 illustrated in Fig. 2, this anisotropic U-Net first partially down-
samples the first two dimensions until the down-scaling features become isotropic
and thereafter conducts isotropic down- and up-sampling. To achieve this, we
define the following two operations:

Bottleneck Block. To incorporate a super-resolution transformation into U-
Net, we propose a bottleneck block used to connect corresponding levels of the
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Fig. 2. (a) The diagram of anisotropic U-Net (example for the up-scaling factor of
k = 4). The operations, (b) Bottleneck Block BB(b, u) with f filters and (c) Residual
Core RC(b) with f filters, are detailed. The round boxes correspond to the different
operations illustrated in the bottom right of (a). The number of output channels,
abbreviated as “Ch”, and the kernel size are denoted on top and bottom of the boxes.
The arrows represent transfer of data with its corresponding shape highlighted.

contracting and expanding paths, as shown in Fig. 2(b). The design is inspired
by bottleneck block in ResNet [15] and FSRCNN [16]. The bottleneck block
BB(b, u) has three hyperparameters: the input filter f , the number of shrinking
layers b and the up-sampling scaling factor u. It shrinks half of the filters on
consecutive 3×3×3 convolutional layers between two endpoint convolutions with
a kernel size of 1×1×1. All convolution layers are activated by Rectified Linear
Unit (ReLU) with Batch Normalization (BN). The skip connection enables the
training of deeper networks [15]. Resolution change is efficiently carried out by
a transpose convolution, or deconvolution, with the same kernel and stride of
(1, 1, u).

Residual Core. To have more convolutional layers on each level, the residual
core that is a revision of residual element in [17] is introduced in Fig. 2(c). This
is a combination of several sequential 3 × 3 × 3 convolutional layers, followed by
ReLU and BN layers, skip connected with an 1 × 1 × 1 fully convolutional layer.
Then the output is attained before ReLU and BN again. Utilizing the consecutive
convolutional layers enlarges each receptive field on each level. Moreover, the
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appended skip connection is able to avoid the vanishing gradient problem in
neural networks with gradient-based learning methods.

3 Experiments

3.1 Implementation Details

Datasets. High-resolution axial T1-weighted images were obtained from the
publicly available Human Connectome Project (HCP) dataset [2], acquired on a
3T Siemens Connectome scanner with an isotropic voxel size of 0.7 × 0.7 × 0.7
mm3. To investigate sensitivity of the proposed U-Net, we trained it on two
training sets with two up-scaling factors of k = 4 or 8. Specifically, the slice
thickness/gap is 2.1 mm/0.7 mm for k = 4, and 4.2 mm/1.4 mm for k = 8. As a
reference for low field, T1-weighted images were acquired on a 0.36T MagSense
360 MRI System scanner with a non-isotropic voxel size of 0.9 × 0.9 × 7.2 mm3

including 6.0 mm slice thickness and 1.2 mm gaps. The distribution of white
matter and grey matter SNRs in the low field was acquired from 28 image data
from children with epilepsy in University College Hospital, Ibadan, whose ages
are within a range from 2 to 15 years.

IQT Pipeline. In the training stage, we randomly selected 30 subjects with
skull-stripping from HCP dataset and employed them to synthesise the low-field
images using Algorithm 1 based on a priori variable SNRs. Regarding patch
extraction, we cropped the low-field patches with the step size of 8, 16, and 16/k
along x-, y-, and z-directions, respectively. We also cropped the high-field patches
with the same volume and position as the corresponding low-field patches. The
low-field and high-field patch sizes were 32 × 32 × (32/k) and 32 × 32 × 32,
respectively. Then the patches capturing 80% background voxels were excluded
from a patch library.

We examined if overfitting occurred with a validation set and judged the
performance of the trained neural network with an evaluation set. We split all 30
subjects into 12, 3, and 15 for training, validation, and evaluation sets. Moreover,
we investigated the image quality by calculating the peak signal-to-noise ratio
(PSNR) and the structural similarity index (SSIM) [18]. We employed a two-
tailed Wilcoxon signed-rank test to determine the statistical significance of the
performance difference between two comparing methods.

Neural Networks. We conducted an ablation study on the proposed U-Net,
denoted by ANISO U-Net(b), in the case of b = 2 or 3 for shrinking layers in
the bottleneck block. We evaluated our networks against the 3D cubic B-spline
interpolation and several existing U-Net baselines equivalently switching off the
corresponding blocks, i.e. bottleneck block and residual core, in ANISO U-Net.
One is an isotropic 3D U-Net (ISO U-Net) [14] implemented with 5 levels and 3
convolutional layers per level. The input of ISO U-Net is isotropically interpo-
lated using cubic B-splines. The other one is 3D-SRU-Net [13] that up-samples
each level output on the contraction path before concatenation. It contained 3
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Fig. 3. Visualization of U-Net reconstructions with the up-scaling factor k = 8.

levels for the down-sampling scale k = 4 and 4 levels for k = 8. We unified hyper-
parameters of the three U-Nets as follows. Number of filters on the first level
was 16 with the number of filters doubling at each subsequent level. All U-Nets
were implemented in Python using Keras library [19] with Tensorflow backend.
They were calculated on a Nvidia GTX 1080 Ti GPU. Training used ADAM [20]
as the optimizer with a starting learning rate of 10−3 and a decay of 10−6. We
initialized the parameters with Glorot normal initializer [21]. The batchsize was
32 and the loss function is the pixel-wise mean squared error (MSE). All the
experiments started converging after about 30 epochs and we employed early
stopping after 5 epochs of no improvement on the validation set.

3.2 Evaluation on Fixed SNR Data Sets

We evaluated the ability of the proposed U-Net in an ideal case where the SNR-
related coefficient α = (SNRWM

X , SNRGM
X ) in Eq. (1) is deterministic. We

fixed the SNRWM
X and SNRGM

X as 61 and 53, respectively, in the IQT pipeline
by reconstructing images in the evaluation set at Step 4 in Algorithm 1. Table 1
shows that our model, ANISO U-Net(2), achieved the best performance in terms
of the average PSNR and SSIM, and especially, significantly outperformed the
others in terms of PSNR at k = 4 and the mean SSIM (MSSIM) at k = 8. The
reconstruction degraded as the up-scaling factor increased. Figure 3 shows the
U-Net reconstructions on coronal and sagittal planes. Qualitatively we observed
clear recovery of high resolution information and enhancement of contrast. The
reconstructed images from all networks nicely highlighted features visible in the
ground truth images that were obscured in the low quality input. The quantita-
tive results in Table 1 show little difference among the U-Net outputs but they
might not be able to reflect subtle qualitative differences. The zoomed patches in
Fig. 3 highlight differences more clearly and we believe ANISO U-Net(2) approx-
imates the ground truth most closely and with the least artefacts as shown in
the ANISO U-Net(3) result of Fig. 3. Delicately selecting hyper-parameters can
avoid overfitting, and hence can mitigate the artifacts.
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Table 1. The performance of the proposed model on up-scaling factors k = 4 or 8. The
mean and standard deviation of PSNR and the mean SSIM (MSSIM) are calculated
over 15 evaluation subjects. For each case, we show the best performance over an
ensemble of 5 trained models. Bold font denotes the best mean or standard deviation.
The asterisk ∗ denotes p-value < 0.01 compared with the rest methods.

Method k = 4 k = 8

PSNR (dB) MSSIM PSNR (dB) MSSIM

Cubic B-spline 20.689± 2.540∗ 0.692± 0.0384∗ 18.974± 2.535∗ 0.567± 0.0471∗

ISO U-Net 30.798± 2.573 0.916± 0.0227∗ 27.073± 2.469 0.846± 0.0278

3D-SRU-Net 30.764± 2.638 0.922± 0.0191 27.275± 2.542 0.847± 0.0290

ANISO U-Net(2) 31.045± 2.654∗ 0.923± 0.0197 27.346± 2.517 0.852± 0.0280∗

ANISO U-Net(3) 30.918± 2.639 0.921± 0.0199∗ 27.054± 2.544 0.847± 0.0282

3.3 Evaluation on Variable SNR Data Sets

We evaluated the performance of several deep learning architectures includ-
ing the proposed anisotropic U-Net with variable-SNR low-field data. SNRWM

X

and SNRGM
X are now sampled from a two-dimensional Gaussian distribution

N (μ,Σ) where the coefficients are:

μ = (64.50, 54.14) Σ =
(

78.47, 71.50
71.50, 73.91

)
.

The simulator shown in Algorithm 1 randomly generated N low-field input
images with different SNR for the chosen 15 training subjects in the HCP data
set. We trained the deep learning models on the dataset with the augmenting
factor N = 1, 2, 4 and 8. We randomly selected 12.5% patches for training in
each overlap patch library. For each neural network, an ensemble of 5 models
were trained in terms of different augmented dataset.

Table 2 shows the mean and standard deviation of PSNR and MSSIM over
15 test subjects in terms of the augmented datasets and deep learning architec-
tures. As a result, probabilistic decimation model was generally able to produce
more stable reconstruction than the deterministic model if the unseen test data
were also generated from the variable SNR. Both accuracy and robustness corre-
sponding to mean and standard deviation of MSSIM improved in various degree
as the number of generated low-field image samples increased, and in addition,
the performances for the two methods were statistically significant in terms of
N = 8 at k = 8. Regarding PSNR, the performance upgraded after augmen-
tation but the robustness reflected by the standard deviation did not improve
correspondingly. In addition, we observed that PSNR and MSSIM at k = 4 only
slightly improve when the augmenting factor N became larger, which means the
improvement of performance arising from augmentation gradually reached an
upper bound.
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Table 2. The performance of probabilistic decimation simulation for augmentation
with a factor of N . The mean and standard deviation of PSNR and MSSIM are calcu-
lated over 15 evaluation subjects. We show the best performance over an ensemble of
5 trained models. The “const” at N samples/subject column means that the models
were trained on the fixed SNR data sets as described in Sect. 3.2. Bold font denotes
the best mean or standard deviation. The asterisk ∗ denotes p-value< 0.01 compared
with the other augmentation factors.

Method N samples

/subject

k = 4 k = 8

PSNR (dB) MSSIM PSNR (dB) MSSIM

3D-SR

U-Net

“const” 27.214 ± 3.030 0.871 ± 0.0332 24.687 ± 2.464 0.758 ± 0.0371

1 27.988 ± 2.445 0.861 ± 0.0286 23.777 ± 2.693 0.757 ± 0.0401

2 29.453 ± 2.585 0.901 ± 0.0240∗ 25.513 ± 2.711∗ 0.799 ± 0.0366∗

4 30.257 ± 2.647 0.918 ± 0.0201 26.025 ± 2.587 0.816 ± 0.0339∗

8 29.958 ± 2.541 0.911 ± 0.0203 26.391 ± 2.621 0.832 ± 0.0316∗

ANISO

U-Net(2)

“const” 27.311 ± 3.522 0.870 ± 0.0338 24.754 ± 2.367 0.769 ± 0.0341

1 28.664 ± 2.552 0.890 ± 0.0240 23.418 ± 2.322 0.757 ± 0.0345∗

2 29.216 ± 2.308 0.893 ± 0.0248 25.862 ± 2.617∗ 0.803 ± 0.0343

4 30.248 ± 2.565 0.916 ± 0.0195 26.231 ± 2.613 0.807 ± 0.0381

8 30.344 ± 2.421 0.914 ± 0.0188 27.053 ± 2.398 0.843 ± 0.0330∗

3.4 Test on Patient Data

We tested our IQT approach on the data from a 10-year-old epilepsy patient
who has two cortical-subcortical cystic lesions with surrounding edema on low-
field T1-weighted images at the GM-WM junction of the parietal lobes. In this
case, we used IQT with ANISO U-Net(2) trained on the HCP dataset with
the augmenting factor N = 1 and the up-scaling factor of k = 4. Figure 4
shows the axial and coronal results enhanced from the low-field T1-weighted
image of the patient. The IQT approach improved the GM-WM contrast globally,
and significantly enhanced the resolution in coronal and sagittal planes. The
enhanced image strongly highlights the two lesions in this patient which are
very subtle on the input T1-weighted image. In this particular patient, the lesions
were clearly visible on the original T2-weighted image, which validates that IQT
highlights the lesions in the correct locations, as Fig. 4(c) shows. However, in
general not all lesions are clearly visible on any MRI sequence, especially at
low field, and Fig. 4 highlights the potential of our algorithms to reveal subtle
lesions enhancing diagnosis and potentially enabling effective treatment via clear
localisation.

4 Discussion and Conclusion

In this work, we present an IQT approach to enhance low-field MRIs aiming
to match resolution as well as contrast of high-field images. We introduce the
anisotropic U-Net characterised by a deeper hierarchy and super resolving con-
nections between input and output layers. We propose the probabilistic decima-
tion simulator by synthesising multiple low-field images with respect to distinct
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Fig. 4. The IQT prediction on the low-field epileptic patient data for (a–c) axial plane
and (d–f) coronal plane. (a) and (d): Low-field T1-weighted input with cubic B-spline
interpolation; (b) and (e): IQT-enhanced T1-weighted output using ANISO U-Net(2);
(c) and (f): low-field T2-weighted image as a reference of ground truth. Two sub-
centimeter parenchymal cystic lesions at the GM-WM junction of the parietal lobes
are pointed out by the red and the yellow arrows. They are barely visible in (a) and (d)
but greatly enhanced in (b) and (e). (c) and (f), not involved in the IQT experiment,
verified their location in an independent acquisition.

grey-white matter SNR sampled from an a priori distribution. We demonstrate
that the proposed method improves the robustness on the unseen test data of
variable SNR at the evaluation stage. We validate our proposed U-Net on the
evaluation dataset and the results potentially show generalisability to the actual
clinical low-field images.

This work offers several avenues for future improvement and application.
Here the metrics (MSSIM and PSNR) used for quantitative assessment reflect
the performance on only synthetic images. This demonstrates efficacy, but eval-
uation on a sizeable data set of clinical images and clinical significance from
radiologists are essential for further translation. Therefore, additional qualita-
tive evaluation by radiologist ratings and, ultimately, demonstration of improved
decision making is essential to confirm impact of the approach. Nevertheless, we
believe our methods have great potential to identify subtle lesions in epilepsy and
other neurological conditions and thus to improve patient outcomes in LMICs
in the future.
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C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp.
529–536. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1 60

8. Alexander, D.C., et al.: Image quality transfer and applications in diffusion MRI.
NeuroImage 152, 283–298 (2017)

9. Tanno, R., Ghosh, A., Grussu, F., Kaden, E., Criminisi, A., Alexander, D.C.:
Bayesian image quality transfer. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R.,
Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 265–273. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-46723-8 31

10. Tanno, R., Worrall, D.E., Ghosh, A., Kaden, E., Sotiropoulos, S.N., Criminisi, A.,
Alexander, D.C.: Bayesian image quality transfer with CNNs: exploring uncertainty
in dMRI super-resolution. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin,
P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 611–619.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7 70

11. Blumberg, S.B., Tanno, R., Kokkinos, I., Alexander, D.C.: Deeper image quality
transfer: training low-memory neural networks for 3D images. In: Frangi, A.F.,
Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI
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Abstract. Magnetic resonance imaging is a leading image modality for many
clinical applications; however, a significant drawback is the lengthy data
acquisition. This motivates the development of methods for reconstruction of
sparsely sampled image data. One such technique is the Variational Network
(VN), a machine learning method that generalizes traditional iterative recon-
struction techniques, learning the regularization term from large amounts of
image data. Previously, with the VN technique, reconstruction of 4-fold accel-
erated knee images was shown to be highly successful. In this work we extend
the VN approach to applications beyond knee imaging and evaluate the classic
VN and a newly developed Unet-VN in 5 different anatomical regions. We
evaluate the networks trained individually for each anatomical area as well as
jointly trained with data from all anatomical areas. The VN and Unet-VN were
trained to reconstruct 4-fold accelerated images of knees, brains, hips, ankles
and shoulders. SSIM was calculated to quantitatively evaluate the reconstructed
images. Results show that the Unet-VN outperforms the classic VN, both
quantitatively – in terms of structural similarity – and qualitatively. The net-
works jointly trained with multi-anatomy data approach the performance of the
individually trained networks and offer the simplicity of a single network for a
range of clinical applications which has substantial benefit for clinical
translation.

Keywords: MR image reconstruction � Variational network �Machine learning

1 Introduction

The acquisition of Magnetic Resonance Image (MRI) data is an inherently slow process
due to the high sampling requirements. Reconstructing images with sparser sampling
has been, and continues to be, an active area of research in MRI. The major devel-
opments that have contributed to faster imaging are parallel imaging [1–3] and
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compressed sensing [4]. With parallel imaging techniques, the known sensitivities of
multiple receive coils contribute to spatial encoding, and ultimately allow for an image
reconstruction from sparser sampling. Compressed sensing reconstruction is an
extension of traditional iterative reconstruction methods which estimate images from
under-sampled data by enforcing consistency with acquired data and applying regu-
larization – a model of a priori information about the reconstruction. In compressed
sensing specifically, the regularization term enforces sparsity in some transform
domain. Effective regularization is a key element for solving the under-sampled image
reconstruction problem, however traditional regularization terms are often an over-
simplification of MR image structure and offer limited a priori information.

Recently, machine learning based approaches for sparsely sampled image recon-
struction were introduced [5–9]; some of these methods use a convolutional neural
network to learn the regularization term of an iterative reconstruction [5, 7]. They were
designed to generalize the concept of compressed sensing and learn the entire recon-
struction procedure for multi-channel MR data. One such method is the Variational
Network, which has been demonstrated for successful reconstruction of 4-fold accel-
erated knee images [7, 10], and 3-fold accelerated abdominal images [11].

The first objective of this work is to extend the VN approach to applications beyond
knee and abdominal imaging and evaluate the performance of a VN jointly trained with
data of multiple anatomical regions. The simplicity of a single network for a wide range
of applications would be a substantial benefit for clinical workflow. The second
objective is to evaluate a newly developed version of the VN which consists of a higher
model capacity regularizer.

2 Methods

2.1 Image Acquisition

All scans were performed on a clinical 3T system (Siemens Magnetom Skyra), with
different receive coils ranging from 12 to 26 elements. Fifty fully-sampled anatomical
images were obtained from 5 anatomical areas, these areas – ranked in order of per-
ceived image SNR – were brain, knee, hip, ankle, and shoulder. The study was
approved by our institutional review board. The sequence parameters were as follows:

Ankle – Sagittal Fat-Saturated Proton-Density (PD-FS): TR = 2800 ms, TE = 30
ms, turbo factor (TF) = 5, matrix size = 384 � 384, in-plane resolution 0.42 �
0.42 mm2, slice thickness = 3.0 mm.

Brain – Axial T2: TR = 6000 ms, TE = 113 ms, TF = 18, matrix size 384 � 384,
in-plane resolution = 0.57 � 0.57 mm2, slice thickness = 5.0 mm.

Hip – Coronal PD: TR = 3000 ms, TE = 32 ms, TF = 5, matrix size = 320 � 320,
in-plane resolution = 0.5 � 0.5 mm2, slice thickness = 3.0 mm.

Knee – Coronal PD: TR = 2750 ms, TE = 32 ms, TF = 4, matrix size = 320 � 320,
resolution = 0.44 � 0.44 mm2, slice thickness = 3.0 mm.
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Shoulder – Coronal Fat-Saturated T2: TR = 4540 ms,TE = 54 ms,TF = 12,matrix
size = 320� 320, in-plane resolution = 0.44� 0.44 mm2, slice thickness = 3.0 mm.

The fully sampled images were then retrospectively under-sampled; the under-
sampling was applied such that the center 24 lines of raw k-space data, and every fourth
line beyond this center region were retained. The remaining k-space lines were set to
zero. The center 24 lines were used for the ESPIRiT [12] estimation of coil
sensitivities.

2.2 Variational Network

Experiments were performed with two versions of the VN. The first is the classic VN,
described in Hammernik et al. [7] and the second is a version in which the regularizer is
replaced with a Unet network [13] (Unet-VN).

For this study, we implemented the classic VN in Pytorch, and replaced the IPALM
optimizer [14], which was traditionally used for VN training, with the Adam optimizer
[15]. The regularizer in this network is a single convolutional layer with 48 11 � 11
convolutional kernels. The activation functions are a learned set of Gaussian radial
basis functions, and the model capacity is approximately 131, 000 parameters.

In addition to the classic VN network, we also evaluated a Unet-VN network which
was designed to have much higher model capacity (1.2 million parameters). For this
architecture, we replace the regularizer in the classic model with a Unet network;
otherwise the VN method was unchanged. Our Unet implementation has 3 encoding
convolutional layers followed by 3 decoding convolutional layers, with 24, 48, 96, 48,
24, and 12 3 � 3 convolutional kernels respectively. Max-pooling and bi-linear
interpolation were used for dimensionality reduction and expansion respectively. We
used ReLU for the non-linear activation function, and instance normalization was
applied during training.

2.3 Network Training

Individual trainings of the VN and Unet-VN were performed with 30 volumes of each
anatomical region. Ten volumes for each dataset were reserved for a validation set and
another 10 volumes were reserved for testing. Joint multi-anatomy training was per-
formed with 6 volumes of each of the 5 anatomical regions for a total of 30 training
cases. The Adam optimizer was used with a batch size of 1 and a learning rate of 3 �
10−4. We used Mean squared error as the loss function. Convergence (validation loss
stops decreasing) for each training was achieved at a different number of epochs
ranging from 60 to 100. Training was performed on a Tesla P100 GPU.
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2.4 Evaluation of Reconstructed Images

We tested the trained networks on data from 10 image volumes per anatomical region.
These cases were not included in the training set. We compare the VN and Unet-VN
reconstructions with the fully-sampled reference, the zero-filled reconstruction and a
combined Parallel Imaging, Compressed Sensing reconstruction method based on Total
Generalized Variation (PI-CS TGV) [16] For all of the PI-CS TGV reconstructions, the
regularization parameter was set to 4 � 10−6 and the number of iterations was 1000.
We compared the reconstruction results quantitatively in terms of structural similarity
index (SSIM) [17].

3 Results

The SSIM results for the VN and Unet-VN reconstructed images are reported in
Table 1. We report the SSIM for all combinations of training and test data. For all
anatomical regions, the highest SSIM is achieved with the individual, anatomy-specific,
trained network. In these cases where the training and test anatomy are matched,

Table 1. Structural similarity index was calculated for the 10 volumes in each test set; the mean
and standard deviations are reported. Each of the 5 test sets were evaluated on all 12 trained
networks. The row labels are the training sets used, and the column labels are the test set data.

Mean structural similarity of predicted images
Brain Knee Ankle Hip Shoulder

VN training set
Brain 0.976 (0.013) 0.965 (0.022) 0.948 (0.012) 0.948 (0.021) 0.830 (0.060)
Knee 0.971 (0.013) 0.974 (0.024) 0.947 (0.011) 0.948 (0.021) 0.843 (0.049)
Ankle 0.951 (0.010) 0.952 (0.012) 0.966 (0.006) 0.950 (0.017) 0.917 (0.023)
Hip 0.950 (0.009) 0.932 (0.013) 0.961 (0.007) 0.961 (0.013) 0.907 (0.027)
Shoulder 0.958 (0.010) 0.954 (0.016) 0.962 (0.006) 0.952 (0.017) 0.924 (0.020)
All 0.970 (0.012) 0.964 (0.019) 0.966 (0.006) 0.958 (0.015) 0.922 (0.020)
U net-VN training set
Brain 0.979 (0.013) 0.942 (0.012) 0.957 (0.007) 0.933 (0.019) 0.876 (0.040)
Knee 0.968 (0.015) 0.981 (0.021) 0.956 (0.007) 0.945 (0.020) 0.890 (0.031)
Ankle 0.951 (0.013) 0.866 (0.021) 0.970 (0.005) 0.941 (0.018) 0.917 (0.024)
Hip 0.899 (0.025) 0.893 (0.023) 0.899 (0.025) 0.965 (0.012) 0.888 (0.026)
Shoulder 0.925 (0.023) 0.909 (0.011) 0.950 (0.013) 0.939 (0.020) 0.929 (0.019)
All 0.976 (0.014) 0.969 (0.017) 0.967 (0.005) 0.960 (0.015) 0.926 (0.019)
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the Unet-VN outperforms the classic VN. Image reconstruction results for the matched
training and test sets are shown in Fig. 1. The VN and Unet-VN both outperform the
PI-CS TGV method.

When the training data and test data are not matched we observe an increase in
residual artefacts in the reconstructed image and a decrease in SSIM. This is demon-
strated in Fig. 2 where we show knee images reconstructed with the VN individually

Fig. 1. Brain, knee, ankle, hip and shoulder reconstructions with 4-fold acceleration. The
learned reconstructions appear sharper and have less residual artefacts than the PI-CS TGV
reconstructions. The displayed SSIM values were calculated for the presented slices.
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trained with knee, brain, ankle and hip images. Another general trend that we observe
when the training and test data is not matched is over-smoothing in the reconstructed
images when training SNR < test SNR. When the opposite is true – training
SNR > test SNR, noise amplification is observed. This effect is demonstrated in Fig. 3.
When the training and test data are not matched, the classic VN outperforms the Unet-
VN for the majority of the training set/test set combinations (16/20).

The performance of the joint multi-anatomy trained networks approached that of
the individual trainings for each anatomy and the Unet -VN consistently outperformed
the classic VN. Image results for the multi-anatomy training are shown in Fig. 4.

Fig. 2. Coronal PD weighted knee scan with 4-fold acceleration. The top row depicts the
reconstructed results for the classic VN trained with knee, brain, ankle and hip images. The
bottom row shows the difference images compared to the fully sampled reference.

Fig. 3. Sagittal PD-FS ankle scan with 4-fold acceleration. Reconstruction results for the VN
trained with ankle, brain (high SNR), and shoulder (low SNR). These results illustrate the trend
that when training SNR > test SNR, the images suffer from noise amplification, and when
training SNR < test SNR, the images appear over-smoothed.
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4 Discussion

The variational network outperformed the PI-CS TGV algorithm for reconstructions of
4-fold accelerated knee, brain, hip, ankle and shoulder images. The Unet-VN which has
a higher model capacity regularizer than the classic VN, outperforms the classic VN for
individual trainings when the test and training data are matched. In addition to higher
model capacity, the Unet regularizer – with multiple convolutional layers – has a larger
receptive field than the classic single-layer regularizer. This may also contribute to the
improved performance. The training time of the Unet-VN is approximately 25% longer
than the training time of the classic VN. The Unet-VN network does not perform as

Fig. 4. Brain, knee, ankle, hip and shoulder reconstructions with 4-fold acceleration. The joint
multi-anatomy trained networks result in similar reconstructed image quality as the individually
trained networks. The Unet-VN matches or exceeds the classic VN for individual anatomy and
multi-anatomy training.
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well in most cases when the image being reconstructed is not represented in the training
set, suggesting that the Unet-VN does not generalize as well to anatomical regions not
previously seen by the network.

A specific trend is observed when there is a mismatch in the SNR of the training set
and the test set; when the SNR of the training data is lower than the SNR of the test
data, we observe over-smoothing in the reconstructed images. When the SNR of the
training data is higher than the SNR of the test data, we see noise amplification in the
reconstructed images. These findings are in agreement with a previous study that made
a similar observation with fat-saturated (lower snr) and non – fat saturated (higher snr)
knee images [10].

The networks that were jointly trained with multi-anatomy data have similar per-
formance to those trained with a single anatomy, and again the Unet-VN outperforms
the classic VN. A single network that can be used for many different clinical appli-
cations is not only beneficial for clinical workflow but also presents the opportunity for
much larger training sets. In this study we used 30 images for joint multi-anatomy
training in order to make fair comparisons with individual trainings; this approach does
not take advantage of the 5x more training data that were available.

5 Conclusion

In this work, the classic VN and a newly developed Unet-VN were demonstrated for 4-
fold acceleration of ankle, brain, hip and shoulder images and out-performed the PI-CS
approach. The Unet-VN, with a higher model capacity regularizer, outperformed the
classic VN for individual trainings as well as for joint multi-anatomy trainings. The
networks jointly trained with multi-anatomy data had similar performance to those
trained for a specific anatomy. Our findings suggest that the VN approach is a
promising clinical tool for accelerated MR image reconstruction.
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Abstract. Research on modeling and exploring of the normal brain
maturity, such as in vivo study of the anatomy of the developing brain,
can provide references for developmental pathologies. In this paper, we
model and explore brain development by learning a discriminative rep-
resentation of the cortical brain data (T1 MRI) with a class-wise non-
negative dictionary learning (NDDL) approach. For each class, the pro-
posed approach performs data modeling by first projecting the data
into non-negative low-rank encoding coefficients with an analysis dic-
tionary and then applying the coefficients onto an orthogonal synthesis
dictionary to reconstruct the data. It also uses additional regularizers to
enforce distal classes to fit into different analysis dictionaries. The learn-
ing problem is formulated as a sparse and low rank optimization problem,
and solved with an alternating direction method of multipliers(ADMM).
The effectiveness of the proposed approach is tested on brain age pre-
diction problems by exploring the cortical status, and the experiments
are conducted on the PING dataset. The proposed approach produces
competitive results. Further, we were able for the first time to capture
the status of brain thickness of specific cortical surface area with aging.

1 Introduction

Human brain development is a dynamic and complex process lasting through
childhood, adolescence and adulthood. Modeling and exploring brain devel-
opment is critical for diagnosis of neuropsychiatric disorder. Investigations on
brain maturity (or brain age) have benefited from the development of advanced
magnetic resonance imaging (MRI) [2] and from large-scale initiatives such as
the Pediatric Imaging, Neurocognition, and Genetics (PING) [9] studies. Cross-
sectional and longitudinal neuroimaging studies based on MRI have shown devel-
opmental trajectories of gray matter volumes, surface area and cortical thickness,
contributing to a better understanding of brain maturation.
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One of the simplest way to model brain maturity is predicting participant age
from magnetic resonance imaging data through machine learning and statistical
analysis. Modeling is usually done in two steps: (1) a statistical model is trained
on lifespan data; (2) estimates of age are computed based on the trained model.
By comparing the age predicted by the model with a participant’s chronological
age, one could infer a measure of the risk that an individual has on develop-
ing a neurodevelopmental disorder. The approach in [11] was able to increase
the prediction accuracy by combining information from multiple brain imaging
modalities. Studies show that combining multi-modal data can benefit the brain
maturity prediction.

Representation learning techniques such as discriminative dictionary learn-
ing (DDL) are powerful algorithms to derive high-level latent features from high-
dimensional and multi-modal data [6]. Most techniques (e.g., PCA and autoen-
coders) for this task do not take into account the class information during learning.
DDL exploits the low rank and sparsity of high dimensional multi-modal data and
can reduce feature dimension while preserving the significant information.

In this study, we propose a novel discriminative subspace learning approach
called class-wise non-negative discriminative dictionary learning (NDDL) for
modeling brain development data, by fusion of multi-feature brain imaging data
into a common feature space. Our method differs from unsupervised subspace
learning approaches like autoencoders [5] and the method dictionary projec-
tive learning [3,11]. In addition to exploring the low-rankness and non-negative
nature of the class-specific projective features, we also take into account the
biological significance variations across the neighboring classes in this model,
by forcing the projective features from the remote-class to be sparse in each
class-wise modeling. The major contributions of this work are as follows:

– Novel framework: We proposed framework of class-wise Non-negative Dis-
criminative Dictionary Learning (NDDL). In addition to using Frobenius
norm to push the sub-dictionary projection of samples from other classes
to a nearly null space, we apply a sparse inducing l1 norm to enforce the
projections of samples from distal classes to be more sparse. To boost the
discrimination of analysis dictionary D and projective features A and auto-
matically determine the optimal dictionary size, we explore a weighted nuclear
norm on A with non-negative constraint.

– Clinical applications: We evaluate the proposed NDDL method using the
Pediatric Imaging, Neurocognition, and Genetics (PING) study data [9] on
the task of modeling and exploring brain development. The proposed model
is much more accurate in prediction compared with the state-of-the-art DPL.
Our experiments conduct analysis on features of gray matter, which are
important for predicting brain age, as well as the influence of gender on
the prediction. The impact of cortical surface area, volumes and thickness on
brain aging is also investigated with the proposed model. Last, we use our
framework to explore cortical brain with aging.
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2 The Proposed Approach

In this section, we present a class-wise non-negative discriminative dictionary
learning (NDDL) method, which enforces l1 norm regularizer on the encoding
coefficients from distal classes, and applies weighted nuclear norm regularization
and non-negative constraints on the class-wise encoding coefficient matrix.

2.1 Discriminative Dictionary Learning

We treat the modeling of brain development as a discriminative dictionary
learning problem over K classes and each class is an age group. Let X =
[X1, · · · ,Xk, · · · ,XK ] denote the data samples from all classes and Xk ∈ R

S×Nk

denotes the data samples from the k-th class. Following [11] and [3], for each
class k, we introduce an analysis dictionary Pk ∈ R

M×S to project the data
into a coefficient matrix and then a synthesis dictionary Dk ∈ R

S×M to recon-
struct the data, such that for all classes we have P = [P1, · · · ,Pk, · · · ,PK ]
and D = [D1, · · · ,Dk, · · · ,DK ]. With these dictionaries, one can perform data
modeling with dictionary pair learning [3]:

arg min
P,D

K∑

k=1

‖Xk − DkPkXk‖2F + λ‖PkXk‖2F , (1)

where ‖ · ‖F is the Frobenius norm, Xk is the complementary data matrix of Xk

in X, in the format of Xk = [X1, · · · ,Xk−1,Xk+1, · · · ,XK ], and λ > 0 controls
the trade-off between the reconstruction accuracy and regularization terms. The
regularization term ‖PkXk‖2F is used to forcing PkXk towards small or zero
values for any other class k ∈ {k : |k − k| �= 0}. In this model, Pk projects the
samples Xk into an encoding coefficient matrix Ak = PkXk, it can reconstruct
Xk with the synthesis dictionary Dk.

The purpose of the Frobenius norm is to force the samples of other classes
not to fit into the dictionary modeling of the current class and hence ensure
the model to be class-wise discriminative. However, with the brain development
analysis data, the class k has biological significance meanings. Data from neigh-
boring classes (close age groups) can be similar and may share some modeling
components in the dictionary learning. It might not be a good idea to penalize
data from all other classes equally for each class k. Hence from each class k, we
propose to only consider regularizations over data from its remote classes. We
define the remote classes for class k as all the other classes r(k) that are at least
T steps away, such that r(k) = {k : |k − k| > T}, where T is a user-defined con-
stant. Moreover, in addition to using Frobenius norm, we propose to use l1 norm
regularization,

∑
k̄∈r(k) ‖PkXk̄‖1, to push the projective coefficients of samples

from the remote classes towards zeros.
Another important issue for dictionary pair learning is to determine the

sizes/dimensions of the dictionaries, which can be tedious. Hence we propose
to apply a low-rank regularization over the coefficient matrix produced by
the analysis dictionary Pk with a weighted nuclear norm [4,10], ‖Ak‖w,∗ with
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Ak = PkXk. With this low-rank regularization, we can automatically push down
the effective dimension of the dictionary Pk. Correspondingly, we only need to
maintain a compact synthesis dictionary D by enforcing an orthogonality con-
straint D�

k Dk = I. These regularizations can also boost the discrimination of D
and A by making each pair of dictionaries to compactly fit into the class-wise
data.

Integrating all these components together, we have the following class-wise
non-negative discriminative dictionary learning (NDDL) problem:

arg min
P,D

K∑

k=1

‖Xk − DkPkXk‖2
F +

∑

k∈r(k)

(
λ‖PkXk‖2

F + λ1‖PkXk‖1

)
+ λ2‖PkXk‖w,∗

s.t. D�
k Dk = I, PkXk ≥ 0, k = 1, ..., K. (2)

where the first term of the objective is the reconstruction error, the second and
third terms are regularizations over projections of samples from remote classes,
and the forth regularization term enforces the representation coefficient matrix
to be low rank to ensure a compact modeling on each class.

This joint minimization problem however is difficult to solve with different
types of regularization terms. To facilitate the development of a relative easy
training algorithm, for each class k we propose to introduce explicit encoding
coefficient matrices Ak and {Ak} with the equality constraints Ak = PkXk

and Ak = PkXk for k ∈ r(k), which transforms the learning problem above
into:

arg min
P,D,{Ak,{Ak:k∈r(k)}}

K∑

k=1

‖Xk − DkPkXk‖2F +
∑

k∈r(k)

(
λ‖PkXk‖2F + λ1‖Ak‖1

)

+ λ2‖Ak‖w,∗
s.t. D�

k Dk = I, Ak = PkXk, Ak = PkXk, k ∈ r(k)
PkXk ≥ 0, k = 1, ...,K. (3)

To learn dictionary sets D and P, we present an efficient optimization app-
roach in the next section.

2.2 Training Algorithm

We propose to solve the model in (3) using an alternating direction method
of multipliers (ADMM) based algorithm [1]. The principle of ADMM is to
decompose a hard optimization problem into easier-to-solve sub-problems. We
incorporate the equality constraints into the objective with auxiliary variable
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matrices {Z1,k} and {Z2,k}. This leads to solve the following augmented
Lagrangian function:

arg min
P,D,{Ak,{A

k
:k∈r(k)}}

K∑

k=1

‖Xk − DkPkXk‖2
F

+
∑

k∈r(k)

(
λ‖PkXk‖2

F + λ1‖Ak‖1 + μ2‖Ak − PkXk + Z2,k‖2
F

)

+ λ2‖Ak‖w,∗ + μ1‖Ak − PkXk + Z1,k‖2
F

s.t. D�
k Dk = I, Ak = PkXk, Ak = PkXk, k ∈ r(k)

PkXk ≥ 0, k = 1, ..., K. (4)

In each iteration of the ADMM based algorithm, it alternatively updates
each variable given the other variables are fixed as follows.

Updating P: Fixed D, {Ak, {Ak : k ∈ r(k)},Z, the minimization over each Pk

is a quadratic minimization problem:

arg min
Pk

‖Xk − DkPkXk‖2
F +

∑

k∈r(k)

(
λ‖PkXk‖2

F + μ2‖Ak − PkXk + Z2,k‖2
F

)

+ μ1‖PkXk − (Ak + Z1,k)‖2
F (5)

which has the following closed-form solution:

Pk =
(
D�

k XkX�
k + μ1(Ak + Z1,k)X�

k +
∑

k∈r(k)

(
μ2(Ak + Z2,k)X�

k

) )

(
(1 + μ1)XkX�

k +
∑

k∈r(k)

(
(1 + μ2)XkX

�
k

+ λXkX
�
k

)
+ γI

)−1 (6)

where γ = 10e−4 is a small constant used to increase invertibility.

Updating D: Given fixed P, {Ak, {Ak : k ∈ r(k)},Z, the minimization over
each Dk is an orthogonal constrained optimization problem:

arg min
Dk

‖Xk − DkPkXk‖2F , s.t. D�
k Dk = I

which can be rewritten as

arg min
Dk

tr(D�
k XkX�

k P�
k ), s.t. D�

k Dk = I, (7)

Let UΣV� be the singular value decomposition (SVD) of XkX�
k P�

k . (7) can be
solved with Dk = UV�.

Updating A: Given fixed {D, {Ak : k ∈ r(k)},P,Z}, Ak is solved as follows:

arg min
Ak

‖Ak − (PkXk − Zk)‖2F + λ2‖Ak‖w,∗, s.t.Ak ≥ 0, (8)



Modeling and Analysis Brain Development 85

Ak can be solved with weighted nuclear norm (WNN) [4,10] with the following
constraint: Ak = max(Ak, 0).

Updating {{Ak : k ∈ r(k)}: Given fixed {D,A,P,Z}, we have a l1 norm
minimization problem over each Ak:

arg min
{Ak:k∈r(k)}

∑

k∈r(k)

(
‖Ak − (PkXk − Z2,k)‖2F , +λ1‖Ak‖1

)
, (9)

which has the following solution with element-wise soft-thresholding:

{{Ak : k ∈ r(k)}}i =
∑

k∈r(k)

(
sign

(
[PkXk − Z2,k]i

) ·
(
[PkXk − Z2,k]i − λ1

μ2

)

+

)

(10)
where, (·)+ is (x)+ = x, x ≥ 0 and (x)+ = 0 for others to any x.

Updating {Zk}: Finally, we update the dual variables following the standard
ADMM algorithm: Z1,k := Z1,k +(Ak −PkXk) and Z2,k := Z2,k +(Ak −PkXk).

It is shown that, for sufficiently large values of ADMM parameters (i.e., μ1

and μ1) the algorithm is guaranteed to converge. In this paper, we set T = 1,
μ1 = 100, μ2 = 1, λ = 0.003, λ1 = 0.001 and λ2 = 0.0001.

2.3 Classification

The learned dictionaries can be used to classify new samples by measuring the
reconstruction error for each class. Considering the individual feature types (i.e.,
cortical surface area, thickness and volume). Let xi ∈ R

Si be the features of
type i for the sample to classify. We define as ei

k = ‖xi − Di
kP

i
kx‖2 the error

of reconstructing xi with the dictionaries of class k for feature type i. We then
assign the sample to the class whose dictionary gives the lowest error, i.e. k̂i =
arg minkei

k.
To combine the information of multiple feature types, we use a subset of

training examples (our validation set) to learn a regression model where inputs
are the predicted ages k̂i for each feature type i and the output is the true subject
age kreal.

arg min
α

(
kreal −

∑

i

αi k̂i

)2

, s.t.
∑

i

αi = 1, αi ≥ 0,∀i. (11)

Constraints on regression coefficients αi enforce the final prediction to be a
convex combination of predicted values for each feature type.

3 Experiments

The proposed NDDL framework is evaluated on modeling brain age and explor-
ing brain development with structural MRI using measures of cortical thickness,
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surface area and volume and diffusion tensor imaging of 841 developing subjects.
The 10-fold cross-validation is applied on this experiments. To measure perfor-
mance in terms of prediction accuracy (ACC), root mean square error (RMSE)
and mean absolute error (MAE) are applied in this paper. The experiments were
conducted in Matlab R2017b using a i7-6700K CPU with 16 GB of RAM. We
first evaluate our framework with the pre-processed PING data, MRI images
were pre-processed using the CIVET1 pipeline version 2.1.0. with the DKT pro-
tocol. DTI connectomes were derived with the NDMG pipeline, using the same
acquisition protocol as [11].

3.1 Prediction of Brain Age

We first demonstrate the proposed approach’s performance by predicting the
brain age from children to adolescents ranging from 3 to 21 years old, based
on cortical thickness, cortical surface area and cortical volumes of T1 structure
MRI on the PING database. Here, we evaluate our method in a classification
setting by dividing the 841 PING subjects (408 female, mean age: 12.52 years;
433 male, mean age: 12.58 years) into five age groups: preschool childhood (5–
7 years), late childhood (8–10 years), early adolescence (11–13 years), middle
adolescence (14–17 years) and late adolescence (18–21 years). We also evaluate
the impact of subject sex by predicting the age of male and female subjects
separately.

Table 1 compares the RMSE, MAE and accuracy obtained by our DDL app-
roach to SVM and random forest (RF) [8] and that of recently proposed method
DPL [3] for evaluating the impact of each constraint in the model. We see that
our approach outperforms the DPL method [3]. M. - ‖Ak‖w,∗ is our model
without weighted nuclear norm constraint on Ak and similarly M. - ‖Ak‖1(
M. − ‖∑

k∈r(k)

(
Ak

) ‖1
)
is the proposed model without l1 norm on Ak. From

the Table 1, we can find the weighted nuclear norm constraint on Ak has a greater
impact on results than the l1 norm of Ak. The classification results on female
data is much higher than male data. Compared to DPL [3], our approach yields
improvements of about 0.055 in RMSE, 0.053 in MAE and 0.066 in accuracy.

Table 1. Classification results on the database of PING.

Method RMSE MAE ACC

Male Female All Male Female All Male Female All

SVM 0.921 0.891 0.843 0.721 0.709 0.664 0.596 0.622 0.652

RF 0.916 0.873 0.860 0.745 0.704 0.690 0.679 0.686 0.716

DPL 0.826 0.854 0.757 0.666 0.675 0.612 0.666 0.727 0.710

M. - ‖Ak‖w,∗ 0.762 0.753 0.747 0.609 0.603 0.575 0.755 0.757 0.769

M. - ‖Ak‖1 0.751 0.726 0.719 0.595 0.580 0.569 0.743 0.764 0.770

Ours 0.762 0.726 0.702 0.609 0.580 0.559 0.755 0.764 0.776

1 http://www.bic.mni.mcgill.ca/ServicesSoftware/CIVET.

http://www.bic.mni.mcgill.ca/ServicesSoftware/CIVET
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The classification performance with only one variable (i.e., cortical surface
area, thickness, or cortical volume) is also evaluated in this section, the RMSE
with surface area, thickness and volume are 1.160, 0.884 and 1.035, and the
MAE are 0.823, 0.584 and 0.727, respectively. We see that the thickness is the
most significant variable among the three variables, both in terms of RMSE and
MAE.

3.2 Exploring the Cortical Brain Development

With the proposed model, we also can predict the development variables of the
cortex with the trained Dk Pk, Ak and one variable as input, k is the group
class. Using the predicted variables (thickness), we explore the specific status of
each surface area (parcellation). The correlation coefficients (r(x, y)), where xi

is vector of thickness in one parcel i sorted with increasing participant age, y
is the vector of increasing participant age. Figure 1 shows the area significantly
related to aging, the areas with smallest correlation coefficients (r(x, y)). We
find that the parietal regions are the most significantly related to age, consistent
with the report in [7].

a) Tested significant thickness on specific
surface area with increasing age.

b) Predicted significant thickness on specific
surface area with increasing age.

Fig. 1. The significant negative r of thickness on sub-surface area with increasing age
on 84 subjects

4 Conclusion

A non-negative discriminative dictionary learning model is proposed for predict-
ing and modeling brain development. Compared with the conventional methods,
this approach learns discriminative features by imposing both orthogonality on
the synthesis dictionary, non-negativity low-rank constraints on projective coef-
ficients, and a l1 sparsity constraint on coefficients of non-class with biological
boundary. An efficient alternative optimization algorithm based on ADMM was
presented to learn the dictionaries with multivariate training data. Experiments
on the tasks of predicting the brain age showed the benefit of our approach com-
pared to state-of-the-art methods for these tasks. Furthermore, our approach can
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be used in understanding the influence of gender on brain development. With
this model, we can capture the significant cortical surface area with aging.
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Abstract. Many CT slice images are stored with large slice intervals to
reduce storage size in clinical practice. This leads to low resolution per-
pendicular to the slice images (i.e., z-axis), which is insufficient for 3D
visualization or image analysis. In this paper, we present a novel archi-
tecture based on conditional Generative Adversarial Networks (cGANs)
with the goal of generating high resolution images of main body parts
including head, chest, abdomen and legs. However, GANs are known to
have a difficulty with generating a diversity of patterns due to a phe-
nomena known as mode collapse. To overcome the lack of generated
pattern variety, we propose to condition the discriminator on the dif-
ferent body parts. Furthermore, our generator networks are extended to
be three dimensional fully convolutional neural networks, allowing for
the generation of high resolution images from arbitrary fields of view.
In our verification tests, we show that the proposed method obtains the
best scores by PSNR/SSIM metrics and Visual Turing Test, allowing for
accurate reproduction of the principle anatomy in high resolution. We
expect that the proposed method contribute to effective utilization of
the existing vast amounts of thick CT images stored in hospitals.

Keywords: Deep learning · Generative Adversarial Network · Super
resolution · Computer vision · Computed tomography

1 Introduction

Image diagnosis plays an important role in recent healthcare solutions. The qual-
ity of diagnostic images largely affects the quality of diagnosis. The images such
as CT or MRI acquired in hospitals are normally stored in Picture Archiving
and Communication Systems (PACS). Although thin slice images, with slice
intervals are about less than 1 mm, are frequently used for diagnosis, thick slice

c© Springer Nature Switzerland AG 2019
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Fig. 1. Comparison of original thick image and the virtual thin image output generated
by the proposed approach. On the left top row, the CT sagittal view of original thick
image is blurred with each vertebrae bone being nearly indistinguishable, while they
become clear in corresponding ×8 super resolution image (Virtual Thin). Arbitrary
size data, even the whole body shown on the right, is available for inputs and capable
of reconstructing natural image regardless of body part. On the left bottom row, fine
blood vessel are smoothly reconstructed in a volume rendering view.

images with large slice intervals are used for long term storage to reduce the data
size. However, the stored thick slice images do not have sufficient resolution for
sagittal or coronal views, and also have limited applicability to 3D visualiza-
tion (volume rendering). To address this, we present a novel super resolution
algorithm for CT images based on Generative Adversarial Networks (GAN).
Our goal is to generate high resolution 3D images corresponding from the input
thick slice images. We base our approach on adversarial training [5] and aim to
generate realistic-looking high-resolution CT images. One of the major difficul-
ties is that CT images can be very diverse (e.g., imaged body part, voxel size,
resolution, slice thickness, slice interval, etc.), which can be difficult to synthesize
with GANs. This difficulty is due to a phenomena known as mode collapse, in
which the model becomes only able to synthesize a small subset of the original
training data and presents a significant decrease in the output diversity [9]. We
overcome this issue by additional conditioning of the discriminator on additional
information, and use a three dimensional fully convolutional network to synthe-
size the high resolution CT images. Figure 1 shows example input thick images
and the corresponding thin images synthesized by the proposed Virtual Thin
Slice (VTS) method. The vertebrae bone structure is clearly reconstructed on
the sagittal view, and fine blood vessels are reproduced well on the VR image.

2 Related Work

Single image super resolution is a major problems in computer vision field with
a long history. The very first approach were filtering approaches, such as linear,
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bicubic or Lanczos filtering [4] which do not require huge computation. Yang
et al. [14] categorized super resolution technique into 4 groups,which are prediction
models, edge-based methods, image statistical methods and path-based methods.
Recently, deep convolutional neural networks (CNN) based methods are showing
significant performance in image recognition area [11]. SRCNN [3] improved per-
formance on 2D image super resolution tasks by training non-linear low-resolution
to high-resolution mappings using CNN filters. This is achieved through the min-
imization of pixel-wise Mean Squared Error (MSE) between reconstructed image
and ground truth high resolution image. However, pixel-wise losses cannot capture
perceptual differences [1], thus the output tends to be blurred and look unrealis-
tic to human eyes. Adversarial training schemes [5] give much sharper result in
image conversion task. Our work builds upon adversarial training to obtain better
results. Some research focus on stabilize GAN training to reduce mode collapse,
while there is a drawback of the computational cost [9].

Conditional GAN [10] is a conditioned min-max game between generator and
discriminator. Isola [7] proposed Pix2Pix algorithm using images as conditional
information, using pair of input image and target ground truth image. While
adversarial approach gives more adequate to human perception, there are trade-
offs between the perception and distortion of generating images [8].

In medical imaging, few researchers work on the 3D image super resolution.
Chen et al. targeted 3D MRI super-resolution for medical image analysis [2].
Their target was limited to brain images. One of our contributions is realizing
3D CT image super resolution for any kind of body parts with a single generator
network. Another contribution is the conditioning of the discriminator on the
different body parts inspired by conditional GAN, and the ability to perform
super-resolution of 3D medical images of arbitrary sizes.

3 Method

3.1 Objective Function

Our approach is based on conditional GAN, using pairs of low resolution data
and high resolution data with slice information. The objective is to learn the
transformation from of the thick slice image x to the virtual thin slice image y.
Additionally, the discriminator is condition on a vector w, allowing the objective
function to be expressed as

LcGAN (G,D) = E(x,y) [ log D(x, y, w) ] + Ex [ log(1 − D(x,G(x), w)) ] . (1)

where the model G tries to minimize this objective against an adversarial model
D that tries to maximize it. Both G and D can be implemented as Convolutional
Neural Networks (CNN). We also use a L1 loss to calculate pixel-wise appearance
differences between ground truth images and generated images, which has been
shown to give less blurring than the L2 loss in a diversity of image-to-image
translation tasks [7]. Therefore, our final objective is expressed as

G∗ = arg min
G

max
D

LcGAN (G,D) + λLL1(G) (2)
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Fig. 2. Adversarial training framework of thick-thin slice translation on CT images.
In each training iteration, the thin slice input data is randomly degraded to simulate
thick slice data. For the Generator input, we feed 1 mm spline interpolated 3D thick
slice image itself. On the other hand, for the Discriminator input, we feed generated
Virtual Thin image with slice condition including body part information with degraded
parameter scales.

Figure 2 illustrates the proposed adversarial training procedure. Note that the
additional conditions are not inputted into the generator.

3.2 Network Architecture

Both our generator and discriminator models are based on Convolutional Neural
Networks. Each convolutional layer consists of 4× 4× 4 sized kernel followed by
batch normalization [6] and LeakyReLU (α = 0.2) as the activation function.
Instead of max-pooling, strided convolution are used and image resolution is
reduced to 1/2 in each encoder convolutional layer. We set 64 channels for the
first layer for both of the generator and the discriminator to get sufficient quality
results and acceptable computation time. Figure 3 illustrates the architecture of
our generator and discriminator networks.

Generator. The generator uses an encoder-decoder type architecture inspired
by U-Net [12]. The resolution is decreased 4 times such that the minimum feature
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map size is 1/16, and restored to the original size with trilinear interpolation. We
used trilinear interpolation instead of transposed convolution for up-sampling
to avoid generating checkered patterns due to uneven overlap of the kernel.
In each convolutional layer, more feature channels generate better results, but
require more resources and computational time. The generator estimates the
high frequency components and the output is finally added to the input image.

Fig. 3. Overview of the generator and discriminator network architectures. (x3 × c)
denotes the size of 3D feature map volumes, where c denotes the number of channels.

Discriminator. For the discriminator input, thick image (1 channel), thin
image (1 channel) and slice information (8 channels) is given. Also a self-attention
layer [15] is added in the fourth layer of the network. Self-attention mechanism is
an idea to introduce global information between layers by computing attention
maps which show the relevant area. In our case, self-attention did not largely
affect the final performance, however, it speeded up the convergence of adversar-
ial training. Final output is converted to a probability with a Sigmoid function.

3.3 Training Data

We introduce a Degrader procedure to randomly degrade the original thin image
to thick slice image. In the Degrader, the input 3D image is down-sampled with
Gaussian smoothing and spline interpolation is used to generate the missing
slices. To simulate various combination of slice thickness and slice interval, the
number of slices is reduced to either 1/4 or 1/8, then spline interpolation and
random Gaussian noise is applied. The training samples are randomly cropped
from the training images with an affine transform.
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3.4 Conditioning Vector

We condition the discriminator on a vector w, containing various information
about the input image. In particular, the type of input data (head, chest,
abdomen or leg) is provided, in addition the slice interval (4 mm or 8 mm),
and the scale of the standard deviation σ (2 scales) used for the Gaussian ker-
nel which is treated as the slice thickness. In total, 8 channels are added as
conditional information to the discriminator.

4 Experiments

For verification of the proposed method, we use Peak Signal-to-Noise Ratio
(PSNR) and Structural Similarity Index Metric (SSIM) [13] as automatic met-
rics. There is a huge gap between PSNR and human perception sense, thus do
not always present reasonable result. SSIM is more reasonable measure in super
resolution field, however there is still a gap to human perception sense. There-
fore, as additional experiment, we conducted Visual Turing Test (VTT). We
asked 8 people who is either radiology technician or medical image research sci-
entist to select the most high visibility image generated from 4 different methods
each input. In the VTT, 4 images are shown in random order for 50 times to
aggregate the answered ratio.

4.1 Datasets and Data Augmentation

We prepared 354 CT data (head:99, chest:98, abdomen:100, legs:57) for training
which are obtained from diverse manufacturer’s equipments (e.g., GE, Siemens,
Toshiba, etc.). They have been carefully selected to not contain metal artifacts or
noises because the discriminator is prone to reproduce such artifacts. The input
images CT values are clipped to the [−2048, 2048] range and then normalized to
be in the [−1, 1] interval. In general, thick CT images are acquired in the range
of 3–10 mm interval. On the other hand, 1 mm slice interval is enough for 3D
visualization of principle anatomy by volume rendering. We set the experimental
setting to generate 1 mm slice interval images from 8 mm. Therefore our datasets
are only data with smaller than 1.0 mm slice interval. All images are rescaled
to 1 mm isotropic voxels in preprocessing steps. In each training iteration, we
randomly crop 160 × 160 × 160 voxels from the input data and apply data
augmentation. In particular, we apply an affine transformation consisting of
a random rotation between −5◦ and +5◦, and random scaling between −5%
and +5%, both sampled from uniform distributions. The generated thick slice
image inputs are subject to Gaussian filtering with σ uniformly sampled between
0.0 and 3.2 voxels before being downsampled to 1/4 or 1/8 resolution. As test
datasets, we prepared 53 CT data (head:12, chest:16, abdomen:15, leg:10).

4.2 Results

We report for reference methods adapted to 3D, including bicubic, SRCNN [3],
Pix2Pix [7], and Virtual Thin Slice (VTS, our approach). For our approach we
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Table 1. PSNR and SSIM comparison result in experiments.

Methods GANs Conditional? HF prediction? PSNR SSIM

Bicubic 32.34 0.878

SRCNN [3] 33.73 0.904

Pix2Pix [7] � 35.14 0.925

VTS (ours) � � � 35.73 0.933

(w/o) condition � � 35.17 0.924

(w/o) HF pred. � � 33.70 0.905

Ground Truth – – – ∞ 1.000

perform an ablative study where we remove the conditional vector from the
discriminator and high-frequency component prediction. We employ SRCNN’s
3 layer 9-1-5 model with each kernel expanded to 3D. Pix2Pix’s convolutional
networks are also replaced to 4×4×4 sized kernels in each layer to adapt 3D and
iterates down sampling until the feature image size become one pixel. Each type
of network architecture is trained for around 100 epochs with Adam optimizer
having learning rate for 2 × 10−4 and momentum parameter β1 = 0.5.

Table 1 shows average PSNR and SSIM calculated over the test datasets.
VTS has the highest score among other methods and the ablation study shows
that removing either the conditional vector or high-frequency prediction lowers
the quality of the generated outputs.

As we can see in Fig. 4, proposed VTS model generated the best percep-
tual quality with more sharpness and realistic images than other models. In
particular, VTS works better with high intensity values such as bone boundary
area rather than soft tissues. Although Pix2Pix model has similar PSNR/SSIM
score to VTS, VTS was preferred roughly 90% of the time in VTT presented
as shown in Fig. 5. The boxplot shows the answered ratio among 4 methods by
the research participants. The images in which Pix2Pix was preferred over VTT
consists primarily of legs data which have small difference between thick and
thin as shown bottom row in Fig. 4. Even with some test data containing metal
artifacts and unknown test patterns, the generated images are consistent with
the input patterns, and don’t contain enhancing artifacts or noise.

Another important feature of the proposed method is that the generator
network is a fully convolutional neural network, and as such can handle each
part of body and also field of view. Additionally, we have performed a verification
test on 66 real thick slice images covering a wide condition of view with varying
slice numbers (10 to 327), slice intervals (from 3.0 to 10.0 mm), and FOV (128
to 512 mm * mm). Using this dataset, we confirmed that the generator networks
are able to successfully generate 1 mm slice interval images from the diversity
of slice spacing and FOV images. We attribute these results to the wide range
of data augmentation that we apply during training. Example of generated HR
image from real existing thick slice image for either whole body or chest are
shown in Fig. 1. The entire images are naturally reconstructed with no seams.
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Bicubic SRCNN Pix2Pix VTS (ours) Ground Truth

Fig. 4. Comparison of the generated images of bicubic,
SRCNN [3], pix2pix [7], VTS (ours) and corresponding
ground truth thin slice image. [8× slice interpolation]

Fig. 5. The answered
ratio in the Visual
Turing Test.

5 Conclusion

In this paper, we have presented a super resolution algorithm that can be appli-
cable for CT images of main body parts and various field of view. By inputting
additional information regarding input data in the discriminator network, we
show that output data quality increases significantly. Furthermore, the addi-
tional information is not necessary as test time. Numbering vertebrae bone is
clearly easier with our VTS images compared to the original thick images. Also,
we believe in-depth evaluation on abnormal images is an important next step
for future work. In the future, we expect our VTS method will take on a role for
the further development of medical image analysis and diagnosis support tasks,
such as bone labeling and lung section segmentation, for thick slice data.

Acknowledgements. We acknowledge using the Reedbush-L (SGI Rackable C2112-
4GP3/C1102-GP8) HPC system in the Information Technology Center, The University
of Tokyo for the GPU computation required in this work.

Appendix

We include a variety of additional generated images from proposed VTS and
other methods in Fig. 6.



Virtual Thin Slice 99

Bicubic SRCNN         Pix2Pix    VTS (ours)     Ground Truth

Fig. 6. Results using bicubic, SRCNN [3], pix2pix [7], VTS (ours) and corresponding
ground truth thin slice image.
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Abstract. Robustness of deep learning methods for limited angle
tomography is challenged by two major factors: (a) due to insufficient
training data the network may not generalize well to unseen data; (b)
deep learning methods are sensitive to noise. Thus, generating recon-
structed images directly from a neural network appears inadequate. We
propose to constrain the reconstructed images to be consistent with the
measured projection data, while the unmeasured information is comple-
mented by learning based methods. For this purpose, a data consistent
artifact reduction (DCAR) method is introduced: First, a prior image is
generated from an initial limited angle reconstruction via deep learning
as a substitute for missing information. Afterwards, a conventional itera-
tive reconstruction algorithm is applied, integrating the data consistency
in the measured angular range and the prior information in the missing
angular range. This ensures data integrity in the measured area, while
inaccuracies incorporated by the deep learning prior lie only in areas
where no information is acquired. The proposed DCAR method achieves
significant image quality improvement: for 120◦ cone-beam limited angle
tomography more than 10% RMSE reduction in noise-free case and more
than 24% RMSE reduction in noisy case compared with a state-of-the-art
U-Net based method.

Keywords: Deep learning · Limited angle tomography · Data
consistency · Poisson noise · Robustness · Generalization ability

1 Introduction

Recently, deep learning has achieved overwhelming success in various computed
tomography (CT) applications [1,2], including low-dose CT [3–5], sparse-view
c© Springer Nature Switzerland AG 2019
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reconstruction [6–8], and metal artifact reduction [9,10]. In this work, we are
interested in the application of deep learning to limited angle tomography. Image
reconstruction from data acquired in an insufficient angular range is called lim-
ited angle tomography. It arises when the gantry rotation of a CT system is
restricted by other system parts, or a super short scan is preferred for the sake
of quick scanning time, low dose, or less contrast agent.

Conventionally, limited angle tomography is addressed by extrapolation
methods [11,12] or iterative reconstruction algorithms with total variation [13–
15]. In the past three years, various deep learning methods have been investigated
in limited angle tomography [16–21]. For example, Gu and Ye adapted the U-Net
architecture [22] to learn artifacts from streaky images in the multi-scale wavelet
domain [18]. Good quality images are obtained by this method for 120◦ limited
angle tomography. The results presented in the literature reveal promising devel-
opments for a clinical applicability of deep learning-based reconstructions.

However, the robustness of deep learning in practical applications is still a
concern. On one hand, deep learning methods may fail to generalize to new
test instances as these methods are trained only on an insufficient dataset. On
the other hand, due to the curse of high dimensional space [23], deep neural
networks have been reported to be vulnerable to small perturbations, including
adversarial examples and noise [24–26]. In the field of limited angle tomography,
our previous work [19] has demonstrated that the U-Net method is not robust
to Poisson noise as well. In this work, we devise an algorithm overcoming these
limitations by enforcing data consistency with the measured raw data.

Since generating reconstructed images directly from a neural network appears
inadequate, we propose to combine deep learning with known operators. The first
category of such approaches is to build deep neural network architectures directly
based on analytic formulas of conventional methods. In these neural networks,
each layer represents a certain known operator whose weights are fine tuned by
data-driven learning to improve precision. Therefore, they are called “precision
learning” [27,28]. In precision learning, maximal error bounds are limited by
prior information of the analytic formulas. Würfl et al. [16,20] proposed a neural
network architecture based on filtered back-projection (FBP) to learn the com-
pensation weights [29] for limited angle reconstruction. However, this particular
method is not suitable for small angular ranges, e.g. 120◦ cone-beam limited
angle tomography, since no redundant data are available to compensate missing
data. The second category is to use deep learning and conventional methods to
reconstruct different parts of an imaged object respectively. Bubba et al. [21] pro-
posed a hybrid deep learning-shearlet framework for limited angle tomography,
where an iterative shearlet transform algorithm [30] is utilized to reconstruct vis-
ible singularities of an imaged object while a U-Net based neural network with
dense blocks [31] is utilized to predict the invisible ones. This method achieves
better image quality than pure model or data-driven-based reconstruction meth-
ods. The third category is to use deep learning results as prior information for
conventional methods. Zhang et al.’s method [10] is such an example for metal
artifact reduction. To make the best of measured data, Zhang et al. used deep
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learning predictions as prior images to interpolate projection data in metal cor-
rupted areas [10].

In this work, we choose the third category for limited angle tomography.
In [19], the U-Net learns artifacts from streaky images in the image domain
only. Reconstruction images obtained by such image-to-image prediction are very
likely not consistent to measured data as the prediction does not have any direct
connection to measured data. To make predicted images data consistent, a data
consistent artifact reduction (DCAR) method is proposed: The predicted images
are used as prior images to provide information in missing angular ranges first;
Afterwards, a conventional reconstruction algorithm is applied to integrate the
prior information in the missing angular ranges and constrain the reconstruction
images to be consistent to the measured data in the acquired angular range.

2 Method

2.1 The U-Net Architecture

As displayed in Fig. 1, the same U-Net architecture as that in [19] is used for
artifact reduction in limited angle tomography, which is modified from [22] and
[18]. In this work, the input images are Ram-Lak-kernel-based FBP reconstruc-
tions from limited angle data, while the output images are artifact images. The
Hounsfield scaled images are normalized to ensure stable training. An �2 loss
function is used.

Fig. 1. The U-Net architecture for limited angle tomography (modified from [22]).

2.2 Data Consistent Artifact Reduction

Data Fidelity of Measured Data: We denote measured projections by pm

and the system matrix for the measured projections by Am in cone-beam limited
angle tomography. The FBP reconstruction from the measured data pm only is
denoted by fFBP. The artifact image, predicted by the U-Net, is denoted by
fartifact. Then an estimation of the artifact-free image, denoted by fU-Net, is
obtained by fU-Net = f limited − fartifact. Due to insufficient training data or
sensitivity to noise in the application of limited angle tomography [19], fU-Net
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is not consistent to the measured data. A data consistent reconstruction image
f follows the following constraint,

||Amf − pm|| < e1, (1)

where e1 is a parameter for error tolerance. When the measured data pm are
noise-free, e1 is ideally zero. When pm contains noise caused by various physical
effects, e1 is a certain positive value.

Because of the severe ill-posedness of limited angle tomography, the number
of images satisfying the above constraint is not unique. We aim to reconstruct
an image which satisfies the above constraint and meanwhile is close the U-Net
reconstruction fU-Net. For this purpose, we choose to initialize the image f with
fU-Net and solve it in an iterative manner, i.e.,

||Amf − pm|| < e1, and f (0) = fU-Net. (2)

In this way, the data consistency constraint is fully satisfied. Note that with such
initialization, the deep learning prior fU-Net contributes to the selection of one
image among all images satisfying Eq. (1).

Data Fidelity of Unmeasured Data: We further denote the system matrix
for an unmeasured angular range by Au and its corresponding projections by
pu. In cone-beam computed tomography, a short scan is necessary for image
reconstruction. Therefore, in this work, we choose Au such that Am and Au

form a system matrix for a short scan CT system. Although the projections pu

are not measured, they can be approximated by the deep learning reconstruction
fU-Net via forward projection. Making the best of such prior information, the
following constraint is proposed,

||Auf −AufU-Net|| = ||Au(f − fU-Net)|| < e2, (3)

where the error tolerance parameter e2 accounts for the inaccuracy of the deep
learning prior fU-Net. When fU-Net has bad image quality, a relative large value
should be set. This constraint indicates that the final reconstruction f is close
to the deep learning prior fU-Net in the unmeasured space and the difference
between them is controlled by the parameter e2.

Regularization: To further reduce noise and artifacts corresponding to the
error tolerance of e1 and e2, additional regularization is applied. In this work,
the following iterative reweighted total variation (wTV) regularization [15] is
utilized,

||f (n)||wTV =
∑

x,y,z

w(n)
x,y,z||Df (n)

x,y,z||,

w(n)
x,y,z =

1

||Df (n−1)
x,y,z || + ε

,
(4)

where f (n) is the image at the nth iteration, w(n) is the weight vector for the nth

iteration which is computed from the previous iteration, and ε is a small positive
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value added to avoid division by zero. A smaller value of ε results in finer image
resolution but slower convergence speed.

Overall Algorithm: Therefore, the overall objective function for our DCAR
method is as the following,

min ||f ||wTV, subject to

⎧
⎨

⎩

f (0) = fU-Net,
||Amf − pm|| < e1,
||Auf −AufU-Net|| < e2,

(5)

which is a constrained optimization problem.
To solve the above objective function, simultaneous algebraic reconstruction

technique (SART) + wTV is applied [15], i.e., SART is utilized to minimize
the data fidelity terms of Eqs. (1) and (3), while a gradient descent method is
utilized to minimize the wTV term. To minimize the data fidelity terms, SART
is adapted as the following,

f
(l+1)
j =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f
(l)
j + λ ·

∑
p i∈P β

Se1(p i−∑N
k=1 A i,k·f (l)

k )
∑N

k=1 A i,k
·Ai,j

∑
p i∈P β

Ai,j
, if pi is measured,

f
(l)
j + λ ·

∑
p i∈P β

Se2(
∑N

k=1 A i,k·(f U-Net−f
(l)
k ))

∑N
k=1 A i,k

·Ai,j

∑
p i∈P β

Ai,j
, otherwise,

(6)
where the system matrix A is the combination of Am and Au, the projection
vector p is the combination of pm and pu, and Sτ is a soft-thresholding operator
with threshold τ to deal with error tolerance. pu is estimated and substituted by
AufU-Net in the above formula. For other parameters, f j stands for the jth pixel
of f , pi stands for the ith projection ray of p, Ai,j is the element of A at the ith

row and the jth column, l is the iteration number, N is the total pixel number
of f , λ is a relaxation parameter, β is the X-ray source rotation angle, and P β

stands for the set of projection rays when the source is at rotation angle β. To
minimize the wTV term, the gradient of ||f ||wTV w.r.t. each pixel is computed
and a gradient descent method using backtracking line search is applied [15].

2.3 Experimental Setup

We validate the proposed DCAR algorithm using 17 patients’ data from the
AAPM Low-Dose CT Grand Challenge [32] simulated in 120◦ cone-beam limited
angle tomography without and with Poisson noise.

System Configuration: For each patient’s data, limited angle projections are
simulated in a cone-beam limited angle tomography system with parameters
listed in Table 1. In the noisy case, Poisson noise is simulated considering an
initial exposure of 105 photons at each detector pixel before attenuation.

Training and Test Data: To investigate the dependence of the U-Net’s per-
formance on training data, leave-one-out cross validation is performed. For each
validation, data from 16 patients are used for training while the data from the
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Table 1. The system configuration of cone-beam limited angle tomography to validate
the proposed DCAR algorithm, where the angular parameters in the brackets are for
a short scan configuration.

Parameter Value

Scan angular range 120◦(210◦)

Start angle 30◦(0◦)

End Angle 150◦(210◦)

Angular step 1◦

Source-to-detector distance 1200.0 mm

Source-to-isocenter distance 600.0 mm

Detector size 620× 480

Detector pixel size 1.0 mm× 1.0 mm

Image size 256 × 256 × 256

Image pixel size 1.25 mm× 1.25 mm× 1.0 mm

remaining one are used for test. Among the 16 patients, 25 slices from each
patient are chosen for training. For the validation patient, all the 256 slices from
the FBP reconstruction fFBP are fed to the U-Net for evaluation. As the arti-
facts are mainly caused by limited angle scan, the effect of cone-beam angle is
neglected. Therefore, 2-D slices are used for training and test instead of volumes
to avoid high computation. Both the training and test data are noise-free in the
noise-free case, while both the training data and test data contain Poisson noise
in the noisy case.

Algorithm Parameters: The U-Net is trained on the above data using the
Adam optimizer. The learning rate is 10−3 for the first 100 epochs, 10−4 for the
101−130th epochs, and 10−5 for the 131−150th epochs. The �2-norm is applied
to regularize the network weights. The regularization parameter is 10−4.

For reconstruction, in the noise-free case, the error tolerance value e1 is set to
0.001 in Eq. (1) for discretization error, while e1 is set to 0.01 for the noisy case.
The U-Net reconstructions fU-Net of each patient are reprojected in the angular
range of [0◦, 210◦]. Other system parameters are the same as those in Table 1. A
relatively large tolerance value of 0.5 is chosen empirically for e2 in Eq. (3). For
SART, the parameter λ in Eq. (6) is set to 0.8. For the wTV regularization, the
parameter ε is set to 5 HU for weight update. 50 iterations of SART + wTV are
applied using the U-Net reconstruction fU-Net as initialization to get the final
reconstruction. For comparison, the results of 100 iterations of SART + wTV
using zero images as initialization are presented.

3 Results

The results of three example slices in 120◦ noise-free cone-beam limited angle
tomography are displayed in Fig. 2. These three slices are from Patient NO. 17,
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f reference fFBP fwTV fU-Net fDCAR

(a) (b) 328HU (c) 138HU (d) 105HU (e) 88HU

(f) (g) 333HU (h) 134HU (i) 71HU (j) 63HU

(k) (l) 317HU (m) 140HU (n) 122HU (o) 85HU

Fig. 2. Reconstruction results of three example slices by U-Net and DCAR in noise-
free 120◦ cone-beam limited angle tomography. The images from top to bottom are
from Patient NO. 17, 4, and 7, respectively. The areas marked by the arrows are
reconstructed incorrectly by the U-Net, which are rectified by DCAR. The RMSE
value for each slice is displayed in their subtitle. Window: [−1000, 1000] HU.

4, and 7, respectively. In each row, the reference image f reference, the FBP recon-
struction fFBP, the U-Net reconstruction fU-Net, the SART + wTV (using wTV
for short in the following) reconstruction fwTV, and the DCAR reconstruction
fDCAR are displayed in order. Comparing Fig. 4(b) with Fig. 4(a), the body out-
line of Patient 17 is severely distorted due to missing data. Moreover, many
streaks occur, obscuring anatomical structures such as the ribs and the ver-
tebra. Figures 4(c)–(e) demonstrate that wTV, U-Net, and DCAR all are able
to improve these corrupted anatomical structures. The root-mean-square error
(RMSE) is reduced significantly from 328 HU for fFBP to 138 HU for fwTV

w.r.t. the reference image. But the intensity values at the top body part are
still too low in fwTV. The RMSE is further reduced to 105 HU for fU-Net in
Fig. 4(d), while DCAR reaches the smallest RMSE value of 88 HU for this slice.
In the middle row and the bottom row, the U-Net is able to reconstruct most
anatomical structures well. However, the structures indicated by the red arrows
are apparently incorrect compared with reference images. In Fig. 4(i), the dark
holes indicated by the red arrows appear, very likely because the corresponding
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areas in Fig. 4(g) have low intensities due to dark streak artifacts. In contrast,
the two large holes in Fig. 4(n) occur without any clear clue, since no dark areas
are present in Fig. 4(l). Apparently Fig. 4(n) is not consistent to measured data
and by using DCAR, these two holes are reestablished, although some darkness
remains.

The comparison of the mean RMSE values for wTV, U-Net, and DCAR in
the leave-one-out cross-validation is plotted in Fig. 3. It indicates that wTV has
the largest mean RMSE values among these three methods and DCAR achieves
more than 10% improvement in mean RMSE values compared with the U-Net.
This convincingly demonstrates the benefit of DCAR in reducing artifacts for
limited angle tomography.

Fig. 3. Comparison of the mean RMSE values by wTV, U-Net, and DCAR for each
patient in 120◦ noise-free cone-beam limited angle tomography. The relative improve-
ment of DACR from the U-Net is marked for each patient.

In 120◦ cone-beam limited angle tomography with Poisson noise, the results
of three example slices are displayed in Fig. 4. These three slices are from Patient
NO. 17, 2, and 8, respectively. In the top row, Fig. 4(b) exhibits a high level of
Poisson noise especially for the areas where a lot of X-rays are missing. The Pois-
son noise is entirely reduced by wTV in Fig. 4(c). However, like the noise-free
cases, the top body area is still distorted. Figure 4(d) indicates that the U-Net
trained on noisy data is still able to reduce limited angle artifacts. In addition,
most Poisson noise is also prominently reduced and only a small portion of it
remains. However, many low/median contrast structures, e.g. fat and muscles
in the area marked by the red arrow, are blurred and cannot be distinguished
between each other. Figure 4(e) indicates that DCAR can further reduce Poisson
noise and improve low/median contrast structures, as no Poisson noise remains
at all and the fat and muscle tissues can be distinguished between each other. The
benefit of DCAR is also demonstrated by the RMSE value as it decreases from
138 HU in Fig. 4(d) to 102 HU in Fig. 4(e). For the slice in the middle row, the U-
Net also reduces most of the artifacts and Poisson noise, comparing Fig. 4(i) with
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f reference fFBP fwTV fU-Net fDCAR

(a) (b) 358HU (c) 141HU (d) 138HU (e) 102HU

(f) (g) 299HU (h) 123HU (i) 114HU (j) 85HU

(k) (l) 379HU (m) 120HU (n) 125HU (o) 74HU

Fig. 4. Reconstruction results of three example slices by U-Net and DCAR in 120◦

cone-beam limited angle tomography with Poisson noise. The images from top to bot-
tom are from Patient NO. 17, 2, and 8, respectively. The areas marked by the arrows
are reconstructed incorrectly by the U-Net, which are rectified by DCAR. The RMSE
value for each slice is displayed in their subtitle. Window: [−1000, 1000] HU. (Color
figure online)

Fig. 4(g). However, the cavities in the marked green box in Fig. 4(f) are missing
in Fig. 4(i). They are smoothed out by the U-Net. Instead, DCAR is still able to
reconstruct most of these cavities, as displayed in Fig. 4(j). For the slice in the
bottom row, many dark dots occur in the U-Net reconstruction in Fig. 4(n), due
to severe Poisson noise in the limited angle reconstruction in Fig. 4(l). However,
these dark dots are eliminated by DCAR in Fig. 4(o). Except for these example
slices, the comparison of the mean RMSE values for wTV, U-Net, and DCAR is
displayed in Fig. 5. The mean RMSE values for wTV stay similar for both the
noise-free and noisy cases. However, DCAR achieves more than 24% improve-
ment compared with the U-Net in the noisy case. These remarkable results have
demonstrated the robustness of DCAR to Poisson noise in 120◦ cone-beam lim-
ited angle tomography.
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Fig. 5. Comparison of the mean RMSE values by wTV, U-Net, and DCAR for each
patient in 120◦ cone-beam limited angle tomography with Poisson noise. The relative
improvement of DCAR from the U-Net is marked for each patient.

4 Discussion and Conclusion

In the cross-validation experiments, for each test, 16 patients’ CT data are used
to train the U-Net. Since only 13 slices are chosen from each patient, 400 slices in
total are used for training, which is very likely insufficient. Therefore, the U-Net
training on such data has a limited generalization ability to test data. That is
one potential cause to the dark holes in the U-Net reconstructions in Fig. 2 in
the noise-free case. The occurrence of such dark holes make deep learning recon-
structions not consistent to measured projection data. DCAR has the ability to
improve such reconstructions by constraining them consistent to measured data.

In the noisy case, due to the curse of high dimensional space, noise will
accumulate at each layer of the U-Net. Therefore, even if noise has a small
magnitude, it still has a severe impact on the output images. That is why the
U-Net is not robust to Poisson noise [19]. In this work, the U-Net is trained on
data with Poisson noise. This endows the U-Net to deal with Poisson noise to a
certain degree. Figure 4 indicates that the U-Net is able to reduce a certain level
of Poisson noise in a manner of smoothing structures. In such a manner, some fine
structures are also smoothed out, e.g., the small cavities in Fig. 4(f). In addition,
in our experimental setup for the noisy case, the initial photon number without
attenuation is relatively low. Hence, the Poisson noise in the FBP reconstruction
images is well observed. In some cases, e.g. in Fig. 4(g), the Poisson noise is so
strong that the U-Net is not able to reduce it. However, DCAR adapts the SART
algorithm using soft-thresholding operators, which is noise tolerant. In addition,
the wTV regularization further reduces the influence of Poisson noise as such
high frequency noise pattern contradicts a gradient-sparse image, which wTV
seeks.

In conclusion, the proposed DCAR method has better generalization abil-
ity to unseen data and is more robust to Poisson noise than the U-Net.
This is demonstrated by our experiments, achieving significant image quality
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improvement. Compared to the U-Net, our method reduces the RMSE by more
than 10% in the noise-free case and 24% in the noisy case for 120◦ cone-beam
limited angle tomography.

Disclaimer. The concepts and information presented in this paper are based on

research and are not commercially available.
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Abstract. With the increasing use of CT in diagnostic imaging, reduc-
ing the clinical radiation dose is necessary for ensuring patient safety.
Reduced radiation dose results in quantum noise which adversely affects
image quality and diagnostic value. Moreover, obtaining high quality
images to act as reference images for image quality assessment is difficult.
Therefore, automatic no-reference quality assessment of reconstructed
images is necessary to preserve diagnostic image quality, while control-
ling radiation dose. In this work, we investigate the use of a deep con-
volutional neural network to measure CT image quality. Our developed
metric shows concordance with conventional metrics of CT image qual-
ity (|r| > 0.75, |ρ| > 0.75). Our metric ranks images in terms of quality
highly accurately (τ = 0.98). We measure noise textures and levels not
present in our training dataset. Furthermore, the proposed metric shows
the improved quality in high dose iteratively reconstructed images, and
the reduced quality in low dose images.

Keywords: Quantum noise · Convolutional neural network ·
Computed tomography · Image quality

1 Background

Computed tomography (CT) is one of the most important tools in medical imag-
ing. CT is used in the diagnosis of both malignant and benign lesions in the brain,
lungs, and liver, among other applications. Necessary information for tumor diag-
nosis can be affected by the reconstruction quality of the CT image. Because of
the ALARA principle to improve patient safety, reconstructed CT images con-
tain quantum noise. Quantum noise manifests itself as dark streaks in an image
[10,11]. Large amounts of quantum noise may remove small and low-contrast
tumors from a reconstructed image. With the increase in the use of CT for diag-
nostic purposes, automated measures of CT reconstruction quality and quan-
tum noise content are becoming necessary to maintain high diagnostic value.
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The noise power spectrum (NPS) has been used as a method to measure image
noise content [3]. Successful calculation of the noise power spectrum requires an
assumption of local signal linearity [17]. The NPS can be applied on homogenous
phantoms such as water phantoms; however, assumptions of local linearity and
homogeneity are violated in clinical CT images. The inhomogeneous nature of
a clinical CT image and the non-stationary nature of quantum noise make the
NPS an impractical choice for quantifying reconstruction quality [17].

Current metrics of CT reconstruction quality include the structured simi-
larity index (SSIM) [18], peak signal to noise ratio (PSNR), and mean absolute
error/mean squared error (MAE/MSE). The SSIM and its variants [1,6,19] have
shown good agreement with radiologists on the quality of radiological images
[13]. The PSNR and the MAE/MSE do not account for the overall quality of
the image. The above metrics have all been used to quantify the effectiveness
of CT denoising algorithms [7,22–24]. However, these metrics are full reference
metrics and require the ground truth image to be present. In clinical CT, this
requirement is typically difficult to achieve. Low noise reference CT images are
typically produced using high radiation dose. Acquiring such a ground truth
image for a clinical scan requires exposing the patient to a high dose of radia-
tion, which endangers the patient’s safety. Therefore, the development of a new
metric which provides an automatic no-reference assessment of CT noise and
reconstruction quality is desirable.

Recently, interest has grown in the application of deep learning for the devel-
opment of no-reference image quality metrics. Kim et al. [4] used a convolutional
neural network (CNN) to measure image distortion and quality without a ref-
erence image for digital images. Deep learning based quality metrics have also
been applied to medical imaging problems by Galdran et al. [2], who proposed
the use of a CNN to estimate the quality of retinal image segmentation. In this
study, we use a CNN to learn a similarity score between a reference image and
a reconstructed image with a significant amount of quantum noise. The learned
similarity can be considered as a quality reference score for the noisy image.

2 Methodology

2.1 Data

The volumes were reconstructed from body CT scans of seven patients. The data
was partitioned into training, holdout, and test sets. The training set contains
175 slices from Patient 1, 151 slices from Patient 2, 142 images from Patient 3,
and 145 images from Patient 4. The holdout set contains 85 slices from Patient
1, 75 slices from Patient 2, 70 slices from Patient 3, and 71 slices from Patient
4. The test set contains 203 slices from Patient 5, 204 slices from Patient 6,
and 453 slices from Patient 7. We use the holdout to observe the intra-patient
generalization of our network. We use the test set to observe the inter-patient
performance of our network. An abdominal window with a center value of 40
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Fig. 1. A reconstructed full dose image (left) with a reconstructed half dose image
(right) showing noise affected changes. This image was reconstructed with an abdom-
inal window (center = 40 HU, width = 300 HU).

HU and a width of 300 HU was applied to all slices. The slices were 256 × 256
in size. The training dataset was augmented 8 times by rotations (2) and flips
(4).

We generate noisy and denoised images from the same set of measured pro-
jections. We add quantum noise to a reconstruction by simulating a decrease
in the applied dose with which the data was collected. The dose reduction is
simulated by adding Poisson noise to the pre-log X-ray projections to simulate
quantum noise. The Poisson noise is approximated by the following equation:

P (n) =
nn

n!
e−n (1)

where n is the number of photons involved in transmission and n is the aver-
age number of photons detected at the detector. Lower radiation dose lowers
the number of photons that are transmitted and therefore lowers the value of
denominator, increasing the Poisson noise applied, and vice versa. The noise is
added to the pre-log projections in post-processing, which makes it possible for
us to generate multiple images with differing noise contents and differing noise
structures from the same set of projections (See Fig. 1). No noise was added for
the full dose images.

The volumes are reconstructed from the raw data using the weighted filtered
backprojection (WFBP) algorithm [16]. Full dose images, which we use as refer-
ence images, are obtained by reconstructing with no dose reduction. Half dose
and quarter dose images are obtained by simulating a dose reduction of 50% and
75% for the same raw dataset respectively.

2.2 Quality Estimation with Gradient Structural Similarity

We use the Gradient Structural Similarity Index (GSSIM) [1] as a proxy
for image quality instead of the standard SSIM as the former shows greater
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correlation with observer assessments for radiological images [13]. The GSSIM
is calculated for the reduced dose images by comparison with the corresponding
full dose images. The GSSIM is based on the sensitivity of the human visual sys-
tem to edge based artifacts. The gradient of an image I is calculated by applying
the Sobel filters in the X and Y directions. The image Ig = |Gx(I)| + |Gy(I)| is
the gradient image. The GSSIM is calculated by the following formula:

GSSIM(I, Ir) = l(I, Ir)cg(I, Ir)sg(I, Ir) (2)

where I is the full dose image, and Ir is the reduced dose image. The l, c, s terms
are the luminance, contrast and structure terms respectively [1]. The contrast
and structure terms are calculated on the gradient images while the luminance
term is calculated on the grayscale image.

2.3 Image Normalization

Since the human visual system focuses on high frequency errors, we filter out
the low frequency components of the image. We implement the filtering scheme
used by Kim et al. [4]. The high pass filtering is carried out by subtracting a low
resolution version of the image I from the image. The low resolution image I is
created by Gaussian blurring and downsampling by 2. The downscaled image is
upsampled to the original image resolution to match image dimensions.

Fig. 2. A reconstructed WFBP image (left, center = 40 HU, width = 300 HU) and
after high pass filtering (right).

Inorm = I − I (3)

where Inorm is the normalized image obtained after high pass filtering (Fig. 2).
The high pass filtering helps to focus on errors which are more apparent to the
visual system and therefore affect subjective image reconstruction quality.
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2.4 Convolutional Neural Network for Image Quality Score
Estimation

Similar to Galdran et al. [2], we design a CNN to perform regression. Our CNN
is trained on the noisy reconstructed CT images. Our aim is to learn a mapping
from the noisy image to the GSSIM score. This would enable us to measure the
reconstruction quality of a reconstructed image without requiring a reference
image. Our CNN has 8 convolutional layers. The first two convolutional layers
have 16 filters, the next two have 32 filters, and the following layers have 64,
128, 256 and 512 filters. The kernel size is 3 × 3. Each convolutional layer has a
leaky ReLU activation function [9] to prevent vanishing gradients. The output
connects to a global average pooling layer, which then feeds into a fully connected
layer to predict the Image Reconstruction Quality Metric (IRQM) score. The
fully connected layer has 512 neurons and a leaky ReLU activation function.
The second and fourth convolutional layers perform strided convolutions with a
stride size of 2. The architecture can be seen in Fig. 3.

The L2 norm between the predicted IRQM and the real GSSIM score is used
as a loss value. The loss Le is given by the following equation:

Le =
1
N

N∑

i=1

(GSSIMi − IRQMi)2 (4)

where N is the number of images.

2.5 Heatmap Regression

We introduce the use of error maps as an intermediate target for estimating
image quality. The error maps are calculated by calculating the absolute differ-
ence between the reduced dose images with the full dose images. The error map
E is given by

E = |I − Ir| (5)

where I is the full dose image and Ir is the reduced dose image. Because we
want the network to learn a quality score based on errors caused due to noise,
we introduce an auxiliary loss function. We generate a heatmap of our neural
network using gradient saliency [15], and use the L1 norm of our generated
heatmap H with our error map E as an auxiliary loss (Fig. 3). Our total loss L
is given by:

L = Le +
1
N

N∑

i=1

|Hi − Ei| (6)

where N is the number of images and Le is the loss introduced in Eq. 4. The
total loss L was used for training our network. The network is trained with a
learning rate of 5 × 10−5 over 50 epochs. The loss gradients are calculated at
each node of the network using the backpropogation algorithm [20]. The weights
of the network are updated using an Adam optimizer [5]. The minibatch size
is 8.
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Fig. 3. Our CNN architecture to predict the IRQM score. C represents a convolutional
layer with a respective number of filters, while FC represents a dense layer with respec-
tive number of neurons. The auxiliary loss generated with the heatmap and error map
is also shown.

3 Experiments and Results

3.1 Comparison with Conventional Quality Metrics

The IRQM is compared with normal image quality metrics like the MSE and
PSNR and perceptual metrics like SSIM and LPIPS [25]. We use two metrics to
compare our performance to existing image quality metrics, the linear correlation
coefficient (r), and Spearman’s rank correlation coefficient (ρ). The obtained
quality score is regressed with a five parameter logistic function [14], following
which the r is calculated. The r values show a very strong correlation of IRQM
with the SSIM (r = 0.98) and PSNR (r = 0.98), and a very strong inverse
correlation with the LPIPS (r = −0.91) and MSE (r = −0.96) on the holdout
dataset The r values show a very strong correlation of IRQM with the SSIM (r
= 0.92) and PSNR (r = 0.94), and a very strong inverse correlation with the
LPIPS (r = −0.77) and MSE (r = −0.91) on the test dataset The ρ values
show a very strong correlation of IRQM with the SSIM (ρ = 0.89) and PSNR
(ρ = 0.95) and very strong inverse correlations with the LPIPS (ρ = −0.87)
and MSE (ρ = −0.95) on the holdout dataset The ρ values show a very strong
correlation of IRQM with the SSIM (ρ = 0.91) and PSNR (ρ = 0.94) and very
strong inverse correlations with the LPIPS (ρ = −0.79) and MSE (ρ = −0.91)
on the test dataset Detailed results can be seen in Table 1 and Fig. 4.
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Fig. 4. r and ρ for the holdout set ((a)–(d)) and the test set ((e)–(h)) with the SSIM
((a), (e)) the PSNR ((b), (f)) the LPIPS ((c), (g)) and the MSE ((d), (h)). The black
dashed lines show the line of best fit after non-linear regression.
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Table 1. r and ρ values for the test and holdout datasets with all full reference metrics

Metric Correlation coefficient (r) Spearman coefficient (ρ)

Holdout data Test data Holdout data Test data

SSIM 0.98 0.92 0.89 0.91

PSNR 0.98 0.94 0.95 0.94

LPIPS −0.91 −0.77 −0.87 −0.79

MSE −0.96 −0.91 −0.95 −0.91

3.2 Qualitative Results

Listwise Ranking Consistency: The effectiveness of the IRQM is tested using the
listwise ranking consistency test [8]. We rank the IRQM with the radiation dose
needed to produce them. An image reconstructed with a higher dose would be
expected to have a higher IRQM score than that of an image reconstructed with
a lower simulation dose. The ranking is assessed using Spearman’s correlation
coefficient (ρ) and Kendall’s tau coefficient (τ). The mean value of ρ and τ are
used to compare the performance. In order to avoid bias, the IRQM was tested
on the data of a patient with 223 slices which was not present in the training,
holdout, and test datasets. The patient data was reconstructed using WFBP and
ADMIRE (strength 3) [12] with full, half and quarter doses. The IRQM achieved
a mean ρ of 0.98 and a mean τ of 0.98.

Comparison with Iterative Reconstruction: We use the IRQM to compare the
noise content of images reconstructed with simple WFBP and images recon-
structed with iterative reconstruction. We reconstruct the data of the patient
used in the Listwise Ranking Test with WFBP and ADMIRE (strength 3) with
full dose, half dose, and quarter dose simulations. To compare noise levels at
each dose, we use a two sample t-test. Significant improvements in noise level
were observed at half dose (t = −2.83, p = 0.00) and full dose (t = −12.09,
p = 0.00) (Fig. 5). No significant improvement in noise content was observed at
quarter dose (t = 0.03, p = 0.9). This result was confirmed visually. The full
dose WFBP reconstructions showed lower noise levels than half dose ADMIRE
reconstructions (t = 3.02, p = 0.00).

Dose Reduction: We reconstructed the images of a single patient with different
doses to see if the IRQM could adequately detect quality reduction in accordance
with the dose reduction. The images were reconstructed with full dose, half dose,
quarter dose, 10% dose, and 5% dose respectively. One way ANOVA was used
to measure the differences in the measured IRQM values in different doses. A
significant difference was observed among the population means (F = 121.12,
p = 0.00). Moreover, Fig. 5 shows that the population means are significantly
lower with dose reduction. However, images reconstructed at 10% dose are not
significantly poorer quality than images reconstructed with quarter dose.
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Fig. 5. Left is a bar plot representing the means of the reconstructed images with
WFBP and ADMIRE algorithms. The blue bars represent WFBP and the red bars
represent ADMIRE. The black bars represent error bars with 95% confidence intervals.
Significant differences are denoted by asterisks. The differences are assessed using two-
sample t-tests. For half dose reconstructions, the t value was −2.83 and the p value was
0.00, indicating a statistically significant difference between the two populations. For
full dose reconstructions, the t value was −12.09 and the p value was 0.00, indicating
a statistically significant difference between the two populations. Right is bar plot
showing the means of the IRQM values for reconstructed images with various doses. The
black bars represent error bars with 95% confidence intervals. The measured quality is
lower with reduced dose. Differences between the populations were assessed using one-
way ANOVA. The F value was 121.12 and the p value was 0.00, indicating a statistically
significant difference between the populations. (Color figure online)

4 Discussion

In this study, we have investigated the possibility of using deep learning to
quantify quantum noise in CT images. The developed IRQM showed a high
correlation with existing ground truth metrics. In image quality assessment, a
good relationship between a metric and image quality should be monotonic,
but not necessarily linear. This is because, image fidelity typically decreases
monotonically with increase in noise levels [8]. The IRQM has strong monotonic
relationships with existing image quality metrics, which is indicated by the high
ρ values. The relationship is also strongly linearly correlated following nonlinear
regression, as evidenced by the high r values. This indicates that the IRQM can
be used as a no-reference quality metric for CT images.

Our network accurately learned the noise levels present in CT images. This is
proved by the listwise ranking test, where the IRQM ranked the images accord-
ing to the simulated dose levels accurately. The IRQM was able to quantify
noise from iterative reconstruction algorithms, which were not part of the orig-
inal training dataset The IRQM showed that ADMIRE reconstructions showed
significant improvements in noise content compared to WFBP at higher doses.
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At low doses (75% dose reduction), no significant improvement was seen using
the iterative reconstruction methods. Our results are in concordance with Win-
klehner et al. [21], which demonstrated a dose reduction of 50% in body CT
without loss of image quality, while using iterative reconstruction. The IRQM
was also able to learn the decrease in image quality even in cases of doses lower
than those present in the training dataset.

A final consideration is the potential of our network in machine learning
based CT image denoising. Deep learning based strategies have been used in CT
denoising [7,22–24]. Wolterink et al. [22] used a mean squared error function
for accuracy which resulted in the loss of small features. Yang et al. [24] used
VGG-Net as a feature extractor, however, VGG-Net has been trained on a large
image space and may not be able to learn CT noise features accurately. Our
network would be able to extract features that are more specific to CT noise,
giving an advantage in terms of CT image denoising. Moreover, the small size
and simple architecture of our network compared to VGG-Net makes it a better
choice for inclusion in CT reconstruction pipelines.

5 Conclusion

Our work has shown the possibility of developing a no-reference quality metric
for measuring the amount of quantum noise present in a CT image without a
reference image. The IRQM showed the statistical improvement in noise content
when using iterative reconstruction at higher doses, as well as the decrease in
image quality with dose reduction. Furthermore, the IRQM correlates well with
other CT quality metrics when a ground truth image is present. The network
trained could be used to assess and guide the training of deep learning based
methods for CT image denoising.
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Abstract. During surgical interventions mobile C-arm systems are used
in order to evaluate the correct positioning of e.g. inserted implants or
screws. Besides 2D X-ray projections, that often do not suffice for a pro-
found evaluation, new C-arm systems provide 3D reconstructions as addi-
tional source of information. However, mainly due to metal artifacts, this
additional information is limited. Thus, metal artifact reduction meth-
ods were developed to resolve these problems, but no generally accepted
approaches have been found yet. In this paper, three different network
architectures are presented and compared that perform an inpainting of
metal corrupted areas in the projection domain in order to tackle the
problems of metal artifacts in the 3D reconstructions. All network archi-
tectures were trained using real data and thus all observations should
hold during inference in real clinical applications. The network architec-
tures show promising inpainting results with smooth transitions with the
non-metal areas of the images and thus homogeneous image impressions.
Furthermore, this paper shows that providing additional input data to
the network, in form of a metal mask, increases the inpainting perfor-
mance significantly.

Keywords: Metal artifact reduction · X-ray · C-arm · Inpainting

1 Introduction

Besides the permanently installed imaging modalities like Magnetic Resonance
Imaging and Computed Tomography, mobile X-ray modalities like C-arms exist.
Modern C-arms are not only capable of acquiring 2D X-ray projections, but also
3D reconstruction. One of the major areas of application of 3D reconstructions
performed by a C-arm is the evaluation of correct positioning of e.g. inserted
implants or screws during surgical interventions, because a solely evaluation
using 2D projections often does not suffice. Although the acquired 3D volumes
provide additional information during surgery, different image artifacts in the 3D
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volume limit the benefit - especially metal artifacts, caused by the implants, are
the restricting factor. Thus, metal artifact reduction (MAR) methods were devel-
oped in order to resolve these problems, but no generally accepted approaches
have been found yet. Apart from classic MAR algorithms [1–4], particularly deep
learning based methods show promising results. Whereas some of the methods
try to tackle the metal artifacts in image-domain [5,6] by learning some kind of
destreaking, most approaches process the data in projection domain [7–9]. Typ-
ically, in these methods, the so called metal trace is removed from the acquired
sinogram data and the missing information is subsequently inpainted using dif-
ferent network architectures. A sole handling of metal artifacts in image-domain
as presented by Gjesteby et al. [5] and Huang et al. [6] might not be sufficient
because these methods only reduce the artifacts in the reconstructed volumes
but do not tackle the underlying problems of inconsistencies caused by the metal
corrupted projections. Due to the fact that the representation of projection data
as sinograms only hold for the central slice in cone-beam geometry, a metal
inpainting network is proposed that directly uses the acquired 2D projections as
input. Furthermore, Unberath et al. [14] were able to present promising results
in an inpainting task for Virtual DSA using 2D projections. Additionally, the
representation of the input data as projections might simplify the inpainting
task since it is possible to visually perceive underlying structures as e.g. bone
edges through the metal objects.

2 Proposed Method

In the following section, three different implementations of metal inpainting net-
work architectures with increasing complexity are described in detail. Further-
more, the acquisition of corresponding metal corrupted and metal free projec-
tions is explained. In addition to that, the section covers the performed pre-
processing, the split into train, validation and test data followed by a detailed
overview about the training procedure.

2.1 Network Architectures

All network architectures are based on the U-Net [10] structure and use one
common basic concept – a network with eight contracting and eight expand-
ing blocks. Each of the contracting blocks consists of two convolutional layers
using 3× 3 kernels and Rectified Linear Units (ReLU) as activation function,
followed by a max-pooling layer using a 2× 2 kernel. In contrast, the blocks in
the expanding part of the network consist of an upsampling layer followed by two
convolutional layers, again using 3× 3 kernels and ReLUs as activation function.
As a last layer of the network, one additional convolution using a 1× 1 kernel
is implemented outputting the single-channel grayscale image. Starting with an
input image of size 976× 976× 1 and 8 feature maps per layer in the first block,
the image size halves and the amount of feature maps doubles each block inside
the contraction part of the network. This leads to a bottleneck with an image
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size of 7× 7 pixels and 1024 feature maps. In the corresponding expansion part
of the network, the feature maps halves and the image size doubles at each
block, ending up with an output image with the original size of 976× 976× 1.
Additionally, each contracting block is wired with its corresponding expand-
ing block using skip connections and concatenations. In contrast to the original
U-Net architecture, one additional skip connection is implemented such that the
network’s input is directly concatenated with the output of the last expansion
block before being solely processed in the last convolutional layer using a 1× 1
kernel. That added skip connection should help the network to simplify the deci-
sion of using the input’s original data or the processed output of the network’s
expanding part.

Using the explained basic architecture, the first and simplest network, S-
MAR-Net, solely takes the corrupted metal projection as input and outputs a
single inpainted projection. In contrast to that, the second network, Mask-MAR-
Net, is additionally provided with a corresponding metal mask of the corrupted
metal projection and has again a single inpainted projection as an output. The
mentioned provided metal mask needed to be created in a preliminary step.
In the course of this project, and in order to train the Mask-MAR-Net, the
mask is simply acquired by subtracting the metal free ground truth projection
from the metal corrupted projection and subsequently performing a threshold-
ing. Thus, the network can only be used in inference if a preliminary processing
step, as e.g. a segmentation network, provides a suitable metal mask. In order to
deal with that problem, the third and last network architecture was developed,
Dual-MAR-Net, which is a two stage architecture combining the two aforemen-
tioned networks. Dual-MAR-Net uses the implicitly learned metal segmentation
of S-MAR-Net by subtracting S-MAR-Net’s output from the input and using
that as additional mask input for the Mask-MAR-Net. Thus, Dual-MAR-Net
enables the usage during inference without the necessity of a preliminary mask-
generation process – S-MAR-Net acts as the mask-generator. The three different
architectures are illustrated in detail in Fig. 1.

2.2 Training the Network

Data. In order to train the proposed Metal Inpainting Networks it is necessary
to have access to data, that consists of matching X-ray projections with and
without superimposed metal objects that corrupt the data. Typically, such kind
of data can only be provided by simulating the superimposition of metal objects
into originally metal free projections. This kind of simulations have major draw-
backs. Either the simulation physically correctly models the imaging process and
the superimposition and thus achieve realistic data as e.g. a Monte Carlo Simu-
lation but with the drawback of very high computational effort, or they are fast
in generating data but with the drawback of a physically insufficient modeled
image acquisition process. Thus, there is always a trade-off between reality and
computational effort. Contrary to most MAR publications, these networks are
trained using real data. For this paper, twelve corresponding 3D X-ray Cone-
Beam scans of human knee cadavers with and without randomly placed metal
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Fig. 1. Overview about the data flow of the three different network architectures.
(a) illustrates the S-MAR-Net, (b) the Mask-MAR-Net and (c) the Dual-MAR-Net.
The red dotted lines represents the data flow during inference using the Dual-MAR-
Network. Instead of using the ground truth metal mask as additional input for the
Mask-MAR-Net, the metal mask is calculated from the input and output of S-MAR-
Net.

objects on the surface of the respective knees, were acquired. These 3D scans
were performed using a Siemens Cios Spin C-arm system with a detector size
of 30× 30 cm. Thus, the resulting volumes cover a cube with edge length of
160 mm. Each of these 3D scans consists of 400 two dimensional X-ray projec-
tions with a size of 976× 976 pixels and covering an angular range of a short
scan, thus 180◦ plus the C-arm’s fan angle. The correspondence between the
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metal and metal-free projections were achieved by performing two immediately
consecutive scans. Figure 4(a) and (b) show one set of these corresponding 2D
projections. During the two consecutive scans the metal objects were removed
in a way such that there was no movement of the knee as well as of the scanner.
Due to the fact that the acquisition of single projections during each 3D scan
are not solely triggered by the current acquisition angle but rather by a number
of parameters like e.g. the state of the detector, not every set of corresponding
projections fit perfectly as a result of slightly different acquisition angles. Thus,
a minority of corresponding projections show a tiny misalignment. This small
misalignment could potentially aggravate the learning task for the network.

Preprocessing. The measured intensities at the detector can be converted
into the line integral data by using the Lambert-Beer Law [13]. Thus, firstly, the
measured intensities (I) are normalized by the initial intensity (I0) submitted
from the X-ray source. After that normalization, all values should theoretically
lie in the range between 0 and 1. However, due to effects like e.g. X-ray scatter,
especially at the metal objects, the actual values can slightly vary from that.
With that normalization, the integral over the attenuation coefficient µ along
the path x on the X-ray beam is calculated as follows:

∫
µ(x)dx = − ln

(
I

I0

)
. (1)

Train-Validation-Test Split. The twelve acquired 3D scans were split into
eight scans for training, two scans for validation and two scans for testing, result-
ing in a training set with 3200 projections and a validation and a test set with
800 projections each.

Training Procedure. Using the eight preprocessed 3D scans, both, the S-
MAR-Net as well as the Mask-MAR-Net, were separately trained using the
Adam optimizer [11] with an exponentially decaying learning rate, starting with
1e−4, using mean squared error

LMSE = ||y − ŷ||22, (2)

as loss function, where ŷ denotes the network’s output and y the ground truth
label. Each of the network architectures were trained for 1000 Epochs using a
batch size of 1.

3 Results

As explained previously, the different networks were trained and tested using real
data. Thus, the results could be evaluated with full physical realism and conse-
quently all observations should hold during inference in real clinical applications.
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In addition to the visual evaluation of the results, the quantitative evaluation of
the metal inpainting results of the different architectures and loss functions uses
the Mean Squared Error (MSE) and the Peak Signal-to-Noise Ratio (PSNR).
Both metrics are solely calculated in the metal corrupted areas of the image
in order to provide a meaningful evaluation of the performed inpainting. Addi-
tionally to the inpainting results, the implicitly learned metal segmentation of
the S-MAR-Net is evaluated using Intersection over Union (IoU) and Accuracy
(Acc) in order to make the inpainting results more comparable.

3.1 Implicitly Learned Segmentation

Before the inpainting quality of the Dual-MAR-Net during inference can be
evaluated, it is necessary to determine the capabilities of the implicitly learned
segmentation of S-MAR-Net, because during inference the extracted mask serves
as additional input for the subsequent Mask-MAR-Net (c.f. Fig. 1), thus forming
the Dual-MAR-Net.

Depicted in Table 1, it can be seen that the two 3D test scans (each containing
400 projections) result in significantly different results. For the first test scan,
the average IoU lies at 0.9738, whereas of the second test scan at 0.9312. Also the
average accuracy shows a higher value of 0.9980 for the first test scan. The most
significant difference between the scans can be seen in the minimal IoU raging
between 0.8547 for the first and 0.5131 for the second test scan. Combining both
test scans, an average IoU of 0.9525 and an average accuracy of 0.9962 is reached.
Figure 2 shows two implicitly learned segmentation results.

Fig. 2. Two examples of the implicitly learned segmentation of S-MAR-Net. (a) and (b)
denotes the respective ground truth mask and (c) and (d) the learned segmentations.
It can be seen that in (d) the examination table is wrongly segmented as well.
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Table 1. IoUs and Accs of the implicitly learned segmentation for the complete test
dataset and for each test scans separately.

Dataset Min IoU Max IoU Avg. IoU Min Acc Max Acc Avg. Acc

Test Data 1 + 2 0.5131 0.9947 0.9525 0.9524 0.9997 0.9962

Test Data 1 0.8547 0.9947 0.9738 0.9910 0.9997 0.9980

Test Data 2 0.5131 0.9817 0.9312 0.9524 0.9984 0.9945

3.2 Inpainting Results

Comparing the different network architectures by having a look at Fig. 3, shows
that providing additional mask information to the Mask-MAR-Net did not sig-
nificantly decrease the loss on the training dataset. The training losses of the
S-MAR-Net and Mask-MAR-Net are almost identical with 1.8e−4 and 2.1e−4.
Comparing the validation losses, Fig. 3 shows that the additional mask informa-
tion improves the performance of the network from 3.0e−3 to 1.6e−3 by around
1.3e−3, when processing the “unseen” validation data. The quantitative evalua-
tion in Table 2 shows that Mask-MAR-Net’s average MSE of 0.0025 lie signifi-
cantly below and its average PSNR of 31.129 dB significantly above those of the
S-MAR-Net when evaluating using the whole test dataset. The average PSNR
rises by roughly 4 dB and the MSE drops by 0.007 compared to S-MAR-Net.
Having a look at the results of the second test scan, it becomes clear, that the
performances of both networks, S-MAR-Net and Mask-MAR-Net lie significantly
below that of the first test scan with average MSEs of 0.0154 and 0.0032 and
average PSNRs of 24.419 dB and 30.109 dB. Taking a look at Fig. 4, the areas
marked by the yellow arrows in the zoomed images, show that Mask-MAR-Net

Table 2. Quantitative evaluation of the different network architectures using the com-
plete test dataset (TS 1+ 2) and for each of the two test scans separately (TS 1 and
TS 2).

Dataset Network MSE PSNR

Min Max Avg Min Max Avg

TS1 S-MAR-Net 0.0012 0.0110 0.0033 23.3000 35.0000 29.4453

Mask-MAR-Net 0.0007 0.0050 0.0017 26.6000 35.3000 32.1488

Dual-MAR-Net 0.0011 0.0853 0.0041 17.1000 37.3000 29.5855

TS2 S-MAR-Net 0.0025 0.1100 0.0154 13.9000 33.7000 24.4192

Mask-MAR-Net 0.0012 0.0129 0.0032 23.1000 34.7000 30.1092

Dual-MAR-Net 0.0019 0.8750 0.0217 5.2400 31.7000 24.9920

TS 1+ 2 S-MAR-Net 0.0012 0.1100 0.0094 13.9000 35.0000 26.9289

Mask-MAR-Net 0.0007 0.0129 0.0025 23.1000 35.3000 31.1289

Dual-MAR-Net 0.0011 0.8750 0.0129 5.2400 37.3000 27.2888
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Fig. 3. Train and Validation Losses during training of the two different network archi-
tectures using LMSE .

is able to restore the bone edges, whereas S-MAR-Net leaves a blurry edge.
Furthermore, it is visible that the inpainting of the Mask-MAR-Net results in
a better transition with the neighboring tissues and produces an overall more
homogeneous image impression. Having a look at the full images in Fig. 4 shows
that a slightly incorrect metal mask made the Mask-MAR-Net ignore metal cor-
rupted pixels, whereas the implicitly learned metal segmentation of S-MAR-Net
correctly selected all metal corrupted pixels.

Fig. 4. Inpainting results of S-MAR-Net (c), Mask-MAR-Net (d) Dual-MAR-Net (e)
and the corresponding input (b) and label (a) projections.

The inpainting results of the inference model Dual-MAR-Net also vary sig-
nificantly over the two single 3D test scans. Processing the first test scan results
in an average MSE of 0.0041 and an average PSNR of 29.586, whereas processing
the second test scan results in an average MSE of 0.0217 and an average PSNR
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of 24.991. Thus, the inpainting quality that is reached evaluating with the sec-
ond test scan is significantly worse. It is visible that the maximal MSE of the
second test scan is 10 times higher then the one of the first test scan. Further-
more, it is significant that the range between the maximal and minimal MSE is
wide in comparison to the one of the first test scan. Processing both test scans
result in an average MSE of 0.0129 and an average PSNR of 27.288. Comparing
the quantitative results with those of S-MAR-Net and Mask-MAR-Net it can
be noted that Dual-MAR-Net outputs slightly higher PSNRs but lower MSEs
as S-MAR-Net and inferior PSNRs and MSEs in comparison with Mask-MAR-
Net. Having a look at Fig. 4(e) shows that Dual-MAR-Net provides comparable
visual results to MASK-MAR-Net, when processing the first test set. It can be
seen that Dual-MAR-Net outputs an inpainting result with a smooth transi-
tion to the neighboring tissue and thus generates an overall homogeneous image
impression. However, the edges are a little bit more smoothed in comparison to
Mask-MAR-Net.

Fig. 5. Comparison between ground truth label (a), Dual-MAR-Net’s output when
processing label as input (b) and Dual-MAR-Net’s output when processing metal cor-
rupted projection as input (c). It can be seen that the processed images are blurred.
The yellow arrow marks an area where inpainting was performed. These parts are
blurrier than the rest of the image. (Color figure online)

Besides solely evaluating the performance of the inpainting task, especially
in the field of medical data processing, it is very important to perform sanity
checks with the network. One important sanity check is to evaluate what hap-
pens, when you feed a metal-free and thus non-corrupted image to the network.
Ideally, the data should not be changed at all. Feeding the ground truth label
projections of the first scan of the test set through Dual-MAR-Net showed that
no critical changes were done to the label images – this also holds for the two
other architectures. However, it became clear that the output of the Dual-MAR-
Net seems to be slightly blurry, which can be seen in Fig. 5. Further comparing
the output of a processed label projection with the output of a real metal cor-
rupted projection, it can be noted that the inpainted areas of the output are
again slightly blurrier than the rest of the image.
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4 Discussion

The presented results regarding the implicitly learned segmentation show sev-
eral interesting aspects. The wide range between the maximal and minimal IoU
but the rather high average for the second test scan show that the segmentation
seems to fail for only a few projections of the scan. Having a closer look at the
implicitly generated metal masks, clarifies that in roughly the first 20 and last 20
projections the examination table is incorrectly segmented as metal, too. Apart
from the wrongly added parts of the table, the segmentation of the metal objects
works reliably (c.f. Fig. 2). Training the final network with a higher amount of
more varying data in terms of different tables might fix this problem in the
future. In contrast, the narrow range between those values in the first test scan,
show that the segmentation works more stable and the network can clearly dis-
tinguish between the corrupting metal parts and the examination table. Based
on the performance reached by testing with the first test scan and by keeping in
mind that the inferior performance of the second test scan is due to an overesti-
mation of the metal mask by wrongly including parts of the table, but correctly
segmenting the metal, it can be stated that the intrinsically learned segmen-
tation works on a comparable level with the ground truth mask in regards of
finding all metal parts in the image. Thus, in the case of the first test scan, the
differences in the results of the different network architectures should mainly be
caused by the differences in the quality of the respective inpaintings and almost
entirely independent from the segmentation.

The presented results regarding the different network architectures, show
that the quality of the Mask-MAR-Net’s as well as Dual-MAR-Net’s inpainting
highly correlates with the quality of the provided metal mask. Missing metal
corrupted areas in the mask will lead to unprocessed metal corrupted pixels in
the output image. Additionally, the visual and especially the quantitative results,
show that providing additional information in form of a metal mask, significantly
improves the inpainting performance on “unseen” data and thus during infer-
ence in the clinical application. This assumption is proven by the significantly
higher quantitative values as well as by the more homogeneous image impression
with simultaneously distinct bone edges of the Mask-MAR-Net. The high per-
formance of the Mask-MAR-Net shows that it might be preferable to separate
the segmentation task and inpainting task into two networks. Furthermore, the
results have shown that S-MAR-Net and Dual-MAR-Net achieve comparable
quantitative results but with Dual-MAR-Net achieving a visually more homo-
geneous image impression. In addition, it becomes clear that the results highly
depend on the quality of the intrinsic segmentation of S-MAR-Net and thus on
whether parts of the table are wrongly segmented as metal or not. The worse
performance of Dual-MAR-Net in comparison with Mask-MAR-Net might be
explained by the fact that Dual-MAR-Net was never trained jointly and thus
its second network part (Mask-MAR-Net) has never seen other masks than the
ground truth masks. This potentially leads to severe errors in cases of wrongly
masking non metal areas like e.g. the table, because the network has never seen
such tasks during training with the ground truth masks. As a result, a jointly
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retraining of Dual-MAR-Net might increase its performance significantly and
might obviate the need of a preliminary masking process.

Lastly, the results of the sanity check show that the U-Net-like architecture is
not able to completely restore the high frequencies of the input, although there
is an additional skip connection linking the input to the last convolutional layer
of the network. A possible solution for that might be a fusion of the inpainted
parts (those inside the metal mask) of the network’s output with the unprocessed
original data from the input projections in all non-metal areas.

5 Conclusion

In this paper, we have compared three different metal inpainting network archi-
tectures working with 2D X-ray projection data. It is shown that providing a
metal mask as additional input to the network significantly increases the inpaint-
ing performance visually as well as quantitatively. Thus, it might be beneficial to
separate the segmentation and the inpainting tasks into two networks. As a fur-
ther step, it is shown that a two stage network, called Dual-MAR-Net, could be
developed that combines the two separately learned metal inpainting networks
S-MAR-Net and Mask-MAR-Net in such a way that it reaches the quantitative
performance of S-MAR-Net but with a visually more homogeneous image impres-
sion. Additionally, it is demonstrated that the proposed networks do not induce
critical changes in the non-metal areas. However, the network architectures are
not able to fully restore all high frequencies of the input image. As a result, it
induces a slight blurring of the whole image. Thus, future work will include test-
ing perceptual loss functions and a fusion of output and input image in order to
improve the restoration of more high frequencies. In addition it will be tested to
separate the segmentation and inpainting task into two networks. Furthermore,
beyond the scope of this paper, a brief look at the corresponding 3D reconstruc-
tions using the inpainted projections has shown that information of neighboring
projections or volume-domain specific information need to be included to the
training process in order to solve inconsistencies between the inpainted areas of
consecutive projections of the 3D scan in order to create artifact free reconstruc-
tions. This should be achieved by using the Python Reconstruction Operators
in Neural Networks (PYRO-NN) [12].
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Abstract. Real-world settings often do not allow acquisition of high-
resolution volumetric images for accurate morphological assessment and
diagnostic. In clinical practice it is frequently common to acquire only
sparse data (e.g. individual slices) for initial diagnostic decision making.
Thereby, physicians rely on their prior knowledge (or mental maps) of the
human anatomy to extrapolate the underlying 3D information. Accurate
mental maps require years of anatomy training, which in the first instance
relies on normative learning, i.e. excluding pathology. In this paper, we
leverage Bayesian Deep Learning and environment mapping to generate
full volumetric anatomy representations from none to a small, sparse set
of slices. We evaluate proof of concept implementations based on Gener-
ative Query Networks (GQN) and Conditional BRUNO using abdominal
CT and brain MRI as well as in a clinical application involving sparse,
motion-corrupted MR acquisition for fetal imaging. Our approach allows
to reconstruct 3D volumes from 1 to 4 tomographic slices, with a SSIM
of 0.7+ and cross-correlation of 0.8+ compared to the 3D ground truth.

1 Introduction

Physical as well as physiological constraints on tomographic image acquisition
(e.g. motion) often prohibit the acquisition of high resolution volumetric images
that are commonly used for morphological examinations and diagnosis. Acquisi-
tion of high resolution images requires a fixed period of time where the patient
is asked to remain still, this is often not possible in cases such as fetal imaging.
Motion during this period causes scanned slices to become incoherent and cor-
rupt. Long periods of CT scans also impose high levels of exposure to ionising
radiation. Single slice or sparse acquisition can often be mentally extrapolated
to a 3D mental map by experienced physicians. However, it relies on years of
experience and training, thus the need to perform sparse reconstruction arises.
In this paper, we address both the need to perform sparse reconstruction, as well
as creating mental maps of anatomies.

Extrapolation of 3D volumes have advantages for tracking and interventional
applications. Tracking, e.g. methods such as freehand ultrasound, can benefit
the sonographer greatly by providing an extrapolated 3D volume for better spa-
tial reference. Furthermore, iterative image-based motion compensation methods
c© Springer Nature Switzerland AG 2019
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needs a good initial target, which is often not possible to obtain if the subject
is awake and constantly in motion during image acquisition. Thus, the need to
extrapolate a full 3D volume from very sparse amount of slices is highly desirable.

We leverage Bayesian Deep Learning (BDL) and environment mapping to
generate full volumetric anatomy representations derived from none to a few con-
ditioning slices. In contrast to commonly used Conditional Variational AutoEn-
coders (C-VAE), our model leverages traditional statistical methods where the
conditioning variable is not fixed or restricted. This therefore enables us to per-
form reconstruction of normative structures, extrapolate sparse image acquisi-
tion and create mental maps of anatomies. Contrary to previous approaches
of sparse reconstruction, as detailed in the related work section below, our
method can also produce probabilistic mental representations of the anatomy
and anatomical context in question to aid diagnosis and therapy.

Related Work: Sparse reconstruction of anatomical structures has been the
topic of extensive work as a method to reduce cost and, e.g., exposure to ionising
radiation for patients and doctors alike. Early approaches included deformable
statistical models [5] to set a prior to the reconstruction process. More recent
approaches have been adopting neural networks and deep learning to perform
sparse reconstruction. Cerrolaza et al. [1] uses a hierarchical C-VAE, where given
three standard plane views from a 2D ultrasound scan of a fetal brain, to recon-
struct the 3D segmentation mask of the fetal skull. Similarly [17] use a Con-
volutional Auto-Encoder to construct a shared latent space between 2D and
3D images to aid the reconstruction of a 3D image. In addition [3] perform an
inter-domain sparse reconstruction as they perform segmentation of 3D volumes
based on 2D sparse data inputs. In the field of natural images [2] suggested
an iterative technique of refining the 3D reconstruction as the model is given
more views. Finally in [12] used stereoscopic reconstruction to achieve 2D to 3D
segmentation reconstruction.

Contribution: We introduce a method to generate missing slices, via BDL, by
sampling from a distribution on the image manifold, which is conditioned on
sparse scanned slices as context. We restructure the Conditional BRUNO [11]
architecture, and train the model to learn a mental map of a specific region
of interest or anatomy. The novel aspect of our work is that conditional image
generation is not achieved by commonly used C-VAE architectures, but instead
through Normalising Flows [14] and statistical modelling such as Student’s t-
process. This is applied to generate patient specific dense medical volumes, and
evaluated on three different data-sets. To generate patient specific dense medical
volumes, we query the model by performing a dense sweep of all possible pose
positions, while conditioning the model on sparsely sampled context slices from
the patient. The method is evaluated on three data-sets and we demonstrate its
application for motion correction in fetal brain MRI.

Background: Generative Models are used to model probabilistic distributions,
p(x), of a data-set, X, such that x ∈ X in some high-dimensional space X . The
model can then be used to generate new samples, such as images, that follows
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the same probabilistic distribution. New samples are seeded by a latent variable,
a vector often denoted z in some high-dimensional space Z, and are sampled
according to some Probability Density Function (PDF) p(z). Given a fixed deter-
ministic function, f(z; θ), parameterised by θ in some high-dimensional space Θ
and f : Z × Θ → X , the aim is to optimise θ such that samples of z from p(z),
and subsequently f(z; θ), will be similar to x with high probability. Formally,
this can then be written as: p(x) =

∫
pθ(x|z)pθ(z)dz.

The most commonly used distribution, also known as the prior, for the latent
space is a Gaussian, with a mean of zero and unit variance (N (0, 1)). An impor-
tant component of the modelling process is defining a bijector, which is an
invertible fixed transformation function that maps one data space to another.
f , defined above, can be used to map the complex distribution of the input
data space to the z latent space. The distribution of modelled image space can
then be written as: X ∼ N (f(z; θ), σ2I). As the probability integral is high-
dimensional and complex, a neural network can be used to learn f . Therefore
it is possible to use gradient descent (or any other optimisation technique) to
perform maxθ

∑
i log(pθ(xi)), which aims to find an optimal set of parameters

θ, for the fixed deterministic function f(z; θ).
Such mappings can be achieved through methods such as Variational

AutoEncoders (VAEs) [10] or Generative Adversarial Networks (GANs) [7]. The
encoder and decoder component of the VAE models the forward and inverse
of the bijector function, but are learned separately. In GANs, only the fixed
function from latent z space to data space is learned. RealNVP [4] and Masked
Autoregressive Flow (MAF) [13], however, are bijectors that are fully invertible.
The same weights are used for both forward and inverse transformations.

Conditional Generative Models, such as C-VAEs [16], Generative Query Net-
work (GQN) [6], or BRUNO [11], generate new samples based on a predefined
condition such that for each possible value of c there exists a p(z); p(x|c) =∫

pθ(x|z)pθ(z, c)dz. For this particular task, c is a set of images that are sparsely
acquired, and is not bound by quantity. This requires the set of images in the
condition being exchangeable, i.e. the joint probability is invariant to permuta-
tion of the images. For any permutation, π; p(x1, x2, ..., xn) = p(xπ1 , xπ2 , ..., xπn

).
Random variables are often independent and identically distributed (iid), and iid
random variables are always infinitely exchangeable. However, the converse is not
always true, an infinitely exchangeable sequence is not necessarily iid. Bruno de
Finetti’s theorem therefore states ‘a sequence of random variables (x1, x2, ..., xn)
is infinitely exchangeable iff for all n; p(x1, x2, ..., xn) =

∫ ∏n
i=1 p(xi|θ)p(θ)dθ.

The stochastic process is then defined; p(xn|x1:n−1) =
∫

pθ(xn|z)pθ(z|x1:n−1)dz.

2 Method

In the proposed framework, the Conditional BRUNO architecture is restructured
and trained to build mental maps of medical volumes using 2D slices, x, with
their corresponding pose parameter, v, that represents the slice’s location in 3D
space. Similar to a GQN, the data-set is of the form D = {(xk

n, vk
n)}, where
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Fig. 1. BRUNO Architecture for the generation of volumetric anatomical mental maps
from very sparse data. Conditioning context images v1,2,...,Mi can be any sample from
the observed anatomy in contrast to defined samples in, e.g., C-VAEs.

n ∈ {1, 2, ..., N} and k ∈ {1, 2, ...,K}. N is the number of high resolution 3D
volumes and K is the number of 2D axial slices of the volumes. During training,
M random image-pose pairs, are sampled from a particular volume. Each m ∈ M
is a particular observation, with the collective being denoted as a sequence.
M −1 observations from the sequence are used as contexts, with the remaining
image-pose pair being used as the query pose and target image (Fig. 1).

Each individual context (i.e. image-pose pair) in a sequence is passed through
a Conditional RealNVP [4], which is the bijector of the model. The affine coupling
layer uses Convolutional Neural Networks (CNN), and learns the mapping of
the input image distribution to a Gaussian prior. The mapping is conditioned
on the pose, and is made possible by augmenting the input image with the
pose vector as an additional input variable. This CNN can be of any structure,
for simplicity, a simplified ResNet was used. As the RealNVP component is
trained on a Gaussian prior, the output variables should therefore be Gaussian
distributed. This can then be modelled by classical statistical methods such
as Student’s t-distribution, T P. To achieve exchangeability, i.e. the conditioning
context set is invariant to the number and order of the contexts, a näıve approach
would be to simply perform sum/average operation similar to [18]. Alternatively,
a Recurrent Neural Network (RNN) update scheme [11], can also be used, where
the covariance matrix of the conditional image set is made to be simple (i.e. the
diagonal is parameterised by μ, with upper and lower triangle parameterised by
σ), each image therefore has an identical mean and variance to one other.

During testing, the number of context image-pose pairs is not required to
be the same as the number as used during training, due to the property of
exchangeability. Intuitively speaking, as more context images are supplied, the
predicted image should look more similar to the target image. Contexts are
first passed through the RNN to set up the distribution at the condition by
updating the mean and variance, from which the samples can then be drawn.
Each sample, drawn from this distribution, is then passed though the inverse
Conditional RealNVP, whilst being conditioned on the query pose.

To create a dense 3D volume from very sparsely sampled 2D slices, a trained
BRUNO model is queried with a dense sweep of all possible pose positions within
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the same Field-of-View (FoV) as training. The sparse sampled 2D slices, along
with the corresponding pose, are therefore supplied as contexts for the model.
Multiple samples can then be drawn from the trained distribution as possible
hallucinations of the missing slice. Alternatively, it is also possible to take the
mean image (i.e. average of infinite samples). With no contexts supplied, samples
are drawn from the prior distribution. This can be used to create organ and/or
volume atlases and for manual model validation, as the trained distribution is an
average of all training volumes. Patient specific missing slices and extrapolated
anatomy can be generated if context images are supplied. Samples are then
drawn from the posterior as the distribution is conditioned on the contexts.

3 Experiments and Results

To validate the trained model, high resolution 3D volumes from the test set
are decomposed into individual 2D slices with their corresponding one-hot pose
vector. A sparse set of slices (between 1 to 10) are used as contexts. The model
is then queried with the pose vectors, the generated slices are then compared to
the target image using Cross-Correlation (CC) and Structural Similarity Index
(SSIM). CC measures the similarity of pixel-wise intensities, whereas SSIM uses
a combination luminance, contrast and structure to assess the image quality.

The first set of experiments used brain MRI and thorax CT images. 85
healthy brains were selected from the Alzheimer’s Disease Neuroimaging Ini-
tiative (ADNI) database. These were split 70 for training and 15 for validation,
with K = 120 axial slices extracted from the middle 75% portion of the brain.
The CT images were split 50 for training and 8 for validation, with K = 100
axial slices extracted from the middle 50% portion of the scan volume. Both
data-sets are isotropic with spacing of 1 mm × 1 mm × 1 mm. Each 2D slice, x,
are of size 218×218 for MRI brain and 200×200 for CT thorax, and are further
down-sampled to 64×64. An additional isotropic fetal brain MRI data-set, with
spacing of 1 mm × 1 mm × 1 mm, was used for Initial Experiments and Exp2.
270 brains ranging from 40 to 43 Gestational Age (GA) were selected; split 250
for training and 20 for testing. K = 80 axial slices were then extracted from the
middle 65% of the brain, each 2D slice of size 160×160 is further down-sampled
to 64 × 64 for training and inference.

The pose is formulated as one-hot vector of length K, to represent the slice
number of the scan stack. For all experiments, M = 9; a sequence of eight image-
pose pairs are used as context, with the 1 remaining as query pose and target
image. Contexts are randomly sampled from the entire stack during training
phase. However, during testing, the contexts are strategically selected so that
they cover an approximate even distribution across the scan stack. For each query
pose, 100 samples were drawn from the posterior distribution and compared to
the target image using SSIM and Cross-Correlation. An average is then taken
across all slices for a volume average, and further averaged across all test subjects.
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3.1 Initial Experiments

To compare with existing baseline models, GQN and C-VAE architectures were
used to build mental maps using the Fetal brain data-set. Both GQN and C-VAE
models have been trained with 4 context image-pose pairs.

As official code for the Generative Query Network have not been published,
a reputable public reimplementation [8] was used instead. The implementation
has been validated to be correctly functioning, as it has been successfully tested
on several, but simple, official GQN data-sets. Performance however was not
able to match the results published by DeepMind, as the architecture for the
DRAW-LSTM was not disclosed. Only the baseline architecture was used.

A näıve Conditional Variational AutoEncoder was also implemented as a
baseline. The architecture follows the structure of a standard U-Net [15], but
without skip connections, and with 4 scaled resolutions and 2 convolutional
layers at each resolution. It has also been formulated such that the input is a
pose vector, the condition is a set of encoded context images, and the output is
the generated image. Contexts are first passed through a tower encoder network,
same as the GQN, to encode each image-pose pair in latent representation. All
Contexts are then averaged together in latent space to maintain order invariance.
During inference, the latent vector z is sampled from a unit Gaussian distribution
to feed the generator whilst being conditioned on contexts as well as queried pose.

(a) v: 10 (b) v: 30 (c) v: 50 (d) v: 70

(a) v: 10 (b) v: 20 (c) v: 30 (d) v: 40 (e) v: 50 (f) v: 60 (g) v: 70 (h) v: 80

Fig. 2. Dense sampling the 3D volume using GQN and C-VAE Models. Top Row:
Context slices from one particular subject at pose position v. Second Row: Ground
Truth Images. Third Row: GQN predicted slice at pose position v. Bottom Row: C-
VAE predicted slice at pose position v.
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Both models were not able to achieve satisifiable results, as seen in Fig. 2.
Due to the complex nature of the brain structure, the GQN model was not
able to generalise, and predicted static for all slices. The generated images by
the C-VAE model seem to resemble an average of all input context slices with
variational noise on top. The experiments also shown that the models do not
easily converge, as the latent distribution is far from the prior distribution as
measured by the KL divergence. This is notably evident with the GQN, where
the KL divergence in the generator module is often very high. Images generated
by either method are corrupt.

3.2 Exp1: ADNI MRI and Thorax CT

The first set of experiments were used to evaluate the performance of the BRUNO
architecture. Figure 3a and b shows the average SSIM and Cross-Correlation of
the generated dense sampled volume compared to the original high resolution
volume across all test subjects. 4 experiments were ran with increasing number
of contexts; 1, 3, 5 and 9. The contexts selected are sparsely spread to maximise
the coverage across the dense volume. In Fig. 3a and b it can be seen that as the
number of contexts increases, the reconstructed volume becomes closer to the
ground truth volume in similarity.

Context Images

1 3 5 9

SSIM 0.695 0.719 0.733 0.736
CC 0.913 0.917 0.919 0.922

(a) ADNI MRI Data-set

Context Images

1 3 5 9

SSIM 0.779 0.786 0.787 0.791
CC 0.802 0.815 0.832 0.833

(b) Thorax CT Data-set

(c) Average SSIM vs Slice Number w.r.t. Number of Context Images
Top Row: ADNI MRI Data-set, Bottom Row: Thorax CT Data-set

Fig. 3. Table and figures for the results of experiment 1
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Figure 3c shows the average SSIM of each slice across all test subjects for
ADNI and Thorax data-sets. A distinct peak in SSIM is perceivable where a
query slice aligns with a supplied context slice. This confirms the notion that
conditional contexts correctly steer the posterior to a particular part of the dis-
tribution. High SSIM for ADNI 0 to 20 and 100 to 120 are the edge cases, where
a majority of the content are background. The inverse is the case for thorax,
where slices approaching top and bottom have high variability in structure, thus
reducing the SSIM.

3.3 Exp2: Fetal Brain Template Volume

The second set of experiments has evaluated the usefulness of the proposed
approach for fetal MRI reconstruction: State-of-the-art iterative image-based
reconstruction methods, e.g. Slice-to-Volume Reconstruction (SVR) [9], often
require a good initialisation volume for the initial target registration. In clinical
setting, especially in fetal MRI, volumes are often motion corrupted if the fetus
is awake and constantly moving during image acquisition. Neighbouring slices of
the volumes are therefore incoherent and in disarray. In this experiment, BRUNO
is used to create the initial registration target volume for 2D to 3D fetal brain
reconstruction. During fetal MRI, a few images are often acquired in parallel
(usually four, spatially far apart images, at once). These image batches can be
used as conditional contexts for BRUNO. Due to fast parallel acquisition, the
slices can be assumed to be aligned and motion free.

As with the first set of experiments, the performance of BRUNO is evaluated
with varying context slices. In total, there are 80 slices in the dense fetal brain
volume. Figure 4a below shows the number of contexts, with the corresponding
slice numbers, that is used during inference. Figure 4b shows the SSIM and
CC of average reconstructed SVR initialisation volumes. Like as in the first

Number of
Contexts

Slice Number, k
(K = 80)

1 [40]
3 [20,40,60]
4 [10,30,50,70]
7 [10,20,30,40,50,60.70]

(a) Selected Slices as Context

Context Images

1 3 4 7

SSIM 0.665 0.676 0.679 0.684
CC 0.868 0.875 0.876 0.880

(b) SSIM/CC of Reconstructed Volume

(c) Average SSIM vs Slice Number w.r.t. Number of Context Images

Fig. 4. Table and figures for the results of experiment 2
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(a) v: 10 (b) v: 30 (c) v: 50 (d) v: 70

(a) v: 0 (b) v: 10 (c) v: 20 (d) v: 30 (e) v: 40 (f) v: 50 (g) v: 60 (h) v: 70

Fig. 5. A Conditional BRUNO architecture, consisting of a trainable bijector and Stu-
dent’s t-process statistical modelling. Top Row: Context slices from one particular test
subject at pose position v, Second Row: Ground Truth Images, Third Row On-wards:
six predicted slices at pose position v sampled from the posterior distribution condi-
tioned by the contexts.

experiments, as the number of context images increase, the average SSIM and
Cross-Correlation increases. Distinct peaks in SSIM are also present where a
query slice approaches a supplied context slice.
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Figure 5 shows more examples of samples drawn from the posterior distribu-
tion that have been conditioned by the 4 context slices.

Fetuses can move up to 20 mm [9] when active. For SVR, a Gaussian aver-
age is taken of all acquired stacks to be used as the initial registration tar-
get. If motion is too severe this initialisation volume will not be sufficient for
subsequent iterative reconstruction. To simulate motion, high resolution recon-
structed volumes are synthetically motion corrupted to be used as a base line.
Three orthogonal stacks are made with 10 mm of random motion in translation
only. On average, the SSIM of Gaussian averaged volumes motion corrupted
volumes compared to the original high resolution volume is 0.297. Depending
on the robustness of the SVR algorithm used, reconstruction may, or may not,
be possible. A BRUNO generated volume is made by densely and repeatedly
sampling all possible pose positions, with the final volume being an average of
all sampled slices. Only four context images are used. The generated volume
was able to achieve an SSIM of 0.679 compared to the original high resolution
volume, this is shown in Fig. 6.

Fig. 6. For motion compensation of fetal and neonatal MRI, averaged template volumes
(a) from all acquired slices (several 100) are used to initialise SVR [9]. Only four images
were used (b) from an image batch that has been acquired in parallel, (common in fetal
and neonatal MRI, i.e. without motion corruption between the four images). A C-VAE
is not able to predict a template volume from these four images (c), while our approach
using BRUNO predicts a reasonable volume (d) compared to the ground truth (e).

4 Conclusion and Discussion

This paper introduces the idea of using Deep Neural Networks and Bayesian
Deep Learning to build mental maps of anatomy of various medical volumes.
A conditional generative model, based on the BRUNO architecture, is trained
on existing high resolution 3D volumes. It can be used to create patient specific
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volumes by densely querying all possible pose positions, whilst conditioned by a
few existing slices that are used as contexts. Exp1 shows that BRUNO is able to
reconstruct MRI brain volumes with an SSIM of 0.7 and Thorax volumes with
an SSIM of 0.8 compared to the original high resolution ground truth. Exp2
shows a specific use case for BRUNO to generate initial target volumes for 2D
to 3D fetal brain MRI reconstruction.

Future work will be to investigate further into the framework, and improve
image quality generation as well as to introduce more Degrees-of-Freedom (DoF).
In the current implementation, BRUNO is able to successfully traverse single
DoF, and is applicable for use cases such CT and MRI. Increased DoF, with
added rotations and translations, can be particularly valuable for modalities
such as freehand ultrasound, with applications for Reinforcement Learning and
3D scene exploration.
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Abstract. Patient movement in emission tomography deteriorates
reconstruction quality because of motion blur. Gating the data improves
the situation somewhat: each gate contains a movement phase which is
approximately stationary. A standard method is to use only the data
from a few gates, with little movement between them. However, the cor-
responding loss of data entails an increase of noise. Motion correction
algorithms have been implemented to take into account all the gated
data, but they do not scale well in computation time, especially not in
3D. We propose a novel motion correction algorithm which addresses
the scalability issue. Our approach is to combine an enhanced ML-EM
algorithm with deep learning based movement registration. The train-
ing is unsupervised, and with artificial data. We expect this approach
to scale very well to higher resolutions and to 3D, as the overall cost of
our algorithm is only marginally greater than that of a standard ML-EM
algorithm. We show that we can significantly decrease the noise corre-
sponding to a limited number of gates.

Keywords: Emission tomography · Motion correction · Deep learning

1 Introduction

Positron emission tomography (PET) is a molecular imaging technology where a
radioactive tracer is administered to a patient. The tracer is an x-ray source that
emits pairs of photons travelling into opposite directions, and the PET scanner is
an arrangement of detectors for detecting such photon pairs (coincidence events).
The goal is then to recover the spatial distribution of the tracer (activity map)
from these coincidence events.

Acquiring a sufficient amount of coincidence events takes time, typically
twenty to forty minutes depending on the detector efficiency and the size of
the region being imaged. Organs, such as the heart and lungs, move during the
PET data acquisition, so the activity map one seeks to recover in PET imag-
ing is a spatiotemporal quantity. Failure to account for the temporal variability
during reconstruction results in a deteriorated PET image.
c© Springer Nature Switzerland AG 2019
F. Knoll et al. (Eds.): MLMIR 2019, LNCS 11905, pp. 151–162, 2019.
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1.1 Survey of Existing Works

Most approaches that consider motion in PET image reconstruction assume
access to gated PET data. Here, PET data is subdivided into subsets where
the coincidence data is from the activity map in a specific temporal state. For
cardiac and respiratory motion, gated data would correspond to decomposing the
entire dataset into parts that represent different breathing and/or cardiac phases.
Hence, the activity associated to each gate can be assumed to be stationary, but
data in the gates also suffer from a relatively low signal-to-noise ratio since they
only contain a small portion of the coincidence events.

A straightforward approach based on gated data is to recover each tem-
poral state of the activity independently of each other (frame-by-frame recon-
struction). This does not account for the temporal dynamics of the activity,
instead it reduces the spatiotemporal reconstruction problem into a sequence of
independent stationary reconstruction problems, which in PET is done by ML-
EM [21] (or a variant thereof, like OSEM [14]). Spatiotemporal reconstruction
refers to methods that instead take the temporal dynamics into account. Several
approaches have been proposed where most rely on estimating a motion model
prior to reconstruction, see [8,10,18,19] for survey.

In this paper, the proposed method falls into the family of algorithms that,
contrarily to those based on a priori built motion models, jointly estimate the
image and motion, directly from the full set of measured data. An objective func-
tion is optimised with respect to two arguments: image and motion. Hence, only
one image with the full statistic is reconstructed. Given the close relationship
between the image reconstruction and motion estimation steps, a simultaneous
method of estimating the two is better able to reduce motion blur and compen-
sate for poor signal-to-noise ratios and to improve the accuracy of the estimated
motion [11,12].

In the latter works, one performs a two-step minimisation of a joint energy
functional term (which includes both image likelihood and motion-matching
terms). The method chosen by Jacobson and Fessler [15,16], referred to as joint
estimation with deformation modelling, is based on maximising the likelihood for
a parametric Poisson model for gated PET measurements. Motion (from gate to
gate) is defined by a set of deformation parameters. A similar motion-aware like-
lihood function was used by Blume and colleagues [5], although using a distinct
optimisation scheme and depicting more convincing results. In this context one
may also consult [23], which compares three approaches for joint reconstruction
of image and motion.

An alternative is to consider motion models derived from deformations mod-
elled by diffeomorphisms, as obtained from example through the LDDMM frame-
work [22]. Here, one can calculate regularising functionals that incorporate such
deformations. Finally, [9] provides an overview of variational shape models as
applied to the registration and segmentation problems. These could also be cou-
pled with variational regularisation methods for image reconstruction.

The main drawback of all these methods, however, is the relatively high
computational costs involved in the joint reconstruction approach.
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1.2 Proposed Method

In this paper, we develop a joint reconstruction method based on the minimi-
sation of a suitable functional. The main novelty of our work is the scalability
of the resulting algorithm, as its complexity is of the order of the usual ML-EM
algorithm. Images are indeed estimated using a generalised ML-EM algorithm.
Motion estimation, with deformations modelled by diffeomorphisms, is based on
the unsupervised deep learning framework voxelmorph [6]. That is, we make use
of a pre-trained neural network which performs direct image registration, i.e.,
the network finds a diffeomorphism which, given two images, deforms the first
one into the second.

Interestingly, one single outer iteration of our algorithm is close to the
recently proposed approach [17]. Thus, it generalises the previous work and shows
that it can be interpreted in the framework of an optimisation problem.

The results of the proposed method are tested on the Derenzo phantom,
and shown to recover a significant part of the information lost when one uses
gate-by-gate reconstruction.

2 Methods

2.1 Mathematical Background

ML-EM Algorithm [21]. Let us consider the statistical model

g ∼ Poisson(Af),

where f is the unknown image, and g is the acquired data—a vector of Rd; this
models the physics of stationary PET with forward operator A.

The ML-EM algorithm solves the corresponding maximum likelihood problem,
which amounts to minimising the divergence dKL(g||Af), defined for two non-
negative vectors u, v in R

d by

dKL(u||v) :=
d∑

j=1

(
vj − uj − uj log

(uj

vj

))
.

The ML-EM algorithm is an iterative solver with update

f (n+1) :=
f (n)

AT 1
AT

(
g

Af (n)

)
, (1)

starting from an initial guess f (0), usually f (0) = 1.

Diffeomorphisms Acting on Images. Viewing images as elements of X :=
L2(Ω), i.e., square-integrable functions on a compact Ω ⊂ R

p with p = 2 or
p = 3, we model motion as an appropriate group action of diffeomorphisms onto
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images. In this paper, given a diffeomorphism ψ : Ω → Ω, we will use the specific
definition Wψ : X �→ X as the intensity-preserving action

Wψf(x) := f(ψ−1(x)).

Note that our approach is, however, general, and we could have used the mass-
preserving action instead, namely

W̃ψf(x) := |Dψ−1(x)|f(ψ−1(x)). (2)

We will parameterise diffeomorphisms by exponentials of (stationary) vector
fields, i.e., ψ = exp(v), where the exponential exp(v) of a vector field v is defined
as ψ(1, ·), where ψ(t, ·) solves the differential equation ∂ψ

∂t (t, ·) = v(ψ(t, ·)), with
initial condition ψ(0, ·) = Id.

Image Registration. The (direct) image registration problem consists in
deforming a template f1 into a target f2, i.e., finding a diffeomorphism ψ such
that Wψf1 ≈ f2. This is usually done by minimising a functional of the form

arg min
ψ

d2(f2,Wψf1) + λR(ψ), (3)

where d2 is the L2-distance on X, R is a regularisation term on diffeomorphisms
that is discussed in Subsect. 2.3, and λ is a regularisation parameter.

2.2 General Approach

Modelling. We are given gated data in N + 1 different gates, corrupted by
Poisson noise. For gi denoting the data, fi the images in each gate and A the
forward operator, we thus assume

gi ∼ Poisson(Afi), i = 0, . . . , N.

We also assume that for i = 1, . . . , N , two consecutive images fi−1 and fi

are related by the statistical model

fi = Wψi
fi−1 + ei,

where ψi : Ω → Ω is the exponential of a vector field following a given probability
law (see (8)) and ei is a X-valued random variable.

Variational Problem. We now define the variational problem associated to
the inverse problem of finding both the images fi and diffeomorphisms ψi from
the data gi. It reads

arg min
(fi),(ψi)

J(f0, . . . , fN , ψ1, . . . , ψN ), (4)

where

J(fi, ψi) :=
N∑

i=0

dKL(gi||Afi) +
N∑

i=1

(
d2(fi,Wψi

fi−1) + λR(ψi)
)
.
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General Algorithm. We solve the variational problem (4) by an intertwined
method, which consists in alternating between estimating the diffeomorphisms
(the motion estimation step), and the images fi (the reconstruction step).

The images are first initialised by solving the maximum likelihood problem
arg minfi

(dKL(gi||Afi)), associated to gi = Poisson(Afi) in each gate. This is
done by the algorithm ML-EM (1), yielding estimates f0

i , i = 0, . . . , N .
For a given estimate of images fk

i , the motion estimation part consists in
solving

arg min
(ψi)

N∑

i=1

(
d2(fk

i ,Wψi
fk

i−1) + λR(ψi)
)
,

which in turn can be decomposed into N problems of the form

arg min
ψi

d2(fk
i ,Wψi

fk
i−1) + λR(ψi), i = 1, . . . , N. (5)

Note that each of these becomes an image registration problem, as we are looking
for a diffeomorphism ψk+1

i matching the template fk
i−1 against the target fk

i .
For the reconstruction part, we assume fk

i ≈ Wψk+1
i

fk
i−1 for i = 1, . . . , N and

neglect the N corresponding d2 terms. The minimisation problem thus becomes

arg min
(fi)

N∑

i=0

dKL(gi||Afi).

We then focus on a particular gate, say the zero’th gate, and use fk
i ≈ Wψk+1

i
fk

i

to obtain the optimisation problem with f0 as the only variable:

arg min
f0

N∑

i=0

dKL

(
gi||Aif0

)
. (6)

where
Ai := AWφi

(7)

and we have used the notation φi := ψi ◦ · · · ◦ ψ1 for i = 1, . . . , N . Solving the
above yields a next estimate fk+1

0 for f0. All the images fk+1
i are then obtained

by fk+1
i = Wψk+1

i
fk+1

i−1 , i = 1, . . . , N .
It now only remains to explain how the optimisation problems (5) and (6)

are solved, which is the topic of the next subsections.

2.3 Motion Estimation

The motion estimation problem (5), can be rewritten for two generic images f1
and f2 as

arg min
v

d2(f2,Wexp(v)f1) + λR(v), (8)

where we parameterise the diffeomorphisms by exponentials of stationary vector
fields v.
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To solve this direct image registration problem, we use the voxelmorph unsu-
pervised deep learning approach [6], where a neural network parameterises a
function (f1, f2) �→ v. That neural network is itself based on the network archi-
tecture Unet [20]. We keep the architecture of voxelmorph, with the same hyper-
parameters and specific regularisation functional R given in [6]. Once trained,
the network produces a mapping matching any two images f1, f2, which we
denote

γ(f1, f2) := exp(v(f1, f2)). (9)

Training. In [6], the network is trained on tuples of images (f1, f2) coming
from brain MRI scans. We use instead synthetic data: tuples of images (f1, f2)
generated on the fly.

We generate training images as follows. A random image f1 consists of a Pois-
son random number of ellipsoids [3,4]. The centre of each ellipsoid has uniform
distribution inside the central part of the domain Ω, the principal axes have
exponential distribution, and the orientation follows a uniform distribution. We
apply a mask vanishing at the boundary to avoid boundary effects. when dif-
feomorphisms are applied. We generate random vector fields v using a Gaussian
random field with radial basis function kernel, with appropriate scale and typical
size. The training image f2 is then f2 = Wexp(v)f1. We show in Fig. 1 a sample
of images f1, f2 and vector field v generated as above.

(a) (b) (c)

Fig. 1. Example of a 2D synthetic tuple of images f1 (a) and f2 (b), related by f2 =
Wexp(v)f1 for the intensity-preserving action, with v plotted in (c).

2.4 Reconstruction

We now focus on the reconstruction problem (6) which we solve using a refor-
mulation of ML-EM. Given operators Ai, we can simply write ML-EM for the
compound operator A = (A0, . . . , AN ) which yields

f
(n+1)
0 =

f
(n)
0∑N

i=0 AT
i 1

N∑

i=0

AT
i

(
gi

Aif
(n)
0

)
, (10)
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for an initial guess f
(0)
0 . We call this algorithm “M-ML-EM” to avoid the con-

fusion with the vanilla ML-EM algorithm (1). We use this algorithm with Ai

defined in (7). Note that this algorithm has been used in [13] for the particu-
lar case of the intensity-preserving action. The computation of AT

i requires the
computation of WT

φi
. We achieve this by using the identity WT

φ = W̃φ−1 valid
for any diffeomorphism φ, where W̃ denotes the mass-preserving action (2).

2.5 Full Algorithm

We summarise the algorithm with all the necessary details in Algorithm 1.

Algorithm 1. Full Algorithm
Choose the outer number of iterates nouter, the inner number of iterates ninner for
M-ML-EM, and ninit, the number of iterates for vanilla ML-EM.

for i ← 0, . . . , N do
fi ← ML-EM(A, gi, ninit) � Iterates of (1)

end for
for k ← 1, . . . , nouter do

for i ← 1, . . . , N do
ψi ← γ(fi−1, fi) � Network registration (9)

end for
W0 ← Id
for i ← 1, . . . , N do

Wi ← WψiWi−1

Ai ← AWi

end for
A0 ← A
f0 = M-ML-EM({Aj}j=0,...,N , {gj}j=0,...,N , ninner) � Iterates of (10)
for i ← 1, . . . , N do

fi ← Wif0
end for

end for

The outcome is f0.

2.6 Complexity

Evaluating vector fields with the network is negligible when compared to ML-EM
or M-ML-EM iterations. Each iteration is itself controlled by the time t required
to compute an expression of the form AT ( g

Af ). Since M-ML-EM sums these
quantities N times, an iteration of it is of the order of N ×t. Note that evaluating
the denominator in (10) (which involves sums of AT 1) does not take more time
than evaluating the denominator in ML-EM since AT 1 can be computed off-line.
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3 Results

3.1 Derenzo Phantom

We present experiments with the Derenzo phantom, with image size 192 × 192.
Although this phantom is made of ellipses, we stress that they are very different
from the data used to train the network, compare Figs. 1 and 2a.

This phantom is then deformed successively with the intensity preserving
action by exponentials of vector fields, where each vector field is drawn from the
same distribution used to train the network. For the experiments, we use N = 3,
which amounts to four gates, and we want to recover the image in the initial
gate. The resulting four phantoms are presented in Fig. 2.

(a) (b) (c) (d)

Fig. 2. Derenzo phantom in four different gates.

The forward operator A is a 2D PET operator with 108 angles (views) and
250 tangential positions. The noisy data is Poisson(A(tf)) for each image f ,
where t is the acquisition time and thus controls the noise level.

For the phantoms in Fig. 2, we choose t = 60. This noise level gives rise to
typical optimal numbers of iterates for ML-EM which are of the same order of
magnitude as the ones in clinic applications. Note that all images are multiplied
by the same time factor, which amounts to assuming that acquisition time is
roughly the same in each gate.

3.2 Methods Without Motion Correction

We compare our method with two simple reconstruction methods (simple
because without motion correction) for images with gated data:

– Either one aggregates the whole data and reconstructs from ML-EM, leading
to blurry results because of the movement.

– Or one tries and limit blur by focusing on one gate (say the first) and recon-
structing only from that. Since there is less data, the result is noisier.

In order to quantitatively compare these strategies, we use ML-EM for the
data obtained from taking gate zero only, aggregating gates zero and one, and
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so on up until aggregating all the four gates. Finally, we can also estimate the
best reconstruction one could hope for, that is, if there were no movement. This
amounts to acquiring the phantom in the 0th gate four times longer.

The results are given in Fig. 3, where the PSNR between the estimated image
and the real image in gate zero is computed at each iteration.

The results show that aggregating the gates progressively induces a drop in
image quality, as measured by the PSNR. Compared to gate zero acquired four
times longer, the best possible achievable gain is about 2.2 dB.

Fig. 3. PSNR for different ML-EM strategies without motion correction, and compari-
son with “no-movement” data, reconstructing from the initial gate acquired four times
longer.

3.3 Proposed Method

We apply Algorithm 1 to the data above. It turns out that a single outer iteration
is responsible for most of the improvement, so we focus on that case for presenting
experiments. In other words:

1. we initialise by running some ML-EM iterations in each gate,
2. we then match the resulting images to estimate the diffeomorphisms,
3. we finally run some M-ML-EM iterations.

We plot the PSNR between the image reconstructed (in the initial gate zero)
and the real image, for a given number em iter of ML-EM iteration followed by
a given number diff iter of M-ML-EM iterations. These results are presented
in Fig. 4.

We find that the optimal strategy is to iterate only a few times (six iterations
in this specific experiment) with ML-EM before estimating the diffeomorphisms
through M-ML-EM (42 iterations in this specific experiment). Note that this
yields a total of 48 iterations which is higher than the 29 ML-EM iterations
which would be optimal for reconstructing from the gate zero.

The gain in PSNR is 1.0 dB, which makes up for about 46% of the maximal
gain of 2.2 dB. Reconstructions obtained from the optimal uncorrected (n = 29
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Fig. 4. PSNR for various choices of number em iter of initial ML-EM iterates and
number diff iter of M-ML-EM iterates.

(a) Optimal ML-EM recon-
struction: 29 iterations (us-
ing one gate)

(b) Optimal reconstruction
with M-ML-EM: 6 ML-EM
+ 42 M-ML-EM iterations

Fig. 5. Optimal reconstructions of the gate zero (measured in PSNR).

iterations of ML-EM are used on gate zero) and the proposed method with the
optimal number of iterations of ML-EM and M-ML-EM are presented in Fig. 5.
The proposed method seems to give smoother results. The smaller discs towards
the middle of the image are also better seen.

We also emphasise that these results (improvement in PSNR and optimal
number of iterations) are extremely robust with respect to the randomness
involved in the experiments, namely the vector fields drawn randomly as well as
the Poisson noise.
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3.4 Implementation Details

All computations are run in Python and use Operator Discretization Library
(odl) for manipulating operators [2], neuron for warping utilities [7], which itself
uses tensorflow [1]. The training was performed with voxelmorph [6].

4 Perspectives

This paper presents a new method for joint motion estimation and image recon-
struction in PET. Its main advantage is its cost, similar to that of the usual
ML-EM algorithm, making it scalable to clinical 4D data.

Our framework also allows for further modelling such as attenuation correc-
tion. In a future work, we consider testing this method with clinical data. This
would require training the network on appropriate datasets. We also plan to
generalise the approach to other group actions, such as the mass-preserving one,
which is more physically relevant.
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Abstract. Digitized pathological diagnosis has been in increasing
demand recently. It is well known that color information is critical to
the automatic and visual analysis of pathological slides. However, the
color variations due to various factors not only have negative impact on
pathologist’s diagnosis, but also will reduce the robustness of the algo-
rithms. The factors that cause the color differences are not only in the
process of making the slices, but also in the process of digitization. Dif-
ferent strategies have been proposed to alleviate the color variations.
Most of such techniques rely on collecting color statistics to perform
color matching across images and highly dependent on a reference tem-
plate slide. Since the pathological slides between hospitals are usually
unpaired, these methods do not yield good matching results. In this
work, we propose a novel network that we refer to as Transitive Adver-
sarial Networks (TAN) to transfer the color information among slides
from different hospitals or centers. It is not necessary for an expert to
pick a representative reference slide in the proposed TAN method. We
compare the proposed method with the state-of-the-art methods quanti-
tatively and qualitatively. Compared with the state-of-the-art methods,
our method yields an improvement of 0.87 dB in terms of PSNR, demon-
strating the effectiveness of the proposed TAN method in stain style
transfer.

Keywords: Pathological slides · Stain transfer · Color transfer ·
Generative adversarial networks

1 Introduction

Staining is a general process in pathology. However, the differences in raw mate-
rial, staining protocols and slide scanners between labs make the appearance

c© Springer Nature Switzerland AG 2019
F. Knoll et al. (Eds.): MLMIR 2019, LNCS 11905, pp. 163–172, 2019.
https://doi.org/10.1007/978-3-030-33843-5_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33843-5_15&domain=pdf
https://doi.org/10.1007/978-3-030-33843-5_15


164 S. Cai et al.

of the pathological stain suffer from large variability. These variations not only
affect the diagnosis of the pathologists [9], but also can hamper the performance
of CAD systems [6].

As an alternative, algorithms for automated standardization of digitized
whole-slide images (WSI) have been published [1,2,4,12,14,15,17,18]. These
methods can be roughly divided into three categories. Color-matching based
methods that try to match the color spectrums between the image and refer-
ence template image. Reinhard et al. [18] matched the color-channels between the
image and reference template image in the LAB color space. However, this global
color mapping fails in some local regions of image, as the same transformation
is applied across the whole image while ignoring the independent distributions
of color in different areas of the pathological image.

In addition, Stain separation based methods that do the normalized
operations on each staining channel independently. Macenko et al. [14] pro-
posed the stain vectors by transforming the RGB to the Optical Density (OD)
space. Khan et al. [12] assigned every pixel to the specific stain component and
estimated the stain matrix. Bejnordi et al. [3] thought that these methods did
not take the spatial features of the tissue into account, which might lead to
improper staining. Moreover, picking a good reference image requires expert
knowledge and a bad reference may hamper the performance of these methods.
The third group are Deep-learning based approaches. These methods take
advantage of the Generative adversarial networks (GANs) to transfer stain style.
BenTaieb [5] designed a stain normalization net based on GANs with a discrim-
inative image analysis model on top. However, this stain style transfer model
depends on a specific model for a specific task on top. Shaban [20] proposed a
method which is known as StainGAN. StainGAN is based on an Unpaired Image-
to-Image Translation using Cycle-Consistent Adversarial Networks (CycleGAN).
Cycle-consistency allows the images to be mapped into different color models but
preserving the same tissue structure.

In this paper, we propose Transitive Adversarial Networks (TAN). TAN is
also based on an Unpaired Image-to-Image Translation using Cycle-Consistent
Adversarial Networks (CycleGAN) [22]. We proposed a novel generator, which
can result in more accurate color transfer than other generators. TAN not only
eliminates the problem of picking the reference template image but also achieve
much higher quality and much faster processing speed than StainGAN, making
it easier to minish the stain variants and improving the diagnosis process of the
pathologists and CAD system. We have compared our method with state-of-the-
art methods quantitatively and qualitatively, which demonstrates superiority of
the proposed method.

2 Methodology

2.1 The Framework

Our framework is illustrated in Fig. 1. TAN is an unsupervised framework based
on CycleGAN [22] in stain style transfer, which allows bidirectional transference
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Fig. 1. The proposed framework for stain style transfer. x and y are unpaired images
randomly sampled from their respective domains.

of the H&E Stain Appearance between different scanners, i.e from Aperio (A)
to Hamamatsu (H) Scanner. This framework does not require paired data from
different scanners. The model consists of two generators G1 : A → H and G2 :
H → A. Each generator is trained with a corresponding discriminator, D1 and
D2. For illustration, the first pair (G1 and D1), try to map images from domain A
to domain H. The source images x in the domain A is the input of the generator
G1, which yields generated images ŷ, ŷ = G1(x). Both the generated images
ŷ and the unpaired target images y in the domain H are treated as inputs of
the discriminator network D1. During the training process, G1 and D1 compete
with each other. D1 acts as a binary classifier, trying to distinguish the generated
images ŷ and target domain images y. Due to the adversarial training process, G1

tries to improve the quality of the generated images ŷ to foolish D1. This training
producer is formulated as a min-max optimization which has a adversarial loss
function:

Ladv(G1,D1) = Ey∼pdata(y)[logD1(y)] + Ex∼pdata(x)[log(1 − D1(G1(x)))] (1)

Analogous to the first pair of the generator network G1 and the discriminator
network D1, the second pair (G2 and D2), try to map images from the domain H
to the domain A, which replaces the input images as y and the output images as
x. The training producer is also formulated as a min-max optimization process,
and the loss function is Ladv(G2,D2) :

Ladv(G2,D2) = Ex∼pdata(x)[logD2(x)] + Ey∼pdata(y)[log(1 − D2(G2(y)))] (2)

However, if the training process is merely guided by the adversarial loss, it
may result in the non-convergence of the training process and lead to model



166 S. Cai et al.

Fig. 2. The network of our proposed generator that we refer to as Trans-Net.

collapse. Several images from source domain will map to the single image in the
target domain if only the adversarial loss is used. Therefore, additional training
constraint on the mapping function is essential. This is achieved by adding a
cycle loss, which enforces the two mapping functions, G1 and G2, to be cycle-
consistent with each other. Generally speaking, two mapping functions should be
reciprocal, for illustration, ˆ̂x = G2(G1(x)), ˆ̂y = G1(G2(y)). This behaviour can
be achieved by adding the pixel-wise cycle-consistency loss for both generators:

Lcyc(G1, G2) = Ex∼pdata(x)[‖x − G2(G1(x))‖1]
+Ey∼pdata(y)[‖y − G1(G2(y))‖1] (3)

As a result, the final loss for the whole training process can be described as:

L(G1, G2,D1,D2) = Ladv(G1,D1) + Ladv(G2,D2) + λLcyc(G1, G2) (4)

2.2 Network Architectures

Generator.Compared to U-Net, we have three innovations: (i) We increase the
numbers of downsampling layer and upsampling layer from 4 to 8 symmetrically,
enabling the network to learn higher-level semantic information and generate
more detailed context. And the experimental results demonstrate that we can
produce the best images at the 8 level of downsampling. (ii) As shown in Fig. 2(b)
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and (c), for each downsampling layer or upsampling layer, we add the informa-
tion before sampling to the sampled information innovatively. The operation
can propagate the information from previous layer to next layer, which takes
advantage of low-level features with low complexity and high-level features with
high complexity, making it easier to get a smooth decision function with better
generalization performance and produce more detailed results both in color and
texture. (iii) In U-Net, convolution operations are performed twice before each
sampling operation. But in Trans-Net, we delete the two convolution operations
before each sampling layer. There is no convolution layer between adjacent sam-
pling layers, avoiding the overfitting problem. And the network only includes 16
convolution layers which is 7 layers less than U-Net, making it present a better
image quality and less computation time.

The proposed generator architecture we refer to as Trans-Net is shown in
Fig. 2(a). It consists of a coding operation (left side) and a decoding operation
(right side). The sizes and numbers of the feature channels in every layer are
written in the side of both paths. Shortcuts are used to concatenate the features
from the coding phase to the decoding phase in all corresponding downsampling
and upsampling blocks as shown in Fig. 2(a). This can avoid the gradient vanish-
ing or exploding problem during backpropagation, making it easy to train deep
networks.

Discriminator. Since the L1 or L2 term can successfully capture the low-
frequency information but fail to restore high-frequency information, producing
blurred details on image generation tasks [13]. In order to generate both the
low-frequency and the high-frequency details, we added a patch-level classifier
as discriminator as proposed in [10]. This discriminator we refer to as PatchGAN
can learn high-frequency features while the L1 loss can learn low-frequency fea-
tures. By fusing the two types of losses, both the high-frequency and the low-
frequency details can be learnt and generated. PatchGAN restricts the attention
to the structure in local image patches, which penalizes the structure at the scale
of 70×70, aiming to classify whether 70×70 overlapping image patches are real
or fake. The output of PatchGAN is a 30 × 30 matrix where every element have
a receptive filed of 70 × 70, averaging the matrix to provide the final output.

Although patch is much smaller than the image, they can still generate high
quality results with fewer parameters, and faster inference speed than that at
image level. In addition, it can work on arbitrarily-sized images in a fully con-
volutional fashion [11]. Such a discriminator effectively models the image as a
Markov random field, assuming independence between pixels separated by more
than a patch diameter. The Markov random field characterize the image by local
fragmentation region of pixel values. Therefore, our PatchGAN can be treated
as a form of texture/style loss.

3 Experiments and Results

To have fair and comprehensive comparisons with other methods, we evalu-
ated our model as follows: (i) Analysis of the image quality at different levels of
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downsampling; (ii) Analysis of the effect of the proposed generator on the results
and comparisons of results using different generators; (iii) Quantitative and qual-
itative comparisons between our method and state-of-the-art approaches [20]. We
will introduce the experimental dataset, the training details, the evaluational
metrics and experimental results in the following sections.

Fig. 3. Visual comparisons of results using different generators.

3.1 Dateset and Details

Dataset. The dataset is publicly available as part of the MITOS-ATYPIA14
challenge1. The dataset consists of 424 frames at X20 magnification which
were stained with standard Hematoxylin and Eosin (H&E). The training
dataset consists of 300 frames and the test dataset consists of 124 frames. All
frames were scanned by two scanners: Aperio Scanscope XT and Hamamatsu
Nanozoomer 2.0-HT. Slides from both scanners were resized to identical dimen-
sions (1539 × 1376). For training, we extracted 9000 unpaired patches from the
training dataset of both scanners. During evaluation, we randomly extracted 620
paired patches from the testing dataset of both scanners. All patches have the
same size of 256 × 256. Non-rigid registration was employed to eliminate the
mismatch. Patches from Scanner H were regarded as the ground truth.

Training Details. For all experiments, we trained 9000 unpaired patches from
both scanners for 6 epoches with a batch size of 1. We used the Adam solver
and trained all networks with a learning rate of 0.0002. We set λ = 10 in Eq. 4.

1 https://mitos-atypia-14.grand-challenge.org.

https://mitos-atypia-14.grand-challenge.org
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Fig. 4. Visual comparison between the result of our proposed method and that of
StainGAN.

Table 1. Results of Trans-Net at different levels: Mean indicators and total processing
time

Methods PSNR SSIM Time (sec)

Level8 22.22 0.812 31

Level7 21.67 0.793 29

Level6 21.99 0.807 28

Level5 21.97 0.806 24

Level4 21.99 0.802 22

We replaced the negative log likelihood objective for LGAN by a least-squares
loss [16] and updated the discriminators using a history of generated images
rather than the ones produced by the latest generators. We kept an image buffer
that stores the 50 previously created images. We used this image buffer which
has information of previous 50 images rather than the latest image to update the
discriminators. The hardware of GeForce GTX 1080 and the PyTorch framework
were used.

Evaluation Metrics. Results were compared to the ground truth with two sim-
ilarity metrics: Peak Signal-to-Noise Ration (PSNR) and Structural Similarity
index (SSIM). In addition, the processing speed which is an important factor in
clinical has been reported in the results. We used the total time over processing
the 620 images from testing dataset to calculate the computational time.

3.2 Results with Different Levels of Downsampling

It is interesting to see some results demonstrate the image quality with different
levels of downsampling. We increase the numbers of downsampling layer and
upsampling layer from 4 to 8 symmetrically. Results is shown in Table 1. It is
obviously that the result at sampling level of 8 is the best. And the 8 level is
the highest level that we can sample, because the size of our input is 256 ∗ 256
and the size of the feature maps at this moment is 1 ∗ 1. Then, we adopt 8
downsampling layers and 8 upsampling layers for our generative networks.
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Table 2. Comparison to other generators: Mean indicators and total processing time

Methods PSNR SSIM Time (sec)

DenseNet 21.40 0.792 35

U-Net 21.95 0.802 45

Dense-UNet 20.10 0.795 119

Res-UNet 22.02 0.802 51

Trans-Net 22.22 0.812 31

Table 3. Stain Transfer Comparison: Mean indicators and total processing time

Methods PSNR SSIM Time (sec)

StainGAN 21.35 0.785 60

Ours 22.22 0.812 31

3.3 Comparisons of Results Using Different Generators

The generator of our generative adversarial networks we refer to as Trans-Net is
based on the traditional U-Net structure [19]. In order to make a extensive com-
parisons, we replaced the generator with other network structures and compared
the results using our proposed Trans-Net and other generators.

Four other network structures were used as generators for comparison, includ-
ing the traditional U-Net [19] which was used in biomedical image segmentation,
Res-UNet [21] which was first proposed for segmentation of retinal images, the
DenseNet structure which was used in classification tasks [8], and the Dense-
UNet [7] which was used to remove artifacts from the image respectively. Results
are shown in Table 2. The proposed Trans-Net achieved higher values than other
generators in terms of PSNR and SSIM with less computational times. The
visual comparisons as shown in Fig. 3, demonstrates that the results generated
by the proposed Trans-Net are closer to the ground truth than the results using
other generators in terms of colors, contrast and texture details.

3.4 Comparison with State-of-the-Art Method

The goal is to transfer the style of pathes from scanner A (Aperio) to the patches
from scanner H (Hamamatsu) while keeping the context and texture of A. Since
the medical images are unpaired in different centers, we used the cycle-consistent
loss [22] to map the patches from domain A to domain H, and compared the
generated patches with the real patches of scanner H (ground truth). The state-
of-the-art method is StainGAN [20], the difference between TAN and StainGAN
is that we have designed a novel generator we refer to as Trans-Net. The author
of StainGAN adopted the architecture for their generative networks from John-
son et al. [11] who have shown impressive results for neural style transfer and
super-resolution. This network contains two stride-2 convolutions, 6 residual



Stain Style Transfer Using Transitive Adversarial Networks 171

blocks, and two stride-12 convolutions. Compared to the network, Trans-Net has
much more stride-2 convolutions and stride-12 convolutions which results in more
detailed semantic context information. And Trans-Net can produce much more
detailed texture and color information owning to the operation that add the
information before sampling to sampled information novelty. Finally, Trans-Net
has only 16 convolutions, the reduction of convolutions accelerates the training
speed and avoids the over-fitting problem. The results of the proposed method
and StainGAN are shown in Table 3, and Fig. 4 shows their visual comparison.
The PSNR value improves from 21.35 to 22.22 while SSIM improves from 0.785 to
0.812. In addition, the proposed method only requires half of the computational
time of StainGAN. The visual comparison also show that the results generated
by the proposed method are closer to the ground truth than the results using
StainGAN.

4 Discussion and Conclusion

In this work, we proposed a novel method called TAN for stain style trans-
fer. The experimental results show that the proposed method outperforms the
state-of-the-art method in terms of objective metrics and visual comparisons. A
new network structure called Trans-Net was proposed as generator, which con-
tributes to better results than state-of-the-art results. There are three factors
that contribute to the advantage of the Trans-Net structure: (1) It has many
downsampling layers and upsampling layers to ensure the high-level semantic
information can be learnt which can result in detailed texture and context. (2)
It directly adds the information before and after sampling to reduce the loss
of information which contributes to the much closer color and texture to the
ground truth. (3) It only has 16 convolutional layers which accelerates the net-
works. It would be interesting to investigate how the stain style transfer affects
the segmentation task and the analysis of pathological slides in our future work.
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Abstract. Deconvolution microscopy has been extensively used to improve the
resolution of the widefield fluorescent microscopy. Conventional approaches,
which usually require the point spread function (PSF) measurement or blind
estimation, are however computationally expensive. Recently, CNN based
approaches have been explored as a fast and high performance alternative. In this
paper, we present a novel unsupervised deep neural network for blind deconvolu-
tion based on cycle consistency and PSF modeling layers. In contrast to the recent
CNN approaches for similar problem, the explicit PSF modeling layers improve
the robustness of the algorithm. Experimental results confirm the efficacy of the
algorithm.

Keywords: Microscopy · Image reconstruction · Machine learning

1 Introduction

In fluorescent microscopy, light diffraction from a given optics degrades the resolution
of images. To improve resolution, many optimization-based deconvolution algorithms
have been developed [2,12,16]. When the PSF measurements are not available, You
et al. [19] proposed a blind deconvolution method by solving joint minimization prob-
lem to estimate the unknown blur kernel and the image. Chan et al. [1] proposed an
improved version of blind deconvolution using TV regularization.

Recently, convolutional neural networks (CNN) have been extensively used to
enhance performance of an optical microscope without hardware changes. Rivenson
et al. [15] used deep neural networks to improve optical microscopy, enhancing its spa-
tial resolution over a large field of view and depth of field. Nehme et al. [13] used deep
convolutional neural network that can be trained on simulated data or experimental mea-
surement to obtain super resolution images from localization microscopy. Weigert et al.
[18] proposed CNN method which can recover isotropic resolution from anisotropic
data. In addition, generative adversarial network (GAN) has attracted much attention in
inverse problem by providing a way to use unlabeled data to train a deep neural network
[11]. Kupyn et al. [7] presented DeblurGAN for motion deblurring using a conditional
GAN and content loss. However, this GAN approaches often generates the artificial
features due to the mode collapsing, so a cycle-consistent adversarial network (Cycle-
GAN) [20] that imposes the one-to-one correspondency has also made impact on image
reconstruction [6,8].
c© Springer Nature Switzerland AG 2019
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However, these CycleGAN approaches usually require two generators with high
capacity, which are often difficult to train with small number of training data. To address
this problem, this paper proposes a novel CycleGAN architecture with an explicit PSF
layer for blind deconvolution problems. Thanks to the simple PSF layer that generates
blur images, we show that our proposed method is robust and efficient for the deconvo-
lution task in spite of fully exploiting the cyclic consistency for blind deconvolution.

Fig. 1. Overall architecture of our proposed method. GAB are generators that map the blur domain
to the sharp image domain, and GBA is an explicit PSF layer that needs to be estimated. Multi-
DA,DB are modules that contain independent discriminators which take cropped patches on dif-
ferent scale.

2 Theory

Figure 1 illustrates overall framework of the proposed method. We refer to A as the
blurred image domain and B as the blur-removed sharp image domain. The generator
GAB then maps a blurred image in A to a sharp image in B, and the generator GBA

corresponds to blur operation from sharp image domain B to a blurred measurement
domain A. In contrast to the existing cycle-GAN architecture for blind deconvolution
[8], we use an explicit PSF layer for the map GBA, in which the actual PSF values are
estimated from the training data.

While the use of an explicit PSF layer can have a risk to reduce the generalizabil-
ity of the PSF, we found that in typical microscopic setups with predetermined optics,
the PSF is generally fixed so that sample-dependent PSF adaptation is not much neces-
sary. Instead, the use of an explicit PSF layer significantly improves the stability of the
algorithm.

In addition, the discriminator network DA is designed to distinguish the syntheti-
cally generated blurred image from real ones. Similarly, DB is to discriminate gener-
ated deblurred images from sharp image distribution. For the sharp image distribution,
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we use un-matched high resolution images. These could come from super-resolution
microscopy or from commercially available deconvolution software. Finally, we train
both the generators and the discriminators in an alternating manner by solving the fol-
lowing optimization problem:

min
GAB,GBA

max
DA,DB

L(GAB,GBA,DA,DB) (1)

in which the loss function is defined as follows:

L(GAB,GBA,DA,DB) = LGAN(GAB,DB,A,B)+LGAN(GBA,DA,B,A)
+λ1Lcyclic(GAB,GBA)+λ2‖GBA‖1

where λ1,λ2 are hyperparameters, and LGAN , LCyclic are an adversarial loss, cyclic loss
respectively. ‖GBA‖1 is the L1-norm for the regularization of blur kernel. In follow-
ing sections, we will give further explanation regarding each component of the loss
function.

2.1 Loss Function

Adversarial Loss. We employed the modified GAN loss using a Least Square Loss
[10]. Specifically, the min-max optimization problem for GAN training is composed of
two separate minimization problems as follows:

min
GAB

ExA∼PA

[
(DB(GAB(xA))−1)2

]
(2)

min
DB

1
2
ExB∼PB

[
(DB(xB)−1)2

]
+

1
2
ExA∼PA

[
DB(GAB(xA))2

]
(3)

where PA and PB denote the distribution for the domain A and B. By optimizing the
adversarial loss, we can regulate the generators so that the generated sharp image vol-
ume is as realistic as possible; at the same time, the discriminators are optimized to dis-
tinguish the generated deconvoluted image volume from the real high resolution image.
The equivalent adversarial loss was also imposed on GBA for deceiving generation of
synthetic blurred data.

Cyclic Loss. Although mapping between (A) and (B) can be estimated by a well trained
adversarial network, it is still vulnerable to the mode failure problem in which many
input images are taken into a fixed output image. Also, because of the large capacity of a
deep neural network, the network can map (A) to any random permutation of the output
in the domain (B) that the target distribution is likely to match. In other words, the
adversarial loss alone cannot guarantee a reversal of both domains. In order to resolve
such issues, Zhu et al. [20] proposed cycle consistency loss. In our case, the loss of cycle
consistency supports a one-to-one correspondence between the blurred image volume
and the deconvoluted volume. The specific cycle consistency loss is defined as follows:

Lcyclic(GAB,GBA) =ExA∼PA

[
‖GBA(GAB(xA))− xA‖1

]
+ExB∼PB

[
‖GAB(GBA(xB))− xB‖1

]
(4)
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2.2 Multi patchGANs in CycleGAN

As for the discriminators, we propose an improved model from the original CycleGAN
using multi-PatchGANs (mPGANs) [5], where each discriminator has input patches
with different sizes used. PatchGAN typically focuses on high-frequency structures by
including local patches for the entire image. Because patches with different scales can
contain different high-frequency structures, we use multiple discriminators that take
the patches at different scales. Specifically, we define multi-discriminator as {Dfi

A ,D
fi
B }

where fi denotes the ith scale patch. The adversarial loss with the multiscale patches is
then formulated as follows:

LGAN(GAB,DB,A,B) =EXB∼PB

[ N

∑
i=1

(
1−Dfi

B (XB)
)2]

+EXA∼PA

[ N

∑
i=1

(
Dfi
B (GAB(XA))

)2]

(5)

where N-denotes the number of total scales. LGAN(GBA,DA,B,A) is similarly defined.

Fig. 2. 3D U-net architecture for our generator.

Fig. 3. 3D discriminator architecture. The discriminator consists of 4 modules which consist of
Conv + Instance Norm + ReLU. Every Conv layer has stride 2, and downsamples the input vol-
ume. At last layer, the number of output channel is 1.

3 Network Architecture

The network architecture of the generator GAB is 3D-Unet [3] as illustrated in Fig. 2.
For the architecture of GAB, our U-net structure consists of contracting, expanding
paths. The contracting path consists of the repetition of the following blocks: 3D conv-
Instance Normalization [17]- ReLU. Through the network, the convolutional kernel
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Fig. 4. Our multiple discriminators consist of three independent discriminators. Each discrim-
inator takes patches at different scales. Specifically, Dfull takes the patch in its original size;
Dhal f takes the randomly cropped patch half size of the original patch size; and Dquarter takes the
randomly cropped patch a quarter of the original patch size.

dimension is 3× 3× 3. At the first layer, a channel of the feature map is 64. The net-
work architecture of discriminators Dfi

A ,D
fi
B is illustrated in Fig. 3. The discriminators

are PatchGANs [5], and we use 3 discriminators that process patches with 3 different
scales as shown in Fig. 4. The network architecture of the discriminators consist of mod-
ules, which consist of 3D conv- Instance Normalization- ReLU. Through the network,
the convolution kernel dimension is 3× 3× 3.

On the other hand, the generator GBA uses only a single 3D convolution layer to
model a 3D blurring kernel. The size of the 3D PSF modeling layer is chosen depending
on training set.

4 Method

For training, we used 19 epifluorescence (EPF) samples of tubulin with a size of
512×512×30. As for unmatched sharp image volume, we use deblurred image gener-
ated by utilizing a commercial software AutoQuant X3 (Media Cybernetics, Rockville).
The volume depth is increased to 64 by padding with reflect. Due to memory limita-
tions, the volume is split into 64× 64× 64 patches. For data augmentation, rotation,
flip, translation, and scale are imposed on the input patches. Adam optimizer with
β1 = 0.9 and β2 = 0.999 is used to optimize the Eq. (1), and the learning rate is 0.0001.
The learning rate decreases linearly after epoch 40; and the total number of epoch is 200.
To reduce model oscillation [4], the discriminators used a history of generated volumes
from a frame buffer containing 50 previously generated volumes. For all experiments,
we set λ1 of (1) as 3 and λ2 as 0.01. For the optimizer, we used only a single batch. We
normalized the patches and set them to [0,1]. The PSF size is set to 20. The proposed
method was implemented in Python with Tensorflow, and GeForce GTX 1080 Ti GPU
was used for both training and testing the network.
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To verify the performance of the proposed method, we compare our method with
commercial deconvolution method using AutoQuant X3, supervised learning [9], and
the original cycleGAN [8] with both multi-PatchGANs and GBA from another CNN
(Non-PSF layer). In contrast to Lu et al. [8] using regular CNN, our proposed model
only used single PSF modeling layer in GBA, making the training process much eas-
ier. For supervised learning network, we trained a 3D U-net with the matched label
data from AutoQuant X3 using L1-loss since L1-loss encourages less blurring [5]. All
the reconstruction results were post-processed for better visualization by adaptive his-
togram equalization [14].

Fig. 5. Result of transverse view and sagittal view.
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5 Experimental Results

Figure 5a and b show cross-views and sagittal views of various reconstruction method.
In Fig. 5a, input images are degraded by blur and noise. Besides, as shown in Fig. 5b,
the degradation at deeper depth gets worse. In Fig. 5a, AutoQuant X3 removed blur and
noise; however, it did not improve contrast sufficiently. Both the supervised learning
and the non-PSF layer showed better contrast and removed blur; however, the structural
continuity was not preserved. In Fig. 5b, the AutoQuant X3, the supervised learning,
and the non-PSF layer somehow removed blur and noise, but did not maintain struc-
ture continuity at deeper depth. Finally, in the proposed method blurs and noise were
successfully removed in both Fig. 5a and b, thereby preserving the continuity of the
structure. We therefore confirm that PSF modeling layer improves the robustness of the
proposed method.

6 Discussion and Conclusion

In this paper, we presented a novel blind deconvolution using an unsupervised deep
neural network using CycleGAN architecture. Experimental results showed that our
proposed method restores the good quality reconstruction in both transverse and sagit-
tal view. In particular, we observed that the use of PSF modeling layer improved the
effectiveness of the proposed method. We have also proposed multiple patchGANs tak-
ing patches at different scales to discriminate real samples from generated results. The
multiple patchGANs helped generators to produce coarsest and finest details.
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Abstract. In Positron Emission Tomography (PET), quantification of
tumor radiotracer uptake is mainly performed using standardised uptake
value and related methods. However, the accuracy of these metrics is lim-
ited by the poor spatial resolution and noise properties of PET images.
Therefore, there is a great need for new methods that allow for accurate
and reproducible quantification of tumor radiotracer uptake, particularly
for small regions. In this work, we propose a deep learning approach to
improve quantification of PET tracer uptake in small tumors using a
3D convolutional neural network. The network was trained on simulated
images that present 3D shapes with typical tumor tracer uptake dis-
tributions (‘ground truth distributions’), and the corresponding set of
simulated PET images. The network was tested on unseen simulated
PET images and was shown to robustly estimate the original radiotracer
uptake, yielding improved images both in terms of shape and activity dis-
tribution. The same network was successful when applied to 3D tumors
acquired from physical phantom PET scans.

Keywords: Convolutional neural network · PET · Quantification ·
Reconstruction

1 Introduction

1.1 Positron Emission Tomography

Positron Emission Tomography (PET) is widely used in clinical oncology for the
evaluation of lesion malignancy, staging and for monitoring the tumor response
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to treatment [11]. In the clinical routine, images are often interpreted by visual
inspection, together with semi-quantitative measurements of tumor radiotracer
uptake such as standardized uptake value (SUV ) and related metrics. The SUV
is defined as follows:

SUV =
activity concentration in ROI

average activity concentration in whole body
(1)

Two common ways of reporting SUV are SUVmax and SUVmean. SUVmax rep-
resents the highest voxel value in a region of interest (ROI). This measurement
is insensitive to the tumor boundary definition but it is very susceptible to noise.
SUVmean is an average SUV calculated over voxels in a boundary ROI. As a
result, it is less sensitive to noise but it is dependent on the ROI definition and
it typically has a lower value than SUVmax. An alternative metric is SUVpeak

which is an average SUV calculated inside a small ROI, usually a 1 mL spher-
ical volume, containing the pixel with maximum intensity [13]. SUVpeak is less
affected by noise but depends on the ROI’s shape, size and location. It is com-
plicated to accurately quantify tumor uptake in PET images due mainly to poor
spatial resolution, typically 5 mm FWHM, and noise [1,12]. Important advances
have recently been made in the development of techniques such as tumor seg-
mentation and image reconstruction, but there is a great need for new accurate
and reproducible quantification methods and that can be easily integrated in
clinical and clinical research settings [2].

1.2 Deep Learning in PET Imaging

In recent years deep learning techniques have been massively applied to medical
imaging. These approaches have been extremely successful in performing tasks
such as segmentation, classification, automatic detection and, to a lesser extent
so far, image reconstruction [7,8]. Convolutional neural networks (CNNs) have
been successfully applied to PET images to perform denoising [5], lesion detec-
tion and lesion segmentation [3], as well as image reconstruction [4]. Even though
a lot of progress has been made in these areas, there are only few deep learning
applications explicitly aimed at improving quantification in PET imaging. In
this work we present a deep learning approach with the aim of more accurately
quantifying tumor radiotracer uptake in PET studies.

2 Materials and Method

One of the main obstacles that hamper the application of deep learning to PET
imaging is the lack of large labelled image datasets, that are needed to train
the networks. Because of the difficulty in obtaining ground truth radiotracer
distribution data, in this work a simulation algorithm was developed to generate
synthetic datasets that were used to train and test the network. A 3D CNN was
trained on simulated PET images and on the corresponding ground truth radio-
tracer distributions. The 3D CNN learned the relationship between the two sets
of images and, when presented with an unseen set of simulated PET images, it
restored an estimate of the true radioactivity distribution. The proposed method,
illustrated in Fig. 1, will be described in the following paragraphs.
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Fig. 1. A 3D CNN is trained on ground truth images and simulated PET images. The
network is tested on an unseen set of simulated PET and it yields a prediction of the
corresponding ground truth.

2.1 Generation of 3D Shapes and Radionuclide Distribution

Two sets of data, henceforth called ground truth images and simulated PET
images, were generated using a simulation algorithm. The set of ground truth
images was composed of:

– subset 1: 1400 warped spheres filled with uniform activity
– subset 2: 1400 warped spheres divided in two halves. Different values of uni-

form activity were assigned to each volume, with a ratio of 3:1
– subset 3: 1400 hollow warped spheres. Different values of uniform activity

were assigned to each volume, the activity in the inner part being one third
of the activity in the outer part

The background of each image was set to 1/10th of the maximum activity.
These specific patterns of radiotracer distribution were chosen to simulate real-
istic heterogeneous tumor uptake distributions [10]. The simulated images were
made of 35×35×40 voxels and the voxel size was set to 3.18×3.18×2.00 mm3.
In each subset the radius of the 3D shapes before the warping process spanned 2
to 12 voxels (6 to 36 mm) and the activity concentrations spanned 2 kBq/mL to
50 kBq/mL. After generating the ground truth images, the corresponding sim-
ulated PET images were produced by applying Gaussian convolution (FWHM
varying between 4 and 6 mm as described below), to simulate the effects of the
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point spread function (PSF) of the acquisition and reconstruction system and
by adding noise. The noise values, assigned voxel by voxel, were drawn from a
Gaussian distribution with σ = k ∗ √

N , where N is the number of counts in
each voxel and k is a constant, set such that the noise level is equivalent to the
noise observed in real PET data.

2.2 Network Architecture

The 3D network used in this work, was composed of five convolutional layers,
each with 32 filters and 3×3×3 filter size. Each convolutional layer was followed
by a batch normalization layer to stabilize and accelerate the network training
[6]. Finally, a fully connected layer with one hidden unit was used to obtain
the output images. ReLu activation functions were assigned to the convolutional
layers and a linear activation was used for the fully connected layer. The loss
function was a mean squared error function, calculated between the predicted
images and the ground truth images. The optimizer used to minimize the loss
function during training was RMSprop. We used the Keras Framework with
Tensorflow backend to implement the network, and training was performed on
a NVIDIA Quadro M1200 GPU. Due to the limited available memory on the
GPU, a batch size of 26 was used. The validation loss was monitored during the
training process. The learning rate was set to the default value 0.001.

2.3 Testing the Procedure

Images were visually inspected, using a software tool for multimodality medical
image analysis (AMIDE) [9], as well as quantitatively assessed. When the ground
truth was available, the predicted images were assessed by calculating the mean
recovery coefficient RCmean, defined as a ratio of the mean intensity value Ī of
each prediction and its corresponding ground truth:

RCmean =
Īprediction

Īground truth
(2)

The mean value for a given image was calculated over the voxels that exceeded
a threshold of 50% of the maximum intensity. The mean structural similarity
(MSSIM) [14] was also calculated to evaluate the similarity between the predicted
images and the ground truth images. Three sets of experiments were performed
to assess the performance of the procedure and the impact of different parameters
on the CNN’s predictions.

Normalization
When deep networks are used to perform tasks like segmentation or classification,
it is common practice to normalize the input data to make the training faster.
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In our case the main goal is to improve quantification, so a study was performed
to verify that absolute values are preserved during the normalization process.
The dataset generated for this experiment, called original dataset, was made of
4200 images, divided into three subsets as described in Sect. 2.1. The simulated
PET images corresponding to the first, second and third subset were produced
using a Gaussian function with FWHM= [4, 4, 4] mm, FWHM = [5, 5, 5] mm
and FWHM = [6, 6, 6] mm respectively. To asses the impact of normalization,
the original dataset was normalized by calculating the global maximum within
the total set of simulated PET images and the total set of ground truth images,
and by dividing each voxel in all images by the global maximum. By using
this method, a single scaling factor was used for all images so it was possible to
easily rescale the predicted images to the original units. The CNN was separately
trained on 3460 images belonging to the non-normalized dataset and on 3460
images taken from normalized dataset and the results were compared.

Different Spatial Resolutions
One of the aims of this work is to generate a model that can be easily applied
in the clinical routine, so ideally it should not depend on the properties (in
particular the PSF) of any specific scanner. At first, we trained and tested the
CNN on a dataset including simulated PET images generated using the same
PSF. Then, the same CNN was tested on simulated PET images produced using
different PSFs. The training dataset generated for this experiment was made
of 1120 images, that consisted of warped spheres filled with uniform activity
distributions. The simulated PET images in the training set were created using
a Gaussian function with FWHM = [4, 4, 4] mm. The first test set (TS1) was
formed of 280 images generated in the same way. A second test set (TS2) was
then created, using Gaussian functions with FWHM = [6, 6, 6] mm to generate
the simulated PET images. In this experiment the images used for training and
testing were not normalized.

Physical Phantom PET Scans
After training and testing the CNN on simulated images, we have also tested
the network on a small set of phantom data acquired on a PET scanner. In
this case, the network was trained on the same training dataset used to test
the effects of normalization, where the simulated PET images belonging to the
first, second and third subset were produced using a Gaussian function with
FWHM = [4, 4, 4] mm, FWHM = [5, 5, 5] mm and FWHM = [6, 6, 6] mm
respectively. The network was trained on 80% of the data belonging to the
combined datasets made of three subsets, and tested on the remaining 20%. A
fraction of 20% of the training set was used for validation. Then the network
was tested on 3D patches extracted from real phantom PET scans. The physical
phantom had the same size of a NEMA NU 2-2012 IQ phantom, that has a
shape similar to a torso. Three 3D printed inserts simulating heterogeneous
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uptake distributions and realistic tumor shapes [10] were placed in the phantom
at equal distances. The first tumor insert (T1) had a volume of 46.00 mL and
was filled with an activity solution of 19.49 kBq/mL. The second tumor (T2)
was divided into two parts: the upper part (10.75 mL) filled with an activity
solution of 10.94 kBq/mL and the lower part (13.12 mL) filled with an activity
solution of 19.49 kBq/mL. The third tumor (T3) was hollow, the outer part
(65.35 mL) filled with an activity solution of 19.49 kBq/mL and the inner core
(7.80 mL) filled with non-radioactive water. The background compartment of
the NEMA IQ phantom was filled with an activity solution of 1.94 kBq/mL.
The phantom was scanned on a PET/CT system (Biograph mCT-40 PET/CT,
Siemens, Knoxville, TN, USA) and the scans were acquired as list-mode data.
The data were reconstructed to obtain a frame of 300 s, that is comparable to
the scan time used in the clinic for patients, using an iterative ordered subset
expectation maximization (OSEM) algorithm (3 iterations, 24 subsets), time-of-
flight (TOF) iterative reconstruction (3 iterations, 21 subsets) and point spread
function (PSF) modeling. The size of the 3D patches used to test the 3D CNN
was 35×35×40 voxels and each patch contained the image of one tumor insert.

3 Results

3.1 Normalization

The predicted images obtained for two representative volumes are shown in
Fig. 2. The first column shows a coronal section of the ground truth for each vol-
ume. The second and third column show the corresponding predictions obtained
training and testing the CNN on the normalized dataset and on the non-
normalized dataset respectively. The images in Fig. 2(c) and (f) are more similar
to the ground truth: the edges of the active volumes are more clearly defined
and the predicted intensities are closer to the ground truth activity distributions.
This visual assessment is supported by the RCmean values and by the mean struc-
tural similarity shown in Fig. 3. These graphs confirm that the images predicted
by the CNN tested on the non-normalized dataset are overall characterized by
higher MSSIM and RCmean values, meaning that they are overall more similar
to the ground truth. For this reason, non-normalized data have been used in the
subsequent experiments.

3.2 Different Spatial Resolutions

In Fig. 4 three transverse views of two representative volumes belonging respec-
tively to TS1 (top row) and TS2 (bottom row) are shown. The CNN yields bet-
ter predictions when tested on TS1, in which the simulated PET images were
produced using the same Gaussian function as in the training set. By visual
comparison we can notice that the prediction in Fig. 4(c) looks more similar to
the ground truth in Fig. 4(a) both in terms of shape and activity distribution.
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(a) Ground Truth (b) Prediction, normalized (c) Prediction, non-normalized

(d) Ground Truth (e) Prediction, normalized (f) Prediction, non-normalized

Fig. 2. Each row shows three coronal views, belonging to two representative volumes.
The ground truth images are shown in the first column. The predicted images obtained
testing the CNN on the normalized dataset, rescaled to the original units, are shown
in the second column. The results obtained testing the CNN on the non-normalized
dataset are shown in the third column. The network performs more effectively if the
training data is not normalized. The intensities are expressed in kBq/mL.

The prediction in Fig. 4(f) has an overall lower activity and blurrier edges than
the corresponding ground truth in Fig. 4(d). The results obtained for 3D shapes
smaller than 40 mL, presented in Fig. 5, show that the CNN better recovers the
mean intensity in the warped spheres belonging to the first test set, which has
the same PSF as the training data. This indicates the importance of matching
the PSFs in the training set and in the testing set.

3.3 Physical Phantom PET Scans

A fraction of 20% of the simulated PET images belonging to the combined
dataset (made of three subsets), that had not been used for training, was used
at first to test the CNN. The results obtained in this case showed that the CNN
could recover well the ground truth activity distributions and shapes. Then the
same network was tested on phantom data, the results obtained testing the net-
work on 3D images of the phantom inserts T1 and T2 are shown in Fig. 6. Three
images, reconstructed using OSEM, PSF and PSF+TOF are shown for each
tumor. Directly under each phantom image, the corresponding CNN’s predic-
tion is presented. The images yielded by the CNN are less noisy and the edges
of the tumors are better defined. Due to the lack of ground truth images, in this
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(a) MSSIM, normalized data (b) MSSIM, non-normalized data

(c) RCmean, normalized data (d) RCmean, non-normalized data

Fig. 3. Representation of MSSIM and RCmean values, calculated for the predicted
volumes belonging to the normalized dataset on the left and to the non-normalized
dataset on the right. Only 45 representative MSSIM values are plotted to allow for a
better visualization.

case it was not possible to estimate the MSSIM and RCmean. The quantifica-
tion was performed estimating the maximum intensity voxel in each volume, a
measurement that can be related to SUVmax. The maximum values extracted
from the real phantom images and from the predicted images are presented in
Table 1. The ground truth maximum value is 19.49 kBq/mL for all tumor inserts.
The predicted maximum values range from 18.18 kBq/mL to 23.98 kBq/mL, and
are closer to the ground truth than the ones calculated for the real phantom
scans. Although the CNN has a denoising effect, some noise is still present in
the predicted images, which explains the variation observed in the predicted
maximum values.
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Training data 4mm PSF, test data 4mm PSF

(a) Ground Truth (b) Simulated PET (c) CNN’s prediction

Training data 4mm PSF, test data 6mm PSF

(d) Ground Truth (e) Simulated PET (f) CNN’s prediction

Fig. 4. Illustration of three transverse views of two representative volumes, belonging
to TS1 (top row) and to TS2 (bottom row) respectively. The ground truth images are
presented in the first column. The corresponding simulated PET images, generated
using a PSF with FWHM = [4, 4, 4] mm and FWHM = [6, 6, 6] mm are shown in the
second column, in Fig. (b) and (e) respectively. The predicted images yielded by the
CNN are shown in the third column. The intensities are expressed in kBq/mL.

(a) Training data 4mm PSF; test
data 4mm PSF

(b) Training data 4mm PSF; test
data 6mm PSF

Fig. 5. Comparison between the mean recovery coefficients calculated for the pre-
dicted volumes obtained testing the CNN on TS1 (a), characterised by a PSF with
FWHM = [4, 4, 4] mm, and on TS2 (b) characterised by a PSF with FWHM = [6, 6,
6] mm. A better recovery is obtained when PSFs are the same for training and test
data.
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Tumor insert T1

(a) phantom, OSEM (b) phantom, PSF (c) phantom, PSF+TOF

(d) CNN’s prediction (e) CNN’s prediction (f) CNN’s prediction

Tumor insert T3

(g) phantom, OSEM (h) phantom, PSF (i) phantom, PSF+TOF

(j) CNN’s prediction (k) CNN’s prediction (l) CNN’s prediction

Fig. 6. The first and third row show three coronal views of the 3D patches extracted
from phantom PET images, reconstructed using different algorithms (OSEM, PSF and
PSF + TOF). Directly under each phantom image the corresponding CNN’s prediction
is presented. The intensities are expressed in kBq/mL.
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Table 1. Maximum intensity values calculated for the real phantom scans and for the
corresponding CNN’s predicted images, expressed in kBq/mL.

T1 phantom T1 pred. T2 phantom T2 pred. T3 phantom T3 pred.

OSEM 34.77 19.19 31.79 18.18 38.78 21.72

PSF 26.65 20.90 24.15 23.98 27.19 22.30

PSF+TOF 25.34 21.76 25.35 20.89 27.56 21.08

4 Discussion and Conclusion

In this paper, we have developed a deep learning approach to improve tumor
radiotracer quantification in PET images. A simulation algorithm was imple-
mented to generate the labelled datasets needed for training. The algorithm
can very effectively recover a more accurate estimate of the original distribution
from the simulated PET images. It has been demonstrated that, for our purpose,
the network was performing better when trained on non-normalized data. The
predictions obtained by training the network on non-normalised data had bet-
ter defined edges around the active volumes and the predicted intensities were
more similar to the ground truth activity distributions. Simulated PET images
generated using three different Gaussian blurring functions were included in the
training set and, when tested on a dataset including the same three Gaussian
functions, the CNN was able to correctly recover the ground truth images. This
suggests that the network’s performance does not have a strong dependence on
the scanner-specific PSF. Preliminary results from applying the methods, trained
on simulated data, to real phantom PET data are very encouraging. The main
limitations of this method are the very simplified simulation of PET-like images
and the poor knowledge of actual tumor ground truth distributions. The results
presented in this work show that the proposed method has the potential to
improve quantification of tumor tracer uptake, overcoming the challenges due to
the lack of large labelled image datasets. This new quantification method could
also be used as a part of an end-to-end image reconstruction process. In future
work, we plan to train the network on more realistic images, simulated using
more sophisticated simulation methods like Monte Carlo and to include some
real patient data to the study.
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Abstract. Generative Adversarial Network (GAN) has demonstrated
great potentials in computer vision tasks such as image restoration.
However, image restoration for specific scenarios, such as medical image
enhancement is still facing challenge: How to ensure the visually plausible
results while not containing hallucinated features that might jeopardize
downstream tasks such as pathology identification? Here, we propose
Task-GAN, a generalized model for medical reconstruction problem. A
task-specific network that captures the diagnostic/pathology features,
was added to couple the GAN based image reconstruction framework.
Validated on multiple medical datasets, we demonstrated that the pro-
posed method leads to improved deep learning based image reconstruc-
tion while preserving the detailed structure and diagnostic features.

1 Introduction

Image reconstruction in medical imaging is an important and attractive task
since it enables imaging in more desirable conditions, e.g., imaging with faster
protocols, cheaper devices, and lower radiation, etc. However, medical image
restoration is still challenging as it requires not only visually realistic reconstruc-
tion, but also accurate image completion without altering pathological features
or diagnostic qualities/properties.

Various related methods have been proposed recently, among which deep
learning models, especially Generative Adversarial Network (GAN) [1] shows
great potentials. Deep learning methods were used on Magnetic Resonance Imag-
ing (MRI) reconstruction with aliasing inputs [2–4], low-dose Computer Tomog-
raphy (CT) [5] and low-dose Positron Emission Tomography (PET) [6] recon-
struction.

However, there are still several challenges and limitations for existing algo-
rithms: (1) Pixel-wise losses do not consider non-local structural information
thus leads to blurred and not visually plausible restoration. (2) GAN ensures
the consistency to a learned distribution but do not necessarily guarantee the
c© Springer Nature Switzerland AG 2019
F. Knoll et al. (Eds.): MLMIR 2019, LNCS 11905, pp. 193–204, 2019.
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visually plausible solution exactly matches the corresponding ground truth. (3)
Discriminator network regularizes on general image distribution and visual qual-
ity, but it does not consider what are the characteristic features such as pathology
and contrasts that the model needs to preserve.

Learning from works on computer vision tasks [7,8], adding an extra network
that is specifically designed based on the property of the task should be help-
ful. Here, we proposed the Task-GAN, a generalized model for medical recon-
struction problems. It includes 3 networks: a generator, a discriminator and
a task-specific network. The new task-specific network predicts the pathology
recognition from both the ground truth images and the reconstructed images. It
helps to regularize the training of generator and complement the adversarial loss
to ensure the output images better approximate the ground truth images. Task-
GAN achieves realistic visual quality and preserves the important task-specific
features/properties.

The contributions of this work are:

– We propose the Task-GAN method to ensure both visually plausible and more
accurate medical image reconstruction.

– A task network and a task-driven loss are introduced to regularizes the image
restoration to be more accurate both quantitatively and qualitatively.

– The proposed method was validated on two in-vivo clinical medical imaging
datasets across different modalities, including MRI and PET.

– The theory behind the method is further discussed. The way of how the
proposed Task-GAN improves the image reconstruction may lead to a better
model design for other applications.

2 Proposed Method: Task-GAN

2.1 Designs

Here, we propose the Task-GAN that extends the GAN-based image reconstruc-
tion framework [9]. The goal of Task-GAN is to predict the image reconstruction
of images X from the corrupted measurements X̃. In addition, we incorporate
further information Y in the learning, which is one or a set of properties of X and
important to preserve in the image restoration tasks. For example, the property
can be the pathology or contrast specific feature in medical imaging, which are
used as examples in this work. In general, there are three different networks that
are optimized in the training process.

Firstly, a generator network G, learns the non-linear mapping from
inputs X̃ to reconstructed images X̂, which conducts the major image recon-
struction task. This task is supervised with pixel-wise L1 cost function, which
has been shown outperform conventional L2 cost function in image reconstruc-
tion tasks [9].

Secondly, a discriminator network D, similar to other adversarial train-
ing for GAN, is used to distinguish in the adversarial way to ensure X̂ is consis-
tent with the distribution of X. A classification task is conducted by D to learn
D(X) = 1 and D(X̂) = D(G(X)) = 0.
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Fig. 1. Formulations and flowchart for Task-GAN

Lastly, a task-specific network T is generalized in the multiple image
reconstruction settings. It tries to predict the set of properties of X, such that
it favors T (X) = Y and T (X̂) = Y . For a binary case as in pathology recog-
nition example in this work, Y ∈ (0, 1), representing if there is pathology in
the image. Other variants could include classifier for multi-label classification or
segmentation network.

2.2 Formulation

Figure 1 shows the overall framework of the Task-GAN architecture for image
restoration. For a single sample consisting of an image X with its property Y ,
we fed the corresponding corrupted image X̃ with the random noise z to the
generator which outputs restored image X̂. The weights of the three networks
are optimized based on multiple cost functions across multiple tasks:

(1) To approximate the image content in X from generator G, we used pixel-
level supervision with an L1 loss between X and X̂ = G(X̃).

Lpixel = E(X,X̃)∼pdata(X,X̃),z∼pz(z)

∥
∥
∥G(X̃, z) − X

∥
∥
∥
1

(1)

(2) To stabilize the training process and to challenge the conventional dis-
criminator Network D which recognizes whether the input is ground truth image
X or restored version X̂ = G(X̃), we used the feature matching adversarial loss
[10]. f(X) denotes activations on an intermediate layer of the discriminator.

LGAN =
∥
∥
∥EX∼pdata(X)f(X) − E(X̃)∼pdata(X̃),z∼pz(z)

f(G(X̃, z))
∥
∥
∥
2

(2)

(3) To teach the Task network T to recognize the property Y from image X,
and more importantly to ensure that the recognizable features are still preserved
in X̂, we use a regression loss for this task.

Ltask = E(X,X̃,Y )∼pdata(X,X̃,Y ),z∼pz(z)
(T (G(X̃, z)) − Y )2 + (T (X) − Y )2 (3)
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In summary, the optimization task consists of 3 parts: pixel-wise loss using
L1 cost, adversarial loss using feature matching GAN cost and task loss with
regression cost. And the weights from three networks are optimized to minimize
the mixed loss function combining generator network G, discriminator network
D and task-specific network T , for each supervised sample (X, X̃, Y )

L(G,D, T ) = Lpixel(G,X, X̃) + λLGAN (G,D,X, X̃) + μLtask(T,X, X̃, Y ) (4)

3 Experiments

To evaluate the performance of the proposed method, we did experiments on
two tasks: ultra-low-dose amyloid PET reconstruction and multi-contrast MR
reconstruction. Here, we briefly describe the purpose of the tasks, the design of
task-specific networks T , the datasets, and the comparison results.

3.1 Ultra-low-dose Amyloid PET Reconstruction Task

Task & Task-Specific Network: The purpose of this task is to synthesize
high-quality standard-dose amyloid PET from 1% ultra-low-dose degraded PET
images, preserving pathological features Y of the amyloid status (positive or
negative) that related to the diagnosis of Alzheimer’s Disease. Thus, in this
task, we pre-trained an 2D amyloid status classifier on the standard-dose PET
images as T (based on standard-dose image) to extract pathological features Y
and optimized the perceptual loss [11]. Two experts’ amyloid status diagnosis
were used as ground-truth label for the classifier. The state-of-the-art method
using L1 loss proposed by Chen et al. [6] was implemented as reference.

Data Acquisition & Prepossessing: 40 subjects were recruited for the study,
among which 10 subjects were amyloid status positive and the other 30 were neg-
ative. Datasets were acquired on an integrated PET/MR scanner with time-of-
flight capabilities (SIGNA PET/MR, GE healthcare). 330±30 MBq of the amy-
loid radiotracer (18F-florbetaben) was injected to the subject (as standard-dose)
and the PET data was acquired 90–110 min after injection. The raw list-mode
PET data was reconstructed as the standard-dose PET and it was randomly
undersampled by a factor of 100 to reconstructed the low-dose PET. Each PET
volume consists of 89 2.78 mm-thick slices with 256 × 256 1.17 × 1.17 mm2 pix-
els. Each volume was normalized by the mean value of the non-zero region. The
top and bottom 20 slices, which usually did not cover the brain, were removed.
To avoid overfitting, dara augmentation of flipping along the X and Y axes was
adopted. Four-fold validation was adopted to obtain synthesized results for each
data.

Results: A qualitative comparison of the reconstructed image is shown in Fig. 2.
Radiologists are trained to make diagnosis of amyloid status positive/negative
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from the detailed tracer retention pattern in cortex area. Figure 2-A is amy-
loid negative and B is amyloid positive. Chen et al.’s method and Plain-GAN
blurred out some parts of cortex and generated some hallucinate uptake, while
the proposed method kept the original pathological structures better. This is
especially significant in amyloid status negative cases like, as radiologists intend
to diagnose them as positive due to the blurriness.

Fig. 2. Qualitative comparison of ultra low-dose amyloid PET reconstruction task:
(a) low-dose PET, (b) standard-dose PET, (c) Chen et al., (d) Plain-GAN, and (e)
Task-GAN.

The quantitative results on image quality are shown in Fig. 3. We evaluated
the synthesized image quality by peak signal-to-noise ratio (PSNR), structural
similarity (SSIM), and root mean square error (RMSE). The proposed method
significantly outperforms the plain-GAN without the task network by 1.62 dB
in PSNR, 1.58% in SSIM, and 16.4% in RMSE. We further evaluated the image
quality by reader study, which is shown in Fig. 4. Two experts was asked to
give a score 1–5 as the quality score for each volume (total 80 evaluations of 40
cases by 2 readers). We considered 1–3 as low quality and 4–5 as high quality.
The results from proposed method had an average score of 4.27 with only 5 low
quality, which was comparable to the ground-truth 4.41 with 4 low quality, and
significantly outperformed Chen et al.’s 3.22 with 56 low quality scores.

Moreover, we evaluated how the proposed method helped down-stream task:
amyloid status diagnosis. Table 1 shows the classification results given by the 2D
amyloid status classifier T . Based on the classification on the middle 20 slices of
the volume, the subject-wise error rate is computed by voting and following the
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Fig. 3. Image quality metrics of low-dose PET reconstruction task.

Fig. 4. Image quality score of low-dose PET reconstruction task.

majority rule. Though the classifier achieved all correct subject-wise diagnosis,
the slice-wise mean average error (MAE) illustrated more accurate and stable
performance on Task-GAN outputs. Radiologists also achieved better perfor-
mance on Task-GAN’s results with 8 errors over 80 diagnosis, comparing to 16
errors on Chen et al.’s results.

Table 1. Diagnosis by amyloid status classifier T .

Standard-dose
PET

Chen et al. Plain-GAN Task-GAN

slice-wise MAE 0.136 ± 0.121 0.140 ± 0.138 0.138 ± 0.132 0.132 ± 0.118

subject-wise error (0/40) (0/40) (0/40) (0/40)

3.2 Multi-contrast MR Reconstruction Task

Task & Task-Specific Network: To validate the generality of the proposed
method on different modalities of medical imaging restoration, we conducted
experiments on synthesized multi-contrast magnetic resonance imaging (MRI)
datasets. The real measurements were acquired at different Echo time (TE),
Inversion time (TI) and Delay time (TR). Traditionally, the model-based method
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uses least-square fitting to resolve T1, T2, PD and B1 map, and then synthesize
different clinical contrasts (T1w, T2w, FLAIR, etc.) retrospectively. In this set-
ting, we tried to reconstruct high-quality multi-contrast MR neuroimaging from
the multi-dynamic multi-echo acquisition (MDME) inputs [13] while preserving
the contrast-specific features. The proposed method is aimed to not only gen-
erate visually plausible MR images but also preserve the parameter-weighted
contrast that required for the diagnosis of neurological diseases. The reconstruc-
tion of multiple contrasts MR shares the weight and the specific contrast can
be synthesized by changing the binary-coded vector that added to the model.
The task-specific network T in this setting is a classifier that can discriminate
different contrasts, assisting the generator in learning the features of different
contrasts. At the same time there is also a binary discriminator as in the tradi-
tional GAN, sharing the same feature extraction layers.

Data Acquisition & Preprocessing: 109 cases were included in the datasets.
Among them, 61 were patients and 48 were healthy controls. Each subject was
scanned with 6 conventional MR sequences(T1w, T1-FLAIR, T2w, T2-FLAIR,
STIR and PDw) as the ground-truth and MDME sequences as the generator’s
input. Traditional model-based method [14] was also calculated as reference. Pro-
tocols include FOV: 230 * 184 mm, thickness: 5 mm, number of slices: 25. During
the pre-processing, different acquisitions were affinely registered. The magnitude
of image was re-scaled to [0, 1]. Real and imaginary part were formulated as two
input channels.

Results: The qualitative comparison of a typical examples are shown in Fig. 5,
in which plain-GAN wrongly learned and introduced the artificial features
like the grid-like artifacts, while the proposed model achieved better detail-
restoration and sharpness. Using Task-GAN, the generator can get information
from contrasts whose quality is better, and store the shared information in the
encoded latent space, to correct imperfection like the motion and partial volume
effect in contrasts like FLAIR.

The quantitative comparison of similarity with conventional acquisitions is
shown in Fig. 6, the proposed method improved PSNR by 3.95 dB, SSIM by 9.1%
compared to the traditional model-based method. In comparison with plain-
GAN, the Task-GAN raised PSNR by 2.40 dB, SSIM by 7.7%. In addition,
4 radiologists were asked to rate the image quality with Likert score from 1
(‘unacceptable’) to 5 (‘excellent’). The paired Student’s t-test was performed to
compared the scoring. The results are shown in Fig. 7.

4 Discussion

The proposed method achieves superior performance on in-vivo medical imaging
datasets by coupling adversarial training with the task-specific network. Detailed
contribution of the Task-GAN is explained in Fig. 8.
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Fig. 5. Qualitative comparison of Multi-contrast MRI experiment: (a) Model-based (b)
plain-GAN (c) Task-GAN, (d) conventional acquisitions (ground-truth).

In comparison, the task of the image reconstruction is to learn a non-linear
mapping from low-quality images in the measurement domain to its correspond-
ing high-quality images in a different high-quality domain containing visually
realistic images. Shown in Fig. 8(a), in addition, the recognition of image is a
space separation of features/labels along different dimensions that can be orthog-
onal to the quality dimensions.

In comparison, as is shown in Fig. 8(b), conventional learning strategy learns
the image reconstruction task by regression, which may fail to generate realistic
reconstruction. The learning is usually based on the minimization of an averaged

Fig. 6. Image quality metrics of multi-contrast MR reconstruction task.
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Fig. 7. Image quality score of multi-contrast MR reconstruction task. (a) detailed the
proportion of different scores. (b) depicts the mean score. ** means the p value is under
0.005, while *** stands for 0.0005.

distance penalty which ensures robustness but lead to unrealistic reconstruction
such as blurring. This can be seen from Fig. 2 Chen et al.’s results. Additionally,
the averaged solution is also likely to be away from the distribution of visually
plausible solutions that falls out of the high-quality image space as is shown in
the Fig. 8(b).

GAN-based approach on one hand overcomes this by further enforcing an
adversarial loss with a discriminator network which ensures to generate realis-
tic reconstruction following the distribution of the target high-quality images.
As the Fig. 8(c) shows, the solution is no longer an simple average, but pushed
into the space of visually realistic high-quality images. However, on the other
hand, the discriminator only regularizes the output samples to follow the distri-
bution while ignores the inter-sample relationship. For example, it cannot avoid
hallucinations, where the restored images may be undesirably added/removed
important visual features. As is shown in Fig. 8(c), the output image can have a
different label as the ground-truth which fails the purpose of image reconstruc-
tion. We can picture the hallucinations as a “shrinking” of solution space.

To ensure the one-to-one mapping, various improved GAN models and cost
functions have been proposed. For example, Cycle-GAN [12] incorporate a cyclic
relationship to improve the mapping. However, cyclic relationship does not nec-
essarily lead to exact mappings. As Fig. 8(d) demonstrates, the inter-sample
relationship as well as the important feature labels can be swapped while still
satisfying the cyclic relationship. For example, in the figure, one task label is
altered while the cyclic loss is not affected. This may lead to misclassified pathol-
ogy/normality for medical imaging applications, which can directly lead to mis-
diagnosis or over-diagnosis. We can picture the mislabeling as a “twisting” of
solution space. This “twisting” maintains well within visually-plausible space,
however severely changes the positioning around the decision boundary of task-
label space.
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Differently, as shown in Fig. 8(e), Task-GAN can generate accurate mapping
with the mixed loss regularization: (1) Pixel-level supervision ensures that the
reconstructed image is closer to the ground truth. (2) Adversarial loss regular-
ization ensures that the reconstructed image is within the high-quality space. (3)
Task-specific loss ensures the reconstructed image still preserve the important
feature of interests. In other words, the combination regularization enforce the
solution to fall onto the intersection of the manifold preserving pixel-level simi-
larity, distribution consistency and important visual labels/features. In the view
of inter-sample relationship, the task regularization stops the inter-sample rela-
tionship to any visual plausible but destructive “shrinking” or “twisting” around
the boundary of task-label space, which ensures more accurate mappings.

Fig. 8. How Task-GAN improves the mapping in image restoration.
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5 Conclusion

In this paper, we proposed a generalized model, Task-GAN, which includes a new
task-specific network and corresponding task-specific loss for training GAN based
image reconstruction. Task-GAN is demonstrated to boost the performance of
medical image reconstruction, which requires not only realistic restoration, but
also high-fidelity as well as accurate classification for subtle diagnostic features.

The proposed method is demonstrated to achieve superior performance com-
pared with GAN on both image quality metrics and task-specific feature preser-
vation (e.g. pathological features). Based on visual inspection from human
experts (clinicians/radiologists), anatomical and diagnostic features are pre-
served better and fewer artifacts are introduced. The trained task network also
shows potentials for super-human level diagnosis tasks.

Task-GAN further extends the regularization of adversarial training. The
mixed loss balances between content similarity, distribution consistency and pre-
serving important features for the given tasks. It results in more accurate image
reconstruction with better visual similarity and avoids hallucinations. Intuitively,
task-GAN enforces the solution fall into proper manifold, prevents any alterna-
tion (“shrinking” and “twisting”) of the reconstruction from the correct solution
space, and preserves both inter-sample relationship and feature-of-interest.

In the future, we will explore further improvements in the design of networks
and task formulation. The proposed technique is also valuable to other challeng-
ing reconstruction/restoration applications that require realistic restoration and
preserving distinguishable details for down-stream tasks.
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Abstract. Sentinel lymph node biopsy (SNB) is a surgical method to
stage certain cancer types in a minimally invasive manner. However, the
current sensing methods for SNB are limited in accuracy, as they are
based on acoustic feedback radiation probes to detect tracer enriched
sentinel lymph nodes. We present a deep neural network approach to
learn the latent spatial activity distributions from a simulated gamma
source on 2D activity images. Data processing can then be applied for
multi-pinhole collimator optimization, lymph node visualization or sur-
gical navigation to further support SNB. Using simulations of photon
multi-pinhole collimator interaction, we generate labeled synthetic 2D
activity images to train convolutional neural networks (CNN). These
CNNs are then evaluated on synthetic as well as on real experimental
data from a radioactive point-like source, collected by our own stationary
small form factor multi-pinhole collimator. We achieve good results on
synthetic data for the xy-component ensemble learners with a localiza-
tion class accuracy of 0.97, while depth estimation achieves a localization
class accuracy of 0.55. Accuracy on real experimental data is limited due
to the small sample set and its variability, compared to the simulation.

Keywords: Sentinel lymph node biopsy · Radioguided surgery ·
Inverse problem · Machine learning · Convolutional neural network

1 Introduction

In head and neck squamous cell carcinoma (HNSCC) the standard treatment
comprises the elimination of the tumor together with the nearby lymphatics to

The original version of this chapter was revised: Fig. 4 was replaced. The correction to
this chapter is available at https://doi.org/10.1007/978-3-030-33843-5 25
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ensure the removal of malignant cells to prevent further spreading. This pro-
cedure is called neck dissection and is highly invasive where overtreatment is
tolerated. However, studies have shown that such radical interventions are not
needed in 70% of patients [1]. Sentinel lymph node biopsy (SNB) is a surgi-
cal procedure to stage the malignancy in a minimally invasive manner to avoid
this overtreatment. The current sensing methods for SNB are still rather limited
in accuracy, as acoustic feedback gamma radiation probes are used to detect
radioactive tracer enriched sentinel lymph nodes (SLN) while conducting the
actual biopsy. The size of a lymph node is typically between 5–10 mm and there-
fore easy to miss. This puts a high cognitive load on the surgeon as they need
to map the audio signal (1-dimensional) from the probe to the tissue surface of
the patient to successfully place the biopsy tools. Freehand SPECT (fhSPECT)
is an alternative approach to reconstruct and visualize activity [2]. One draw-
back of fhSPECT is the need to manually rescan the surgical scene from different
viewpoints to update the visualization in case of tissue removal or patient reposi-
tioning. Our vision is a setup with a stationary multi-pinhole collimator/gamma
camera attached near the patient in order to acquire activity and to render its
distribution subsequently. We therefore circumvent the inconvenience of man-
ual scanning during intervention. Current research in the domain to reconstruct
spatial activity distributions from 2D activity images tries to solve this inher-
ently ill-posed problem by the application of compressed sensing [3] or finger-
printing [4]. These methods require a significant amount of RAM and compute
to store and process the system matrix: compressed sensing is rather slow and
memory-intensive while fingerprinting is fast but also memory-demanding. If the
measurement space increases, these requirements get accentuated.

In this work, we present a simulation and a recovery method to learn the spa-
tial components of a γ-source, e.g. a lymph node, from 2D activity images alone,
i.e. without using tomographic information. These images are produced by our
stationary custom-built multi-pinhole collimator (Fig. 6(a)), in combination with
a compact gamma camera (Sect. 2). Fundamental advantages of a multi-pinhole
arrangement are its capability to allow for depth estimation and increased pho-
ton sensitivity in comparison to a standard single pinhole collimator: photons
from different viewpoints are collected and contribute to the foreground signal.
The spatial learning itself is achieved by three independent CNNs (Sect. 2). To
obtain training data, we developed an algorithm to simulate interaction between
incident photons of a synthetic γ-source with the modeled multi-pinhole colli-
mator (Sect. 2). We use both simulated and real 2D activity images to evaluate
the performance of the trained networks (Sect. 3).

2 Methods and Materials

Problem Formulation. A forward problem is often of the form

A(v) ⇒ I. (1)

The modeling operator A corresponds in our problem to the geometry of the
multi-pinhole collimator. The parameters v represent the spatial distribution of
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the source, and the observation I is the actual 2D activity image. As we normally
do not know v, spatial information recovery is only possible using I, which is an
ill-posed problem. Regularization is needed to gain additional information and
constraints. In particular, the assumption is that there exists a sparse solution
to simplify the inverse problem. We formulate the reconstruction of a potentially
unknown spatial distribution of γ-activity from a 2D activity image I by

Â(I) ⇒ v̂, (2)

where Â is the pseudo-inverse of A, and v̂ is an approximation of the true source
location. In our case, spatial estimation is done by applying three independent
CNNs to learn Â from I:

v̂i = CNNi(I), i = x, y, z. (3)

Regularization is implicitly achieved by the network design and training process
of these CNNs.

Learning. We define γ-source location learning as a classification problem. The
covered depth [80, 180] mm is mapped to 21 classes resulting in an uncertainty
of 5 mm within each class cz. We proceed similarly for the xy-components. The
x-component is given 21 classes, covering a physical space [−30, 30] mm with an
uncertainty of 3 mm. The range for the y-component [−21, 21] mm is partitioned
into 15 classes with an uncertainty of 3 mm. The setup of the measurement space
is shown in Fig. 4. To consider the influence of the span per class bin, we apply
five shifts of 1 mm for czj and three shifts of 1 mm for both cxj

and cyj
. Each

shifted class bin has therefore a slightly different mean value. As such, multiple
mean values of the ensemble contribute to an estimate of the spatial components.
We train the depth ensemble learner CNNz five times, and the xy-component
ensemble learners CNNx|y three times with these different class mappings.

As an example, we take an instance of cz with a known distance of 95 mm. The
correctly predicted class instances ĉzj have bin ranges [91, 96), [92, 97), [93, 98),
[94, 99), [95, 100) mm with rounded averages ∈ [93.5, 94.5, 95.5, 96.5, 97.5] mm.
The estimated depth value is thus ¯̂cz = �95.5� mm. In this manner we proceed
to estimate ĉxj

and ĉyj
. These estimates are then compared to the known ground

truth location (Sect. 3).

Nearest Neighbor Lookup (NNL). Given training data, a k-nearest neighbor
search can be used to find similar synthetic and real images. We set k = 1.
The metric function applied is the scalar product: a minimal angle indicates
matching features. The classified xyz-components of the lookup are compared
to real experimental data

v̂ = NNLk=1(I). (4)

This brute force algorithm serves as a baseline for our CNN-based approach.

Sparse Signal Recovery. The authors of [3] provided us with their implemen-
tation of the WSPGL1 (weighted spectral projected gradient for �1 minimization)
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algorithm for sparse signal recovery, as described in [5]. We compare results on
real experimental data.

Image Formation. The field of view of a single pinhole is constrained by the
radius of the pinhole itself and the compartment dimensions (Fig. 1). The half-
angle α of the field of view is given by

tan(α) =
w

2
· 1
h

, (5)

where w denotes the width and h the height of the pinhole compartment. Based
on our design, the field of view of a pinhole is 2 · α ≈ 16◦.

Fig. 1. Collimator compartment arrangement with dimensions height h (length of the
sidewalls or septa) and width w. The field of view 2 · α of the pinholes depends on
these measures. Photons are incident from the top, the gamma camera sensor is at the
bottom (indicated in red). (Color figure online)

Typical real photon-sensor interactions of two distinct point source positions
(90 mm, 150 mm) are presented in Figs. 2(a) and 3(a). Each pinhole with a
suited field of view collimates photons and projects them onto the image sensor.
Unwanted photon collimator interactions are mainly caused by Compton and
photoelectric effects. In order to constrain high-energy Compton scattering, we
rely on the compartment length or cross section of the collimator for absorption
(cf. Sect. Hardware). To compensate for image degradation by the low-energy
photoelectric effect, we apply filtering (cf. Sect. Image preprocessing). Similar
simulated activities are shown in Figs. 2(b) and 3(b).

One compartment can be seen as a region having a distinct view of the source.
A source farther away is captured by more pinholes, while its projections move
inwards to the center of the compartment. This disparity effect can be exploited
and statistically analyzed to learn depth information.

Data Generation. As the real experimental data set for realistic training is
too small, we developed a model simulation of photon collimator interaction.
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Fig. 2. Activity image of a single point source, centered at a distance of 90 mm. Each
pinhole projects captured photons from the source onto the image plane. Red pixels
indicate high photon counts (≥6). (a) Real source, 60 MBq, acquisition time 16 s;
due to a slight misalignment of the collimator relative to the sensor, partial pinhole
projections (leftmost column) are discernible. The dark patches are caused by high
energy photons penetrating the front shield near the pinholes, and show the absorbing
effect of the compartment septa. (b) Simulation with added background signal. (Color
figure online)

Fig. 3. Activity image of a single point source, positioned left at a distance of 150
mm. (a) Real source, 60 MBq, acquisition time 16 s. The detector has one faulty ASIC
element in the upper right corner. (b) Simulation with added background signal.

Evaluating whether a simulated γ-ray reaches a pixel of the virtual image plane,
under some constraints explained below, leads to a good approximation of the
actual activity data (cf. Figs. 2(b) and 3(b)). We refrain from using Monte Carlo
simulation due to the slow and expensive computation involved.

From the line-plane intersection test we know whether a simulated γ-ray
intersects the aperture mask, and the intersection point can thus be calculated.
However, we still need to determine whether the γ-ray passes through a pinhole.
As the coordinates of the pinholes are known, this test is trivial. A last constraint
which must be considered is whether the incident angle of the γ-ray is steeper
than the half angle α of the field of view; the γ-ray is either collimated to reach
the sensor or absorbed by the septum (cf. Fig. 1). We first define the following:

– Let pi be a pixel on the virtual image plane.
– Let sj be a discrete element of the synthetic source S.
– Let i be the intersection point on the aperture mask.
– Let h be the height of the compartment.
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We calculate the angles βx, βy of the incident γ-ray

βx = tan
(

1
h

|pix − ix|
)

, (6)

βy = tan
(

1
h

|piy − iy|
)

(7)

and update the pixel on the virtual image plane

increment(pi) =

{
1, if βx and βy ≤ α,

0, otherwise.
(8)

We do the above for every combination of sj and pi. Each simulation consists
of one source S with varying radius ∈ [0.5, 3] mm, xy-position and distance
(cf. Sect. Learning). We added some randomness to the process to allow a 5%
probability for simulated photons to interact with the collimator material and
to contribute to the background signal (cf. Sect. Hardware). The result is a
synthetic 2D activity image I(p) which serves as a training sample.

Experimental Data. Real activity data was acquired using one technetium
(99mTc) tracer source of 60 MBq with an acquisition time of 16 s. To direct the
radiation in a point-like fashion, the source container was fixed in a Cerrobend
block with exit pupils of radius 1 mm, pointed at the multi-pinhole collimator.
We measured four distances (90 mm, 110 mm, 130 mm, 150 mm) with three
varying horizontal and vertical offsets relative to the collimator coordinate sys-
tem (Fig. 4). Note that the real experimental data set is limited to 12 samples
(cf. Sect. 3).

Image Preprocessing. For every 2D activity image, we apply a median filter
of size 3×3 to reduce the influence of the background signal. A Gaussian filter of
size 3×3 is used to increase signal response. We consider the full image extent of
487×195 pixels to yield the input vector to the CNNx|y for xy-component learn-
ing. This differs for depth estimation: each image region of a compartment (cf.
Fig. 5(a)) is extracted and stacked to form a volume of activities (cf. Fig. 5(b)).
Finally, we sum up the volume slices to create a unique map of the depth activ-
ity distribution (cf. Fig. 5(c)). High signals or sums, distributed over the patch
area of the map, indicate an accumulation of projections. The CNNz then learns
based on these projections.

Network Design. The CNN architectures are given below, where C indicates
a convolutional layer with a prefix for the number of filter banks and a suffix
for the filter size, BN denotes a batch normalization step, MP is a max. pooling
operation, DO a transition with a given dropout ratio, FL a matrix flattening,
and N a dense layer for the final classification.
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Fig. 4. Experimental setup, viewed from top. The Cerrobend block with the inserted
radioactive source is on the left (red vial). The stationary detector with the attached
collimator is on the right. Here, the known distance from the collimator to the source
is 90 mm. The collimator measurement space, with its coordinate system at the origin,
is given. A 1-e coin in the lower left serves as a scale reference. (Color figure online)

Fig. 5. (a) Each compartment image patch forms a slice of the volume. (b) Volume of
size 65 × 60 × 24. (c) Sum of the volume slices (projection along the depth) to create
a map of size 65 × 60 × 1, fed into the CNNz. (Color figure online)

65 × 60 × 1 →
16C5 → BN → ReLU → MP2 → DO(0.5) →
32C5 → BN → ReLU → MP2 → DO(0.5) →
64C3 → BN → ReLU → MP2 → DO(0.5) →

128C3 → BN → ReLU → MP2 → DO(0.5) →
FL → 512N → BN → ReLU → DO(0.5) →

21N → Softmax

Listing 1. The network architecture of CNNz for depth learning.
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487 × 195 × 1 →
16C5 → BN → ReLU → MP2 → DO(0.5) →
32C5 → BN → ReLU → MP2 → DO(0.5) →
64C3 → BN → ReLU → MP2 → DO(0.5) →

128C3 → BN → ReLU → MP2 → DO(0.5) →
FL → 512N → BN → ReLU → DO(0.5) →

(21x | 15y)N → Softmax

Listing 2. The network architecture of CNNx|y to learn the xy-component of the

activity.

The training set consists of 43’000 synthetic 2D activity images with an 80/20
training/validation ratio. The test set contains 6’000 samples. We trained the
network for 100 epochs with a batch size of 32. As optimizer we chose Adam
with learning rates ∈ [1e–03, 1e–07]. The learning rate was gradually reduced
based on the validation accuracy during training.

Hardware. The current design of the actual multi-pinhole collimator is shown
in Fig. 6. The frame is a 3D-printed tungsten alloy, selective laser melted, with a
mass attenuation coefficient of ≈1.581 at 140.0 keV. The radius of each cylindri-
cal pinhole is 0.5 mm, and its associated compartment with width 10.0 mm, length
35.0 mm defining the field of view of ≈16◦ (cf. Fig. 1). The thickness of the front
plate of 1.0 mm and the thickness of the septa of 0.35 mm with length 35.0 mm
are calculated such, that the probability of background photons to penetrate the
shielding is at most 5%. The dimensions of the device are 83.94 mm in width, 33.54
mm in height and 35.0 mm in depth, respectively. Its weight is 300 g. Our indus-
trial partner DECTRIS (Baden-Dättwil, Switzerland) provided us with a gamma
camera prototype with a native resolution of 487×195 pixels and a pixel size of 172
µm × 172 µm. The detector technology of DECTRIS is based on Hybrid Photon
Counting (HPC) with a cadmium telluride (CdTe) sensor material [6]. Its quan-
tum efficiency (QE) at 140.0 keV is ≈32%. A high QE is crucial as only 1% or less
of the injected tracer activity arrives in the lymphatics.

Fig. 6. View of the collimator. (a) Aperture mask with its pinhole arrangement. (b)
Compartments with calibration plates in the corners. The pinhole collimating effect is
observed by the passing light in the central part.
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3 Results

For all results, accuracy indicates a perfect class match; only the exact classifi-
cation, i.e. bin, is considered. Near class misses are therefore equally weighted
as estimates with a larger class mismatch. We show the test set class accuracy
of each ensemble CNNx|y|z in Table 1.

Table 1. Individual and average class accuracy of the learners on the test set.

Learner CNNx CNNy CNNz

# 1 0.97 0.95 0.61

# 2 0.98 0.98 0.46

# 3 0.97 0.99 0.62

# 4 – – 0.48

# 5 – – 0.58

Average 0.97 0.97 0.55

We achieve a high score for CNNx and CNNy, with learners 1–3. Depth learning,
with learners 1–5, scores lower, as it is a harder problem. This can also be
seen in Table 2, where depth estimation is the most error-prone task for spatial
component analysis.

In Table 2 we present the overall results from the real experimental data set.
We win against both WSPGL1 and NNL in terms of the number of minimal
error scores achieved: 5 out of 12. Our GPU-accelerated method is the fastest
with an inference time of CNN ≈1.0 s/sample, compared to WSPGL1 ≈100.0
s/sample and NNL ≈60.0 s/sample, which both run on the CPU.

Table 2. For each sample from the real experimental data set, we compare the known
location with the inferred location, per method. Location components are (x, y, z),
given in mm. The errors are reported using the �2-norm between the true location and
the inferred location. The overall minimal error is marked in bold.

Methods Error: �2

Location NNL WSPGL1 CNN NNL WSPGL1 CNN

(0, 5, 90) (−2, 4, 95) (−0.5, 11.5, 88) (−1.5, 4.5, 89.3) 5.5 6.8 1.7

(0, 5, 110) (−2, 5, 97) (−0.5, 11.5, 98) (−1.5, 3.5, 101.3) 13.2 13.7 9.0

(0, 5, 130) (−3, 4, 142) (−2.5, 13.5, 130) (0.5, 4.5, 126.3) 12.4 8.9 3.8

(0, 5, 150) (−4, 5, 131) (−3.5, 10.5, 123) (−3.5, 4.5, 84.3) 19.4 27.8 65.8

(13, −5, 90) (11, −8, 81) (11.5, −4.5, 93) (10.5, −7.5, 86.3) 9.7 3.4 5.1

(13, −5, 110) (11, −7, 93) (12.5, −0.5, 98) (11.5, −7.5, 109.3) 17.2 12.8 3.0

(13, −5, 130) (10, −8, 118) (10.5, −4.5, 131) (0.5, −7.5, 123.3) 12.7 2.7 14.4

(15, −5, 150) (10, −8, 118) (12.5, −4.5, 162) (9.5, −8.5, 135.3) 32.3 12.0 15.5

(−21, −12, 90) (−21, −12, 90) (−22.5, −6.5, 90) (−21.5, −11.5, 94.3) 0.0 5.7 4.4

(−21, −12, 110) (−21, −11, 94) (−21.5, −4.5, 92) (−21.5, 9.5, 105.3) 16.0 19.5 22.0

(−21, −12, 130) (−18, −17, 169) (−24.5, −5.5, 126) (−21.5, −12.5, 112.3) 39.4 8.4 17.7

(−21, −12, 150) (−21, −14, 165) (−21.5, −3.5, 119) (−22.5, −11.5, 143.3) 15.1 32.1 6.9
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4 Discussion and Conclusion

We presented a method how to learn spatial statistics from modeled photon
multi-pinhole collimator interaction using CNNs, and tested its performance
on synthetic and real 2D activity images. Our approach offers advantages over
compressed sensing and fingerprinting algorithms thanks to improved processing
speed during measurement, less constraints on host memory and thus the ability
to be used on embedded computing boards. As the real experimental data is
in general more varied than the modeled data, the accuracy of the method is
currently limited but shows its potential, which deserves further research.

Intraoperative orientation provided by audio-based gamma detectors limits
the effectiveness of SNB. However, a more targeted SNB enables a more reli-
able post-operative histopathologic staging, and therefore a more effective anal-
ysis of potential tumor spreading. The described deep neural network approach
could lead to an improved SNB procedure in general. Next steps involve the
development of more complex phantoms, equipped with simultaneously radiat-
ing low-dose (kBq) 99mTc sources, to evaluate and validate the sensitivity and
reconstruction quality of the approach under such conditions, which correspond
more to an expected in vivo environment.
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4. Nahum, U., Seppi, C., von Niederhäusern, P.A., Pezold, S., Haerle, S.K., Cattin,
P.C.: Sentinel lymph node fingerprinting. Phys. Med. Biol. 64(11), 16 (2019). Arti-
cle: 115028

5. Mansour, H.: Beyond l1-norm minimization for sparse signal recovery. In: IEEE
Statistical Signal Processing Workshop, SSP 2012, pp. 337–340 (2012)

6. Henrich, B., et al.: PILATUS: a single photon counting pixel detector for X-ray
applications. Nucl. Instrum. Methods Phys. Res., Sect. A 607(1), 247–249 (2009)

https://doi.org/10.1007/978-3-319-66185-8_47


Neural Denoising of Ultra-low Dose
Mammography

Michael Green1(&), Miri Sklair-Levy2, Nahum Kiryati3, Eli Konen2,
and Arnaldo Mayer2

1 School of Electrical Engineering, Tel-Aviv University, Tel Aviv-Yafo, Israel
green1@mail.tau.ac.il

2 Diagnostic Imaging, Sheba Medical Center, Affiliated to the Sackler School
of Medicine, Tel-Aviv University, Tel Aviv-Yafo, Israel

{miri.sklairlevy,eli.konen,

arnaldo.mayer}@sheba.health.gov.il
3 The Manuel and Raquel Klachky Chair of Image Processing,

School of Electrical Engineering, Tel-Aviv University, Tel Aviv-Yafo, Israel
nk@eng.tau.ac.il

Abstract. X-ray mammography is commonly used for breast cancer screening.
Radiation exposure during mammography restricts the screening frequency and
minimal age. Reduction of radiation dose decreases image quality. Image
denoising has been recently considered as a way to facilitate dose reduction in
mammography without impacting its diagnostic value. We propose a convolu-
tional locally-consistent non-local means (CLC-NLM) algorithm for ultra-low
dose mammography denoising. The proposed method achieves powerful
denoising while preserving fine details in high resolution mammography. Val-
idation is performed using a dataset of 16 digital mammography cases (4-views
each). Since obtaining true low-dose and high-dose mammogram pairs raises
regulatory concerns, we applied the X-ray specific and validated method of
Veldkamp et al. to simulate 90% dose reduction. The proposed algorithm is
shown to compete favorably, both quantitatively and qualitatively, against state-
of-the-art neural denoising algorithms. In particular, tiny micro-calcifications are
better preserved using the proposed algorithm.

1 Introduction

Mammography has been used for breast cancer detection since the 1970s.WhileMRI and
ultrasound scanning contribute to breast imaging, mammography is still the only imaging
modality recommended for breast cancer screening in the US [1]. Using modern equip-
ment, the typical radiation dose for two-viewmammography is about 0.4 mSv per breast,
comparable to 7 weeks of background radiation [2]. Radiation exposure in mammogra-
phy is a clinical consideration, limiting screening frequency. Of special concern are
younger women, those with large breasts requiring extra views [3] and BRCA mutation
carriers. Reducing radiation exposure in mammography is therefore a real necessity.

Dose reduction in mammography leads to reduced image quality; significant dose
reduction leads to loss of diagnostic value. Image denoising has been considered as a way
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to facilitate dose reduction in mammography without impacting its diagnostic value.
Mammogram denoising using classical image processing techniques is reviewed in [4].

While mammography analysis by neural networks is an active research field, neural
networks have been rarely considered for mammogram denoising. Interestingly, it has
just recently been shown that classical denoising using a Wiener filter improves auto-
matic neural-based detection of calcifications [5]. In [6], a convolutional neural network
(CNN) was proposed for the denoising of low-dose digital breast tomosynthesis
(DBT) images. The network was trained and tested using two breast cadaver phantoms.

In current state-of-the-art of image denoising, nonlocal filters (e.g. [7, 8]), CNN-
based filters (e.g. [9, 10]) as well as methods based on generative adversarial networks
(GAN, e.g. [11, 12]) are among the most powerful techniques [13].

Enforcing local consistency improves the performance of nonlocal denoising [7].
Neural and nonlocal image denoising approaches were combined in [13–16]. In [14],
the image is first denoised by the classical BM3D algorithm [8], then noisy patches are
stacked together, based on similarity of their denoised versions, to form three
dimensional blocks. The blocks are denoised by a network similar to [9] and the output
is obtained by aggregation of the denoised patches. In [13], an iterative method that
combines CNN-based and non-local-based filters is proposed. The algorithm is mod-
ular and can combine any pre-trained CNN with any existing non-local filter. Reference
[15] presents a gradient-descent based blind non-local denoising algorithm using a
neural network incorporating patch grouping. A neural nearest-neighbor block is
proposed in [16]. It can be combined with existing CNN-based methods (e.g., [9]),
outperforming other neural non-local denoising algorithms [13–15].

State of the art medical image denoising methods use GANs. In [11] an adversarial
loss was combined with SSIM [17] and L1 loss to create a structure-sensitive denoising
algorithm for low-dose CT. A universal image-to-image algorithm was proposed in
[12], showing state-of-the-art results in three medical image processing problems,
including PET-CT denoising.

In this paper we propose a convolutional locally-consistent nonlocal means (CLC-
NLM) denoising algorithm, with application in low-dose mammography. Our contri-
butions are both at the algorithmic and diagnostic dimensions. In the proposed algo-
rithm, we incorporate a novel fully trainable nonlocal denoising block built on top of
the locally-connected convolution layers. Furthermore, by avoiding weight sharing, the
locally connected layers learn to perform space dependent denoising, enforcing local
spatial consistency. Based on these algorithmic developments, we demonstrate the
possibility of performing low-dose mammography with only 10% of the radiation
while preserving its diagnostic value.

2 Methods

The LC-NLM algorithm [7] is a non-neural patch-based image denoising method that
has been successfully applied in CT denoising. The CLC-NLM algorithm proposed in
this paper adopts the rationale of the LC-NLM algorithm, casting its principles as one
aspect of a deep neural computational framework. We briefly review the LC-NLM
algorithm before detailing the proposed CLC-NLM algorithm.
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2.1 The LC-NLM Algorithm

The LC-NLM algorithm uses fast approximate nearest neighbors (ANN) to find the
most similar high-SNR patch, in a purposely built database, for each noisy patch in the
input image [7]. The denoised pixel value at location i, denoted by pdi , can be for-
mulated as

pdi ¼ SLC P�
i ; P̂i

� �T
V P̂i
� � ð1Þ

Explicitly, pdi is the dot product between vector SLC P�
i ; P̂i

� � 2 RK and vector

V P̂i
� � 2 RK , where K is the number of patches containing any pixel i, that is K = N2

for N � N patches. The notation is explained with reference to Fig. 1, where N ¼ 3:
Let i (red) be any pixel in the noisy image. Pixel i is viewed as an anchor pixel in an

N � N patch P�
i (green) in the noisy image. The anchor pixel i is arbitrarily set at the

upper-left corner of the patch Pi. Let Pi denote the set of patches (blue) in the noisy
image containing pixel i. Note that P�

i 2 Pi, i.e., P�
i is a specific member of Pi. For

each Pi 2 Pi, there is a nearest neighbor P̂i in a set of high-SNR patches. The set P̂i

consists of high SNR patches, each being the nearest neighbor to a low SNR patch in
Pi. Vector V P̂i

� � 2 RK contains the value of each patch P̂i 2 P̂i at the location of

noisy pixel i. SLC P�
i ; P̂i

� � 2 RK is the vector of similarities between noisy patch P�
i and

each high-SNR patch P̂i 2 P̂i computed at their intersection (grey).
In essence, Eq. 1 sets the denoised pixel value pdi to be the weighted average of

pixel values at the same location in high-SNR patches corresponding to the low-SNR
patches containing pixel i.

Fig. 1. LC-NLM geometry illustration for N = 3. Each noisy input patch P�
i (green) has N2

overlapping noisy patches Pi (blue) that contain anchor pixel i (red). Each of the overlapping
patches Pi (blue) has a different overlap area (grey) with the input patch P�

i (green). (Color figure
online)
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2.2 The Convolutional LC-NLM (CLC-NLM) Algorithm

The recently introduced Non-Local Neural networks (NLN) [18] use concepts of self-
attention introduced in the context of natural language processing (NLP) in [19]. The
output of the non-local block proposed in [18] can be written (omitting the residual
connection) as

O ¼ Z S xð ÞG xð Þð Þ ð2Þ

where x 2 Rmn is the column-stacked version of the input X 2 Rm�n, S xð Þ 2 Rmn�mn

is a self-similarity matrix according to some similarity measure, meaning the value at
location i; j equals S xð Þi;j¼ similarity xi; xj

� �
. G : Rmn ! Rmn and Z : Rmn ! Rmn are

learned functions (e.g., convolutional layers).
Unlike in the original NLN, where similarity is computed between pixels, we

compute similarity between patches. Specifically, similarity is computed between input
patches extracted from noisy image X and their denoised versions, generated by a
locally-connected CNN architecture [20]. The output of the non-local block becomes

O ¼ Z S Xps;G Xð Þpsð ÞG Xð Þð Þ ð3Þ

where Xps 2 Rmn�N2
is a patch-stacked version of X, where row i of Xps is the row-

stacked patch of size N � N extracted from X such that pixel i is in its upper left corner.
G Xð Þps 2 Rmn�N2

is the patch-stacked denoised version of X. S �; �ð Þ 2 Rmn�mn is the
similarity matrix between each row of Xps and each row in G Xð Þps, corresponding to
any patch pair in X and G Xð Þ. By converting X and G Xð Þ to their patch-stacked
versions, the similarity matrix can be computed using simple matrix operators and
seamlessly converted into a neural network layer. For the normalized cross-correlation
similarity, SNCC �; �ð Þ is given by

SNCC Xps;G Xð Þpsð Þ ¼ 1
N
�X �G Xð ÞT , 1

N
Xps �MX

STDX

� �
G Xð Þps�MG Xð Þ

STDG Xð Þ

� �T

ð4Þ

MX ; STDX ;MG Xð Þ; STDG Xð Þ are the mean and standard deviation for each patch of X and
G Xð Þ, respectively. Exploiting the representation power of neural networks, we can
improve the similarity measure using learned functions, h;/; leading to

SlNCC Xps;G Xð Þpsð Þ ¼ 1
N
h �Xð Þ/ �G Xð Þð ÞT ð5Þ

The learned functions h;/ can be represented as 1� 1 convolutions [18]. Likewise,
we can generalize the SSIM [17] similarity measure to

SlSSIM Xps;G Xð Þpsð Þ ¼
h1 2MXMT

G Xð Þ þC1

� �
� h2 2KXG Xð Þ þC2

� �
h4ðM2

X þM2T
G Xð Þ þC1Þ � h3ðSTD2

X þ STD2T
G Xð Þ þC2Þ

ð6Þ
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where C1;C2 are constants, � denotes element-wise multiplication, hk are learned
functions (e.g., 1� 1 convolutions), and KXG Xð Þ is the correlation coefficient between X
and G Xð Þ, similar to SNCC . The mean, standard deviation and the correlation coefficient
are all computed using Gaussian weights [17]. In order to normalize the similarity
matrix, i.e.

P
j
Sij ¼ 1; 0� i\mn� 1, the similarity matrix is forwarded through a

softmax layer computed at each row.
Comparing the proposed non-local block to NLN [18], we note that while NLN is

based on self-attention [19], we consider mutual-attention, i.e., attention between the
input image and its denoised version. Furthermore, unlike [18], we use patches, per-
form denoising and propose a novel fully trainable structure similarity for the calcu-
lation of attention.

2.3 Enforcing Local-Consistency

In order to enforce locally consistent denoising, similarity computation is limited to
patch pairs overlapping at the anchor pixel [7]. Non-local means denoising is associ-
ated with processing multiple hypotheses regarding the best denoised value at a given
pixel location. Successful implementation of this concept call for a rich variety of
hypotheses. We achieve this by preferring space-variance in the denoising network
G �ð Þ; in contrast to the space-invariance property of common convolutional networks.
In practice, we constructed G �ð Þ; with locally connected layers [20], which perform
convolutions, but do not share the weights. Consequently, kernel parameters are dif-
ferent at each location.

In practice, we apply the locally-connected convolutional layers to a set of N2

translated versions of X, denoted trays in the sequel, each corresponding to a different
overlap configuration as shown for 3� 3 patches in Fig. 2. Let XT 2 Rm�n�N2

denote
the trays, such that XT :; :; k½ �, with 0� k\N2, (blue) is the translation of X by
Tx ¼ mod k;Nð Þ; Ty ¼ k

N

� 	
, where �b c is the floor operator. The red pixel indicates the

position of the anchor pixel for an arbitrary patch in the noisy input image (green).
G XTð Þps 2 Rmn�N2�N2

can be conveniently reshaped to RmnN2�N2
, so that the denoising

of tray XT :; :; k½ � corresponds to rows, mnk� i\mn kþ 1ð Þ, in the reshaped G XTð Þps.
The proposed data structure enables direct computation of the similarity matrix, and

the resulting CLC-NLM algorithm output, using Eqs. 6 and 3, respectively, with
X := XT . Furthermore, using the set of denoised trays, locally consistent denoising, that
was enforced one pixel at a time in [7], has now become an efficient vectorized
operation.
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3 Experiments

3.1 Dataset

A dataset of 16 retrospective digital mammography cases was used in the experiments,
each containing the 4 standard mammographic views (L-CC, L-MLO, R-CC, R-MLO).
The mammograms were all acquired on a Senographe Pristina (GE Healthcare, France)
with about 7M pixels per view.

Ideally, experimental evaluation of ultra-low dose (ULD) mammogram-processing
methods should include a dataset of true ultra-low dose (ULD) and corresponding
normal dose mammogram pairs. However, obtaining such dataset requires doubling the
number of X-ray images taken for each patient. While the additional radiation hazard
due to the ULD acquisition is probably small, such experimental process cannot be
carried out without a substantial risk analysis and ethical review process. Encountering
a similar dilemma, Veldkamp et al. [21] developed and validated a specialized tech-
nique for simulating the effect of dose reduction on image quality in digital chest
radiography. In this paper, we followed the principles of [21], but had to adapt their
method for use in mammography.

Following [21], realistic ultra-low dose (ULD) mammograms, corresponding to a
dose reduction of about 90%, were simulated by replacing the value of each pixel by a
linear combination of its normal-dose value and random noise. The combination
weights depend on the normal-dose value itself and the required dose reduction,
leading to a highly nonlinear process. The mapping of pixel value to pixel-wise noise
level was carried out in [21] by a lookup-table created using a dedicated chest phantom.
For dose-reduction simulation in mammography, we used a synthetic breast phantom

Fig. 2. The set XT of N2 translated versions (trays, solid blue) of noisy image X (solid green).
Each tray in XT corresponds to a different overlap configuration, shown here for 3� 3 patches.
The red pixel indicates the position of the anchor pixel for an arbitrary patch (green) in the noisy
image X. For clarity, the subdivision of the trays is shown only at the patch level (dotted blue) but
not to the pixel level as in the noisy (green) patch associated with the anchor pixel. (Color figure
online)
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scanned with different radiation doses (Fig. 3). Specifically, the breast phantom was
scanned at multiple radiation levels, and a small uniform ROI in the phantom was used
to associate pixel value (mean of ROI values) with the corresponding noise level (via
the standard deviation of ROI values).

3.2 Setup

In the neural implementation, convolution kernel size was set to 3� 3. In the locally-
connected layers the number of filters was set to 64 in all but the last the layer. Training
was carried out using the common perceptual loss [22].

One case (4 views) was reserved for training while the remaining 15 were used for
testing. No significant difference was observed when choosing a different scan for
training. This may result from the very large number of patches extracted from each
scan. The network was trained with 2� 106 patch pairs (sampled at random from the 4
views) of size 35� 35 with N ¼ 5.

As shown in [23], common quality assessment indices like PSNR and SSIM do not
always correspond to real visual quality. To overcome this limitation in a medical-
imaging application, Perceptual Loss was proposed for the training of denoising neural
networks [22]. Perceptual Loss enforces similarity between the network output and the
ground-truth in a high dimensional feature space, rather than in image space. In [24]
this idea was used to create a distance measure, called LPIPS, that is based on features
extracted from networks pre-trained for image classification. Since LPIPS is a distance
measure, where “smaller is better”, to facilitate comparison with other quality indices,
where “bigger is better”, we use 1-LPIPS.

Fig. 3. A dedicated breast phantom scanned at different radiation doses (a–e)
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3.3 Comparison with State-of-the-Art

We compare the proposed algorithm to six state-of-the-art denoising algorithms: three
CNN-based algorithms (DnCNN [9], WIN [10] and Perceptive [22]), a non-local neural
algorithm (N3Net [16]), and two GAN-based algorithms (SMGAN [11] and MEDGAN
[12]). Note that we used the 2D version of SMGAN, due to the 2D nature of mam-
mograms. The PSNR, SSIM and LPIPS scores are shown in Fig. 4 for each case, and

Fig. 5. A zoomed view of a normal-dose (a) and a ULD (b) mammogram image containing
vacuum biopsy-proven micro-calcifications, with denoising results by DnCNN (c), WIN (d),
SMGAN (e), MEDGAN (f), N3Net (g), Perceptive (h) and the proposed algorithm (i). Three tiny
micro-calcifications (red circle, yellow arrow) are best visualized in our result (i). (Color figure
online)

Table 1. The mean PSNR, SSIM and 1-LPIPS scores.

Our DnCnn WIN Perceptive N3Net MEDGAN SMGAN

PSNR 38.41 39.31 37.86 36.16 41.64 35.31 33.87
SSIM 0.965 0.946 0.940 0.949 0.952 0.947 0.933
1-LPIPS 0.804 0.623 0.618 0.771 0.745 0.702 0.610

Fig. 4. The PSNR, SSIM and LPIPS scores for each mammography case, denoised by DnCNN,
WIN, Perceptive, N3Net, MEDGAN, SMGAN and the proposed algorithm.
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summarized in Table 1. The proposed algorithm achieved the highest mean SSIM and
the highest mean LPIPS scores. In Fig. 5, zoomed views of a normal-dose (a) and ULD
(b) mammogram containing vacuum biopsy-proven micro-calcifications are shown
alongside the denoising results for DnCNN [9] (c), WIN [10] (d), SMGAN [11] (e),
MEDGAN [12] (f), N3Net [16] (g), Perceptive [22] (h) and the proposed algorithm (i).
Three tiny micro-calcifications (red circle, yellow arrow) are best visualized in our
result (i).

3.4 Ablation Study

To further appreciate the contribution of the non-local block to the quality of the
denoising results, we show in Fig. 6 (a) denoising of a sample tray by the locally
connected network (i.e.,G XT :; :; k½ �ð Þ), alongside the output of the consecutive non-local
block using: (b) normalized cross-correlation similarity (SlNCCÞ and (c) SSIM similarity
(SlSSIMÞ. We note a considerable improvement in image quality between (a) and (b),
provided by the non-local block. Also, the influence of the similarity function, used in
the non-local block, is well visible: SlSSIM (c) provides better denoising and preservation
of the tiny micro-calcifications (red circle, yellow arrow) than SlNCC (b).

4 Conclusions

In this paper, a convolutional locally-consistent nonlocal means (CLC-NLM) algorithm
was presented and applied to the challenging task of ultra-low dose (ULD) digital
mammogram denoising. The fully trainable algorithm preserves important fine details
such as micro-calcifications. The method was successfully validated against state-of-
the-art neural denoising algorithms, using a realistic simulation of ULD mammograms,
corresponding to 90% reduction in radiation dose. In an ongoing research project, the
proposed method will be applied to larger datasets, including clinical ULD data.

Fig. 6. (a) Denoising of a sample tray by the locally connected network (i.e., G XT :; :; k½ �ð Þ),
alongside the output of the consecutive non-local block using: (b) normalized cross-correlation
similarity (SlNCCÞ and (c) SSIM similarity (SlSSIMÞ.
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Abstract. We propose an image reconstruction framework to combine
a large number of overlapping image patches into a fused reconstruc-
tion of the object of interest, that is robust to inconsistencies between
patches (e.g. motion artefacts) without explicitly modelling them. This
is achieved through two mechanisms: first, manifold embedding, where
patches are distributed on a manifold with similar patches (where sim-
ilarity is defined only in the region where they overlap) closer to each
other. As a result, inconsistent patches are set far apart in the manifold.
Second, fusion, where a sample in the manifold is mapped back to image
space, combining features from all patches in the region of the sample.

For the manifold embedding mechanism, a new method based on
a Convolutional Variational Autoencoder (β-VAE) is proposed, and
compared to classical manifold embedding techniques: linear (Multi
Dimensional Scaling) and non-linear (Laplacian Eigenmaps). Experi-
ments using synthetic data and on real fetal ultrasound images yield
fused images of the whole fetus where, in average, β-VAE outperforms
all the other methods in terms of preservation of patch information and
overall image quality.

1 Introduction

Medical image reconstruction through fusion of partial captures consists of com-
bining information from multiple images of the same object. Fusion is particu-
larly useful when the images involved contain complementary information [7],
for example when fusing Magnetic Resonance (MR) and Computed Tomography
(CT) images of the brain [8] which shows more brain structures than any of the
individual images, or when compounding multiple ultrasound (US) images of a
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fetus to provide whole body images [4,14]. The latter is the application targeted
in this paper.

Fusion is normally a two step process: first, alignment of the images involved.
Second, fusion of the aligned images. Alignment can be achieved by image reg-
istration [3]. Normally, rigid alignment is sufficient, if no motion is assumed
between patches. In many cases, non-rigid motion can be expected, particularly
in fetal imaging where the fetus moves frequently between acquisitions. Most
research on image fusion has focused on discarding motion corrupted images or
on correcting for motion using non-rigid registration [5,12]. However, registra-
tions results are very sensitive to the registration method and the registration
parameters. In the specific case of US imaging, motion correction using non-rigid
registration can introduce visually abnormal patterns that degrade the quality
of the reconstructed image. Moreover, the main cause of artefacts with state of
the art methods is caused by motion and registration errors.

This paper introduces a novel and generic fusion framework for overlapping
images (or patches) that have been aligned but may present residual registration
errors and non-rigid motion artefacts. The aligned images are embedded into a
manifold which separates motion corrupted patches, hence yielding a motion-free
fused image without the need for non-rigid registration. The proposed method
is evaluated on synthetic 2D images and on 3D fetal US.

2 Method

The key idea is illustrated in Fig. 1: we define a data set of i = 1, . . . , N image
patches Ii(x), spatially aligned (except for any non-rigid motion) and re-sampled
into the same grid, so that the i-th patch only has information within a region
defined by a binary mask Mi(x). In this paper, patches are aligned rigidly using
the method from [4]. Then, if patches i and j are similar in Mi ∩ Mj , they are
close neighbours in some manifold representation.

Fig. 1. Overview of the method. Patches are embedded in a manifold, and the fused
image can be retrieved by mapping a sample in the manifold back to image space.
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Because the corresponding location si of Ii in the manifold represents the
entire patch, if a query location sq from the manifold can be projected back
into the image space, then the resulting image has features from nearby patches,
effectively fusing the data. In this paper we compare three methods to embed
the patches into a manifold: linear embedding (multi dimensional scaling, MDS
[11]), non-linear embedding (Laplacian Eigenmaps, LEM [1]) and variational
autoencoders (β-VAE [6]).

2.1 Image Patch Fusion with Classical Manifold Embedding

Registered images capture aligned parts of the same fetus, and differences
between them are due mainly to noise, artefacts, and possibly non-corrected
motion. As a result, the main variation between images can be represented in
a lower-dimensional manifold. Classical manifold embedding methods work by
creating a neighbourhood graph between data points (patches), which is rep-
resented as a pair-wise resemblance matrix. Then, a linear or non-linear map
M : RD −→ R

d that minimizes the change of these distances and brings the
data into a d � D-dimensional space (manifold) is computed. As a matter of
fact, when a linear embedding is used, the result is equivalent to a weighted
average of the most similar patches using MSE as similarity criteria.

We propose to compute the pair-wise resemblance Ri,j only in the region
where the pair of patches overlap, this is R(Ii, Ij) = r(Ii ∩Mj , Ij ∩Mi), where r
is, here, the mean square error (MSE). This enforces that consistent patches are
clustered together in the manifold, and indeed if two different patches Ii and Ij

are identical in the region where they overlap, then M(Ii) = M(Ij) = s ∈ R
d.

If we could compute the inverse mapping F = M−1(s), then F would fuse the
information of Ii and Ij . However, most manifold embedding techniques are not
invertible, so M−1 cannot be computed. We can estimate the fused image F(sq)
corresponding to a query sample sq in the manifold by interpolating nearby
samples, e.g. using Shepard’s interpolation [13]:

F(sq) =

∑
i∈Ωq

IiMiwi(sq)
∑

i∈Ωq
Miwi(sq)

(1)

where Ωq is a neighbourhood on the manifold around sq and wi is the distance-
based Shepard’s weight, also computed on the manifold as wi(sq) = 1/‖sq −si‖2.

2.2 Image Patch Fusion with a Variational Autoencoder

Autoencoders encode input data into a lower dimensional (latent) space, with
the advantage that they provide a decoder sub-net to map the latent space
back into the original space, effectively implementing the sought F = M−1(s)
mapping. β-VAEs [6,10] additionally constrain the latent space to be normally
distributed, which produces consistent images from the entire manifold as the
latent space is continuous by construction. As a result, β-VAEs are ideally placed
to build the manifold from patch images and to retrieve a fused image from the
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query manifold sample sq. Normally, VAEs (and more broadly, neural-networks)
are used to learn models of a population, and then make some predictions from
unseen data. Crucially, in this work we propose to learn a model of specific sub-
ject (fetus), of which we have a large number of partial observations (overlapping
patches), which yields not a population model, but a reconstruction of the sub-
ject itself. Then, instead of querying the model to obtain predictions of unseen
data, the latent space (manifold) can be queried to reconstruct different poses
of the subject.

We assume that each input patch {Ii}N
i=1, will be similar (in the least squares

sense, and within Mi) to the fused image Fi = F (si) except for a normally
distributed random noise, i.e. Ii−Fi∩Mi = εi ∼ N (0, σ2). As a result, P (F |s) =
P (ε|s) = P (I|s). In consequence, the log likelihood estimator of P (F |s) yields
the MSE:

log P (F |s) =
N∑

i=1

log P (Ii − Fi ∩ Mi|s) = C +
N∑

i=1

||Ii − Fi(s) ∩ Mi||2
2σ2

(2)

Noting the encoder function s = fφ(I), and adding the Kullback-Leiber (KL)
divergence (weighted by β [6], which allows a trade-off between data fidelity and
normal distribution of the latent space) the loss becomes:

L(θ, φ, β; {I}, {s}) =
N∑

i=1

||Ii − Fθ(fφ(Ii)) ∩ Mi||2 + βKL(si) (3)

The fused image can be reconstructed by sampling the latent space at {sq}.

3 Materials and Experiments

3.1 Materials

We carry out experiments on a synthetic and real data-sets. The synthetic data-
set consisted on 8 images of 128 × 128 pixels illustrating a fetus where the leg
was at different locations as if captured during a kick. These images were divided
into 280 overlapping patches of 40 × 40 pixels, with a 70% overlap both vertically
and horizontally, to which Gaussian noise ∼ N (μ = 0, σ = 5) was added.

Experiments using 3D and 2D images from healthy fetal subjects were carried
out. 3D ultrasound image sequences were acquired from two fetuses (GA 32w,
24w). Patient 1 was acquired over a head to toe sweep in which 120 volumes
were acquired. Patient 2 was acquired over 5 consecutive sweeps head to toe and
back, totalling 470 volumes. In both cases, data was acquired using a Philips
EPIQ system with a X6-1 transducer at 4 volumes/s.

Ultrasound data was registered using the method from [4], using a grid of 1500
points distributed evenly, and each registered image was transformed and re-
sampled into the fusion space at 1 mm3, totalling 181×95×226 and 172×175×185
voxels per volume for each patient. Registered input volumes were sliced through
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a longitudinal plane to produce 2D patches (275 × 184 and 352 × 285 pixels,
respectively), which were used for the 2D experiments on real data. The β-VAE
architecture was inspired by the 3D branch in [2] and represented in Fig. 2. The
kernel size in all conv layers is 3 × 3 (×3 in 3D). Training was carried out using
the Adam optimizer [9] with a learning rate of 10−4 and over 300 epochs.

Fig. 2. Architecture of the VAE. Convolution kernels are of size 3 × 3 (×3 in 3D).

3.2 Experiments

Whole-body fusion of the 2D fetal ultrasound images was used for quantitative
and qualitative validation. Quantitative evaluation was aimed at establishing the
ability of the method to get rid of fusion artefacts (namely non-rigid motion and
registration errors) while capturing the whole fetal anatomy, through the qual-
ity metric Q(i, j) =

√
1

|Mi|
∑

x∈Mi
||Ii(x) − Fj(x)||2, so that QIN (i) = Q(i, i),

measures the RMS difference between an input patch and the same region in the
fused image Fi reconstructed from the corresponding sample si in the manifold,
therefore it measures to what extent the information in the patch was preserved.
In order to measure the quality of the fusion outside the input patch Ii, we use
QOUT (i) = 1

|Ω|
∑

j∈Ω Q(i, j), where the set Ω is built incorporating the patch
Ij , j �= i, in increasing order Q(i, j), that does not intersect with patch Ii or with
any of the patches already in Ω.

Further qualitative evaluation was conducted on the experiments by measur-
ing the subjective appearance of the fused images. Three raters were presented
with 500 pairs of fused images, randomly selected from a uniform sampling grid
in the manifold. The raters were asked to select which image was best, or if they
were of equal quality.

Both qualitative and quantitative evaluations were carried out on the syn-
thetic and real datasets using the three methods: linear and non-linear manifold
embedding and β-VAE fusion.
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4 Results

The quantitative results are provided in Table 1. The pixel-wise average fusion
(Avg.) was used as baseline, and compared to the two manifold embedding
methods (MDS and LEM) and to the β-VAE fusion. β values in the range
[1 · 10−4, 1 · 10−2] were used, and a subset of this range, where results were best
(β ∈ [3 ·10−4, 2 ·10−3]) is reported. The rows where values of β yield significantly
worse results have been greyed out, so the remaining values give an idea of the
range of β where results are stable. Lower values of β introduced an increasing
amount of noise in the reconstruction, and higher values introduced blur, as the
latent space collapsed into a single point for β > 0.01. The results show that
the β-VAE approach outperforms all the other in preserving the features from
individual patches. β = 7 · 10−4 was used for the qualitative experiments.

Table 1. Quantitative results on quality of the fused 2D image, measuring the ability
of the method to preserve features from the input patches and provide a whole-fetus
fusion, reported for the synthetic dataset (Synth.) and patients 1 and 2 (P1 and P2).
Best values are highlighted in bold, worst are greyed out. All manifold fusion imple-
mentations outperform the naive average fusion, with the non-linear embedding (LEM)
being the worst (interpolation brings the fused image outside the manifold). Overall,
the β-VAE performs best, stable over a range of beta values. For patient 1, where the
patch alignment is particularly good and the non-rigid motion limited over a small
region covering the forearm, inter-method differences are less obvious.

QIN QOUT

Synth. P1 P2 Synth P1 P2
Avg 143.4± 33.8 153.8± 3.7 111.4± 10.6 112.9± 15.2 147.3± 3.8 96.7± 6.5
MDS 16.6±16.4 45.2±6.0 48.6±7.8 6.8±5.7 25.7±9.6 32.1±9.9
LEM 17.6±17.9 47.1±7.1 50.1±8.3 6.3±5.5 25.3±10.5 32.1±9.7

β

β
-V
A
E

3E-4 14.1±16.4 24.4±2.4 17.4±2.7 6.1±3.4 23.7±4.8 46.6±23.5
4E-4 14.7±17.5 25.9±2.9 17.3±2.5 6.4±4.0 37.0±12.5 38.5±20.2
5E-4 13.4±15.3 25.3±3.0 17.5±2.4 6.5±3.0 24.9±5.1 44.2±23.7
6E-4 13.6±16.5 25.6±2.7 17.8±2.9 6.1±3.6 26.4±5.3 38.8±22.1
7E-4 12.4±14.1 26.4±3.1 17.8±2.8 6.2±3.1 27.9±6.7 38.1±18.0
8E-4 14.2±16.3 27.2±3.1 18.0±2.9 6.0±3.0 30.0±6.8 40.8±21.6
9E-4 13.6±15.1 27.7±3.1 18.2±3.0 6.8±3.8 27.5±5.0 36.4±19.5
1E-3 13.8±15.7 28.0±3.6 18.7±3.0 6.7±4.3 29.4±6.8 39.6±19.1
2E-3 13.0±14.3 32.5±4.2 19.6±3.3 6.3±3.6 31.6±4.9 29.7±14.4

Qualitative results in Fig. 3, show the amount of images (in %) where the
fusion using the β-VAE method was judged better than the other methods,
for each data-set. Overall, the β-VAE method provided better fusions with less
artefacts. In the case of P1, there is no motion artefacts except for the fetal arm
(c.f. second row in Fig. 4), therefore the average reconstruction is of high quality
already. This explains the difference with the other data-sets.
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Fig. 3. β-VAE > Y indicates fraction of the times (in %) where the results with the
β-VAE where considered better than with method Y by 3 raters. The bars show the
average and standard deviation. The β-VAE outperforms all the other methods, with
the exception of P1 where the average fusion is chosen best more often. As supported
by Table 1, P1 combined good patch alignment and limited motion artefacts, so the
smooth appearance of the average fusion was found to be visually best.

Examples of representative 2D fusions are shown in Fig. 4, where the fused
images mapped back from the manifold sample corresponding to the patch on
the left column is shown. The ability of the β-VAE to provide reconstructions
without motion/blur artefacts is pointed at with white arrows. For example
the second row shows, for patient 1, the β-VAE reconstructions generated from
different manifold locations (corresponding to input patches marked by the red
contour) that recover the entire fetus but with the arm on a different pose.

Fig. 4. 2D Whole-fetus fusions (for synthetic data, patient 1 and 2, in rows 1, 2 and
3 respectively), obtained from sampling the manifold at the location corresponding to
one of the input patches. The region covered by the patch is outlined in red. White
arrows indicate regions where fusion is challenging due to motion or mis-registration
in input data. (Color figure online)
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Fig. 5. Example of 3D fusion of patients 1 (top, all methods provide similar visual
results) and 2 (bottom). Fusion methods, from left to right: average, MDS, LEM and
β-VAE. The arrows point at some of the artefacts that were found systematically with
classic manifold embedding techniques.

As a proof-of-concept, examples of the 3D version of the four methods for
patients 1 and 2 are shown in Fig. 5 (as anticipated in the 2D experiments,
volume renders of 3D reconstructions for patient 1 are indistinguishable). This
result shows the potential of the proposed method to reconstruct high quality
whole-body fetal images even from motion-corrupted input data, which would
otherwise blur the result.

5 Discussion and Conclusions

We have presented a new paradigm to carry out fusion of a large amount of image
patches, based on embedding the patches into a manifold through a map M,
and then sampling the manifold to reconstruct a fused image in the input image
space. The proposed paradigm has been implemented using Multi-Dimensional
Scaling, Laplacian Eigenmaps and a β variational autoencoder.

The inverse mapping M−1 was not available for classic manifold embed-
ding techniques (e.g. MDS, LEM) and the fused image was obtained by Shep-
ard’s interpolation of input patches that are nearby in the manifold. Although
non-linear embeddings potentially yield more accurate representation of the
data, recovering the fused image through interpolation results in out-of-manifold
images, which is why LEM produced worse results than the other methods. This
is, to the best of our knowledge, the first time that fusion has been approached
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as learning a single-instance model, where all the data are of the same object,
as opposed to the common practice of creating a model that captures the vari-
ability of a population. One advantage is that this eliminates bias from under-
represented cases in a training set, e.g. rare morphological abnormalities.

A limitation of the proposed framework is that it does not distinguish between
inter-patch differences due to motion, noise, etc. This lends itself towards disen-
tangled representation of these sources of variation, particularly since it may be
desirable to average over noise and artefacts while separating motion. This will
be investigated in future work.

The proposed method shows promising results on image fusion of rigidly pre-
aligned image patches, and particularly towards a challenging task as whole body
fetal image fusion. The fused images reduce the artefacts caused by non-rigid
motion and misalignment by pushing the problematic patches to relatively far
regions in the manifold.
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Abstract. Recent developments in image acquisition literature have
miniaturized the confocal laser endomicroscopes to improve usability and
flexibility of the apparatus in actual clinical settings. However, miniatur-
ized devices collect less light and have fewer optical components, resulting
in pixelation artifacts and low resolution images. Owing to the strength
of deep networks, many supervised methods known as super resolution
have achieved considerable success in restoring low resolution images by
generating the missing high frequency details. In this work, we propose
a novel attention mechanism that, for the first time, combines 1st- and
2nd-order statistics for pooling operation, in the spatial and channel-wise
dimensions. We compare the efficacy of our method to 10 other exist-
ing single image super resolution techniques that compensate for the
reduction in image quality caused by the necessity of endomicroscope
miniaturization. All evaluations are carried out on three publicly avail-
able datasets. Experimental results show that our method can produce
superior results against state-of-the-art in terms of PSNR, and SSIM
metrics. Additionally, our proposed method is lightweight and suitable
for real-time inference.

1 Introduction

Colorectal cancer is known as the fourth most-common cancer and remains one of
the leading causes of cancer related mortality in the world. In 2018, more than
1 million people were affected by colorectal cancer worldwide, resulting in an
estimated 550,000 deaths [2]. Rapid histopathologic assessment is an important
tool that may improve disease prognosis by detecting early-stage cancer and pre-
cancerous conditions. Although biopsy and ex-vivo tissue examination are widely
accepted as the diagnostic gold standard, such procedures take time and may
limit the ability of the endoscopist to rapidly gauge disease severity. Confocal
laser endomicroscopy (CLE), on the other hand, has substantially improved real-
time in-vivo visualization of the subsurface of living cells, vascular structures,
and tissue patterns during endoscopic examination [10].

For in-vivo histological examination, the large size of the microscope com-
plicates navigation of the interior of the body in a clinical setting. Therefore,
c© Springer Nature Switzerland AG 2019
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it is necessary to reduce the size of the microscope to completely and safely
access the organ(s) of interest. However, miniaturization reduces the number
of optical elements in the microscope probe, introducing pixelation artifacts in
the acquired images. One strategy to remove image artifacts and enhance image
quality is to directly post-process degraded images. An efficient process in the
field of image processing, referred to as single image super-resolution (SR), aims
to reconstruct an accurate high-resolution (HR) image given its low-resolution
(LR) counterpart. Thus, SR is a promising software method to mitigate image
degradation due to hardware miniaturization.

Among traditional SR algorithms, Huang et al. [8] proposed leveraging self-
similarity modulo affine transformations to accommodate natural deformation of
recurring statistical priors within and across scales of an image. Timofte et al. [19,
20] used a combination of neighbour embedding and sparse dictionary learning
over an external database and proposed anchored neighborhood regression in
the dictionary atom space. Recently, CNNs have advanced the SR research field
by directly learning the mapping between LR and HR images [1,4,11–13]. Dong
et al. [4] demonstrated that a fully convolutional network trained end-to-end
can perform LR-to-HR nonlinear mapping. Kim et al. [11] suggested a trained
network to predict additive details in the form of a residual image, which is
summed with the interpolated image. Kim et al. [12] addressed model overfitting
by reducing the number of parameters via recursive convolutional layers. Lai
et al. [13] designed a network which progressively reconstructs the sub-band
residuals of high-resolution images at multiple pyramid levels. Ahn et al. [1]
improved speed and efficiency of SR models by designing a cascade mechanism
over residual networks. Lastly, Cheng et al. [3] exploited recursive squeeze and
excitation modules in a network to exploit relationships between channels. Izadi
et al. [9] reported the first attempt to deploy CNNs on CLE images. They used
a densely connected CNN to transform synthetic LR images into HR ones. Ravi
et al. [15] employed a CNN to restore missing details into LR images. They
collected a set of consecutive LR frames and generated synthetic HR images
using a video registration technique. In a more recent study [16], Ravi et al.
trained a CNN for unsupervised SR on CLE images using a cycle consistency
regularization, designed to impose acquisition properties on the SR images.

In this paper, we present a lightweight convolutional neural network (CNN)
that is appropriate for frame-wise SR by incorporating a novel attention mech-
anism. In contrast to SESR [3], which leverages attention modules from the
Squeeze-and-Excitation network (SENet) [7] to re-weight channels, we intro-
duce a novel weighting scheme to recalibrate learned features based on pair-
wise relationships. Our attention modules compromise both 1st-order pooling
and 2nd-order pooling (a.k.a. bilinear pooling), improving the quality of learned
features in the network by considering pairwise correlations along feature chan-
nels and spatial regions [5]. The compactness and computational speed of our
network lends well to real-time implementation during in-vivo examination.
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We demonstrate that stacking attention modules in the middle of a low-level
feature extraction head and a feature integration tail quantitatively and quali-
tatively produces superior results against existing SR methods and generalizes
well over unseen microscopic datasets.

Fig. 1. (a) The overall architecture of our proposed network. (b) RBAM architecture.
(c) channel-wise and (d) spatial attention architectures.

2 Method

Network Overview. Figure 1-a depicts the overall architecture of our proposed
LR-to-SR network. Let LLR ∈ R

1×W×H , ISR ∈ R
1×rH×rW , and r denote the

low resolution input and super-resolved output, and the downsample factor,
respectively. We use a convolution layer, denoted by F(·), with a 3 × 3 kernel
and C output channels to extract initial features H0 ∈ R

C×H×W , i.e.

H0 = Fc(ILR; θ0), (1)

where θ refers to the learnable parameters. In our proposed network, the initial
features H0 are updated by sequential residual attention modules, denoted as G(·)
and a skip connection. The entire high-level feature extraction stage is denoted
as B(·):

HB = B(H0) = Gb(Gb−1(. . . (G1(H0)) . . .)) + H0. (2)

To upsample the feature maps, we use sub-pixel convolutions [17], denoted as
U(·), followed by a single channel 1 × 1 convolution for SR reconstruction:

ISR = F1(U(HB; θup); θrec). (3)

Residual Bilinear Attention Module. In our proposed RBAM, we combine
1st- and 2nd-order pooling operations spatially and channel-wise to recalibrate
learned features for efficient network training. Figure 1-b illustrates the structure
of our proposed RBAM. Mathematically, we formulate RBAM as:

Hb = Gb(Hb−1) = Qb(Hb−1) + Hb−1, (4)
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where Q(·) denotes the attention modules before the skip connection. Given the
input feature maps Hb ∈ R

C×H×W , two convolutions with 3 × 3 kernel size
interleaved with a ReLU activation function, denoted by +, produce high-level
feature maps Hb

conv ∈ R
C×H×W as input to the attention branches:

Hb
conv = Fc(F+

c (Hb−1; θb1); θ
b
2). (5)

Channel-wise Attention (CA) Branch. CA leverages the inter-channel cor-
respondence between feature responses (Fig. 1-c). 1st- and 2nd-order pooling
mechanisms operate on Hb

conv, producing two vectors F1st
ca , F2nd

ca ∈ R
C×1×1. F1st

ca

is the 1st-order CA obtained by spatial average pooling to squeeze the feature
map of each channel [7]. To obtain 2nd-order CA, pairwise channel correlations
are computed in the form of a covariance matrix Σ ∈ R

C×C by spatial flatten-
ing, dimension permutation, and matrix multiplication. Each row in Σ encodes
the statistical dependency of a channel with respect to every other channel [5].
Given the covariance matrix Σ, we adopt a row-wise convolution with 1 × C
kernel size to produce the 2nd-order CA vector F2nd

ca . Finally, two successive 1-D
convolutions interleaved with a ReLU activation function, operate on a vector
formed by the sum of F1st

ca +F2nd
ca . The output of the convolution operation is fed

into a sigmoid function σ, followed by element-wise multiplication ⊗ to produce
the bth updated features maps Hb

ca:

Hb
ca = Hb

conv ⊗ σ(Fc(F+
c
4
(F1st

ca + F2nd
ca ; θb3); θ

b
4)). (6)

Spatial Attention (SA) Branch. SA indicates shared correspondence between
spatial regions across all feature maps (Fig. 1-d). Given Hb

conv as the input, the
1st-order spatial attention matrix, F1st

sa ∈ R
1×H×W , is computed by the average

pooling operation along channel dimension to aggregate information for each spa-
tial location across all features. To compute 2nd-order spatial attention matrix,
F2nd
sa ∈ R

1×H×W , we first reduce the spatial size of feature maps to H ′×W ′ (8×8
in our implementation) by applying average pooling. Then, appropriate reshap-
ing, dimension permutation and matrix multiplication is adopted to obtain the
covariance matrix Σ ∈ R

H′W ′×H′W ′
. Similar to channel-wise attention, a row-

wise convolution with 1×H ′W ′ kernel size is applied on Σ. Eventually, dimension
permutation and nearest neighbor interpolation produce F2nd

sa . We add these two
matrices together element-wise and apply a convolution with 1 × 1 kernel size
that feeds a sigmoid function. Spatial attention is realised by element-wise mul-
tiplication over all feature maps, formulated as:

Hb
sa = Hb

conv ⊗ σ(Fc(F1st
sa + F2nd

sa ; θb5)) (7)

Attention Fusion. The updated features are concatenated (++) and aggregated
via a convolution with kernel 1 × 1 kernel, followed by a ReLU function. Lastly,
Hb is added via skip connection:

Hb = F+
c (Hb

ca ++ Hb
sa; θ

b
6) + Hb−1. (8)
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Table 1. Details of the datasets used in our evaluation.

dataset provided by #patients #images anatomical site image size

CLE100 Leong et al. [14] 30 181 small intestine 1024× 1024

CLE200 Grisan et al. [6] 32 262 esophagus 1024× 1024

CLE1000 Ştefănescu et al. [18] 11 1025 colorectal mucosa 1024× 1024

Fig. 2. (a) Examples of images from the partitioned test set. Images belonging to the
‘texture rich’ partition are used for evaluation.

3 Results and Discussion

Data. We evaluate existing state-of-the-art SR methods, as well as our proposed
RBAM, on three publicly available CLE datasets (Table 1). We select images rich
in texture by assessing the SR performance of bicubic interpolation on the unseen
test set. As depicted in Fig. 2, images with PSNR scores below the mean PSNR
score of the bicubic method evaluated on the test set are deemed ‘texture rich’,
and are used for evaluation, whereas images associated with scores above the
mean are deemed ‘texture poor’. In other words, images which can be effectively
restored using bicubic interpolation are rejected for evaluation, as they contain
little information on which to assess the performance of state-of-the-art methods.
Evaluation assesses the methods’ ability to reconstruct 1024 × 1024 HR image
from a synthesized LR counterpart obtained via bicubic downsampling with the
appropriate factor (×2 or ×4).

Training Settings. We train all methods on a random partition (80%) of
CLE100 as this dataset is the richest in texture. Methods are evaluated on the
remaining 20% of CLE100, and all of CLE200 and CLE1000. For DL-based
methods, we replicated the reported training settings, and used public code for
traditional algorithms. For our model, we use B = 5 RBAMs and set the number
of features to C = 64 to create a lightweight network. In each training batch, 16
LR patches of size 48 × 48 are randomly extracted as inputs, and augmented by
random 90◦ rotations and horizontal/vertical flip. We use Adam optimizer and
L1 loss to train our network for 300 epochs. Initial learning rate is set to 10−4

and is halved every 50 epochs.
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Fig. 3. Qualitative results and their PSNR scores at ×4 SR. Each row shows the side-
by-side comparison of HR with (a) bicubic, (b) GR, (c) SESR, and (d) RBAM across
three datasets. HR images are shown for each pair for ease of visual comparison.

Ablation Investigation. We discern the effectiveness of the individual com-
ponents in our network modules by ablating attention blocks and evaluating
performance after 50 epochs. Our investigation shows that, for CLE100 at ×2
SR, attention-based variants outperform the baseline, demonstrating the mer-
its of incorporating spatial and channel-wise contextual information. We also
observed that using both 1st and 2nd-order pooling operations simultaneously
outperform using either 1st or 2nd-order channel-wise pooling individually. We
similarly note that using both spatial and channel-wise attention outperforms
either one alone.

Comparison to State-of-the-art. We compare the performance of traditional
algorithms including ANR [19], GR [19] and A+ [20], as well as DL-based tech-
niques including SRCNN [4], VDSR [11], DRCN [12], LapSRN [13], SESR [3]
and our proposed RBAM. Table 2 summarizes the quantitative comparisons in
terms of peak signal-to-noise-ratio (PSNR-SEM), structural similarity (SSIM),
and inference time at ×2, and ×4 SR. From the table, one can see that most DL-
based methods consistently outperform traditional SR algorithms in PSNR and
SSIM metrics. Particularly, RBAM significantly outperforms the mean PSNR
over all datasets by 0.18 dB and 0.13 dB for ×2 and ×4 SR, respectively. Fur-
thermore, RBAM is a practical compromise between inference time, and gener-
alization. Our results show a moderate quantitative increase in PSNR score and
a considerable increase in qualitative performance - this is similar to previous
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Table 2. Quantitative results of SR models at ×2 and ×4 factors. Bold indicates the
best result. ✤ and ✝ denote traditional and DL-based methods, respectively. PSNR
scores are reported with the standard error of the mean (SEM) for each method.

Methods CLE100 CLE200 CLE1000 time

Scale ×2 PSNR SSIM PSNR SSIM PSNR SSIM

Bicubic 33.69±0.06 0.8693 35.53±0.01 0.9029 34.45±0.01 0.8920 0.02

A+✤ [20] 34.22±0.07 0.8928 36.14±0.01 0.9218 35.04±0.01 0.9114 6.72

ANR✤ [19] 36.44±0.13 0.9226 39.10±0.01 0.9559 37.64±0.01 0.9559 6.07

GR✤ [19] 36.56±0.13 0.9243 39.26±0.01 0.9579 37.79±0.01 0.9448 4.47

SRCNN✝ [4] 35.75±0.11 0.9181 38.25±0.01 0.9494 36.87±0.01 0.9380 0.06

VDSR✝ [11] 36.72±0.13 0.9276 39.31±0.01 0.9578 37.89±0.01 0.9462 0.25

DRCN✝ [12] 36.65±0.13 0.9257 39.29±0.01 0.9575 37.83±0.01 0.9452 0.48

LapSRN✝ [13] 36.71±0.13 0.9264 39.25±0.01 0.9583 37.91±0.01 0.9462 0.07

SESR✝ [3] 36.76±0.13 0.9282 39.36±0.01 0.9583 37.91±0.01 0.9462 0.27

RBAM (Ours)✝ 36.91±0.12 0.9321 39.45±0.01 0.9590 38.22±0.01 0.9501 0.18

Scale ×4

Bicubic 31.29±0.04 0.6673 32.45±0.01 0.7318 31.78±0.01 0.7278 0.02

A+ [20] 31.57±0.04 0.7042 32.76±0.01 0.7607 32.06±0.01 0.7517 3.03

ANR [19] 31.68±0.04 0.7160 32.93±0.01 0.7736 32.23±0.01 0.7671 2.88

GR [19] 31.70±0.04 0.7201 32.95±0.01 0.7736 32.25±0.01 0.7703 2.31

SRCNN [4] 31.59±0.04 0.7073 32.76±0.01 0.7617 32.07±0.01 0.7566 0.06

VDSR [11] 31.66±0.04 0.7144 32.86±0.01 0.7804 32.16±0.01 0.7635 0.25

DRCN [12] 31.70±0.04 0.7214 32.92±0.01 0.7750 32.21±0.01 0.7635 0.48

LapSRN [13] 31.68±0.04 0.7190 32.76±0.01 0.7617 32.29±0.01 0.7737 0.08

SESR [3] 31.76±0.04 0.7249 32.99±0.01 0.7804 32.29±0.01 0.7737 0.33

RBAM (Ours) 31.84±0.04 0.7315 33.11±0.01 0.7852 32.47±0.01 0.7874 0.07

works in single image super resolution [21]. Figure 3 shows selected image patches
from each dataset for qualitative assessment. RBAM can delicately restore high-
frequency cues, such as granular textures and sudden changes in grayscale pixel
intensity. This manifests qualitatively in the form of improved restoration of
high frequency details such as cell membranes (CLE200, CLE1000 examples)
and intracellular spaces (CLE100 example).

Motivation for Bilinear Pooling. We combine 1st-order and 2nd-order pool-
ing to recalibrate learned features based on channels that activate often or cor-
respond to feature rich inputs, respectively. Channels that activate often are
likely responding to common, low frequency image features. Conversely, chan-
nels that are highly correlated may be responding to feature rich instances in
the image space that activate multiple filters simultaneously. High frequency fea-
tures tend to be complex, and not as common semantically compared to low fre-
quency image details. Therefore, channels that learn complex image features may
not be emphasized by first order pooling operations alone. Combining first and
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second order pooling in an attention module assures that hard working chan-
nels are rewarded without diminishing the optimization of channels that learn
complex features in the low to high resolution image mapping space.

4 Conclusion

We proposed the first network that simultaneously leverages both first and sec-
ond order statistics for pooling in spatial and channel-wise attention mechanisms,
resulting in a lightweight and fast model that restores high frequency image
details. We compared our proposed model with various traditional and DL-based
SR techniques on three CLE datasets in terms of image quality assessment met-
rics and inference time. Our RBAM network outperforms existing lightweight
methods across different datasets, downsampling factors, and SR performance
evaluation criteria. Experimental results also highlight the potential applica-
bility of inexpensive software-based post-processing SR modules that improve
degraded images in miniaturized CLE devices in real-time.

Acknowledgments. Thanks to the NVIDIA Corporation for the donation of Titan X
GPUs used in this research and to the Collaborative Health Research Projects (CHRP)
for funding.
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Abstract. Cycle-consistent generative adversarial network (CycleGAN)
has been widely used for cross-domain medical image systhesis tasks par-
ticularly due to its ability to deal with unpaired data. However, most
CycleGAN-based synthesis methods can not achieve good alignment
between the synthesized images and data from the source domain, even
with additional image alignment losses.This is because theCycleGANgen-
erator network can encode the relative deformations and noises associated
to different domains. This can be detrimental for the downstream appli-
cations that rely on the synthesized images, such as generating pseudo-
CT for PET-MR attenuation correction. In this paper, we present a defor-
mation invariant model based on the deformation-invariant CycleGAN
(DicycleGAN) architecture and the spatial transformation network (STN)
using thin-plate-spline (TPS). The proposed method can be trained with
unpaired and unaligned data, and generate synthesised images aligned
with the source data. Robustness to the presence of relative deforma-
tions between data from the source and target domain has been evalu-
ated through experiments on multi-sequence brain MR data and multi-
modality abdominal CT and MR data. Experiment results demonstrated
that our method can achieve better alignment between the source and tar-
get data while maintaining superior image quality of signal compared to
several state-of-the-art CycleGAN-based methods.

1 Introduction

Cross-domain image synthesis is gaining popularity in a wide range of clinical
applications to enable multi-modality synthesis without acquiring data from mul-
tiple modalities. However, the vast majority of cross-modality synthesis methods
are solely evaluated on brain image data due to the low geometric variance. Oth-
erwise, performance of the synthesis methods often rely on a registration-based
c© Springer Nature Switzerland AG 2019
F. Knoll et al. (Eds.): MLMIR 2019, LNCS 11905, pp. 245–254, 2019.
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Fig. 1. Architecture of TPSDicyc

preprocessing step. Previous studies have shown that CycleGAN [1] achieves high
synthesis quality on unpaired data, but it has also been observed that Cycle-
GAN may reproduce the “domain-specific deformations” of the data [2,3]. A
common strategy to address this issue is to leverage image similarity metrics in
the CycleGAN loss function [4,5], but this introduces the trade-off between good
quality of signal and good data alignment. The deformation-invariant CycleGAN
(DicycleGAN) model [3] has been proposed recently achieved state-of-the-art
synthesis performances with better alignment of data. This method uses two
sets of parameters to encode translatable appearance features and relative spa-
tial deformations between the training images using the deformable convolution
(DC) operation [6]. However, DicycleGAN models a relatively consistent local
deformation between the source and target data. This limits the generalizability
of the model on multiple scanners, and requires the subjects in similar poses
when being imaged. Otherwise the learning process can be unstable and slow to
converge as shown in our experiments.

In this paper, we present an alternative framework of DicycleGAN based on
thin-plate-spline (TPS) named as TPSDicyc. Compared to DicycleGAN, which
models combines the “deformation” and “image translation” parameters into
one network, TPSDicyc uses a separated spatial transformation network (STN)
to learn the relative deformation between the source and target data. Figure 1
presents the TPSDicyc framework and its subnetworks. Figure 2 displays the
architecture of TPSDicyc generator network. We evaluated the proposed method
using both publicly available multi-sequence brain MR data and multi-modality
abdominal data. Compared to the selected state-of-the-art baseline methods,
TPSDicyc displayed better ability to handle disparate imaging domains and to
generate synthesized images aligned with the source data.

2 Previous Works

CycleGAN was first applied to cross-domain medical image synthesis in [7] for
co-synthesis of CT and MR brain data. Alignment between the synthesised data
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(a) DicycleGAN generator

(b) TPSDicyc generator

Fig. 2. Structures and parameters of generators in DicycleGAN and our TPSDicyc:
DicycleGAN uses deformable convolutional layers to model the relative deformation
between the source and target data; in TPSDicyc the deformation is learned by a
separated Thin-plate-spline based spatial transformation network. (Color figure online)

and the source data can be improved by regularizing the problem through multi-
task training, for example, using segmentation masks [2], and by co-registration
[7]. However, these models have an extra cost of manual annotations for segmen-
tation or registration ground truths. A currently popular strategy is to integrate
image similarity measures into the CycleGAN loss so that the geometric corre-
spondences between data from different domains can be improved. For example,
[5] introduces a structure-consistency loss based on the modality independent
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neighborhood descriptor (MIND) [8]. It has been shown that this structure-
constrained CycleGAN can be trained with unregistered multi-modal MR and
CT brain data. A similar gradient-consistency loss, based on the normalised gra-
dient cross correlation (GCC), is introduced in [4]. This method has been eval-
uated using unpaired but pre-registered, multi-modal MR and CT hip images.
However, as discussed in [3], there is a conflict between the image similarity based
losses and the CycleGAN discriminative loss. Because the synthesized data in
which the “domain-specific doformations” are reproduced will lead to a lower
adversarial loss (of the discriminator in GANs) but higher alignment loss. As a
result, the synthesized data can not be well aligned to the source data and show
a good quality of signal at the same time. DicycleGAN [3] uses DC parameters
to decouple the translatable appearance features and the relative deformation
between the source and target data, thus introduces a possible solution of the
conflicts in the CycleGAN losses. However, DC layers can only learn relative
consistent and local deformations.

3 Method

Assuming that we have nA images xA ∈ X A from domain X A, and nB images
xB ∈ X B from domain X B , synthesis is performed to generate images of domain
X B using images from X A. To this end, we train a generator (which consists of an
encoder FA→B , a decoder GA→B and a STN TA→B) and a discriminator DB in
the min-max game of the GAN loss LGAN

(
FA→B , TA→B , GA→B ,DB ,X A,X B

)
.

We let LA→B
GAN denote this GAN loss for short and simple representation. Accord-

ingly, GB→A, FB→A, TB→A, DA, and the GAN loss LB→A
GAN are defined. A

CycleGAN-based framework consists of two symmetric sets of generators act
as mapping functions applied to a source domain, and two discriminators DB

and DA to distinguish real and synthesized data for a target domain. The cycle
consistency loss LA,B

cyc , is used to keep the cycle-consistency between the two
sets of networks. This gives CycleGAN the ability to deal with unpaired data.
Then the loss of the whole CycleGAN framework LCycleGAN is LCycleGAN =
LA→B

GAN + LB→A
GAN + λcycLA,B

cyc . Presently proposed CycleGAN-based methods add
an image alignment term LA,B

align to LCycleGAN which becomes LCycleGAN,align =
LCycleGAN + λalignLA,B

align = LA→B
GAN + LB→A

GAN + λcycLA,B
cyc + λalignLA,B

align, where
λalign is the weight used to balance LA,B

align and LCycleGAN .

3.1 Architecture of Generator

As shown in Fig. 2, the generator network consists of an encoder, an decoder
and a STN. The encoder maps the input data into a latent feature space,
and the decoder generates the synthesized image based on the latent features.
The relative deformation between the source and target domains are learned
by a subset of parameters θT which are only used in the training process.
In [3], θT is the trainable parameters in the DC layers. In this work, we
introduced a new spatial transformation sub-network T for this purpose. As
shown in Fig. 2, the transformation sub-network take latent features extracted
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from the source and target data, and produces a displacement field of a key-
point grid. This displacement between keypoints are then applied to the source
latent features using thin-plate-spline (TPS) interpolation. In this case, θT rep-
resents the parameters in this spatial transformation subnet, and θ the rest
parameters in G. To generate synthesised images for domain X B , each input
image xA generates two output images through two separated forward passes:
deformed output image x̂B

T = GA→B
(
TA→B

(
FA→B

(
xA

)))
and undeformed

image x̂B = GA→B
(
FA→B

(
xA

))
. x̂B

T generated by passing the latent feature
F (x) through T (shown by the red arrows in Fig. 2) is expected to be identical
to xB. x̂B is expected to be aligned with xA.

3.2 Loss and Training

Similar to DicycleGAN, TPSDicyc loss functions include the traditional GAN
loss, the cycle-consistency loss used in the original CycleGAN, an image align-
ment loss and an additional deformation invariant cycle consistency loss.

For the GAN loss LA→B
GAN , FA→B , GA→B and TA→B are trained to minimize

(
DB

(
x̂B

T

) − 1
)2 and DB is trained to minimize

(
DB(xB) − 1

)2 + DB
(
x̂B

T

)2.
The same formulation is used to calculate LB→A

GAN defined on the “B → A”
networks. Note that the GAN loss is calculated based on the deformed outputs.
As the undeformed outputs of generators are expected to be aligned with the
input images, an image alignment loss based on normalized mutual information
(NMI) is defined as:

LA,B
align = 2 − NMI

(
xA, x̂B

) − NMI
(
xB , x̂A

)
. (1)

Essentially this image alignment loss can be adopted with any similarity measure
suitable for image registration, such as normalized mutual information (NMI)
[9], normalised GCC used in [4], or MIND in [5] and [8].

Secondly, the cycle-consistency loss plays a critical role for the outstanding
performance of CycleGAN. In this work, both the undeformed and deformed
version of synthesized data should be cycle-consistent to encode optimal repre-
sentations. This results in two cycle-consistency losses. The undeformed cycle
consistency loss is defined as:

LA,B
cyc = ‖GB→A

(
FB→A

(
x̂B

)) − xA‖1 + ‖GA→B
(
FA→B

(
x̂A

)) − xB‖1, (2)

and the deformation-invariant cycle consistency loss is:

LA,B
dicyc =‖GB→A

(
TB→A

(
FB→A

(
x̂B

))) − xA‖1
+ ‖GA→B

(
TA→B

(
FA→B

(
x̂A

))) − xB‖1.
(3)

The complete TPSDicyc loss is then defined as:

LTPSDicyc = LA→B
GAN + LB→A

GAN + λalignLA,B
align + λcycLA,B

cyc + λdicycLA,B
dicyc. (4)
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In this work, we set λcyc = λdicyc = 10 and λalign = 0.9. The models were trained
with Adam optimizer [10] with a fixed learning rate of 0.0002 for the first 100
epochs, followed by 100 epochs with linearly decreasing learning rate. Here we
apply a simple early stop strategy: in the first 100 epochs, when LTPSDicyc stops
decreasing for 10 epochs, the training will move to the learning rate decaying
stage; similarly, this tolerance is set to 20 epochs in the second 100 epochs.

4 Experiments

IXI dataset: The Information eXtraction from Images (IXI) dataset1 provides
co-registered multi-sequence MR images collected from multiple sites. We used
66 pairs of proton density (PD-) and T2-weighted volumes for T2→PD synthesis
experiment, each volume has 116 to 130 slices. We use 38 pairs for training and
28 pairs for evaluation of synthesis results. Our image generators take 2D axial-
plane slices of the volumes as inputs. All volumes were resampled to a resolution
of 1.8 × 1.8 × 1.8mm3/voxel, then cropped to a size of 128 × 128 pixels. All the
images are bias field corrected and normalized with their mean and standard
deviation. We applied a simulated deformation to all T2-weighted images. Syn-
thesis experiments were then performed between the undeformed PD-weighted
data and the deformed T2-weighted data. When using deformed T2-weighted
images, the ground truths of synthesized PD-weighted data were generated by
applying the same nonlinear deformation to the source PD-weighted images.

Private Abdominal Data. We used a dataset containing 40 multi-modality
abdominal T2*-weighted and CT images collected from 20 patients with abdom-
inal aortic aneurysm (AAA). All images are resampled to a resolution of
1.56×1.56×5mm3/voxel, and the axial-plane slices trimmed to 192×192 pixels.
Because of the “domain-specific deformations”, registration based ground truths
as in the IXI dataset are not available. However, because several organs, such as
aorta and spine, are relatively rigid compared to other surrounding soft tissues
such as lower gastrointestinal tract organs, these objects can be affinely regis-
tered for evaluation of synthesis. For each volume in the MA3RS dataset, the
anatomy of the aorta were manually segmented for each volume (as described
in [11]). The multi-modality data acquired from the same patient were affinely
registered so that the segmented aorta in both data are well aligned. The manual
registration and segmentation were performed by 4 clinical researchers. Signal
of the synthesized images were evaluated within the segmentation of aorta.

4.1 Evaluation Metrics

To be consistent with the baseline methods, we use three metrics to evaluate
performance on cross-domain image synthesis: mean squared error (MSE), peak
signal-to-noise ratio (PSNR) and structural similarity index (SSIM) as typically

1 http://brain-development.org/ixi-dataset/.

http://brain-development.org/ixi-dataset/
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Fig. 3. Visualized PD→T2 synthesis results of the IXI dataset: an arbitrary deforma-
tion was applied to the T2 weighted images.

used by other CycleGAN based methods. Given a volume xA and a target vol-
ume xB, the MSE is computed as: 1

N

∑N
1

(
xB − x̂B

)2, where N is number of

voxels in the volume. PSNR is calculated as: 10 log10
max2

B

MSE . SSIM is computed
as: (2μAμB+c1)(2δAB+c2)

(μ2
A+μ2

B+c1)(δ2
A+δ+B2+c2)

, where μ and δ2 are mean and variance of a volume,

and δAB is the covariance between xA and xB . c1 and c2 are two variables to
stabilize the division with weak denominator [12]. Larger PSNR and SSIM, or
smaller MSE, indicate a better performance of a synthesis algorithm. To test the
statistical significance of results, we perform paired t-test between the TPSDicyc
and the DicycleGAN baseline. Differences between performances are considered
to be statistically significant when the p−value is less than 0.05.

4.2 Results and Discussion

IXI Dataset. The quantitative results is shown in Table 1. Vanilla CycleGAN
trained on paired and registered images (without simulated deformation) a the-
oretical upper-bound performance with PSNR > 24.3, SSIM > 0.817 and MSE
≤ 0.036. Trained with unpaired data sufferring from simulated deformation, the
vanilla CycleGAN gave a lower-bound baseline of performances. With additive
image alignment losses, GCC-CycleGAN [4] and MIND-CycleGAN [5] methods
lead to tiny improvements in terms of PSNR. However, because these two models
are still affected by the simulated “domain-specific deformation”, their perfor-
mances were still comparable to vanilla CycleGAN. In contrast, the proposed
TPSDicyc model lead to results significantly closer to the upper-bound baseline.

Alignment between source and target data can be observed in the example
shown in Fig. 3. It can be seen that the vanilla CycleGAN model exactly repro-
duced the simulated deformation. The GCC-CycleGAN and MIND-CycleGAN,
although can reduce the misalignment effect, the synthesized and source data are
still not well aligned. Furthermore, the synthesis results generated by the three
CycleGAN-based models are blurry and showed visible artifacts. In contrast, our
TPSDicyc model achieved best data alignment.

Abdominal data: Table 2 shows the quantitative assessments of the four com-
pared models based on the same metrics used for the IXI data. The vanilla
CycleGAN had slightly better performances compared the GCC- and MIND-
CycleGAN models. Our method lead to over 20% performance gains in terms
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Table 1. Synthesis results of IXI dataset using deformed T2 images.

Method MSE PSNR SSIM

Cycle [7] 0.055 (0.22) 20.80 (2.87) 0.708 (0.19)

T2 GCC-Cycle [4] 0.054 (0.22) 21.04 (3.83) 0.719 (0.19)

↓ MIND-Cycle [5] 0.054 (0.21) 20.82 (2.61) 0.703 (0.19)

PD DicycleGAN 0.045 (0.21) 22.52 (2.91) 0.790 (0.18)

TPSDicyc 0.044 (0.23) 22.72 (2.86) 0.796 (0.16)

Cycle (aligned) 0.037 (0.22) 24.77 (3.30) 0.856 (0.17)

Fig. 4. Visualization of cross-modality synthesis results obtained with our MA3RS
dataset. A example data from both the CT and T2* domain are shown on the left.
A checkerboard view combing the source and synthesized data is shown on the right.
Alignment between the source and the synthesized data can then be assessed by looking
at the anatomy of aorta and spine, as well as the lower contour of the patient body.

Table 2. T2*→CT synthesis results using private dataset.

T2* → CT

Model MSE PSNR SSIM

Cycle [7] 0.009 (0.004) 20.57 (2.12) 0.675 (0.06)

GCC-Cycle [4] 0.012 (0.006) 20.25 (2.35) 0.602 (0.08)

MIND-Cycle [5] 0.010 (0.004) 21.21 (2.04) 0.660 (0.07)

DicycleGAN 0.008 (0.004) 22.01 (2.40) 0.694 (0.07)

TPSDicyc 0.008 (0.004) 22.29 (2.26) 0.706 (0.06)

of MSE and SSIM, and also achieved better performance compared to Dicycle-
GAN. Except for SSD, p-value of the paired t-test between DicycleGAN and
our method are less than 0.05. Figure 4 provides a checkerboard visualization
combining the source image and synthesized data generated by the DicycleGAN
and our TPSDicyc. Objects such as spine and aorta in the source and target
data can only be affinely registered independently. Both DicycleGAN and TPS-
Dicyc model produce synthesized images where these objects are simultaneously
aligned in the source and target data. DicycleGAN achieved better alignment of
the outer contour of image subject while TPSDicyc show better alignment for
spine and aorta.
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5 Conclusion

In this paper, we propose the TPSDicyc model to address the issue of “domain-
specific deformation”. Different from the recently proposed DicycleGAN model,
we integrate a TPS-based spatial transformation sub-network in the CycleGAN
model and train the model with associated deformation-invariant cycle consis-
tency loss and NMI-based alignment loss function. Compared to the DC lay-
ers in DicycleGAN, this new architecture allows to model global deformations.
Our TPSDicyc method can achieve good alignment between the source and
synthesized data, and outperformed the DicycleGAN, as well as state-of-the-art
CycleGAN-based models in experiments performed on multi-sequence MR data
and multi-modality abdominal data.
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Abstract. We present PredictUS, a novel Quantitative Ultrasound
(QUS) parameter estimation technique with improved resolution and
precision using augmented ultrasound data. The ultrasound data is gen-
erated using a sequence-to-sequence convolutional neural network based
on WaveNet. The spectral-based QUS techniques are limited by the well-
studied trade-off between the precision of the estimated QUS parameters
and the window size used in estimation, limiting the practical utility of
the QUS techniques. In this paper, we present a method to increase the
window size by predicting the next data points of a given window. The
method provides better estimates of local tissue properties with high
resolution by virtually extending the property to a larger region. Our
proof-of-concept study based on attenuation coefficient estimate (ACE),
an important QUS parameter, attains a resolution reduction up to 50%
while maintaining comparable estimation precision. This result shows
the promise to extend the precision-resolution trade-off, which, in turn,
would have implications in small lesion detection or heterogeneous tissue
characterization.

Keywords: Quantitative Ultrasound · Attenuation coefficient
estimate · WaveNet · Sequence-to-sequence neural network

1 Introduction

Quantitative Ultrasound (QUS) Imaging has introduced a paradigm shift in
the field of biomedical imaging. Extending beyond qualitative B-mode ultra-
sound imaging, QUS presents clinically significant parametric images, which are
descriptive of underlying tissue microstructure. Recent studies show that QUS
potentially provides effective, non-invasive, and system independent biomarkers
for non-alcoholic fatty liver disease (NAFLD) detection and monitoring, cervical
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ripening detection, placenta characterization, and breast lesion characterization
[1–3].

QUS extracts acoustic scattering and attenuating properties using algorithms
based on estimates of power spectra of ultrasound radiofrequency (RF) signal
backscattered from the interrogated tissue. The spectral based QUS techniques
allow the normalization of the backscattered RF signal and thus filter out the
system-dependent factors such as focusing, diffraction and transducer electrome-
chanical response [1,4]. Unfortunately, the power spectral estimation, typically
obtained from FFT based periodogram of windowed RF signal, imposes a fun-
damental trade-off on QUS between image resolution and estimation precision.
Smaller windows provide high spatial resolution, a desirable property for many
imaging applications such as characterization of thin (e.g. human skin) or hetero-
geneous (e.g. placenta) tissue. However, smaller windows yield noisy and inac-
curate power spectra estimates due to limited spectral resolution and spatial
variation noise inherent in ultrasonic scattering. Larger windows improve accu-
racy and precision of power spectra estimates and therefore the estimation of
QUS parameters, with an expense of reduced spatial resolution [5,6]. One study
found that the trade-off between spatial resolution and the variance of QUS
parameter is optimized with a window size of 10 independent scanlines laterally
and 10 times the wavelength axially [6].

To expand the precision-resolution trade-off, different modifications of peri-
odogram have been investigated. Welch method was found to yield the most
accurate and precise spectral estimate with reasonable computational cost [6].
Alternatively, autoregressive (AR) techniques have been reported to exceed the
performance of FFT based periodogram, especially for smaller windows [7]. How-
ever, AR techniques show degraded performance with increasing depth in higher
attenuating media due to violation of the stationarity assumption. More recently,
deep neural networks such as WaveNet [8], have significantly improved state-of-
the-art performance in fields of forecasting non-stationary and non-linear pro-
cesses, such as speech and financial time-series [8,9].

In this work, we present PredictUS, a spectral based QUS technique based
on US RF signal prediction using a sequence-to-sequence convolutional neural
network (CNN) modelled with a WaveNet inspired architecture. Given a small
windowed RF signal, this method predicts the next data points, resulting in a
larger window. Therefore, the method yields better estimates of power spectra as
well as can characterize local tissue properties with high resolution by essentially
extending the property to a larger region. We demonstrate the applicability of
PredictUs for improved measurement of attenuation coefficient estimate (ACE),
a QUS parameter.

2 Method

The first signal processing step in spectral-based QUS techniques is the estima-
tion of power spectra from a limited-length RF signal window. The proposed
PredictUS method adds a WaveNet inspired deep neural network before the
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Fig. 1. Overview of the proposed PredictUS method. Blue solid line indicates the orig-
inal input window, whereas the blue dash-dotted line indicates the predicted signal in
the “WaveNet Network” block and the power spectrum obtained from the optimum (i.e.
PredictUS) window in the “QUS Parameter Estimation” block. (Color figure online)

power spectra estimation step (Fig. 1). The network results in a larger win-
dow by sequentially predicting the next samples. The power spectra estimated
from the larger RF signal windows are fed for the subsequent QUS parameter
estimation.

2.1 ACE Computation

The ultrasound ACE is a measure of ultrasound amplitude dissipation due to
the combined effect of scattering and absorption. ACE can be measured using
the reference phantom method [4], a standard method to account for the system
dependent factors.

According to this method, the RF data are acquired from both the tissue
sample, s and a reference phantom, r with known properties using the same
transducer and system settings. For a RF signal window centered at depth z
from the transducer surface, the natural logarithm of the ratio of the power
spectrum S from the sample to the reference phantom at frequency f ∈ (f1, fk)
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can be written as [2,4]:

ln
Sr(f, z)
Ss(f, z)

= −4(αs(z) − αr(z))fz + ln
Bs

Br
. (1)

where α is the effective ACE for the total ultrasound propagation path z and B
is the backscatter coefficient (BSC). Substituting the following variables in Eq. 1
as: ln Sr(f,z)

Ss(f,z) = Y (f, z), αr − αs = α, ln Bs

Br
= β, we get,

Y (f, z) = −4α(z)fz + β. (2)
The above equation can be written in a matrix form: y = Ax + N (0, σNI),
where

A =

⎡
⎢⎣

4zf1 1
...

...
4zfk 1

⎤
⎥⎦

k×2

,y =

⎡
⎢⎣

Y (f1, z)
...

Y (fk, z)

⎤
⎥⎦

k×1

,x =
[
α
β

]

2×1

.

A least square fitting method [11] can be applied to solve for x = [α, β] from the
noisy estimation y as follows:

x̂ = arg min
x

{‖(y − Ax)‖22}, (3)

with the following constraints:

αmin ≤ α ≤ αmax, βmin ≤ β ≤ βmax (4)

Solving Eq. 2 gives us the effective ACE (α) for the total ultrasound prop-
agation path. The local ACE at depth zi can be computed as: αlocal(zi) =
α(zi)zi−α(zi−1)zi−1

zi−zi−1
.

2.2 Network Architecture

We employed a sequence-to-sequence CNN using WaveNet model. First intro-
duced by the researchers from DeepMind, Wavenet is an autoregressive model,
where each predicted sample is conditioned on the previous ones [8]. One key
element of WaveNet is stacked layers of 1-dimensional dilated causal convolu-
tion. Causal convolutions are used to ensure that a prediction at time step t
only depends on the previous time steps, whereas the use of a dilation rate
increased as a factor of 2 results in an exponentially growing receptive field
with depth. For the US RF signal prediction, a receptive field is required which
is large enough to capture several wavelengths. For our application, one wave-
length (λ) is approximately 20 samples for US transmission frequency of 5 MHz
and sampling frequency of 50 MHz. We use 14 dilated causal convolution lay-
ers with a dilation rate of factor 2 with a reset (20, 21, ..., 26, 20, 21, ..., 26) and
64 filters with width of 2. As in original architecture, there are gated activation
unit (combining a hyperbolic tangent and a sigmoid activation branch), residual,
and skip connections (Fig. 1) in each of these layers to speed up the convergence
and enable improved training for deeper models. Finally, the WaveNet output is
passed through a ReLU activation followed by a linear projection.
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3 Experiments and Results

3.1 Data

We used the k-Wave toolbox [10] to generate simulation US RF data. For the
simulation, we use 96 element linear array transducer with 0.2 mm element
pitch. The depth was set to 60 mm. Fixed focusing was used in transmission
(focal depth 60 mm) and dynamic focusing was used in reception. We simu-
late 256 RF lines for each of the 32 different ACE values ranging from 0.1 to
1.65 dB/cm/MHz. The selected ACE range encompasses the observed ACE val-
ues in liver at different NAFLD stages and in placenta. Finally, we divide each
RF line into 13 segments with 25% overlap, resulting in a training set of 106,496
RF line segments. We also created a separate test dataset of 550 examples,
where 50 RF line segments are extracted for each of the 11 different ACE values
(0.5–1.5 dB/cm/MHz).

3.2 Training and Testing

In the training stage, a teacher-forcing procedure is applied where the model
performs a one-step ahead prediction. The model outputs a sequence of n steps,
which is one time-step shifted version of the input sequence. Therefore, the
model is trained using the correct output instead of the predicted output. We
use a batch size of 64 and use Adam optimizer to minimize mean squared error
loss with β = 0.9, β2 = 0.999 and learning rate of 0.001.

In contrast to the training stage, the testing stage makes a n-step ahead
prediction sequentially by feeding each prediction back into the network at the
next time step.

3.3 RF Data Processing and Analysis

For ACE computation, the lateral dimension for the RF signal window was kept
fixed at 5 scanlines. The axial dimension was varied from 5λ (100 samples)
to 10λ (200 samples) to study the effect of PredictUS in improving the trade-
off between resolution and precision. For the power spectrum computation, the
Welch method has been found to yield more accurate and precise estimation com-
pared to rectangular, Hanning, or Hamming windows [6]. Therefore, we used the
Welch method to estimate the power spectrum from the RF scanlines within each
RF window. According to the Welch method, each RF scanline within a window
was subdivided into overlapping sections, with length equal to 67% of the origi-
nal RF scanline and with 50% overlap. Each segment was then multiplied with
a Hamming window. The power spectral density was obtained after averaging
the periodograms obtained from the windowed segments. We considered the −20
dB bandwidth of the received power spectrum as the usable frequency range. To
compute the ACE, we utilize the RF data with ACE of 0.5 dB/cm/MHz as the
reference data.



260 F. Deeba and R. Rohling

Fig. 2. (a) An example of RF line segment prediction using the proposed sequence-to-
sequence CNN. (b) Comparison of power spectra estimation using original large window
(10λ), original small window (7.5λ) and PredictUS large window (10λ) predicted from
7.5λ original window.

3.4 Performance Metrics

We use Mean Absolute Scaled Error (MASE) to measure the performance of
sequence-to-sequence CNN to predict the larger RF window from the smaller
one, where

MASE =
1
T

∑T
t=1 |et|

1
T−1

∑T
t=2 |Yt − Yt−1|

(5)

Here, et is the prediction error, defined as the difference between the actual
value and the predicted value and the denominator denotes the in-sample mean
absolute error from the naive forecast method. A MASE value < 1 indicates a
prediction performance better than the naive forecast method.

As a measure of precision of ACE, we report the standard deviation of the
computed ACE as a percentage of the actual value. We also report the bias in
the estimated ACE, as the difference between the estimated ACE and actual
ACE presented as a percentage of the actual ACE.

3.5 Results

Performance of RF Data Prediction. We apply the trained sequence-to-
sequence CNN on the test dataset. An example of RF data prediction is shown
in Fig. 2a, where a 50-step (2.5λ) ahead prediction was made, given a RF line
segment of 150 steps (7.5λ). We can see a precise prediction for the initial RF
samples, which starts to degrade with increasing time step. We found that the
power spectra estimate obtained from the PredictUS window of length 10λ (gen-
erated from 7.5λ segment) gives similar estimates as obtained from a larger win-
dow (10λ segment) and outperforms the estimates obtained from the original
7.5λ segment (Fig. 2b).
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Fig. 3. RF data prediction performance: (a) for n-step ahead prediction with varying
n, and (b) for varying ACE in term of mean absolute scaled error (MASE).

We analyse the performance of the network for n-step prediction for varying
values of n. It was found that, on average, the network can make a 16-step
prediction when MASE < 1. This performance is comparable to the previous
work on time-series forecasting using WaveNet model, which reports MASE for a
single-step ahead prediction [9]. Additionally, we investigated whether the ACE
amplitude has an effect on the prediction performance. We computed MASE for a
15-step prediction for data with ACE varying from 0.5 to 1.5 dB/cm/MHz. From
Fig. 3, we see that the MASE remains within a range of 0.52–0.58 for ACE ≤
1 dB/cm/MHz, and after that MASE starts to degrade with increasing ACE.
This result agrees with previous finding from the AR based techniques where
higher attenuating medium showed inferior QUS estimation performance [7].

Performance of ACE Computation. We investigate the performance of
the proposed PredictUs method in extending the resolution-precision trade-off
inherent in QUS parameter estimation. According to [6], an axial dimension
of 10λ has been defined to be the optimum keeping the variance and bias of
QUS parameter estimation within 10%. Taken these numbers as the baseline,
in this study, we examined the limit to which the trade-off can be extended by
simulating three cases with increasing difficulty as follows:

1. Case I: PredictUS window of length 10λ with 2.5λ predicted using 7.5λ win-
dow;

2. Case II: PredictUS window of length 10λ with 5λ predicted using 5λ window;
3. Case III: PredictUS window of length 10λ with 7.5λ predicted using 2.5λ

window;

Here, PredictUS window refers to the window obtained by concatenating the
original input window and the predicted window. For each case, the precision as
well as the bias in ACE computation have been compared with the original ‘large’
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Fig. 4. PredictUS performance for case I (top), case II (middle), and case III (bottom).
(a) Example RF line segments and their divisions; (b) ACE error for different ACE
values; (c) Standard deviation of ACE for different ACE values.

RF window with length equal to the PredictUS window, and with the original
‘small’ RF window with length equal to the original data used in computing
PredictUS window. The ACE computation results for these three cases have
been demonstrated in Fig. 4.

For case I, the small window (7.5λ) with original data attains a precision
and accuracy performance where ACE error and the standard deviation remain
within 4% and 7%, respectively. The large window (10λ) with original data
improves both the precision and the bias where ACE error and the standard
deviation both remain within 2% and 6%, respectively. The ACE estimation
using PredictUS window outperforms the estimation from the small window and
achieves performance equivalent to that obtained from the large window.

In case II, the difference between the ACE measures obtained from small
window (5λ) and the large window (10λ) is more prominent, where small win-
dow results in a bias up to 7.3% and standard deviation as large as 19.7%.
Interestingly, the PredictUS window, using original data of length 5λ only, can
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attain a precision within 5.5%, slightly larger than that obtained from the
large window (4%). The PredictUS window gives moderate bias (within 6%)
for ACE < 1.1 dB/cm/MHz.

Finally, for case III, the PredictUS window only includes 2.5λ original data,
however, achieves a standard deviation within 10%. Although, the increasingly
accumulated error in the prediction of RF data affects the accuracy, resulting in
a larger ACE error compared to the small original window.

In summary, compared to the optimum trade-off, the PredictUS method can
reliably maintain similar precision and accuracy while improving the resolution
to 75% of the optimum value. Moreover, the proposed method can still achieve
comparable precision and accuracy for low ACE values with a resolution improve-
ment of 50%. However, reducing the resolution to 25% of the optimum exhibit
degraded ACE measurement, which can be attributed to the error accumulation
in the n-step ahead prediction. Unlike the case of RF data prediction, high ACE
does not have any distinct effect on the performance of ACE computation.

4 Conclusion

We propose a novel QUS parameter estimation method, PredictUS, utiliz-
ing ultrasound RF signal prediction. The method shows promising results by
predicting larger RF windows from the smaller ones. We conduct a proof-of-
concept study based on extensive simulation analysis. The proposed sequence-
to-sequence convolutional neural network based on WaveNet model was able to
estimate RF signal samples to a reasonable accuracy and therefore improve the
power spectral estimate. A resolution reduction, as high as 50%, while maintain-
ing comparable estimation precision introduces a paradigm shift by challenging
the insistent trade-off between precision and resolution, inherent in ultrasound
spectral estimation. Future research will address the issue of error accumulation
in the n- step prediction by further improving the CNN structure.
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