Chapter 12 ®)
A Socio-Constructivist Elaboration Geda
of Realistic Mathematics Education

Koeno Gravemeijer

Abstract This chapter describes a socio-constructivist elaboration of Realistic
Mathematics Education (RME) that emerged from my collaboration with Paul Cobb
and Erna Yackel. It is argued that RME and socio-constructivism are compatible and
complement each other. Socio-constructivism points to the critical role of the class-
room culture, while RME offers a theory on supporting students in (re-)constructing
mathematics. Furthermore, the role of symbols and models is discussed, which
was considered problematic in constructivist circles, while being central in RME.
The emergent modelling design heuristic is presented as a solution to this puzzle.
Together, guided reinvention, didactical phenomenology, and emergent modelling,
are combined to delineate RME as an instructional design theory. This is comple-
mented by a discussion of pedagogical content tools as counter parts of the emergent
modelling and guided reinvention design heuristics at the level of classroom instruc-
tion. Finally, research on student learning and enactment of RME in Dutch classrooms
is discussed.

12.1 Introduction

When Freudenthal (1971) coined his adage of mathematics as a human activity, con-
crete elaborations of what that would mean in practice still had to be worked out. This
became one of the main tasks of the IOWO,! the predecessor of the current Freuden-
thal Institute. In the 1980s, Treffers took stock of what had been developed up to then
and construed the Realistic Mathematics Education (RME) theory by generalising
over the characteristics the prototypical instructional sequences and local instruction
theories that were available had in common. This resulted in the publication of a
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framework for a domain-specific instruction theory for RME (Treffers, 1987). The
RME approach did fit very well in the broader trend in the international mathematics
education community which emerged around that time. This concerned the general
recognition of the importance of students’ active constructive role in appropriating
new mathematics, and an emphasis on applicability. RME did not only share similar
starting points, it also offered a fitting theory on how to support students in construct-
ing mathematics; moreover, this was accompanied by various concrete elaborations.
In this respect RME arrived at the right time. This undoubtedly contributed to the
international interest in this approach—which in turn led to collaborative projects
in various countries. This was, however, not a one-way stream; international col-
laborations influenced RME as well. Collaborative projects in the United States, for
instance, brought researchers from the Freudenthal Institute in contact with (socio-
)constructivism, which influenced their thinking about RME to a greater or smaller
extent. Especially my ten-year collaboration with Paul Cobb, Erna Yackel and col-
leagues was marked by a mutual influence (see also Cobb, with Gravemeijer &
Yackel, 2011). This resulted in a new elaboration of RME, which we will denote as,
‘a constructivist elaboration of RME’.

This constructivist version, which emerged next to the original RME theory, will
be the theme of this chapter. We will start by looking into the compatibility of the
underlying conceptual positions of RME and socio-constructivism. This will be fol-
lowed by a discussion of the implications of the socio-constructivist collective per-
spective as elaborated by Cobb and Yackel (1996) for RME. Next, we will discuss
the apparent contrariness of the views on the role of symbols and models, and how
those positions were reconciled in the emergent modelling design heuristic. Subse-
quently we will discuss how the socio-constructivist perspective can illuminate the
complexity of enacting RME in everyday classrooms. We will complement this with
recent investigations of the state of affairs in Dutch classrooms.

12.2 Conceptual Compatibility of (Socio-)Constructivism
and Realistic Mathematics Education

In the early stages, some protagonists of RME quickly acknowledged the compati-
bility of constructivism and RME. Some, however, were more reluctant. Freudenthal
(1991) was actually very negative about constructivism. He rejected Von Glasers-
feld’s critique on the status of objective scientific knowledge by pointing out the
achievements of science. He argued that we should not focus on the philosophy of
science, but on the philosophy of education, and stated:

I cannot see any bond between mathematics instruction on the one hand and an alleged or
assumed lack of faith in objective mathematical knowledge on the other hand, whether it is
called constructivism or anything else (Freudenthal, 1991, pp. 146-147).

At the time that Freudenthal expressed this critique, there were various ideas around
on what the radical constructivist position would mean for education. Including the
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position that teachers should not interfere because of the risk of endangering the
students’ own constructive activity. Gradually, however, a more pragmatic stand-
point won out. In this process, Paul Cobb was very influential. While his theoretical
perspective evolved towards a more pragmatic stance; from radical constructivism
towards socio-constructivism. He saw great value in what Putnam (1987, cited by
Cobb, 2001) denoted ‘pragmatic realism’ (Cobb, 2001). And he contended that,
whereas radical constructivism claims that it is impossible to bridge the gap between
one’s own knowledge and some pre-given external reality, pragmatic realism ques-
tions this focus on the dichotomy between this external reality and our personal
knowledge. Instead of focusing on an unknowable pre-given external reality, we
should focus on the realities which people experience. This pragmatic realism is
clearly compatible with Freudenthal’s conception of reality, which he does not link
to some pre-existing external reality, but to one’s self-constructed experiential real-
ity: “I prefer to apply the term ‘reality’ to what at a certain stage common sense
experiences as real” (Freudenthal, 1991, p. 17).

Cobb (1994a) himself made a nice connection between the two views when point-
ing out that (socio-)constructivism is not a pedagogy. He argued that if it is true that
people always construct their own knowledge, then students will do so in every
classroom—even with direct instruction. The issue, he went on to say, is not whether
they construct, but how and what they construct. The question therefore is: What do
we want mathematics to be for the students? Cobb (1994a) concluded that a poten-
tial answer to that question was in Freudenthal’s notion of mathematics as a human
activity.

12.3 A Socio-Constructivist Perspective on Teaching
and Learning

A shared belief in the compatibility of (socio-)constructivism and RME formed the
basis for a ten-year collaboration between Cobb cum suis and me, in which we further
elaborated RME theory while working on a series of classroom design experiments.
The starting point was that RME and socio-constructivism are not only compatible,
but also complemented each other. On the one hand, socio-constructivism offers a
background theory for RME, and, more importantly, adds a collective perspective.
On the other hand, RME offers an instructional design theory that aims to support
students in constructing mathematics.

Adopting a socio-constructivist view implies a collectivist perspective on teaching
and learning, which situates the students’ activity within the classroom community,
whereas RME originally tended to a more individual, psychological, perspective,
even though the roles of interaction and collaboration between students were of
course acknowledged. Socio-constructivism offers an important addition in that it
focuses attention on the crucial role of the classroom culture in the enactment of
RME in the classroom. To analyse the situated activity of students, Cobb and Yackel
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(1996) developed an interpretative framework, denoted ‘emergent perspective’, in
which they try to coordinate a social and a psychological perspective. The former
involves the norms and practices of the classroom community. The latter focusses on
individual students’ reasoning, and concerns beliefs of students and teacher. Cobb
and Yackel (1996) discern classroom social norms, socio-mathematical norms, and
practices. The social norms describe the expected ways of acting and explaining in
a given classroom. They elucidate that the social norms are reflexively related to the
students’ and the teacher’s beliefs about their obligations, which are shaped by the
classroom’s history. Typical social norms of the traditional mathematics classroom
are that students are expected to try to come to grips with the knowledge and pro-
cedures presented by the teacher and the textbook. The teacher’s role is to explain
and clarify, and the students’ role is to try to figure out what the teacher has in mind
and act accordingly. RME asks for different social norms, which in line with Cobb
and Yackel (1996) encompass the obligations for students to come up with their own
solutions, explain and justify their solutions, to try to understand the explanations
and solutions of their peers, to ask for clarification when needed, and eventually to
challenge the ways of thinking with which they do not agree. The teacher’s role is not
to explain, but to pose tasks, and ask questions that may foster the students’ thinking,
and help them in this manner to build on their current understanding and to construe
more advanced mathematical insights.

This recognition of the need for fitting social norms has significant consequences
for putting RME into practice. It signals the need for changing the social norms, which
in turn asks for changing the individual beliefs of the students. It also highlights that
students’ beliefs about their role and that of the teacher are formed by experience.
In traditional classrooms students are used to being rewarded for reproducing the
teacher’s reasoning and procedures, and the belief that this is what is expected from
them will not change unless they gain compelling new experiences. This takes some
conscious effort (Cobb & Yackel, 1996). To establish new social norms, the teacher
has to show that what is valued and what is rewarded has changed.

In addition to the general classroom social norms, Cobb and Yackel (1996) dis-
cern socio-mathematical norms and mathematical practices. The socio-mathematical
norms refer to what mathematics is and what it means to do mathematics in a given
classroom. For example, what counts as a mathematical problem, what counts as a
mathematical solution, and what counts as a mathematical argument. We may link
those socio-mathematical norms with the notion of ‘mathematical interest’ (Grave-
meijer & Cobb, 2013). To engage in the activity of mathematising vertically, students
will have to develop an interest in mathematical aspects of their solutions. Teachers
may cultivate mathematical interest by asking questions such as: What is the general
principle here? Why does this work? Does it always work? Can we describe it in a
more precise manner?

With mathematical practices Cobb and Yackel (1996) refer to taken-as-shared
ways of acting and reasoning, which may evolve over time. The mathematical prac-
tices are reflexively related to individual students’ mathematical conceptions. They
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speak of an established mathematical practice when certain ways of acting and rea-
soning are no longer challenged by individual students. This does not necessar-
ily mean that all student’s conceptions and actions correspond with that practice.
Mathematical practices do, however, offer a means of identifying and describing the
progress of the classroom as a whole.

The emergent perspective offers an important addition to RME in that it reveals
that a certain classroom culture has to be put in place in order to allow for guided
reinvention; an aspect that had not yet been articulated in Treffers’ (1987) theory.
Moreover, it highlights the reflexive relation between the individual’s interpretations
and constructions and the norms and practices of the classroom community.

Mark that we may look at the relation between Cobb and Yackel’s perspective
and RME theory in two ways: We may consider the emergent perspective an integral
part of a socio-constructivist take on RME, or conceive of the emergent perspec-
tive as describing a necessary requirement—as enacting RME is not possible if
the students adhere to traditional school-mathematics social norms. Whichever one
chooses, socio-constructivism offers a significant expansion of or addition to RME
theory. We may note, however, that conversely RME offers a significant addition
to socio-constructivism by offering an instruction theory for supporting students
in constructing mathematical knowledge. Further, building on both an RME and a
socio-constructivist perspective proved especially fruitful in the domain of symbols
and tools, a development we will discuss in the following.

12.4 Symbolising and Modelling

Initially there was a strong wariness among socio-constructivist scholars regarding
the use of external representations. This was supported by research in contemporary
mathematics classrooms, which had shown that students often could not make sense
of the symbolic representations introduced by the teacher (see, e.g., Cobb, 1994b).
Broadly speaking, the use of tactile models and visual representations was associated
with the transmission model of teaching, in which tacit and visual models were treated
as powerful means of supporting learning for understanding. By acting with well-
designed concrete models, students were expected to discover the mathematics that
was embedded in the models. In relation to the latter, Cobb, Yackel, and Wood (1992)
speak of a representational view. They argue that mathematics educators, who use
tactile models and visual representations in this manner, implicitly or explicitly hold
the view that learning is characterised as a process in which students construct mental
representations that mirror the mathematical features of external representations. The
problem with this approach, however, is that the meaning of external representations
is dependent on the knowledge and understanding of the interpreter. This creates the
problem, known as ‘the learning paradox’ (Bereiter, 1985), that can be captured by
the following question: How is it possible to learn the symbolisations, which you
need to come to grips with new mathematics, if you have to have mastered this new
mathematics to be able to understand those very symbolisations?
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The underlying problem, Cobb et al. (1992) argue, is that mathematics educa-
tors experience mathematics as an objective body of knowledge, which is mirrored
by the external representations they use to make the corresponding mathematics
accessible for students. This presupposes an objective body of knowledge that exists
independently of some agent. According to socio-constructivist theory, however,
knowledge has to be constructed by an actor, and cannot be separated from the
knowing individual. Thus, for those who have not yet constructed the more sophisti-
cated mathematical knowledge that has to be learned, this body of more sophisticated
mathematical knowledge, literally, does not exist, and thus cannot be conveyed by
external representations.

12.4.1 Emergent Modelling

However, while constructivist scholars were wary of symbols and models and pointed
to the learning paradox, RME relied heavily on the use of models, model situations,
and schemata, as is indicated for instance in Treffers’ (1987) characterisation of pro-
gressive mathematisation. Consequently, the need arose to reconcile the two concep-
tions of the role of symbols and models. A beginning of an answer could be found
in Treffers’ (1987) elucidation that in the RME approach, models etcetera, rather
than being offered right away, arise from problem-solving activities. In this man-
ner, Treffers’ model characteristics (1987) pointed to a dynamic aspect that could be
explicated and elaborated as an explicit design heuristic offering a way to circumvent
the learning paradox. We should also refer to Streefland (1985) who argued that by
modelling reality you create a model of that reality—which he calls an ‘after-image’
(‘nabeeld’ in Dutch). This after image may foster reflection, which in turn may lead
to the insight that the model can be used for other problem situations. The model has
become a ‘pre-image (‘voorbeeld’ in Dutch) that is used for reasoning about other
situations (which he in later publications expands with supporting abstracting and
level raising (Streefland, 1992, 1993).

The constructivist concerns about the role of models and the associated learning
paradox are eventually addressed by the design heuristic that originated from notic-
ing a shift in the thinking of students using the empty number line (Gravemeijer,
1991). It showed that the students initially used calculations that closely matched the
situation in the contextual problem, but later on started to come up with solutions that
were based on number relations and were only indirectly connected with the context.
This implied that the number line had acquired a new meaning for the students; it
started to signify number relations. This insight led to the rationale underlying the
emergent modelling heuristic, that the learning paradox dissolves when one adopts
a more dynamic view of learning in which mathematical symbols and models are
developed in a bottom-up manner. The latter appeared to agree with Meira’s (1995)
observation that in the history of mathematics, symbols did not suddenly appear in
their full-fledged form. Instead, these symbols grew out of informal, situated, forms
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of symbolising that developed over time in a reflexive process in which symbolisa-
tions and meaning co-evolved. Following Meira (1995), we may envision a dynamic
process in which symbolisations and meaning co-evolve, and in which the ways
that symbols are used and the meanings they come to have, are seen to be mutually
constitutive. It showed that a similar pattern could be found in many prototypical
RME instructional sequences, such as Van den Brink’s (1989) design for addition
and subtraction, Streefland’s (1990) work on fractions, and the various sequences
for the written algorithms (Treffers, 1987). The idea of a dynamic process in which
symbolisations and meaning co-evolve has been elaborated in the emergent mod-
elling design heuristic. Here the label ‘emergent’ refers both to the character of the
process by which models emerge, and to the process by which these models support
the emergence of more formal mathematical conceptions.

According to the emergent-modelling design heuristic, the model first comes to
the fore as a model of the students’ situated informal strategies. In subsequent activ-
ities, the role of the model begins to change. As the students gather more experience
with similar problems, their attention may be directed to the mathematical relations
involved. In this manner, the students start to develop a network of mathematical
relations. This changes what the model signifies for the students. Instead of deriving
its meaning from activity in the context in which the problem is situated, the model
starts to derive meaning from the mathematical relations involved. Consequently,
the model becomes more a base for more formal mathematical reasoning than a way
of representing a contextual problem. In other words: the model of informal mathe-
matical activity develops into a model for more formal mathematical reasoning. We
should add that, although we speak of ‘the model’, the model we are referring to is
more an overarching conception, than one specific model. In practice, ‘the model’
in the emergent-modelling heuristic is actually shaped as a series of consecutive
sub-models that can be described as a cascade of inscriptions (Latour, 1990) or a
chain of signification (Roth & McGinn, 1998). Key here is that acting with each
new inscription signifies the earlier activity with the preceding inscriptions for the
students. Mark, however, that the series of symbolisations is invented by the instruc-
tional designer, not by the students. To adjust for this, one may try to ensure that
each new tool/symbolisation emerges as a solution to a problem that has its roots in
activity with the earlier symbolisation. In this manner, the history of working with
the earlier symbolisation may provide the imagery underlying the new tool. Whether
this is the case, may be inferred from whether or not the new symbolisation is used
flexibly by the students.

From a more global perspective, the symbolisations can be seen as various mani-
festations of some overarching model that evolves from a ‘model of” situated activity
to a ‘model for’ more formal mathematical reasoning. In relation to this, we may
discern four different types or levels of activity (Gravemeijer, 1999):

(1) Situated activity in a task setting that is experientially real for the students
(2) Referential activity, in which models refer to activity in the task setting
(3) General activity,in which models refer to a framework of mathematical relations
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(4) Formal mathematical reasoning which is no longer dependent on the support
of models-for mathematical activity.

These four levels of activity illustrate that the students’ understanding of models is
grounded in their understandings of paradigmatic, experientially real settings. At the
level of referential activity, the models are meaningful to the students because they
refer to situated activity in the task setting. General activity begins to emerge when
the students start to reason about the mathematical relations that are involved. In this
manner the students develop a network of mathematical relations. Consequently,
the model starts to lose its dependency on situation-specific imagery, and gradually
develops into a model that derives its meaning from the emerging framework of
mathematical relations. In this manner the model starts to function as a model for
more formal mathematical reasoning.

The transition from model-of to model-for coincides with a progression from
informal to more formal mathematical reasoning that is interwoven with the cre-
ation of some new mathematical reality—consisting of mathematical objects (Sfard,
1991) within a framework of mathematical relations. Thus, the model-of/model-for
transition is not tied to specific manifestations of the model, instead, it relates to the
student’s thinking, within which ‘model-of” refers to an activity in a specific setting
or context, and ‘model for’ to a framework of mathematical relations. Mark that the
constitution of a framework of mathematical relations—and thus some new mathe-
matical reality—is an essential element of the emergent modelling design heuristic.
In this respect, it differs from a modelling conception in which a model of a con-
textual problem is generalised in order to function as a model for solving similar
problems in other contexts. We may add that model-of/model-for transition in the
emergent modelling design heuristic has to be understood in a metaphorical sense.
Central is the series of symbolisations or sub-models, which together constitute ‘the
model’, which may or may not be placed under one label—such as the notion of
a ruler as the overarching model in the measurement annex number-line sequence
(Stephan, Bowers, & Cobb, with Gravemeijer, 2003).

Let us briefly return to the aim of supporting students in developing a frame-
work of mathematical relations and the corresponding mathematical objects, which
is experienced as some new mathematical reality. This experienced reality corre-
sponds with the perceived body of mathematical knowledge that we identified as
the central problem when discussing the learning paradox. Thus, instead of trying to
help students to make connections with a mathematical reality that does not exists
for them; the emergent modelling approach helps students in constructing such a
mathematical reality by themselves. This focus on the constitution of mathematical
objects and a framework of mathematical relations also signifies a deviation from
Treffers’ conception of RME theory, since he tends to characterise students’ mathe-
matical development in terms of students’ development of increasingly sophisticated
solution methods (see, e.g., Treffers, 1991).
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12.5 RME in Terms of Instructional Design Heuristics

The conception of emergent modelling as an instructional design heuristic allowed for
an alternative description of RME theory in terms of instructional design heuristics by
combining it with guided reinvention and didactical phenomenology (Gravemeijer,
2004).

12.5.1 Emergent Modelling Heuristic

We already discussed the emergent-modelling design heuristic above, but we may
add that this heuristic has been used in design research projects on a variety of
topics, such as addition and subtraction up to 20 (Gravemeijer, Cobb, Bowers,
& Whitenack, 2000), addition and subtraction up to 100 (Stephan et al., 2003),
written algorithms for addition and subtraction (Bowers, 1995), integers (Stephan,
& Akyuz, 2012), data analysis (Gravemeijer & Cobb, 2013), algebraic functions
(Doorman, Drijvers, Gravemeijer, Boon, & Reed, 2012), calculus (Doorman, 2005),
and differential equations (Rasmussen, 1999).

12.5.2 Guided Reinvention Heuristic

When elucidating the principle of guided reinvention, Freudenthal (1973) suggested
the instructional designer should look at the history of mathematics to see how certain
mathematical practices developed over time. The designer is advised to especially
look for potential conceptual barriers, dead ends, and breakthroughs. These may be
taken into account when designing a potential reinvention route. Streefland (1990)
developed a second guideline, which suggests that the informal interpretations and
solutions of students who do not know the applicable mathematics might ‘anticipate’
more formal mathematical practices. If so, students’ initial informal reasoning can be
used as a starting point for the reinvention process. In summary, the designer may take
both the history of mathematics and students’ informal interpretations as sources of
inspiration for delineating a tentative, potential route along which reinvention might
evolve.

As a special point of attention, we may note that reinvention has both an individual
and a collective aspect; it is especially the interaction between students that is to
function as a catalyst. The designer has to develop instructional activities that are
bound to give rise to a variety of student responses. What is aimed for is a variety
in responses that to some extent mirrors the reinvention route. When some students
come up with more advanced forms of reasoning than others, teachers can exploit
these differences. They can try to frame the mathematical issue that underlies those
differences as a topic for discussion (Cobb, 1997). In orchestrating such a discussion,
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they can then advance the reinvention process. Mark that without such differences,
the teacher will not have a basis for organising a productive classroom discussion,
and will have to refer to soliciting preferred responses by asking leading questions.
We may further observe that in line with the emergent modelling heuristic, the end
points of a guided reinvention process are typically cast in terms of mathematical
objects and frameworks of mathematical relations in the context of a constructivist
elaboration of RME.

12.5.3 Didactical Phenomenology Heuristic

The third RME design heuristic concerns the didactical phenomenological analysis,
or didactical phenomenology for short (Freudenthal, 1983). Here the word ‘phe-
nomenological’ refers to a phenomenology of mathematics. In this phenomenol-
ogy, the focus is on how mathematical ‘thought-things’ (which may be concepts,
procedures, or tools) organise—as Freudenthal (1983) puts it—certain phenomena.
Knowing how certain phenomena are organised by the thought thing under consid-
eration, one can envision how a task setting in which students are to mathematise
those phenomena may create the need to develop the intended thought thing. In this
manner, problem situations may be identified, which may be used as starting points
for a reinvention process. Note that such starting-point-situations may also be used to
explore students’ informal strategies as Streefland (1990) suggests. To find the phe-
nomena that may constitute starting-point-situations, we may look at applications of
the concept, procedure or tool under consideration. Assuming that mathematics has
emerged as a result of solving practical problems, we may presume that the present-
day applications encompass the phenomena which originally had to be organised.
Consequently, the designer is advised to analyse present-day applications in order
to find starting points for a reinvention route. Mark, however, that, as the students
progress further in mathematics, applications may concern mathematics itself. Essen-
tial for valuable starting points is that they are experientially real for the students, that
they concern situations in which the students know how to act and reason sensibly.
An additional function of a phenomenological analysis is that it allows for construing
a broad phenomenological base, which may both strengthen and enrich the experien-
tial real foundation and foster the applicability of the concepts, procedures, or tools
under consideration.

12.6 Pedagogical Content Tools

‘We may complete this exposition on instructional design heuristics with a discussion
of the ‘pedagogical content tools’ (PCTs) that have been put forwards by Rasmussen
and Marongelle (20006) as instructional counter parts of the design heuristics of emer-
gent modelling and guided reinvention. They define a pedagogical content tool as, “a
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device, such as a graph, diagram, equation, or verbal statement that a teacher inten-
tionally uses to connect student thinking while moving the mathematical agenda
forward” (Rasmussen & Marongelle, 2006, p. 388). They describe two PCTs, ‘trans-
formational records’ and ‘generative alternatives’, which in their view address the
problem of how teachers can proactively support their students’ learning. Sometimes
the design heuristics are too general in their view. Transformational records, which
are seen as the instructional counter part of the emergent modelling heuristic, are
defined as graphical representations that emerge as ways to record student thinking,
which are later used by students to solve new problems. As an example, they discuss
an episode of a classroom on differential equations, which starts with the task of
making predictions about the shape of a population versus time (P versus ¢) graph
for a single species that reproduces continuously and has unlimited resources. The
teacher started the discussion by asking whether the initial slope at P = 10 and ¢ =
0 should be zero or positive. During this discussion—in which the students adhered
to the classroom social norms that they were expected to explain and justify their
solutions, and try to understand their peers—most of the students began to realise
that the slope had to be positive. Thereupon the teacher drew a tangent line vector
with a positive slope as “a notational record of the taken-as-shared reasoning of the
classroom community” (Rasmussen & Marongelle, 2006, p. 396). In a similar man-
ner, the notational record was supplemented with some more vectors. This extended
notational record was used as a means of support by the classroom community, when
sorting out whether the rate of change function would depend only on the size of
the population, or also on the time. The teacher, in short, took a proactive role in
reshaping the initial record, while supporting the students in developing a line of
reasoning that corresponded with what an expert in the subject would recognise as
an emerging tangent-vector field. He did so in such a manner that he at the same
time cultivated the social norms of an inquiry classroom by initiating, and building
on, whole class discussions.

The generative alternatives are linked to the notion that guided reinvention tries to
find a position between too much and too little guidance. Here one of the examples
concerns a problem about salt water—containing 1 1b salt per gallon—that is pumped
into a tank at a rate of 2 gallons a minute. The students came up with two different
ideas about the rate of change, which should be 2, according to some, or 2¢, according
to others. By framing the justification of one of both as topic for a whole-class
discussion, the teacher fostered the social norms, as the students were expected to
explain and justify their reasoning and try to make sense of others’ reasoning. When
the students started to lean towards 2¢, the teacher realised that the students were not
making a conceptual distinction between rate of change in the amount of salt and the
amount of salt. He then assumed more responsibility for the content and the direction
of the discussion by pointing out that after + minutes 2¢ pounds of salt are flowing
into the tank, and asking: Is that the rate of change? In the then unfolding discussion
the students start to realise that the amount of salt after 2 min is 2¢ (pounds), whereas
the rate of change is 2 (pounds per minute). The authors point out that what makes
this an example of a generative alternative is not just that two alternatives, ¢ and
2t, were discussed. Key here is that this discussion advanced the mathematical idea
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of the explicit distinction between the rate of change in a quantity and the quantity
itself.

With the pedagogical content tools, we have moved from RME theory to RME in
the classroom. We will discuss the latter more extensively in the following.

12.7 RME and Classroom Practice

As is already noted above, the socio-constructivist perspective reveals the complexity
of enacting RME in everyday classrooms. And we may conclude that this is more
difficult than the initiators in the Netherlands were aware of. One of the hurdles con-
cerns classroom culture. There was, and to a large extent still is, a lack of awareness
of the need to invest in changing the classroom social norms. Another difficulty con-
cerns the need to anticipate and build on the students’ thinking. Following Simon’s
(1995) line of reasoning, teachers have to ascertain the students’ level of reason-
ing and design or choose instructional activities that support students in expanding,
and building on, their current ways of thinking. They have to develop hypothetical
learning trajectories (HLTs), which involve anticipating the mental activities of the
students when they engage in the envisioned tasks, and considering how these relate
to the learning goals. This requires teachers to have a sound understanding of the
rationale that underlies the instructional sequences they are working with. Usually,
however, teachers are insufficiently informed about the local instructional theories
that underpin the instructional sequences. Moreover, they are not schooled in thinking
about the mental activities of students.

‘We may add that the students have to play their part as well. We already mentioned
the classroom norms, but knowing that they are expected to think for themselves,
explicate their thinking, etc., does not necessarily mean that they are willing to do
so. An inhibiting factor may be the ego-orientation (Nicholls, Cobb, Wood, Yackel,
& Patashnick, 1990) of some students. This includes being more concerned about
how one looks in the eyes of one’s peers, than about solving the task at hand. Fear of
failure may keep those students from starting to work at a challenging task. Teachers,
therefore have to invest in fostering a task-orientation (ibid.), the willingness to work
on mathematical tasks. Important in this respect is that teachers refrain from judging
students by external standards, or comparing them with their classmates, and instead
promote that students take their personal progress as an evaluation criterion. This is
of course hard to achieve with the current emphasis on testing.
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12.8 Recent Research on Instructional Practice
in the Netherlands

Following on the discussion of theory on enacting RME we may ask ourselves how
RME actually works out in Dutch classrooms. This question is actually in line with a
discussion that is going on in the Netherlands about the quality of mathematics edu-
cation. This discussion was evoked by the results of the national assessments, known
as PPON.? The PPON survey of 2004 showed a significant decline in the mastery of
(procedures for handling) whole number addition, subtraction, multiplication, and
division. However, the results did not decline across the board; the results on vari-
ous other topics showed improvement instead. A comparison of consecutive PPON
surveys (Janssen, Van der Schoot, & Hemker, 2005) showed a positive effect on a
number of topics that RME innovators deem important (Van den Heuvel-Panhuizen,
2010). We may further argue that national assessments, and also international assess-
ments—on which the Netherlands were, and are, still doing very well—are too crude
instruments to come to grips with what is going on in mathematics education. This
kind of considerations gave rise to three independent Ph.D. studies, which investi-
gated the proficiency of Dutch students on specific topics, respectively addition and
subtraction up to 100 (Kraemer, 2011), fractions (Bruin-Muurling, 2010), and algebra
(Van Stiphout, 2011). Analysing the results of those three Ph.D. studies, Gravemei-
jer, Bruin-Muurling, Kraemer and Van Stiphout (2016) found that Dutch students’
proficiency fell short of what might be expected of reform in mathematics education
that targets conceptual understanding. In each of those three cases this appeared to
be caused by a deviation from the original intentions of the reform. Firstly, the text-
books capitalised on procedures that can quickly generate correct answers, instead
of investing in the underlying mathematics while accepting that fluency may come
later. In relation to this, the authors speak of “task propensity”, “the tendency to think
of instruction in terms of individual tasks that have to be mastered by students” (ibid.,
p- 26). Secondly, there was an overall lack of attention for more advanced conceptual
mathematical understandings in Dutch textbooks. Instructional sequences in the text-
books end too early, before the more advanced conceptual goals are reached. What
is missing from the instructional sequences is the phase that Sfard (1991) denotes as
reification. The students are not supported in constructing mathematical objects. The
other reason they bring to the fore is that more advanced conceptual mathematical
understandings are not formulated as instructional goals, not in the textbooks, nor in
official curriculum documents. They plead for changing the usual goal descriptions
in curriculum documents by identifying more advanced conceptual mathematical
understandings as key curriculum goals.

ZPeriodieke Peiling van het Onderwijsniveau (Periodic Assessment of the Education Level).
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12.9 Conclusion

We started our discussion of the socio-constructivist elaboration of RME with the
question of the compatibility of RME and socio-constructivism, and we concluded
that on a meta level both positions are well compatible. We showed that adopting the
collectivist perspective that is inherent to socio-constructivism especially has conse-
quences for how we think about enacting RME in the classroom. Establishing social
norms that encompass student responsibility for coming up with their own solutions
and discussing these and those of other students, is a prerequisite for enacting RME.
We further found that a potential irreconcilable difference concerned the different
views on the role of symbolising and modelling, which created the need to reconcile
the two positions. In relation to this we discussed the emergent modelling design
heuristic, which is designed to circumvent the so-called learning paradox. The emer-
gent modelling heuristic tackles the concern of socio-constructivists that symbols do
not come with an inherent meaning, by ensuring that symbolisations and meaning
co-evolve in a reflexive process, while at the same time supporting the construction
of some new mathematical reality, which may be thought of as consisting of mathe-
matical objects that derive their meaning from a network of mathematical relations.
The heuristic may be characterised as a transition from a model of the students’
situated informal strategies to a model for more formal mathematical reasoning. But
the pith of the matter concerns (a) the sequence of sub-models that together form a
chain of signification, in which activity with each new sub-model signifies activity
with the earlier sub-model, and (b) the construction of a framework of mathematical
relations by the students. We observed that by acknowledging that guided reinvention
and didactical phenomenology also can be seen as instructional design heuristics,
allows an alternative manner of describing RME theory—in which RME theory is
described in terms of instructional design heuristics.

When turning to the classroom practice we of course reiterated the importance
of the classroom culture. We also highlighted that the constructivist elaboration of
RME entails a shift in attention from the instructional sequence with a rationale
or local instruction theory that underpins it, to the local instruction theory with a
series of instructional activities that can be used a resource. For the constructivist
position that students construct their own knowledge implies that teachers have to
adjust their teaching to the students’ thinking. This means that teachers have less use
for ready-made instructional sequences, but instead need at their disposal knowledge
about the intended learning process and the possible means of supporting that learning
process, or about local instruction theories. On the basis of this, teachers may develop
hypothetical learning theories (Simon, 1995), which put the mental activities of the
students at the centre of the teachers thinking. Given the results we reported in the last
section, we may argue that the local instruction theories the teachers are to be provided
with have to target more advanced conceptual mathematical understandings. The
latter should also be worked as goals in national curriculum documents.
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