l‘)

Check for
updates

Decidable Verification of Agent-Based
Data-Aware Systems

Francesco Belardinelli? and Vadim Malvone?(®)
! Imperial College London, London, UK
2 Laboratoire IBISC, Universite d’Evry, Evry, France
vadim.malvone@univ-evry.fr

Abstract. In recent years the area of knowledge representation and rea-
soning (KR&R) has witnessed a growing interest in the modelling and
analysis of data-driven/data-centric systems. These are systems in which
the two tenets of data and processes are given equal importance, differ-
ently from traditional approaches whereby the data content is typically
abstracted away in order to make the reasoning task easier. However,
if data-aware systems (DaS) are to be deployed in concrete KR&R sce-
narios, it is key to develop tailored verification techniques, suitable to
account for both data and processes. In this contribution we consider for
the first time to our knowledge the parameterised verification of DaS. In
particular, we prove that — under specific assumptions — this problem is
decidable by computing a suitable cut-off value. We illustrate the pro-
posed approach with a use case from the literature on business process
modelling.

1 Introduction

The ever increasing reliance of AI technologies on data acquisition, manage-
ments, and processing is having a profound impact on the nature and mission
of artificial intelligence itself [28]. In recent years the areca of knowledge repre-
sentation and reasoning (KR&R) has witnessed a growing interest in the mod-
elling and analysis of data-driven/data-centric/data-intensive systems [3,15,16].
This paradigm shift towards data-aware systems (DaS) has initiated in the area
of business process modelling (BPM), in response to traditional approaches to
service-oriented computing that typically abstract the data content away to
reduce the complexity of the system description [30]. However, this data content
is often essential to drive a business process. Hence, according to the data-aware
perspective on BPM, the data content and the processes operating on it are seen
as two equally relevant tenets in modelling systems [11,20]. This data-aware
approach has proved fruitful also in applications to areas in KR&R, including
commitments in negotiation [27], planning [9], and service-oriented computing
[14], where processes are often thought of as agents, endowed with their own
goals, plans to achieve them, as well as information about the external environ-
ment [29].
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Yet, if agent-based DaS are to be deployed in concrete KR&R scenarios, it is
key to develop verification techniques, suitable to account for the two tenets of
data and processes. Then, a critical issue in tackling this task lies in the infinite
state space generated by the possibly infinite data content of DaS. Recently,
several contributions have addressed this problem [3,7,10,26], also leading to
the development of open-source toolkits for DaS verification [19,25]. Nonetheless,
we identify a conceptual difficulty with most of the current approaches in the
literature: data-aware systems are typically assumed to contain an actual infinity
of data and to be able to reason about such an actual infinity. For instance, in
[7,10] an infinite quantification domain is part of the system’s description. But
real-life scenarios actually deal only with a finite, possibly unbounded, quantity
of data. Hence, the soundness and applicability of those theoretical results to
concrete DaS scenarios cannot be taken for granted.

To provide an answer to the difficulties pertaining to reasoning about an
actual infinite data domain, in Sect.2 we introduce parameterised agent-based
DaS (or P-AbDaS) as abstract systems, which are to be coupled with a (finite)
data domain, in order to generate a concrete agent-based DaS (or C-AbDaS).
Hence, differently from [7,10], the same P-AbDaS can be instantiated in possi-
bly infinitely-many C-AbDaS, but all of them are finite. Further, to specify the
behaviour of P-AbDaS we need both temporal operators to describe the system’s
evolution, and first-order features, including quantifiers and relation symbols,
to account for data. Hence, in Sect.3 we consider a first-order extension of the
computation-tree logic CTL as the specification language for P-AbDaS, and then
define the parameterised model checking problem for this setting, which we show
to be undecidable in general. Then, in Sect. 4 we introduce techniques based on
isomorphisms and finite interpretation that allow — under specific assumptions
— for the existence of a cut-off, that is, a bound on the size of the quantifica-
tion domain above which the truth value of formulas in first-order CTL does
not change. The existence and value of the cut-off allow for a complete model
checking procedure that checks the specification on increasingly larger domains,
up to the cut-off value. We illustrate the formal machinery with a procurement
scenario from the literature on BPM [21]. Finally, we conclude in Sect.5 by
discussing related work and pointing to future directions of research.

2 Agent-Based Data-Aware Systems

In this section we introduce parameterised agent-based data-aware systems (P-
AbDaS) and define the corresponding model checking problem w.r.t. a first-order
version of the temporal logic CTL. We first present the basic terminology on
databases that is used throughout the paper [1].

Definition 1 (Database schema and instance). A database schema is a

finite set D ={P1/q1,...,Pn/qn} of relation symbols P with arity g € N.
Given a countable interpretation domain Y, a D-instance over Y is a map-

ping D associating each relation symbol P to a finite g-ary relation on'Y, i.e.,

D(P) ¢ Y.
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By Definition 1 a database instance can be thought of as a finite relational
structure, in line with relational models of databases [1]. We denote the set of
all D-instances on domain Y as D(Y). The active domain adom(D) of a D-
instance D is the finite set of all elements u € Y occurring in some predicate
interpretation D(P), that is, adom(D) = Upcplu € Y | (u1,...,u,...,uy) €
D(P)}. Hereafter, we assume w.l.o.g. that the active domain also includes a
finite set C C Y of constants, i.e., C C adom(D). To describe the temporal
evolution of agent-based data-aware systems, we introduce the primed version
of a database schema D as the schema D' = {P{/q1,...,P./qn.}. Then, the
disjoint union D @ D’ of D-instances D and D’ is the (D U D’)-instance such
that (i) (D@ D')(P;) = D(F;), and (ii) (D @ D')(P!) = D'(F;), where D’ is the
primed version of D. Intuitively, D and D’ represent the current and next state
of the system respectively, represented as database instances.

To specify properties of databases, we now recall the syntax of first-order logic
with equality and no function symbols. Let V be a countable set of individual
variables and let a term be any element t € T =V U C.

Definition 2 (FO-formulas). Given a database schema D, the formulas ¢ of
the first-order language Lp are defined by the following BNF:

pu=Pt,....t) [t=1"| | o — ¢|Vzp
where P € D, t1,...,t, is a q-tuple of terms, and t,t' are terms.

We define the free and bound variables in a formula ¢ as standard, and write
o(x) to denote that the free variables of ¢ are among 1, ..., z,.

To interpret first-order formulas on database instances, we introduce assign-
ments as functions o : T' — Y from terms to elements in Y. We denote by o7 the
assignment such that (i) o%(z) = w; and (%) oZ(z') = o(a’) for every z’ # z.
Also, we assume a Herbrandian interpretation of constants, that is, o(c) = ¢ for
all ce C.

Definition 3 (Satisfaction of FO-formulas). Given a D-instance D, an
assignment o, and an FO-formula ¢ € Lp, we inductively define whether D
satisfies @ under o, or (D,o) = ¢, as follows:

(D,0) = P(t1,...,1tq) iff (o(t1),...,0(ty)) € D(P)

(D,o) =t=1t iff o(t)=o(t)

(D.0) =~ i (Do) ey

(Do) Fe— ¢ iff (D,0) ¢ or (D,o) | ¢

(D,0) =V iff for all uw € adom(D), (D,ol) = ¢

A formula ¢ is true in D, or D |= ¢, iff (D,0) = ¢ for all assignments o.

Notice that we adopt an active domain semantics, where quantifiers range
over the active domain adom(D) of D. This is a standard assumption in database
theory [1]. Hereafter, we often write (D,u) = ¢ whenever x are all the free
variables in ¢ and o(x) = w. In particular, the satisfaction of a formula only
depends on its free variables.



Decidable Verification of Agent-Based Data-Aware Systems 55

We now introduce a notion of agent whose local information state is rep-
resented as a relational database. In particular, inspired by the literature in
KR&R and BPM on the specification of agent actions in terms of pre- and
post-conditions [2,3,21], we introduce the notion of action type.

Definition 4 (Action Type). An action type is an expression a(x)::=
g(x) ~ ef (x), where:

— guard g is an FO-formula with free variables x;
— effect ef is an expression built according to the BNF:

ef :=add(P,x) | del(P,x) | ef;ef | ef Uef

where, intuitively, add(P, x) is the insertion of tuple x in relation P, del(P, x)
is the deletion of © from P, ef; ef is the sequential composition, and ef Uef
18 the non-deterministic choice.

We now introduce a set Ag of agents, operating on databases, each of them
defined as follows:

Definition 5 (Agent). An agent is a tuple i = (D;, Act;), where

— D; is the local database schema;
— Act; is the finite set of action types «a(x), whose guards and effects are built
over D;.

Intuitively, by Definition 5 we assume that at each moment agent 4 is in
some local state D € D;(Y) that represents all the information she has about
the global state of the system. In this respect we follow the typical approach
to agent-based systems [17,31], but here we require that this information is
structured as a database. Further, each agent has her own database schema D;,
but the same relation symbol might appear in several schemas.

As we are interested in the interactions of agents among themselves and with
the external environment, we introduce their synchronous composition.

Definition 6 (Parameterised AbDaS). A parameterised agent-based data-
aware system (or P-AbDaS) is a finite set Ag of agents defined as in Definition 5.

To endow a P-AbDaS with a data content, thus obtaining a concrete Ab-DaS,
we consider an infinite, countable interpretation domain ), which intuitively
represents these data.

Definition 7 (Concrete AbDaS). A concrete agent-based data-aware sys-
tem (or C-AbDaS) is a tuple P = (Ag,Y), where (i) Ag is a P-AbDaS; and (ii)
Y O C is a finite subset of ).

Notice that, differently from [7,10], we do not assume an actual infinity of
elements in our models: each C-AbDaS only contains a finite set Y of elements.
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However, in general we can obtain infinitely many C-AbDaS based on the same
P-AbDaS, build on different domains Y fC V.

We now introduce some technical notions that will be used in the rest of the
paper. Given a C-AbDaS P = (Ag,Y), the (global) states of P are tuples s €
S = [l;ca, Di(Y), whereas joint actions a(u) € ACT(Y) = [[;c 4, Acti(Y) take
values u from domain Y. Observe that every global state s = (Dy,...,D,) € S
can be thought of as a database instance on the global database schema D =
Uicag Di such that s(P) = U;ca, Di(P), for every P € D. Then, we set s; as
the restriction of s to the relation symbols in D;. That is, we assume that each
agent has a truthful, yet partial, view of the global database D, since in general
D; is a subset of D.

Further, the transition relation 7 : S x ACT(Y) +— 2% is defined such that
t=(Dy,...,D.) € 7(s,a(u)) iff for every i € Ag, (s;,u) = g;, i.e., all guards are
satisfied and the corresponding joint action is enabled, and applying the effects
ef ;(u). Specifically, if ef, = add(P, x) (resp. del(P,x)), then Dj is obtained from
D; by performing the corresponding insertion (resp. deletion) in P with values
w. If ef, = ef’; ef?, then t; is obtained from s; by applying first the effects in
ef:, and then ef!. Similarly for ef, = ef; U ef? .

Finally, we introduce the successor relation — on global states such that

s — t if there exists a(u) € ACT(Y) such that s o), t,ie,t€T(s,a(u)). A
run r from state s is an infinite sequence s° — s!' — ..., with s° = 5. For n € N,

we define r(n) = s™. Hereafter we assume that the relation — is serial. This
can be ensured by using skip actions. Notice that, in what follows we restrict
the set of global states as the set of reachable states only. The disjoint union
@ is extended to global states in a pointwise manner: for s = (Do, ..., D,) and
s’ =(Dj{,..., D)), we define s ® s’ as (Do ® Dy, ..., D, ® D.).

Ezample 1. To illustrate the formal machinery introduced thus far, we present a
business process inspired by a concrete IBM customer use case [21]. The order-to-
cash business process specifies the interactions of three agents in an e-commerce
situation relating to the purchase and delivery of a product: a manufacturer
m, a customer ¢, and a supplier s. The process begins when ¢ prepares and
submits to m a purchase order (PO), i.e., a list of products ¢ requires (action
createPO()). Upon receiving a PO, m prepares a material order (MO), i.e., a list
of components needed to assemble the requested products (action create MO()).
Then, m forwards to s the relevant material order. Upon receiving an MO, s can
either accept or reject it (actions acceptMO() and rejectMO()). In the former
case she proceeds to deliver the requested components to m (action shipMO()).
In the latter, she notifies m of her rejection. If an MO is rejected, m deletes it
and then prepares and submits a new MO (action delete M O()). Upon delivery of
the components (action receive M O()), m assembles the product and, provided
the order has been paid for (action payPO()), delivers it to ¢ (action shipPO()).

We can encode the order-to-cash business process as a P-AbDaS, where the
data model is represented by means of database schemas, whose evolution is
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determined by an appropriate set of actions types. Formally the three agents
can be defined as follows:

- A, = (D, Act.), where
e D {Products(prod_code,budget), PO(id, prod_code, o ffer, status)};
o Act. = {create PO(id, code), payPO(id), delete PO(id) };
- Ay = (D, Actyy,), where
e D,,={PO(id, prod_code, of fer, status), M O(id, prod_code, price, status)};
o Act,,={createMO(d, price),receive M O@d),delete M O(id),shipPO(id) };
— A = (Ds, Acts), where
e D, = {Materials(mat_code, cost), MO(id, prod_code, price, status)};
o Acty, = {accept M O(id), reject MO(id), shipMO(id)}.

In Table 1 we provide the detailed action types for all agents in the use case.
As an example, according to action type createPO() (item (1.a)), the customer
can create a purchase order with a designed id only if there exists a product
with the same id. Further, by using createMO() the manufacturer can create a
material order with a designed id if MO does not contain a tuple with same id
in preparation status (item (2.a)).

Table 1. The list of actions in the order-to-cash scenario.

The actions of customer c:

1. createPO(id, code) ::= Products(code, ) A =3zPO(id, code, z, submitted) ~~
add(PO(id, code, z, submitted))

2. payPO(id) ::= (PO(id, =, y, prepared) A PO(id, x,y’, submitted) Ay = y’) ~»
del(PO(id, x, y, submitted) ); add(PO (id, =, y, paid))

3. deletePO(id) ::= PO(id, =, y, shipped) ~ del(PO(id, z, y, paid))

The actions of manufacturer m:

1. createMO(id, price) := (PO(id, z, of fer, submitted) A =3zM O(id, z, price, preparation)) ~
add(MO(id, z, price, preparation))

2. receiveMO(id) ::= M O(id, z, y, shipped) ~
del(MO(id, =, y, preparation) ); add(M O (id, x, y, received) ); add(PO(id, =, y, prepared))

3. deleteMO(id) ::= MO(id, x, y, rejected) ~~ del(M O (id, x, y, preparation))

4. shipPO(id) ::= PO(id, =, y, paid) ~ del(PO(id, z, y, prepared)); add(PO(id, x, y, shipped))

The actions of supplier s:

1. acceptMO(id) ::= M O(id, code, y, preparation) A =3zM O(id, code, z, accepted) A
Materials(code, y) ~ add(MO(id, code, y, accepted))

2. rejectMO(id) ::= M O(id, code, y, preparation) A =3zM O(id, code, z, rejected) A
—Materials(code, y) ~ add(MO(id, code, y, rejected))

3. shipMO(id) ::= MO(id, =, y, accepted) ~~ del(MO(id, z, y, accepted)); add(M O(id, x, y, shipped))

3 The Verification of AbDaS

In this section we introduce the specification language for AbDaS and the cor-
responding model checking problem. We recall that we consider a set V' of indi-
vidual variables and a set C of individual constants. The terms t1,to,... in T
are either variables in V or constants in C.
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Definition 8 (FO-CTL). The FO-CTL formulas ¢ over a database schema
D are defined as follows, where P € D:

pu=P(t1,.... 1) | mp [ — ¢ |Vop | AXp | ApUp | EoUyp

The language FO-CTL is a first-order extension of the propositional temporal
logic CTL. The temporal formulas AX ¢ and ApU¢’ (resp. E@U ') are read as
“for all runs, at the next step ¢” and “for all runs (resp. some run), ¢ until
¢©"". Given a formula ¢, we denote the set of free and all variables as fr(y) and
var(yp) respectively, and introduce formulas EX ¢, AF ¢, AGp, EFp, and EGp
as standard.

We now interpreted FO-CTL on concrete agent-based data-aware systems.

Definition 9 (Semantics of FO-CTL). We define whether a C-AbDaS P
satisfies a formula ¢ in a state s according to assignment o, or (P,s,0) = ¢,
as follows:

(P,s,0) = P(t) Zﬁ (a(tr), ..., 0(tq)) € s(P)

(Plso)t=t iff o(t)=o(t)

P ee o Bt

(P,s,0) = — ¢ iff (P,s,0)Ep or(P,s,0)f¢

(P,s,0) = Vrp iff for all u € adom(s), (P,s,oy) |:cp

(P,s,0)E AXe  iff forallr, if r(0) =s then (P,r(1),0) E¢

(P,s,0) | ApUy' iff for allr, if r(0) = s then there zsk>()st (P,r(k),0) E ¢,
and for all j, 0 < j < k implies (P,r(j), )|=g0

(P,s,0)|E EUy" iff for somer, r(0) = s and there is k > 0 s.t. (P,r(k),0) E ¢,

and for all j, 0 < j < k implies (P,r(j),0)E ¢

A formula ¢ is true at state s, or (P,s) = ¢, if (P,s,0) | ¢ for all assignments
o; ¢ is true in C-AbDaS P, or P |= ¢, if (P,s) E ¢ for every s € S. Finally,

Ag E ¢ iff (Ag,Y) E ¢ for allY fg V.

Again, in Definition 9 we adopt an active domain semantics, whereby quan-
tifiers range over the active domain adom(s) of s.

Finally, we present the model checking problem for P-AbDaS with respect
to the specification language FO-CTL.

Definition 10 (Parameterised Model Checking). Given a P-AbDaS Ag,
an infinite domain Y, and an FO-CTL formula p, determine whether Ag = ¢.

Notice that the parameterised model checking problem requires in principle
to check an infinite number of C-AbDaS built on the same P-AbDaS. Indeed,
model checking P-AbDaS is undecidable in general: we remark without proof that
P-AbDaS are expressive enough to encode Turing machines, and reachability of
a halting state can then be expressed in FO-CTL similarly to [7,15]. Hence, it
is of interest to investigate semantic restrictions on P-AbDaS that allow for a
decidable model checking problem.

To this end, a key notion to decide parameterised model checking in general
is the cut-off:
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Definition 11 (Cut-off). A natural number n € N is a cut-off for P-AbDaS
Ag and formula ¢ iff for all finite subsets Y 2 C,Y' D C of Y, if |Y| =n and
Y[ = Y], then (Ag,Y) = ¢ iff (Ag,Y") = ¢.

Note that, in Definition 11 we suppose |Y’| > |Y| without considering that
|Y] is a subset of |Y’|. This is because we define the set of constants C' to be
in both |Y] and |Y”’|, and for this reason the intersection between |Y’| and |Y|
cannot be empty.

The existence of the cut-off allows us to decide verification by checking all
C-AbDaS up to size |n|, of which there exist finitely many instances. We devote
the rest of the paper to finding sufficient condition for the existence of cut-offs.

We conclude this section by elaborating on Example 1.

Ezample 2. We can investigate properties of the order-to-cash business process
by using specifications in FO-CTL. For instance, the following formula intuitively
specifies that each material order MO has to match a corresponding purchase
order PO:

AG Yid,pc (3pr,s MO(id, pc, pr,s) — Jo,s' PO(id, pc, 0, s"))

The next specification states that given a material order MO, it can be the
case that eventually the corresponding PO will be shipped.

AG Vid, pc (3pr,s MO(id, pc,pr,s) — EF Jo PO(id, pc, o, shipped))

Hereafter we develop techniques to model check specifications in FO-CTL
like the ones above.

4 Finding Cut-Offs

In this section we introduce model-theoretic notions that will be used to tackle
the parameterised model checking problem for P-AbDaS. In particular, we recall
some notions in [7].

Definition 12 (Isomorphism). Two database instances D € D(Y'), D' €
D(Y) are isomorphic, or D ~ D', iff there exists a bijection ¢ : adom(D) —
adom(D’) s.t.:

(i) v is the identity on the constants in C;
(it) for all P € D, w € Y9, w € D(P) iff u(u) € D'(P).

When the above is the case, we say that ¢ is a witness for D ~ D’. Moreover, two
global states s = (Dy,...,Dy) € S and ' = (D{,...,D,) € S’ are isomorphic,
or s ~ s, iff there exists a bijection ¢ : adom(s) — adom(s’) such that for every
j € Ag, v is a witness for Dj ~ Dj.
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By Definition 12 isomorphisms preserve the interpretation of constants as well
as of predicates up to renaming of terms. Obviously, isomorphisms are equiva-
lence relations. Given a function f : Y +— Y’ defined on adom(s), f(s) denotes
the instance in D(Y”) obtained from s by renaming each u € adom(s) as f(u).
If f is also injective (thus invertible) and the identity on C, then f(s) ~ s.

While isomorphic states share the same relational structure, two isomorphic
states do not necessarily satisfy the same FO-formulas as satisfaction depends
also on the values assigned to free variables. To account for this, we introduce
the following notion.

Definition 13 (Equivalent assignments). Given states s € S and s’ € 5/,
and a set V! C V of variables, assignments o : T — Y and o' : T — Y’ are
equivalent for V' w.r.t. s and s' iff there exists a bijection 7 : adom(s)Uc (V') —
adom(s") U o’ (V') such that:

(1) Y|adom(s) 5 @ witness for s ~s';
(i) o'|y: = v;0lyr, where ; is function composition.

By Definition 13 equivalent assignments preserve both the (in)equalities of
the terms in s, s’ up to renaming. Clearly, the existence of equivalent assignments
implies that s, s’ are isomorphic. We say that two assignments are equivalent for
an FO-CTL formula o, omitting states s and s’ when clear from the context, if
these are equivalent for the free variables fr(y) in ¢.

We now state the following standard result in first-order (non-modal) logic,
i.e., isomorphic states satisfy exactly the same FO-formulas, when interpreted
with equivalent assignments [1].

Proposition 1. Given isomorphic states s € S and s’ € ', an FO-formula ¢,
and assignments o and o' equivalent for @, we have that

(570) ‘: ¥ iﬁ(slaal> ): ¥

An immediate consequence of Proposition 1 is that isomorphic states cannot
be distinguished by FO-sentences. In the rest of the section we show how iso-
morphisms can actually be used to prove the preservation of the whole FO-CTL.
Notice that this is in marked contrast with similar results in the literature [3,7],
which need to assume some notion of (bi)simulation on the underlying tran-
sitions systems. Nothing similar is required here, we show that isomorphisms
suffice. More specifically, in [7] the requirement of uniformity was put forward
as a sufficient condition for bisimilar systems to satisfy the same formulas in
FO-CTL. We now show that C-AbDaS satisfy uniformity unrestrictedly.

Lemma 1 (Uniformity). All C-AbDaS P, P’ are uniform, that is, for every
s,teS, eSS teDY),ifter(s,alu)) and s®t~ s @t for some witness
t, then for every constant-preserving bijection (' that extends ¢ to w, we have
that t' € T(s', a(J/(u))).
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Proof. For illustration, we consider the case in which there is only one agent,
ie., a(u) = g(u) ~ ef(u). First of all, notice that if s@t ~ s’ Gt then for every
bijection ¢ extending ¢ to u, we have that (s,u) = g(x) iff (s, (u)) E g(x) by
Proposition 1. Hence, action a(u) is enabled in s iff a(//(u)) is enabled in s’

Now we prove by induction on the structure of ef(u) that ¢’ can be obtained
by applying effects ef(//(u)) to s, and therefore t' € 7(s’,a(//(u))). For the
base of induction, consider ef(u) = add(P,u). Then, t differs from s only for
tuple w possibly added to the interpretation of P. Since s &t ~ s’ ® t/, also
t' differs from s’ only for tuple +/(u) added to the interpretation of P, and
therefore ¢’ € 7(s',a(t/(w))). As regards the base case for ef(u) = del(P,u),
t differs from s only for tuple u possibly deleted from the interpretation of P.
Since s®t ~ ¢ @', again t’ differs from s’ only for tuple ¢'(u) deleted from the
interpretation of P, and therefore ' € 7(s', a(¢/(w))).

As for the inductive case for ef(u) = efi(u1) U efz(uz), then t is obtained
from s by applying either the effects in efi(u1) or in efo(uz). Then, by induc-
tion hypothesis, ' can be obtained from s’ by applying either the effects in
efi(d(u1)) or in efa(/(usz)), which is tantamount to ef(:/(w)). Finally, for
ef(u) = efi(uq);efz(uz), t is obtained from s by applying first the effects in
efi(u1) and then efs(us). Then, by induction hypothesis, ¢ can be obtained
from s’ by applying first the effects in ef;(:/(u1)) and then efs(¢/(u2)), which is
tantamount to ef(:/'(u)).

Intuitively, the notion of uniformity in Lemma 1 captures the idea that
actions take into account and operate only on the relational structure of states,
irrespective of the actual data they contain. Because of this, uniformity has
been compared to the notion of genericity in database theory, whereby in spe-
cific cases the answer to a query depends only on the structure of the database
[1]. Actually, the result in Lemma 1 is stronger that the notion of uniformity in
[7], which is restricted to states belonging to the same system. We are able to
prove a stronger result, as we consider C-AbDaS built on the same P-AbDaS
and therefore sharing the same actions, which is not the case in [7].

We now demonstrate some auxiliary lemmas that will be used in proving
the main preservation result (Theorem 2). The first two guarantee that under
appropriate conditions on the cardinality of the interpretation domains, equiv-
alent assignments are preserved by the isomorphism relation. Hereafter we set
Nyg = ZieAgmaxa(w)eActiﬂ:cH, i.e., Nag is the sum of the maximum num-
ber of parameters contained in the action types of each agent in Ag; whereas
P =(Ag,Y) and P’ = (Ag,Y’) are C-AbDaS defined on the same P-AbDaS Ag.

Lemma 2. Consider C-AbDaS P and P’ defined on the same P-AbDaS Ag,
isomorphic states s € S and s’ € S, an FO-CTL formula o, and assignments
o and o' equivalent for ¢ w.r.t. s and s'. For everyt € S such that s — t, if
[Y'| > |adom(s) Uc(fr(y))| + Nag, then there exists t' € S” such that s’ — t/,
t~t', and o and o' are equivalent for o w.r.t. t and t'.
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Proof. First of all, let v be a bijection witnessing that o and ¢’ are equivalent
for ¢ w.r.t. s and ¢, and suppose that t € 7(s, a(u)) for some joint action a(u).
Now define Dom(j) = adom(s) Uo(fr(¢)) U, and partition it into:

— Dom(v) = adom(s) Ua(fr(p));
— Dom(/) = u \ Dom(y).

Let ' : Dom(:") — Y’ \ Im(y) be an invertible total function. Observe that
[Im(y)| = |adom(s") Ud’(fr(v))| = |adom(s) U a(fr(e))|, thus from the fact
that |Y'| > |adom(s) U o (fr(y))| + Nag, we have that Y\ Im(y)| > [Dom(.')],
which guarantees the existence of (/.

Next, define j : Dom(j) — Y’ as follows:

[ y(u), if u € Dom(y)
Ju) = {Z/(u), if u € Dom(zl)

Clearly, j is invertible. In particular, 7 is a witness for s &t ~ s’ & t/, for
t" = j(t). In particular, since t € 7(s,a(u)), by uniformity we obtain that
t' € 7(s',a(j(u))). Thus, s — ¢'. Finally, by construction of ', o and ¢’ are
equivalent for ¢ w.r.t. t and ¢'. O
The proof of Lemma 2 relies crucially on P and P’ being uniform. Moreover,
since P and P’ are defined on the same P-AbDaS Ag, we do not need to assume
that P and P’ are bisimilar, as it is the case in [7, Lemma 3.9] for instance.
Then, Lemma 2 generalises to runs.

Lemma 3. Consider C-AbDaS P and P’ defined on the same P-AbDaS Ag,
isomorphic states s € S and s’ € S’, an FO-CTL formula ¢, and two assign-
ments o and o’ equivalent for p w.r.t. s and s'. For every runr of P, ifr(0) = s
and for all i >0, |Y'| > |adom(r(i)) Uo(fr(v))| + Nag, then there exists a run
r’ of P’ such that for all i > 0:

(i) r'(0) = s';

(i) r(i) ~ r'(i);
(iii) o and o' are equivalent for ¢ w.r.t. v(i) and r'(i).
Proof. Let r be a run satisfying the lemma’s hypothesis. We inductively build
r’ and show that the conditions (7)-(iii) are satisfied. For ¢ = 0, let +/(0) = ¢’
By hypothesis, 7 is such that |Y’| > |adom(r(0)) U o(fr(¢))| + Nag. Thus, since
r(0) — r(1), by Lemma 2 there exists ¢ € S’ such that '(0) — ¢, r(1) ~ ¢, and
o and ¢’ are equivalent for ¢ w.r.t. #(1) and ¢'. Let /(1) = ¢'.

The case for ¢ > 0 is similar. Assume that r(i) ~ r'(i) and o and o’ are equiv-
alent for ¢ w.r.t. r(¢) and /(). Since r(¢) — r(i + 1) and |Y'| > |adom(r(i)) U
o(fr(¢))|+ Nag, by Lemma 2 there exists ¢ € S” such that /(i) — ¢/, o and o’
are equivalent for ¢ w.r.t. r(i+1) and ¢/, and r(i +1) ~t'. Let 7' (i + 1) = ¢'. It
is clear that ' is a run in P’.

Again, Lemma 3 differs from similar results in the literature (e.g., [7,
Lemma 3.10]) as we do not need to assume that P and P’ are bisimilar.

By Lemma 3 we can prove that, for sufficiently large domains, FO-CTL
formulas cannot distinguish isomorphic C-AbDaS built on the same P-AbDaS.
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Theorem 1. Consider C-AbDaS P and P’ defined on the same P-AbDaS Ag,
isomorphic states s € S and s’ € S, an FO-CTL formula ¢, and two assign-
ments o and o’ equivalent for ¢ w.r.t. s and s'. If

1. for every run r such that r(0) = s, for all k > 0 we have |Y'| > |adom(r(k))U
o(fr(@)| + lar(@) \ fr(p)| + Nag;

2. for every run r’ such that v'(0) = s, for all k > 0 we have |Y]|
ladom(r' (k) U o' (fr(@))] + [var(@) \ fr(¢)| + Nag;

then (P,s,o) E ¢ iff (P',s',0') E .

Proof. The proof is by induction on the structure of ¢. We prove that if
(P,s,0) = ¢ then (P’,s',0") = ¢. The other direction can be proved analo-
gously. The base case for atomic formulas follows by Proposition 1. The inductive
cases for propositional connectives are immediate and thus omitted.

For ¢ = Vx1, assume that € fr(y) (otherwise consider v, and the cor-
responding case), and no variable is quantified more than once (otherwise we
can rename variables w.l.o.g.). Let v be a bijection witnessing that o and o’
are equivalent for ¢ w.r.t. s and . For u € adom(s), consider the assign-
ment oy;. By definition, y(u) € adom(s’), and o’f , is well-defined. Note that
fr(¥) = fr(e) U{z}; so of and o], are equivalent for ¢ wr.t. s and s'.
Moreover, |05 (fr(¥))| = |o(fr(e))] + 1. The same considerations apply to
o', Further, [var(¥)\ fr(®)] = [var(p) \ fr(g)] — 1, as var(y) = var(p),
fr@@) = fr(e) U{z}, and = ¢ fr(p). Thus, both hypotheses (1) and (2)
remain satisfied if we replace ¢ with ¢, o with o, and ¢’ with O‘i/ x( ) Therefore,
by the induction hypothesis, if (P,s,07) = ¢ then (P',s',0%,)) = 1. Since
u € adom(s) is generic and  is a bijection, the result follows.

For ¢ = AX4t, assume by contraposition that (P’,s’,0’) £ . Then,
there exists a run 7’ such that »'(0) = s and (P’,7/(1),0’) & . Since
lvar(p) \ fr(e)] > 0, by Lemma 3, there exists a run r such that r(0) = s, and for
allé > 0, r(i) ~ /(i) and o and o’ are equivalent for ¢ w.r.t. 7() and r/(¢). Since r
is a run such that r(0) = s, it satisfies hypothesis (1). Moreover, the same hypoth-
esis is necessarily satisfied by all the runs 7 such that for some i > 0, "/ (0) = r(4)
(otherwise, the run r(0) — --+ — r(i) — (1) — r”(2) — .-+ would not sat-
isfy the hypothesis for r); the same considerations apply w.r.t hypothesis (2)
and for all the runs " such that »"/(0) = »/(i), for some ¢ > 0. In particular,
these hold for ¢ = 1. Thus, we can inductively apply the hypothesis, by replacing
s with r(1), ¢ with 7/(1), and ¢ with ¢ (observe that var(y) = var(y) and
fr(e) = fr(¢)). But then we obtain (P,r(1),0) ¥ 4, thus (P, r(0),0) & AXy.

For ¢ = EYU¢, assume that the only variables common to 1 and ¢ occur
free in both formulas (otherwise rename quantified variables w.l.o.g.). Let r be
a run such that r(0) = s, and there exists k > 0 such that (P,r(k), ) E &,
and (P,r(j),0) E ¢ for 0 < j < k. By Lemma 3 there exists a run 7’ such
that r/(0) = s’ and for all ¢ > 0, /(i) ~ r(z) and o and ¢’ are equivalent for ¢
w.r.t. /(i) and r(). From each bijection v; witnessing that o and ¢’ are equiv-
alent for ¢ w.r.t. /(i) and r(i), define the bijections v; y = Viladom(r(s))ue (fr(w))
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and Yi.g = Yiladom(r(i))uo(fr(s))- Since fr(¥) C fr(p), fr(¢) € fr(p), it can be
seen that v; , and ;4 witness that ¢ and ¢’ are equivalent for respectively ¢
and ¢ w.r.t. '(¢) and r(7). By the same argument used for the AX case above,
hypothesis (1) holds for all the runs r” such that "/ (0) = (i), for some i > 0, and
hypothesis (2) holds for all the runs 7" such that r"/(0) = r’(¢). Now observe
that |o(fr(@)|,|o(fr(¥))] < |o(fr(p))|. Moreover, by the assumption on the
common variables of ¥ and ¢, (var(p) \ fr(p)) = (var(¥) \ fr(¥)) W (var(d) \
Fr(9), thus foar(e)\ fr(g)| = |(var(®)\ Fr()] + [(var(@)\ fr(6)], hence
war()\ fr(0)], [(var(9)\ fr(@)] < lvar() \ fr(p)]. Therefore hypotheses (1)
and (2) hold also with ¢ uniformly replaced by either ¢ or ¢. Then, the induc-
tion hypothesis applies for each i, by replacing s with r(4), s’ with /(i), and ¢
with either ¢ or ¢. Thus, for each i, (P,r(i),0) = ¢ iff (P’,7'(i),0’) = ¢, and
(P,r(i),0) E ¢ ift (P',7'(i),0) = ¢. Therefore, r’ is a run such that r'(0) = ¢,
(P',r'(k),0’) E ¢, and for every j, 0 < j < k implies (P',r'(j),0’) = ¢, ie.,
(P',s',0') = EQUS.

For ¢ = AYU¢, assume by contraposition that (P’,s’,0’) & ¢. Then, there
exists a run r’ such that r'(0) = s’ and for every k > 0, either (P’,7'(k),0’) = ¢
or there exists j such that 0 < j < k and (P’,r'(j),0’) £ ¥. By Lemma 3 there
exists a run 7 such that 7(0) = s, and for all ¢ > 0, r(¢) ~ r'(¢) and o and o’
are equivalent for ¢ w.r.t. r(¢) and (7). Similarly to the case of EYU¢, it can
be shown that o and ¢’ are equivalent for ¢ and ¢ w.r.t. (i) and 7’/(i), for all
1 > 0. Further, assuming w.l.o.g. that all variables common to ¢ and ¢ occur free
in both formulas, it can be shown, as in the case of EYU¢, that the induction
hypothesis holds on every pair of runs obtained as suffixes of r and 7/, starting
from their i-th state, for every i > 0. Thus, (P,r(i),0) E ¢ iff (P',r'(i),0") E ¥,
and (P,r(i),0) = ¢ iff (P’,7'(i),0’) = ¢. But then r is such that (0) = s and
for every k > 0, either (P,r(k),o) & ¢ or there exists j such that 0 < j < k and
(P,r(j),0) & ¢, that is, (P, s,0) = AYUd.

We can now immediately extend Theorem 1 to the model checking problem
for C-AbDaS.

Theorem 2. Consider C-AbDaS P and P’ defined on the same P-AbDaS Ag,
and an FO-CTL formula . If

1. [Y'] > maxses |adom(s)| + |var(¢)| + Nag;
2. Y| > maxyes |adom(s’)| + |var(p)| + Nag;

then P = ¢ iff P’ = .

Proof. Equivalently, we prove that if (P, sg, o) £ ¢ for some o, then there exists
a o’ s.t. (P, s),0") = ¢, and viceversa. To this end, observe that hypotheses (1)
and (2) imply, respectively, hypotheses (1) and (2) of Theorem 1. Further, notice
that, by cardinality considerations, given the assignment o : T +— Y, there
exists an assignment o’ : T +— Y’ such that ¢ and ¢’ are equivalent for ¢
w.r.t. sg and sj. Thus, by applying Theorem 1 we have that if there exists an
assignment o such that (P, sg,0) = ¢, then there exists an assignment ¢’ such
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that (P, si,0’) K& ¢. The converse can be proved analogously, as the hypotheses
are symmetric.

Theorem 2 shows that P-AbDaS Ag can in principle be verified by assum-
ing an interpretation domain of suitable size. Notice again that, since P and P’
are defined on the same P-AbDaS Ag, differently from [7] we do not require
any notion of bisimulation. Moreover, if we are able to bound the quantity
maxges |adom(s)| across Ag, then we obtain a cut-off value. These considera-
tions motivate the following definition.

Definition 14 (Bounded P-AbDaS). A P-AbDaS Ag is b-bounded, forb € N,
if for all C-AbDaS P based on Ag, for all reachable states s € S, |adom(s)| < b.

Boundedness can be justified in terms of the underlying implementation of
a P-AbDaS. Indeed, in the order-to-cash scenarios it is likely that there is a
maximum number of purchase orders that the manufacturer can deal with at
any single time. By assuming boundedness, next result follows from Theorem 2.

Theorem 3. Consider a b-bounded P-AbDaS Ag over an infinite interpretation
domain Y. Then, n = b+ k + Nag is a cut-off for all formulas with at most k
variables.

By Theorem 3 to decide whether a specification ¢ is true in a bounded P-
AbDaS Ag, we can check the corresponding C-AbDaS P based on increasingly
bigger domains Y ‘Cf Y, until we hit |Y| = b+ var(y) + Nag. If formula ¢ is

true in all iteration, we can then conclude that ¢ is true in Ag.

Discussion. The assumption of boundedness to obtain decidability may appear
restrictive. However, notice that in most implementation of data-aware systems,
the bound is set by the system’s specification in terms of memory. That is, we can
safely assume that our system will never contain more than a certain amount of
data, however large it can be, and use this bound to verify properties of interest.
Unfortunately, the problem of deciding whether a system is b-bounded, for some
b € N, is undecidable in general. Some restrictions on the specification of actions
to obtain bounded systems have been explored in [3].
We conclude this section by elaborating on our running example.

Example 3. Consider again the order-to-cash scenario and suppose that the cus-
tomer can request at most 5 products for each purchase order and the manufac-
turer can request at most 10 materials to the supplier. Note that, in principle
the number of products could be infinite. Further, the total number of prod-
ucts and the total number of materials are both 20. So, we can fix a bound
b=5-4+10-4+420-2+ 20 -2 = 140, and notice that the FO-CTL specifica-
tions in Example 2 contain at most 6 variables. Then, the value for the cut-off
is n = 146 + N4,4. Since the maximum number of parameters for the customer
and the manufacturer is 2 and for the supplier is 1, then n = 146 +5 = 151 is
the total cut-off. As a result, to verify the FO-CTL specifications in Example 2
it is sufficient to model check them on C-AbDaS of domain size |Y| = 151.
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5 Related Work and Conclusions

Amongst the first contributions to consider the verification of data-aware systems
we mention [8,18]. This direction was then developed in [12,15], which apply
syntactic restrictions on the system description and the specification language
in order to obtain decidability. Closely related to the present contribution are
[3,7,10], where sufficient conditions for decidable model checking of data-centric
dynamic systems are given. Results on the verification of DaS have also appeared
in [5,6,13], and then applied to the monitoring of commitments [27] and plan
synthesis [9]. While we acknowledge the contribution of these works, there are
two important differences in our approach w.r.t. the state of the art. Firstly, we
here considered the parameterised model checking problem, where each system
is parametric w.r.t. a finite, possibly different, interpretation domain; whereas in
the references above each system carries its own infinite interpretation domain.
Secondly, because of this technical shift, instead of introducing notions of bisim-
ilarity to obtain finite abstractions [7], we rather explore the existence of cut-
offs defined on the same agents as the parameterised AbDaS, but with a finite
interpretation domain. We believe that this last problem is more interesting for
practical applications because, rather than dealing with an actual infinity of
data, data-aware systems usually encompass an unbounded number of elements,
which is more naturally modelled as a parameterised model checking problem.

On the subject of parameterised model checking of agent-based systems,
recently several methodologies and tools have been proposed [22,23]. These con-
tributions are orthogonal, as while they do not model data-aware systems, they
are capable of dealing with an arbitrary number of agents. As regards DaS, a
method for the verification of parameterised agent-based systems, each encoded
via infinite-state models, was presented in [24]. However, this approach only
supports a non-quantified specification language and does not deal with (semi-
)structured data as we do here. Finally, [4] reports on some preliminaries results
on the verification of data-aware multi-agent systems. But decidability results
are available only for a rather limited fragment of the specification language
considered therein. The present contribution differs from the works above as,
to the best of our knowledge, we introduce for the first time the problem of
parameterised model checking for data-aware systems. As we motivated, this
is a relevant question for verification, as we aim at guaranteeing the correct
behaviour of data-aware systems no matter what the underlying data content is.
To this end, we proved theoretical results on the preservation of specifications
written in FO-CTL under cardinality constraints. Finally, we showed that such
results guarantee the existence of a cut-off for the class of bounded P-AbDaS.
We illustrate the relevance of the formal machinery through an application to
an IBM use-case, the order-to-cash scenario.

We plan to extend the present work in several directions, including more
expressive specification languages, possibly with some form of arithmetic, which
is essential for real-life applications. Also of interest are the results in [22,23]
that allow for the verification of systems with an arbitrary number of agents.
We plan to explore such an extension of our present setting.
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