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Abstract. Plasticity is a crucial adaptive characteristic of the brain. Relatively
recently mechanisms have been found showing that plasticity itself is controlled
by what is called metaplasticity. In this paper a modeling environment is
introduced to develop and simulate reified temporal-causal network models that
can be applied for cognitive agent models. It is shown how this environment is a
useful tool to model plasticity combined with metaplasticity.

1 Introduction

Real-world cognitive agents are often adaptive, described by adaptation principles. For
example, mental or neural networks equipped with a Hebbian learning mechanism [5]
are able to adapt connection weights over time and learn in this way. This is usually
called plasticity (modeled by the middle layer in the example in Fig. 1). In some
circumstances it is better to learn fast, but in other circumstances it is better to stay
stable and persist what has been learnt in the past. To control this, a type of (higher-
order) adaptation called metaplasticity is used (highest layer in Fig. 1); e.g., [1, 6].

In [8, 11] any form of adaptation had to be added by specific procedural program
code like usually is done for adaptive networks; there was no standard or principled
way to explicitly specify adaptive causal relations. To offer a more principled way to
specify adaptive networks, recently the notion of network reification was proposed as
an addition to the temporal-causal network modeling approach, and illustrated by some
case studies that were implemented in a more or less ad hoc - proof of concept –
manner [9, 10]. These initial explorations suggest that this notion of network reification
could be useful to model in a systematic and transparent manner from a network-
oriented perspective, cognitive and social agent processes that are adaptive of any
order, and in particular those involving plasticity and metaplasticity (e.g., see Fig. 1).

Following this, the current paper introduces a specification format based on
declarative mathematical relations and a modeling environment for reified temporal-
causal networks, implemented in Matlab in a principled and structure-preserving
manner. Due to this dedicated overall Network-Oriented Modelling approach for
adaptive networks, no procedural, algorithmic or programming skills are needed to
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design cognitive agents or social networks which show complex adaptive behaviour of
any order.

In the paper, in Sect. 2 the reified temporal-causal network architecture is explained
in some detail. After this, more details are described of the specification format
(Sect. 3) and the implemented modeling environment and its computational reified
network engine (Sect. 4) developed. Finally, Sect. 5 is a discussion.

2 Modeling Adaptive Processes by Reified Networks

A conceptual representation of the network structure of a temporal-causal network
model involves three main characteristics of the network structure; see [8], Chapter 2,
or [11]. First, for the connectivity characteristics of the network, connection weights
xX,Y are used as a labels for connections from X to Y. Second, for the aggregation
characteristics of a network, for each state Y a combination function cY(..) is used to
aggregate (and modulate) causal impacts on state Y; they can contain parameters
p. Third, for the timing characteristics of a network, for each state Y a speed factor ηY
is used for timing of the causal effects. The difference equations used for simulation and
mathematical analysis incorporate these three types of network characteristics xX,Y,
cY(..), ηY:

YðtþDtÞ ¼ YðtÞþ gY ½cYðxX1;YX1ðtÞ; . . .;xXk ;YXkðtÞÞ � YðtÞ�Dt
Here X1, …, Xk are the states from which state Y gets its incoming connections. For
aggregation a library with a number (currently 35) of standard combination functions
are available as options, but also own-defined functions can be added.

Modeling adaptive networks asks for a dedicated network architecture in which
different levels of adaptivity or plasticity can be modeled. Such an architecture has been
proposed based on the notion of network reification [9, 10]. Reification (e.g., [4]), in
general means making an abstract notion concrete. For network models this is done by
introducing additional states in the network that explicitly represent characteristics of
the network such as connectivity, aggregation, and timing, and makes them adaptive:

• Adaptation of a connection weight xX,Y: reified connection weight representations
WX,Y

• Adaptation of a speed factor ηY: reified speed factor representations HY

• Adaptation of a combination function cY(..): reified combination function weight
representations Ci,Y (for the ith combination function used)

• Adaptation of a combination function parameter pY: reified combination func-
tion parameter representations Pi,j,Y (for the jth parameter of the ith combination
function for Y)

In a graphical representation in a 3D format these new states are depicted in a
second plane above the plane for the base network; see the blue plane in the example
model depicted in Fig. 1, also indicated as the first reification level. This step can be
repeated so that a third plane is added for second-order reification (see the purple third
plane in Fig. 1). Three types of causal connections are distinguished: upward causal
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connections, downward causal connections and leveled (horizontal) causal connec-
tions. The downward causal connections have their own fixed role and meaning in the
sense that they are causally effectuating one of the four types of adaptations listed
above.

Combination functions are built as a weighted average from a number of basic
combination functions bcfi(..) available in a library; these weights can be prespecified
as constant values or can be adaptive based on reification states. Examples of basic
combination functions often used are the euclidean combination function eucln;k . . .ð Þ
with order n > 0 and scaling factor k > 0 (generalising the linear scaled sum function
for n = 1) and the advanced logistic sum combination function alogisticr;s . . .ð Þ with
steepness parameter r > 0 and excitability threshold parameter s:

eucln;k V1; . . .;Vkð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vn
1 þ . . .þVn

k

k
n

r

alogisticr;s V1; . . .;Vkð Þ ¼ 1
1þ e�r V1 þ . . .þVk � sð Þ �

1
1þ ersÞ

� �
ð1þ e�rsÞ

Here the Vi denote the single impacts xXi;YXi tð Þ on state Y for each of the incoming
connections from states X1, …, Xk. Moreover, for Hebbian learning (‘neurons that fire
together, wire together’), among others the following combination function is available
(used for the reification state WX,Y in the middle layer in Fig. 1):

hebbl V1;V2;Wð Þ ¼ V1V2 1�Wð Þþ lW

where V1;V2 indicate the single impacts from the connected states (base states at the
bottom layer in Fig. 1) and W the connection weight (represented by reification state
WX,Y in the middle layer in Fig. 1), and l is a persistence parameter. In Fig. 1:

• WX,Y plays the role of connection weight for the connection from X to Y
• HY the role of speed factor for Y
• Ci,Y the role of combination function weight of bcfi(..) for Y
• Pi,,j,Y the role of combination function parameter value; examples of such reified

parameters used in Fig. 1 are the excitability parameters s (reified by the two
T states in the middle plane) and the persistence parameter l (reified by the M state
in the upper plane)

These values are used in the computations for base states Y depending on their role.
For any base state Y the following universal combination function c*Y(..) is used:

c*Y(H, C1, …., Cm, P1,1, P2,1, …, P1,m, P2,m, W1, …, Wk, V1, …, Vk, V) =

H
C1bcf1 P1;1;P2;1;W1V1;::;WkVkð Þþ ...::þCmbcfm P1;m;P2;m;W1V1;::;WkVkð Þ

C1 þ ...::þCm
+ (1−H) V

where

• H is used for the speed factor reification HY(t)
• Cj for the combination function weight reification Ci,Y(t)
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• Pi,j for the combination function parameter reification Pi,j,Y(t)
• Wi for the connection weight reification WXi;YðtÞ
• Vi for the state value Xi(t) of base state Xi

• V for the state value Y(t) of base state Y

This universal combination function is used in the following universal computa-
tional (difference) equation (leaving t out of most of the notation):

Y(t + Dt) = Y(t) +
½c � Y ðHY ;C1;Y ; . . .;Cm;Y ;P1;1;Y ;P2;1;Y ; . . .;P1;m;Y ;P2;m;Y ;WX1;Y ; . . .;WXk ;Y ;X1; . . .;Xk;

YðtÞÞ � YðtÞ�Dt
= Y(t) + HY

½C1;Ybcf1 P1;1;Y ;P2;1;Y ;WX1;YX1; ::;WXk ;YXk
� �þ . . .::þCm;Ybcfm P1;m;Y ;P2;m;Y ; ;WX1;YX1; ::;WXk ;YXk

� �

C1;Y þ . . .::þCm;Y
�Y tð Þ�Dt

In these formulas, by its place in the formula, each role indeed contributes a
different type of effect according to its intended semantics. In Sect. 3 it is shown how in
a network model design, the roles of these reification states are specified by role
matrices mb (base connection role), mcw (connection weight role), ms (speed factor
role), mcfw (combination function weight role), and mcfp (combination function
parameter role).

psasss srss
bss

Wsrss,psa TpsaTsrss

HWsrss,psa MWsrss,psa
level

reification
second

level
reification 

first

level
base

Fig. 1. Overview of an example reified network architecture addressing plasticity and
metaplasticity for a cognitive agent model, with: (1) base level (lower plane, pink), (2) first
reification level (middle plane, blue) for plasticity of the weight x of the base connection from
srss to psa and the excitability thresholds s of these two base states (by the W state and the two
T states), and (3) second reification level (upper plane, purple) for metaplasticity for the first-
order adaptation speed η and the persistence l (by the H state and M state). The upward causal
connections (blue) and downward causal connections (red) define the interlevel relations. For
more explanation of this example network, see [13]. (Color figure online)
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Note that in a reified network the specific names of the reification states are
computationally irrelevant: in this network modeling style the connections and their
roles define meaning and processing, not the state names. This may be considered in
contrast to reification in logic-based languages like (meta)Prolog [2, 7] where usually
syntactical structures of names are processed.

3 Specification Format for a Reified Temporal-Causal
Network

In role matrices it is specified which other states have impact on a given state (the
incoming arrows in Fig. 1), but distinguished according to their role: base or non-base
connections, from which for the latter a distinction is made for the roles connection
weight, speed factor, combination function weight and combination function parameter
reification (see also Fig. 1). Role matrices enable to apply structure-preserving
implementation. The matrices all have rows according to the numbered states X1, X2,
X3, …..

For a given application a limited sequence of combination functions is specified by
mcf = [….], for the example mcf = [1 2 3], where the numbers 1, 2, 3 refer to the
numbering in the function library which currently contains 35 combination functions,
the first three being eucln;k . . .ð Þ, alogisticr;s . . .ð Þ, hebbl . . .ð Þ. In Box 1 the role
matrices mcfw and mcfp (3D matrix) are shown. The first role matrix mb for base
connectivity specifies on each row for a given state from which states at the same or a
lower level it has incoming connections; see Box 1. For example, in the third row it is
indicated that state X3 (= bss) only has one incoming base connection, from state X2

(= srss). As another example, the fifth row indicates that state X5 (= Wsrss;psa ) has
incoming base connections from X2 (= srss), X4 (= psa) and from X5 itself, and in that
order, which is important as the Hebbian combination function hebbl . . .ð Þ used here is
not symmetric.

In a similar way the four types of role matrices for non-base connectivity (i.e.,
connectivity from reification states at a higher level of reification: the downward arrows
in Fig. 1), were defined: role matrices mcw for connection weights and ms for speed
factors, and role matrices mcfw for combination function weights and mcfp for
combination function parameters (see Box 1).

Within each role matrix a difference is made between cell entries indicating (in red)
a reference to the name of another state that as a form of reification represents in a
dynamic manner an adaptive characteristic, and entries indicating (in green) fixed values
for nonadaptive characteristics. Indeed, in Box 1 it can be seen that the red cells of the
non-base role matrices are filled with the (reification) states X5 to X9 of the first and
second reification levels. For example, in Box 1 the name X5 in the red cell row-column
(4, 1) in role matrix mcw indicates that the value of the connection weight from srss to
psa (as indicated in role matrix mb) can be found as value of the fifth state X5. In
contrast, the 1 in green cell (5, 1) of mcw indicates the static value of the connection
weight from X2 (= srss) to X5 (= Wsrss;psa ). Similarly, role matrix ms indicates (in red)
that X8 represents the adaptive speed factor of X5, and (in green) that the speed factors of
all other states have fixed values. For more explanation about this role matrix specifi-
cation format and the above example, see [12, 13] or the forthcoming book [14].
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4 The Computational Reified Network Engine

The computational reified network engine developed takes a specification in the format
as described in Sect. 3 and runs it. First each role matrix (which can be specified easily
as table in Word or in Excel) is copied to Matlab in two variants: a values matrix for the
static values (adding the letter v to the name) in the green cells, and an adaptivity
matrix for the adaptive values represented by reification states (adding the letter a to the
name) in the red cells. For example, from mcw two matrices mcwa (adaptivity matrix)
and mcwv (values matrix) are derived in this way. The numbers in mcwa indicate the

mb base 
connectivity 1 2 3 4

X1 sss X1
X2 srss X 1
X3 bss X 2

X4 psa X 2 X 3

X5 Wsrss,psa X 2 X 4 X 5

X6 Tsrss X 2 X 4 X 6

X7 Tpsa X 2 X 4 X 7

X8 HWsrss,psa X 2 X 4 X 5 X 8

X9 MWsrss,psa X 2 X 4 X 5 X 9

mcfw combination
function weights

1
eucl

2
alogistic

3
hebb

X1 sss 1
X2 srss 1
X3 bss 1
X4 psa 1
X5 Wsrss,psa 1
X6 Tsrss 1
X7 Tpsa 1
X8 HWsrss,psa 1
X9 MWsrss,psa 1

function
mcfp

parameter

1 2 3
eucl alogistic hebb

1 2 1 2 1 2
n

X1 sss 1 1
X2 srss 5 X 6
X3 bss 5 0.2
X4 psa 5 X 7

X5 Wsrss,psa X 9

X6 Tsrss 5 0.7
X7 Tpsa 5 0.7
X8 HWsrss,psa 5 1
X9 MWsrss,psa 5 1

mcw connection 
weights 1 2 3 4

X1 sss 1
X2 srss 1
X3 bss 1
X4 psa X 5 1
X5 Wsrss,psa 1 1 1
X6 Tsrss -0.4 -0.4 1
X7 Tpsa -0.4 -0.4 1
X8 HWsrss,psa 1 1 -0.4 1
X9 MWsrss,psa 1 1 1 1

ms speed factors 1
X1 sss 0.5
X2 srss 0.5
X3 bss 0.2
X4 psa 0.5
X5 Wsrss,psa X8

X6 Tsrss 0.3
X7 Tpsa 0.3
X8 HWsrss,psa 0.5
X9 MWsrss,psa 0.1

Box 1. Specification in role matrices format for the example reified network for plasticity and
metaplasticity
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state numbers of the reification states where the values can be found, and in mcwv the
numbers indicate the static values directly. States Xj are represented in Matlab by their
index number j. Empty cells are filled with NaN (Not a Number) indications. During a
simulation, for each step from k to k + 1 (with step size Dt, in Matlab dt) based on the
above role matrices first for each state Xj the right values (either the fixed value, or the
adaptive value) are assigned to:

s(j, k) speed of Xj

b(j, p, k) value for the pth state connected to state Xj

cw(j, p, k) connection weight for the pth state connected to state Xj

cfw(j, m, k) weight for the mth combination function for  Xj

cfp(j, p, m, k) the pth parameter value of the mth combination function for  Xj

Then, as a second part of the computational reified network engine, for the step from
k to k + 1 the following is applied; here X(j,k)denotes Xj(t) for t = t(k) = kdt:

Note that functions with multiple groups of arguments here in Matlab get vector
arguments where groups of arguments become vectors of variable length. For example,
the basic combination function bcfi(P1,i, P2,i, W1V1, … , WkVk) as expressed in Sect. 3
becomes bcf(i, p, v) in Matlab with vectors p = [P1,i, P2,i] for function parameters and
v = [W1V1, … , WkVk] for the values of the function arguments. This format bcf(i, p, v)
is used as the basis of the combination function library developed (currently numbered
by i = 1 to 35). As can be seen, the structure of the code of this computational reified
network engine is quite compact, based on the universal difference equation discussed
in Sect. 3: structure-preserving implementation. The combination function library used
contains 35 functions at the time of writing. To obtain a general format easily usable
within the simulations these functions were numbered and rewritten in the standard

for m=1:1:nocf
cfv(j,m,k) = bcf(mcf(m), squeeze(cfp(j, :, m, k)), 

squeeze(cw(j, :, k)).*squeeze(b(j, :, k)));
end

% This calculates the combination function values cfv(j,m,k)for 
each combination function mcf(m) for state j at k
aggimpact(j, k) = 
dot(cfw(j, :, k), cfv(j, :, k))/sum(cfw(j, :, k));

% The aggregated impact for state j at k as inproduct of com-
bination function weights and combination function values, scaled 
by the sum of these weights
X(j,k+1) = 
X(j,k) + s(j,k)*(aggimpact(j,k) - X(j,k))*dt;

% The iteration step from k to k+1 for state j
t(k+1) = t(k)+dt;

% Keeping track of time
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basic combination function form bcf(i, p, v)where i is the number of the function,
p is its vector of parameters an v is a vector of values. A more detailed description of
the software and a complete specification of the current combination function library
can be found at [12].

5 Discussion

In this paper a modeling environment for reified temporal-causal networks was intro-
duced, and applied to model a cognitive agent with plasticity and metaplasticity known
from neuroscientific literature; e.g., [1, 6]. The environment includes a new specifi-
cation format for reified networks and comes with a newly implemented dedicated
computational reified network engine, which can simply run such specifications.
Moreover, a library of currently 35 combination functions is offered, which can be
used; this library can also be extended easily. Using this software environment, the
development process of a model can focus in a declarative manner on the reified
network specification and therefore is quite efficient, while still all kinds of complex
(higher order) adaptive dynamics are covered without being bothered by implemen-
tation details. In a forthcoming book [14], more details and many more examples for
this modeling approach will be presented.

Application may extend well beyond the neuro-inspired cognitive agents area, as
also in Social Science cases are reported where network adaptation is itself adaptive;
for example in [3] the second-order adaptation concept called ‘inhibiting adaptation’
for network organisations is described. For further work, it would be interesting to
explore the applicability of the introduced modeling environment for such social agent
domains as well.
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