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Abstract. Various strategies for active learning have been proposed in
the machine learning literature. In uncertainty sampling, which is among
the most popular approaches, the active learner sequentially queries the
label of those instances for which its current prediction is maximally
uncertain. The predictions as well as the measures used to quantify the
degree of uncertainty, such as entropy, are almost exclusively of a prob-
abilistic nature. In this paper, we advocate a distinction between two
different types of uncertainty, referred to as epistemic and aleatoric, in
the context of active learning. Roughly speaking, these notions capture
the reducible and the irreducible part of the total uncertainty in a pre-
diction, respectively. We conjecture that, in uncertainty sampling, the
usefulness of an instance is better reflected by its epistemic than by its
aleatoric uncertainty. This leads us to suggest the principle of “epistemic
uncertainty sampling”, which we instantiate by means of a concrete app-
roach for measuring epistemic and aleatoric uncertainty. In experimental
studies, epistemic uncertainty sampling does indeed show promising per-
formance.

Keywords: Active learning · Uncertainty sampling · Epistemic
uncertainty · Aleatoric uncertainty

1 Introduction

The goal in standard supervised learning, such as binary or multi-class classifi-
cation, is to learn models with high predictive accuracy from labelled training
data [7,22]. However, labelled data does normally not come for free. On the con-
trary, labelling can be expensive, time-consuming, and costly. The ambition of
active learning, therefore, is to exploit labelled data in the most effective way.
More specifically, the idea is to let the learning algorithm itself decide which
examples it considers to be most informative. Compared to random sampling,
the hope is to achieve better performance with the same amount of training
data, or to reach the same performance with less data [6,20].
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The selection of training examples is often done in an iterative manner, i.e.,
the active learner alternates between re-training and selecting new examples. In
each iteration, the usefulness of a candidate example is estimated in terms of a
utility score, and the one with the highest score is queried. In this regard, the
notion of utility typically refers to uncertainty reduction: To what extent will
the knowledge about the label of a specific instance help to reduce the learner’s
uncertainty about the sought model? In uncertainty sampling [20], which is
among the most popular approaches, utility is quantified in terms of predictive
uncertainty, i.e., the active learner selects those instances for which its current
prediction is maximally uncertain. The predictions as well as the measures used
to quantify the degree of uncertainty, such as entropy, are almost exclusively of
a probabilistic nature. Such approaches indeed proved to be successful in many
applications.

Yet, as pointed out by [21], existing approaches can be criticized for not
informing about the reasons for why an instance is considered uncertain,
although this might be relevant for judging the usefulness of an example. In
this paper, we advocate a distinction between two different types of uncer-
tainty, referred to as epistemic and aleatoric—roughly speaking, these capture
the reducible and the irreducible part of the total uncertainty in a prediction,
respectively. The conjecture that, in uncertainty sampling, the usefulness of an
instance is better reflected by its epistemic than by its aleatoric uncertainty leads
us to the idea of “epistemic uncertainty sampling”. Our approach, which builds
on a formalization of epistemic and aleatoric uncertainty as proposed by [19],
is generic in the sense that is can be instantiated for any learning algorithm;
concretely, we present instantiations for a Parzen window classifier, decision tree
learning, and logistic regression.

The rest of this paper is organized as follows. In the next section, we recall the
general framework of uncertainty sampling and provide a brief survey of related
work on active learning. In Sect. 3, we recall the approach of [19] for modeling
epistemic and aleatoric uncertainty, and then present our idea of generalizing
uncertainty sampling on the basis of this approach. Instantiations of our app-
roach for local learning (Parzen window classifier), decision tree learning and
logistic regression are presented in Sect. 4. Experimental evaluations are given
in the Sect. 5. The paper concludes with a short summary and an outlook on
future work in Sect. 6.

2 Uncertainty Sampling

As usual in active learning, we assume to be given a labelled set of training data
D and a pool of unlabeled instances U that can be queried by the learner:

D =
{
(x1, y1), . . . , (xN , yN )

}
, U =

{
x1, . . . ,xJ

}

Instances are represented as features vectors xi =
(
x1

i , . . . , x
d
i

) ∈ X = R
d. In

this paper, we only consider the case of binary classification, where labels yi are
taken from Y = {0, 1}, leaving the more general case of multi-class classification
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for future work. We denote by H ⊂ YX the underlying hypothesis space, i.e.,
the class of candidate models h : X −→ Y the learner can choose from. Often,
hypotheses are parametrized by a parameter vector θ ∈ Θ; in this case, we equate
a hypothesis h = hθ ∈ H with the parameter θ, and the model space H with the
parameter space Θ.

In uncertainty sampling, instances are queried in a greedy fashion. Given the
current model θ that has been trained on D, each instance xj in the current
pool U is assigned a utility score s(θ,xj), and the next instance to be queried is
the one with the highest score [11,20,21]. The chosen instance is labelled (by an
oracle or expert) and added to the training data D, on which the model is then
re-trained. The active learning process for a given budget B (i.e., the number of
unlabelled instances to be queried) is summarized in Algorithm 1.

Algorithm 1: Uncertainty sampling
Input: U, D, θ- initial pool, training data, classifier, and B-budget
Output: U, D, θ - updated pool, training data, classifier

1 initialize b = 0;
2 while b < B do
3 foreach x ∈ U do
4 compute s(θ,x)

5 query the label of the optimal instance x∗ with respect to s(θ,x)
D = D ∪ {x∗, y∗} ;

6 U = U \ {x∗, y∗} ;
7 train θ from D;
8 b = b + 1;

9 Return U, D, θ;

Assuming a probabilistic model producing predictions in the form of proba-
bility distributions pθ(· |x) on Y, the utility score is typically defined in terms of
a measure of uncertainty. Thus, instances on which the current model is highly
uncertain are supposed to be maximally informative [20,21]. Popular examples
of such measures include

– the entropy:

s(θ,x) = −
∑

λ∈Y
pθ(λ |x) log pθ(λ |x), (1)

– the least confidence:

s(θ,x) = 1 − max
λ∈Y

pθ(λ |x), (2)

– the smallest margin:

s(θ,x) = pθ(λn |x) − pθ(λm |x), (3)

where λm = arg maxλ∈Y pθ(λ |x) and λn = arg maxλ∈Y\λm
pθ(λ |x).
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All the three measures ought to be maximized. In the case of binary classification,
i.e., Y = {0, 1}, all these measures rank unlabelled instances in the same order
and look for instances with small difference between pθ(0 |x) and pθ(1 |x).

3 Epistemic and Aleatoric Uncertainty

A main building block of our approach to active learning is the distinction
between the epistemic and aleatoric uncertainty involved in the prediction for
an instance x. Although this distinction is well accepted in the literature on
uncertainty [8], it has been considered in machine learning only very recently
[9,13,19]. Here, we adopt the formal model proposed by [19], which is based on
the use of relative likelihoods, historically proposed by [2] and then justified in
other settings such as possibility theory [23]. For the sake of completeness and
self-containedness, we briefly recall the essence of this approach.

As before, we proceed from an instance space X , an output space Y = {0, 1}
encoding the two classes, and a hypothesis space H consisting of probabilistic
classifiers h : X −→ [0, 1]. We denote by ph(1 |x) = h(x) and ph(0 |x) = 1−h(x)
the (predicted) probability that instance x ∈ X belongs to the positive and
negative class, respectively. Given a set of training data D = {(xi, yi)}N

i=1 ⊂
X × Y, the normalized likelihood of a model h is defined as

πH(h) =
L(h)

L(hml)
=

L(h)
maxh′∈H L(h′)

, (4)

where L(h) =
∏N

i=1 ph(yi |xi) is the likelihood of h, and hml ∈ H the maximum
likelihood estimation on the training data. For a given instance x, the degrees
of support (plausibility) of the two classes are defined as follows:

π(1 |x) = sup
h∈H

min
[
πH(h), ph(1 |x) − ph(0 |x)

]
, (5)

π(0 |x) = sup
h∈H

min
[
πH(h), ph(0 |x) − ph(1 |x)

]
. (6)

So, π(1 |x) is high if and only if a highly plausible model supports the positive
class much stronger (in terms of the assigned probability mass) than the negative
class (and π(0 |x) can be interpreted analogously)1. Note that, with f(a) =
2a − 1, we can also rewrite (5)–(6) as follows:

π(1 |x) = sup
h∈H

min
[
πH(h), f(h(x))

]
, (7)

π(0 |x) = sup
h∈H

min
[
πH(h), f(1 − h(x))

]
. (8)

Given the above degrees of support, the degrees of epistemic uncertainty ue and
aleatoric uncertainty ua are defined as follows:

ue(x) = min
[
π(1 |x), π(0 |x)

]
, (9)

ua(x) = 1 − max
[
π(1 |x), π(0 |x)

]
. (10)

1 Technically, we assume that, for each x ∈ X , there are hypotheses h, h′ ∈ H such
that h(x) ≥ 0.5 and h′(x) ≤ 0.5, which implies π(1 |x) ≥ 0 and π(0 |x) ≥ 0.
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Thus, epistemic uncertainty refers to the case where both the positive and the
negative class appear to be plausible, while the degree of aleatoric uncertainty
(10) is the degree to which none of the classes is supported. These uncertainty
degrees are completed with degrees s1(x) and s0(x) of (strict) preference in favor
of the positive and negative class, respectively:

s1(x) =

⎧
⎨

⎩

1 − (ua(x) + ue(x)) if π(1 |x) > π(0 |x),
1−(ua(x)+ue(x))

2 if π(1 |x) = π(0 |x),
0 if π(1 |x) < π(0 |x).

With an analogous definition for s0(x), we have s0(x)+s1(x)+ua(x)+ue(x) ≡ 1.
Besides, it has the following properties:

– s1(x) (s0(x)) will be high if and only if, for all plausible models, the prob-
ability of the positive (negative) class is significantly higher than the one of
the negative (positive) class;

– ue(x) will be high if class probabilities strongly vary within the set of plausible
models, i.e., if we are unsure how to compare these probabilities. In particular,
it will be 1 if and only if we have h(x) = 1 and h′(x) = 0 for two totally
plausible models h and h′;

– ua(x) will be high if class probabilities are similar for all plausible models,
i.e., if there is strong evidence that h(x) ≈ 0.5. In particular, it will be close
to 1 if all plausible models allocate their probability mass around h(x) = 0.5.

Roughly speaking, aleatoric uncertainty is due to influences on the data-
generating process that are inherently random, whereas epistemic uncertainty
is caused by a lack of knowledge. Or, stated differently, ue and ua measure the
reducible and the irreducible part of the total uncertainty, respectively. It thus
appears reasonable to assume that epistemic uncertainty is more relevant for
active learning: While it makes sense to query additional class labels in regions
where uncertainty can be reduced, doing so in regions of high aleatoric uncer-
tainty appears to be less reasonable. This leads us to the principle of epistemic
uncertainty sampling, which prescribes the selection

x∗ = arg max
x∈U

ue(x). (11)

For comparison, we will also consider an analogous selection rule based on the
aleatoric uncertainty, i.e.,

x∗ = arg max
x∈U

ua(x). (12)

Let us note that the above approach is completely generic and can in principle
be instantiated with any hypothesis space H. The uncertainty measures (11–12)
can be derived very easily from the support degrees (7–8). The computation
of the latter may become difficult, however, as it requires the solution of an
optimization problem, the properties of which depend on the choice of H.
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4 Instantiations of the General Approach

We are going to present practical methods to determine (7–8) for the cases of
local learning and logistic regression in Sects. 4.1 and 4.2, respectively.

4.1 Local Learning

This section presents an instantiation of our approach for the case of local learn-
ing using a Parzen window classifier [4]. The method is then adapted to the case
where the decision tree classifier [16,18] is employed as the based learner.

As already said, instantiating the approach essentially means to address the
question of how to compute the degrees of support (7–8), from which everything
else can easily be derived.

By local learning, we refer to a class of non-parametric models that derive
predictions from the training information in a local region of the instance space,
for example the local neighborhood of a query instance [3,5]. As a simple exam-
ple, we consider the Parzen window classifier [4], to which our approach can be
applied in a quite straightforward way. To this end, for a given instance x, define
the set of its neighbours as follows:

R(x, ε) =
{
(xi, yi) ∈ D | ‖xi − x‖ ≤ ε

}
, (13)

where ε is the width of the Parzen window (a practical method to determine
such a width will be given latter).

In binary classification, a local region R can be associated with a constant
hypothesis hθ, θ ∈ Θ = [0, 1], where hθ(x) ≡ θ is the probability of the positive
class in the region; thus, hθ predicts the same probabilities ph(1 |x) = θ and
ph(0 |x) = 1 − θ for all x ∈ R. The underlying hypothesis space is given by
H = {hθ | 0 ≤ θ ≤ 1}. With n and p the number of positive and negative
instances, respectively, within a Parzen window R(x, ε), the likelihood and the
maximum likelihood estimate of θ are respectively given by

L(θ) =
(

n + p
n

)
θn(1 − θ)p and θ̂ =

n

n + p
. (14)

Therefore, the degrees of support for the positive and negative classes are

π(1 |x) = sup
θ∈[0,1]

min

(
θp(1 − θ)n

(
p

n+p

)p( n
n+p

)n , 2θ − 1

)

, (15)

π(0 |x) = sup
θ∈[0,1]

min

(
θp(1 − θ)n

(
p

n+p

)p( n
n+p

)n , 1 − 2θ

)

. (16)

Solving (15) and (16) comes down to maximizing a scalar function over a
bounded domain, for which standard solvers can be used. We applied Brent’s
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method2 (which is a variant of the golden section method) to find a local mini-
mum in the interval θ ∈ [0, 1]. From (15–16), the epistemic and aleatoric uncer-
tainty associated with the region R can be derived according to (11) and (12),
respectively. For different combinations of n and p, these uncertainty degrees can
be pre-computed (cf. Fig. 1).

Fig. 1. From left to right: Epistemic, aleatoric, and total uncertainty (epistemic +
aleatoric) as a function of the numbers p, n ∈ {0, 1, . . . , 10} of positive and negative
examples in a region (Parzen window) of the instance space (lighter colors indicate
higher values).

How to determine the width ε of the Parzen window? This value is difficult
to assess, and an appropriate choice strongly depends properties of the data and
the dimensionality of the instance space. Intuitively, it is even difficult to say
in which range this value should lie. Therefore, instead of fixing ε, we fixed an
absolute number K of neighbors in the training data, which is intuitively more
meaningful and easier to interpret. A corresponding value of ε is then determined
in such a way that the average number of nearest neighbours of instances xi in
the training data D is just K (see Algorithm 2). In other words, ε is determined
indirectly via K.

Since K is an average, individual instances may have more or less neighbors
in their Parzen windows. In particular, a Parzen window may also be empty. In
this case, we set ue(x) = 1 by definition, i.e., we consider this as a case of full
epistemic uncertainty. Likewise, the uncertainty is considered to be maximal for
all other sampling techniques. If the accuracy of the Parzen classifier needs to
be determined, we assume that it yields a wrong prediction.

In a similar way, the approach can be applied to decision tree learning [16,18].
In fact recall that a decision tree partitions the instance space X into (rectangu-
lar) regions R1, . . . , RL (i.e.,

⋃L
i=1 Ri = X and Ri ∩ Rj = ∅ for i �= j) associated

with corresponding leafs of the tree (each leaf node defines a region R). Again,
in the case of binary classification, we can assume each region R to be associated
with a constant hypothesis hθ, θ ∈ Θ = [0, 1], where hθ(x) ≡ θ is the probability

2 For an implementation in Python, see https://docs.scipy.org/doc/scipy-0.19.1/
reference/generated/scipy.optimize.minimize scalar.html.

https://docs.scipy.org/doc/scipy-0.19.1/reference/generated/scipy.optimize.minimize_scalar.html
https://docs.scipy.org/doc/scipy-0.19.1/reference/generated/scipy.optimize.minimize_scalar.html
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Algorithm 2: Determining the width ε.
Input: D-normalized data, K-number
Output: the local width εK

1 foreach xn ∈ D do
2 foreach xm �= xn do
3 compute d

(
xn,xm

)
;

4 form 1 × (n − 1) vector dn =
(
d
(
xn,xm

) | n �= m
)
;

5 sort dn by increasing order and determine the K-th element dK
n ;

6 return εK =
∑ | D |

n=1 dK
n

| D | ;

of the positive class. Therefore, degrees of epistemic and aleatoric uncertainty
degrees can be derived in the same way as described above.

4.2 Logistic Regression

In this section, we present another instantiation of our approach for a commonly
used learning algorithm, namely logistic regression. In contrast to nonparametric,
local learning methods such as the Parzen window classifier, logistic regression
is a parametric class of linear models, and hence coming with comparatively
restrictive assumptions.

Recall that logistic regression assumes posterior probabilities to depend on
feature vectors x = (x1, . . . , xd) ∈ R

d in the following way:

h(x) = p(1 |x) =
exp

(
θ0 +

∑d
i=1 θi xi

)

1 + exp
(
θ0 +

∑d
i=1 θi xi

) (17)

This means that learning the model comes down to estimating a parameter vector
θ = (θ0, . . . , θd), which is commonly done through likelihood maximization [12].
To avoid numerical issues (e.g, having to deal with the exponential function for
large θ) when maximizing the target function, we employ L2-regularization. The
corresponding version of the log-likelihood function (18) is strictly concave [17]:

l(θ) = log L(θ) =
N∑

n=1

yn

(

θ0 +
d∑

i=1

θix
i
n

)

(18)

−
N∑

n=1

ln

(

1 + exp

(

θ0 +
d∑

i=1

θix
i
n

))

− γ

2

d∑

i=0

θ2i ,

where the regularization term γ will be fixed to 1.
We now focus on determining the degree of support (7) for the positive class,

and then summarize the results for the negative class (which can be determined
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in a similar manner). Associating each hypothesis h ∈ H with a vector θ ∈ R
d+1,

the degree of support (7) can be rewritten as follows:

π(1 |x) = sup
θ∈Rd+1

min
[
π(θ), 2h(x) − 1

]
(19)

It is easy to see that the target function to be maximized in (19) is not necessarily
concave. Therefore, we propose the following approach.

Let us first note that whenever h(x) < 0.5, we have 2h(x) − 1 ≤ 0 and
min

[
πH(h), 2h(x) − 1

] ≤ 0. Thus the optimal value of the target function (7)
can only be achieved for some hypotheses h such that h(x) ∈ [0.5, 1]. For a given
value α ∈ [0.5, 1], the set of hypotheses h such that h(x) = α corresponds to the
convex set

θα =
{

θ
∣
∣ θ0 +

d∑

i=1

θix
i = ln

(
α

1 − α

)}
. (20)

The optimal value π∗
α(1 |x) that can be achieved within the region (20) can be

determined as follows:

π∗
α(1 |x) = sup

θ∈θα

min
[
π(θ), 2α − 1

]
= min

[
sup
θ∈θα

π(θ), 2α − 1
]
. (21)

Thus, to find this value, we maximize the concave log-likelihood over a convex set:

θ∗
α = arg sup

θ∈θα

l(θ) (22)

As the log-likelihood function (18) is concave and has second-order derivatives,
we tackle the problem with a Newton-CG algorithm [14]. Furthermore, the opti-
mization problem (22) can be solved using sequential least squares programming3

[15]. Since regions defined in (20) are parallel hyperplanes, the solution of the
optimization problem (7) can then be obtained by solving the following problem:

sup
α∈[0.5,1)

π∗
α(1|x) = sup

α∈[0.5,1)

min
[
π(θ∗

α), 2α − 1
]
. (23)

Following a similar procedure, we can estimate the degree of support for the
negative class (8) as follows:

sup
α∈(0,0.5]

π∗
α(0|x) = sup

α∈(0,0.5]

min
[
π(θ∗

α), 1 − 2α
]

(24)

Note that limit cases α = 1 and α = 0 cannot be solved, since the region (20)
is then not well-defined (as ln(∞) and ln(0) do not exist). For the purpose of
practical implementation, we handle (23) by discretizing the interval over α.
That is, we optimize the target function for a given number of values α ∈ [0.5, 1)

3 For an implementation in Python, see https://docs.scipy.org/doc/scipy/reference/
generated/scipy.optimize.minimize.html.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html
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and consider the solution corresponding to the α with the highest optimal value
of the target function π∗

α(1 |x) as the maximum estimator. Similarly, (24) can
be handled over the domain (0, 0.5].

In practice, we evaluate (23) and (24) on uniform discretizations of cardinal-
ity 50 of [0.5, 1) and (0, 0.5], respectively. We can further increase efficiency by
avoiding computations for values of α for which we know that 2α−1 and 1−2α
are lower than the current highest support value given to class 1 and 0, respec-
tively. See Algorithm 3 for a pseudo-code description of the whole procedure.

Algorithm 3: Degrees of support for logistic regression
Input: Q, D, θml, x- initial pool, training data, classifier, unlabelled instance
Output: π(1 |x), π(0 |x) - degrees of support

1 initialize subsets Qp, Qn of cardinality Q;

2 π(1 |x) = max(2hml(x) − 1, 0) , π(0 |x) = max(1 − 2hml(x), 0) ;
3 for q = 1, . . . , Q do
4 αp = max(Qp); αn = min(Qn) ;
5 if 2αp − 1 > π(1 |x) then
6 solve (22) for x, αp and return θ;
7 π(1 |x) = max(π(1 |x), min(πH(θ), 2αp − 1)) ;

8 if 1 − 2αn > π(0 |x) then
9 solve (22) for x, αn and return θ;

10 π(0 |x) = max(π(0 |x), min(πH(θ), 1 − 2αp)) ;

11 Qp = Qp \ {αp}, Qn = Qn \ {αn} ;

12 Return π(1 |x), π(0 |x) ;

5 Experimental Results

To illustrate the performance of our uncertainty measures in active learning,
we conducted experiments on data sets from the UCI repository4, the main
properties of which are summarized in Table 1.

5.1 Local Learning

We follow a 10-fold cross-validation procedure, considering each fold as the test
set, while the other folds are used for learning. The latter is randomly split into
a training data set and a pool set. The proportions of training/pool/test sets
are 10/80/10% and accuracies are averaged. The budget of the active learner is
fixed to be 30% of the original data.

4 http://archive.ics.uci.edu/ml/index.php.

http://archive.ics.uci.edu/ml/index.php
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Table 1. Data sets used in the experiments

# Name # instances # features Attributes

1 Parkinsons 197 22 Real

2 Vertebral-column 310 6 Real

3 Ionosphere 351 34 Real

4 Climate-model 540 18 Real

5 Breast-cancer 569 30 Real

6 Blood-transfusion 748 5 Real

7 QSAR 1055 41 Integer, real

8 Banknote-authentication 1372 4 Real

After each query, we update the data sets and, correspondingly, the classi-
fiers. The improvements of the classifiers are compared for four different uncer-
tainty measures, i.e., uncertainty sampling (following the strategy presented in
Algorithm 1) based on four measures for selecting unlabelled instances: random
sampling, standard uncertainty (2), epistemic uncertainty (9), aleatoric uncer-
tainty (10).

To reduce the computational efforts, in each iteration, the learner is allowed
to evaluate and query instances from a randomly selected subset consisting of
10% of the data in the pool. Since we are not, in the first place, interested in
maximizing performance, but in analyzing the effectiveness of active learning
approaches, we simply fix the neighborhood size K as the square root of the size
of the data set (number of instances in the initial training set and pool) [10].

As can be seen in Fig. 2, the results are nicely in agreement with our expec-
tations: Epistemic uncertainty sampling performs the best and aleatoric uncer-
tainty sampling the worst. Moreover, standard uncertainty sampling and ran-
dom sampling are in-between the two. This supports our conjecture that, from
an active learning point of view, epistemic uncertainty is the more useful infor-
mation. Even if the improvements compared to standard uncertainty sampling
are not huge, they are still visible and quite consistent.

The results for decision tree learning (cf. Fig. 3) are quite similar and again
in agreement with our expectations.

5.2 Logistic Regression

For logistic regression, we start with a relatively small amount of initial training
data, thereby making improvements in the beginning more visible. More specifi-
cally, the proportions of training/pool/test set are 1/89/10%, and the accuracies
are averaged. The budget is fixed to be 20% of the original data, and in each iter-
ation, the learner is allowed to evaluate and query instances from a (randomly)
subset consisting of 10% data of the pool.

In the case of logistic regression, the improvements through epistemic uncer-
tainty sampling are less pronounced—on the contrary, the performance of epis-
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Fig. 2. Average accuracies (y-axis) for the Parzen window classifier as a function of
the number of examples queried from the pool (x-axis).

temic and standard uncertainty sampling is quite comparable. Two examples,
which are quite representative, are shown in Fig. 4. As a plausible explanation,
note that logistic regression comes with a very strong learning bias in the form
of a linearity assumption. Therefore, the epistemic (or model) uncertainty dis-
appears quite quickly.
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Fig. 3. Average accuracies (y-axis) for the decision tree classifier as a function of the
number of examples queried from the pool (x-axis).
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Fig. 4. Average accuracies (y-axis) for logistic regression as a function of the number
of examples queried from the pool (x-axis).

6 Conclusion

This paper reconsiders the principle of uncertainty sampling in active learning
from the perspective of uncertainty modeling. More specifically, it starts from the
supposition that, when it comes to the question of which instances to select from
a pool of candidates, a learner’s predictive uncertainty due to “not knowing”
should be more relevant than its uncertainty due to inherent randomness.

To corroborate this conjecture, we proposed epistemic uncertainty sampling,
in which standard uncertainty measures such as entropy are replaced by a novel
measure of epistemic uncertainty. The latter is borrowed from a recent frame-
work for uncertainty modeling, in which epistemic uncertainty is distinguished
from aleatoric uncertainty [19]. We interpret our experimental results, especially
those for local learning (Parzen window classifier and decision trees) as evidence
in favor of our conjecture. They clearly show that a separation of the total uncer-
tainty (into epistemic and aleatoric) is effective, and that the epistemic part is
the better criterion for selecting instances to be queried. This was the main
purpose of the paper.

Given this affirmation, we are now encouraged to elaborate on epistemic
uncertainty sampling in more depth, and to develop it in more sophistication.
This includes an extension to other learning algorithms and more general learn-
ing problems (such as multi-class classification), as well as a comparison to other
variants of uncertainty sampling, such as [1] and [21].
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