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Abstract. In a matrix representing a numerical dataset, a bicluster is a
submatrix whose cells exhibit similar behavior. Biclustering is naturally
related to Formal Concept Analysis (FCA) where concepts correspond
to maximal and closed biclusters in a binary dataset. In this paper, a
unified characterization of biclustering algorithms is proposed using FCA
and pattern structures, an extension of FCA for dealing with numbers
and other complex data. Several types of biclusters – constant-column,
constant-row, additive, and multiplicative – and their relation to interval
pattern structures is presented.
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1 Introduction

Given a numerical dataset represented as a table or a matrix with objects in
rows and attributes in columns, the objective of clustering is to group a set
of objects according to all attributes using a similarity or distance measure. By
contrast, biclustering simultaneously operates on the set of objects and the set of
attributes, where a subset of objects can be grouped w.r.t. a subset of attributes,
based on user-defined constraints such as having constant values, constant values
within columns or rows. Then, if a cluster represents object relations at a global
scale, a bicluster represents it at a local scale w.r.t. the set of attributes. More
generally, biclustering searches in a data matrix for sub-matrices or biclusters
composed of a subset of objects (rows) and a subset of attributes (columns)
which exhibit a specific behavior w.r.t. some criteria.

Biclustering is an important tool in many domains, e.g. bioinformatics and
gene expression data, recommendation and collaborative filtering, text mining,
social networks, dimensionality reduction, etc. As surveyed in [17], biclustering
received a lot of attention in biology, and especially, for analyzing gene expression
data, where biologists are searching for a set of genes whose behavior is consis-
tent across certain experiments/conditions [3,4,20]. Biclustering is still actively
studied in biology [9,18,19]. Biclustering is also actively studied in recommen-
dation systems [12,13], where the objective is to retrieve a set of users sharing
similar interest across a subset of items instead of the set of all possible items.
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Table 1. Examples of some bicluster types.

Following the lines of [8–10], in this paper we are interested in biclustering
algorithms based on “pattern-mining” techniques [1]. These techniques allow an
exhaustive and flexible search with efficient algorithms. Moreover, authors in [9]
discuss the benefits of using pattern-based biclustering w.r.t. scalability require-
ments, and mostly w.r.t. generality and diversity of the types of biclusters which
are mined. In addition, they point out the fact that pattern-based biclustering
algorithms can naturally take into account overlapping biclusters, and as well,
additive, multiplicative and symmetric assumptions concerning biclusters.

In this paper, we revisit all these aspects and propose an alternative frame-
work for pattern-based biclustering based on Formal Concept Analysis (FCA
[7]). In [21], authors directly reuse the FCA framework and adapt the algorithms
for biclustering. By contrast, in this paper, we go further and we consider the
so-called “pattern-structures”, an extension of FCA for dealing with complex
values such as numbers, sequences, or graphs [6]. We especially reuse “interval
pattern structures” – which are detailed in the following – for defining a unique
framework for pattern-based biclustering. In this way, we introduce an alterna-
tive approach than [9], as we do not need to apply any scaling, discretization, or
transformation procedures over the data to discover biclusters.

This paper is organized as follows. First we describe some types of biclus-
tering in Sect. 2 and basic definitions about FCA in Sect. 3. We then propose
our approach of biclustering based on interval pattern structures in Sect. 4 and
present the empirical experiments in Sect. 5. Finally, we conclude our work and
give some future works in Sect. 6.

2 Biclustering

In this section, we recall the basic background and discuss illustrative examples
of the different types of biclusters [17]. We consider that a dataset is a matrix
(G,M) where G is a set of objects and M is a set of attributes. The value
of m ∈ M for object g ∈ G is written as m(g). In this paper, we work with
numerical datasets. In such a dataset, it may be interesting to find which subset
of objects have the same values w.r.t. a subset of attributes. Regarding the matrix
representation, this is equivalent to the problem of finding a submatrix where
all elements have the same value. This task is called biclustering with constant
values, which is a simultaneous clustering of the rows and columns of a matrix.
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Table 2. A numerical context and an SC bicluster in gray.

Moreover, given a dataset (G,M), a pair (A,B) (where A ⊆ G, B ⊆ M)
is a constant-column (CC) bicluster iff ∀m ∈ B,∀g, h ∈ A,m(g) = m(h). An
example of CC bicluster is illustrated in Table 1a. CC biclustering have more
relaxed variations, namely similar-column (SC) biclustering. With these relax-
ations, instead of finding biclusters with exactly constant columns, we can obtain
biclusters whose columns have similar values as shown in Table 1b. These types
of biclusters are widely used in recommendation systems to detect a set of users
sharing similar preference over a set of items.

An additive bicluster is illustrated in Table 1c. Here we see that there is a con-
stant difference between any two columns. For example, each value in the second
column is two more than the corresponding value in the fourth row. Therefore,
given a dataset (G,M), a pair (A,B) (where A ⊆ G, B ⊆ M) is an additive
bicluster iff ∀g, h ∈ A,∀m,n ∈ B,m(g)−n(g) = m(h)−n(h); or a multiplicative
bicluster iff ∀g, h ∈ A,∀m,n ∈ B,m(g)/n(g) = m(h)/n(h). Both additive and
multiplicative biclusters were studied in the domain of gene expression dataset
[4,5,16]. They represent a set of genes having similar expression patterns across
a set of experiments.

Bicluster discovery is naturally related to FCA. In this paper, we show that an
extension of FCA called partition pattern structures can be used for discovering
biclusters. In the following section, we explain some basic theories about FCA
and pattern structures.

3 FCA and Pattern Structure

In a binary matrix, FCA tries to find maximal submatrices with a constant value
across all of its cells. Therefore, a formal concept is a bicluster with constant
value. More precisely, FCA is a mathematical framework based on lattice theory
and used for classification, data analysis, and knowledge discovery [7]. From a
formal context, FCA detects all formal concepts, and arranges them in a concept
lattice. FCA is restricted to specific datasets where each attribute is binary (e.g.
has only yes/no value). This limitation prohibits FCA to work in more complex
datasets, e.g. a user-rating matrix or a gene expression dataset, which are not
binary. Therefore, FCA is then generalized into pattern structures [6].

A pattern structure is a triple (G, (D,�), δ), where G is a set of objects, (D,�)
is a complete meet-semilattice (of descriptions), and δ : G → D maps an object to
a description. The operator � is a similarity operation that returns the common
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Table 3. Example of additive column alignments. (a) Original table and the additive
bicluster in gray, (b) alignment on m1, (c) alignment on m2.

elements between any two descriptions. It is verified that c � d = c ⇔ c � d.
A description can be a number, a set, a sequence, a tree, a graph, or another
complex structure. The Galois connection for a pattern structure (G, (D,�), δ)
is defined as:

A� = ⊔

g∈A

δ(g), A ⊆ G, (1)

d� = {g ∈ G|d � δ(g)}, d ∈ D. (2)

A pattern concept is a pair (A, d), A ⊆ G and d ∈ D, where A� = d and d� = A.
FCA can be understood as a particular pattern structure. The description of

an object is a set of attributes, and the � operator between two description is
the intersection of two sets of attributes.

4 Biclustering Using Interval Pattern Structure

In gene expression data, we often have a numerical matrix. Biclustering in such
matrix should find submatrices whose cells present regularities, e.g. each column
has similar value in the case of similar-column (SC) biclustering. SC biclustering
task is similar to FCA in the sense that FCA also searches consistent submatrix.
But since SC biclustering works on a numerical matrix, we need to generalize
FCA to a pattern structure. One such generalization is where the description
of each object is a set of numerical values and the similarity between any two
descriptions is the intervals that encompass those values. This kind of pattern
structure is called an interval pattern structure.

Interval pattern structures (IPS) was introduced by Kaytoue et al. [14] to
analyze gene expression data (GED). A GED is typically represented as a 2-D
numerical matrix with genes as rows and conditions as columns, as shown in
Table 2. In this matrix, the submatrix ({g1, g2, g3}, {m1,m2,m3,m5}) is an SC
bicluster, defined by the parameter θ = 1. It means that the range of values of
each column in the submatrix has the length of at most 1.

4.1 Interval Pattern Structure

In IPS, a description is several intervals describing the values of every col-
umn. For example, the description of g1 – denoted by δ(g1) – in Table 2 is
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Table 4. Some interval pattern concepts with θ = 1 from Table 2.

Extent Intent

{g1} 〈[1, 1][2, 2][2, 2][1, 1][6, 6]〉
{g1, g3} 〈[1, 2][2, 2][1, 2] ∗ [6, 6]〉
{g1, g4} 〈∗ ∗ [2, 2] ∗ [6, 7]〉
{g1, g2, g3} 〈[1, 2][1, 2][1, 2] ∗ [6, 6]〉
{g1, g2, g3, g4} 〈∗ ∗ [1, 2] ∗ [6, 7]〉

〈[1, 1][2, 2][2, 2][1, 1][6, 6]〉. The similarity operator (�) for IPS is defined as the con-
vex hull of two intervals. Therefore, the similarity of δ(g1) and δ(g4) – denoted by
δ(g1) � δ(g4) – is 〈[1, 8][2, 9][2, 2][1, 6][6, 7]〉.

Given a subset of objects A ⊆ G, Eq. 1 says that A� is the similarity of
the description of all objects in A. Therefore, in IPS the corresponding A� is
the convex hull of the descriptions of all objects in A. For example, with A =
{g1, g2, g4}, A� = 〈[1, 8][1, 9][1, 2][0, 6][6, 7]〉.

Furthermore, given a description d ∈ D, Eq. 2 indicates that d� is the set of
all objects whose description subsumes d. In IPS, a description d1 is subsumed
by another description d2 – denoted by d1 � d2 – if every interval in d2 is a sub
interval in the corresponding interval in d1. Notice that in IPS, a sub interval
subsumes a larger interval. Therefore, if dx = 〈[1, 8][1, 9][1, 2][0, 6][6, 7]〉, then
d�
x = {g1, g2, g4}. Since δ(g3) = 〈[2, 2][2, 2][1, 1][7, 7][6, 6]〉, g3 is not included in

d�
x because the fourth interval ([7, 7]) is not sub interval of the fourth interval of

dx ([0, 6]).
Following the definition of a concept of any pattern structure (in Sect. 3), an

interval pattern concept is a pair (A, d), for A ⊆ G and d ∈ D, where A� = d
and d� = A. Furthermore, the set of interval pattern concepts are partially
ordered, and can be depicted as a lattice. An interval pattern concept (A1, d1)
is a subconcept of (A2, d2) if A1 ⊆ A2 (equivalently d2 � d1).

4.2 Similar-Column Biclustering

A similar-column (SC) bicluster can be found in an interval pattern concept
by introducing a parameter θ. This parameter acts as the maximum difference
between any two values to be considered as similar. For example, with θ = 1,
the value 1 is similar to 2, but not similar to 3.

In calculating the similarity between any two descriptions, if the length of
an interval is larger than θ, then the star sign (∗) is put as the interval. From
Table 2, δ(g2) � δ(g4) without θ is 〈[2, 8][1, 9][1, 2][0, 6][6, 7]〉, and with θ = 1 is
〈∗ ∗ [1, 2] ∗ [6, 7]〉.

The similarity � between ∗ and any other interval is ∗. For example, sup-
pose that we have two descriptions dx = 〈[1, 1][2, 3]〉 and dy = 〈[2, 2]∗〉. Then,
dx � dy = 〈[1, 2]∗〉. This also means that ∗ is subsumed by any other interval.
Therefore, the description of each object in Table 2 subsumes 〈∗ ∗ [1, 2] ∗ [6, 7]〉.
With θ = 1, ({g1, g2, g3, g4}, 〈∗ ∗ [1, 2] ∗ [6, 7]〉) is an interval pattern concept.
Some interval pattern concepts from Table 2 are listed in Table 4.



56 N. Juniarta et al.

Table 5. Example of multiplicative column alignments. (a) Original table and the
multiplicative bicluster in gray, (b) alignment on m2.

From an interval pattern concept, an SC bicluster can be formed by the
concept’s extent and the set of columns where the interval is not ∗ in the con-
cept’s intent. For example, from the concept ({g1, g2, g3}, 〈[1, 2][1, 2][1, 2]∗[6, 6]〉),
({g1, g2, g3}, {m2,m2,m3,m5}) is an SC bicluster with θ = 1.

By using IPS with parameter θ, constant-column biclustering is a specific
case of SC biclustering. It can be noticed that with θ = 0, we obtain intervals
with length 0, and that corresponds to constant-column biclusters.

4.3 Additive and Multiplicative Biclustering

An additive bicluster is a submatrix where there is a constant (or similar) differ-
ence between any two columns across all of its rows (see Sect. 2). Constant (or
similar) column biclustering is a specific case of additive biclustering. Using this
fact, we can obtain additive biclusters by aligning (similar to [9]) each column,
and then find interval pattern concepts on the alignments.

Table 3 provides an example of column alignment for additive biclustering.
The original matrix is shown in Table 3a, having 4 rows and 4 columns. The
submatrix ({g1, g2, g3}, {m2,m3,m4}) is an additive bicluster in the original
matrix. This bicluster can be found by applying constant-column or similar-
column biclustering to the column alignments. Table 3b shows the first column
alignment, can be seen by the consistency of the first column (m1). In this exam-
ple, each object value is converted such that its m1 value is equal to the value
of m1 in g1. This means that the values 0, −2, 2, and 3 are added to g1, g2, g3,
and g4 respectively. This alignment is repeated for every column. Table 3c is the
alignment of m2, by adding 0, −3, −2, and −5 to g1, g2, g3, and g4 respectively.

Constant-column (or similar-column) biclustering is applied to every column
alignment to find additive biclusters. In the second column alignment (Table 3c),
we obtain ({g1, g2, g3}, {m2,m3,m4}) as a constant-column bicluster. This corre-
sponds to the additive bicluster ({g1, g2, g3}, {m2,m3,m4}) in the original matrix
(Table 3a).

Multiplicative biclusters can also be obtained using similar column align-
ment. In multiplicative column alignment, instead of adding values to each row,
we multiply each row such that a column has a constant value. Table 5b shows
the second column alignment of the original matrix in Table 5a. Here, a con-
stant value is achieved for m2 by multiplying g1, g2, g3, and g4 by 1, 1

3 , 1
2 ,

and 1
2 respectively. Then, by applying IPS to each alignment, we can obtain

the multiplicative biclusters. For example, constant-column biclustering using
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Fig. 1. Effect of θ on a 500 × 60 dataset with min col = 20 and min row = 1.

IPS in Table 5b returns ({g1, g2, g3}, {m2,m3,m4}), which is the corresponding
multiplicative bicluster in Table 5a.

4.4 Concept Mining

Being a generalization of FCA, the mining of interval pattern concepts can be
performed using some existing algorithms that generate a complete list of formal
concepts. In this paper, we use CloseByOne (CbO) [15] since it requires us to only
define the similarity (�) and subsumption relation (�) of any two descriptions.

In a given numerical matrix, we may obtain an exponential number of interval
pattern concepts. To reduce the number of concepts, we should introduce some
parameters that can filter out some uninteresting concepts.

The first parameter, θ, is previously mentioned in Sect. 4.2. It limits the
length of intervals, and later in Sect. 5 we demonstrate the effect of θ on the
runtime and number of concepts.

The second parameter min col is the minimum number of columns in the
retrieved biclusters. The number of columns in a bicluster corresponds to the num-
ber of non-star intervals in the concept’s intent. For example, the concept with
intent 〈∗ ∗ [2, 2] ∗ [6, 7]〉 gives us a bicluster with two columns (the third and the
fifth). To take into account the min col parameter, it is necessary to modify the
definition of similarity between any two descriptions. In addition to the definition
of � in Sect. 4.1, we verify if the number of non-star intervals in the description.
The number of non-star intervals should be more than mincol. If not, we “skip”
the concept, by converting each interval to ∗. In Table 2 with θ = 1, g1 � g4 is
〈∗ ∗ [2, 2] ∗ [6, 7]〉. Using min col = 3 for example, g1 � g4 becomes 〈∗ ∗ ∗ ∗ ∗〉.

Related to min col is min row, a parameter that put a constraint on the
number of rows in a bicluster. It corresponds to the number of objects in a con-
cept’s extent. With the inclusion of min row, the calculation of Y � (all objects
whose description subsumes Y ) is performed only if the number of objects in Z
(extent of the candidate concept) is at least min row.
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Fig. 2. Effect of min col (with θ = 1 and min row = 5) and min row (with θ = 1 and
min col = 6) on a 500 × 60 dataset.

5 Experiments

In this section, we report some experimental results to show the scalability of
IPS in the task of biclustering. By using CbO as concept miner, the space/time
complexity of IPS follows CbO (see [15]). We use the synthetic datasets pro-
vided by Henriques and Madeira [9]: 500 × 60 and 1000 × 100, with hidden SC
biclusters.

First, we investigate the effect of θ on the runtime and the number of con-
cepts. The results are illustrated in Fig. 1. The left figure confirms that the larger
θ generates more interval pattern concepts, and generally longer runtime as it
can be seen in the right figure. The θ = 0.4 requires longer runtime than θ = 0.5
to 0.9. This is normal since for similar number of concepts, the probability of
smaller θ obtaining a concept is smaller than the larger θ. Using CbO with
smaller θ, a candidate concept will have shorter intervals in its intent, hence
smaller number of objects whose description subsumes this interval.

The effect of min col is shown in Fig. 2 left. Lesser min col produces more
concepts, and therefore longer runtime. Similarly, Fig. 2 right shows that larger
min row generates more concepts.

In the previous experiments, the CbO was terminated until all interval pat-
tern concepts were retrieved. In the following experiment, CbO is terminated
until 500 concepts are found. We compare them to BicPAM [9] that uses a dis-
cretization parameter (as a number of alphabet/items), while IPS uses the length
of intervals as θ. After the mapping step (normalization, discretization, and miss-
ing values and noise handling), BicPAM applies a pattern mining method (F2G
[11] as default), and the closing step (extension, merging, and filtering) is per-
formed. Results in Table 6 show a similar performance of both methods. It should
be noted that the number of biclusters from BicPAM is lower due to the merging
and/or filtering.

Furthermore, still from Table 6, the runtime of IPS is not exactly correlated
with θ (especially with θ = 2), similar to our previous experiment shown in
Fig. 1. Overall, with similar runtime, biclustering with IPS can return similar
number of biclusters without discretization.
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Table 6. Comparison with BicPAM on 1000×100 dataset. For the IPS, the parameters
min row = 10 and min col = 5 are used, with varying θ.

Method Parameter Runtime (s) Number of biclusters

BicPAM alphabet = 20 <15 ∼100

alphabet = 10 <15 <200

alphabet = 7 <15 <200

alphabet = 5 <30 ∼200

IPS θ = 1 37 500

θ = 2 >500 500

θ = 4 47 500

θ = 8 39 500

6 Conclusion

In this paper, we propose an alternative method of biclustering in numeri-
cal datasets. Discretization is a general preprocessing step while working with
numerical values. Here we explore the possibility of working directly on numer-
ical datasets without discretization. This can be achieved using interval pattern
structures, where a bicluster can be found from any interval pattern concept.
To filter the number of concepts (which can be very large) it is necessary to
provide some parameters, like the length of intervals, minimum number of rows
and columns, or even minimum number of biclusters. Our experiments show that
these parameters can reduce the computation to a reasonable runtime. Another
way to reduce the number of biclusters is to develop post-processing techniques
similar to BicPAM, which include merging, filtering, and extension.

We use the CbO algorithm, a formal concept generator that can be general-
ized to interval pattern structures. In-Close 2 [2] in particular is faster than CbO
in formal concept mining, but its efficiency in interval pattern concept mining
should be studied. Another future research is to extend our FCA-based approach
to other types of biclusters, e.g. coherent-evolution, coherent-sign-changes, etc.
Furthermore, the existence of missing values and/or outliers should be consid-
ered in improving the proposed biclustering method.
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