
Efficient and Accurate Non-exhaustive
Pattern-Based Change Detection

in Dynamic Networks

Angelo Impedovo1(B), Michelangelo Ceci1, and Toon Calders2

1 Department of Computer Science, University of Bari “Aldo Moro”, Bari, Italy
{angelo.impedovo,michelangelo.ceci}@uniba.it

2 Department of Computer Science, University of Antwerp, Antwerp, Belgium
toon.calders@uantwerpen.be

Abstract. Pattern-based change detectors (PBCDs) are non-parametric
unsupervised change detection methods that are based on observed
changes in sets of frequent patterns over time. In this paper we study
PBCDs for dynamic networks; that is, graphs that change over time, rep-
resented as a stream of snapshots. Accurate PBCDs rely on exhaustively
mining sets of patterns on which a change detection step is performed.
Exhaustive mining, however, has worst case exponential time complex-
ity, rendering this class of algorithms inefficient in practice. Therefore, in
this paper we propose non-exhaustive PBCDs for dynamic networks. The
algorithm we propose prunes the search space following a beam-search
approach. The results obtained on real-world and synthetic dynamic net-
works, show that this approach is surprisingly effective in both increasing
the efficiency of the mining step as in achieving higher detection accuracy,
compared with state-of-the-art approaches.

Keywords: Change detection · Pattern mining

1 Introduction

Change detection in dynamic networks is the task of finding time points in which
the behavior of the observed network begins to change from the ordinary situa-
tion. Once identified, the points provide temporal indications on the obsolescence
of previously trained models, which should be adapted to new data. The prob-
lem, also known as concept drift detection [3], affects both supervised and unsu-
pervised techniques and therefore is one of the most important problems in the
analysis of data that are characterized by a temporal component. For example, in
the supervised setting the detection is performed by controlling a quality measure
of a previously learned model on new data (e.g. using the misclassification rate [3]).
Whereas, in the unsupervised setting, it takes into account how new data deviate
from the ordinary data distribution [6]. In both cases, if a significant peak on some
appropriate measures is observed, then a change is detected and some actions are
performed to update the model by considering new data.
c© Springer Nature Switzerland AG 2019
P. Kralj Novak et al. (Eds.): DS 2019, LNAI 11828, pp. 396–411, 2019.
https://doi.org/10.1007/978-3-030-33778-0_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33778-0_30&domain=pdf
https://doi.org/10.1007/978-3-030-33778-0_30

Efficient and Accurate Non-exhaustive PBCD in Dynamic Networks 397

One of the main challenges in change detection is that of detecting changes
in an efficient and accurate manner. In the specific case of dynamic networks,
existing approaches may fail to address both challenges because of the inher-
ent complexity of the data [1]. In fact, (i) many approaches are designed for
time series and categorical data and not for network-based data, and (ii) many
network-based approaches are time consuming, and hence not scalable in both
network size and number of graph snapshots. Moreover, the lack of a ground
truth able to establish which data represents a change favors the adoption of
unsupervised change detection methods.

Recently, non-parametric unsupervised change detection methods relying on
frequent patterns have been proposed for transactional data [6,8] and dynamic
networks [9]. Such methods are pattern-based change detectors (PBCDs here-
after) in which the change is sought on a descriptive model of the data, rather
than on the data itself. More precisely, the quality measure tracked by PBCDs
for detecting changes is the dissimilarity between sets of patterns (e.g. binary
Jaccard measure [9], Levenshtein measure [6]) discovered before and after the
arrival of new transactions. In PBCDs, the complete set of frequent patterns is
mined upon the arrival of new transactions (mining step), before measuring the
quality measure (detection step).

Typically, the mining step relies on exhaustive algorithms leading to com-
plete pattern mining. The main intuition for this solution is that completeness
is desirable to accurately model the data. However, in practical cases, only a
small portion of patterns is likely to be relevant for the detection. Furthermore,
exhaustive pattern mining may represent the major obstacle for any PBCD that
needs to timely react to incoming data. Our main claim is, therefore, that it
is possible to relax the completeness property and it is possible to adopt non-
exhaustive mining methods in change detection without loosing in accuracy.
Simultaneously, this relaxation can improve the efficiency of the mining step
and allow the PBCD system to quickly react. To the best of our knowledge, the
StreamKRIMP algorithm [8] is the only PBCD adopting a non-exhaustive min-
ing method, which is based on the MDL principle. However, StreamKRIMP is
designed for transactional data streams and not for dynamic networks. Moreover,
few other attempts can be retraced in pattern-based anomaly detection methods
[5] and subgroup discovery [10], where the search space is pruned according to
heuristic evaluations. An alternative line of research for reducing the patterns
in PBCDs is that of exhaustively mining condensed sets of patterns which are
representative of all the possible patterns. In particular, both non-derivable pat-
terns [7] and Δ-closed patterns [11] have been proposed for anomaly detection
and change detection, respectively. However, in such approaches, condensed sets
of patterns are discovered by exhaustive mining procedures, and hence they do
not provide solutions to the computational issues of PBCDs.

By taking into account the aforementioned reasons, this paper extends the
PBCD methodology originally proposed in KARMA [9], based on exhaustive
frequent connected subgraph mining, with non-exhaustive mining algorithms.
In particular, we customize the general architecture inherited by the KARMA

398 A. Impedovo et al.

algorithm with improved mining step and detection step, then we perform an
extensive study to select the most accurate and the most efficient PBCDs. Exper-
iments show that the proposed approaches improve the efficiency and the detec-
tion accuracy with respect to their exhaustive counterpart, on both real world
and synthetic dynamic networks.

2 Background

Let N be the set of nodes, L be the set of edge labels, and I = N × N × L
the alphabet of all the possible labeled edges, on which a lexicographic order
≥ is defined. A dynamic network is represented as the time-ordered stream of
graph snapshots D = 〈G1, G2, . . . , Gn〉. Each snapshot Gi ⊆ I is a set of edges
denoting a directed graph observed in ti, which allows self-loops and multiple
edges with different labels. Gi is uniquely identified by id i. Let G be a directed
graph, a connected subgraph S ⊆ G is a directed graph such that for any pair of
nodes (in S) there exists a path connecting them. Then, a subtree S ⊆ G is a
connected subgraph in which every node (in S) is connected to a unique parent
node, except for the root node.

The data representation fits with the one adopted in transactional data min-
ing, allowing the mining of frequent patterns by adapting traditional frequent
itemset mining algorithms. In this perspective a snapshot Gtid ∈ D is a trans-
action uniquely identified by tid, whose items are labeled edges from I. While
a pattern P ⊆ I, with length |P |, can be seen as a word P = 〈i1 . . . in〉 of n
lexicographic sorted items, with prefix S = 〈i1 . . . in−1〉 and suffix in. The tidset
of P in the network D is defined as tidset(P,D) = {tid | ∃Gtid ∈ D∧P ⊆ Gtid},
while the support of P in D is sup(P,D) = |tidset(P,D)|

|D| . P is frequent in D if
sup(P,D) > α, where α ∈ [0, 1].

In PBCDs designed for network data, we deem as interesting two types of pat-
terns: (i) frequent connected subgraphs (FCSs) and, (ii) frequent subtrees (FSs).
Both FCSs and FSs are mined from snapshots belonging to time windows. A win-
dow W = [ti, tj], with ti < tj , is the sequence of snapshots {Gi, . . . , Gj} ⊆ D.
Consequently, the width |W | = j − i + 1 is equal to the number of snapshots
collected in W . For our convenience we term FW the set of all the FCSs (FSs)
in the window W .

2.1 Problem Statement

Let D = 〈G1, G2, . . . , Gn〉 a dynamic network, α ∈ [0, 1] be the minimum support
threshold, β ∈ [0, 1] the minimum change threshold. Then, pattern-based change
detection finds pairs of windows W = [tb, te] and W ′ = [t′b, t

′
e], where tb ≤ t′b ≤

te+1 and te < t′e, satisfying d(FW , FW ′) > β, where (i) FW and FW ′ are the sets
of patterns discovered on W and W ′ according to α, and (ii) d(FW , FW ′) ∈ [0, 1]
is a dissimilarity measure between sets of patterns. In this perspective, changes
correspond to significant variations in the set of patterns discovered on two
windows, which denote stable features exhibited by the graph snapshots.

Efficient and Accurate Non-exhaustive PBCD in Dynamic Networks 399

3 Architecture of a PBCD

The aforementioned change detection problem can be solved by various compu-
tational solutions. In this section we provide the general architecture of a PBCD
for network data, by generalizing the algorithm KARMA proposed in [9].

In general, a PBCD forms a two-step approach in which: (i) a pattern mining
algorithm extracts the set of patterns observed from the incoming data, and (ii)
the amount of change is quantified by adopting a dissimilarity measure defined
between sets of patterns. Practically speaking, a PBCD is an iterative algorithm
that consumes data coming from a data source, in our case a dynamic network,
and produces quantitative measures of changes. In particular, the KARMA algo-
rithm is a PBCDs based on exhaustive mining of FCSs, whose general workflow
can be seen in Fig. 1. The algorithm iteratively consumes blocks Π of graph
snapshots coming from D (Step 2) by using two successive landmark windows
W and W ′ (Step 3). This way, it mines the complete sets of FCSs, FW and FW ′ ,
necessary to the detection step (Steps 4–5). The window grows (W = W ′, Step
8) with new graph snapshots, and the associated set of FCSs is kept updated
(Step 9) until the Tanimoto coefficient d(FW , FW ′) exceeds β and a change is
detected. In that case, the algorithm drops the content of the window by retain-
ing only the last block of transactions (W = Π, Steps 6–7). Then, the analysis
restarts. The KARMA algorithm offers a general architecture for building cus-
tom PBCD, which is made of 4 components: (i) the window model (Fig. 1, Steps
3, 8 and 6), (ii) the feature space (FCSs or FSs), (iii) the mining step (Fig. 1,
Steps 4, 9 and 7), and (iv) the detection step (Fig. 1, Step 5). In the following
sections we will focus on both the mining step and the detection step, also by
commenting their contribution to the efficiency of the PBCD strategy.

Fig. 1. The KARMA algorithm workflow

Here, we briefly discuss the choice of an appropriate time window model of a
PBCD. We deem as interesting 3 models: the landmark model, the sliding model
and the mixed model. They differ in the way they consume the incoming block
Π of graph snapshot. In its original version, KARMA uses the landmark model.
Here, Π is added to the window W , forming the successive window W ′ = W ∪Π

400 A. Impedovo et al.

(Fig. 1, Step 3). In this model, the window grows until a change is detected and
when a change is detected, old data are discarded. In the sliding model, the
detection is performed on two successive windows W and Π of fixed size. The
windows are non overlapping and they always slides forward, both in case of
change detected and not detected (W = Π). Therefore, old data are always
discarded. In the mixed model, the detection is performed on W and Π, as in
the sliding model. However, as in the landmark model, Π is added to W , forming
W ′ = W ∪ Π until a change is detected. In that case, old data are discarded.

4 Exhaustive and Non-exhaustive Mining in PBCDs

The main difference between exhaustive and non-exhaustive PBCDs lies in the
exhaustiveness of the mining step used to discover the patterns, which is the
major bottleneck of any exhaustive PBCD approach. In fact, the discovery of an
exponentially large number of patterns affects the efficiency of both the mining
and detection step, hence rendering this class of algorithms not efficient in prac-
tice. The main objective of this paper is to reduce the computational complexity
of exhaustive approaches by adopting non-exhaustive ones. In particular, we pro-
pose a mining algorithm able to prune the search space of patterns following a
beam-search approach.

Being based on beam-search, the proposed approach relies on a parameter k
which controls the beam size of the mining step when traversing the search space
of patterns, that is a lattice L = (2I ,⊆) ordered by the generality relation ⊆,
conveniently represented in a SE-Tree data structure. Since an exhaustive search
can be achieved with non-exhaustive procedures by setting k = |I|, we refer to
Algorithm 1 in both cases. In particular, the algorithm implements a pattern-
growth approach for mining patterns FW in a time window W , and it is initially
called with empty prefix ∅. An important remark is that exhaustive PBCDs
rely on complete pattern sets, discovered by the exhaustive mining procedure,
as the feature sets for the detection problem. On the contrary, non-exhaustive
PBCDs rely only on limited pattern sets discovered by the non-exhaustive mining
procedure.

4.1 Exhaustive FCSs and FSs Mining

The mining procedure (Algorithm 1) takes 4 input parameters, that is the content
of the window W , the minimum support threshold α, the beam-size k, and the
pattern prefix (initially equals to ∅). The algorithm exhaustively traverses the
search space of FCSs and FSs by setting k = |I|, following a recursive DFS
approach. In particular, it is able to (i) build patterns with a pattern-growth
approach in which items are appended as suffix to a pattern prefix, and (ii)
evaluate the supports through tidset intersection. The result is the complete set
of the frequent patterns FW in W according to α.

The procedure considers the window W as an i-conditional database of trans-
actions in which every item j ≤ i has been removed, as done in [4]. At the begin-
ning of each recursive call, Line 2 initializes the set F [P] of frequent patterns on

Efficient and Accurate Non-exhaustive PBCD in Dynamic Networks 401

Algorithm 1: Mining procedure based on beam search
Output: F[P] the set of frequent patterns having prefix P

1 minePatterns (W, α, k, P)
2 F [P] = ∅, Items = ∅, Beam = ∅
3 for (i, tidset) occurring in W do

4 if
|tidset|

|W | ≥ α then

5 if isV alid(P ∪ {i}) then
6 F [P] = F [P] ∪ (P ∪ {i})
7 end
8 Items = Items ∪ {i}
9 end

10 end
11 Beam = topKSortedBySupport(Items, k)
12 for all i occurring in Beam do
13 W i = ∅
14 for j occurring in Beam | j > i do
15 C = tidset(i, W) ∩ tidset(j, W)

16 W i = W i ∪ {(j, C)}
17 end
18 if isV alid(P ∪ {i}) then
19 F [P ∪ {i}] = minePatterns(W i, α, k, P ∪ {i})
20 F [P] = F [P] ∪ F [P ∪ {i}]
21 end

22 end
23 return F [P]

prefix P as empty. Then, Lines 3–10 exploit the vertical layout of W , and test
the supports against the threshold α. The FCS (FS) P ∪ {i} is built by append-
ing the item i to the prefix P only when allowed by the predicate isV alid (Line
4), which checks whether P ∪ {i} is a connected subgraph (when mining FCSs)
or a subtree (when mining FSs), respectively. Lastly, they are added to the set
F [P]. The algorithm adds the suffix i of any pattern discovered to Items.

Line 11 selects only the most promising subset of k patterns, according
to their support. In practice, this line is irrelevant in exhaustive mining as it
will always select all the patterns, since k = |I|. Then, lines 12–22 build the
i-conditional databases on which to perform recursive calls. In particular, the
algorithm iterates over each item i in Beam, and Line 13 initialize the associated
i-conditional database W i as empty. Lines 14–17, iterate on items j from Beam
such that j > i. This way, Line 15 computes the tidset C as the set intersec-
tion between the tidsets of i and j in the database W , respectively. Then, C
is the tidset of j in the newly created i-conditional database W i. The mining
procedure is recursively called at Line 19 for mining the set F [P ∪ {i}] of FCSs
(or FSs) with valid prefix P ∪ {i}, according to the pattern language. This way,
subgraphs which are not connected (or do not represent trees) are pruned at
Line 18. Finally, the patterns in F [P ∪{i}] are added to F [P], which is returned
as the final result.

The exhaustive mining of FCSs and FSs requires time proportional to O(2|I|)
in the worst case scenario, in line with that of traditional frequent itemset min-
ing. Moreover, due to the constraints imposed by the pattern language, the
number of FCSs and FSs is in practice much lower than the number of itemsets,

402 A. Impedovo et al.

FSs < FCSs < 2|I|. However, the mining time is still exponential in the number
of edges |I|, thus resulting inefficient.

4.2 Non-exhaustive FCSs and FSs Mining

The non-exhaustive mining is achieved by pruning the search space of FCSs and
FSs according to some heuristic criteria. In particular, when calling Procedure
1 with k < |I|, the intermediate selection step (Line 11) selects only the most
promising subset of k patterns to further advance the process (Lines 12–22). As
in traditional beam search-based algorithms, frequent patterns in a recursive call
are evaluated by means of a heuristic evaluation function and sorted in increasing
order. Then, only the first top-k of them are further considered.

Many heuristic evaluation functions can be used to select the most promising
subset of patterns, among them we adopt the support of patterns. In particular,
Line 11 sorts the patterns in F [P] according to their support, then only k of
them with the greatest support are kept to further advance the process, while
the remaining ones are ignored. However, since the sorting is performed between
patterns having same length, the evaluation based on the support is consistent
with the evaluation based on the area.

Proof. Let S be a pattern, and W be a window. Then, the support sup(S,W) =
|tidset(S,W)|

|W | and the area area(S,W) = |S| · |tidset(S,W)| are linearly propor-
tional to |tidset(S,W)| with two constant factors 1

|W | and |S|.
The area of the FCS (or FS) S in the window W , area(S,W), is an interest-

ingness measure adopted in tile mining [4]. In our case, it is used to restrict the
search space by considering only the most interesting patterns at each recur-
sion step. This simple, yet effective approach allows us to significantly prune
the search space when mining the limited sets FW and FW ′ . In particular, the
mining is more focused towards patterns covering large portions of the window,
tiles from a transactional database point of view [4], and hence more interesting.

The non-exhaustive mining procedure is more efficient than the exhaustive
one, requiring time proportional to O(2k) in the worst-case scenario. In fact, the
algorithm restricts the attention on only k items from I in the base recursion
step, with k � |I|.

5 Detecting Changes on Pattern Sets

Once the complete or limited pattern sets, FW and FW ′ , have been discovered
by either the exhaustive or non-exhaustive procedure, respectively, the detection
step can be executed and the dissimilarity score β = d(FW , FW ′) computed.
We recall that d(FW , FW ′) is a binary dissimilarity measure defined on sets of
patterns. For our convenience we define it as operating on the vector encoding
w and w′ of FW and FW ′ , respectively.

Efficient and Accurate Non-exhaustive PBCD in Dynamic Networks 403

Fig. 2. Example of binary (top) and real-valued (bottom) vector encoding of FW and
FW ′ . Dashed circles denote infrequent patterns with α = 0.5.

5.1 Detecting Changes on Complete Pattern Sets

When detecting changes on complete pattern sets, the encoding is built by enu-
merating the patterns in FW ∪ FW ′ . More specifically, w (w′) is a vector of size
n = |FW ∪FW ′ |, where the i-th element is a weight associated to the i-th pattern
in the enumeration of FW ∪FW ′ with respect to W (or W ′, respectively). Then,
a change is detected if the dissimilarity score exceeds the minimum threshold β,
that is when d(FW , FW ′) > β.

In the case of KARMA, as shown in Fig. 2, w and w′ are binary vectors
indicating whether each FCS from the enumeration is frequent or not in W
and W ′, respectively. Then the algorithm computes the Tanimoto coefficient
d(FW , FW ′) = 1 − w·w′

‖w‖2+‖w′‖2−w·w′ . By doing so, KARMA quantifies the frac-
tion of FCSs which have crossed the minimum support threshold, thus indicating
a relevant change in the underlying graph data distribution. However, this solu-
tion does not take into account the FCSs not crossing the minimum support
threshold, although exhibiting a potentially significant support spread.

To overcome this limitation, an alternative approach also shown in Fig. 2 is
to build the vector encoding as real-valued vectors of supports in W and W ′,
respectively. Then, it is possible to compute the weighted Jaccard dissimilarity
d(FW , FW ′) = 1 −

∑
i min(wi,w

′
i)∑

i max(wi,w′
i)

. We deem this measure as relevant because
relates the dissimilarity to the absolute growth-rate [2] of each pattern S, defined
as GR(S,W,W ′) = |sup(S,W)− sup(S,W ′)|. The absolute growth-rate is a con-
trast measure adopted in emerging pattern mining to discover contrast patterns
between two datasets [2].

Proof. Given the analytic formulations for max(a, b) = 1
2 (a + b + |a − b|) and

min(a, b) = 1
2 (a + b − |a − b|), and the vector encoding w and w′ of FW and

FW ′ . The weighted Jaccard dissimilarity can be rewritten as d(FW , FW ′) =
1 −

∑
i min(wi,w

′
i)∑

i max(wi,w′
i)

= 1 −
∑

i wi+w′
i−GR(Si,W,W ′)

∑
i wi+w′

i+GR(Si,W,W ′) .

In exhaustive PBCDs the number of patterns grows exponentially in the num-
ber of items. Therefore, regardless from the measure d(FW , FW ′) adopted, the

404 A. Impedovo et al.

Fig. 3. Example of limited sets of frequent patterns FW (left) and FW ′ (right) discov-
ered with k = 2 and α = 0.1. Dashed circles denote pruned non-interesting patterns.

detection step on complete pattern sets requires an amount of time proportional
to the number of patterns in the enumeration.

5.2 Detecting Changes on Limited Pattern Sets

Non-exhaustive PBCDs detect changes in the same way exhaustive PBCDs do,
that is by computing the score d(FW , FW ′) in terms of the Tanimoto coeffi-
cient or the unweighted Jaccard dissimilarity, and testing it against the mini-
mum change threshold β. Although the detection approach remains the same,
a subtle difference in the meaning of the detection is present. In fact, while
the dissimilarity measures adopted on complete pattern sets quantify how much
the supports of FCSs (FSs) change between W and W ′, they do not consider
the interestingness of patterns on W and W ′, respectively, as intended by the
non-exhaustive mining algorithm.

Non-exhaustive mining based on the interestingness prunes the search space
of patterns in two different ways for W and W ′, respectively. Thus restricting
the search only to the most interesting FCSs and FSs, while discarding the less
interesting ones (Fig. 3). By doing this, the detection relies on a considerably
low number of patterns, hence resulting more efficient, while losing information
associated to patterns which have been pruned. This affects the construction
of the vector encoding w and w′, which is built according to the enumeration
FW ∪ FW ′ consisting of a reduced number of patterns. The example reported
in Fig. 3 depicts a scenario in which every pattern is frequent in both W and
W ′, although with different supports, thus determining different interestingness.
Any information related to the patterns “ac” and “abc” is lost, as they are not
present in the enumeration of FW ∪ FW ′ , and therefore they do not contribute
to the change.

Therefore, the detection step becomes non-exhaustive itself, by focusing the
detection only on the most interesting frequent patterns. In particular, as the
number of patterns discovered by the non-exhaustive mining procedure grows

Efficient and Accurate Non-exhaustive PBCD in Dynamic Networks 405

exponentially with the parameter k � |I|, the detection step requires in practice
much smaller time than that required on complete pattern sets.

6 Computational Complexity

In this section we study the computational complexity of PBCDs in the worst-
case scenario. In particular, the analysis takes into account the influence of the
feature space, the mining step, the detection step and the window model. Given
the dynamic network D = 〈G1, G2, . . . , Gn〉 where I denotes the possible labeled
edges observed over the time, and |Π| the size of blocks, then every PBCD
built according to the architecture in Fig. 1 consumes exactly e = n

|Π| blocks
of transactions, thus requiring O(e) iterations. The time complexity O(a + b)
required during every iteration depends on the cost a of the mining step, and
the cost b of the detection step.

The mining step requires time complexity a = O(2c) · d in the worst case
scenario. O(2c) denotes the number of patterns discovered according to the fea-
ture space and to the exhaustiveness of the mining step. In the exhaustive set-
ting, all the edges (c = |I|) are considered to discover O(2|I|) patterns. Since
FSs < FCSs < 2|I|, we refer to O(2|I|) as the maximum number of patterns
discovered in the worst-case scenario. However, it reduces to O(2k) in the non-
exhaustive setting (c = k), where k � |I|. The term d denotes a multiplicative
factor describing the amount of work spent by the algorithm in tidset intersec-
tions, which depends on the time window model adopted. In the case of landmark
and mixed model it is O(|W | + |Π|), while in the case of the sliding model it is
O(|Π|). As for the detection step, the computation of the d(FW , FW ′) requires
time complexity O(b) proportional to the enumeration of patterns |FW ∪ FW ′ |,
which is O(2|I|) in exhaustive setting, and O(2k) in the non-exhaustive one.

Then, the computational complexity in the worst case scenario of exhaustive
PBCDs is O(e·(d2|I|+2|I|)), while for non-exhaustive PBCDs is O(e·(d2k +2k)).
Therefore, it is exponential in |I| and k, with k � |I|, respectively.

7 Experimental Results

The experiments are organized alongside different perspectives concerning both
synthetic and real-world dynamic networks. In particular, we answer the fol-
lowing research question: (Q1) What is the best PBCD in terms of efficiency
and accuracy when tuning the minimum change threshold β on synthetic net-
works? (Q2) How much the parameter k affects the efficiency and the accuracy
of non-exhaustive PBCD on synthetic networks? (Q3) How much the parameter
k affects the efficiency of non-exhaustive PBCD on real-world networks?

For experiments on synthetic networks, we generated 40 networks, 20 with
frequent drifts and 20 with rare drifts. Every network consists of 200 hourly
blocks made of 120 graph snapshots, one observed every 30 s, for a total amount
of 24000 snapshots. Each hourly block is built by randomly choosing with

406 A. Impedovo et al.

Table 1. Most accurate (top) and most efficient (bottom) PBCD when tuning β.

PBCD

component

Most accurate PBCD @ β

0.10 0.20 0.30 0.40 0.50 0.60

choice p-val. choice p-val. choice p-val. choice p-val. choice p-val. choice p-val.

Features

(fcs/fs)

fs 0.0025 fs 0.0001 fs 0.0001 fs 0.0317 fs 0.2357 fs 0.6816

Mining

(ex/nex)

nex 0.0001 nex 0.0001 nex 0.0001 nex 0.0828 nex 0.4657 nex 0.7154

Detection

(tan/wj)

tan 0.3618 wj 0.0001 wj 0.0001 wj 0.0001 wj 0.0001 wj 0.1004

Windows

(lan/sli/mix)

lan 0.0001 mix 0.0001 mix 0.0001 mix 0.0001 mix 0.0001 mix 0.0001

PBCD

component

Most efficient PBCD @ β

0.10 0.20 0.30 0.40 0.50 0.60

choice p-val. choice p-val. choice p-val. choice p-val. choice p-val. choice p-val.

Features

(fcs/fs)

fs 0.0001 fs 0.0001 fs 0.0001 fs 0.0001 fs 0.0001 fs 0.0001

Mining

(ex/nex)

nex 0.0001 nex 0.0001 nex 0.0001 nex 0.0001 nex 0.0001 nex 0.0001

Detection

(tan/wj)

tan 0.0001 tan 0.0001 tan 0.0001 tan 0.0001 tan 0.0079 tan 0.3618

Windows

(lan/sli/mix)

sli 0.0001 sli 0.0001 sli 0.0001 sli 0.0001 sli 0.0001 sli 0.0001

replacement (i) one out of 10 different generative models in the case of fre-
quent drifts, and (ii) one out of 2 different generative models in the case of rare
drifts. As a consequence, it is more likely that two consecutive hourly blocks are
built according to different generative models, thus denoting a change, in the
dataset with frequent drifts than in the one with rare drifts. Every generative
model builds a first snapshot made of 50 nodes by adopting a random scale-
free network generator, which is then replicated for the remaining snapshots of
the block. Every graph snapshot of a block is then perturbed by adding new
edges and removing existing ones with a probability equals to 2%. A random
perturbation is required to test the false alarm rate of the two approaches.

7.1 Q1: The Most Accurate and Most Efficient PBCD When
Tuning β

In this paper, we discussed various components of PBCDs, that is (i) 2 mining
steps (exhaustive and non-exhaustive), (ii) 2 feature spaces (FCSs and FSs),
(iii) 2 detection steps (with the Tanimoto dissimilarity score and the weighted
Jaccard score), and (iv) 3 time window models (landmark, sliding and mixed).
These components can be combined to form 24 possible PBCDs, and hence
determining variants of the original KARMA algorithm. Here, we evaluate which
one performs statistically better, by measuring the efficiency (running times) and
the change detection accuracy (Accuracy). We executed the 24 variants on 40
randomly generated synthetic networks, by tuning β 6 times (resulting in 5760

Efficient and Accurate Non-exhaustive PBCD in Dynamic Networks 407

Table 2. Running times of PBCD-1 and PBCD-2, when tuning k, against KARMA
and StreamKRIMP on synthetic data (α = 0.5, β = 0.20, |Π| = 15).

Dataset Running times (s) @ k

PBCD-1 PBCD-2 KARMA KRIMP

5 10 15 20 25 30 5 10 15 20 25 30

freq-

drifts-1

6.016 8.536 12.913 16.156 19.234 23.745 3.881 5.612 6.194 7.870 9.091 10.372 60.763 86.130

freq-

drifts-2

6.022 9.518 12.284 15.758 19,270 23.084 4.147 5.083 6.522 7.826 9.141 10.182 55.982 77.138

freq-

drifts-3

6.689 8.882 12.603 15.710 19.653 22.988 3.195 4.497 6.463 7.667 9.818 10.599 58.137 76.750

freq-

drifts-4

6.107 9.739 12.792 17.029 20.976 23.980 3.778 4.529 6.712 8.129 9.800 10.419 78.240 23.213

rare-

drifts-1

7.438 12.578 18.358 24.582 29.271 35.250 3.341 4.709 5.854 7.556 9.005 10.034 1775.234 109.816

rare-

drifts-2

7.302 12.326 17.549 23.911 29.702 33.339 4.182 5.156 6.435 7.563 8.928 10.365 1971.625 112.303

rare-

drifts-3

7.181 12.696 18.259 25.245 29.642 35.035 3.933 5.132 6.228 7.236 8.608 10.102 1971.367 109.395

rare-

drifts-4

7.273 12.159 17.901 23.821 28.416 31.260 4.059 4.306 6.452 7.488 9.072 10.559 2026.794 116.141

executions) and fixing the value of k to 20 items. Then, we selected the most
accurate and the most efficient PBCD (Table 1) by using (i) a Wilcoxon post-
hoc test when deciding about the feature space, the mining strategy and the
detection step, and (ii) a Nemenyi-Friedman post-hoc test when deciding about
the best time-windows model, both at significance level α = 0.05.

As for the accuracy, the results show that FSs are more appropriate features
than FCSs. Furthermore, the PBCDs equipped with non-exhaustive mining step
always outperforms exhaustive ones. The Tanimoto measure, as originally used
by the KARMA algorithm, outperforms the weighted Jaccard measure for low
values of β. From this set of experiments it is clear that the factors that impact
the most on the PBCDs accuracy are the change detection measure and the
time windows model. In particular, it is strongly evident that a mixed model
outperforms the landmark model, which is preferred only when β = 0.10.

As for the efficiency, the very low p-values indicate a strong evidence that
non-exhaustive PBCD based on FSs and the Tanimoto distance in the slid-
ing model, outperforms every other PBCD approach. In particular, this is an
expected result since: (i) the mining of FSs is less time consuming than FCSs,
(ii) a non-exhaustive mining strategy is more efficient than exhaustive one.

An aspect worth to be considered is that the original KARMA algorithm
(FCSs + EX + Tanimoto + Landmark) is never selected as the best PBCD.
In this perspective the adoption of a new feature set, the FSs, jointly with a
non-exhaustive mining step generally improves the detection accuracy and the
efficiency. However, the test suggests that the landmark model adopted by the
KARMA algorithm is a bad choice leading to poor accuracy and efficiency. While
the Tanimoto coefficient leads to poor detection accuracy.

408 A. Impedovo et al.

7.2 Q2: Efficiency and Accuracy of Non-exhaustive PBCDs on
Synthetic Networks

We report the results of a comparative evaluation in which we compare the
running time (Table 2), the accuracy and the false alarm rate (Table 3) of two
non-exhaustive PBCDs against the KARMA [9] and the StreamKRIMP [8] state-
of-the-art PBCDs. In particular, StreamKRIMP treats the network as a data
stream of labeled edges, and adopts a compression-based mining step. We select
two non-exhaustive PBCDs emerged in the last section and test their perfor-
mances on 8 synthetic networks, when tuning the parameter k. In particular, we
chose the most efficient PBCD and the most accurate PBCD when β = 0.2.
We denote them as PBCD-1 (FSs + NEX + Weighted Jaccard + Mixed),
and PBCD-2 (FSs + NEX + Tanimoto + Sliding), respectively. The results
in Tables 2 and 3 shows increasing efficiency and accuracy for decreasing values
of k.

Results in Table 2 show an improved efficiency for both PBCD-1 and PBCD-2
with respect to KARMA and StreamKRIMP. This is an expected result, also
confirmed by the statistical significance test in Sect. 7.1, because non-exhaustive
mining of FSs is more efficient than (i) the exhaustive mining of FCSs performed
by the KARMA algorithm, and (ii) the non-exhaustive mining of itemsets per-
formed by StreamKRIMP. In particular, the running times of both PBCD-1
and PBCD-2 increases with k, as high values of k lead to the discovery of an
increasing number of patterns. Moreover, the results show that PBCD-2 is more

Table 3. Accuracy and false alarm rate of PBCD-1 and PBCD-2, when tuning k,
against KARMA and StreamKRIMP on synthetic data (α = 0.5, β = 0.20, |Π| = 15).

Dataset Accuracy @ k

PBCD-1 PBCD-2 KARMA KRIMP

5 10 15 20 25 30 5 10 15 20 25 30

freq-drifts-1 1.0 1.0 0.987 0.987 0.967 0.957 1.0 1.0 0.918 0.891 0.824 0.751 0.8041 0.9299

freq-drifts-2 1.0 1.0 0.991 0.991 0.965 0.952 1.0 1.0 0.916 0.889 0.819 0.735 0.7985 0.9105

freq-drifts-3 1.0 1.0 0.988 0.988 0.958 0.948 1.0 1.0 0.918 0.888 0.819 0.755 0.7960 0.9155

freq-drifts-4 1.0 1.0 0.987 0.987 0.963 0.952 1.0 1.0 0.936 0.907 0.831 0.757 0.7860 0.923

rare-drifts-1 1.0 1.0 1.0 1.0 1.0 0.971 1.0 1.0 0.816 0.816 0.691 0.598 0.9362 1.0

rare-drifts-2 1.0 1.0 1.0 1.0 1.0 0.967 1.0 1.0 0.799 0.799 0.674 0.571 0.9399 1.0

rare-drifts-3 1.0 1.0 1.0 1.0 1.0 0.969 1.0 1.0 0.816 0.816 0.691 0.599 0.9368 1.0

rare-drifts-4 1.0 1.0 1.0 1.0 1.0 0.965 1.0 1.0 0.799 0.799 0.674 0.576 0.9293 1.0

Dataset False alarm rate @ k

PBCD-1 PBCD-2 KARMA KRIMP

5 10 15 20 25 30 5 10 15 20 25 30

freq-drifts-1 0 0 0.014 0.014 0.036 0.048 0 0 0.092 0.123 0.197 0.279 0.1099 0.0399

freq-drifts-2 0 0 0.011 0.0105 0.039 0.053 0 0 0.095 0.125 0.204 0.297 0.1131 0.0513

freq-drifts-3 0 0 0.013 0.0134 0.047 0.058 0 0 0.092 0.126 0.203 0.275 0.1146 0.0478

freq-drifts-4 0 0 0.015 0.0148 0.042 0.054 0 0 0.072 0.105 0.190 0.273 0.1205 0.0437

rare-drifts-1 0 0 0 0 0 0.0312 0 0 0.195 0.195 0.328 0.427 0.0073 0

rare-drifts-2 0 0 0 0 0 0.032 0 0 0.214 0.214 0.347 0.457 0 0

rare-drifts-3 0 0 0 0 0 0.0326 0 0 0.196 0.196 0.329 0.427 0.0027 0

rare-drifts-4 0 0 0 0 0 0.0377 0 0 0.216 0.216 0.351 0.456 0.0013 0

Efficient and Accurate Non-exhaustive PBCD in Dynamic Networks 409

efficient than PBCD-1, as the sliding window model leads to increasing efficiency
with respect to the mixed model. This is explained by the forgetful nature of the
sliding window, in which old graph snapshots are immediately discarded with the
arrival of a new block of snapshots. In this way, the mining step requires reduced
computational efforts, as patterns are mined from reduced sets of transactions.
Thus intersecting small tidsets when computing the support of each pattern.

As for the accuracy (Table 3), both PBCD-1 and PBCD-2 are optimal change
detection solutions, for the considered synthetic networks, for low values of k (k =
5 and k = 10, respectively). Moreover, the results show a decreasing tendency
in the accuracy of both PBCD-1 and PBCD-2. In particular, PBCD-1 always
outperforms KARMA and StreamKRIMP (except for k = 30), while this is
not the case of PBCD-2. These are expected results, again confirmed by the
significance test in Sect. 7.1, as the non-exhaustive mining of FSs with a detection
step based on the weighted Jaccard dissimilarity takes into account the absolute
growth-rate and the interestingness of patterns. This is not the case of PBCD-2,
in which the Tanimoto coefficient computed in the sliding window setting, on
large sets of patterns, exhibits higher false positive rates. For high values of k,
the mining step discover patterns representing behavior local to the snapshots
collected in two successive sliding windows of equal size. Thus, injecting noisy
features in the detection step. We note that (i) PBCD-1 exhibits moderately
lower false alarm rates than PBCD-2, also outperforming KARMA for high
values of k, and StreamKRIMP for low values of k, and (ii) PBCD-2 outperforms
KARMA and StreamKRIMP for low values of k only.

Table 4. Running times of PBCD-1 and PBCD-2, when tuning k, against KARMA
on real-world networks (β = 0.20, |Π| = 10% of each dataset).

Dataset Running times (s) @ k

PBCD-1 PBCD-2 KARMA

5 10 15 20 25 30 5 10 15 20 25 30

mawi 6.769 9.68 1.919 14.886 17.554 18.847 5.169 6.17 6.82 7.977 8.547 8.736 86.493

noaa 14.794 16.513 18.068 19.935 19.603 23.217 15.164 16.35 17.18 19.061 20.533 20.263 65.697

nodobo 1.72 1.525 2.11 2.915 3.728 4.371 1.825 1.582 1.822 2.587 3.276 3.988 35.253

keds 0.955 0.924 0.873 0.946 1.109 1.034 0.979 0.892 0.795 0.982 1.075 1.014 1.108

wikitalks 83.846 78.454 80.182 77.904 81.605 79.131 77.128 76.77 76.021 80.45 77.299 75.876 94.914

We conclude that both the accuracy and the efficiency of non-exhaustive
PBCDs benefits from the limited pattern sets which have been discovered. In
particular, the combination of a mixed window model with the weighted Jaccard
dissimilarity leads to accurate detection, while the combination of sliding win-
dows and the Tanimoto coefficient leads to efficient detection, while improving
the detection accuracy for very low values of k. From this perspective, the two
approaches offers two efficient alternatives to the KARMA algorithm, in which
the running times can be greatly reduced (up to two orders of magnitude in this
set of experiments).

410 A. Impedovo et al.

7.3 Q3: Efficiency of Non-exhaustive PBCDs on Real-World
Networks

We also provide a practical idea of the efficiency on real-world networks by
reporting the results of a comparative evaluation (Table 4) between PBCD-1,
PBCD-2 and KARMA on 5 real-world networks, when tuning k. More specifi-
cally, we used the same networks adopted in [9]: the keds, mawi, noaa, nodobo
and the wikitalks dataset. To guarantee a fair comparison, we fixed the value
β = 0.20 in each experiment. However, since the networks span different peri-
ods, we independently fixed the size of block |Π| to the 10% of each dataset,
this guaranteed 100 iterations of each PBCD on every dataset. The minimum
support α has been fixed to 0.05 for keds, nodobo and mawi, 0.20 for noaa, and
0.40 for wikitalks. From the obtained results it is evident that both PBCD-1
and PBCD-2 are always more efficient than KARMA for all the values of k.
Furthermore, as observed on synthetic networks in Sect. 7.2 and as confirmed in
Sect. 7.1, PBCD-2 continues to be more efficient than PBCD-1. The increasing
tendency of the running times with k is verified in the mawi, noaa and nodobo
datasets.

8 Conclusions

In this paper, we have collected several improvements contributing to the effi-
ciency and the accuracy of traditional PBCDs. This have been possible by inher-
iting the general PBCD schema from the KARMA algorithm, and extending it.
Specifically, we have relaxed the exhaustiveness of the PBCDs mining step with
a non-exhaustive mining strategy, inspired by beam search algorithms. The effect
is that the mining algorithm discovers now limited sets of patterns by pruning
the search space according to the interestingness of patterns. Moreover, we pro-
posed an extended detection step which takes into account the growth-rate of
the discovered patterns. Ultimately, we have conducted an extensive exploratory
evaluation on both real and synthetic networks.

The experiments have shed some lights on the most accurate and on the most
efficient PBCDs among the possible approaches. Furthermore, they have shown
that non-exhaustive PBCDs are more efficient than exhaustive PBCDs, while
achieving comparable levels of accuracy. Future directions of research involve
the evaluation of the performances when adopting more sophisticated feature
spaces, for example by considering graph embedding.

References

1. Akoglu, L., Tong, H., Koutra, D.: Graph based anomaly detection and description:
a survey. Data Min. Knowl. Discov. 29(3), 626–688 (2015)

2. Bailey, J.: Statistical measures for contrast patterns. In: Contrast Data Mining:
Concepts, Algorithms, and Applications, pp. 13–20. CRC Press (2013)

Efficient and Accurate Non-exhaustive PBCD in Dynamic Networks 411

3. Gama, J., Medas, P., Castillo, G., Rodrigues, P.: Learning with drift detection. In:
Bazzan, A.L.C., Labidi, S. (eds.) SBIA 2004. LNCS (LNAI), vol. 3171, pp. 286–295.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28645-5 29

4. Geerts, F., Goethals, B., Mielikäinen, T.: Tiling databases. In: Proceedings of 7th
International Conference Discovery Science, DS 2004, 2–5 October 2004, Padova,
Italy, pp. 278–289 (2004)

5. He, Z., Xu, X., Huang, J.Z., Deng, S.: FP-outlier: frequent pattern based outlier
detection. Comput. Sci. Inf. Syst. 2(1), 103–118 (2005)

6. Koh, Y.S.: CD-TDS: change detection in transactional data streams for frequent
pattern mining. In: 2016 International Joint Conference on Neural Networks,
IJCNN 2016, 24–29 July 2016, Vancouver, BC, Canada, pp. 1554–1561 (2016)

7. Koufakou, A., Secretan, J., Georgiopoulos, M.: Non-derivable itemsets for fast out-
lier detection in large high-dimensional categorical data. Knowl. Inf. Syst. 29(3),
697–725 (2011)

8. van Leeuwen, M., Siebes, A.: Streamkrimp: detecting change in data streams. In:
Proceedings of European Conference on Machine Learning and Knowledge Discov-
ery in Databases (Part I), ECML/PKDD 2008, 15–19 September 2008, Antwerp,
Belgium, pp. 672–687 (2008)

9. Loglisci, C., Ceci, M., Impedovo, A., Malerba, D.: Mining microscopic and macro-
scopic changes in network data streams. Knowl. Based Syst. 161, 294–312 (2018)

10. Padillo, F., Luna, J.M., Ventura, S.: Subgroup discovery on big data: pruning
the search space on exhaustive search algorithms. In: 2016 IEEE International
Conference on Big Data, BigData 2016, 5–8 December 2016, Washington DC,
USA, pp. 1814–1823 (2016)

11. Trabold, D., Horváth, T.: Mining strongly closed itemsets from data streams. In:
Yamamoto, A., Kida, T., Uno, T., Kuboyama, T. (eds.) DS 2017. LNCS (LNAI),
vol. 10558, pp. 251–266. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-67786-6 18

https://doi.org/10.1007/978-3-540-28645-5_29
https://doi.org/10.1007/978-3-319-67786-6_18
https://doi.org/10.1007/978-3-319-67786-6_18

	Efficient and Accurate Non-exhaustive Pattern-Based Change Detection in Dynamic Networks
	1 Introduction
	2 Background
	2.1 Problem Statement

	3 Architecture of a PBCD
	4 Exhaustive and Non-exhaustive Mining in PBCDs
	4.1 Exhaustive FCSs and FSs Mining
	4.2 Non-exhaustive FCSs and FSs Mining

	5 Detecting Changes on Pattern Sets
	5.1 Detecting Changes on Complete Pattern Sets
	5.2 Detecting Changes on Limited Pattern Sets

	6 Computational Complexity
	7 Experimental Results
	7.1 Q1: The Most Accurate and Most Efficient PBCD When Tuning
	7.2 Q2: Efficiency and Accuracy of Non-exhaustive PBCDs on Synthetic Networks
	7.3 Q3: Efficiency of Non-exhaustive PBCDs on Real-World Networks

	8 Conclusions
	References

