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Abstract. Real-world datasets are often characterised by outliers,
points far from the majority of the points, which might negatively influ-
ence modelling of the data. In data analysis it is hence important to use
methods that are robust to outliers. In this paper we develop a robust
regression method for finding the largest subset in the data that can
be approximated using a sparse linear model to a given precision. We
show that the problem is NP-hard and hard to approximate. We present
an efficient algorithm, termed slise, to find solutions to the problem.
Our method extends current state-of-the-art robust regression methods,
especially in terms of scalability on large datasets. Furthermore, we show
that our method can be used to yield interpretable explanations for indi-
vidual decisions by opaque, black box, classifiers. Our approach solves
shortcomings in other recent explanation methods by not requiring sam-
pling of new data points and by being usable without modifications across
various data domains. We demonstrate our method using both synthetic
and real-world regression and classification problems.

1 Introduction and Related Work

In analyses of real-world data we often encounter outliers, i.e., points which
are far from the majority of the other data points. Such points are problematic
as they may negatively influence modelling of the data. This is observed in,
e.g., ordinary least-squares regression where already a single data point may
lead to arbitrarily large errors [11]. It is hence important to use robust methods
that effectively ignore the effect of outliers. A number of approaches have been
proposed for robust regression, see, e.g., [27] for a review. Our proposed method
is most closely related to Least Trimmed Squares (lts) [2,26,28] that finds a
subset of size k minimising the sum of the squared residuals in this subset, in
contrast to methods that de-emphasise [33] or penalise [20,30,34] outliers.

In this paper we present a sparse robust regression method that outperforms
many of the existing state-of-the-art robust regression methods in terms of scal-
ability on large datasets, termed slise (Sparse LInear Subset Explanations).
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Fig. 1. Robust regression.

Table 1. Classifier probabilities
for high income.

Education
Age Low High

Young 0.07 0.31
Old 0.22 0.61

Specifically, we consider finding the largest subset of data items that can be rep-
resented by a linear model to a given accuracy. Hence, there is an important
difference between our method and lts: with lts the size of the subset is fixed
and specified a priori. Furthermore, the linear models obtained from slise are
sparse, meaning that the model coefficients are easier to interpret, especially for
datasets with many attributes.

Example 1: Robust Regression. Figure 1 shows a dataset containing outliers in
the top left corner. Here ordinary least-squares regression (ols) finds the wrong
model due to the influence of these outliers. In contrast, slise finds the largest
subset of points that can be approximated by a (sparse) linear model, yielding
high robustness by ignoring the outliers.

Interestingly, it turns out that our robust regression method can also be used
to explain individual decisions by opaque (black box) machine learning models:
e.g., why does a classifier predict that an image contains the digit 2? The need
for interpretability stems from the fact that high accuracy is not always suffi-
cient; we must understand how the model works. This is important in safety-
critical real-world applications, e.g., in medicine [6], but also in science, such as
in physics when classifying particle jets [18]. In terms of explanations we con-
sider post-hoc interpretation of opaque models, i.e., understanding predictions
from already existing models, in contrast to creating models directly aiming for
interpretability (e.g., super-sparse linear integer models [32] or decision sets [19]).
In general, model explanations can be divided into global explanations (for the
entire model), e.g., [1,10,16,17], and local explanations (for a single classification
instances), e.g., [5,13,21,25]. Here we are interested in the latter. For a survey
of explanations see, e.g., [15].

To explain an instance, we need to find a (simple and interpretable) model
that matches the black box model locally in the neighbourhood of the instance
whose classification we want to explain. Defining this neighbourhood is impor-
tant but non-trivial (for discussion, see, e.g., [14,24]). The two central questions
are: (i) how do we find the local model and (ii) how do we define the neighbour-
hood? Our approach solves these two problems at the same time by finding the
largest subset of data items such that the residuals of a linear model passing
through the instance we want to explain are minimised.

Example 2: Explanations. Consider a simple toy dataset of persons with the
attributes age ∈ {0, 1} and education ∈ {0, 1}, where 0 denotes low age and
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education and 1 high age and education, respectively. Assume that the dataset
consists mostly of people with high education, if we for example are studying
factors affecting salaries within the faculty of a university department. Now, we
are given a classifier that outputs the probability of high income (vs. low income),
given these two attributes. Our task is to find the most important attribute
used by the classifier when estimating the income level of an old professor in
the dataset. Looking only at the class probabilities, shown in Table 1, it appears
that education is the most significant attribute, and this is indeed what, e.g.,
the state-of-the art local explanation method lime [25] finds. We, however, argue
that this explanation is misleading: our toy data set contains very few instances
of persons with low education, and therefore knowing the education level does
not really give any information about the class. We argue that in this dataset
age is a better determinant of high income, and this is found by slise.

The above example shows the importance of the interaction between the
model and the data. The model in Table 1 is actually a simple logistic regres-
sion1. Hence, even if the model is simple, a complex structure in the data can
make interpretation non-trivial. lime found the simple logistic regression model,
whereas we found the behaviour of the model in the dataset. This distinction is
significant because it suggests that you cannot always cleanly separate the model
from the data. An example of this is conservation laws in physical systems. Accu-
rate data will never violate such laws, which is something the model can rely
on. Without adhering to the data during the explanation you may therefore find
explanations that violate the laws of physics. slise satisfies such constraints
automatically by observing how the classifier performs in the dataset, instead
of randomly sampling (possibly non-physical) points around the item of interest
(as in, e.g., [5,13,21,25]). Another advantage is that we do not need to define
a neighbourhood of a data item, which is especially important in cases where
modelling the distance is difficult, such as with images.

Contributions. We develop a novel robust regression method with applications to
local explanations of opaque machine learning models. We consider the problem
of finding the largest subset that can be approximated by a sparse linear model
which is NP-hard and hard to approximate (Theorem 1) and present an approxi-
mative algorithm for solving it (Algorithm 1). We demonstrate empirically using
synthetic and real-world datasets that slise outperforms state-of-the-art robust
regression methods and yields sensible explanations for classifiers.

Organisation. In Sect. 2 we formalise our problem for both robust regression and
local explanations, and show its complexity. We then discuss practical numeric
optimisation in Sect. 3. The algorithm is presented in Sect. 4, followed by the
empirical evaluation in Sect. 5. We end with the conclusions in Sect. 6.

2 Problem Definition

Our goal is to develop a linear regression method with applications to both
(i) robust global linear regression model and (ii) providing a local linear regression
1 Probability of high income is given by p = σ(−2.53 + 1.73 · education + 1.26 · age).
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model of the decision surface of an opaque model in the vicinity of a particular
data item. In the second case the simple linear model thus provides an explana-
tion for the (typically more) complex decision surface of the opaque model.

Let (X,Y ), where X ∈ R
n×d and Y ∈ R

n, be a dataset consisting of n pairs
{(xi, yi)}n

i=1 where we denote the ith d-dimensional item (row) in X by xi (the
predictor) and similarly the ith element in Y by yi (the response). Furthermore
let ε be the largest tolerable error and λ be a regularisation coefficient. We now
state the main problem in this paper:

Problem 1. Given X ∈ R
n×d, Y ∈ R

n, and non-negative ε, λ ∈ R, find the
regression coefficients α ∈ R

d minimising the loss function

Loss(ε, λ,X, Y, α) =
∑n

i=1
H(ε2 − r2i )

(
r2i /n − ε2

)
+ λ‖α‖1, (1)

where the residual errors are given by ri = yi − αᵀxi, H(·) is the Heaviside
step function satisfying H(u) = 1 if u ≥ 0 and H(u) = 0 otherwise, and ‖α‖1 =∑d

i=1 |αi| denotes the L1-norm. If necessary, X can be augmented with a column
of all ones to accommodate the intercept term of the model.

Alternatively, the Lagrangian term λ‖α‖1 in Eq. (1) can be replaced by a con-
straint ‖αi‖1 ≤ t for some t. Note that Problem 1 is a combinatorial problem in
disguise, where we try to find a maximal subset S, as can be seen by rewriting
Eq. (1) as (using the shorthand [n] = {1, . . . , n})

Loss(ε, λ,X, Y, α) =
∑

i∈S

(
r2i /n − ε2

)
+ λ‖α‖1 where S = {i ∈ [n] | r2i ≤ ε2}.

(2)
The loss function of Eq. (1) (and Eq. (2)) thus consists of three parts; the
maximisation of subset size

∑
i∈S ε2 = |S|ε2, the minimisation of the residuals∑

i∈S r2i /n ≤ ε2, and the lasso-regularisation λ‖α‖1. The main goal is to max-
imise the subset and this is reflected in the loss function, since any decrease of
the subset size has an equal or greater impact on the loss than all the residuals
combined. At the limit of ε → ∞, it follows that S = [n] and Problem 1 is
equivalent to lasso [31]. We now state the following theorem concerning the
complexity of Problem 1.

Theorem 1. Problem 1 is NP-hard and hard to approximate.

Proof. We prove the theorem by a reduction to the maximum satisfying linear
subsystem problem [4, Problem MP10], which is known to be NP-hard. In max-
imum satisfying linear subsystem we are given the system Xα = y, where
X ∈ Z

n×m and y ∈ Z
n and we want to find α ∈ Q

m such that as many equations
as possible are satisfied. This is equivalent to Problem 1 with ε = 0 and λ = 0.
Also, the problem is not approximable within nγ for some γ > 0 [3]. �	

Local Explanations. To provide a local explanation for a data item (xk, yk) where
k ∈ [n], we use an additional constraint requiring that the regression plane
passes through this item, i.e., we add the constraint rk = 0 to Problem 1. This
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constraint is easily met by centring the data on the item (xk, yk) to be explained:
yi → yi − yk and xi → xi − xk for all i ∈ [n], in which case rk = 0 and any
potential intercept is zero. Hence, it suffices to consider Problem 1 both when
finding the best global regression model and when providing a local explanation
for a data item.

In practice, we employ the following procedure to generate local explanations
for classifiers. If a classifier outputs class probabilities P ∈ R

n we transform them
to linear values using the logit transformation yi = log(pi/(1 − pi)), yielding a
vector Y ∈ R

n. This new vector Y −yk is what we use for finding the explanation.
Now, the local linear model, α from Problem 1, and the subset, S from

Eq. (2), constitute the explanation for the data item of interest. Note that the
linear model is comparable to the linear model obtained using standard logistic
regression, i.e., we approximate the black box classifier by a logistic regression
in the vicinity of the point of interest.

3 Numeric Approximation

We cannot effectively solve the optimisation problem in Problem 1 in the general
case. Instead, we relax the problem by replacing the Heaviside function with a
sigmoid function σ and a continuous and differentiable rectifier function φ(u) ≈
min (0, u). This allows us to compute the gradient and find α by minimising

β-Loss(ε, λ,X, Y, α) =
∑n

i=1
σ(β(ε2 − r2i ))φ

(
r2i /n − ε2

)
+ λ‖α‖1, (3)

where the parameter β determines the steepness of the sigmoid and the rectifier
function φ is parametrised by a small constant ω > 0 such that φ(u) = u for
u < −ω, φ(u) = −(u2/ω + ω)/2 for −ω ≤ u ≤ 0, and φ(u) = −ω/2 for 0 < u.
It is easy to see that Eq. (3) is a smoothed variant of Eq. (1) and that the two
become equal when β → ∞ and ω → 0+.

We perform this minimisation using graduated optimisation, where the idea
is to iteratively solve a difficult optimisation problem by progressively increasing
the complexity [23]. A natural parametrisation for the complexity of our problem
is via the β parameter. We start from β = 0 which corresponds to a convex
optimisation problem equivalent to lasso, and gradually increase the value of β
towards ∞ which corresponds to the Heaviside solution of Eq. (1). At each step,
we use the previous optimal value of α as a starting point for minimisation of Eq.
(3). It is important that the optima of the consecutive solutions with increasing
values of β are close enough, which is why we derive an approximation ratio
between the solutions with different values of β. We observe that our problem
can be rewritten as a maximisation of −β-Loss(ε, λ,X, Y, α). The choice of β
does not affect the L1-norm and we omit it for simplicity (λ = 0).

Theorem 2. Given ε, β1, β2 > 0, such that β1 ≤ β2, and the functions fj(r) =
−σ(βj(ε2 −r2))φ(r2/n−ε2), and Gj(α) =

∑n
i=1 fj(ri) where ri = yi −αᵀxi and

j ∈ {1, 2}. For α1 = argmaxα G1(α) and α2 = argmaxα G2(α) the inequality
G2(α2) ≤ KG2(α1) always holds, where K = G1(α1)/ (G2(α1)minr f1(r)/f2(r))
is the approximation ratio.
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Parameters: (1) Dataset X ∈ R
n×d, Y ∈ R

n, (2) error tolerance ε,
(3) regularisation coefficient λ, (4) sigmoid steepness βmax,
(5) target approximation ratio rmax

1 Function SLISE(X, Y , ε, λ, βmax, rmax)
2 α ← OrdinaryLeastSquares(X, Y ) and β ← 0
3 while β < βmax do
4 α ← OWL-QN(β-Loss, ε, λ, X, Y , α)
5 β ← β′ such that AppoximationRatio(X, Y , ε, β, β′, α) = rmax

6 α ← OWL-QN(β-Loss, ε, λ, X, Y , α)
Result: α

Algorithm 1: The slise algorithm.

Proof. Let us first argue the non-negativity of f1 and f2. The inequalities
σ(z) > 0 and φ(z) < 0 hold for all z ∈ R, thus fj(r) > 0. Now, by definition,
G1(α2) ≤ G1(α1). We denote r∗

i = yi − αᵀ
2xi and k = minr f1(r)/f2(r), which

allows us the rewrite and approximate:

G1(α2) =
∑n

i=1
f1(r∗

i ) =
∑n

i=1
f2(r∗

i )f1(r
∗
i )/f2(r∗

i ) ≥ kG2(α2).

Then G2(α2) ≤ G1(α2)/k ≤ G1(α1)/k ≤ G2(α1)G1(α1)/(kG2(α1)), and the
inequality from the theorem holds. �

We use Theorem 2 to choose the sequence of β values (β1 = 0, β1, . . . , βl =
βmax) so that at each step the approximation ratio as defined by K stays within
a bound specified by the parameter rmax in Algorithm 1.

4 The slise Algorithm

In this section we describe an approximate numeric algorithm Algorithm 1
(slise) for solving Problem 1. As a starting point for the regression coefficients α
we use the solution obtained from an ordinary least squares regression (ols) on
the full dataset (Algorithm 1, line 2). We now perform graduated optimisation
(lines 3–5) in which we gradually increase the value of β from 0 to βmax. At each
iteration, we find the model α using the current value of β, such that β-Loss in
Eq. (3) is minimised (line 4). To perform this optimisation we use owl-qn [29],
which is a quasi-Newton optimisation method with built-in L1-regularisation.
We then increase β gradually (line 5) such that the approximation ratio K in
Theorem 2 equals rmax.

The time complexity of slise is affected by the three main parts of the algo-
rithm; the loss function, owl-qn, and graduated optimisation. The evaluation
of the loss function has a complexity of O(nd), due to the multiplication between
the linear model α and the data-matrix X. owl-qn has a complexity of O(dpo),
where pp is the number of iterations. Graduated optimisation is also an itera-
tive method O(dpg), but it only adds the approximation ratio calculation O(nd)
(which is not dominant). Combining these complexities yields a complexity of
O(nd2p) for slise, where p = po + pg is the total number of iterations.
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Table 2. The datasets. The synthetic dataset can be generated to the desired size.

emnist imdb Physics Synthetic

Items 40 000 25 000 260 000 n

Dimensions 784 1000 5 d

Type Image Text Tabular -
Classifier cnn lr, svm nn -

5 Experiments

slise has applications in both robust regression and for explaining black box
models, and the experiments are hence divided into two parts. In the first part
(Sect. 5.1) we consider slise as a robust regression method and demonstrate that
(i) slise scales better on high-dimensional datasets than competing methods, (ii)
slise is very robust to noise, and (iii) the solution found using slise is optimal.
In the second part (Sect. 5.2) we use slise to explain predictions from opaque
models. The experiments were run using R (v. 3.5.1) on a high-performance
cluster [12] (4 cores from an Intel Xeon E5-2680 2.4GHz with 16Gb RAM).
slise and the code to run the experiments is released as open source and is
available from http://www.github.com/edahelsinki/slise.

Datasets. We use real (emnist [9], imdb [22], Physics [8]) and synthetic datasets
in our experiments (properties given in Table 2). Synthetic datasets are generated
as follows. The data matrix X ∈ R

n×d is created by sampling from a normal
distribution with zero mean and unit variance. The response vector Y ∈ R

n is
created by yi ← aᵀxi (plus some normal noise with zero mean and 0.05 variance),
where a ∈ R

d is one of nine linear models drawn from a uniform distribution
between −1 and 1. Each model creates 10% of the Y -values, except one that
creates 20% of the Y -values. This larger chunk should enable robust regression
methods to find the corresponding model.

Pre-processing. It is important both for robust regression and for local explana-
tions to ensure that the magnitude of the coefficients in α are comparable, since
sparsity is enforced by L1-penalisation of the elements in α. Hence, we normalize
the Physics datasets dimension-wise by subtracting the mean and dividing by
the standard deviation. For emnist the data items are 28 × 28 images and we
scale the pixel values to the range [−1, 1]. Some of the pixels have the same
value for all images (i.e., the corners) so these pixels were removed and the
images flattened to vectors of length 672. And for the text data in imdb we form
a bag-of-words model using the 1000 most common words after case normal-
isation, removal of stop words and punctuation, and stemming. The obtained
word frequencies are divided by the most frequent word in each review to adjust
for different review lengths, yielding real-valued vectors of length 1000. The Y -
values for all datasets are scaled to approximately be within [−0.5, 0.5] based
on the 5th and 95th quantiles.

http://www.github.com/edahelsinki/slise
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Table 3. Properties of regression methods. RR stands for robust regression.

Algorithm Robust Sparse R-Package Description

slise Yes Yes RR with variable-size subsets

fast-lts [28] Yes No robustbase RR with fixed-size (50%) subsets

sparse-lts [2] Yes Yes robustHD Sparse lts solutions

mm-estimator [34] Yes No MASS Maximum likelihood-based RR

mm-lasso [30] Yes Yes pense Sparse mm-estimator solutions

lad-lasso [33] Maybe Yes MTE Combines lad (Least Absolute
Deviation) and a lasso penalty

lasso [31] Yes No glmnet ols with a L1-norm

Classifiers. We use four high-performing classifiers; a convolutional neural net-
work (cnn), a normal neural network (nn), a logistic regression (lr), and a sup-
port vector machine (svm), see Table 2. The classifiers are used to obtain class
probabilities pi of the given data instances. As described in Sect. 2 we transform
pi:s into linear values using the logit transformation yi = log(pi/(1 − pi)).

Default Parameters. The two most important parameters for slise are the error
tolerance ε and the sparsity λ. These, however, depend on the use-case and
dataset and must be manually adjusted. The default is to use λ = 0 (no spar-
sity) and ε = 0.1 (10 % error tolerance due to the scaling mentioned above).
The parameter βmax must only be large enough to make the sigmoid function
essentially equivalent to a Heaviside function. As a default we use βmax = 30/ε2.
The division by ε2 is used to counteract the effects the choice of ε has on the
shape of the sigmoid. The maximum approximation ratio rmax is used to control
the step size for the graduated optimisation. We used rmax = 1.2, which for our
datasets provided good speed without sacrificing accuracy.

5.1 Robust Regression Experiments

We compare slise to five state-of-the-art robust regression methods (Table 3,
lasso is included as a baseline). All algorithms have been used with default set-
tings. Not all methods support sparsity, and when they do, finding an equivalent
regularisation parameter λ is difficult. Hence, unless otherwise noted, all sparse
methods are used with almost no sparsity (λ = 10−6).

Scalability. We first investigate the scalability of the methods. Most of the meth-
ods have similar theoretical complexities of O(nd2) or O(nd2p), but for the iter-
ative methods the number of iterations p might vary. We empirically determine
the running time on synthetically generated datasets with (i) n ∈ {500, 1 000,
5 000, 10 000, 50 000, 100 000} items and d = 100 dimensions, and (ii) d ∈ {10,
50, 100, 500, 1 000} dimensions and n = 10 000 items. The methods that support
sparsity have been used with different levels of sparsity (λ ∈ {0, 0.01, 0.1, 0.5})
and the mean running times are presented. We use a cutoff-time of 10min.
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Fig. 2. Running times in seconds. Left: Varying the number of samples with fixed
d = 100. Right: Varying the number of dimensions with fixed n =10 000. The cutoff
time of 600 s is shown using a dashed horizontal line at t = 600.

The results are shown in Fig. 2. We observe that slise scales very well in com-
parison to the other robust regression methods. In Fig. 2 (left) slise outperforms
all methods except fast-lts, which uses subsampling to keep the running time
fixed for varying sizes of n. In Fig. 2 (right) we see that slise consistently out-
performs the other robust regression methods for all d > 10 and it is the only
robust regression method that allows us to obtain results even for a massive
10 000 × 1 000 dataset in less than 100 s (the other robust regression algorithms
did not yield results within the cutoff time).

Robustness. Next we compare the methods’ robustness to noise. We start with
a dataset D in which a fraction δ of data items are corrupted by replacing the
response variable with random noise (uniformly distributed between min(Y ) and
max(Y )), yielding a corrupted dataset Dδ. The regression functions are learned
from Dδ, after which the total sum of the residuals are determined in the clean
data D. If a method is robust to noise the residuals in the clean data will be
small, since the noise from the training data is ignored by the model. The results,
using the Physics data, are shown in Fig. 3 (left). Due to the varying subset
size slise is able to reach higher noise fractions before breaking down than lts.
Note that at high noise fractions all methods are expected to break down.

Optimality. Finally, we demonstrate that the solution found using slise opti-
mises the loss of Eq. (1). The slise algorithm is designed to find the largest subset
such that the residuals are upper-bounded by ε. To investigate if the model found
using slise is optimal, we determine a regression model (i.e., obtain a coefficient
vector α) using each algorithm. We then calculate the value of the loss-function
in Eq. (1) for each model with varying values of ε. The results, using Synthetic
data with n = 1 000 and d = 30, are shown in Fig. 3 (right). All loss-values have
been normalised with respect to the lasso model at the corresponding value of
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Fig. 3. Left: Robustness of slise to noise. The x-axis shows the fraction of noise and
the y-axis the sum of the residuals. Small residuals indicate a robust method. Right:
Optimality of slise. Negative loss-values are shown, normalised with respect to the
corresponding loss for lasso. Higher values are better.

ε and the curve for lasso hence appears constant. slise consistently has the
smallest loss in the region around ε = 0.1, as expected.

5.2 Local Explanation Experiments

Text Classification. We first compare slise to lime [25], which also provides
explanations in terms of sparse linear models. We use the imdb dataset and
explain a logistic regression model. lime was used with default parameters and
the number of features was set to 8. slise was also used with default parameters,
except using λ = 0.75 to yield a sparsity comparable to lime. The results are
shown Fig. 4. The lime-explanation surprisingly shows that the word street is
important. Street indeed has a positive coefficient in the global model, but the
word is quite rare, only occurring in 2.6% of all reviews. slise, in contrast, takes
this into account and focuses on the words great, fun, and enjoy. The results
for both algorithms are practically unchanged when all reviews with the word
street are removed from the test dataset, i.e., lime emphasises this word even
though it is not a meaningful discriminator for this dataset.

Figure 5 shows a second text example with an ambiguous phrase (not bad).
The classification is incorrect (negative), since the svm cannot take the interac-
tion between the words not and bad into account. The explanation from slise
reveals this by giving negative weights to the words wasn’t and bad.

Image Classification. We now demonstrate how slise can be used to explain
the classification of a digit from emnist, the 2 shown in Fig. 6a. We use slise
with default parameters, except using a sparsity of λ = 2, and a dataset with
50% images of the digit 2 and 50% images of other digits (0, 1, 3–9).
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Fig. 4. Comparing lime (top) and slise (bottom) with a logistic regression on the
imdb dataset. Parts without any weight from either model are left out for brevity.

Fig. 5. slise explaining how the svm does not model not bad as a positive phrase.

Approximation as Explanation. The linear model α approximates the opaque
function (here a cnn) in the region around the item being explained. The model
weights allow us to deduce features that are important for the classification.
Figure 6b shows a saliency map in terms of the weight vector α. Each pixel
corresponds to a coefficient in the α-vector and the colour of the pixel indicates
its importance in distinguishing a digit 2 from other digits. Purple denotes a pixel
supporting positive classification of a 2, and orange a pixel not supporting a 2.
More saturated colours correspond to more important weights. We see that the
long horizontal line at the bottom is important in identifying 2s, as this feature
is missing in other digits. Also, the empty space in the middle-left separates 2s
from other digits (i.e., if there is data here the digit is unlikely a 2).

Figure 6c shows the class probability distributions for the test dataset and
the found subset S. To deduce which features in α that distinguish one class
(e.g., 2s from the other digits) we must ensure that the found subset S contains
items from both classes (as here in Fig. 6c), otherwise, the projection is to a
linear subspace where the class probability is unchanged. During our empirical
evaluation of the emnist dataset this did not happen.

Subset as Explanation. Unlike many other explanation methods the subset found
by slise consists of real samples. This makes the subset interesting to examine.
Figure 7a shows six digits from the subset and how the linear model interacts
with them. We see why the 1 is less likely to be a 2 than the 8 (0.043 vs 0.188).
Another interesting question is for which digits the approximation is not valid,
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Fig. 6. (a) The digit being explained. (b) Salience map showing the regression weights
of the linear model found using slise. The instance being explained is overlaid in the
image. Purple colour indicates a weight supporting positive classification of a 2, and
orange colour indicates a weight not in support of classifying the item as a 2. (c) Class
probability distributions for the full dataset and for the found subset S.

in other words which digits are outside the subset. Figure 7b shows a scatter-
plot of the dataset used to find an explanation for the 2 (shown on a black
background). The data items in the subset S lie within the corridor marked
with dashed green lines. The top right contains digits to which both slise and
the classifier assign high likelihoods of being 2s. The bottom left contains digits
unlike 2s. The data items in the top left and bottom right contain items for
which the local slise model is not valid and they are not part of the subset. We
see that Z-like 2s and L-like 6s are particularly ill-suited for this approximation.

Modifying the Subset Size. The subset size controls the locality of explanations.
Large subsets lead to more general explanations, while small subsets may cause
overfitting on features specific to the subset. Figure 7d shows a progression of
explanations for a 2 (similar to Fig. 6b) in order of decreasing subset size (from
ε = 0.64 to ε = 0.02). We observe that these explanations emphasise slightly
different regions due to the change in locality (and hence in the model). Note
that ε → ∞ is equivalent to logistic regression through the item being explained.

Modifying the Dataset. The dataset used to find the explanation can be modified
in order to answer specific questions. E.g., restricting the dataset to only 2s and
3s allows investigation of what separates a 2 from a 3. This is shown in Fig. 7c.
We see that 3s are distinguished by their middle horizontal stroke and the 2s by
the bottom horizontal strokes (“split” due to the bottom curve of 3s).

Classification of Particle Jets. Some datasets adhere to a strict generating
model, this is the case for, e.g., the Physics dataset, which contains particle
jets extracted from simulated proton-proton collision events [8]. Here the laws of
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Fig. 7. Exploring how slise’s model interacts with other digits than the one being
explained (a and b), how varying the parameters affects the explanation (d), and how
modifying the dataset can answer specific questions (c).

physics must not be violated, and slise automatically adheres to this constraint
by only using real data to construct the explanation. In Table 4 we use slise
to explain a classification made by a neural network. The classification task in
question is to decide whether the initiating particle of the jet was a quark or a
gluon. The total energy of the jet is on average distributed differently among its
constituents depending on the jet’s origin [7]. Here, the slise explanation shows
the importance of the energy distribution variable QG_ptD.
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Table 4. slise explanation for why an example in the Physics dataset is a quark jet.

Pt Girth QG_ptD QG_axis2 QG_mult

Jet 1196 0.020 0.935 0.002 16
α 0.01 −0.05 0.18 −0.02 0

6 Conclusions

This paper introduced the slise algorithm, which can be used both for robust
regression and to explain classifier predictions. slise extends existing robust
regression methods, especially in terms of scalability, important in modern data
analysis. In contrast to other methods, slise finds a subset of variable size,
adjustable in terms of the error tolerance ε. slise also yields sparse solutions.

slise yields meaningful and interpretable explanations for classifier decisions
and can be used without modification for various types of data and without the
need to evaluate the classifier outside the data set. This simplicity is important as
it provides consistent operation across data domains. It is important to take the
data distribution into account, and if the data has a strict generating model it
is also crucial not to perturb the data. The local explanations provided by slise
take the interaction between the model and the distribution of the data into
account, which means that even simple global models might have non-trivial local
explanations. Future work includes investigating various initialisation schemes
for slise (currently an ols solution is used).
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