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Abstract. Although Deep Learning (DL) image analysis has made
recent rapid advances, it still has limitations that indicate that its app-
roach differs significantly from human vision, e.g. the requirement for
large training sets, and adversarial attacks. Here we show that DL
also differs in failing to generalize well to Traditional Chinese Paint-
ings (TCPs). We developed a new DL object detection method A-RPN
(Assembled Region Proposal Network), which concatenates low-level
visual information, and high-level semantic knowledge to reduce coarse-
ness in region-based object detection. A-RPN significantly outperforms
YOLO2 and Faster R-CNN on natural images (P < 0.02). We applied
YOLO2, Faster R-CNN and A-RPN to TCPs with a 12.9%, 13.2% and
13.4% drop in mAP compared to natural images. There was little or no
difference in recognizing humans, but a large drop in mAP for cats and
dogs (27% & 31%), and very large drop for horses (35.9%). The abstract
nature of TCPs may be responsible for DL poor performance.

Keywords: Traditional Chinese Paintings · Computational
aesthetics · Deep Learning · Object recognition · Machine learning

1 Introduction

One of the greatest mysteries in cognitive science is the architecture of human
visual system and its virtuosity in object recognition. Human have the impressive
ability to recognize visually presented objects with both high speed and accuracy.
Attempts to replicate this ability have been made since the start of Artificial
Intelligence (AI) research, but these have met with only limited success. Object
recognition is traditionally one of the most intractable problems in AI [1].

Recently, with the advent of very large annotated image databases, and
advances in Deep Learning (DL), have greatly improved AI object recognition
[2]. However, despite many claims to the opposite, DL object recognition is
still not nearly as good as in humans. Example of the weaknesses of DL are:
the requirement for large training sets, and their susceptibility to adversarial
attacks that do not confuse humans. It is hypothesized that the reason for this
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is compiled background knowledge about the world encoded in the human visual
system architecture [3,4]. This knowledge was learnt through millions of years
of Darwinian evolution.

Visual art is present in all human societies, and dates back as long ago
as the Paleolithic. Computational visual aesthetics investigates the relationship
between art and computational science. There is a close relationship between
the human visual system and the appreciation of art (Gombrich (2000) Art
and Illusion, Princeton University Press;) Computational Aesthetics is the
computational investigation of aesthetics. Computational aesthetics is a large
subject [5–7], but relatively little work has been done at the interface between
computational aesthetics and DL object recognition [8,9]. The limited evidence,
based on Western art, points to significant differences in performance between
natural image trained classifiers and painting-trained classifiers. To the best of
our knowledge the relationship and differences between object recognition in
natural images and art has not been investigated.

Traditional Chinese Painting (TCP) is one of the great art traditions of the
World (206 BC - now) [10]. Its unique style, which dates back over 2000 years,
is instantly recognizable to humans. Here, to explore the differences between
human and DL object recognition, we investigate DL object recognition in nat-
ural images and TCPs.

2 Object Detection in Chinese Painting

Object detection is one of the most widely studied topics in image processing.
It differs from the classical image classification problems where models classify
images into a single category corresponding to their most salient object. Here
we investigate transferring Deep Learning (DL) object detection models from
natural image to TCPs.

There are two potential challenges in applying DL to detecting objects in Chi-
nese Paintings. First, there does not exist an official well-structured Chinese Paint-
ing Image Database and associated Ontology. And existing work in this area [11]
is limited. Second, the characteristics of TCP images are different from natural
images as they are produced using specialized tools, materials and techniques.

2.1 Chinese Painting and TCPs Data

Chinese painting can be categorized into two major schools of styles: XieYi,
or GongBi [12]. XieYi (freehand strokes, Fig. 2) paintings are characterized by
exaggerated forms, with the painted objects abstract and sometimes without
fully connected edges. GongBi (skilled brush or meticulous approach, Fig. 1)
paintings are characterized by close attention to detail and fine brushwork, and
the painted objects are more realistic. TCPs can be further classified as: figure
painting, landscapes painting, or flower-and-bird painting; only figure paintings
and flower-and-bird paintings depict objects as their main subject.

To form our TCPs object detection dataset we integrated two datasets: a self-
collected dataset obtained from online open sources, and a high-resolution image
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Fig. 1. Emperor Huizong Song’s
skilled brush flower-and-bird paint-
ing from Song Dynasty

Fig. 2. Beihong Xu’s freehand strokes flower-
and-bird painting

dataset provided by the Chinese Painting and Calligraphy Community. The sizes
of these datasets are: 3,000 images, and 10,000 images respectively. The TCP
objects dataset we used in this experiment contains 1,400 images in seven classes:
human, horse, cow, bird, plant, cat, and dog. We manually annotated the data
with class labels and segmentation knowledge (bounding box), as ground truth.
(List of paintings we have used could be found: https://github.com/hiris1228/
TCP object detect.git).

2.2 Object Detection

Current DL object detection models generally identify various objects and loca-
tion within one single image. A naive approach to solving this problem is to
take different regions of interest from the image, and to classify the presence of
the object within that region – usually using a ConvNets [13,14]. The R-CNN
(Regions + CNN) method was developed to avoid the use of excessive num-
ber of regions in object detection. This relies on an external region proposal
system based on a selective search algorithm [15–17]. The cost-reduced compu-
tational shared model R-FCN [18] attempts to balance translation-invariance
in image classification, and translation translation-variance in object detection.
The Mask R-CNN approach [19] applies FCN (Fully Convolutional Networks)
[20] to each Region of Interest (RoI), and then applies classification and bounding
box regression in parallel. Single Shot detectors like YOLO [21] and SSD (Single
Shot MultiBox Detector [22]) and are able to obtain relatively good results.

3 Chinese Painting Object Detection Approach

The architecture of our TCPs Object Detector A-RPN is a VGG-16 [23] back-
bone base model as shown in Fig. 3. We adopted the popular two-stage object
detection strategy of Faster R-CNN [17]. We generate a set of RoIs, and a classi-
fication model independent of selected RoIs. Comparing to ResNet [23], VGG-16
is not very ‘deep’ (ResNet has 152 layers), but its depth is appropriate given the
limited TCP data.

https://github.com/hiris1228/TCP_object_detect.git
https://github.com/hiris1228/TCP_object_detect.git
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The assembled Region Proposal Network (A-RPN) has three components: a
general RPN that return RoIs and Intersection of Union (IoU) scores; a Chinese-
Kitten RPN (CN-Kitten RPN), which concatenate both lower-level and high-
level features to generate small object sensitive proposals, and refines the RoIs;
and a Detection Network R-FCN that takes proposed RoIs, and classifies them
into categories and background. All the sub-networks within the A-RPN are
fully convolutional with respect to RoIs. All three components are initialized by
a hierarchical feature map M0 through shared convolutional layers to form a
pre-trained resembling VGG-16.

The region proposals (RoIs) processed in our A-RPN are divided into two
parts. One comes from the generated RPN (RoIs-set1), the other is the small-
scale region boxes generated by sliding window run on convCNK (RoIs-set2).
The same NMS operation, with threshold 0.7, was applied to both general RPN
and CN-Kitten RPN to reduce redundancy. This process returned two set of 2k
proposals. Each of these regions has an Intersection of Union (IoU) score, which
estimates the chance that the current RoI contains an object.

CN-Kitten RPN is an enhanced RPN that combines multi-layer features
knowledge and RoI pooling layer to refine RoI proposals. This approach is
designed to increase the model’s sensitivity to small-scale object detection from
knowledge of Feature Pyramid Networks [24]. With differing low-level visual
information, the high-level convolutional features may be too coarse when we
project our RoIs from the feature map to the original image. The aim is to
better fit small objects, and to better utilize fine-grained features due to TCPs
characteristics. We observed no significant drop in recall with small objects.

RoIs-set2 is generated from a 1×1×256 fully-connected layer which is reduced
from fine-grained feature map convCNK. convCNK is the multi-layer feature
concatenation of conv5 and conv4 which is similar FCN-16s [20]. We apply an
unsampling filter on conv5 to obtain transposed convolutional layer [25] conv5’.
Then L2-normalize each layer per spatial location, and re-scales it with the same
resolution as conv4 to obtain convCNK. Simultaneously, we applied a bilinear
interpretation on convCNK, and obtained a semantic segmentation heat-map of
the entire image for later refinement.

In order to obtain the final top 300 proposals as input of Detection Network
R-FCN. A top rank voting model was applied to both RoI-set1 and RoI-set2.
This ranks all anchors with their IoU scores from the highest to the lowest.
It then projects all the selected anchors to the semantic segmentation heat-
map, and computes an extra IoU score with the overlapped percentage. Then it
looks to find whether there are existing anchors in its opposite set that have an
overlapped rate higher than 0.7, if yes, it merges these two anchors by averaging
their coordinates. The method repeats this procedure until it obtains proposals
with the highest 300 pairs of IoU scores.

The detection network identifies and regresses the bounding box of regions
likely to contain classes base on each proposed region. Unlike in the original
Faster R-CNN [17], we apply Fast R-CNN [16] with R-FCN [18] as the detection
network. As a member of FCN [20] family, it construct a set of position-sensitive
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Fig. 3. Assembled Region Proposal Network (A-RPN) architecture.

score maps to incorporate translation variance. As there are no learning layers
after the RoI layer, only a shared fully convolutional architecture, R-FCN is
nearly cost-free, and even faster than the other pioneering DL image classification
architectures [13,15–17,23] with a competitive mAP (mean Average Precision).

R-FCN uses a bank of specialized convolutional layers to encode as score maps
position information with respect to a relative spatial position [18]. Our Detection
network removes all FC layers, and computes all learn-able weight layers on the
entire image to create a bank of position-sensitive score maps for C + 1 categories
(C object categories + 1 background). Each set of score maps for one particular
category represents a k × k spatial grid describing relative position information.
Selective pooling only returns one score out of k × k on class prediction after per-
forming average voting on these shared sets of score maps.

4 Experiment and Results

To investigate the differences between DL and human image analysis we applied
DL to images that humans can easily interpret: natural image and Traditional
Chinese Paintings (TCPs). We compared our A-RPN’s outputs with two pop-
ular DL object detection models. We ran six experiments: Single Shot detec-
tors on natural images, YOLO(N), and on Chinese paintings, YOLO(P); Faster
R-CNN on natural images, Faster R-CNN(N), and on Chinese paintings, Faster
R-CNN(P); A-RPN on natural images, A-RPN(N), and on Chinese paintings,
A-RPN(P). The natural image dataset that we used was PASCAL VOC2007
trainval. Both datasets contains the same seven classes. We kept one-third of
the data as test set, and divided the remaining data into 90% training set and
10% validation set. The results are shown in Table 1.
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Table 1. The mAP Comparison for Flower-and-Bird and Figure Classification. And
A-RPN has proved that it outperforms the other two models.

Methods YOLO(N) YOLO(P) Faster RCNN(N) Faster RCNN(P) ARPN(N) ARPN(P)

Human 82.1 76.3 81.1 79.5 83.2 82.4

Horse 71.8 28.3 75.9 39.7 78.3 42.4

Cow 75.4 69.1 76.4 74.3 78.7 80.5

Bird 81.1 75.2 79.3 77.7 76.8 70.0

Plant 32.0 33.8 36.2 42.9 43.5 50.0

Cat 78.7 65.1 81.3 52.0 82.7 55.5

Dog 79.2 61.6 82.4 53.8 83.6 52.2

Overall 71.37 58.48 73.22 59.98 75.25 61.85

Table 1 shows that all the DL models can achieve more than 70% mAP
on natural image object detection. A-RPN achieved the best performance in
classification, and has significantly higher mAP (P < 0.02) than YOLO2 and
Faster R-CNN. (Using the McNemar test, the Z-model statistic against YOLO2
and Faster R-CNN are respectively −3.7905 and −2.4188). Object recognition
performance significantly drops when applied to TCPs. The YOLO2 model has
a mAP performance drop of 12.9% while Faster R-CNN drops 13.2% and A-
RPN drops 13.4%. The statistical difference in performance between the three
methods on TCP object recognition is not significant.

The success of object recognition varies greatly between object class. The
performance on classes ‘Human’ and ‘Bird’ is stable and accurate for all methods.
Performance on the class ‘Plant’ is stable but has low mAP in all models. Class
‘Cow’ works better in natural image dataset than TCPs, but the drop is relatively
small, while A-RPN increases with 1.8% mAP. All three models confuse the ‘Cat’
and ‘Dog’ classes in TCPs. For the class ‘Cat’ the decreases in performance
were 13.6%, 29.3%, and 27.2% for A-RPN. For the class ‘Dog’ the decreases in
performance were 17.6%, 28.6%, and 31.4%. The largest drop in performance
was for the class ‘Horse’ in TCPs. Only A-RPN could achieve more than 40%
mAP, while their mAPs on Nature Image data are all above 70%.

Table 2 and Fig. 4 show that our region proposals network has limitations
when allocating object bounding boxes. There are 5 classes (out of 7 in total) that
failed to achieve 85% detecting rate of one particular type of object. Intersections
of Unions (IoU) is the region of interest union with the ground truth bounding
box. Our threshold was set as 0.5. But after verifying, we noticed that only 63%
of the ground truth bounding boxes were detected with ratios above 0.5. 22%
of the objects were not detected, especially in the plant class, and 15% of all
bounding box which does not cover objects.
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Table 2. Heat-Map for A-RPN classification. Miss-classification scenarios with error
more than 15% have been highlighted in the table. The N/A column represents the sce-
nario that – there is no bounding box detected over the current ground truth bounding
box.

Truth Prediction

Human Horse Cow Bird Plant Cat Dog N/A

Human 0.82 0 0 0 0 0 0 0.18

Horse 0 0.35 0.03 0.18 0.02 0 0.27 0.15

Cow 0 0.09 0.72 0 0 0 0.01 0.18

Bird 0 0 0 0.78 0.01 0.03 0 0.18

Plant 0 0 0 0.04 0.38 0.01 0.01 0.56

Cat 0 0 0 0.02 0.01 0.51 0.38 0.08

Dog 0 0.01 0.09 0 0 0.29 0.51 0.10

5 Discussion and Future Works

Putting to one side the differences between human and DL image recognition,
it is interesting to consider whether in principle images in TCPs are harder to
recognize using DL. We have shown A-RPN performs slightly better than YOLO
and Faster R-CNN, but its success in natural image cannot be transferred to
TCPs. There are a number of possible reasons for the drop in performance of
DL in TCPs. First, DL models require large training sets, but the number of
TCPs is quite limited, and their usage generally involve licenses. Therefore the
limited size of the data set we used potentially prevented the DL models being
fully trained.

Another reason may be the initialization of the layer M0 feature map. When
the A-RPN is initialized, we use a pre-trained CNN layer trained on natural
images. Natural images differ in a number of ways from images in TCPs. They
inherently include perspective, while most Chinese paintings do not. In TCPs
objects are often depicted in a highly abstract manner, easily comprehended by
the human, but quite different from natural images.

Ineffective feature formation may also be a factor. CNN models have their
own texture representations [23,26]. Whether the work was ‘linear’ (contour-led)
or ‘painterly’ (reliant more on brushstrokes denoting light and shadow) [27] has
been proven to have effect on prediction. The majority of Chinese paintings are
only black and white. In CNN models white color is often treated as ‘no color’,
with a probability of being an object of zero, and the ‘black ink’ textures are
similar in every single class.

We hypothesize that the abstract nature of TCPs may fundamentally restrict
the ability of DL systems to recognize objects in TCPs. Objects in TCPs do
not have fully connected edges. When CNN edge detection filters are applied
on non-edge pixels in low-level layers, the resulting matrices will be filled with
really small numbers or even zeros. In CNN texture representation strategy, the
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Fig. 4. Bounding Box Detection Cases: Left, object detected with IoU score greater
than 0.5; Middle, object detected with IoU less than threshold; Right, object not
detected.

smaller the edge detection matrix is, the lower the convolution value will be. And
this situation gets worse during strided convolutions. Finally, CNNs weakens
the contribution from ambiguous edge pixels, and further separates edges that
should be treated as connected in TCPs. This complicates object detection task
in TCPs, and is also the reason why we absorbed the concept from FPN [24]
to assemble features from different convolutional layers to try to maximize the
sensitivity on learning edge information.

Many principles of Chinese Painting are derived from Daoism [28]. For exam-
ple in Daoism empty space is an important concept, and a symbol of the void or
nothingness. The most important text in Daoism states: ‘Having and not having
arise together’ (Laozi 2). Chinese Painting has also been influenced by Buddhism,
which emphasizes that ‘What is form that is emptiness, what is emptiness that
is form’ (Paramita Hridaya Sutra). These beliefs have led Chinese paintings to
stress the concept of Designing White Space — if one’s mind can reach there,
there is no need for the touch of any brush and ‘formless is the image grand’
(Laozi 4). Similarly, an important canon of Chinese painting describes its rhyth-
mic vitality as Qi, a metaphysical concept of cosmic power: with Qi empty space
is not blank, it is alive, like air. This prominent characteristic of Chinese paint-
ing turns its treatment of empty space as solid space. Taking the horse in XieYi
style in Fig. 2 as an example, the absence of clear edges depicting the outline of
a horse feed the human imagination.

6 Conclusion

We have demonstrated that state-of-the-art object DL recognition methods per-
form substantially worse on TCPs compared to natural images. We argue that
these results point to interesting and important differences between DL systems
and the human visual system that require further investigation. For example:
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what features of the human visual system that enable it to effortlessly recognize
cats and horses in Chinese paintings, deal with the white space, etc.; What is
the relationship between aesthetics and image recognition? We hope, and expect,
that further research will investigate these important questions, and lead to com-
putational systems that can recognize objects in Chinese paintings as well as
humans, and perhaps also appreciate their beauty as greatly as humans.
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