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Abstract. Prediction of user traffic in cellular networks has attracted
profound attention for improving the reliability and efficiency of network
resource utilization. In this paper, we study the problem of cellular net-
work traffic prediction and classification by employing standard machine
learning and statistical learning time series prediction methods, includ-
ing long short-term memory (LSTM) and autoregressive integrated mov-
ing average (ARIMA), respectively. We present an extensive experimen-
tal evaluation of the designed tools over a real network traffic dataset.
Within this analysis, we explore the impact of different parameters on
the effectiveness of the predictions. We further extend our analysis to the
problem of network traffic classification and prediction of traffic bursts.
The results, on the one hand, demonstrate the superior performance of
LSTM over ARIMA in general, especially when the length of the training
dataset is large enough and its granularity is fine enough. On the other
hand, the results shed light onto the circumstances in which, ARIMA
performs close to the optimal with lower complexity.

Keywords: Statistical learning · Machine learning · LSTM ·
ARIMA · Cellular traffic · Predictive network management

1 Introduction

A major driver for the beyond fifth-generation (5G) wireless networks consists
in offering the wide set of cellular services in an energy and cost-efficient way
[22]. Toward this end, the legacy design approach, in which resource provision-
ing and operation control are performed based on the peak traffic scenarios, are
substituted with predictive analysis of mobile network traffic and proactive net-
work resource management [5,9,22]. Indeed, in cellular networks with limited
and highly expensive time-frequency radio resources, precise prediction of user
traffic arrival can contribute significantly in improving the resource utilization
[5]. As a result, in recent years, there has been an increasing interest in leveraging
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Fig. 1. A communication network including access point, users, and uplink and down-
link data communications. (a) service is offered without prediction of bursts, (b) service
is adapted to the probability of occurrence of bursts.

machine learning tools in analyzing the aggregated traffic served in a service area
for optimizing the operation of the network [1,28,30,32]. Scaling of fronthaul and
backhaul resources for 5G networks has been investigated in [1] by leveraging
methods from recurrent neural networks (RNNs) for traffic estimation. Analysis
of cellular traffic for finding anomaly in the performance and provisioning of
on-demand resources for compensating such anomalies have been investigated in
[32]. Furthermore, prediction of light-traffic periods, and saving energy for access
points (APs) through sleeping them in the respective periods has been investi-
gated in [28,30]. Moreover, Light-weight reinforcement learning for figuring out
statistics of interfering packet arrival over different wireless channels has been
recently explored [4]. While one observes that analysis of the aggregated traffic
at the network side is an established field, there is lack of research on the analysis
and understanding at the user level, i.e., of the specific users’ traffic arrival. In
5G-and-beyond networks, the (i) explosively growing demand for radio access,
(ii) intention for serving battery- and radio-limited devices requiring low-cost
energy-efficient service [4], and (iii) intention for supporting ultra-reliable low-
latency communications [5], mandate studying not only the aggregated traffic
arrival from users, but also studying the features of traffic arrival in all users,
or at least for critical users. A critical user could be defined as a user whose
quality-of-service (QoS) is at risk due to the traffic behavior of other devices, or
its behavior affects the QoS of other users. Let us exemplify this challenge in the
sequel in the context of cellular networks.

Example. Figure 1(a) represents a communication network in which, an AP is
serving users in the uplink (towards AP) and downlink (towards users). One
further observes that traffic from user-2 represents a semi-stable shape, which
is usually the case in video streaming, while the traffic from user-1 represents
a bursty shape, which could be the case in surfing and on-demand file down-
load. One observes that once a burst in traffic of user-1 occurs, the server (i.e.
AP) will have difficulty in serving both users in a timely manner, and hence,
QoS degradation occurs. Figure 1(a) represents a similar network in which, AP
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predicts the arrival of burst to user-1, immediately fills the buffer of user-2. Thus,
at the time of arrival of burst for user-1, user-2 will require minimal data transfer
from the AP, and hence, QoS degradation for user-2 will be prevented. Backed
to this motivation, the remainder of this paper is dedicated to investigating the
feasibility of exploiting the traffic history at the user level and employing it for
future traffic prediction via machine learning and statistical learning approaches.

Research Problem. Let us assume time in our problem is quantized into inter-
vals of length τ seconds. The research problem tackled in this work could be
stated as follows: Given the history of traffic arrival for a certain number of
time intervals, how accurately can we estimate (a) the intensity of traffic in the
next time intervals, (b) the occurrence of burst in future time intervals (c) the
application which is generating the traffic?

This problem can be approached as a time series forecasting problem, where
for example, the number of packet arrivals in each unit of time constitutes the
value of the time series at that point. While the literature on time series fore-
casting using statistical and machine learning approaches is mature, e.g., refer to
[24,31] and references herein, finding patterns in the cellular traffic and making
the decision based on such prediction is never an easy task due to the following
reasons [33]. First, the traffic per device originates from different applications,
e.g. surfing, video and audio calling, video streaming, gaming, and etc. Each of
these applications could be mixed with another, and could have different modes,
making the time series seasonal and mode switching. Second, each application
can generate data at least in two modes, in active use and in the background, e.g.
for update and synchronization purposes. Third, each user could be in different
modes in different hours, days, and months, e.g. the traffic behavior in working
days differs significantly from the one in the weekends. Fourth, and finally, the
features in the traffic, e.g., the inter-arrival time of packets, vary significantly in
traffic -generating applications and activity modes.

Contributions. Our contributions in this paper are summarized as follows:

– We present a comprehensive comparative evaluation for prediction and classi-
fication of network traffic; autoregressive integrated moving average (ARIMA)
against the long short-term memory (LSTM);

– We investigate how a deep learning model compares with a linear statistical
predictor model in terms of short-term and long-term predictive performance,
and how additional engineered features, such as the ratio of uplink to down-
link packets and protocol used in packet transfer, can improve the predictive
performance of LSTM;

– Within these analyses, the impact of different design parameters, including
the length of training data, length of future prediction, the feature set used in
machine learning, and traffic intensity, on the performance are investigated;

– We further extend our analysis to the classification of the application gen-
erating the traffic and prediction of packet and burst arrivals. The results
presented in this work pave the way for the design of traffic-aware network
planning, resource management, and network security.
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The remainder of this paper is organized as follows: In Sect. 2, we outline the
related work in the area and introduce the knowledge gaps of state-of-the-art. In
Sect. 3, we formulate the problem studied in this paper, while Sect. 4 presents the
two methods used for solving it. Section 5 presents the experimental evaluation
results for different methods and feature sets, as well as provides a conclusive
discussion on the results. Finally, concluding remarks and future direction of
research are provided in Sect. 6.

2 Related Work and Research Gap

We summarize state-of-the-art research on cellular traffic prediction and classi-
fication, and introduce the research gaps which motivate our work.

Cellular Traffic Prediction. Understanding dynamics of cellular traffic and
prediction of future demands are, on the one hand, crucial requirements for
improving resource efficiency [5], and on the other hand, are complex prob-
lems due to the diverse set of applications that are behind the traffic. Dealing
with network traffic prediction as a time series prediction, one may categorize
the state-of-the-art proposed schemes into three categories: statistical learning
[8,19], machine learning [26,27], and hybrid schemes [12]. ARIMA and LSTM, as
two popular methods of statistical learning and machine learning time series fore-
casting, have been compared in a variety of problems, from economics [10,19,23]
to network engineering [6]. A comprehensive survey on cellular traffic prediction
schemes, including convolutional and recurrent neural networks, could be found
in [13,15]. A deep learning-powered approach for prediction of overall network
demand in each region of cities has been proposed in [2]. In [18,27], the spa-
tial and temporal correlations of the cellular traffic in different time periods and
neighboring cells, respectively, have been explored using neural networks in order
to improve the accuracy of traffic prediction. In [14], convolutional and recur-
rent neural networks have been combined in order to further capture dynamics
of time series, and enhance the prediction performance. In [6,26], preliminary
results on network traffic prediction using LSTM have been presented, where the
set of features used in the experiment and other technical details are missing.
Reviewing the state-of-the-art, one observes there is a lack of research of lever-
aging advanced learning tools for cellular traffic prediction, selection of adequate
features, especially when it comes to each user with a specific set of applications
and behaviors.

Cellular Traffic Classification. Traffic classification has been a hot topic
in computer/communication networks for more than two decades due to its
vastly diverse applications in resource provisioning, billing and service prioritiza-
tion, and security and anomaly detection [20,29]. While different statistical and
machine learning tools have been used till now for traffic classification, e.g. refer
to [16] and references herein, most of these works are dependent upon features
which are either not available in encrypted traffic, or cannot be extracted in real-
time, e.g. port number and payload data [16,20]. In [25], classification of traffic
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using convolutional neural network using 1400 packet-based features as well as
network flow features has been investigated for classification of encrypted traffic,
which is too complex for a cellular network to be used for each user. Reviewing
the state-of-the-art reveals that there is a need for investigation of low-complex
scalable cellular traffic classification schemes (i) without looking into the pack-
ets, due to encryption and latency, (ii) without analyzing the inter-packet arrival
for all packets, due to latency and complexity, and (iii) with a few numbers of
features as possible. This research gap is addressed in this work (Fig. 3).

Fig. 2. The number of uplink packet arrivals for 24 days in 10-s intervals

3 Problem Description and Traffic Prediction Framework

In this section, we first provide our problem setup and formulate the research
problem addressed in the paper. Then, we present the overall structure of the
traffic prediction framework, which is introduced in this work.

We consider a cellular device, on which a set of applications, denoted by A,
are running, e.g., User-1 in Fig. 1. At a given time interval [t, t + τ ] of length τ ,
each application could be in an active or background mode, based on the user
behaviour. We further consider a set of features describing the aggregated cellular
traffic in [t, t+τ ] for a specific user, such as the overall number of uplink/downlink
packets and the overall size of uplink/downlink packets, which don’t require
decoding the packets. Let vector xi(t) denote the set of features describing the
traffic in interval [t− iτ, t− (i− 1)τ ] for i ≥ 1, and in interval [t− (i+1)τ, t− iτ ]
for i < 0 respectively. Furthermore, Xm(t) is a matrix containing m feature
vectors of the traffic, including x1(t):xm(t) for m > 0, and x−1(t):x−m(t) for
m < 0. Further, denote by s an indicator vector, with elements either 0 or 1.
Then, given a matrix Xm(t) and a binary indicator vector s, we define Xs

m(t) the
submatrix of Xm(t), such that all respective rows, for which s indicates a zero
value, are removed. For example, let Xm(t) = [1, 2; 3, 4] and s = [1, 0]. Then,
Xs

m(t) = [1, 2].



134 A. Azari et al.

Now, the research question in Sect. 1 could be rewritten as:

Given Xm(t),m ≥ 1;

minimize L
(
Xs

−n(t),Y(t)
)

(1)

where n > 0 is the length of the future predictions, e.g., n = 1 for one τ future
prediction, Y(t) is of the same size as Xs

−n(t) and represents the predicted matrix
at time t, while L(·) is the desired error function, e.g., it may compute the mean
squared error between Xs

−n(t) and Y(t).

4 Time Series Prediction

In this section, we give a short description of the two methods benchmarked in
this paper to be used within the proposed prediction framework in Sect. 4.1.

4.1 The Proposed Traffic Prediction Framework

Recall the challenges described in the previous section on the prediction of cellu-
lar traffic, where the major challenge consists of dependency of traffic arrival to
user behavior and type of the application(s) generating the traffic. Then, as part
of the solution to this problem, one may first predict the application(s) in use and
behavior of the user, and then use them as extra features in the solution. This
approach for solving (1) has been illustrated in Fig. 3. In order to realize such a
framework, it is of crucial importance to first evaluate the traffic predictability
and classification using only statistics of traffic with granularity τ , and then,
to investigate hybrid models for augmenting predictors by online classifications,
and finally to investigate traffic-aware network management design.

Fig. 3. The proposed framework for cellular traffic prediction
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4.2 Statistical Learning: ARIMA

The first method we consider in our work is Autoregressive integrated moving
average (ARIMA), which is essentially a statistical regression model. The pre-
dictions performed by ARIMA are based on considering the lagged values of
a given time series, while at the same time accommodating non-stationarity.
ARIMA is one of the most popular linear models in statistical learning for time
series forecasting, originating from three models: the autoregressive (AR) model,
the moving average (MA) model, and their combination, ARMA [7].

More concretely, let X = X1, . . . , Xn define a uni-variate time series, with
Xi ∈ R, for each i ∈ [1, n]. A p-order AR model, AR(p), is defined as follows:

Xt = c + α1Xt−1 + α2Xt−2 + . . . + αpXt−p + εt, (2)

where Xt is the predicted value at time t, c is a constant, α1, . . . , αp are the
parameters of the model and εt corresponds to a white noise variable.

In a similar, a q-order moving average process, MA(q), expresses the time
series as a linear combination of its current and q previous values:

Xt = μ + εt + β1εt−1 + β2εt−2 + . . . + βqεt−q, (3)

where μ is the mean of X, β1, . . . , βq are the model parameters and εi corresponds
to a white noise random variable. The combination of an AR and an MA process
coupled with their corresponding p and q order parameters, respectively, defines
an ARMA process, denoted as ARMA(p, q), and defined as Xt = AR(p) +
MA(q). The original limitation of ARMA is that, by definition, it can only be
applied to stationary time series. Nonetheless, non-stationary time series can
be stationarized using the dth differentiation process, where the main objective
is to eliminate any trends and seasonality, hence stabilizing the mean of the
time series. This process is simply executed by computing pairwise differences
between consecutive observations. For example, a first-order differentiation is
defined as X

(1)
t = Xt − Xt−1, and a second order differentiation is defined as

X
(2)
t = X

(1)
t − X

(1)
t−1. Finally, an ARIMA model, ARIMA(p, d, q), is defined

by three parameters p, d, q [17], where p and q correspond to the AR and MA
processes, respectively, while d is the number of differentiations performed to
the original time series values, that is Xt is converted to X

(d)
t = ∇dXt, with

X
(d)
t being the time series value at time t, with differentiation applied d times.

The full ARIMA(p, d, q) model is computed as X
(d)
t =

∑p
i=1 αiX

(d)
t−i + εt + c +∑q

i=1 βqεt−q + μ.

Finding Optimized Parameters. In this study, the ARIMA parameters,
including p, d, and q, are optimized by carrying out a grid search over potential
values in order to locate the best set of parameters. In experimental results,
Fig. 5, we represent the root mean square error (RMSE) results for different
ARIMA (p, d, q) configurations, when they are applied to the dataset for predic-
tion of the number of future packet arrivals. From these results and Bayesian
information criterion (BIC), the best performance is achieved by ARIMA(6,1,0).
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4.3 Machine Learning: LSTM

Next, we consider is a long short-term memory (LSTM) architecture based on a
Recurrent Neural Network (RNN), a generalization of the feed forward network
model for dealing with sequential data, with the addition of an ongoing internal
state serving as a memory buffer for processing sequences. Let {X1, . . . , Xn}
define the input (features) of the RNN, {Y1, . . . , Yn} be the set of outputs, and
let {Y ′

1 , . . . , Y
′
n} denote the actual time series observations that we aim to predict.

For this study the internal state of the network is processed by Gated Recurrent
Units (GRU) [11] defined by iterating the following three equations:

rj = sigm([WrX]j + [Urht−1]j), (4)
zj = sigm([WzX]j + [Uzht−1]j)), (5)
ht
j = zjh

t−1
j + (1 − zj)hnew, (6)

ht
new = tanh([WX]j + [U(r ◦ ht−1)]j),where (7)

– rj : a reset gate showing if a previous state is ignored for the jth hidden unit,
– ht−1; the previous hidden internal state ht−1,
– W and U : parameter matrices containing weights to be learned,
– zj : an update gate that determines if a hidden state should be updated,
– ht

j : the activation function of hidden unit hj ,
– sigm(·): the sigmod function, and
– ◦: the Hadamard product.

Finally, the loss function we optimize is the squared error, defined for all
inputs as L =

∑n
t=1(Yt − Y ′

t )
2. The RNN tools leveraged in this work for traffic

prediction consist of 3 layers, including the LSTM layer, with 100 hidden ele-
ments, the fully connected (FC) layer, and the regression layer. The regression
layer is substituted with the softmax layer in the classification experiments.

5 Experimental Evaluation

In this section, we investigate the performance of the proposed prediction and
classification tools over a real cellular dataset.

5.1 Dataset

We generated our own cellular traffic dataset and made part of it available online
[3]. The data generation was done by leveraging a packet capture tool, e.g. Wire-
Shark, at the user side. Using these tools, packets are captured at the Internet
protocol (IP) level. One must note that the cellular traffic is encrypted in layer 2,
and hence, the payload of captured traffic is neither accessible nor intended for
analysis. The latter is due to the fact that for the realization of a low-complexity
low-latency traffic prediction/classification tool, we are interested in achieving
the objectives just by looking at the traffic statistics. For generating labels for
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part of the dataset, to be used for classification, a controlled environment at the
user-side is prepared in which, we filter internet connectivity for all applications
unless a subset of applications, e.g., Skype. Then, the traffic labels will be gen-
erated based on the different filters used at different time intervals. In our study,
we focus on seven packet features: (i) time of packet arrival/departure, (ii)
packet length, (iii) whether the packet is uplink or downlink, (iv) the source IP
address, (v) the destination IP address, (vi) the communication protocol, e.g.,
UDP, and (vii) the encrypted payload, where only the first three features are
derived without looking into the header of packets. We experimented with differ-
ent values for the interval length parameter τ , and for most of our experiments τ
was set to 10 s. Table 1 provides the set of features for each time interval in rows,
and the subsets of features used in different feature sets (FSs). It is straightfor-
ward to infer that τ tunes a tradeoff between complexity and reliability of the
prediction. If τ tends to zero, i.e., τ = 1 ms, one can predict traffic arrival for
the next τ interval with high reliability at the cost of extra effort for keeping
track of data with such a fine granularity. On the other hand, when τ tends to
seconds or minutes, the complexity and memory needed for prediction decrease,
which also results in lower predictive performance during the next intervals.

5.2 Setup

The experimental results in the following sections are presented within 3 cate-
gories, i.e., (i) prediction of the number of packet arrivals in future time intervals,
(ii) prediction of burst occurrence in future intervals, and (iii) classification of
applications generating the traffic. In the first two categories, we performed a
comprehensive set of Monte Carlo MATLAB simulations [21], over the data set,
varying different data parameters, such as length of the training set, length of
future prediction, feature sets used in learning and prediction. Each RMSE result
in Fig. 5 for each scheme has been derived by averaging over 37 experiments. In
each experiment, each scheme is trained using a training dataset, and then tested
over 2000 future time intervals (non-overlapping with the training dataset). For
the classification performance evaluation, we have leveraged 16 labeled datasets,
each containing traffic from 4 mobile applications. Then, we constructed 16 tests,
where in each test, one dataset is used for performance evaluation. The notation
of the schemes used in the experiments, extracted from the basic ARIMA and
LSTM methods described in Sect. 4, is as follows: (i) AR(1), representing the
traffic prediction based on the last observation; (ii) optimized ARIMA, in which
the number of lags and coefficients of ARIMA are optimized using a grid search
for RMSE minimization; and (iii) LSTM(FS-x), in which FS-x for x ∈ {1, · · · , 6}
represents the feature set used in the LSTM prediction/classification tool. The
overall configuration of experiments can be found in Table 2.

Reproducibility. All experiments can be reproduced using the anonymized
GDPR-compliance traffic dataset available at the supporting repository [3].
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5.3 Empirical Results

In this section, we present the prediction and classification performance results.

Prediction of Traffic Intensity. Figure 5 depicts the RMSE results for differ-
ent ARIMA and LSTM configurations versus AR(1), when the number of uplink
packets in intervals of 10 s is to be estimated. Towards this end, the right y-axis
represents the absolute RMSE of AR(1), the left y-axis represents the relative
performance of other schemes versus AR(1), and the x-axis represents the stan-
dard deviation (SD) of the test dataset. The results are insightful and shed light
to the regions in which ARIMA and LSTM perform favorably, as follows. When
the SD of traffic from its average value is more than 30% of the long-term SD
of the dataset1, which is almost the case in the active mode of phone usage by
human users, LSTM outperforms the benchmark schemes. On the other hand,
when there is only infrequent light background traffic, which is the case on the
right-end side of Fig. 5, ARIMA outperforms the benchmark schemes. When we
average the performance over a 24-days dataset, we observe that LSTM(FS-6),
LSTM(FS-5), LSTM(FS-3), and optimized ARIMA outperform the AR(1) by
16%, 14.5%, 14%, and 12%, respectively, for τ = 10 s. Recall that LSTM(FS-6)
keeps track of the number of uplink and downlink packets, as well as statis-
tics of the communication protocol used by packets in each time interval, while
LSTM(FS-5) does not care about the protocol used by packets. The superior
performance of LSTM(FS-6) with regards to LSTM(FS-5), as depicted in Fig. 5,
represents that how adding features to the LSTM predictor can further improve
the prediction performance in comparison with the linear predictors.

Table 1. Feature sets.

Feature sets (FSs) 1 2 3 4 5 6

Num. of UL packets 1 1 1 1 1 1

Num. of DL packets 1 0 0 1 1 1

Size of UL packets 1 0 0 0 0 0

Size of DL packets 1 0 0 0 0 0

UL/DL packets 1 1 0 1 0 0

Comm. protocol 0 0 0 0 0 1

Table 2. Parameter configuration.

Parameters Description

Traffic type Cellular traffic

Capture point IP layer, device side

Length of dataset 48 days traffic

RNN for prediction
(eq. classification)

[LSTM, FC,
regression(eq. softmax)]

Time granularity, τ Default: 10 s

We investigate if LSTM can further outperform the benchmark schemes by
increasing time-granularity of the dataset, decreasing length of future obser-
vation, and increasing length of the training set. First, let us investigate the
performance impact of τ , i.e. the time granularity of dataset. Figure 5 (left)
represents the absolute (left y-axis) and rational (right y-axis) RMSE results
for the proposed and benchmark schemes as a function of time granularity of

1 The long-term SD of the dataset is 90.
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Fig. 4. Prediction of the future number of uplink packets (τ = 10 s). (left) Finding
optimized ARIMA(p, d, q) configuration; (right) The RMSE performance comparison
of LSTM and ARIMA.

Fig. 5. (left) RMSE of prediction as a function of τ (time granularity of dataset);
(right) RMSE of prediction of number of uplink packets as a function of length of the
training dataset (as well as length of future prediction).

dataset (τ , the x-axis). One must further consider the fact that τ not only rep-
resents how fine we have access to the history of the traffic, but also represents
the length of future prediction. It is clear that the best results for the lowest
τ , e.g. when τ = 1, the LSTM (FS-6) outperforms the optimized ARIMA by
5% and the AR(1) by 18%. One further observes that by increasing the τ , not
only the RMSE increases but also the merits of leveraging predictors decrease,
e.g. for τ = 60, LSTM(FS-6) outperforms AR(1) by 7%. Now, we investigate
the performance impact of the length of the training set on the prediction in
Fig. 5 (right). One observes that the LSTM(FS-6) with poor training (1 day)
even performs worse than optimized ARIMA. However, as the length of training
data set increases, the RMSE performance for the LSTM predictors, especially
for LSTM(FS-3) with further features, decreases significantly.

Prediction of Event Bursts. We investigate the usefulness of the proposed
schemes for burst prediction in future time intervals. For the following exper-
iments, we label a subset of time intervals as bursts, based on the underlying
traffic intensity, i.e., the number and length of packets. Then, based on this train-
ing dataset, we aim at predicting whether a burst will occur in the next time
interval. As a benchmark to the LSTM predictors, we compare the performance
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against AR(1), i.e., we estimate a time interval as burst if the previous time inter-
val was labeled as a burst. In Fig. 6 (left) we see the recall of bursty and normal
(non-bursty) intervals for a burst definition in which, time intervals with more
than 90 uplink packet arrivals are treated as burst when the SD of packet arrivals
in the dataset is 90. The LSTM predictor developed in this experiment returns
the probability of burst occurrence in the next time interval. In order to declare
the decision as burst or non-burst, we set a probability threshold value. The
x-axis of Fig. 6 (left) represents the decision threshold, which tunes the weight
of recall and accuracy of decisions. In this figure, we observe that the probability
of missing a burst is very low on the left side, while the accuracy of decisions is
low (it can be inferred from the recall of normal intervals). Furthermore, on the
right side of the figure, the probability of missing a burst has decreased, how-
ever, the accuracy has increased (high recall of normal intervals). The crossover
point, where the recall values of bursty and non-bursty intervals match, could be
an interesting point for investigating the prediction performance. In this figure,
one observes that when the decision threshold is 0.02, 91% of bursts could be
predicted, while only 9% of normal intervals are labeled as bursty (false alarm).

In Fig. 6 (right) we observe some insightful results on the coupling between
recall of predictions and degree of rareness of the bursts. The x-axis represents
the definition of bursts, e.g. for x = 90, we label time intervals with more than
90 packets as a burst. From this figure, it is clear that LSTM outperforms the
benchmarks in recalling the burst with a reasonable non-burst recall cost. For
example, for x = 1(≈ 0.01SD), we aim at predicting if the next time interval
will contain a packet or not, i.e., time intervals with a packet transmission are
defined as bursts. One observes that 78% of bursts could be predicted using
LSTM(FS-5), while only 28% of non-bursts are declared as bursts. Having the
information that 20% of time internals contain bursts, we infer that the accuracy
of prediction is 78%. As the frequency of burst occurrence decreases, i.e., we move
to the right side of the figure, the recall performance of LSTM increases slightly
up to some point beyond which, it starts decreasing. On the other hand, the
accuracy of prediction by moving from left to right decreases substantially due
to the rareness of the bursts. Clearly, LSTM outperforms AR(1), especially when
bursts are occurring infrequently.

Fig. 6. (left) Prediction of bursts as a function of decision threshold; (right) Prediction
of bursts as a function of frequency of occurrence of bursts. (τ = 10 s)
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Fig. 7. (left) The overall accuracy of classification as a function of the feature set used
in the experiment; (right) Per application accuracy of classification.

Traffic Classification. We investigate leveraging machine learning schemes for
classification of the application generating the cellular traffic in this subsection.
For the classification purpose, a controlled experiment at the user-side has been
carried out in which, 4 popular applications including surfing, video calling, voice
calling, and video streaming have been used by the user. Figure 7 (left) represents
the overall accuracy of classification for different feature sets used in the machine
learning tool. One observes that the LSTM(FS-5) and LSTM(FS) outperform the
others significantly in the accuracy of classification. Furthermore, in this Fig. 3
curves for different lengths of the test data, to be classified, have been depicted.
For example, when the length of the test data is 0.1 s, the time granularity of
dataset (τ) is 0.1 s, and we also predict labels of intervals of length 0.1 s. It
is clear here that as the length of τ increases, the classification performance
increase because we will have more evidence from the data in the test set to be
matched to each class. To further observe the recall of classification for different
applications, Fig. 7 (right) represents the accuracy results per each application.
One observes that the LSTM(FS-4) and LSTM(FS-5) outperform the others. It
is also insightful that adding the ratio of uplink to downlink packets to FS-5, and
hence constructing FS-4 (based on Table 1), can make the prediction performance
more fair for different applications. It is further insightful to observe that the
choice of feature set to be used is sensitive to the application used in the traffic
dataset. In other words, FS-3, which benefits from one feature, outperforms
the others in the accuracy of classification for video calling, while it results in
classification error for other traffic types.

5.4 Discussion

The experimental results represent that the accuracy of prediction strongly
depends on the length of the training dataset, time granularity of dataset,
length of future prediction, mode of activity of the user (standard deviation
of test dataset), and the feature set used in the learning scheme. The results, for
example, indicate that the proposed LSTM(FS-3) is performing approximately
5% better than optimized ARIMA, and 18% better than AR(1) for τ = 10 s.
The results further indicated that the performance of LSTM could be further
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improved by designing more features related to the traffic, e.g. the protocol in
use for packets, and the ratio of uplink to downlink packets. Moreover, our exper-
iments indicated that the design of a proper loss function, and equivalently the
decision threshold, can significantly impact the recall and accuracy performance.
Furthermore, we observed that the frequency of occurrence of bursts (definition
of burst), the time granularity of dataset, and length of future prediction, can
also significantly impact the prediction performance. The results, for example,
indicated that a busy interval, i.e. an interval with at least one packet, could be
predicted by 78% accuracy as well as recall. The experimental results represented
the facts that, first, accuracy and recall performance of classification is highly
dependent on the feature set used in the classification. For example, a feature
set that can achieve an accuracy of 90% for classification of one application may
result in a recall of 10% for another application. Then, the choice of feature set
should be in accordance with the set of applications used by the user. Second, if
we can tolerate delay in the decision, e.g. 5 s, the classification performance will
be much more accurate when we gather more information and decide on longer
time intervals. The overall accuracy performance for different applications using
the developed classification tool is approximately 90%.

6 Conclusions

In this work, the feasibility of per-user traffic prediction for cellular networks has
been investigated. Towards this end, a framework for cellular traffic prediction
has been introduced, which leverages statistical/machine learning units for traffic
classification and prediction. A comprehensive comparative analysis of predic-
tion tools based on statistical learning, ARIMA, and the one based on machine
learning, LSTM, has been carried out, under different traffic circumstances and
design parameter selections. The LSTM model, in particular, when the length of
training data is long enough and the model is augmented by additional features
like the ratio of uplink to downlink packets and the communication protocol used
in prior packet transfers, exhibited demonstrable improvement over the bench-
mark schemes for future traffic predictions. Furthermore, the usefulness of the
developed LSTM model for classification of cellular traffic has been investigated,
where the results represent high sensitivity of accuracy and recall of classifica-
tion to the feature set in use. Additional investigations could be performed in
the future works regarding making the prediction tool mode-switching, in order
to reconfigure the feature set and prediction parameters based on the changes
in the behavior of user/applications in an hourly/daily basis.
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