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Residual neural networks [10] are among the state-of-the-art for image classifi-
cation tasks. Given sufficient data and proper hyperparameter settings, resid-
ual neural networks can achieve remarkable results, but their performance (and
that of other neural networks) highly depends on their hyperparameter settings.
As a consequence, there has been a lot of recent work and progress on hyper-
parameter optimization, with methods including Bayesian optimization [1,29],
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Abstract. Residual neural networks (ResNets) are among the state-
of-the-art for image classification tasks. With the advent of automated
machine learning (AutoML), automated hyperparameter optimization
methods are by now routinely used for tuning various network types.
However, in the thriving field of deep neural networks, this progress is
not yet matched by equal progress on rigorous techniques that yield infor-
mation beyond performance-optimizing hyperparameter settings. In this
work, we aim to answer the following question: Given a residual neu-
ral network architecture, what are generally (across datasets) its most
important hyperparameters? In order to answer this question, we assem-
bled a benchmark suite containing 10 image classification datasets. For
each of these datasets, we analyze which of the hyperparameters were
most influential using the functional ANOVA framework. This experi-
ment both confirmed expected patterns, and revealed new insights. With
these experimental results, we aim to form a more rigorous basis for
experimentation that leads to better insight towards what hyperparam-
eters are important to make neural networks perform well.
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Introduction

meta-learning [4] and bandit-based methods [18]; see [8] for a review.

Despite impressive results both on common benchmarks and various appli-
cation domains, the experiments in many academic machine learning papers are
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designed to answer which particular method works better, typically by introduc-
ing a new algorithm and demonstrating success over a limited set of baselines or
benchmarks [31]. In a recent paper, Sculley et al. (2018) identify this as a prob-
lem: ‘Empirical studies have become challenges to be won, rather than a process
for developing insight and understanding’ [27]. Additionally, many advances in
deep learning have been evaluated on a small number of datasets. It has long
been recognized that small-scale studies can create a false sense of progress [9].
Recht et al. (2018) speculate that by overly using the same test set, reported
results tend to overfit and demonstrate that performance results of many intro-
duced models does not generalize to other (newly assembled) test sets [24].

In this work, we aim to provide a more rigorous approach to the follow-
ing question: Given a residual neural network architecture, what are generally
(across datasets) its most important hyperparameters? In order to answer this
question, we assembled an image classification benchmark suite consisting of
10 popular datasets from the literature. On each of these datasets we obtained
performance results with varying hyperparameter settings. Although the aim
of this paper is not to improve predictive performance, we compare the results
with state-of-the-art results reported by other researchers, to ensure that the
results are credible and applicable. We see this as a first step towards creating
more rigorous insights about the conditions under which residual neural networks
perform well and which hyperparameters influence this.

Our contributions are the following: (i) We assembled a benchmark suite of
10 well-known image classification datasets, allowing researchers to draw con-
clusions across datasets. We made all code, data and results publicly available;!
(ii) we apply functional ANOVA [30] on performance results of residual neural
networks, to identify the importance of the various hyperparameters to predic-
tive accuracy; and (iii) we verified expected behaviour regarding hyperparame-
ter interactions, and gained new insights regarding typical marginal curves and
hyperparameter interactions. Most notable is the observation that for the con-
cerning datasets the marginals of important hyperparameters exhibit very simi-
lar landscapes. Overall, this work is the first to provide large-scale quantitative
evidence for which hyperparameters of residual neural networks are important,
providing a better scientific basis for the field than previous knowledge based on
small-scale studies and intuition.

2 Related Work

In this section we review related work on residual neural networks, hyperparam-
eter importance and landscape analysis.

Residual Neural Networks. Deep residual neural networks were introduced
in [10] and have set the benchmark for image recognition tasks in recent years.
They provide good predictive accuracy while maintaining an affordable model
size. Their defining characteristic is the use of residual learning, in which deeper
layers of the network are linked to shallower layers directly using ‘shortcut con-
nections’ skipping several layers in between. These shortcut connections perform
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an identity mapping which ensures the convergence of the deep network is at
least as good as its shallower counterpart and hence limit divergence during
training. In this way, the residual learning framework eases the training of net-
works that are substantially deeper. Furthermore, empirical evidence suggests
that these residual neural networks are easier to optimize, and can gain accu-
racy from considerably increased depth. On the ImageNet dataset the residual
nets were evaluated with a depth of up to 152 layers — 8 times deeper than VGG
nets [28] but still having lower complexity. Furthermore, residual learning can be
used on networks of varying depth to fit the task at hand. Smaller residual neural
networks, like ‘ResNet18’ (as the name suggests, consisting of 18 layers), provide
great performance while being very efficient in terms of size and speed [10].

Hyperparameter Importance. When using a new algorithm on a given
dataset, it is typically a priori unknown which hyperparameters should be tuned,
what are the good ranges for these hyperparameters to sample from, and which
values in these ranges are most likely to yield high performance. Various tech-
niques exist that allow for the assessment of hyperparameter importance. These
techniques generally consider either local importance (dependent on a specific
setting for other hyperparameters) or global importance (independent of specific
hyperparameter settings).

Forward selection [12] is based on the assumption that important attributes
in a dataset have high impact on the performance of classifiers trained on it.
It trains a model which predicts the performance of a configuration based on
a subset of hyperparameters. This set is initialized empty and greedily filled
with the next most important hyperparameter. Ablation analysis [2] requires a
default setting and an optimized setting and calculates a so-called ablation trace,
which embodies how much the hyperparameters contributed towards the differ-
ence in performance between the two settings. Local Parameter Importance [3]
studies the performance changes of a configuration along each parameter using
an empirical performance model (sometimes also called a ‘surrogate’ model).
Functional ANOVA [30] is a global hyperparameter importance framework that
can detect the importance of both individual hyperparameters and interaction
effects between arbitrary subsets of hyperparameters. It is the key technique
upon which this research is built.

Functional ANOVA depends on the concept of the marginal of a hyperpa-
rameter, i.e., how a given value for a hyperparameter performs, averaged over
all possible combinations of the other hyperparameters’ values. While there are
an exponential number of combinations, the authors of [13] showed how this can
be calculated efficiently using tree-based surrogate models.

All the aforementioned techniques are post-hoc techniques, i.e., when con-
fronted with a new dataset, these do not reveal what hyperparameters are
important prior to experimenting on that particular dataset. Contrary, various
researchers argued that it is more useful to generalize the notion of hyperpa-
rameter importance across datasets [22,25,26]. In particular, it has been shown
how to apply functional ANOVA across datasets for a given algorithm [25,26].
These works build upon the assumption that if this hyperparameter importance
quantification method is applied on a large enough set of datasets, we can draw
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conclusions regarding which hyperparameters are generally important. However,
neither of these studies applied this methodology to convolutional neural net-
works. To the best of our knowledge, this is the first work that addresses hyper-
parameter importance for residual neural networks.

Landscape Analysis. The interaction between configurations and the respec-
tive results can be seen as an high-dimensional landscape, which in turn can
be analyzed for mathematical properties [23]. Although this particular study is
executed on ‘satisfiability’, ‘mixed integer programming’ and ‘traveling salesman
problems’ benchmarks, it shows evidence that configuration landscapes are often
uni-model and even convex.

3 Background and Methods

We follow the notation that was introduced in [13]. We assume that a given
residual neural network model has n hyperparameters with domains 64, ...,60,
and configuration space @ = O1 X ... x O,. Let N = {1,...,n} be the set of
all hyperparameters of the classifier. An instantiation (or configuration) of the
classifier is a vector 8 = (61,...,6,) with 6; € ©;. A partial instantiation is a
vector Oy = (0;,...,0;) with a subset U C N of the hyperparameters fixed,
and the values for other hyperparameters unspecified. The marginal af,(6y) is
defined as the average performance on measure p of all complete instantiations 6
that agree with @y in the instantiations of hyperparameters U. The variance of
ay;(8y) is denoted as V7. Intuitively, if the marginal af;(6y) has a high variance,
this means that hyperparameter was of high importance to performance measure
p, and vice versa. For a more complete description, the reader is referred to [13].

In this research, we address the following problem. Given (i) a residual
neural network architecture with configuration space @, (ii) a set of datasets
DM ..., DM with M being the number of datasets, and (iii) for each of the
datasets, a set of empirical performance measurements (8;,Y;)X | for different
hyperparameter settings 8; € @, where Y; is a tuple of all relevant performance
measures (in this case, predictive accuracy), we aim to determine which hyper-
parameters affect the algorithm’s empirical performance most, and which values
are likely to yield good performance.

For a given dataset, we use the performance data (6;,Y;)X, collected on
this dataset to fit an internal tree-based surrogate model, in this case, a random
forest with 16 trees. Functional ANOVA then uses this surrogate model to cal-
culate the variance contribution V? /VP of every hyperparameter j € N, with
high values indicating high importance. We then study the distribution of these
variance contributions across datasets to obtain empirical data regarding which
hyperparameters tend to be most important.

It is possible that a hyperparameter is responsible for a high variance on
many datasets, but that its best value is the same across all of them. We note
that functional ANOVA will flag such hyperparameters as important, although
it could be argued that they have appropriate defaults and do not need to be
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tuned [22,26]. For example, it is reasonable to expect that for any type of neu-
ral network the marginal of the number of epochs has a high variance, where
obviously better performances are achieved for higher values (at the cost of addi-
tional run-time). For this reason, it is always important to consider the individual
marginals, as well as the generalizations across datasets.

4 Experimental Setup

Section4.1 describes the training procedure of the residual neural network,
Sect. 4.2 the configuration space from which we sampled the various configu-
rations, and Sect. 4.3 the datasets that we included in this study.

4.1 Models

In this work, we focus on the fixed architecture of ‘ResNet18’. This model gives
good predictive accuracy for datasets while being small in size which allows for
faster training [10]. As the datasets in this research all contain images, with
relatively similar dimensions, we could use the same architecture for all of them
(see Sect.4.3). The optimizer is fixed to Stochastic Gradient Descent (SGD),
parameterized by momentum and weight decay. The training starts with an
initial learning rate. Thereafter an adaptive learning rate scheduler is used which
decays the learning rate by a factor (hyperparameter: learning rate decay) when
the test accuracy plateaus for a given number (hyperparameter: patience) of
epochs. The details of the hyperparameter space are described in Sect. 4.2.

We record the time taken (in seconds) and the accuracy on the test set
after every epoch. The goal is not to identify an optimum parameter setting, as
using a test-set simply computing the maximum would result in overly optimistic
evaluation. If one would be interested in using the results for hyperparameter
optimization a proper nested cross-validation procedure should be applied [5].
We performed all runs on single NVIDIA P100 GPU.

4.2 Configuration Space

We selected twelve hyperparameters. This selection was made based on visual
inspection of the modules in the ‘Torch’ package, as well as personal experi-
ence. Even though it feels natural to fix the values for some hyperparameters to
seemingly good values, in this work we aim to verify the applicability of these
values.

Our hyperparameter space contains six hyperparameters for the SGD opti-
mizer (number of epochs, initial learning rate, learning rate decay, momentum,
batch size, and whether to shuffle the data), two early stopping hyperparame-
ters (tolerance and patience), and four regularization hyperparameters (weight
decay, and data augmentation by resize crop, horizontal flips, and vertical flips).
Note that since we keep a fixed network structure, we do not modify any archi-
tectural hyperparameters (this would be very interesting, but is out of scope for
the current study).
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Table 1. Overview of the hyperparameters used in this research.

Hyperparameter Range Description

Batch size 213,4,5,6,7,8,9} Number of samples in one batch of gradient descent
used during training

Epochs [1-200] The number of times each training observation is
passed to the network

Horizontal flip Boolean Whether to apply data augmentation by flipping
the image horizontally

Vertical flip Boolean Whether to apply data augmentation by flipping
the image vertically

Learning rate [10—6-1] (log) The learning rate with which the network starts
training

Learning rate decay | [2-1000] (log) Factor to reduce the learning rate with, if no
improvement is obtained after several epochs

Momentum [0-1] Value of momentum multiplier used during
gradient descent

Patience [2-200] Number of epochs without improvements that are
being tolerated before learning rate is reduced

Shuffle Boolean Whether to shuffle the train set before an epoch

Resize crop Boolean Whether to apply data augmentation by resizing
and then cropping the image

Tolerance [1075-1072] (log) | Tolerance for early stopping criterion

Weight decay [1076-1072] (log) | L2 loss on the weights

We note that some of the hyperparameters we tune are sometimes rather
chosen manually on a per-dataset basis based on domain knowledge (e.g., certain
data augmentations don’t make sense for some types of images, and the batch
size is often set to the maximum feasible given the GPU’s memory). We still
included these in our study to study how large their impact is on performance.

Table 1 lists all the hyperparameters and their maximal ranges we considered.
In order to obtain reasonable performance for datasets of different input sizes, we
had to use slightly different hyperparameter spaces across datasets; in particular,
the datasets with large input size (Fruits 360, Flower, STL-10 and Dog vs. Cat)
would have led to memory issues with batch sizes of 256 or 512, and we therefore
only considered batch size values of 2{3:45.6.7} in those cases and of 2{%:6.7.8,9}
in all other cases. Also, owing to limited computational resources, some other
manual modifications were made to speed up experiments and focus on a region
of good hyperparameters: for datasets MNIST, Fashion MNIST and Fruits, the
maximum number of epochs was set to 50, for datasets Dog vs. Cat the maximum
number of epochs was set to 100, and for datasets Fruits 360, Flower, Dog vs.
Cat, MNIST and Fashion MNIST, the maximum learning rate was set to 0.1.

For each dataset, we sampled K = 200 configurations uniformly from this
configuration space, with the maximum number of epochs. For each run we stored
performance results after every epoch, allowing functional ANOVA to model the
marginal of this hyperparameter more accurately.
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Table 2. Overview of the datasets used in this research.

Name Description Dimensions | Class | Train| Test | Ref
MNIST Handwritten digits 28 x 28 10 |60,000 | 10,000 | [17]
Fashion MNIST | Gray-scale objects 28 x 28 10 |60,000 | 10,000 | [34]
CIFAR-10 Colored objects 32x32x3| 10 50,000 10,000 [16]
CIFAR-~100 Colored objects 32 x32x3/100 | 50,000 10,000 | [16]
STL-10 Colored objects 96 x 96 x 3| 10 5,000 | 8,000 | [6]

HAM10000 Skin cancer images 28 X 28 x 3 7 9,013 1,002 [32]
SVHN House number images | 32 x 32 x 3| 10 | 73,257 26,032 | [21]
Flower Flower images 96 x 96 x 3| 5 3,888 435 | [19]
Fruits 360 Fruit images 96 x 96 x 3| 82 41,814 14,041 | [20]
Dog vs. Cats Dog and cat images |96 x 96 x 3| 2 |22,500| 2,500 | [15]

When computing hyperparameter importances across different datasets, the
question arises how to treat differing hyperparameter spaces. For the important
learning rate hyperparameter we felt it to be important to use identical ranges
everywhere and therefore used a reduced range of [107%,0.1]. However, for the
batch size hyperparameter, no single range makes sense for all datasets, and
we therefore simply computed hyperparameter importance separately based on
the range used for the dataset at hand. Likewise, for the maximum number of
epochs, we used 200 throughout; this is justified by the assumption that the
internal random forest model would correctly model the plateaued performance.

4.3 Datasets

This section reviews the datasets that were used in this research. We assembled
a diverse set of image classification datasets, including often used datasets (e.g.,
MNIST and CIFAR-100). We excluded the common benchmark ImageNet to
keep the computational costs reasonable.

All our datasets, listed in Table 2, are classification tasks (the respective task
is briefly described in column ‘Description’). For example, in the MNIST dataset
the task is to classify hand-written digits, whereas for the CIFAR-10 dataset
the task is to identify images into 10 classes (airplane, automobile, bird, cat,
deer, dog, frog, horse, ship or truck). Column ‘Dimensions’ represents the size
and number of channels of the training images. Black and white or gray-scale
datasets have two dimensions (width and height), whereas colored datasets have
three dimensions (width, height and number of color channels; in this study the
number of color channels is always 3). Column ‘Class.” represents the number of
classes, column ‘Train’ the number of train observations and column ‘Test’ the
number of test observations. Finally, column ‘Ref.” contains a reference to the
publication where the dataset was introduced.

As the dimensions of these datasets are all approximately the same, we could
use the same architecture for all of them. There are minor modifications to the
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Fig. 1. Performance results of the various configurations per dataset, sorted by median
performance. Complementary, Table 3 shows the best obtained result per dataset.

input and output layers due to different input dimensions and output classes
of each dataset. For datasets with gray-scale images (i.e., MNIST and Fash-
ion MNIST) the pixel values are duplicated over three dimensions during pre-
processing. Whether data augmentation techniques like random crops and ran-
dom flips were performed is controlled by the respective hyperparameter.

5 Results

In this section we analyze the results of the experiments. In Sect. 5.1 we discuss
some basic performance characteristics compared to state-of-the-art algorithms.
In Sects. 5.2 and 5.3 we discuss the main contribution of this work, the impor-
tance of hyperparameters according to functional ANOVA. Finally, Sect. 5.4 dis-
cusses limitations that could inspire future work.

5.1 Performance Results

We explore some basic characteristics about the performance results obtained
on the datasets. As mentioned before, obtaining state-of-the-art performance is
neither the aim nor the contribution of this paper, but in order for the results
to be credible and applicable, it is important to verify that the results are in the
same ballpark as good results reported in literature. Figure 1 shows the predic-
tive accuracy (left) and run-time (right) of all hyperparameter configurations 6
grouped per dataset in a box-plot. Both plots include only the measured perfor-
mance (run-time or accuracy) after the final epoch, and thus not the recorded
intermediate results.

We made a best effort to find established state-of-the-art results for existing
datasets. Table 3 compares the best results of the conducted experiments with
the best found result in literature. We obtained the results of state-of-the-art
methods from public sources on the internet?:3. For some lesser known datasets,

2 https://benchmarks.ai/
3 https://github.com/RedditSota/state-of-the-art-result-for-machine-learning-
problems
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there was no established state-of-the-art. In these cases, we did not report any
state-of-the-art result, as that might be misleading. Column ‘ResNet’ denotes
the best obtained performance (optimistic, as was argued in Sect.4.1) of the
residual neural network through random search. Column ‘SOTA’ denotes the
(also optimistic) performance of the state-of-the-art network.

The comparison between residual Table 3. Comparison between the best
neural network results and state-of- results obtained by the residual neural net-
the-art results contains various con- works in this study and state-of-the-art
ditions that need to be accounted for. results.

As a consequence, this comparison is

somewhat biased. However, it serves Dataset ResNet | SOTA | Source
the purpose of providing context to MNIST 99.62 | 99.79 | [33]
the obtained results. In some cases the paghion MNIST | 94.18 | 96.35 (35]
bes.t results obtained by the trained CIFAR-10 0329 | 99.00 | [11]
residual neural networks are close to

the best reported results in litera- CIFAR-100 72.66 |91.30 | [11]
ture (e.g., for MNIST and Fashion STL-10 79.91 | 88.80 |[14]
MNIST), while for others the differ- HAM10000 82.83 |-

ences are bigger (e.g., CIFAR~-100 and SVHN 96.66 | 98.98 |[7]
STL-10). Overall, the performance Flower 89.20 |-

results are good enough to expect that g+ “a60 99.38 |-

some conclusions drawn may carr,

over to state-of-the-art modeléf. ¥ Dogvs Cats 9652 -

5.2 Marginals per Dataset

This section details the results of the hyperparameter importance experiment.
Figure 2 shows the predictive accuracy marginals of important (combinations)
of hyperparameters, per dataset.

For each of the 10 datasets, we plotted the marginal of several important
hyperparameters and one pair of hyperparameters. From left to right this image
displays the marginals of the ‘number of epochs’, the ‘initial learning rate’,
‘weight decay’, ‘momentum’ and the combination of ‘number of epochs and
initial learning rate’. Note that we calculated the marginals for all 12 hyper-
parameters and all 65 hyperparameter pairs, but only show this subset due to
space reasons. The z-axis shows the value of the hyperparameter and the y-axis
shows the marginal performance (predictive accuracy). The epochs marginals
are most detailed, presumably because of the recorded performance after every
epoch.

The marginals reveal several patterns about the interaction between hyper-
parameter values and final performance of the network. Firstly, as the number of
epochs increases, so does the performance of the network. Although this is quite
obvious, it is important to verify that the proposed methodology can discover
known and expected behaviors. Secondly, the marginals for the initial learn-
ing rate reveal that there is no perfect default across datasets, but that values
between 1072 and 1072 generally perform quite well, whereas setting it much
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lower or higher typically results in suboptimal performance. For weight decay
and momentum we see similar trends, however there seems to be a tendency
that setting their values too low is less harmful than setting them too high.
Thirdly, also the combined marginal of number of epochs and initial learning
rate is interesting, as it reveals that there is very little interplay between these
two hyperparameters. Interestingly, both hyperparameters are important, but
setting one hyperparameter to a specific value does not have a large influence
on the optimal value for the other (maximum variance contribution: 0.026 on
Cifar-10).

Most interestingly, we observe that for each hyperparameter the marginals
follow similar trends across the datasets. Although the marginals exhibit a
rough and edgy pattern, based on visual inspection we conclude that after some
smoothing the landscapes would be uni-modal and convex. Even though the
methodology and application domain are slightly different, these results seem to
be in line with earlier reported findings [23].
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5.3 Importance Across Datasets

Figure 3(a) shows box-plots for the variance per hyperparameter, presented sim-
ilarly to [26]. For each partial configuration 8y with U = 1 and the three most
important partial configurations with U = 2, we record variance of the marginal
V7, per dataset, and present these across datasets in box-plots. We observe var-
ious expected results. Hyperparameters related to the optimizer seem generally
most important, i.e., ‘weight decay’, ‘momentum’, and ‘learning rate init’. The
data augmentation hyperparameters are among the least important hyperparam-
eters. We note that functional ANOVA is meant as a tool for assessing global
hyperparameter importance; data augmentation techniques are generally used
to be applied on already good performing models, in order to further improve
the performance. As such, the utility of data augmentation techniques might not
be detected by functional ANOVA but can most likely be measured with local
hyperparameter importance tools, such as Ablation Analysis [2].

Furthermore, we observe that the number of epochs, a hyperparameter which
we expected to be important, ranks only 5th when analyzing the marginals.
We note that the variance of the marginal (upon which functional ANOVA is
built) is highly dependent on the selected ranges. To alleviate this problem,
Fig. 3(b) shows the results in an alternative way. For each partial configuration
0y with U = 1, we record the maximum of marginal (i.e., maz(a},;(8y))) and
the minimum of the marginal (i.e., min(af,(6y))) per dataset, and present the
difference between these across datasets in box-plots. We observe that this plot
confirms the importance of the epochs hyperparameter, making it the second
most important hyperparameter after the learning rate. Also note that the other
hyperparameters with the highest median variances according to Fig.3(a) are
still ranked as important in Fig. 3(b), albeit in a slightly changed order.

Finally, based on Fig. 3(a) we note that most of the variance can be explained
by the effect of single hyperparameters. Apart from the variance contribution
of single hyperparameters (U = 1) it shows the 3 most important combi-
nations of hyperparameters (U = 2). The variance contribution of combined

10% "

i

Variance Contribution

wé'? T*ﬁ?!??gé ?

S

(a) Functional ANOVA (b) Marginal max-min

Fig. 3. Importance per (combination of) hyperparameters across datasets
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hyperparameters seems rather low, as none are ranked highly compared to the
variance contribution of single hyperparameters. However, like the data augmen-
tation techniques, we speculate that even though the combined effect is relatively
small, it will still be important to consider when optimizing for performance.

5.4 Limitations

Looking at the results in Fig.3, the following result stands out. The shuffle
hyperparameter value has a rather low median but a very high tail. This indi-
cates that for most datasets the marginal is not particularly affected by this
hyperparameter, however for some datasets (i.e., Flower, Fruits 360, Dog vs.
Cat and HAM10000) it seems extremely important.

Furthermore, Fig. 1 reveals that the median performance is quite low, despite
the decent maximal performance. This is confirmed by the marginals in Fig. 2.
For example, none of the marginals for CIFAR-10 exceed the 80% accuracy
threshold, whereas the best found configuration obtained an accuracy of 93.29%
(according to Table 3). This gives rise to the question whether a hyperparameter
tool like functional ANOVA can still reveal hyperparameters that are impor-
tant for fine-tuning models (such as data augmentation), or whether only global
trends are detected.

Finally, functional ANOVA highly relies on a proper configuration space. A
seemingly important hyperparameter like ‘number of epochs’ will account for a
relative low variance if the range is selected in such a way that it exceeds the
values for which the performance reaches the plateau. It is currently an open
question how to construct the configuration space to avoid this problem.

6 Conclusions

This work was motivated by the call for more rigor in hyperparameter optimiza-
tion and neural network research [24,27]. We assembled a benchmark suite with
corresponding performance results of residual neural networks, and made it pub-
licly available. Our hyperparameter importance experiment confirmed existing
beliefs about which hyperparameters are most influential across datasets, i.e., the
initial learning rate and the number of epochs. Other important hyperparame-
ters are the weight decay and momentum. Most of the other hyperparameters
did not have a large variance of the marginal, however we note that in many
image classification benchmarks the devil is in the detail. In order to go from
a reasonable performance to state-of-the-art performance, also hyperparameters
with a small effect should be set to adequate values.

We confirmed some well expected patterns, for example the form of the
marginals for the number of epochs and the volatility across datasets of the
marginals for the initial learning rate.

We acknowledge that this is only a first step towards more rigorous results
in neural network research. While this research focused specifically on residual
neural networks with a fixed architecture, future work should focus on other
network types and also important parameters in architecture search.
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