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Abstract. Addressing the class imbalance problem is critical for sev-
eral real world applications. The application of pre-processing methods
is a popular way of dealing with this problem. These solutions increase
the rare class examples and/or decrease the normal class cases. However,
these procedures typically only take into account the characteristics of
each individual class. This segmented view of the data can have a nega-
tive impact. We propose a new method that uses an integrated view of
the data classes to generate new examples and remove cases. ClUstered
REsampling (CURE) is a method based on a holistic view of the data
that uses hierarchical clustering and a new distance measure to guide
the sampling procedure. Clusters generated in this way take into account
the structure of the data. This enables CURE to avoid common mistakes
made by other resampling methods. In particular, CURE prevents the
generation of synthetic examples in dangerous regions and undersamples
safe, non-borderline, regions of the majority class. We show the effec-
tiveness of CURE in an extensive set of experiments with benchmark
domains. We also show that CURE is a user-friendly method that does
not require extensive fine-tuning of hyper-parameters.
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1 Introduction

Class imbalance is a problem encountered in a wide variety of important clas-
sification tasks including oil spill, fraud detection, action recognition, text clas-
sification, radiation monitoring and wildfire prediction [4,17,21,22,24,27]. Prior
research has shown that class imbalance has a negative impact on the perfor-
mance of the learned binary classifiers. This problem becomes even more difficult
when the underlying distribution is complex and when the minority class is rare
[14,26]. Given the frequency of imbalanced learning problems and the possibility
for negative impacts on learning, the study of class imbalance and methods for
handling it have become important research topics. Indeed, it has been recog-
nised as one of the ten challenging problems in data mining research [29].

The solutions proposed by the research community to solve the class imbal-
ance problem include special-purpose learning methods, pre-processing and post-
processing methods. Pre-processing (or resampling) methods transform the orig-
inal training set making it more suitable for learning the important class(es).
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This is accomplished by following a certain strategy for up- or down-sampling
cases. Resampling methods are popular due to their versatility, effectiveness and
ease of application. Moreover, they enable the use of any standard learning tool.

In addition to suffering from the class imbalance problem, many real-world
domains are also complex by nature. They potentially include noisy instances and
sub-concepts that exacerbate the imbalance problem. This complexity dictates
that it is important to consider the inherent structure of the data. Failure to
do so may negatively impact the effectiveness of the resampling strategy. The
problem relates to: (i) the removal of majority class instances from sparse regions
of the domain; (ii) the generation of synthetic minority cases between minority
class sub-concepts (clusters); (iii) the reinforcement of noisy instances; and/or
(iv) the obfuscation of overlapping regions.

To address these issues, we propose the ClUstered REsampling (CURE)
method. CURE uses hierarchical clustering with a new class-sensitive distance
measure prior to the resampling process. This allows the extraction of essen-
tial structural information that is used to guide the resampling. The advantages
of this approach are: (i) meaningful clusters of the minority class are empha-
sised: (ii) the generation of minority class cases is avoided in error-prone regions
between sub-concepts; (iii) only “safe” majority class samples are undersam-
pled (i.e., borderline cases are not removed.) In an extensive set of experiments,
we show that the CURE algorithm is effective for tackling the class imbalance
problem. We also show that CURE does not requires extensive fine-tuning of
hyper-parameters to achieve good performance.

This paper is organised as follows. Section 2 provides an overview of the
related work. In Sect. 3 the CURE algorithm is described. The results of an
extensive experimental evaluation are presented and discussed in Sect. 4. Finally,
Sect. 5 presents the main conclusions of the paper.

2 Related Work

Numerous resampling methods have been proposed and applied to address imbal-
anced classification problems [5]. Random oversampling and random undersam-
pling (e.g. [16]) are the classic approaches to handling imbalance. They are well-
known to suffer from the risk of overfitting the minority samples and discarding
informative cases, respectively. The SMOTE algorithm [8] incorporates oversam-
pling and undersampling, and was proposed to overcome the issues of over- and
under-sampling. It attempts to do so by interpolating new synthetic instances
between nearest neighbours rather than replicating instances of the minority
class. Two key issues with SMOTE are: (a) it does not account for the structure
of the training data when performing the under and oversampling, and (b) it
uniformly applies oversampling and undersampling. On complex data domains,
this generation process can reinforce noise and increase the class overlap.

Many variations of SMOTE have been proposed to either clean the data after
synthetic oversampling or to preemptively avoid generating instances that would
negatively impact classifier performance [3,7,11,12]. For instance, Tomek links
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(examples from different classes that are each other closest neighbours) can be
removed from the training set after the application of SMOTE [3]. ADASYN [13]
and Borderline-SMOTE [12] are examples of methods that apply SMOTE only
in specific regions of the domain that are considered useful. ADASYN generates
more synthetic examples from minority class cases that have more nearest neigh-
bours from the majority class. Borderline-SMOTE generates more examples near
the minority class border. However, Borderline-SMOTE applies uniform under-
sampling and may generate new cases between subconcepts of the minority class
while ADASYN uses the local structure disregarding the global structure of the
data. Resampling with a neighbourhood bias [6] is an alternative that introduces
a bias in the selection of seed cases for both over and undersampling based on
the class distribution in the local neighbourhood of each instance. Different bias-
ing modes are proposed allowing to reinforce the most frontier or the most safe
cases. Our proposal advances this idea by replacing the need for users to specify
the k value necessary for the k-nearest neighbours computation, which is applied
homogeneously across all instances and may be difficult to determine a-priori.
Alternatively, we utilise hierarchical clustering that automatically finds variable
sized clusters in the underlying structure of the data for resampling.

Previous research has applied clustering plus random oversampling, clus-
tering plus random undersampling, and clustering plus synthetic oversampling
[2,15,18–20,28,30]. Of these methods, our proposal is most closely related to
[30]. Whereas the other methods only cluster one class, our method and that of
Yen et al. [30], clusters the complete training sets, and use the class distribution
in each cluster to inform if, and how much, resampling should be applied. By
clustering both classes instead of just one, we acquire a more complete view of
the data structure. The work of Yen et al. [30], uses k-means clustering which
has important limitations such as requiring the a-priori knowledge of the correct
number of clusters. By using hierarchical clustering, we are able to dynamically
discover the sub-clusters (clusters at different levels of the hierarchy) that best
address our resampling objectives. In addition, our method differs in the fact
that it applies both undersampling and synthetic oversampling which inflates the
minority class space while smoothing over-represented concepts of the majority
class.

3 The CURE Method

3.1 Overview

In this section, we present the ClUstered REsampling (CURE) method. The key
feature of CURE is that it utilises the intrinsic structure of the training data from
all of the problem classes to decide where and how to apply resampling. This
way, CURE avoids resampling mistakes incurred by SMOTE-based methods. In
particular, CURE reduces the risk of:

– Synthesising minority class samples deep inside the majority class space; and,
– Naively undersampling informative instances in the majority class.
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Fig. 1. Illustration of the intrusion into
the majority class caused by SMOTE.
(Color figure online)

Fig. 2. Illustration of the synthetic over-
sampling of natural minority class group-
ings discovery of CURE.

The oversampling issue of SMOTE-based methods is demonstrated in Fig. 1.
Here, the nearest neighbours of XB are all minority class examples and thus
interpolating between them is safe. However, between XA and some of its near-
est minority class neighbours, there is an area populated with majority class
examples. Interpolating between these neighbours risks generating new synthetic
minority class case in the majority class space (the blue region).

The undersampling issue is highlighted in Fig. 3. Here, the resampler näıvely
discards some user-specified percentage, p, of the majority class samples (the
removed samples are shown as grey y) in order to balance the training set.
The random removal process risks the loss of information from the edge of the
majority class region, which could have a significant negative impact in the
learned decision boundary.

CURE avoids the over/undersampling issues discussed above by ensuring
that instances are generated in, and removed from, safe regions of the data-
space. This is achieved by applying hierarchical clustering and then resampling
each cluster in a manner that is determined by the class makeup of the cluster.

Fig. 3. Illustration of the removal of
informative majority samples via random
undersampling.

Fig. 4. Illustration of CURE keeping
potentially information samples in mixed
and small majority class clusters.
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Figure 2 illustrates where and how resampling is applied to clusters involving
minority class samples. Specifically, interpolation is only applied between minor-
ity class instances in the same cluster. This avoids the generation of samples deep
inside the majority class (grey zone in figure). Figure 4 demonstrates how CURE
randomly undersamples a percentage, p, of instances from each pure majority
class cluster, rather than at random from the complete set of majority class
instances. After undersampling, CURE will always leave at least one sample in
each cluster to avoid wiping out information about edge cases and sub-concepts.

3.2 Hierarchical Clustering

A hierarchical clustering is formed by successively merging instances that are
similar to each other. At the bottom of this hierarchy, we have the individual
training cases, and at the top node we have a single cluster containing all of the
cases. In between these extremes we have different groupings of the training data.
Thus, the hierarchy specifies a set of possible clusterings of the data, where the
clusters near the bottom of the hierarchy are smaller and more specific, and those
nearer the top are larger and more general. It is up to the users to determine
which clustering is best for their objectives.

The requirement to identify the “best” clusters from the hierarchy is a limi-
tation in many pure clustering applications. For our purposes, however, it means
we do not have to specify the number of clusters a-priori. Rather, we develop a
method to automatically discover the clusters in the constructed hierarchy that
are appropriate for resampling.

To produce the cluster hierarchy:

1. The pair-wise distance between each sample is calculated; and
2. A hierarchy is constructed by agglomeratively merging similar clusters.

The Ward variance minimisation algorithm [25] is used to construct the link-
ages in the hierarchy because it minimises the total within-cluster variance. This
objective is appropriate for our goal of finding concise sub-concepts in the data
to apply informed resampling on.

Given the set of clusters (also known as a forest) Ci at level i in the tree con-
structed thus far, the Ward variance minimisation algorithm search for clusters
s and t in Ci that have the minimum variance according to the Ward metric.
The clusters s and t are then merged to form a new cluster w = {s ∪ t} at
level i − 1. The linkage process halts when all samples are merged into a single
cluster.

3.3 Supervised Distance Measure

Clustering is typically an unsupervised process. We postulate, however, that the
discovery of natural groupings in the training data for the purposes of resampling
should not be unsupervised. Our hypothesis is that the class labels should have
some influence on the cluster formation, but this influence should not be absolute.
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Given a seed instance I1 = 〈x1, A〉 and two query instances I2 = 〈x2, A〉 and
I3 = 〈x3, B〉, where Euclidean(x1,x2) is equal to Euclidean(x1,x3), then I2
should be considered to be more similarly to I1 because it is from the same class.
Alternatively, if Euclidean(x1,x3) is significantly less than Euclidean(x1,x2),
then I3 should be considered to be more similarity regardless of its different
class association.

To achieve this, we propose a new supervised measure named Distance with
Class Label Integration (DCLIα). The DCLIα measure is based on a standard
user selected distance metric (d) and a parameter α that controls the importance
of matching class labels. The DCLIα measure is defined as,

DCLIα(〈xi, yi〉, 〈xj , yj〉) =

{
m + α(d(xi,xj) − m) if yi = yj

d(xi,xj) ifyi �= yj

(1)

where 〈xi, yi〉 represents an example with feature vector xi and target class yi,
d is a user selected distance metric, parameter α ∈ [0, 1] controls the influence of
the class labels in the DCLIα distance measure and m is the minimum distance
between instances in the training set measured using metric d.

The parameter α in Eq. 1 has the effect of weighting the significance of
the class label agreement, i.e. instances with matching class labels are brought
slightly closer together than their respective distances, d. Specifically, the DCLIα

distance between two instances xi, xj with matching class labels is equal to
some point, p, between d(xi,xj) and the minimum distance is the data set
arg minxl,xk∈D m = d(xl,xk). The proximity of p to either extreme is controlled
by the α parameter. In this paper, we have used the Euclidean distance for
parameter d in DCLIα. Figure 5 shows the effect of the α parameter on the
DCLIα distances for instances with matching class labels (x1, and x2), and
instances with mismatched class labels (x1, and x3).

To summarise, the purpose of the measure is to promote the clustering of
sparse groups of minority samples, even when a subset of those samples is slightly
closer to the majority class. In Fig. 5, instances 〈x1, A〉 and 〈x2, A〉 will be linked
in the hierarchy before 〈x3, B〉 for α < 0.8. We discuss the sensitivity of α in
Sect. 4.2.

3.4 CURE Algorithm

As previously stated, the CURE method consists of constructing a hierarchy
using our proposed DCLIα measure, and then automatically extracting clusters
from the hierarchy for resampling. For clarity, we refer to the sets of instances
at each level of the hierarchy as groups or groupings, and we refer to the subset
of these groups automatically identified for resampling as clusters.

The groupings for each level of the hierarchy are stored in a data structure
along with the corresponding intra-cluster distances, which we use for cluster
formation. Each instance in the training set is assigned to a cluster defined by the
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Fig. 5. Illustration of the impact of the α parameter on the DCLIα score.

largest grouping to which it belongs that has an intra-cluster distance less than
the threshold τ = μ+s×σ, where μ and σ are the mean and standard deviation of
the intra-cluster distances, and s is the number of standard deviations above the
mean to set the threshold. Empirically, we found the intra-cluster distances to
be approximately log-normal, thus it makes statistical sense to set the threshold
in this manner.

We view the distribution of intra-cluster distances as a proxy for the overall
spread of the data (variance is distances between training samples). As a result, s
should be set large enough to represent the variance in single sub-concepts (nat-
ural groupings) so as to form clusters around these sub-concepts, but not so large
as to join multiple sub-concepts into one cluster. The setting of the s parameter
is simplified by the log-normal assumption. We postulate that approximately one
standard deviation above the mean should achieve the required balance because
it covers most of the variance in the data, whilst excluding exceptional levels of
spread. The sensitivity of s is discussed in more detail in Sect. 4.2. The details of
the cluster method are shown in Algorithm 1, and Fig. 6 illustrates the process
of generating these clusters.

We define three cluster composition for resampling: (i) the cluster includes
only majority class cases; (ii) those with exactly one minority class case and
zero or more majority class instances; and (iii) those with more than one minor-
ity class case and zero or more majority class. If a cluster contains more than
one minority class case, we will interpolate between them generating new syn-
thetic cases and will maintain the majority class examples. When the cluster
contains exactly one minority class case, synthetic cases are generated by apply-
ing Gaussian jitter to it. Finally, if the cluster is formed exclusively by majority
class examples, this means we randomly undersample the cluster. Algorithm 2
provides an high level overview of the proposed CURE method.

In summary, the main idea of CURE is to carry out case generation and
undersampling inside regions of the input space that are safer. These regions
are found by taking into account the intrinsic structure of the training data.
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Fig. 6. Illustration of clusters generation using hierarchical clustering (Algorithm 1).
The resampling strategy to apply in each cluster is based on the cluster examples.

Fig. 7. Impact of changing CURE method hyper parameters in an artificial data set.

Fig. 8. Impact of changing the number of nearest neighbours considered in SMOTE
algorithm in an artificial data set.

We achieve this using a new distance measure in the context of a hierarchical
clustering process.

To better understand the way CURE avoids unsafe oversampling when com-
pared to SMOTE, we prepared the 2-dimensional artificial data1 in Figs. 7 and
8. These figures show the behaviour of each method with respect to their main
hyper parameters. These figures illustrate that CURE is capable of detecting safe
regions as opposed to SMOTE that generates new cases in regions that belong
to the majority class.

1 This is a hand curated 2-dimensional data set developed to demonstrate the strengths
of CURE.
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Algorithm 1. Generation of Clusters
Input: D - a classification data set

α ∈ [0, 1] - weights the influence of the class labels in DCLI distance
s - threshold on the standard deviation considered during clusters formation

Output: C - the clusters
1: function GenClusters(D, α, s)
2: MD ← pairwise distance matrix using DCLIα measure
3: Z ← agglomerative linkage tree calculated over MD
4: L ← log transform of the inter-cluster distances obtained in Z
5: μL ← mean of the inter-cluster distances in L
6: σL ← standard deviation of the inter-cluster distances in L
7: τ ← μL + s × σL � maximum inter-cluster distance for cluster formation
8: C ← Form clusters using Z s.t. the inter-cluster distances of the new clusters

is less or equal to τ
9: return C

10: end function

Algorithm 2. CURE Algorithm
Input: D - a classification data set

Smin, Smaj - number of minority and majority class instances to obtain in
the new data set

α - class labels weight parameter in DCLIα distance
s - threshold on the standard deviation considered during clusters formation

Output: D′ - new resampled data set
1: function CURE(D, Smin, Smaj , α, s)
2: k ← Smin/|minority class instances in D|� minority class instances to generate

for each instance
3: q ← [1 − (Smaj/|majority class instances in D|)] × 100 � % of majority class

examples to remove
4: C ← GenClusters(D, α, s)
5: D′ ← D
6: for each cluster ci in C do
7: if ci contains only majority class instances then
8: D′ ← D′\{random selection of q% of the instances in ci}
9: else if ci contains exactly one minority class instance then

10: new ← generate k synthetic cases using Gaussian jitter
11: D′ ← D′ ⋃ new
12: else � several minority class instances in the cluster
13: new ← generate k synthetic cases by interpolating minority cases in ci

14: D′ ← D′ ⋃ new
15: end if
16: end for
17: return D′

18: end function
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4 Experimental Evaluation

4.1 Materials and Methods

We have selected a diverse set of 29 benchmark data sets from the KEEL repos-
itory [1]. In order to consider the effectiveness of CURE at different levels of
absolute and relative imbalance, we process each original data set into three
new versions for the purpose of our experiments. The new versions contain 10,
30 and 50 minority class cases, for which we use the notation of IR10, IR30 and
IR50 to refer to these respectively. We conducted our experiments on 87 data
sets (29 × 3). The average imbalance ratios (|min|/|maj|) of the three versions
range between 0.186 and 0.037. Therefore, they include a wide range of absolute
and relative imbalance levels. Table 1 displays the main characteristics of the
used data sets.

Table 1. Data sets name, dimensions (Dim), majority class cases (|maj|), and imbal-
ance ratios when using 50, 30 and 10 minority class cases (IR50, IR30 and IR10).

We compare the performance of CURE to 7 state-of-the-art resampling meth-
ods, namely, random undersampling (RUS), random oversampling (ROS), the
combined application of RUS and ROS simultaneously (ROS + RUS), adap-
tive synthetic oversampling (ADASYN), SMOTE algorithm, Borderline-SMOTE
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(Borderline), and SMOTE with the removal of Tomek links (SMOTE + TL),
and no resampling (None).

Support vector machines (SVM) with the radial basis function (RBF) kernel
is selected for classification, because it is an effective non-parametric method
that can be trained on small amounts of data relative to deep learning methods.
Automatic parameter tuning is conducted after resampling via random search
over the γ ∈ [0.001, 20] and C ∈ [0.001, 20]. This promotes the discovery of the
best SVM model for the resampled training set.

The evaluation is performed via 5 × 2-fold cross validation, because it has
been observed that it has a lower probability of issuing a Type I error [9]. The
performance is reported in terms of the geometric mean (g-mean) [16] and the
Fβ measure [23]. Given the accuracy on the target class a+ and the accuracy
on the outlier class a−, the g-mean for a classification model f on test set X
is calculated as: g-meanf(X) =

√
a+ × a−. This metric enables us to evaluate

whether the resampling methods are helping to improving the performance on
the minority class, whilst having minimal impact on the majority class. The Fβ

measure expresses the harmonic mean of precision and recall. We used β = 1
which assigns the same weight to precision and recall measures. The Fβ measure
is popular in imbalanced domains as it provides a reliable assessment of the
models effectiveness on the minority class (e.g. [10]).

Regarding the CURE algorithm, we have set parameters Smin and Smaj

(c.f. Algorithm 2) as follows: Smin = |min| + 0.5 × |maj| and Smaj = 0.5 ×
|maj|, where |maj| and |min| correspond respectively to the number of minority
and majority class cases in the original data set. We apply this policy to the
alternative resampling methods as well. To ensure an easy replication of our
work all code and data sets used in the experiments are available at https://
ltorgo.github.io/CURE/.

4.2 Results and Discussion

Aggregated Results: The first set of experiments focuses on the effectiveness
of CURE for tackling the class imbalance problem. Figures 9 and 10 show the
number of times each resampling method was the best (won) in terms of the
average results during cross validation. The results are grouped according to the
number of minority cases. Thus, Winner 10 FM in Fig. 9 specifies the number of
times each resampling method won on the datasets with 10 minority class cases.

The figures illustrate that CURE has the highest number of wins in compar-
ison to the 8 tested alternatives. Regarding the F1 measure, CURE achieves 7,
12 and 10 wins for the IR10, IR30 and IR50 data sets respectively. The alterna-
tive that shows the most competitive results is Borderline with only 4, 3, and 2
wins for IR10, IR30 and IR50 data sets. Regarding the performance on G-Mean
measure we observe that the advantage displayed by CURE method is over-
whelming with 8, 14 and 12 wins on IR10, IR30 and IR50 data sets respectively.
In this setting, the method showing the second most competitive performance
is ADASYN displaying 6, 3 and 4 wins for the IR10, IR30 and IR50 data sets.

https://ltorgo.github.io/CURE/
https://ltorgo.github.io/CURE/
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Fig. 9. Number of wins obtained by each tested resampling approach aggregated by
data sets with 10, 30 and 50 minority class cases, for the F1 measure.

Fig. 10. Number of wins obtained by each tested resampling approach aggregated by
data sets with 10, 30 and 50 minority class cases, for the G-Mean metric.

(a) F1 on IR10. (b) F1 on IR30. (c) F1 on IR50.

(d) G-Mean on IR10. (e) G-Mean on IR30. (f) G-Mean on IR50.

Fig. 11. Ranks of each resampling approach on the three data set versions, IR10, IR30
and IR50, for both the F1 (top row) and G-Mean (bottom row) metrics.
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Fig. 12. CURE rankings for IR10 data set versions for: α = 0.25 and 0.25 ≤ s ≤ 1.

Figure 11 displays the boxplot of the rankings achieved by each resampling
method on each performance assessment metric by data set version. The rank-
ings shown were obtained using the average of the cross-validation results. These
results clearly show the advantage of using CURE. Overall, the results obtained
demonstrate the versatility of our proposed method over different class ratios,
and demonstrates the benefit of utilising the inherent structure of data for resam-
pling.

Hyper-parameter Sensitivity: CURE has two parameters: α and s. The α
parameter determines the influence of matching class labels on the distance score
(DCLIα). The second parameter, s, is number of standard deviations used in
threshold for cluster formation.

Figure 12 shows the variation in the rankings of CURE method, on data
sets from IR10 version, for parameter α fixed at 0.25 and parameter s ranging
between 0.25 and 1. Due to space constraints, we provide more figures that show
the results for other parameter variations in: https://ltorgo.github.io/CURE/.
The results obtained for s ≈ 1 are concentrated around the lower (and thus
better) rankings. As stated in Sect. 3, setting s ≈ 1 makes good statistical sense,
as well. The α parameter results suggest that values of α between 0.1 and 0.25
provides the best overall results. The good performance of CURE allied to this
user-friendly perspective make CURE an excellent approach to tackle the prob-
lem of imbalanced domains.

5 Conclusion

We presented CURE, a novel method that uses the inherent structure of data to
discover safer regions for resampling. These regions are found using a new class-
sensitive distance measure and hierarchical clustering. A suitable resampling
strategy is applied inside each cluster based on its characteristics. CURE aims at:
(i) avoiding the generation of synthetic cases in unsafe regions of the data space,

https://ltorgo.github.io/CURE/


16 C. Bellinger et al.

and (ii) preventing the removal of informative majority class cases. State-of-the-
art resampling methods fail these goals because they only consider a segmented
view of the data as opposed to CURE that considers a holistic view of the data.

We demonstrate the effectiveness of CURE on a diverse set of 29 benchmark
domains and 87 imbalanced classification datasets. The results show that CURE
has an advantage over 7 state-of-the-art alternatives for resampling methods in
terms of the g-mean and Fβ measures on 5 × 2-fold cross-validation. In addition,
we show that the key parameters of CURE, α and s are easy to set and perform
well over a large range of values. Thus, CURE does not require extensive hyper-
parameter tuning.

As future work, we plan to demonstrate CURE in multi-class domains, and
further improve the method for automatically detect the safe regions. Moreover,
we also plan to explore the application of other resampling methods inside each
safe region based on the regions characteristics.
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