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Preface

The Discovery Science conference presents a unique combination of latest advances in
the development and analysis of methods for discovering scientific knowledge, coming
from machine learning, data mining, and intelligent data analysis, with their application
in various scientific domains.

The 22nd International Conference on Discovery Science (DS 2019) was held in
Split, Croatia, during October 28-30, 2019. This was the first time the conference was
organized as a stand-alone event. For its first 20 editions, DS was co-located with the
International Conference on Algorithmic Learning Theory (ALT). In 2018 it was
co-located with the 24th International Symposium on Methodologies for Intelligent
Systems (ISMIS 2018).

DS 2019 received 63 international submissions. Each submission was reviewed by
at least three Program Committee (PC) members. The PC decided to accept 21 regular
papers and 19 short papers. This resulted in an acceptance rate of 33% for regular
papers.

The conference included three keynote talks. Marinka Zitnik (Stanford University)
contributed a talk titled “Representation Learning as a New Approach to Biomedical
Research,” Guido Caldarelli (IMT Lucca and ECLT Venice) gave a presentation titled
“The Structure of Financial Networks,” and Dino Pedreschi (University of Pisa),
contributed a talk titled “Data and Algorithmic Bias: Explaining the Network Effect in
Opinion Dynamics and the Training Data Bias in Machine Learning.” Abstracts of the
invited talks with short biographies of the invited speakers are included in these
proceedings.

Besides the presentation of regular and short papers in the main program, the
conference offered two new sessions. The “PhD Symposium” gave an opportunity to
PhD students at an early stage of their studies to participate in the conference by
presenting the topics of and early results from their research and discuss their work and
experiences with peers, senior researchers and leading experts working on similar
problems. The session titled “Late Breaking Contributions” featured poster and
spotlight presentations of very recent research results on topics related to Discovery
Science.

We are grateful to Springer for their long-term support, which got even stronger this
year. Springer publishes the conference proceedings, as well as a regular special issue
of the Machine Learning journal on Discovery Science. The latter offers authors a
chance of publishing in this prestigious journal significantly extended and reworked
versions of their DS conference papers, while being open to all submissions on DS
conference topics.

This year, Springer (LNCS and Machine Learning journal), supported the best
student paper awards. For DS 2019, the awardees are Anton Bjorklund, Andreas
Henelius, Emilia Oikarinen, Kimmo Kallonen and Kai Puolamiki (for the paper
“Sparse Robust Regression for Explaining Classifiers”) and Yannik Klein, Michael
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Rapp and Eneldo Loza Mencia (for the paper “Efficient Discovery of Expressive
Multi-label Rules Using Relaxed Pruning.”) We would like to thank the Best Paper
Award committee composed of Dragan Gamberger and Toon Calders for their precious
and timely evaluations.

On the program side, we would like to thank all the authors of submitted papers, the
PC members and the additional reviewers for their efforts in evaluating the submitted
papers, as well as the keynote speakers. On the organization side, we would like to
thank all the members of the Organizing Committee: Tomislav Lipi¢, Ana Vidos,
Matija Piskorec and Ratko Mileta, for the smooth preparation and organization of all
conference associated activities. We are also grateful to the people behind EasyChair
for developing the conference organization system that proved to be an essential tool in
the paper submission and evaluation process, as well as in the preparation of the
Springer proceedings.

The DS 2019 conference was organized under the auspices of the Rudjer Boskovi¢
Institute in Zagreb. The event was also supported by the Project of the Croatian Center
for Excellence in Data Science and Advanced Cooperative Systems. Significant
support, especially through human resources, was also provided by the JoZef Stefan
Institute from Ljubljana. Finally, we are indebted to all conference participants, who
contributed to making this exciting event a worthwhile endeavor for all involved.

October 2019 Petra Kralj Novak
Tomislav Smuc
SaSo Dzeroski
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The Structure of Financial Networks

Guido Caldarelli

IMT School for Advanced Studies,
Lucca and European Centre for Living Technology, Venice

Abstract. Financial inter-linkages play an important role in the emergence of
financial instabilities and the formulation of systemic risk can greatly benefit
from a network approach. In this talk, we focus on the role of linkages along the
two dimensions of contagion and liquidity, and we discuss some insights that
have recently emerged from network models. With respect to the issue of the
determination of the optimal architecture of the financial system, models suggest
that regulators have to look at the interplay of network topology, capital
requirements, and market liquidity. With respect to the issue of the determina-
tion of systemically important financial institutions, the findings indicate that
both from the point of view of contagion and from the point of view of liquidity
provision, there is more to systemic importance than just size. In particular for
contagion, the position of institutions in the network matters and their impact
can be computed through stress tests even when there are no defaults in the
system.

We present an overview of the use of networks in Finance and Economics.
We show how this approach enables us to address important questions as, for
example, the stability of financial systems and the systemic risk associated with
the functioning of the interbank market. For example with DebtRank, a novel
measure of systemic impact inspired by feedback-centrality we are able to
measure the nodes that become systemically important at the peak of the crisis.
Moreover, a systemic default could have been triggered even by small dispersed
shocks. The results suggest that the debate on too-big-to-fail institutions should
include the even more serious issue of too-central-to-fail. All these results are
new in the field and allow for a better understanding and modelling of different
Financial systems.

Keywords: Financial networks - Systemic risk - Interbank market

Short Biography of the Lecturer: Guido Caldarelli is Full Professor in Theoretical
Physics at IMT School for Advanced Studies Lucca, and is Research associate at the
European Centre for Living Technology, Venice. His main scientific activity is the
study of networks, mostly analysis and modelling of financial networks. Author of
more than 200 publication on the subject and three books, he is currently the president
of the Complex Systems Society. He has been coordinator of the FET IP Project
MULTIPLEX: Foundational Research on Multilevel Complex Networks and Systems
(2012-2016), the FET OPEN Project FoC: Forecasting Financial Crises (2010-2014),
and the FET OPEN Project COSIN: Coevolution and Self Organization in Complex
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Networks (2002-2005). Guido Caldarelli received his Ph.D. from SISSA, after which
he was a postdoc in the Department of Physics and School of Biology, University of
Manchester. He then worked at the Theory of Condensed Matter Group, University of
Cambridge. He returned to Italy as a lecturer at National Institute for Condensed Matter
(INFM) and later as Primo Ricercatore in the Institute of Complex Systems of the
National Research Council of Italy. In this period, he was also the coordinator of the
Networks subproject, part of the Complexity Project, for the Fermi Centre. He also
spent some terms at University of Fribourg (Switzerland) and in 2006 he has been
visiting professor at Ecole Normale Supérieure in Paris. More information and a
complete CV are available at: http://www.guidocaldarelli.com.
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Data and Algorithmic Bias: Explaining

the Network Effect in Opinion Dynamics

and the Training Data Bias in Machine
Learning

Dino Pedreschi

Universita di Pisa, Istituto di Scienza e Tecnologie dell’Informazione,
Consiglio Nazionale delle Ricerche
http: //kdd.isti.cnr. it

Abstract. Data science and network science are creating novel means to study
the complexity of our societies and to measure, understand and predict social
phenomena. My talk gives an overview of recent research at the Knowledge
Discovery (KDD) Lab in Pisa within the SoBigData.eu research infrastructure,
targeted at explaining the effects of data and algorithmic bias in different
domains, using both data-driven and model-driven arguments. First, I introduce
a model showing how algorithmic bias instilled in an opinion diffusion process
artificially yields increased polarisation, fragmentation and instability in a
population. Second, I focus on the urgent open challenge of how to construct
meaningful explanations of opaque AI/ML black-box decision systems, intro-
ducing the local-to-global framework for the explanation of ML classifiers as a
way towards explainable Al. The two cases show how the combination of
data-driven and model-driven interdisciplinary research has a huge potential to
shed new light on complex phenomena like discrimination and polarisation, as
well as to explain how decision making black-boxes, both human and artificial,
actually work. I conclude with an account of the open data science paradigm
pursued in SoBigData.eu Research Infrastructure and its importance for inter-
disciplinary data driven science that impacts societal challenges.

Keywords: Explainable Al - Data bias - Algorithmic bias

Short Biography of the Lecturer: Dino Pedreschi is a professor of computer science
at the University of Pisa, and a pioneering scientist in data science. He co-leads the
Pisa KDD Lab — Knowledge Discovery and Data Mining Laboratory http://kdd.isti.cnr.
it, a joint research initiative of the University of Pisa and the Information Science and
Technology Institute of the Italian National Research Council. His research focus is on
big data analytics and mining and their impact on society. He is a founder of the
Business Informatics MSc program at University of Pisa, a course targeted at the
education of interdisciplinary data scientists, and of SoBigData.eu, the European
H2020 Research Infrastructure “Big Data Analytics and Social Mining Ecosystem”
www.sobigdata.eu. Dino has been a visiting scientist at Barabasi Lab (Center for


http://kdd.isti.cnr.it
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http://www.sobigdata.eu
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Complex Network Research) of Northeastern University, Boston, and earlier at the
University of Texas at Austin, at CWI Amsterdam and at UCLA. In 2009, Dino
received a Google Research Award for his research on privacy-preserving data mining.
Dino is a member of the expert group in Al of the Italian Ministry of research and the
director of the Data Science PhD program at Scuola Normale Superiore in Pisa. Dino is
a co-PI of the 2019 ERC grant XAI — Science and technology for the explanation of Al
decision making (PI: Fosca Giannotti).



Representation Learning as a New Approach
to Biomedical Research

Marinka Zitnik

Computer Science Department, School of Engineering, Stanford University

Abstract. Large datasets are being generated that can transform science and
medicine. New machine learning methods are necessary to unlock these data
and open doors for scientific discoveries. In this talk, I will argue that machine
learning models should not be trained in the context of one particular dataset.
Instead, we should be developing methods that combine data in their broadest
sense into knowledge networks, enhance these networks to reduce biases and
uncertainty, and then learn and reason over the networks. My talk will focus on
two key aspects of this goal: representation learning and network science for
knowledge networks. I will show how realizing this goal can set sights on new
frontiers beyond classic applications of neural networks on biomedical image
and sequence data. I will start by presenting a framework that learns deep
models by embedding knowledge networks into compact embedding spaces
whose geometry is optimized to reflect network topology, the essence of net-
works. I will then describe two applications of the framework to drug discovery
and medicine. First, the framework allowed us to, for the first time, predict the
safety of drug combinations at scale. We embedded a knowledge network of
molecular, drug, and patient data at the scale of billions of interactions for all
medications in the U.S. Using the embeddings, the approach can predict
unwanted side effects for any combination of drugs that patients take, and we
can validate predictions in the clinic using real patient data. Second, I will
discuss how the framework enabled us to predict what diseases a new drug
could treat. I will show how the new approach can make correct predictions for
many recently repurposed drugs and can operate even on the hardest, yet critical,
diseases for which no good treatments exist. I will conclude with future direc-
tions for learning over interaction data and translation of machine learning
methods into solutions for biomedical problems.

Keywords: Biomedicine - Representation learning - Network science -
Knowledge graphs

Short Biography of the Lecturer: Marinka Zitnik is a postdoctoral scholar in
Computer Science at Stanford University. She will join Harvard University as a
tenure-track assistant professor in December 2019. Her research investigates machine
learning for sciences. Her methods have had a tangible impact in biology, genomics,
and drug discovery, and are used by major biomedical institutions, including Baylor
College of Medicine, Karolinska Institute, Stanford Medical School, and Massachusetts
General Hospital. She received her Ph.D. in Computer Science from University of
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Ljubljana while also researching at Imperial College London, University of Toronto,
Baylor College of Medicine, and Stanford University. Her work received several best
paper, poster, and research awards from the International Society for Computational
Biology. She was named a Rising Star in EECS by MIT and also a Next Generation in
Biomedicine by The Broad Institute of Harvard and MIT, being the only young sci-
entist who received such recognition in both EECS and Biomedicine. She is also a
member of the Chan Zuckerberg Biohub at Stanford.
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The CURE for Class Imbalance

1(<)

Colin Bellinger , Paula Branco?, and Luis Torgo?

! National Research Council of Canada, Ottawa, Canada
colin.bellinger@nrc-cnrc.gc.ca
2 Dalhousie University, Halifax, Canada
{pbranco,ltorgo}@dal.ca

Abstract. Addressing the class imbalance problem is critical for sev-
eral real world applications. The application of pre-processing methods
is a popular way of dealing with this problem. These solutions increase
the rare class examples and/or decrease the normal class cases. However,
these procedures typically only take into account the characteristics of
each individual class. This segmented view of the data can have a nega-
tive impact. We propose a new method that uses an integrated view of
the data classes to generate new examples and remove cases. ClUstered
REsampling (CURE) is a method based on a holistic view of the data
that uses hierarchical clustering and a new distance measure to guide
the sampling procedure. Clusters generated in this way take into account
the structure of the data. This enables CURE to avoid common mistakes
made by other resampling methods. In particular, CURE prevents the
generation of synthetic examples in dangerous regions and undersamples
safe, non-borderline, regions of the majority class. We show the effec-
tiveness of CURE in an extensive set of experiments with benchmark
domains. We also show that CURE is a user-friendly method that does
not require extensive fine-tuning of hyper-parameters.

Keywords: Imbalanced domains + Resampling - Clustering

1 Introduction

Class imbalance is a problem encountered in a wide variety of important clas-
sification tasks including oil spill, fraud detection, action recognition, text clas-
sification, radiation monitoring and wildfire prediction [4,17,21,22,24,27]. Prior
research has shown that class imbalance has a negative impact on the perfor-
mance of the learned binary classifiers. This problem becomes even more difficult
when the underlying distribution is complex and when the minority class is rare
[14,26]. Given the frequency of imbalanced learning problems and the possibility
for negative impacts on learning, the study of class imbalance and methods for
handling it have become important research topics. Indeed, it has been recog-
nised as one of the ten challenging problems in data mining research [29].

The solutions proposed by the research community to solve the class imbal-
ance problem include special-purpose learning methods, pre-processing and post-
processing methods. Pre-processing (or resampling) methods transform the orig-
inal training set making it more suitable for learning the important class(es).

© Springer Nature Switzerland AG 2019
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This is accomplished by following a certain strategy for up- or down-sampling
cases. Resampling methods are popular due to their versatility, effectiveness and
ease of application. Moreover, they enable the use of any standard learning tool.

In addition to suffering from the class imbalance problem, many real-world
domains are also complex by nature. They potentially include noisy instances and
sub-concepts that exacerbate the imbalance problem. This complexity dictates
that it is important to consider the inherent structure of the data. Failure to
do so may negatively impact the effectiveness of the resampling strategy. The
problem relates to: (i) the removal of majority class instances from sparse regions
of the domain; (ii) the generation of synthetic minority cases between minority
class sub-concepts (clusters); (iii) the reinforcement of noisy instances; and/or
(iv) the obfuscation of overlapping regions.

To address these issues, we propose the ClUstered REsampling (CURE)
method. CURE uses hierarchical clustering with a new class-sensitive distance
measure prior to the resampling process. This allows the extraction of essen-
tial structural information that is used to guide the resampling. The advantages
of this approach are: (i) meaningful clusters of the minority class are empha-
sised: (ii) the generation of minority class cases is avoided in error-prone regions
between sub-concepts; (iii) only “safe” majority class samples are undersam-
pled (i.e., borderline cases are not removed.) In an extensive set of experiments,
we show that the CURE algorithm is effective for tackling the class imbalance
problem. We also show that CURE does not requires extensive fine-tuning of
hyper-parameters to achieve good performance.

This paper is organised as follows. Section2 provides an overview of the
related work. In Sect.3 the CURE algorithm is described. The results of an
extensive experimental evaluation are presented and discussed in Sect. 4. Finally,
Sect. 5 presents the main conclusions of the paper.

2 Related Work

Numerous resampling methods have been proposed and applied to address imbal-
anced classification problems [5]. Random oversampling and random undersam-
pling (e.g. [16]) are the classic approaches to handling imbalance. They are well-
known to suffer from the risk of overfitting the minority samples and discarding
informative cases, respectively. The SMOTE algorithm [8] incorporates oversam-
pling and undersampling, and was proposed to overcome the issues of over- and
under-sampling. It attempts to do so by interpolating new synthetic instances
between nearest neighbours rather than replicating instances of the minority
class. Two key issues with SMOTE are: (a) it does not account for the structure
of the training data when performing the under and oversampling, and (b) it
uniformly applies oversampling and undersampling. On complex data domains,
this generation process can reinforce noise and increase the class overlap.
Many variations of SMOTE have been proposed to either clean the data after
synthetic oversampling or to preemptively avoid generating instances that would
negatively impact classifier performance [3,7,11,12]. For instance, Tomek links
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(examples from different classes that are each other closest neighbours) can be
removed from the training set after the application of SMOTE [3]. ADASYN [13]
and Borderline-SMOTE [12] are examples of methods that apply SMOTE only
in specific regions of the domain that are considered useful. ADASYN generates
more synthetic examples from minority class cases that have more nearest neigh-
bours from the majority class. Borderline-SMOTE generates more examples near
the minority class border. However, Borderline-SMOTE applies uniform under-
sampling and may generate new cases between subconcepts of the minority class
while ADASYN uses the local structure disregarding the global structure of the
data. Resampling with a neighbourhood bias [6] is an alternative that introduces
a bias in the selection of seed cases for both over and undersampling based on
the class distribution in the local neighbourhood of each instance. Different bias-
ing modes are proposed allowing to reinforce the most frontier or the most safe
cases. Our proposal advances this idea by replacing the need for users to specify
the k value necessary for the k-nearest neighbours computation, which is applied
homogeneously across all instances and may be difficult to determine a-priori.
Alternatively, we utilise hierarchical clustering that automatically finds variable
sized clusters in the underlying structure of the data for resampling.

Previous research has applied clustering plus random oversampling, clus-
tering plus random undersampling, and clustering plus synthetic oversampling
[2,15,18-20,28,30]. Of these methods, our proposal is most closely related to
[30]. Whereas the other methods only cluster one class, our method and that of
Yen et al. [30], clusters the complete training sets, and use the class distribution
in each cluster to inform if, and how much, resampling should be applied. By
clustering both classes instead of just one, we acquire a more complete view of
the data structure. The work of Yen et al. [30], uses k-means clustering which
has important limitations such as requiring the a-priori knowledge of the correct
number of clusters. By using hierarchical clustering, we are able to dynamically
discover the sub-clusters (clusters at different levels of the hierarchy) that best
address our resampling objectives. In addition, our method differs in the fact
that it applies both undersampling and synthetic oversampling which inflates the
minority class space while smoothing over-represented concepts of the majority
class.

3 The CURE Method

3.1 Overview

In this section, we present the ClUstered REsampling (CURE) method. The key
feature of CURE is that it utilises the intrinsic structure of the training data from
all of the problem classes to decide where and how to apply resampling. This
way, CURE avoids resampling mistakes incurred by SMOTE-based methods. In
particular, CURE reduces the risk of:

— Synthesising minority class samples deep inside the majority class space; and,
— Naively undersampling informative instances in the majority class.
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Minority seed Xg kNN

in the minority class

ICURE avoids interpolating:
into harmful regions.

Undersample pure
majority cluster.
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Fig. 1. lllustration of the intrusion into Fig. 2. llustration of the synthetic over-
the majority class caused by SMOTE. sampling of natural minority class group-
(Color figure online) ings discovery of CURE.

The oversampling issue of SMOTE-based methods is demonstrated in Fig. 1.
Here, the nearest neighbours of Xp are all minority class examples and thus
interpolating between them is safe. However, between X 4 and some of its near-
est minority class neighbours, there is an area populated with majority class
examples. Interpolating between these neighbours risks generating new synthetic
minority class case in the majority class space (the blue region).

The undersampling issue is highlighted in Fig. 3. Here, the resampler naively
discards some user-specified percentage, p, of the majority class samples (the
removed samples are shown as grey y) in order to balance the training set.
The random removal process risks the loss of information from the edge of the
majority class region, which could have a significant negative impact in the
learned decision boundary.

CURE avoids the over/undersampling issues discussed above by ensuring
that instances are generated in, and removed from, safe regions of the data-
space. This is achieved by applying hierarchical clustering and then resampling
each cluster in a manner that is determined by the class makeup of the cluster.

CURE leaves at least one
sample in each pure
majority class cluster.

b/
X
Random undersampling can delete CURE randomly undersamples pure
informative majority instances. majority class clusters.

Fig.3. Illustration of the removal of Fig. 4. Illustration of CURE keeping
informative majority samples via random potentially information samples in mixed
undersampling. and small majority class clusters.
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Figure2 illustrates where and how resampling is applied to clusters involving
minority class samples. Specifically, interpolation is only applied between minor-
ity class instances in the same cluster. This avoids the generation of samples deep
inside the majority class (grey zone in figure). Figure 4 demonstrates how CURE
randomly undersamples a percentage, p, of instances from each pure majority
class cluster, rather than at random from the complete set of majority class
instances. After undersampling, CURE will always leave at least one sample in
each cluster to avoid wiping out information about edge cases and sub-concepts.

3.2 Hierarchical Clustering

A hierarchical clustering is formed by successively merging instances that are
similar to each other. At the bottom of this hierarchy, we have the individual
training cases, and at the top node we have a single cluster containing all of the
cases. In between these extremes we have different groupings of the training data.
Thus, the hierarchy specifies a set of possible clusterings of the data, where the
clusters near the bottom of the hierarchy are smaller and more specific, and those
nearer the top are larger and more general. It is up to the users to determine
which clustering is best for their objectives.

The requirement to identify the “best” clusters from the hierarchy is a limi-
tation in many pure clustering applications. For our purposes, however, it means
we do not have to specify the number of clusters a-priori. Rather, we develop a
method to automatically discover the clusters in the constructed hierarchy that
are appropriate for resampling.

To produce the cluster hierarchy:

1. The pair-wise distance between each sample is calculated; and
2. A hierarchy is constructed by agglomeratively merging similar clusters.

The Ward variance minimisation algorithm [25] is used to construct the link-
ages in the hierarchy because it minimises the total within-cluster variance. This
objective is appropriate for our goal of finding concise sub-concepts in the data
to apply informed resampling on.

Given the set of clusters (also known as a forest) C; at level ¢ in the tree con-
structed thus far, the Ward variance minimisation algorithm search for clusters
s and t in C; that have the minimum variance according to the Ward metric.
The clusters s and ¢ are then merged to form a new cluster w = {s U t} at
level ¢ — 1. The linkage process halts when all samples are merged into a single
cluster.

3.3 Supervised Distance Measure

Clustering is typically an unsupervised process. We postulate, however, that the
discovery of natural groupings in the training data for the purposes of resampling
should not be unsupervised. Our hypothesis is that the class labels should have
some influence on the cluster formation, but this influence should not be absolute.
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Given a seed instance I; = (x1,A) and two query instances Iy = (x2, A) and
Is = (x3,B), where Euclidean(xy,x3) is equal to Euclidean(x;,x3), then I
should be considered to be more similarly to I; because it is from the same class.
Alternatively, if Euclidean(x1,x3) is significantly less than Euclidean(xq,x2),
then I3 should be considered to be more similarity regardless of its different
class association.

To achieve this, we propose a new supervised measure named Distance with
Class Label Integration (DCLI,). The DCLI, measure is based on a standard
user selected distance metric (d) and a parameter « that controls the importance
of matching class labels. The DCLI,, measure is defined as,

m+ a(d(x;,x5) —m) if yi =y,
d(x;,%;) ifyi # yj

where (x;,y;) represents an example with feature vector x; and target class y;,
d is a user selected distance metric, parameter « € [0, 1] controls the influence of
the class labels in the DC LI, distance measure and m is the minimum distance
between instances in the training set measured using metric d.

The parameter o in Eq.1 has the effect of weighting the significance of
the class label agreement, i.e. instances with matching class labels are brought
slightly closer together than their respective distances, d. Specifically, the DC'LI,,
distance between two instances x;, x; with matching class labels is equal to
some point, p, between d(x;,x;) and the minimum distance is the data set
argminy, . «pm = d(x;,X). The proximity of p to either extreme is controlled
by the « parameter. In this paper, we have used the Euclidean distance for
parameter d in DCLI,. Figure5 shows the effect of the o parameter on the
DCLI, distances for instances with matching class labels (x1, and x3), and
instances with mismatched class labels (x1, and x3).

To summarise, the purpose of the measure is to promote the clustering of
sparse groups of minority samples, even when a subset of those samples is slightly
closer to the majority class. In Fig. 5, instances (x1, A) and (x2, A) will be linked
in the hierarchy before (x3, B) for av < 0.8. We discuss the sensitivity of a in
Sect. 4.2.

DCLIa((xi, i), (x5, 45)) = { (1)

3.4 CURE Algorithm

As previously stated, the CURE method consists of constructing a hierarchy
using our proposed DCLI, measure, and then automatically extracting clusters
from the hierarchy for resampling. For clarity, we refer to the sets of instances
at each level of the hierarchy as groups or groupings, and we refer to the subset
of these groups automatically identified for resampling as clusters.

The groupings for each level of the hierarchy are stored in a data structure
along with the corresponding intra-cluster distances, which we use for cluster
formation. Each instance in the training set is assigned to a cluster defined by the
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Fig. 5. Illustration of the impact of the o parameter on the DCLI, score.

largest grouping to which it belongs that has an intra-cluster distance less than
the threshold 7 = u+sx o, where u and o are the mean and standard deviation of
the intra-cluster distances, and s is the number of standard deviations above the
mean to set the threshold. Empirically, we found the intra-cluster distances to
be approximately log-normal, thus it makes statistical sense to set the threshold
in this manner.

We view the distribution of intra-cluster distances as a proxy for the overall
spread of the data (variance is distances between training samples). As a result, s
should be set large enough to represent the variance in single sub-concepts (nat-
ural groupings) so as to form clusters around these sub-concepts, but not so large
as to join multiple sub-concepts into one cluster. The setting of the s parameter
is simplified by the log-normal assumption. We postulate that approximately one
standard deviation above the mean should achieve the required balance because
it covers most of the variance in the data, whilst excluding exceptional levels of
spread. The sensitivity of s is discussed in more detail in Sect. 4.2. The details of
the cluster method are shown in Algorithm 1, and Fig. 6 illustrates the process
of generating these clusters.

We define three cluster composition for resampling: (i) the cluster includes
only majority class cases; (ii) those with exactly one minority class case and
zero or more majority class instances; and (iii) those with more than one minor-
ity class case and zero or more majority class. If a cluster contains more than
one minority class case, we will interpolate between them generating new syn-
thetic cases and will maintain the majority class examples. When the cluster
contains exactly one minority class case, synthetic cases are generated by apply-
ing Gaussian jitter to it. Finally, if the cluster is formed exclusively by majority
class examples, this means we randomly undersample the cluster. Algorithm 2
provides an high level overview of the proposed CURE method.

In summary, the main idea of CURE is to carry out case generation and
undersampling inside regions of the input space that are safer. These regions
are found by taking into account the intrinsic structure of the training data.
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Fig. 6. Illustration of clusters generation using hierarchical clustering (Algorithm 1).
The resampling strategy to apply in each cluster is based on the cluster examples.
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Fig. 7. Impact of changing CURE method hyper parameters in an artificial data set.
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Fig. 8. Impact of changing the number of nearest neighbours considered in SMOTE
algorithm in an artificial data set.

We achieve this using a new distance measure in the context of a hierarchical
clustering process.

To better understand the way CURE avoids unsafe oversampling when com-
pared to SMOTE, we prepared the 2-dimensional artificial data' in Figs. 7 and
8. These figures show the behaviour of each method with respect to their main
hyper parameters. These figures illustrate that CURE is capable of detecting safe
regions as opposed to SMOTE that generates new cases in regions that belong
to the majority class.

! This is a hand curated 2-dimensional data set developed to demonstrate the strengths
of CURE.
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Algorithm 1. Generation of Clusters

Input: D - a classification data set
a € [0, 1] - weights the influence of the class labels in DCLI distance
s - threshold on the standard deviation considered during clusters formation
Output: C - the clusters
function GENCLUSTERS(D, «, )
Mp «— pairwise distance matrix using DC LI, measure
Z «— agglomerative linkage tree calculated over Mp
L < log transform of the inter-cluster distances obtained in Z
e < mean of the inter-cluster distances in £
or < standard deviation of the inter-cluster distances in £
T puc+sXog > maximum inter-cluster distance for cluster formation
C « Form clusters using Z s.t. the inter-cluster distances of the new clusters
is less or equal to T
return C
10: end function

©

Algorithm 2. CURE Algorithm

Input: D - a classification data set
Smin, Smaj - Number of minority and majority class instances to obtain in
the new data set
a - class labels weight parameter in DC LI, distance
s - threshold on the standard deviation considered during clusters formation
Output: D’ - new resampled data set
: function CURE(D, Smin, Smaj, &, )
k — Smin/ \minority class instances in D|> minority class instances to generate
for each instance
q < [1 — (Smaj/|majority class instances in D|)] x 100 > % of majority class
examples to remove

N =

@

4: C «— GENCLUSTERS(D, a, s)

5: D «— D

6: for each cluster ¢; in C do

T if ¢; contains only majority class instances then

8: D' «— D’\{random selection of q% of the instances in c;}

9: else if ¢; contains exactly one minority class instance then

10: new <« generate k synthetic cases using Gaussian jitter

11: D' «— D'Jnew

12: else > several minority class instances in the cluster
13: new «— generate k synthetic cases by interpolating minority cases in c¢;
14: D' «— D'Jnew

15: end if

16: end for

17: return D’
18: end function
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4 Experimental Evaluation

4.1 Materials and Methods

We have selected a diverse set of 29 benchmark data sets from the KEEL repos-
itory [1]. In order to consider the effectiveness of CURE at different levels of
absolute and relative imbalance, we process each original data set into three
new versions for the purpose of our experiments. The new versions contain 10,
30 and 50 minority class cases, for which we use the notation of IR10, IR30 and
IR50 to refer to these respectively. We conducted our experiments on 87 data
sets (29 x 3). The average imbalance ratios (|min|/|maj|) of the three versions
range between 0.186 and 0.037. Therefore, they include a wide range of absolute
and relative imbalance levels. Table1 displays the main characteristics of the
used data sets.

Table 1. Data sets name, dimensions (Dim), majority class cases (|maj|), and imbal-
ance ratios when using 50, 30 and 10 minority class cases (IR50, IR30 and IR10).
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Dim 5 16 34 9 11 90 64 10 40 13 9 19 36 16 16

lmaj| 214 1560 121 422 428 108 1134 2678 1750 1298 1645 660 1118 1560 1671
IR50 0.234 0.032 0.413 0.118 0.117 0.463 0.044 0.019 0.029 0.039 0.030 0.076 0.045 0.032 0.030
IR30 0.140 0.019 0.248 0.071 0.070 0.278 0.026 0.011 0.017 0.023 0.018 0.045 0.027 0.019 0.018
IR10 0.047 0.006 0.083 0.024 0.023 0.093 0.009 0.004 0.006 0.008 0.006 0.015 0.009 0.006 0.006
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Dim 19 33 13 9 20 10 13 85 13 57 6 30 18 21 25.3

lmaj| 115 112 270 222 1019 2802 80 4618 75 1393 114 179 215 2967 1053.4
IR50 0.435 0.446 0.185 0.225 0.049 0.018 0.625 0.011 0.667 0.036 0.439 0.279 0.233 0.017 0.186
IR30 0.261 0.268 0.111 0.135 0.029 0.011 0.375 0.006 0.400 0.022 0.263 0.168 0.140 0.010 0.111
IR10 0.087 0.089 0.037 0.045 0.010 0.004 0.125 0.002 0.133 0.007 0.088 0.056 0.047 0.003 0.037

We compare the performance of CURE to 7 state-of-the-art resampling meth-
ods, namely, random undersampling (RUS), random oversampling (ROS), the
combined application of RUS and ROS simultaneously (ROS + RUS), adap-
tive synthetic oversampling (ADASYN), SMOTE algorithm, Borderline-SMOTE
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(Borderline), and SMOTE with the removal of Tomek links (SMOTE + TL),
and no resampling (None).

Support vector machines (SVM) with the radial basis function (RBF) kernel
is selected for classification, because it is an effective non-parametric method
that can be trained on small amounts of data relative to deep learning methods.
Automatic parameter tuning is conducted after resampling via random search
over the v € [0.001,20] and C' € [0.001,20]. This promotes the discovery of the
best SVM model for the resampled training set.

The evaluation is performed via 5 x 2-fold cross validation, because it has
been observed that it has a lower probability of issuing a Type I error [9]. The
performance is reported in terms of the geometric mean (g-mean) [16] and the
F3 measure [23]. Given the accuracy on the target class a™ and the accuracy
on the outlier class a™, the g-mean for a classification model f on test set X
is calculated as: g-mean; y) = v/a™ x a~. This metric enables us to evaluate
whether the resampling methods are helping to improving the performance on
the minority class, whilst having minimal impact on the majority class. The Fj
measure expresses the harmonic mean of precision and recall. We used § = 1
which assigns the same weight to precision and recall measures. The Fjg measure
is popular in imbalanced domains as it provides a reliable assessment of the
models effectiveness on the minority class (e.g. [10]).

Regarding the CURE algorithm, we have set parameters Sp,in and Spaj
(c.f. Algorithm 2) as follows: Sy = |min| + 0.5 x |maj| and Spe; = 0.5 X
|maj|, where |maj| and |min| correspond respectively to the number of minority
and majority class cases in the original data set. We apply this policy to the
alternative resampling methods as well. To ensure an easy replication of our
work all code and data sets used in the experiments are available at https://
ltorgo.github.io/CURE/.

4.2 Results and Discussion

Aggregated Results: The first set of experiments focuses on the effectiveness
of CURE for tackling the class imbalance problem. Figures9 and 10 show the
number of times each resampling method was the best (won) in terms of the
average results during cross validation. The results are grouped according to the
number of minority cases. Thus, Winner 10 FM in Fig. 9 specifies the number of
times each resampling method won on the datasets with 10 minority class cases.
The figures illustrate that CURE has the highest number of wins in compar-
ison to the 8 tested alternatives. Regarding the F; measure, CURE achieves 7,
12 and 10 wins for the IR10, IR30 and IR50 data sets respectively. The alterna-
tive that shows the most competitive results is Borderline with only 4, 3, and 2
wins for IR10, IR30 and IR50 data sets. Regarding the performance on G-Mean
measure we observe that the advantage displayed by CURE method is over-
whelming with 8, 14 and 12 wins on IR10, IR30 and IR50 data sets respectively.
In this setting, the method showing the second most competitive performance
is ADASYN displaying 6, 3 and 4 wins for the IR10, IR30 and IR50 data sets.
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Fig. 9. Number of wins obtained by each tested resampling approach aggregated by
data sets with 10, 30 and 50 minority class cases, for the F; measure.
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Fig. 10. Number of wins obtained by each tested resampling approach aggregated by
data sets with 10, 30 and 50 minority class cases, for the G-Mean metric.
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Fig. 11. Ranks of each resampling approach on the three data set versions, IR10, IR30
and IR50, for both the F; (top row) and G-Mean (bottom row) metrics.
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Fig. 12. CURE rankings for IR10 data set versions for: & = 0.25 and 0.25 < s < 1.

Figure 11 displays the boxplot of the rankings achieved by each resampling
method on each performance assessment metric by data set version. The rank-
ings shown were obtained using the average of the cross-validation results. These
results clearly show the advantage of using CURE. Overall, the results obtained
demonstrate the versatility of our proposed method over different class ratios,
and demonstrates the benefit of utilising the inherent structure of data for resam-

pling.

Hyper-parameter Sensitivity: CURE has two parameters: a and s. The «
parameter determines the influence of matching class labels on the distance score
(DCLI,). The second parameter, s, is number of standard deviations used in
threshold for cluster formation.

Figure 12 shows the variation in the rankings of CURE method, on data
sets from IR10 version, for parameter a fixed at 0.25 and parameter s ranging
between 0.25 and 1. Due to space constraints, we provide more figures that show
the results for other parameter variations in: https://ltorgo.github.io/CURE/.
The results obtained for s ~ 1 are concentrated around the lower (and thus
better) rankings. As stated in Sect. 3, setting s ~ 1 makes good statistical sense,
as well. The « parameter results suggest that values of a between 0.1 and 0.25
provides the best overall results. The good performance of CURE allied to this
user-friendly perspective make CURE an excellent approach to tackle the prob-
lem of imbalanced domains.

5 Conclusion

We presented CURE, a novel method that uses the inherent structure of data to
discover safer regions for resampling. These regions are found using a new class-
sensitive distance measure and hierarchical clustering. A suitable resampling
strategy is applied inside each cluster based on its characteristics. CURE aims at:
(i) avoiding the generation of synthetic cases in unsafe regions of the data space,
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and (ii) preventing the removal of informative majority class cases. State-of-the-
art resampling methods fail these goals because they only consider a segmented
view of the data as opposed to CURE that considers a holistic view of the data.

We demonstrate the effectiveness of CURE on a diverse set of 29 benchmark
domains and 87 imbalanced classification datasets. The results show that CURE
has an advantage over 7 state-of-the-art alternatives for resampling methods in
terms of the g-mean and Fg measures on 5 x 2-fold cross-validation. In addition,
we show that the key parameters of CURE, « and s are easy to set and perform
well over a large range of values. Thus, CURE does not require extensive hyper-
parameter tuning.

As future work, we plan to demonstrate CURE in multi-class domains, and
further improve the method for automatically detect the safe regions. Moreover,
we also plan to explore the application of other resampling methods inside each
safe region based on the regions characteristics.
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Abstract. The objective of the maximum weighted set of disjoint sub-
matrices problem is to discover K disjoint submatrices that together
cover the largest sum of entries of an input matrix. It has many practical
data-mining applications, as the related biclustering problem, such as
gene module discovery in bioinformatics. It differs from the maximum-
weighted submatrix coverage problem introduced in [6] by the explicit
formulation of disjunction constraints: submatrices must not overlap. In
other words, all matrix entries must be covered by at most one submatrix.
The particular case of K = 1, called the maximal-sum submatrix prob-
lem, was successfully tackled with constraint programming in [5]. Unfor-
tunately, the case of K > 1 is more challenging to solve as the selection of
rows cannot be decided in polynomial time solely from the selection of K
sets of columns. It can be proved to be NP-hard. We introduce a hybrid
column generation approach using constraint programming to generate
columns. It is compared to a standard mixed integer linear program-
ming (MILP) through experiments on synthetic datasets. Overall, fast
and valuable solutions are found by column generation while the MILP
approach cannot handle a large number of variables and constraints.

Keywords: Constraint programming + Maximum weighted
submatrix - Column generation - Maximum weighted set of disjoint
submatrices problem - Bi-cliques - Data-mining

Introduction

1.1 Problem Definition

We are interested in the mining of a numerical matrix to discover submatrices
capturing a high total value. Precisely, we consider an input matrix M with
m rows and n columns where element M; ; is a given real value. The matrix
is associated with a set of rows R = {rq,..
{Cl, ..

If I C Rand J C C are subsets of the rows and of the columns, respectively,
the submatrix (I;J) denotes all the elements M, ; of M such thati € IAj € J.

.,n}. We use (R;C) to denote the matrix M.

© Springer Nature Switzerland AG 2019
P. Kralj Novak et al. (Eds.): DS 2019, LNATI 11828, pp. 18-28, 2019.
https://doi.org/10.1007/978-3-030-33778-0_2

.,"m} and a set of columns C =


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33778-0_2&domain=pdf
http://orcid.org/0000-0001-8688-7498
http://orcid.org/0000-0002-6700-3519
http://orcid.org/0000-0002-3153-8941
http://orcid.org/0000-0003-4835-6519
https://doi.org/10.1007/978-3-030-33778-0_2

Mining a Maximum Weighted Set of Disjoint Submatrices 19

The max-sum submatrix problem (MSSP), introduced in [5], consists in iden-
tifying a subset of rows and of columns of an input matrix that maximizes the
sum of the covered entries, which is the submatrix weight. The problem is for-
mally stated below.

The Maz-Sum Submatriz Problem (MSSP): Given a matrix M € R™*™,
R ={1,...,m} and C = {1,...,n} the associated sets of rows and columus,
respectively. The submatrix (I* C R, J* C C) is of max-sum iff:

(I*; J*) = argmax Z M ; (1)

LI ierjeg

In this paper, we consider only the non-trivial problem matrices containing both
positive and negative entries. Such a problem is both compelling and challenging
to solve. A constraint programming (CP) implementation successfully tackled
this difficult problem for matrices of thousands of rows and hundreds of columns,
as is typical in several biological applications [5].

A natural extension of the MSSP is to identify K submatrices. The maximum
weighted submatrix coverage problem (MWSCP) proposed in [6] is an extension
to the identification of K possibly overlapping submatrices with maximal weight.
It relies on a modification of the objective function such that covered entries
contribute strictly once to the objective. However, it favors overlaps on negative
entries: penalties are distributed among overlaps. Moreover, overlaps on positive
entries will not improve the objective value.

In the present work, we consider an alternative extension to the identification
of K submatrices, relying on an objective function computed as the sum of sub-
matrix weights, and the explicit addition of disjunction constraints. By allowing
overlaps on the rows or the columns (but not both simultaneously due to the
disjunction constraint) we avoid the unexpected behavior of the MWSCP. More-
over, the solution’s interpretability by a domain expert is eased. Such a solution
is usually called nonoverlapping nonexclusive nonexhaustive in the biclustering
context [10].

Definition 1. The Mazximum Weighted Set of Disjoint Submatrices
Problem (MWSDSP): Given a matric M € R™*" R = {1,...,m} and
C = {1,...,n} be the associated sets of rows and of columns, respectively,
and K be a target number of submatrices. The mazximum weighted set of dis-
joint submatrices problem is to select a set of K submatrices (I**; J**), with
I*™ C R and J** C C forallk € {1,..., K}, such that each matriz entry is cov-
ered by at most one submatriz and the weight of the covered entries is maximal:

K
U507 (5T ) = argmax Y 2)
[CATPADRINNCESD AL BNy

st. (IFxJ) NI xJ"Y=0 VkE e{l,... . K}k+#K (3)

where Wy = Y 1k ocx My is the weight of submatriz k.
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Disjunction constraints (3) enforce that each matrix entry is selected by at
most one submatrix. Restricting to G (> 1) overlaps would result in [K/G]
groups of G identical submatrices. While any submatrix pair may share rows
or columns, the constraint prevents any pair from sharing rows and columns
simultaneously. Note that the specific submatrix ordering is irrelevant.

1.2 Contributions

Our contributions are: (1) The introduction of the maximum weighted set of
disjoint submatrices problem (MwsDsP) as a generalization of the max-sum sub-
matrix (MssP) problem; (2) A mathematical programming approach to solve the
MwsDsP; (3) The formulation of the MwsDSP as an integer linear program (ILP)
relying on constraint programming (CP) to produce relevant variables; (4) An
evaluation of the performances of these two alternatives and the benefit of the
ILP+CP over a greedy approach on synthetic datasets.

1.3 Motivation

The MWSDSP has many practical data-mining applications where one is inter-
ested in discovering K specific relations between two groups of variables.

As an example, in gene expression analysis, M, ; corresponds to the expres-
sion value of gene ¢ in sample j. One is typically interested in finding a subset
of genes that present high expression value, i.e., an active biological pathway,
in a subset of the samples. Finding multiple pathways specific to some samples
is a common task in gene expression analysis. Submatrices overlaps would cor-
respond to non-specific signal. In contrast, shared rows only would correspond
to gene simultaneously active in multiple pathways, and shared columns only to
subpopulations of samples exhibiting the same pathway activity.

1.4 Related Work

The max-sum submatrix problem (MSSP) and the maximum weighted subma-
trix coverage problem (MWSCP), presented in Sect. 1.1, are A'P-hard [6]. The
present work and the MWSCP extend the MSSP to K > 1 by adding disjunction
constraint and by adapting the objective function, respectively.

In the maximum subarray problem, introduced in [3], the aim is to find a
subset of contiguous columns with maximal weight from an array. Polynomial-
time complexity algorithms have been proposed for matrices [14]. This problem
is simpler than the MWSDSP, however, as a single submatrix is required and it
is constrained to be formed of contiguous subsets of rows and columns.

The biclustering problems are concerned with the discovery of homogeneous
submatrices rather than maximizing the weight of covered entries. Madeira et al.
provided a comprehensive review of biclustering problems [10].

The minimum sum-of-squares clustering problem involves the definition of
non-overlapping sets of rows (or columns) covering all matrix entries. Although
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the problem differs, we use a similar approach as in [2]: the combination of an
ILP and delayed column generation.

In the ranked tile mining problem, introduced in [9], entries are discrete
ranks, corresponding to a permutation of column indices on each row. Moreover,
the definition of a parametrized penalty for overlapping coverage discourages
but allows identification of repetitive solutions.

2 Constraint Programming Approaches

2.1 Search Space

Let us define a set variable T* (resp. U*) to represent the rows (resp. columns)

included in submatrix k. The search space of the MSSP can be limited to search-

ing on a single dimension, for instance the column set variable U'. Indeed, opti-

mal 7! can be found in polynomial time: Vi € R: Yjern Mi; >0 = i€ T
Let us define the MWSDSP with fixed column selections formally.

Definition 2. The MWSDSP with fixed column selections. The notations
are the same as in Definition (1), but in this case the selections of columns for
each submatrices (the C* sets) are given.

K
31*7 . ’RK* = argmax Z Z M (4)

Rl*,"' ’RK* e1 reRk,ceck

st. (R*xC"N R xCc*Y=0 VkK e{1,... K}Lk#kK (5)

For K > 1, once all the column set variables U* are fixed, it remains to
decide for each row i and each submatrix k whether i is to be selected (i € T*)
or not. These K decisions per row cannot be optimally taken in polynomial time,
as stated in Theorem (1). As a consequence, the search will have to assign both
the row and column set variables, as opposed to the simpler K = 1 problem.

Theorem 1. The MWSDSP with fized column selections is N'P-Hard.

Proof. We reduce the Maximum Weighted Independent Set (MWIS) problem to
our problem. MWIS is N'P-Hard (by immediate reduction from the Independent
Set problem [8]), and aims at finding, in a graph G = <V, E> with weights w,
on each vertex v € V, the set of vertices with the maximum sum such that
they do not share edges in G. For simplicity, we represent edges and vertices
as numbers: V = {1,...,|V|} and E = {1,...,|E|}. We reduce an instance of
the MWIS to an instance of the MWSDSP with fixed column selections. We
create a 1 by (|V|+ |E|) matrix M: M, =w; if i € {1,...,|V|}, and My, =0
otherwise. The columns sets C*, ..., OVl are constructed as follows: C* = {v} U
{[V|+ e | e € E A edge e has v as origin or destination}. Each vertex in the
graph G is transformed in a submatrix. If the single row of matrix M is selected
by a submatrix, then the vertex is included in the MWIS. The non-overlapping
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constraint of MWSDSP forbids two adjacent vertices (i.e., submatrices) to both
be included in the solution (constructing an independent set), due to the way the
column selections C*,...,C!VI are constructed. Resolving the MWSDSP then
leads to the same optimal objective result as the original MWIS problem, and
the selected rows RY, Yu € [1,...,|V]], indicates, for each node v, if the node
is inside the MWIS (RY = {1}) or not (R" = ). As computing the MWIS in
general graphs is N’P-Hard, and as the MWSDSP with fixed column selections
can encode the MWIS problem, we conclude that the MWSDSP with fixed
column selections is A'P-Hard. 0

2.2 Greedy Approach

A simple approach to solving the MWSDSP is to solve the MSSP repeatedly.
For each new max-sum submatrix found, the corresponding values are replaced
by —oo, forbidding subsequent iterations from selecting these entries again.

Each iteration is performed until optimality or absence of solution are proved;
or at least one solution has been found.

2.3 Column Generation

We propose a column generation (CG) approach [7] to find solutions to the
MWSDSP. It relies on CP! in an ILP setting. The CP part identifies candidate
submatrices. The ILP efficiently combines submatrices and guides the CP part.

Let us represent the given matrix M of m x n entries as the vector V of
v = m X n entries obtained by stacking the columns of the matrix M on top
of one another. The MWSDSP is formulated using a v x 2™*" binary matrix
B representing all 2+" possible submatrices. Each column [ of B corresponds
to a submatrix ! such that B;; = 1 if and only if entry V; is covered by the
submatrix [. The weight w; of submatrix [/ is the sum of its covered entries:
w; =Y.,_, Vi x B;;. Equations (2) and (3) can be formulated as an ILP:

maximize Zwl X T (6a)
leL
st. > Biyixa <1 Vie{l,...,v} (6b)
leL

Z:rl <K (6¢)

leL
r € {0,1} VielL (6d)
where L = {1,...,2™*"} denotes all possible submatrices. The decision vari-

able x; encodes the selection of submatrix . Equation (6b) ensures submatrices

disjunction and Eq. (6¢) enforces the selection of at most K submatrices.
Defining the matrix B before solving the ILP is computationally not feasible,

even for small input matrices M. In subproblem solving, the master problem

! See [11] for an introduction to CP.
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(or ILP), in Eq. (6a)—(6d), is restricted to a subset L' C L of submatrices effec-
tively defining a restricted master problem (RMP). Iteratively, an RMP is solved,
and one or multiple new submatrices (columns) are inserted in L', defining a new
RMP. Submatrices (columns) are candidates for insertion to an RMP if its inser-
tion can improve the objective function of the RMP.

To find such candidate submatrices, we define a Linear Programming relax-
ation of the RMP (LP-RMP) which comes along the integrality constraints (6d)
relaxation of the ILP (in an LP) and the subsetting of L. We use the dual of the
LP-RMP to find submatrices with a positive reduced cost?. Such submatrix can
improve the LP-RMP. If no such submatrix exists, the optimal solution to the
LP-RMP is an optimal solution to the LP. The dual of the LP-RMP is:

minimize 0 X K + Z A (7a)
i=1
st. 0+ Biuxhi>w Vel (7b)
i=1
Ai >0 Vie{l,...,v} (7c)
0>0 (7d)

The dual values \; and 6 corresponding to the primal constraints defined
in Eq. (6b) and (6¢), respectively, are obtained by solving an LP-RMP. Each
column z; of the RMP is associated with a constraint in the dual (Eq. 7b).

Finding a submatrix with a positive reduced cost is called pricing. Such a sub-
matrix is defined as any submatrix [ € L for which —0 — Zle Bii x X +w; <0.
The LP-RMP is optimal if the pricing problem has no solution. Moreover, if the
LP-RMP (being optimal) and the RMP have the same objective value, then the
solution to the ILP is optimal.

The pricing problem can be reformulated as: >.;_, [Biy x (Vi — Ai)] > 6.

Solving this pricing problem is not trivial: it amounts to identifying a subma-
trix in the input matrix modified by the \; values such that its weight is larger
than some #. While the pricing routine usually tries to identify a solution with
maximum reduced cost, it can return any submatrix with positive reduced cost.

In practice, we use the greedy approach described earlier to find submatrices
of weight larger than # from an input matrix modified according to the \; values.
This provides solutions to the pricing problem.

Implementation details may have an important role in the effectiveness of the
approach. Such details are present next.

To maximize the information given by the dual values, we avoid having redun-
dant constraints, notably the constraints (6b). For example, if two submatrices
overlap on more than one cell, we enforce only one constraint representing all
the overlapping cells. Precisely, constraint (6b) is replaced by the following:

Sa<1 VSe{{z|3i,,:1}\ie{L...,u}}. (8)

les

2 Given that the problem is a maximization problem.
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That is, we enforce one non-overlap constraint per group of entries sharing
the same intersecting submatrices (an overlapping group)3. We then redistribute
the dual value of the constraint equally (we divide it by the number of entries)
over all the entries in this overlapping group. This allows the method to avoid
a pitfall of most solvers: when facing multiple equivalent constraint, only one
will be tight, i.e. having a non-zero dual value. Redistributing the duals on all
the entries in an overlapping group allows the subproblem solver to find more
interesting submatrices.

The LP-RMP does not necessarily provide a binary decision on the submatrix
selection. To effectively identify a solution to the original MWSDSP, the RMP is
solved for any solution to the LP-RMP. Observe that the objective value of the
LP-RMP is an upper bound to the objective value of the RMP. All experiments
present the results of the RMP solution.

The subset L' defining the first RMP to solve is obtained using the greedy
approach searching for K submatrices. This serves as a greedy hot-start for
the column generation approach.

Given the non-trivial pricing problem, there is no guarantee that the greedy
subroutine identifies an optimal solution to the pricing problem. While it would
be possible to use a branch-and-price algorithm [13], it would be non-trivial to
solve the pricing problem to optimality. The running time needed to solve the
LP-RMP to optimality (i.e. to the point where no new submatrix with positive
reduced cost exists) is already quite high, as shown in the experiment section
below. The authors consider that the use of a branch-and-price algorithm is
outside of the paper’s scope.

Guidance on the search for better submatrices requires many submatrices in
the RMP with large weight. Moreover, the greedy subroutine may identify many
solutions (i.e. submatrices) to the pricing problem. As the number of submatrices
to find increases, the weight of these submatrices likely decreases. It is then more
useful to seek multiple submatrices later in the column generation process. As
a consequence, at iteration p of the column generation, up to p solutions, or
submatrices, to the pricing problem are identified and are inserted in the RMP.

2.4 Mixed Integer Linear Programming

We propose a Mixed Integer Linear Programming model using the binary vari-
ables TF and UJ’A€ to represent the selection of row ¢ and column j for submatrix
k. These decision variables are used to compute the contribution of the row i
for the submatrix k (ri”). The sum of the row contributions is the objective
function to be maximized. The model presented below is based on a Big-M for-
mulation of the MWSDSP where, Vi € R, constants M;” = >, min(0, M ;)
and MZ+ = ZjeC max(0, M, ;) are respectively the lower bound and upper
bound on the sum of row 4’s entries. The MILP model is formulated as follows:

3 Equation (8) uses the set notation to implicitly remove duplicates.
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maximize Z it (9a)
i€ER,kEX
s.t. < Y (Mi,j x U]-k) F(TF 1) x M Yik  (9b)
jecC
< M xTF Vi, k (9¢)
2xvf; < TF+US Vi, g,k (9d)
TF+UF < 149, Vi, i,k (9e)
dowun; <1 Vi, j (9f)
ke

Constraints (9b) and (9c) ensure that the row contribution ¥ is computed

correctly. If TF = 0, constraint (9c) ensures the row contrlbutlon is zero, with
the right hand side of constraint (9b) being always positive. Otherwise (TF = 1),
constraints (9b) and (9c) ensure 7¥ = Yjec (M, x U]k), thus computing the
effective value of the contribution.

Equations (9d) and (9e) linearize vf; = T} x UF. The binary variable v}
indicates if cell (7, j) is selected by submatrix k and ensures submatrices dlSJuIlC—
tion through constraint (9f).

This model is plagued by the number of variables and constraints which are
both in O(mnK), mainly due to the non-overlap constraints.

3 Experiments

This section describes experiments conducted to assess the performances of the
proposed algorithms and to provide guidance on the selection of the appropri-
ate solution. Given enough time and memory, both the column generation (CQG)
approach and the MILP approach converge to the optimal solution. Therefore
comparing performances solely on the objective value of an approach is irrele-
vant. As a consequence, CG and MILP approaches are evaluated and compared
given a budget of time, the time-out T'O, on synthetic datasets with implanted
submatrices using any-time profiles:

Definition 3. Any-Time Profile. Let {(a, i, t) be the objective value of the best solu-
tion found so far by an algorithm a for an instance i at time t. Let t™** be the provided
budget of time before breaking a run. The any-time profile of a is the solution quality
Q. (t) of a on all instances as a function of time:

il Zf a’l’t withai = = argmax f(a,i, t™) . (10)

tmdx

All experiments are performed using Java 1.8.0 on an AMD Bulldozer clocked
at 2.1 GHz; one core and 6 GB of RAM per instance and a time-out 7O of 2 h.
MILP and CG approaches rely on Gurobi 8.1.0 [1]. The greedy hot-start of the
CG process is given 5 min evenly split between each of its K iterations of solving
an MSSP. Solutions to the MSSP are carried out on OscaR [12] using a constraint
programming approach relying on a global constraint (CPGC) provided in [5].
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It is a depth-first search approach composed of major CP ingredients: (1) filter-
ing rules, (2) bounding procedure, (3) dominance rules and (4) variable-value
heuristic.

3.1 Datasets and Performances

Datasets are generated by implanting K submatrices (called + entries) on a
background noise (called — entries). In a first dataset, we consider alternative
dispositions of + and — entries drawn from different distributions. Each combi-
nation defines a scenario presented in Fig. (1a-b). For each scenario, 14 different
matrices are generated according to different input matrix size and number of
implanted submatrices, as presented in Fig. (1c¢). These 70 instances are gener-
ated such that the hot-start is bound to find suboptimal solutions, giving very
little information to the CG method. The benefit of CG is evaluated relative to
the suboptimal hot-start solution through the objective value improvement.

Figure (2a) presents the any-time profile of each method for the first dataset.
It clearly illustrates that CG can escape the suboptimal regions of the search
space trapping the hot-start. Given roughly 25 times larger time-out than the
suboptimal hot-start, MILP is outperformed by the greedy and the CG.

Local optimums (trapping the hot-start) are provided as starting solutions
for CG. Such local optimum can be found before the given time-out. The shift
between hot-start and CG curves in the first 300s is explained by the fact that
CG can refine solutions as soon as the hot-start subroutine is completed.

In the second dataset, 720 instances are generated according to the layout
of scenarios 3 and 4 from Fig. (1a). It differs, however, by the size of the input
matrix, the number, and size of implanted submatrices. More importantly, values
are drawn from different distributions: — entries ~ AN(—1, 1) and + entries
~ N(1, 0.5). Such matrices, generated following a similar protocol as in [6],
are considered better representatives of gene expression matrices. Our script is
available on Zenodo [4].

Scenario 1 & 2 Scenario 3 & 4 Scenario 5 mxn |K=2K=5|K=8|K=10|K = 20
+ - + - _ + 50 X 50 [s = s1|s = s1
+ - 100 X 100|s = s1|s = s1 s =35
+ 200 x 200|s = s1|s =s1|s =s1|s=51|s s
o a5 - - b 500 x 500|s = s1|s = s1 s s
(c)
(a) mxn |K=2|K=5|K=10
Scenario‘ ~+ entries - entries 400 X 100|s = sa|s = sa2| s = s2
1 and 3 K+1 —1 320 X 125|s = sa|s = s2| s = s2
2 and 4 |~ N(K + 1, 1)|~ N(—1, 0.8) 200 X 200|s = sa|s = s2| s = s9
5 ~N(2, 2) ~N(=2,1) (d)
(b)

Fig. 1. Dataset construction. (a) Layout and (b) generative distribution of implanted
+ and — entries. (c) Parameters considered in the first dataset with s; = {1.0}. (d)
Parameters considered in the second dataset with so = {0.05,0.01,0.2,0.5}. Implanted

submatrices are of size (7:X*; X2)
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Fig. 2. Comparison of the different methods proposed to solve the MWSDSP. The
graph presents the any-time profile described in Eq. (3). For each instance, the time-
out is fixed at 2h. The hot-start time-out equals 5 min. Col.Generation starts as soon
as the hot-starts is completed.

Figure (2b) presents the any-time profile of CG and MILP on the second
dataset. Whereas the average solution quality of CG and MILP should rise to 1,
given enough time, it is clear that CG is significantly faster than MILP. The poor
performances of MILP are explained by the number of variables and constraints
required to model the problem: MILP obtains satisfactory results for the smaller
problems, with K = 2, only (results not shown). In this experiment, the hot-
start rarely ends before the allocated 5 min, explaining the near-perfect overlap
between hot-start and CG curves.

4 Conclusions

We present a new optimization problem, called the Maximum Weighted Set of
Disjoint Submatrix Problem (MWSDSP) along with two methods to solve it. One
is based on mathematical programming, the other on constraint programming.

Our main contribution, the column generation (CG) method for the MWS-
DSP, finds new candidate submatrices using dual variables of a linear relaxation
of the submatrix selection problem. Experiments on synthetic datasets indicate
that CG finds better solutions than the MILP approach.

The performances of the CG can be further improved by complementing the
exploration with a branch-and-price algorithm [13]. Such improvement is non-
trivial, however: the time taken to solve the underlying LP problem is already
quite long but is nonetheless an attractive direction for future work.
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Abstract. Machine Learning algorithms are often too complex to be
studied from a purely analytical point of view. Alternatively, with a rea-
sonably large number of datasets one can empirically observe the behavior
of a given algorithm in different conditions and hypothesize some general
characteristics. This knowledge about algorithms can be used to choose
the most appropriate one given a new dataset. This very hard problem can
be approached using metalearning. Unfortunately, the number of datasets
available may not be sufficient to obtain reliable meta-knowledge. Addi-
tionally, datasets may change with time, by growing, shrinking and edit-
ing, due to natural actions like people buying in a e-commerce site. In this
paper we propose dataset morphing as the basis of a novel methodology
that can help overcome these drawbacks and can be used to better under-
stand ML algorithms. It consists of manipulating real datasets through
the iterative application of gradual transformations (morphing) and by
observing the changes in the behavior of learning algorithms while relating
these changes with changes in the meta features of the morphed datasets.
Although dataset morphing can be envisaged in a much wider framework,
we focus on one very specific instance: the study of collaborative filtering
algorithms on binary data. Results show that the proposed approach is fea-
sible and that it can be used to identify useful metafeatures to predict the
best collaborative filtering algorithm for a given dataset.

Keywords: Recommender Systems + Metalearning

1 Introduction

In this paper, we propose an empirical methodology for improved understanding
of the behavior of algorithms that combines a novel data manipulation app-
roach, dataset morphing, with a Metalearning (MtL) approach. MtL consists
of relating data characteristics (metafeatures) to the performance of learning
algorithms. These metafeatures are expected to contain some useful information
about the performance of the algorithms. To generalize the extracted (meta)
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knowledge and, therefore, make it applicable to new problems, MtL approaches
require a large collection of datasets, which is often not the case. Dataset morph-
ing addresses this issue by iteratively transforming (morphing) one real dataset
into another. If the two datasets display interesting contrasting behavior of algo-
rithms (e.g. algorithm A is better than B on one dataset but not on the other)
then interesting metaknowledge can be obtained (e.g. determine the turning
point on the performance of the algorithms, and carefully analyzing what hap-
pens around the performance boundary in terms of data characteristics). The
proposed methodology can be used to select the most appropriate algorithm for
a new problem or to analyze algorithm behaviour with evolving data.

As a an example of application for Recommender Systems (RS), we instan-
tiate the above proposed method to study two popular Collaborative Filtering
(CF) algorithms: item-based and user-based neighborhood approaches. We focus
on item recommendation (top-N), where the aim is to recommend ordered lists
of items in a binary setting [12]. To automatically identify the most adequate
CF algorithm for a given data set has proven challenging [2]. Empirical results
about algorithm behavior are limited due to the absence of a large number of
datasets [2] and purely artificially generated data does not entirely solve the
problem because it is unlikely that it reflects real world distributions.

This work extends existing studies [2,3] by proposing dataset morphing as a
process of generating multiple realistic datasets (viewed as meta-examples), that
could be useful to enrich the metadata and, therefore, to improve the results
of MtL processes that learn the relationship between the performance of RS
algorithms and data characteristics. Despite the provided example with CF,
dataset morphing is virtually applicable to any Machine Learning domain.

2 Metalearning

MtL studies how Machine Learning (ML) can be employed to understand the
learning process and improve the use of ML in future applications [11]. A success-
ful MtL approach can provide a solution to the problem of selecting an algorithm
for a given dataset [2]. It allows the extraction of knowledge that explains why
a suggested algorithm is a good choice. It uses ML techniques to obtain predic-
tive models, which associate data characteristics to algorithm performance. The
methodology involves extracting characteristics, named metafeatures, from mul-
tiple datasets and assessing the performance, which will be used as metalabels,
of a group of algorithms. Afterwards, this data is used to induce a predictive
model to represent the relationship between the metafeatures and metalabels.
After obtaining an accurate MtL model we can predict the most promising algo-
rithm without running a full-fledged empirical evaluation and also explain why
an algorithms performs better or worse [3].

MtL has been used for algorithm selection in RS [2,3,6]. These authors man-
ually define metafeatures, which aggregate information from datasets into single
number statistics. For example, the number of instances in the dataset is a sim-
ple metafeature, the mean or kurtosis of a column is a statistical metafeature.



Dataset Morphing to Analyze the Performance of Collaborative Filtering 31

They then use supervised ML to learn the relationships between the metafea-
tures and the performance of recommendation algorithms on datasets, measured
by standard metrics. Although the use of MtL for the selection of CF algorithms
has already been investigated, the approaches proposed have limited scope: the
set of datasets, recommendation algorithms and metafeatures studied was rather
restricted An extensive overview of their positive and negative aspects can be
seen in a recent survey [3].

3 Morphing Recommendation Datasets

Image morphing has proven to be a powerful tool for visual effects in film
and television, enabling the fluid transformation of one digital image into
another [14]. We believe that the principle behind image morphing can be applied
to generate datasets that can be used to study the behavior of RS algorithms.
Actually, we can generalize the morphing technique to any type of ML problem.
Thus, dataset morphing can be defined, in general, as a process of gradually
transforming a source dataset into a target dataset. That way, we can explore
the space of datasets along trajectories and study the behavior of algorithms
in regions of that space that are not currently available, particularly in regions
where algorithms’ performances change.

The approach proposed here consists in starting with two datasets—the
source (Ds) and the target (D;). The operational goal is to analyze the evolution
in the behavior of one or more algorithms between two points of interest. In par-
ticular, we will pick up pairs of datasets where two RS algorithms A and B have
contrasting relative performances. A is better than B in one dataset and vice-
versa. This set up will originate two regions of the space of datasets. We can study
those two regions, their boundary and the trajectory that crosses that boundary.
We get from one dataset to the other by sequentially applying transformations
{T1,Ts, ..., Tn—1,T,} (Fig.1). The initial datasets have contrasting algorithm
performance. The color gradient, illustrated in Space D, means that during the
transformation process, (intermediate) datasets {D1, Da, ..., Dy_2, D, 1} will
gradually become more similar to the target dataset (D;). As previously men-
tioned it is important to keep datasets as realistic as possible. To have that,
intermediate datasets {Di, Da, ..., Ds,_2,D,,_1} are a mixture of real—source
and target—datasets. In short, considering source (Dy) and target (D;) datasets
and a transformation function (7), we define dataset morphing as a process of
iteratively getting intermediate datasets (D;) such that:

Dmorph : {Dj ‘ DO = DS7Dn = Dt,Dj = T(Djfl)}, 1 < _j <n (1)

where Dyyorpn is the set of datasets and n is the number of transformations
needed to get from source (Dy) to target (D). The function (7) is guaranteed
to converge.

The upper layer of Fig. 1 illustrates the trajectory in the dataset space. The
feature space F, represented with vectors of metafeatures { M Fy, M F, ..., MF}},
is the middle layer. These metafeatures are important to characterize the relative
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Fig. 1. Analysis of algorithm behavior between two points of interest using a metalearn-
ing approach based on dataset morphing. D is the data space; F' is the metafeatures
space; and P is the algorithm performance space.

performance of the algorithms. As transformations are applied, some metafea-
tures may change a lot, others only slightly and others not at all. These different
types of changes are illustrated in Fig.1 with the magnitude of change in the
colors between adjacent vectors. Finally, in the bottom layer, the performance
space P with { Py, P, ..., P, } is represented. The performance of the algorithms in
the datasets of space D may be evaluated using several standard metrics. Once
again, colors are intended to represent performance variation. To learn about
algorithm behaviour, our focus will be on metafeatures that vary according to
the changes in algorithm performance.

3.1 Dataset Transformations

Source and target datasets could be selected based on a specific property of
interest. In this paper we focus on contrasting algorithm performance, where a
given algorithm A outperforms an algorithm B in (D;) and the opposite happens
in (D). Other possibilities can be considered, such as different performances of
the same algorithm, comparison with baselines or effects of parameters.

One of the key issues in the methodology is the definition of the transforma-
tion function. One important property it should have is convergence. After each
application the resulting dataset is more similar to the target and less similar to
the source. Another important property is smoothness. The difference between
two consecutive datasets should be small both in terms of metafeatures and of
performance. Other characteristics may depend on the task and the type of data
available. In this paper, we will focus on CF with binary data. Transformations
may be simple (e.g., random bit flipping, random rows/columns switching) or
more complex (e.g., switch the most similar row/column first). They can also be
applied in batches (e.g., flipping a portion of all bits, switching a portion of all
rows/columns).



Dataset Morphing to Analyze the Performance of Collaborative Filtering 33

We also have natural morphing processes when users’ preferences have a very
volatile nature [9]. In real world RS, it is reasonable to approach ratings data
as evolving datasets: ratings are continuously being generated, and we have no
control over the data rate or the ordering of the arrival of new ratings. Actually,
adding or removing a row means a new customer application or disassociation,
respectively. Likewise, adding or removing a column denotes a new item arrival
or removal, respectively.

4 Empirical Evaluation

The main aim of these experiments is to show that dataset morphing can be
useful for identifying predictive metafeatures of the relative performance of CF
algorithms using a limited number of original datasets. We intend to illustrate
how dataset morphing enriches the metadata and improves the results of MtL
processes.

4.1 Base-Level

In this study, we focus on the item recommendation CF task and evaluate top—1,
3,5, 10, 15 and 20 recommendation lists. CF algorithms are evaluated using a 10-
fold cross-validation scheme with the all-but-1 protocol to collect data about the
behavior of two CF algorithms: user-based and item-based. As both are k Nearest
Neighbors (NN) algorithms, we considered k£ = 20 and k = 50 for user-based and
item-based, respectively. The performance of these algorithms is estimated on
each dataset, using precision@k. In terms of implementation we use on the
recommenderlab package! since the comparison of recommender algorithms is
readily available [7]. Other algorithms, parameters or platform could have been
chosen, without loss of generality. Table 1 lists the 3 real-world datasets selected
for this study. They were binarized by making items with a rating of 1, or
higher, a positive rating. Due to the very large number of experiments needed
for meta learning, to have feasible computational times we have used subsets of
the original datasets, obtaining 60000 random samples from each dataset. Each
sample has 250 rows (users) and 1000 columns (items).

Table 1. Datasets used in the base-level experiments.

Dataset ffusers | #items | #ratings | Ratings scale | Ref
amazon-movies 3k |4k 111 k [1;5] [10]
movielenslm 6k |4k 1M [0;5] [5]
palcoprincipal-playlist | 4 k 5k 37k [0;1] [4]

! https://cran.r-project.org/web/packages/recommenderlab /index.html.
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Regarding the source (Dy) and target (D;) datasets selection, we followed
two main approaches: selecting two subsets from the same dataset or select-
ing source and target from different datasets. The first approach was applied
both on amazon-movies and palcoprincipal-playlist datasets. The second app-
roach was applied both on mouvielensim and palcoprincipal-playlist datasets,
selecting source (D) datasets from mowvielensim, and target (D;) datasets from
palcoprincipal-playlist. As mentioned, the criterion considered in the experiments
was the contrasting algorithm performance. This means that for the source
dataset (Ds) a given algorithm A outperforms another given algorithm B and,
in target dataset (D;), B outperforms A. In the experiments, the algorithms A
and B are user-based CF and item-based CF, respectively. For each dataset, we
evaluated both algorithms on each sample (out of the 60000 samples). For each
algorithm, we selected the top-100 samples with the highest difference in preci-
sion (delta). Therefore, for each dataset selection approach described above, we
formed 100 pairs, selecting, for each algorithm, the 100 samples with the highest
delta values.

Regarding the dataset transformations, we decided to use random one row
replacements. We iteratively replace rows in the source dataset (Ds) with rows
from the target (D;). This enforces smoothness and trivially guarantees conver-
gence in a pre-defined number of steps. By way of illustration, to obtain dataset
D, we start with source dataset (D;). We randomly sample, without replace-
ment, one row index and copy that row from (D;) to D;. Likewise, dataset Dy has
all but one row from dataset D;. This procedure is repeated until intermediate
and target datasets match. In the experiments, for each pair created we obtain
250 intermediate datasets. However, the wide variety of possibilities to get from
source (D) to target (D;) datasets, deserves future exploration. To minimize
time and computational resources, in the experiments, for each pair created, we
sampled 10 different trajectories between source (Dy) to target (D) datasets.
This means that, for each pair, we applied the random row-wise transformations
in 10 different ways.

4.2 Meta-level

One of the most important factors in the success of a MtL approach is the defi-
nition of a set of metafeatures that contain information about the performance
of algorithms [1]. Part of the metafeatures used in this study are obtained proce-
durely [2] and are based on two different perspectives on their distribution: users
and items. These distributions are aggregated, by row and by column, using sim-
ple, standard statistical functions (count and mean) and post-processing func-
tions: maximum, minimum, mean, standard deviation, median, mode, entropy,
Gini index, skewness and kurtosis. The notation used to represent metafeatures
follows the format: object.function.post function (e.g., column.mean.entropy).
Other metafeatures used in this study are based on [13]. That work orga-
nizes metafeatures in five groups i.e., subsets of data characterization measures
that share similarities among them [1]. Since this study focuses only on binary
rating-based CF datasets, we only considered metafeatures from the Simple
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and Information-theoretic groups [13]. From the Information-theoretic group,
we used the attributes concentration (attrConc) and the attributes entropy
(attrEnt) [13]. These metafeatures were implemented using the mfe package.?
Lastly, we used two other metafeatures: number of zeros of the entire dataset
and sparsity [8].

The techniques used in the meta-level are usually either classification or
regression. This study focuses on classification tasks. Considering the 100 identi-
fied pairs of subset datasets, the 10 different trajectories between each pair and
the 250 intermediate datasets for each trajectory as a result of dataset morph-
ing process, we created 18 meta-datasets with 250.000 meta-examples. One for
each of the 3 selected original dataset (Table1), and for each of the 6 top-N.
The algorithm selection problem is formulated as a classification task, where the
class label is the best algorithm, according to the precision metric. Either I B
(item-based) or UB (user-based). The predictive attributes are the metafeatures
described above. We did some exploratory experiments with a set of classification
algorithms: Adaboost, C5.0, Gradient Boosting Machine, Logistic Regression,
Naive Bayes, Random Forest, rpart and XGBoost. Regarding the classification
problem, we chose the following error measures: accuracy, recall for item-based
class (Recallrp), recall for user-based class (Recallyp) and area under the curve
(AUC). We performed tuning on algorithms, optimizing the AUC metric i.e., for
each meta-level algorithm we considered different values for its hyperparame-
ters. Despite considering many trajectories for each pair, intermediate datasets
of same pair are very similar to each other. Therefore, the algorithms were evalu-
ated in a leave 20 pairs out strategy. This means that we use 80 pairs of datasets
for training and leave the remaining 20 pairs for testing. Meta-learning was done
using the caret package,?.

5 Experimental Results

Base-Level: as an example of the algorithm performance evaluation at the base-
level, Fig. 2 illustrates the results for palcoprincipal-playlist dataset, for one pair
and trajectory. The performance of user-based CF is represented in blue colour
and the results of item-based CF are represented in red colour. We can observe
that for top-3 and top-5 tasks item-based CF starts presenting higher values
at approximately (intermediate) dataset Digp. This means that Digp is on an
interesting boundary and is worth looking into.

Meta-level: The exploratory data analysis allows to identify metafeatures that
are good indicators of the relative performance of the algorithms. From the
vast number of experiments we have performed, we show one figure, where the
winning algorithm for each intermediate dataset is illustrated in different colours.
Once again, user-based CF is in blue and item-based CF is in red. The presented
results are only for one pair created and one trajectory of palcoprincipal-playlist

2 https://cran.r-project.org/web/packages/mfe/index.html.
3 https://cran.r-project.org/web/packages/caret /index.html.
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precision

Fig. 2. Performance of 1B and UB through morphing. (Color figure online)

dataset, and for the top-3 task. As an example, the metafeature illustrated in
Fig. 3 seems to contain useful information about the relative performance of the
algorithms i.e., it varies accordingly with algorithm performance. In fact, higher
values of this metafeature indicate that user-based performs best. Item-based
CF algorithm seems to be the winner when this metafeature has lower values.
This is true for the following metafeatures: attrConc.mean, column.count.mean,
row. count.entropy, row.count.kurtosis and row.count.maz.

Winner algorithm (precision) )
e

fowCounts_entropy

100
dataset

Fig. 3. Results of meta-level evaluation on palcoprincipal-playlist dataset—Entropy of
row count. (Color figure online)

Regarding the meta-learning results, we firstly tested the meta-models
against test sets obtained within the same dataset used for training. Then, in
order to ensure that the extracted metaknowledge could be generalizable, we
also tested each meta-model against the test set of remaining domains. Lastly,
we present performance results of meta-models created with random samples.
To serve as baseline, we did some experiments training meta-models with only
the source and target datasets i.e., without the intermediate datasets.

Results on Table 2 show that the meta-models created help in intra-domain
algorithm selection. The meta-models obtained from amazon-movies and palco
principal-playlist datasets, seem to clearly identify the item-based CF instances.
On the other hand, the movielensim/palcoprincipal-playlist dataset yields a
meta-model that seems to identify reasonably well both classes. The inter-
domain test set results, partially support the conclusions of intra-domain results.
In fact, meta-models obtained from amazon-movies and palco principal-playlist
datasets, presented high values for Recall;p i.e., they seem to clearly identify the
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item-based CF instances. On the other hand, unlike the intra-domain results,
the meta-model obtained from movielens1m/palcoprincipal-playlist dataset pre-
sented low values for Recall;p and high values for Recally g. This seems to mean
that it clearly identifies the user-based CF instances, unlike the item-based CF
ones. In short, the results of these experiments show that the extracted meta-
knowledge could be generalized and transferred across the studied domains.

Concerning the performance results of meta-models trained without the inter-
mediate datasets, and based on intra-domain results, it is possible to conclude
that the meta-data obtained from morphing datasets leads to better meta-
knowledge, when compared to meta-data obtained from random samples. Nev-
ertheless, considering the inter-domain results, some performance metrics (e.g.,
Recallyg) presented better overall results, on meta-models trained with trajec-
tories, and some others don’t (e.g., AUC).

Table 2. Summary of results. Green (red) dots indicate that meta-models from tra-
jectories beat (loose against) random samples. Delta is the winning margin.

amazon-movies |mlens/ palco palco
Model/Test set Metric Delta Metric/ Delta|Metric Delta

AUC 0.21 [AUC e| 0.13 |AUC e| 0.01
amazon-movies |Recallrp 0.36 |Recallrp 0.07 |Recallrp 0.33

Recallyple| 0.19 |Recallyp | (0.277|Recally g|e| 0.45
movielenslm/ AUC 0.07 |AUC 0.07 |AUC e 0.03
palcoprincipal- |Recallip (@] 0.29 |Recall;p |®| 0.13 |Recall;p |®] 0.45
playlist Recallyp|e| 0.18 |Recally s 0.17 |Recallyp|e| 0.37
palcoprincipal- AUC e| 0.01 |AUC e| 0.01 |AUC 0.11
lavlist Recallrp 0.20 |Recallrp 0.02 |Recallrp 0.04
playlis Recallyp|e| 0.22 |Recally s 0.25 |Recally B 0.22

To extract meta-knowledge we assess features frequency in the best models.
The best metafeatures are: row.count.entropy, row.count.mazx, row.count. kurto-
sis, attrConc.mean and attrEnt.mean. We observe that both rows and columns
hold important characteristics to solve the algorithm selection problem. This
confirms previous studies [2,3]. Nevertheless, row.count is the most relevant dis-
tribution to be analyzed here. Actually, the choice between user-based and item-
based depends on the ratio between the number of rows and the items.

6 Conclusions

In this study, we have proposed a methodology that generates new datasets
by manipulating existing ones, for understanding algorithm behavior using MtL
approaches. In the experiments, the proposed methodology was used to select CF
algorithms. The algorithm selection problem was formulated as a classification
task, where the target attribute is the best CF algorithm, according to precision
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metric. The results show that the proposed approach is feasible and that it can
be used to identify useful metafeatures to predict the best collaborative filtering
algorithm for a given dataset. Considering the majority of the scenarios studied,
the results support the importance of dataset morphing to enrich the metadata
and, therefore, to improve the results of MtL processes. As future work we intend
to explore the multiple avenues offered to machine learning by dataset morphing.

Acknowledgments. This work is funded by ERDF through the Operational Pro-
gramme of Competitiveness and Internationalization—COMPETE 2020—of Portugal
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Abstract. For a given set of samples with a numeric variable and a
set of nominal variables, we address a problem of constructing a his-
togram drawn by K bins with variable widths, so as to have relatively
large numbers of narrow bins for some ranges where numeric values dis-
tribute densely and change substantially, while small numbers of wide
bins for the other ranges, together with the characteristic nominal values
for describing these bins as annotation terms. For this purpose, we pro-
pose a new method, which incorporates a change point detection method
to numeric values based on an L1 or L2 error criterion, and an anno-
tation terms identification method for these bins based on the z-score
with respect to the distribution of nominal values. In our experiments
using four datasets of humidity deficit (HD) collected from vinyl green-
houses, we show that our proposed method can construct more natu-
ral histograms with appropriate variable bin widths than those with an
equal bin width constructed by the standard method based on square-
root choice or Sturges’ formula, the histograms constructed with the L1
error criterion has more desirable property than those with the L2 error
criterion, and our method can produce a series of naturally interpretable
annotation terms for the constructed bins.
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1 Introduction

Histogram visualization has been widely used to analyze distribution of data. In
general, the bin width of the histogram is a fixed size. It is important to set this
bin width properly, and various methods and indicators have been proposed [3, 6].
The agricultural environmental data dealt with in this study are often concen-
trated because they are controlled by farmers so as to take desirable values.
In addition, concentrated parts might contain multiple agriculturally important
sets. When such data are analyzed using a fixed-width histogram, important
information is buried in one bin, and it is difficult to achieve further analysis.

To overcome this shortcoming, for a set of numeric data, we attempt to con-
struct a histogram with variable bin-width where relatively large numbers of
narrow bins for densely distributed and drastically changed values, while small
numbers of wide bins for the other values. For this purpose, we propose a new
method based on change point detection for the arranged values in ascending
order. In our method, we produce a step function consisting of K steps based on
an L1 or L2 error criterion, and then by using these change points information,
we construct a histogram drawn by K bins with variable widths. In our experi-
ments using real datasets collected from four vinyl greenhouses, we confirm that
our proposed method can construct more natural histograms with appropriate
variable bin widths than those with an equal bin width.

The paper is organized as follows. Section 2 describes related work. Section 3
gives our problem setting and proposed method. In Sects.4 and 5, we report
and discuss experimental results using real world data. Finally, Sect. 6 concludes
this paper and address the future work.

2 Related Work

In this study, for the purpose of revealing the underlying mechanism of agri-
cultural environment data, we employ the change points detection method [5]
to individually determine adequate bin-widths for our histogram construc-
tion, where this detection method is formulated as a regime-switching problem
(e.g., [4,5]). This problem setting is different from anomaly detections for sta-
tistically significant short-term outliers compared to stationary models and the
statistical machine learning frameworks that set up stationary models as mixed
models of probability distributions [2].

There are also some works about histogram with variable bin-width. For
example, a method of constructing the equal-area histogram (also called the
percentile mesh) of Scott et al., and a Denby & Mallows method to construct
an intermediate histogram of equal-width bins and equal-areas were proposed
[3,6]. In particular, these techniques are said to be effective in identifying sharp
peaks, etc. These methods are based solely on the data distribution attributed
to the bins. On the other hand, in the proposed method, since the histogram is
constructed based on the minimization of the empirical error by the L2 and L1
distance scales, the proposed method and the conventional method are essentially
different.
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There are some works about evaluating environmental control technology by
collecting various agricultural data and analyzing those data [1,7]. For example,
there are works that draw environmental changes as a graph and give reasons to
each change for a specific day. On the other hand, there is no discussion about
the cause by automatically dividing and visualizing biased data.

3 Proposed Method

For a given set of samples described by both a numeric variable and a set of
nominal variables, we propose a new method for producing a histogram with
variable bin-width, some of whose bins are annotated by characteristic nominal
variables. More specifically, we first construct a histogram with variable bin-
width from the numeric values, and then provide annotation terms with some of
the obtained bins by using the nominal variables. In what follows, we describe
the details of our proposed algorithm.

3.1 Histogram Construction

For a given set of samples described by a numeric variable, X = {a; | t =
1,---, T}, we first construct a histogram with variable bin-width. Similarly to the
case of a standard histogram with a fixed bin-width, its horizontal and vertical
axes correspond to the range of numeric values and the number of samples in the
range, respectively. More specifically, we divide the entire range of numeric values
into a series of adjacent intervals, and then compute the frequency of samples
that fall into each interval. In this paper, we also express such a histogram as a
step function where a variable s and a function h(s) are used for representing
a numeric value and frequency, respectively. For instance, when the numbers of
samples in intervals, 0 < s < 10 and 11 < s < 20, are 20 and 30, respectively,
this step function returns the frequency h(s) = 20 if 0 < s < 10, and h(s) = 30
if 11 < s < 20.

For a predetermined number of bins denoted by K, we describe an algorithm
for constructing a standard histogram with a fixed bin-width using the above
notations. For a given set X', we first arrange the numeric values in ascending
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(a) Sorting in ascending order (b) Detecting change points ~ (c) Visualizing histogram

Fig. 1. Procedure of our proposed method
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Algorithm 1. Variable Bin-width Histogram

1: Input: A numeric data set X = {z1,...,2zr}, the number of bins K

2: Output: Variable bin-width histogram h(s)

3: Initialize: Sort the elements of X in ascending order so as to satisfy z: < x¢41

4: Find change-points G = {0 < G(k) <T; 0 <k < K} by minimizing the objective
function % (G) or £} (G)
Set end-points F = {F(k) «— zgu); 0<k < K}
Enumerate the number of elements h(s) «— |7x|, Tx = {s € [zo,zr]; F(k—1) <
s < F(k)}

order so as to satisfy x; < x411 for each (< T). Then, in order to assign each
sample to one of K adjacent intervals, after setting the bin-width § to 6 =
(zp —x1)/K, we produce the end-point for the k-th interval as F'(k) = z1 + kd
where k € {1,--- , K — 1}. Here, by using two additional values, F'(0) = x¢ and
F(K) = xr, we consider a set of end-points defined by F = {F(0),---, F(K)},
where x¢ means some value smaller than x;. Finally, since the samples belonging
to the k-th bin are obtained as 7, = {t | F(k—1) < z; < F(k)}, we can construct
a histogram as a step function defined by h(s) = |7|, where k = [(s — x1)/d]
and s € [zo, z7]. Hereafter, this method is referred to as NM (Naive histograM).
Evidently, the NM method might have a severe limitation when the distribution
of values X contains both coarse and dense parts. Namely, we want to have
relatively large numbers of narrow bins for some ranges when values distribute
densely and change substantially, and to have small numbers of wide bins for
the other ranges.

The idea of the proposed method is shown in Fig. 1. First, we sort the numeric
data set X in ascending order like Fig. 1(a), where the horizontal and the vertical
axes respectively show the order and the value. Next, we detect change points
from the sorted values by minimizing the errors between the value of data points
and approximated step functions like Fig. 1(b), where the vertical red line is the
change point. When analyzing data, it is important how the number of elements
changes before and after the change point. Now, data between change points can
be interpreted as a gradual change in value. Therefore, by separating elements
at change points, elements can be divided into major K sets. Finally, we count
the number of elements between the change points, and draw a histogram as
shown in Fig. 1(c). The overview of our algorithm is as follows.

In Algorithm 1, G is a set of change points, ¢2.(G) and (% (G) are objective
functions used to find change-points, and F'(k) < xq(y) is a value of each change-
point G(k). The details of the algorithm are as follows.

As mentioned above, we produce a step function so as to minimize the sum
of errors with respect to X'. For this purpose, by employing either L2-norm or
L1-norm as a standard error criterion, we can derive two different change-point
detection methods, which are simply referred to as the L2 and L1 methods,
respectively. First, we consider the case that there is no change-point, which
means that the sum of errors is minimized by only one value. Then, in case
of the L2 method, the L2-norm error (2 = Zthl(xt — 1(1,7T))? is minimized
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by using the mean value p(1,7T), where the mean function pu(a,b) is defined by
w(a,b) = (b—a+1)""1 Zi’:a 2¢. On the other hand, in case of the L1 method, the
Ll-norm error £} = Zle |z — v(1,T)| is minimized by using the median value
v(1,T), where the median function v(a, b) is defined by v(a,b) = T(a4p)/2 if a +b
is even; otherwise (Z(q45)/2 + T(a+b)/2+1)/2, Here note that we can efficiently
obtain v(a,b) in case that the values in X are sorted in advance. Next, we
consider the case that there exists only one change-point expressed by a sample

index 7. Then, the following formulae respectively minimize the L2-norm error
£2(7) and L1-norm error ¢1(7):

T T
Gr) =Y (@ —p(,7)* + D (e — p(r +1,T))°
t=1 t=7+1
T T
G => e —v(,n)+ Y |e—v(r +1,T)|.
t=1 t=7+1

Evidently, we also need to minimize £3(7) and ¢}(7) with respect to 7.

Now, we generalize these error functions, £2(7) and ¢1(7). Namely, in case
that the number of change-points is K — 1, let G(k) be a sample index which
corresponds to the k-th change point. Again, by using two additional indices,
G(0) = 0 and G(K) = T, we can consider a set of sample indices defined by
G ={G(0),--- ,G(K)}. Then, we can express the generalized error functions for
22.(G) and ¢} (G) as follows:

=S Z (= Gl = 1)+ 1.G(4)*

k=11t= G(k 1)+

0 (G Z Z \xt—y(G(kfl)Jrl,G(k))\.

k=1t=G(k—1)+

Therefore, we can formalize our change-point detection problem as the minimiza-
tion problem of ¢k (G) with respect to G. In order to obtain G, we employ an
efficient local improvement algorithm described in [5]. After obtaining the set of
sample indices, G, we can produce a set of end-points F by setting F'(k) = zqy)
for k € {0,---, K}, where recall that zy means a value smaller than z;. Thus,
we can construct the following histogram with variable bin-widths:

h(s) = |7x|, where F(k—1)<s < F(k), s€ [xo,z7].

Evidently, we can analyze rough structure of histogrmas by setting the number
K of bins to a small one, while some details of them by relatively large ones.

3.2 Annotation Generation

After obtaining the histogram with variable bin-width from a set of samples
with a numeric variable, we generate annotation terms for these obtained bins
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from a set of the same samples with nominal variables. Let Y() = {yt(z) |t =
1,--+,T} be a set of nominal values for the i-th variable, where i € {1,--- , I},
I denotes the number of variables, and we assume that each nominal variable
has only one of J() categories identified by positive integers from 1 to J@, i.e.,

(i) e {1,---,J®} . Moreover, we assume that each sample with numeric value
x; has the corresponding nominal variables {y(l), ,yfl)}
For a pair of the i-th variable and its category j € {1 ‘)}, we can define

the set of samples such that y,g D= = by T0I) = {t | yt = j} and compute the

empirical probability p(*7) by p(i-7) = |T(W) |/T. For the k-th bin of the obtained
i) _

histogram, we can compute the expected number of samples such that y,’ = j
and its standard deviation by p ’9)|Tk and /p(&3) (1 — p(©.9))|T;.|. Thus, we can
compute the following z-score z,g of appearing the samples to be y( ) =jin
the k-th bin.

) _ [T 0T - pI T, |

— — : (1)
k VPO (1 — pl)[ T |

In case that the z-score z(z 9) §s substantially large, we can consider that the i-th
variable with the j-th category appears characteristically in the k-th bin. In our
proposed method, for a predetermined number H, we output the top-H pairs
of the i-th variable and j-th category as an annotation term to the k-th bin,

according to the z-score z,(c” ).

4 Experimental Evaluations

4.1 Datasets and Settings

In this section, we confirm the validity of the proposed method by experimental
evaluation using real datasets. Specifically, the effectiveness is evaluated by ana-
lyzing environmental data obtained from vinyl greenhouses of four rose farmers,
which we call House A, B, C and D, in Shizuoka prefecture. In this paper, we
employed the humidity deficit (HD), which is an indicator of how much water
vapor can be contained at a particular temperature and humidity. Controlling
HD within a specific range is considered important for the growth of agricul-
tural products. The IoT device we used does not have a sensor that measures
HD directly, so it was calculated using the following formula:

7.5xTemp

217 6.1078%10 Temp+237.3

HD = (100 — Humi) * T — (2)

where Humi and Temp represents humidity and Celsius temperature, respec-
tively, and HD values of 3 to 6g/m3 are considered to be optimal. The data
consists of HD observed from 00:00 on March 27, 2018, to 24:00 on May 7, 2018,
i.e. observed for 42 days. 288 data points are contained per day so the data of
each house is represented as 12,096 values.
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4.2 Results of Fixed Bin-Width Histogram

First, we look over the fixed bin-width histograms shown in Fig. 2, where
histograms of HD observed in each rose-farm-vinyl-house are depicted for each
number of bins, K = 16, 32, 128. According to Sturges’ formula and Square-root
choice, for the data with the number of data points, T' = 12, 096, the appropriate
number of bins is [log, T + 1] ~ 15 and VT ~ 100, in an existing fixed-width
histogram. Figure 2(a) shows the histograms with the number of bins as K = 16,
which is nearly corresponding to the results of Starges’ formula, and Fig. 2(b) is
those with the number of bins as K = 32. Figure2(c) includes histograms with
K = 128, which is roughly corresponding to the results of Square-root choice
criteria. From these figures, we can observe that many data points are distributed
relatively densely in the range HD < 10 than in the range 10 < HD. That is,
at K = 128, in the range of 10 < HD where the data points are sparse, the
division is too fine and the redundancy is high. On the other hand, at K = 16
and K = 32, the division is coarse and the resolution is low in the range of
HD < 10 where the data points are dense. From these results, it is necessary to
increase the resolution of densely distributed data and to reduce the resolution
of sparsely distributed data.

4.3 Comparing Histograms by Changing the Number of Bins

Next, we compared histograms by changing the number of bins. Figures 3 and 4
show the variable bin-width histograms obtained by the L1 and L2 methods,
respectively. When the number of bins K is set to 8, as shown in Figs. 3(a) and
4(a), we can see that almost half of the bins are constructed in the rang of
HD < 10, and these numbers of bins increase when K becomes large as shown
in Figs.3 and 4. These characteristics are inherently dofferent those obtained
in Fig. 2. In addition, as to House D, although the NM method cannot detect
outlier points like HD ~ 0 at K = 16 as shown in Fig.2, the L2 and the L1
method can detect some outlier points as separated bin, at all the number of
bins.

To summarize the findings obtained from these figures: (1) histograms have
similar tendency regardless of the number of bins, K, (2) data points densely
distributed, like 2 < HD < 7, are finely divided in the variable bin-width his-
togram, and (3) in the proposed histogram, outlier data points can be detected
as a separated bin.

Even when the data points of the data set X are distributed in a biased man-
ner, the proposed method can automatically adjust the bin width appropriately
so that the resolution is low in the sparse part and the resolution is high in the
dense part. In order to quantitatively confirm that the data points are assigned
to each bin without concentrating on some bins, we calculate the entropy defined
by the following equation for the constructed histogram h(-):

K

K
E(h() ==Y @ log @ _y h(FT(k» log h(FT(k)). 5
k=1 k=1
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Table 1. Annotation terms of each bin (House C)

Rank | Proposed method (L1, K = 8)|Proposed method (L2,K = 8)|NM method (K = 8)
Bin |term z-score Bin |term z-score Bin|term z-score
1 1 Humi80-90  81.56 1 Humi80-90 | 72.68 8 Temp35-4070.99
2 2 |Humi70-80|67.06 5 |Humi50-60 | 66.80 6 |Temp30-35|53.44
3 4 |Humi50-60 | 58.22 8 |Humi20-30|59.68 3 |Humib0-60 |50.34
4 7 | Temp30-35|53.66 8 |Temp30-35|59.14 5 |Humi40-50 [49.65
5 3 |Humi60-70|49.61 4 |Humi60-70 | 52.80 1 Temp20-25|47.53
6 6 |Humi40-50 |48.14 6 |Humi40-50|52.23 1 |Humi80-90|46.74
7 8 |Humi20-30|46.71 3 |Humi70-80|50.33 6 |Humi20-30 |46.08
8 7 |Humi30-40 |46.55 8 |Humi30-40|45.95 6 |Humi30-40 [46.00
9 2 | Temp20-25|43.21 5 | Temp25-30(42.78 3 Temp25-30|43.90
10 5 | Humi40-50 |42.46 7 |Humi40-50 |40.68 4 |Humi40-50 42.02

When E(h(-)) holds high value, it means that the data points are divided into
bins evenly, which is the desired histogram. The result of quantitative evaluation
based on the entropy of Eq. (3) is shown in Fig. 5, where the horizontal and the
vertical axes stand for the number of bins and the entropy E(h(-)), respectively.
It can be seen that the histogram constructed by the L1 method has desirable
properties because the value of E(h(+)) is larger than the L2 method, also larger
than the NM method.

4.4 Annotating to Each Bin

Finally, we generated annotation terms for each bin of histograms constructed
by our proposed and the naive methods. We employed time-window (Hour),
humidity (Humi), and Celsius temperature (Temp) as an annotation term, e.g.,
eight terms for Hour form “Hour0-3” to “Hour21-24”, ten terms for Humi from
“Humi0-10" to “Humi90-100”, and ten terms for Temp from “Temp0-5” to
“Temp45-". where eacg postfix means the range of values.

Table 1 shows the annotation result for the histogram of House C, where
10 terms with the highest z-score values for each bin are shown. The value of
the bin column in these tables means what number bin from the left (lowest).
For example, when the value of HD is large as in the 7th and 8th bins, higher
temperature such as Temp30-35 and Temp35-40 are extracted as a characteristic.

5 Discussion

Basically, in a viewpoint of our research purpose, we want to construct a his-
togram with a relatively small number of bins, K, due to the following two
reasons. First, we want to visualize the distribution of numeric values as a his-
togram consisting of high and coarse resolution parts by virtue of individual
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variable bin-widths. Second, we want to generate statistically significant anno-
tation terms for the obtained bins according to the z-score. Below we discuss that
our constructed histograms with annotation terms meet our research purpose.

From the results shown in Fig.2 by the NM method, we can observe that
the numeric values are concentrated in a narrow range between 0 and 7. More
specifically, in the case of K = 16, we can observe that the concentrated peaks
locate around left parts in this range for House A and B, while around right
parts for House C and D. On the other hand, in the case of K = 128, we can
clearly observe that the concentrated peaks for House A, B, C, and D have
uniquely different characteristics. This means that the histograms by the NM
method with K = 16 are not enough for analyzing these situations. Besides, it
is not easy to visually identify each bin in the case of K = 128, together with
bringing about the difficulty of identifying annotation terms for many bins.

From the results shown in Figs. 3 and 4 by the proposed method, we can also
observe that the numeric values are concentrated in a narrow range between
0 and 7. More speciffically, even in the case of K = 8, from the results by
our proposed methods, we can roughly observe that the concentrated peaks for
House A, B, C, and D have uniquely different characteristics. Moreover, in the
case of K = 16, we can observe quite similar characteristics for this range, which
are observed from the results by the NM method with K = 128 shown in Fig. 2.
These experimental results indicate that in a viewpoint of our research purpose,
we can successfully visualize the distribution of numeric values as a histogram
consisting of high and coarse resolution parts by virtue of individual variable
bin-widths.

Finally, we discuss the validity of generated annotation terms by using the
results from House C shown in Table1l. From this table, for the constructed
bins by each method, we can consistently observe that the annotation terms
indicating higher Humi values are generated for the bins with lower numbers
indicating lower HD values, and the annotation terms using the Hour variable
are not generated. Here, we can easily confirm that the validity of these obser-
vations from the definition of HD shown in the Eq. (2), i.e., the HD values have
a negative correlation to the Humi values, and are independent of the Hour
values. On the other hand, from Figs. 3(a) and 4(a), we can see that the second
bin from the left constructed by the L1 method can be regarded as unique one
not constructed by neither the NM method nor the L2 method. It might be
notable that the annotation term “Humi70-80” is generated for this unique bin,
which naturally interpolates the degradation of the Humi values. We believe
that these experimental results support the vitality of the L1 method equipped
with annotation generation.

6 Conclusion

In this study, for the purpose of constructing a histogram drawn by K bins with
variable widths and extracting the characteristic nominal values for describing
these bins as annotation terms, we proposed a new method, which applies a
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change points detection method based on an L1 or L2 error criterion, and iden-
tifies some annotation terms for the bins in our constructed histogram based on
the z-score with respect to the distribution of nominal values. From experimen-
tal evaluations using the dataset of humidity deficit (HD) collected from vinyl
greenhouses, we confirmed the following results: (1) our proposed method can
construct more natural histograms with appropriate variable bin widths com-
pared to histograms with an equal bin width; (2) the histograms constructed
with the L1 error criterion has more desirable property than those with the
L2 error criterion; and (3) our method can produce a series of naturally inter-
pretable annotation terms for the constructed bins. As a future task, further
experiments are needed where we utilize various types of datasets obtained from
other domain such as educational field, also including multivariate data, and
compare to existing methods proposed in previous studies. In addition, assum-
ing application to agricultural scenarios, we plan to extend our method so that
it can be applied to continuously obtained streaming data and add discussions
with practical utility.
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Abstract. In a matrix representing a numerical dataset, a bicluster is a
submatrix whose cells exhibit similar behavior. Biclustering is naturally
related to Formal Concept Analysis (FCA) where concepts correspond
to maximal and closed biclusters in a binary dataset. In this paper, a
unified characterization of biclustering algorithms is proposed using FCA
and pattern structures, an extension of FCA for dealing with numbers
and other complex data. Several types of biclusters — constant-column,
constant-row, additive, and multiplicative — and their relation to interval
pattern structures is presented.

Keywords: Biclustering + FCA - Gene expression + Pattern structures

1 Introduction

Given a numerical dataset represented as a table or a matrix with objects in
rows and attributes in columns, the objective of clustering is to group a set
of objects according to all attributes using a similarity or distance measure. By
contrast, biclustering simultaneously operates on the set of objects and the set of
attributes, where a subset of objects can be grouped w.r.t. a subset of attributes,
based on user-defined constraints such as having constant values, constant values
within columns or rows. Then, if a cluster represents object relations at a global
scale, a bicluster represents it at a local scale w.r.t. the set of attributes. More
generally, biclustering searches in a data matrix for sub-matrices or biclusters
composed of a subset of objects (rows) and a subset of attributes (columns)
which exhibit a specific behavior w.r.t. some criteria.

Biclustering is an important tool in many domains, e.g. bioinformatics and
gene expression data, recommendation and collaborative filtering, text mining,
social networks, dimensionality reduction, etc. As surveyed in [17], biclustering
received a lot of attention in biology, and especially, for analyzing gene expression
data, where biologists are searching for a set of genes whose behavior is consis-
tent across certain experiments/conditions [3,4,20]. Biclustering is still actively
studied in biology [9,18,19]. Biclustering is also actively studied in recommen-
dation systems [12,13], where the objective is to retrieve a set of users sharing
similar interest across a subset of items instead of the set of all possible items.
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Table 1. Examples of some bicluster types.

4 2 5 3|40 25 57 312 3 5 1|2 6 12 4
4 2 5 3(139 24 56 30|56 8 4|1 3 6 2
4 2 5 3|41 24 59 29|11 2 4 0|4 12 24 8
4 2 5 3|41 26 58 29(/4 5 7 3|3 9 18 6

Following the lines of [8-10], in this paper we are interested in biclustering
algorithms based on “pattern-mining” techniques [1]. These techniques allow an
exhaustive and flexible search with efficient algorithms. Moreover, authors in [9]
discuss the benefits of using pattern-based biclustering w.r.t. scalability require-
ments, and mostly w.r.t. generality and diversity of the types of biclusters which
are mined. In addition, they point out the fact that pattern-based biclustering
algorithms can naturally take into account overlapping biclusters, and as well,
additive, multiplicative and symmetric assumptions concerning biclusters.

In this paper, we revisit all these aspects and propose an alternative frame-
work for pattern-based biclustering based on Formal Concept Analysis (FCA
[7]). In [21], authors directly reuse the FCA framework and adapt the algorithms
for biclustering. By contrast, in this paper, we go further and we consider the
so-called “pattern-structures”, an extension of FCA for dealing with complex
values such as numbers, sequences, or graphs [6]. We especially reuse “interval
pattern structures” — which are detailed in the following — for defining a unique
framework for pattern-based biclustering. In this way, we introduce an alterna-
tive approach than [9], as we do not need to apply any scaling, discretization, or
transformation procedures over the data to discover biclusters.

This paper is organized as follows. First we describe some types of biclus-
tering in Sect.2 and basic definitions about FCA in Sect.3. We then propose
our approach of biclustering based on interval pattern structures in Sect.4 and
present the empirical experiments in Sect. 5. Finally, we conclude our work and
give some future works in Sect. 6.

2 Biclustering

In this section, we recall the basic background and discuss illustrative examples
of the different types of biclusters [17]. We consider that a dataset is a matrix
(G, M) where G is a set of objects and M is a set of attributes. The value
of m € M for object g € G is written as m(g). In this paper, we work with
numerical datasets. In such a dataset, it may be interesting to find which subset
of objects have the same values w.r.t. a subset of attributes. Regarding the matrix
representation, this is equivalent to the problem of finding a submatrix where
all elements have the same value. This task is called biclustering with constant
values, which is a simultaneous clustering of the rows and columns of a matrix.
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Table 2. A numerical context and an SC bicluster in gray.

Glmi ma ms ma ms
al1 2 2 1 6
@l2 1 1 0 6
wl2 2 1 7 6
gl 8 9 2 6 7

Moreover, given a dataset (G, M), a pair (4, B) (where A C G, B C M)
is a constant-column (CC) bicluster iff Vim € B,Vg,h € A,m(g) = m(h). An
example of CC bicluster is illustrated in Table la. CC biclustering have more
relaxed variations, namely similar-column (SC) biclustering. With these relax-
ations, instead of finding biclusters with exactly constant columns, we can obtain
biclusters whose columns have similar values as shown in Table 1b. These types
of biclusters are widely used in recommendation systems to detect a set of users
sharing similar preference over a set of items.

An additive bicluster is illustrated in Table 1c. Here we see that there is a con-
stant difference between any two columns. For example, each value in the second
column is two more than the corresponding value in the fourth row. Therefore,
given a dataset (G, M), a pair (A, B) (where A C G, B C M) is an additive
bicluster iff Vg, h € A,¥Ym,n € B,m(g) —n(g) = m(h) —n(h); or a multiplicative
bicluster iff Yg,h € A,Ym,n € B, m(g)/n(g) = m(h)/n(h). Both additive and
multiplicative biclusters were studied in the domain of gene expression dataset
[4,5,16]. They represent a set of genes having similar expression patterns across
a set of experiments.

Bicluster discovery is naturally related to FCA. In this paper, we show that an
extension of FCA called partition pattern structures can be used for discovering
biclusters. In the following section, we explain some basic theories about FCA
and pattern structures.

3 FCA and Pattern Structure

In a binary matrix, FCA tries to find maximal submatrices with a constant value
across all of its cells. Therefore, a formal concept is a bicluster with constant
value. More precisely, FCA is a mathematical framework based on lattice theory
and used for classification, data analysis, and knowledge discovery [7]. From a
formal context, FCA detects all formal concepts, and arranges them in a concept
lattice. FCA is restricted to specific datasets where each attribute is binary (e.g.
has only yes/no value). This limitation prohibits FCA to work in more complex
datasets, e.g. a user-rating matrix or a gene expression dataset, which are not
binary. Therefore, FCA is then generalized into pattern structures [6].

A pattern structure is a triple (G, (D, M), d), where G is a set of objects, (D, )
is a complete meet-semilattice (of descriptions), and § : G — D maps an object to
a description. The operator M is a similarity operation that returns the common
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Table 3. Example of additive column alignments. (a) Original table and the additive
bicluster in gray, (b) alignment on m1, (c) alignment on mo.

‘ mi1 Mo M3 M4 ‘ mi1 M2 Mm3 Mg ‘ mi1 m2 M3 M4

gl 4 1 3 0 | 4 1 3 0 a4 1 3 0

g2 | 6 4 6 3 g2 | 4 2 4 1 g2 | 3 1 3 0

gs 2 3 5) 2 gs 4 5 7 4 g3 0 1 3 0

ga| 1 6 1 7 ga| 4 9 4 10 gi|—-4 1 —4 2
(a) (b) (c)

elements between any two descriptions. It is verified that ¢cMd = ¢ < ¢ C d.
A description can be a number, a set, a sequence, a tree, a graph, or another
complex structure. The Galois connection for a pattern structure (G, (D, M), 4)
is defined as:

4° =[] é(g), ACG, (1)
geEA
d® ={g € Gld Z (g}, deD. (2)

A pattern concept is a pair (4,d), A C G and d € D, where A° = d and d° = A.

FCA can be understood as a particular pattern structure. The description of
an object is a set of attributes, and the M operator between two description is
the intersection of two sets of attributes.

4 Biclustering Using Interval Pattern Structure

In gene expression data, we often have a numerical matrix. Biclustering in such
matrix should find submatrices whose cells present regularities, e.g. each column
has similar value in the case of similar-column (SC) biclustering. SC biclustering
task is similar to FCA in the sense that FCA also searches consistent submatrix.
But since SC biclustering works on a numerical matrix, we need to generalize
FCA to a pattern structure. One such generalization is where the description
of each object is a set of numerical values and the similarity between any two
descriptions is the intervals that encompass those values. This kind of pattern
structure is called an interval pattern structure.

Interval pattern structures (IPS) was introduced by Kaytoue et al. [14] to
analyze gene expression data (GED). A GED is typically represented as a 2-D
numerical matrix with genes as rows and conditions as columns, as shown in
Table 2. In this matrix, the submatrix ({g1, g2, g3}, {m1, m2, ms, m5}) is an SC
bicluster, defined by the parameter § = 1. It means that the range of values of
each column in the submatrix has the length of at most 1.

4.1 Interval Pattern Structure

In IPS, a description is several intervals describing the values of every col-
umn. For example, the description of g1 — denoted by d(g1) — in Table2 is
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Table 4. Some interval pattern concepts with § = 1 from Table 2.

Extent Intent

{91} ([1,1]12, 2]12, 2][1, 1][6, 6])
{91, 95} ([, 2112, 2][1, 2] * [6, 6])
{91,94} (x[2,2] % [6,7])
{91,92,93} | ([1,2][1,2][1,2] = [6,6])
{91,92,93,9a} | (xx[1,2] % [6,7])

([1,1]]2, 2][2,2][1, 1][6, 6]). The similarity operator (M) for IPS is defined as the con-
vex hull of two intervals. Therefore, the similarity of §(g;1) and §(g4) — denoted by
5(g1) M8(ga) — is {[1, 8][2, 912, 2)[1, 66, 7]).

Given a subset of objects A C G, Eq.1 says that A° is the similarity of
the description of all objects in A. Therefore, in IPS the corresponding A° is
the convex hull of the descriptions of all objects in A. For example, with A =
(91,92, 91}, A° = ([L,8][1, 91, 2][0, 66, 7]).

Furthermore, given a description d € D, Eq.2 indicates that d° is the set of
all objects whose description subsumes d. In IPS, a description dy is subsumed
by another description ds — denoted by dy C do — if every interval in ds is a sub
interval in the corresponding interval in dy. Notice that in IPS, a sub interval
subsumes a larger interval. Therefore, if d, = ([1,8][1,9][1, 2][0, 6][6, 7]}, then
dS = {g1,92,94}. Since §(g3) = ([2,2][2, 2][1,1][7,7][6,6]), g3 is not included in
d$ because the fourth interval ([7,7]) is not sub interval of the fourth interval of
dq ([0, 6]).

Following the definition of a concept of any pattern structure (in Sect. 3), an
interval pattern concept is a pair (4,d), for A C G and d € D, where A°® =
and d° = A. Furthermore, the set of interval pattern concepts are partially
ordered, and can be depicted as a lattice. An interval pattern concept (Ai,d;)
is a subconcept of (As,ds) if A1 C As (equivalently dy C dy).

4.2 Similar-Column Biclustering

A similar-column (SC) bicluster can be found in an interval pattern concept
by introducing a parameter 6. This parameter acts as the maximum difference
between any two values to be considered as similar. For example, with 8 = 1,
the value 1 is similar to 2, but not similar to 3.

In calculating the similarity between any two descriptions, if the length of
an interval is larger than 6, then the star sign () is put as the interval. From
Table 2, §(g2) M d(ga) without 0 is ([2,8][1,9][1, 2][0,6][6,7]), and with § = 1 is
(% [1,2] % [6,7]).

The similarity M between % and any other interval is *. For example, sup-
pose that we have two descriptions d, = ([1,1][2,3]) and d, = ([2,2]*). Then,
d. M dy = ([1,2]*). This also means that * is subsumed by any other interval.
Therefore, the description of each object in Table 2 subsumes (x * [1,2]  [6, 7]).
With 0 = 1, ({g1,92,93, 94}, (x * [1,2] % [6,7])) is an interval pattern concept.
Some interval pattern concepts from Table 2 are listed in Table 4.
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Table 5. Example of multiplicative column alignments. (a) Original table and the
multiplicative bicluster in gray, (b) alignment on ms.

| m1 ma m3 ma mima mz ma
g1 3 1 2 3 g1 3 1 2 3
2|1 3 6 9 |03 1 2 3
sl2 2 4 6 g1 1 2 3
gsa| 1 2 6 8 gsa |05 1 3 4
(a) (b)

From an interval pattern concept, an SC bicluster can be formed by the
concept’s extent and the set of columns where the interval is not * in the con-
cept’s intent. For example, from the concept ({g1, 92,93}, ([1, 2][1, 2][1, 2][6, 6])),
({91, 92,93}, {ma, ma, ms, ms}) is an SC bicluster with 6 = 1.

By using IPS with parameter 6, constant-column biclustering is a specific
case of SC biclustering. It can be noticed that with § = 0, we obtain intervals
with length 0, and that corresponds to constant-column biclusters.

4.3 Additive and Multiplicative Biclustering

An additive bicluster is a submatrix where there is a constant (or similar) differ-
ence between any two columns across all of its rows (see Sect.2). Constant (or
similar) column biclustering is a specific case of additive biclustering. Using this
fact, we can obtain additive biclusters by aligning (similar to [9]) each column,
and then find interval pattern concepts on the alignments.

Table 3 provides an example of column alignment for additive biclustering.
The original matrix is shown in Table3a, having 4 rows and 4 columns. The
submatrix ({g1, 92,93}, {ma, ms,ms}) is an additive bicluster in the original
matrix. This bicluster can be found by applying constant-column or similar-
column biclustering to the column alignments. Table 3b shows the first column
alignment, can be seen by the consistency of the first column (m1). In this exam-
ple, each object value is converted such that its m; value is equal to the value
of my in g;. This means that the values 0, —2, 2, and 3 are added to ¢1, g2, g3,
and g4 respectively. This alignment is repeated for every column. Table 3c is the
alignment of mo, by adding 0, —3, —2, and —5 to g1, g2, g3, and g4 respectively.

Constant-column (or similar-column) biclustering is applied to every column
alignment to find additive biclusters. In the second column alignment (Table 3¢),
we obtain ({g1, g2, g3}, {ma, ms3, m4}) as a constant-column bicluster. This corre-
sponds to the additive bicluster ({g1, g2, g3}, {m2, ms, m4}) in the original matrix
(Table 3a).

Multiplicative biclusters can also be obtained using similar column align-
ment. In multiplicative column alignment, instead of adding values to each row,
we multiply each row such that a column has a constant value. Table 5b shows
the second column alignment of the original matrix in Table5a. Here, a con-
stant value is achieved for ms by multiplying g1, g2, g3, and g4 by 1, %7 %7
and % respectively. Then, by applying IPS to each alignment, we can obtain
the multiplicative biclusters. For example, constant-column biclustering using
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Fig. 1. Effect of 8 on a 500 x 60 dataset with min_col = 20 and min_row = 1.

IPS in Table 5b returns ({g1, g2, g3}, {ma, m3, m4}), which is the corresponding
multiplicative bicluster in Table 5a.

4.4 Concept Mining

Being a generalization of FCA, the mining of interval pattern concepts can be
performed using some existing algorithms that generate a complete list of formal
concepts. In this paper, we use CloseByOne (CbO) [15] since it requires us to only
define the similarity (M) and subsumption relation (C) of any two descriptions.

In a given numerical matrix, we may obtain an exponential number of interval
pattern concepts. To reduce the number of concepts, we should introduce some
parameters that can filter out some uninteresting concepts.

The first parameter, 6, is previously mentioned in Sect.4.2. It limits the
length of intervals, and later in Sect.5 we demonstrate the effect of 6 on the
runtime and number of concepts.

The second parameter min_col is the minimum number of columns in the
retrieved biclusters. The number of columns in a bicluster corresponds to the num-
ber of non-star intervals in the concept’s intent. For example, the concept with
intent (% * [2,2] % [6,7]) gives us a bicluster with two columns (the third and the
fifth). To take into account the min_col parameter, it is necessary to modify the
definition of similarity between any two descriptions. In addition to the definition
of Min Sect. 4.1, we verify if the number of non-star intervals in the description.
The number of non-star intervals should be more than min..;. If not, we “skip”
the concept, by converting each interval to *. In Table2 with 8 = 1, g; M g4 is
(* % [2,2] % [6, 7]). Using min_col = 3 for example, g1 M g4 becomes (x * * * ).

Related to min_col is min_row, a parameter that put a constraint on the
number of rows in a bicluster. It corresponds to the number of objects in a con-
cept’s extent. With the inclusion of min_row, the calculation of Y (all objects
whose description subsumes Y) is performed only if the number of objects in Z
(extent of the candidate concept) is at least min_row.
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Fig. 2. Effect of min_col (with § = 1 and min_row = 5) and min_row (with 6 = 1 and
min_col = 6) on a 500 x 60 dataset.

5 Experiments

In this section, we report some experimental results to show the scalability of
IPS in the task of biclustering. By using CbO as concept miner, the space/time
complexity of IPS follows CbO (see [15]). We use the synthetic datasets pro-
vided by Henriques and Madeira [9]: 500 x 60 and 1000 x 100, with hidden SC
biclusters.

First, we investigate the effect of 6 on the runtime and the number of con-
cepts. The results are illustrated in Fig. 1. The left figure confirms that the larger
0 generates more interval pattern concepts, and generally longer runtime as it
can be seen in the right figure. The § = 0.4 requires longer runtime than 8 = 0.5
to 0.9. This is normal since for similar number of concepts, the probability of
smaller # obtaining a concept is smaller than the larger 6. Using CbO with
smaller 6, a candidate concept will have shorter intervals in its intent, hence
smaller number of objects whose description subsumes this interval.

The effect of min_col is shown in Fig. 2 left. Lesser min_col produces more
concepts, and therefore longer runtime. Similarly, Fig. 2 right shows that larger
min_row generates more concepts.

In the previous experiments, the CbO was terminated until all interval pat-
tern concepts were retrieved. In the following experiment, CbO is terminated
until 500 concepts are found. We compare them to BicPAM [9] that uses a dis-
cretization parameter (as a number of alphabet /items), while IPS uses the length
of intervals as . After the mapping step (normalization, discretization, and miss-
ing values and noise handling), BicPAM applies a pattern mining method (F2G
[11] as default), and the closing step (extension, merging, and filtering) is per-
formed. Results in Table 6 show a similar performance of both methods. It should
be noted that the number of biclusters from BicPAM is lower due to the merging
and/or filtering.

Furthermore, still from Table 6, the runtime of IPS is not exactly correlated
with 6 (especially with § = 2), similar to our previous experiment shown in
Fig. 1. Overall, with similar runtime, biclustering with IPS can return similar
number of biclusters without discretization.
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Table 6. Comparison with BicPAM on 1000 x 100 dataset. For the IPS, the parameters
min_row = 10 and min_col =5 are used, with varying 6.

Method | Parameter Runtime (s) | Number of biclusters
BicPAM | alphabet = 20 | <15 ~100

alphabet = 10 | <15 <200

alphabet =7 | <15 <200

alphabet =5 | <30 ~200
IPS =1 37 500

0=2 >500 500

0=4 47 500

0=8 39 500

6 Conclusion

In this paper, we propose an alternative method of biclustering in numeri-
cal datasets. Discretization is a general preprocessing step while working with
numerical values. Here we explore the possibility of working directly on numer-
ical datasets without discretization. This can be achieved using interval pattern
structures, where a bicluster can be found from any interval pattern concept.
To filter the number of concepts (which can be very large) it is necessary to
provide some parameters, like the length of intervals, minimum number of rows
and columns, or even minimum number of biclusters. Our experiments show that
these parameters can reduce the computation to a reasonable runtime. Another
way to reduce the number of biclusters is to develop post-processing techniques
similar to BicPAM, which include merging, filtering, and extension.

We use the CbO algorithm, a formal concept generator that can be general-
ized to interval pattern structures. In-Close 2 [2] in particular is faster than CbO
in formal concept mining, but its efficiency in interval pattern concept mining
should be studied. Another future research is to extend our FCA-based approach
to other types of biclusters, e.g. coherent-evolution, coherent-sign-changes, etc.
Furthermore, the existence of missing values and/or outliers should be consid-
ered in improving the proposed biclustering method.
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Abstract. Subspace clustering aims to discover clusters in projections
of highly dimensional numerical data. In this paper, we focus on discov-
ering small collections of interesting subspace clusters that do not try to
cluster all data points, leaving noisy data points unclustered. To this end,
we propose a randomised method that first converts the highly dimen-
sional database to a binarised one using projected samples of the original
database. This database is then mined for frequent itemsets, which we
show can be translated back to subspace clusters. In our extensive exper-
imental analysis, we show on synthetic as well as real world data that our
method is capable of discovering highly interesting subspace clusters.

1 Introduction

The main task of clustering is to group similar objects together, while keeping
sufficiently different objects apart. However, due to the curse of dimensionality,
traditional clustering methods struggle with high-dimensional data. In short,
with high-dimensional data, the distances between pairs of objects, measured
over all dimensions, become increasingly similar. As a result, no proper clusters
can be formed, as all objects end up almost equally distant from each other.

Subspace clustering attempts to solve this problem by discovering clusters of
objects that are similar in a limited number of dimensions. However, given the
exponential complexity of the search space, identifying the relevant set of dimen-
sions is computationally demanding, which is why existing subspace clustering
methods suffer from long run-times [1]. Furthermore, some existing approaches
produce full clusterings, thereby ensuring that each object is assigned to exactly
one cluster. This is not always desirable: (1) the data may contain a lot of noise,
that should ideally not be assigned to any cluster and (2) there is no reason why
a particular object should not be assigned to multiple clusters, especially if the
sets of dimensions that define these clusters are entirely different.

In this paper, we take a similar approach as CARTICLUS [2]: we first convert
a numeric database to a transactional one and then use frequent pattern mining
to extract subspace clusters. Our method can efficiently produce highly interest-
ing subspace clusters, along with the dimensions that define them. We avoid the
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computational complexity of existing methods by deploying a randomised algo-
rithm. We first take a large number of samples from the original data, such that
each sample consists of a number of objects in a fixed (random) set of dimen-
sions. In each sample, we then cluster the objects, and subsequently assign all
objects in the original data to the nearest cluster centroid. This produces a set of
objects per centroid, which we interpret as a transaction. By merging the trans-
actions produced for all different samples, we obtain a transaction database. We
then sample maximal frequent itemsets from this database to obtain potential
clusters. Finally, we identify the relevant dimensions for each discovered cluster.

The main contributions of this paper can be summarised as follows: we pro-
pose a randomised sampling algorithm that efficiently identifies localised clus-
ters and their relevant dimensions, we allow data objects to be part of multiple
clusters, and we leave noise objects unclustered, and we perform a theoretical
evaluation to show the efficiency of our method and an extensive experimental
evaluation to demonstrate the quality of our output.

2 Background

Subspace Clustering. Let D = {D;,..., D,,} be a set of m dimensions. Each
dimension D; comes with a domain dom(D;). An m-dimensional data point
p=(di,...,dy) is a tuple of values over D, such that d; € dom(D;) for each i =
{1,...,m}. The input database P = (p;,...,p,) contains a collection of g such
m-~dimensional data points. Furthermore, each dimension D; comes with a dis-
tance function dp, : dom(D;) x dom(D;) — R. Additionally, we assume that for
any subset of dimensions D = {D1,...,D;}, with 1 <1 < m and D C D there exists
a distance function dp : (dom(D1)x...xdom(D;))x (dom(D1)X...xdom(D;)) — R.
All used distance functions must satisfy the usual conditions (non-negativity,
identity, symmetry and the triangle inequality). Given a subset of dimensions
D C D, we denote by pP a data point, and by PP a set of data points, projected
onto the given dimensions. A subspace cluster S is a tuple containing a subset
of datapoints and dimensions, i.e., S= (P,D), with P C P and D C D.

Frequent Itemset Mining. Let Z = (4,...i,) be a finite set of n items. A
transaction t is a subset of items. We denote by 7 = (#1,...,%,) a database of
o transactions. An itemset I is also a subset of items. A transaction ¢ is said
to support an itemset I if I C . The set of all transactions that support an
itemset is called the cover of that itemset, i.e., cov(I) = {t |t € T AT C t}.
The support of an itemset is the size of its cover, i.e., sup(I) = |cov(I)|. Given
a minimal support threshold ¢ > 0, an itemset I is considered frequent if its
support is larger than or equal to o, i.e., sup(I) > o. An itemset I is called
mazimal if there exists no superset of I that is also frequent with respect to
o. The anti-monotonic property of the support of itemsets guarantees that all
subsets of a frequent itemset are also frequent.
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3 Randomised Subspace Clusters

Existing methods for discovering subspace clusters from numeric data often focus
on the complete raw dataset to compute subspace clusters using a bottom-up
[1,3] or a top-down approach [4]. In this paper we introduce RASCL, which uses
randomised subsets of the data (both in the data points and in the dimensions) as
a starting point for detecting subspace clusters. The discovered clusters are then
checked for occurrence in multiple subsamples of the data. If a cluster occurs
frequently enough in the set of samples we output it as a subspace cluster.
Our algorithm relies on two simple premises: (1) higher dimensional subspace
clusters also form subspace clusters in lower dimensions; (2) if we take enough
samples and use them to detect clusters, a lot of similar subclusters of the same
true cluster will be found in different projections. Moreover, by repeating such
a randomised procedure many times we end up with a stable solution.

3.1 Randomised Data Transformation

Data Binarisation. To binarise a numeric database P into a transaction
database 7 we use the indices of data points as the items for 7, resulting in
|P| items. In addition, we obtain a mapping between data points and items.
Ideally, a transaction contains data points that are close together in some set of
dimensions. Then an itemset (essentially a set of data points) that occurs in a
large fraction of transactions can be seen as a subspace cluster over some set of
dimensions.

We define a randomised process for constructing a single transaction
database. We repeat this process n times and concatenate all transactions into a
single database 7*. We first sample a small subset of data points P and a small
subset of dimensions D (the sampling strategy is explained below). The data
points are projected onto the subset of dimensions and used as input for the
K-means clustering algorithm. The resulting cluster centroids are used to parti-
tion the original data points, assigning each data point to the closest centroid.
As such, each centroid represents one transaction and its items are the data
points assigned to it. Formally, for a set of centroids CP the closest centroid for
a projected data point pP is given by ¢’ = argmin ¢ oo (dp (PP, °)).

Pi | p centroid id|items
e g
A°C . %Co,
“'p‘a Ps ZDB 2 17 2’ 3
08 R7 s P1o. Cc2 47 57 6
*Cy °c, c3 7,8,9
0.0 Pg* P11 C4 107 11
0.0 0.5 1.0
(a) (b)

Fig. 1. (a) A fictitious example dataset with 2 dimensions, 11 data points (black dots)
and 4 centroids (red circles). (b) Binarised dataset in short format for the toy dataset.
(Color figure online)
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Example 1: Figure 1(a) shows a toy database of 11 data points in a 2D space.
A red circle represents a synthetic cluster centroid and the surrounding square
visually shows data points closest to that centroid. When constructing the bina-
rised database, the index of a data point is added to the transaction of the nearest
cluster centroid. The resulting transaction database is shown in Fig. 1(b).

Generating Data Samples. As mentioned previously, our binarisation strat-
egy requires a sample of data points and a sample of dimensions. The main
question now is how we can bias the sampling procedure to obtain samples that
will have a higher potential to contain cluster structures.

For the data points, we can sample k data points uniformly at random. By
repeating this a large number of times, we expect each cluster to be represented
by a sufficient number of data points in a high enough number of samples.

For the dimensions, a naive solution would be to sample uniformly at random
a subset of dimensions of size x, with 1 < z < |D|. However, since the number
of combinations larger than 2 can blow up, a random sample of dimensions will
likely be too large to contain a meaningful cluster. Sampling just one dimension
may result in discovering cluster structures that do not span multiple dimensions.
Our empirical results (omitted due to space constraints) have shown that sam-
pling 2 dimensions results in higher quality clusters. We apply weighted sampling
to boost the probability of sampling dimensions that contain cluster structures.
Similar to Moise et al. [1], we assume that uniformly distributed dimensions do
not contain any cluster structure. As such, to detect non-uniformity of a dimen-
sion we create a histogram using the Freedman-Diaconis’ rule [5] to compute
an appropriate number of bins for the data. This rule is robust to outliers and
does not assume data to be normally distributed. Let us denote by BY the bins
for a given dimension using the Freedman-Diaconis’ rule and let |b| denote the
number of data points falling in bin b. We compute how many bins contain less
than the number of expected data points under uniform data distribution. The
unnormalised sampling potential W of a dimension is given by

[{b]be BP A < 33 )

W(D) =

The resulting distribution favours dimensions with more cluster potential.

Time Complexity. The worst case complexity of our binarisation method is
mostly dependent on K-means. However, we use only a small subset of data
points, typically |P| < |P|, to compute cluster centroids. For this small subset
the complexity for clustering is O(n x (|P| x |D| x K x 4)) with n the number of
database samples and ¢ the number of iterations. Generation of samples for both
data points can be done in O(|P|) and for dimensions can be done in O(|D]).
Assignment of data points to cluster centroids is done in a single sweep, i.e.,
O(K x |P]). The total time complexity for generating samples and binarising the
database is O(K x |P|+ |D| + n x (|P| x |D| x K X 7)).
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3.2 Extracting Subspace Clusters

We previously constructed a binarised database 7* by concatenating n binarised
ones built using random samples of data points and dimensions. The premise is
that transactions represent cluster centroids and their items are indices of data
points in their close proximity for the set of dimensions. Since we generated n
samples, we know that each index occurs n times within 7 *. If then a set of items
occurs often together in the database, i.e., it is a frequent itemset with high sup-
port, then we know that in many sets of dimensions the same set of data points
occur in close proximity, which is exactly the objective for a subspace cluster.
However, typically the number of frequent itemsets is huge (largely because all
subsets of frequent itemsets are frequent). To alleviate this problem we use max-
imal itemsets and, more particularly, our algorithm samples y maximal frequent
itemsets from the binarised database. The resulting itemsets are the data points
for subspace clusters. An effective method for sampling maximal frequent item-
sets was introduced by Moens and Goethals [6]. It iteratively extends an itemset
with new items, until the set is found to be maximal given a threshold 7 and a
monotonic quality measure (e.g., support).

After extracting a collection of data points, we have to discover the dimen-
sions in which the data points form a cluster. In contrast to some existing meth-
ods [1,4], we do not require to go back to the data itself to check each dimension
individually, since our binarisation process preserved some essential information
that can guide us here. That is, our algorithm previously sampled collections of
dimensions which can be reused to determine a valid subset of dimensions. We
denote by dims(t) a map that for a transaction returns its linked dimensions, i.e.,
the dimensions that were used for its construction in the binarisation process.
For a maximal itemset I we can use the transactions in its cover to determine its
relevant dimensions, i.e., the set containing all linked dimensions for transactions
in cov(I). Formally, dims(I) = {d|d € DAd € dims(t) At € cov(I)}. An itemset
I, mapped to the data points P, forms together with its relevant dimensions the
subspace cluster S = (P, dims(I)).

3.3 Selecting the Best Subspace Clusters

After discovering a large number of subspace clusters (depending on parameter
1), we finally select a small collection of r clusters that can be deemed the
most interesting subspace clusters. The number of data points that is present
in the subspace cluster is an indication that the same set of data points are
often related even in different subsets of dimensions (experiments omitted due
to space constraints). In our method we will employ this heuristic (i.e., the
larger the cluster, the better) for sorting discovered subspace clusters. Finally,
to reduce redundancy in the cluster results, we sequentially evaluate each cluster
and select those clusters that have less than 25% cluster overlap with previously
selected ones. Note that when sorting clusters using the number of objects, this
results in smaller clusters as r increases. Finally, we exclude very small clusters
with less than 10 data points.
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4 Experiments

In our experiments, we use synthetic data provided by Giinnemann et al. [7].
The dataset characteristics are shown in Table 1. To measure the performance
we use PRECISION and RECALL scores on object level, as well as their harmonic
mean F1. Additionally we use their dimensionality aware counterparts which
are indicated by the subscripts D (for scores about the dimensions) and SC (for
scores about the combination of objects and dimensions) [7]. Finally, we also use
ME4SC [7], a measure to assess the quality of clusterings. Note that unless stated
otherwise, we assign just one discovered cluster to each ground truth cluster.

We compare two variants': RASCL sets k > K and RASCLR sets k = K which
essentially skips the clustering step. For each dataset we use the ground truth
and select the ground truth cluster with the largest overlap with the cluster being
evaluated to compute its quality. We run each experiment 10 times and report
the average results for the first r subspace clusters. Less than r clusters may be
reported. Unless stated otherwise, we fix the following parameters: n = 1000,
k=100, K = 20, 0 = 200, & = 100 and r = 10. We provide the following
guidance: n should be set high enough to obtain a representative sample, &
should be sufficiently larger than K for the clustering to make sense, r should be
set to the desired number of clusters, p should be high enough so no information
is lost due to randomisation. K and o are more difficult to set, but we show that
the performance of RASCL is not overly sensitive to changes in their values.

Table 1. Main characteristics of the synthetic datasets.

#rows #dimensions|#clusters #objects/cluster/ #dimensions/cluster
dbsizescalesis00| 1,595 20 10 166.3 14.0
dbsizescalesasoo| 2,658 20 10 276.5 14.0
dbsizescalesssoo| 3,722 20 10 385.8 14.0
dbsizescalesasoo| 4,785 20 10 496.2 14.0
dbsizescalesssoo| 5,848 20 10 608.5 14.0
dimscaleqgs 1,595 5 10 182.6 3.5
dimscaleqio 1,595 10 10 181.5 6.7
dimscaleqas 1,595 25 10 180.9 16.9
dimscalegso 1,595 50 10 181.6 33.5
dimscaleqrs 1,595 75 10 181.9 50.4
noisescalenio 1,611 20 10 166.5 14.6
noisescalenso 2,071 20 10 166.1 14.6
noisescalenso 2,900 20 10 166.3 14.6
noisescale,7o 4,833 20 10 166.8 14.6

! Source code and experiments are available via https://gitlab.com/adrem/rascl.
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Fig. 2. Object quality (a—f) and dimension quality (g-1) scores for different datasets.

Cluster Quality. We compare our methods to CARTICLUS [2] and
PrROCLUS [4]. We used different instantiations of RASCL and RASCLR by vary-
ing K and o. For CARTICLUS we use the parameter settings as selected by the
authors [2] as basis for this experiment. For PROCLUS we set parameters follow-
ing the ground truth.

Object quality results are shown in Fig. 2(a—f). All algorithms perform very
well with respect to PRECISION except PROCLUS, and setting K = 20 and
o = 200 we slightly outperform CARTICLUS. RascLy 07100 RascLX107100 and
RascLX209200 gutperform the competitors on RECALL, while RASCL{{QOJQOO often
fails to deliver good results. This is due to the introduced randomness: using ran-
dom centroids leads to more partially similar transactions. Combined with a high
support this results in small subclusters of the true ground truth clusters.

Results for the dimension quality are shown in Fig. 2(g-1). We see that our
algorithms generally outperform the competitors by quite a margin and we
see that our simple solution of using linked dimensions (Sect.3.2) works really
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well. For smaller subspace clusters with lower PRECISION, the dimension quality
decreases as a result. Comparing (K = 10, 0 = 100) to (K = 20, o = 200), the
latter produces better results, mostly because there are more linked dimensions
tied to the cover of the maximal itemset, boosting RECALLp.

Parameter Sensitivity. We test the influence of K and ¢ on the dimscaleqss
dataset and show the MZ*9Y scores. Note that even though our algorithm is
not meant for producing full clusterings, it produces very high quality results on
this metric. Figure 3 shows scores for the first 10 subspace clusters using vari-
ous parameter settings for the algorithms. For our algorithm we use a window
around the default parameters. For CARTICLUS we use a grid around the optimal
parameters and for PROCLUS we define sensible grids. We see that RASCL is not
overly susceptible to parameter changes and that, in general, the default param-
eters produce good and stable results. In contrast, RASCLy can still produce
very good results, but the quality diminishes quickly when the parameters are
not too far from the optimal parameters. Increasing K or ¢ results in subclusters
of the true clusters, thus decreasing the overall score. We see that finding good
settings for CARTICLUS and PROCLUS is much harder. For PROCLUS [ cannot
exceed the number of dimensions in the data, resulting in lots of 0 scores in the
figures. The experiments on other datasets produced similar results.

Real World Datasets. We tested our method on the pendigits dataset, a clas-
sification dataset found in the UCI machine learning repository?. Using RASCL
with n = 1000, k£ = 100, K = 10, ¢ = 100, 4 = 100 and r = 10 we discover
multiple subspace clusters for each class. A general trend we found was that
the discovered clusters have a very high PRECISION of approx. 91%, but they

2 https:/ /archive.ics.uci.edu/ml/datasets.html.
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have rather low RECALL averaging around 20%. We evaluate the largest sub-
space cluster in Fig.4. The silhouette plot shows high similarity for points in
the cluster (red) and a much lower score for points outside the cluster (blue). A
similar trend is found in the scatter plots, which are obtained using t-SNF trans-
formation [8] based on the relevant dimensions. The left scatter plot shows all
data (blue) together with the subspace cluster (red), while the right scatter plot
shows only data points not in the cluster. This shows that using our method we
do not miss many data points that are within the region of the subspace cluster
according to this transformation. The plot on the right is the Andrews plot [9],
which is a smoothed parallel coordinates plot, showing cluster structures more
clearly. Similar plots are found for the remaining clusters.

5 Related Work

Subspace clustering attempts to find clusters in subsets of dimensions. However,
some traditional clustering models, unsuited to this setting, have been adapted
for this purpose. PROCLUS [4], one of the first methods for subspace clustering,
adapts K-means [10] to this setting. The analogy to our work is the initialisation:
a two-step randomised procedure is used to obtain an approximation to a piercing
set, i.e., a set of points each from a different cluster, which are refined to clusters.

DOC [11] is an algorithm that finds subspace clusters using a Monte Carlo
method to sample a random point from a cluster as well as a discriminating set
of points. It then extends the random point to a full subspace cluster using a
bounding box around that point. Its extension MINECLUS [12] uses the same
medoid points for expanding the cluster, but it drops the randomised procedure.
Similar to our approach, it also converts the data to a binarised dataset. Other
clustering algorithms, such as DBSCAN [13], have also been adapted for the
subspace clustering task [14]. Recently, more general techniques have been pro-
posed for searching the subspace [15], where the discovery of clusters is left to
specialised algorithms. However, all of the above methods are computationally
very expensive as they search in an exponential set of subspaces.

FIRES [16] is a generic framework for finding subspace clusters, employ-
ing existing clustering techniques to compute a set of base clusters in single
dimensions. These base clusters are then merged based on their similarity, and
the resulting clusters are then pruned and refined to optimise accuracy. The
CARTICLUS algorithm [2], like our method, creates a binarised dataset. However,
in CARTICLUS, the dimensions are defined during the construction of transac-
tions (or carts), such that all carts rely on the same dimension sets. Finally,
the carts are mined for frequent itemsets which are then translated back to sub-
space clusters. Bi-clustering [17] also simultaneously clusters rows and columns of
numeric matrices. However, bi-clusters allow for more general clusters as they, for
instance, group rows with constant values for a set of columns or group columns
that decrease similarly over a set of rows. Typically, such methods are used for
analysis of biological data such as gene expression data.
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6 Conclusion

In this paper, we present a novel method for discovering interesting clusters in
high-dimensional data. We started by converting the original data into a trans-
action database by selecting a small number of random data objects, project-
ing them to a small number of random dimensions, then clustering them, and,
finally, building transactions by assigning all data objects to their closest clus-
ter centroids. We repeat this procedure many times and merge the results. We
then sample maximal itemsets randomly from the resulting transaction database,
and consider each such itemset to be a potentially interesting cluster of objects.
Finally, for each discovered cluster, we identify a relevant set of dimensions.

A major advantage of our method is that, by using the two randomised
procedures, we avoid both the combinatorial explosion of possible dimension
sets, and the computational cost of frequent itemset mining. In addition, we do
not attempt to produce full clusterings, and we allow data objects to be part
of multiple clusters, while noise objects will not be part of any cluster at all.
Experimentally, we demonstrate that our method produces quality clusters and
is not overly sensitive to changes in the parameter settings, which is crucial for
an unsupervised learning task.
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Abstract. Various strategies for active learning have been proposed in
the machine learning literature. In uncertainty sampling, which is among
the most popular approaches, the active learner sequentially queries the
label of those instances for which its current prediction is maximally
uncertain. The predictions as well as the measures used to quantify the
degree of uncertainty, such as entropy, are almost exclusively of a prob-
abilistic nature. In this paper, we advocate a distinction between two
different types of uncertainty, referred to as epistemic and aleatoric, in
the context of active learning. Roughly speaking, these notions capture
the reducible and the irreducible part of the total uncertainty in a pre-
diction, respectively. We conjecture that, in uncertainty sampling, the
usefulness of an instance is better reflected by its epistemic than by its
aleatoric uncertainty. This leads us to suggest the principle of “epistemic
uncertainty sampling”, which we instantiate by means of a concrete app-
roach for measuring epistemic and aleatoric uncertainty. In experimental
studies, epistemic uncertainty sampling does indeed show promising per-
formance.

Keywords: Active learning - Uncertainty sampling + Epistemic
uncertainty - Aleatoric uncertainty

1 Introduction

The goal in standard supervised learning, such as binary or multi-class classifi-
cation, is to learn models with high predictive accuracy from labelled training
data [7,22]. However, labelled data does normally not come for free. On the con-
trary, labelling can be expensive, time-consuming, and costly. The ambition of
active learning, therefore, is to exploit labelled data in the most effective way.
More specifically, the idea is to let the learning algorithm itself decide which
examples it considers to be most informative. Compared to random sampling,
the hope is to achieve better performance with the same amount of training
data, or to reach the same performance with less data [6,20].
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The selection of training examples is often done in an iterative manner, i.e.,
the active learner alternates between re-training and selecting new examples. In
each iteration, the usefulness of a candidate example is estimated in terms of a
utility score, and the one with the highest score is queried. In this regard, the
notion of utility typically refers to uncertainty reduction: To what extent will
the knowledge about the label of a specific instance help to reduce the learner’s
uncertainty about the sought model? In wuncertainty sampling [20], which is
among the most popular approaches, utility is quantified in terms of predictive
uncertainty, i.e., the active learner selects those instances for which its current
prediction is maximally uncertain. The predictions as well as the measures used
to quantify the degree of uncertainty, such as entropy, are almost exclusively of
a probabilistic nature. Such approaches indeed proved to be successful in many
applications.

Yet, as pointed out by [21], existing approaches can be criticized for not
informing about the reasons for why an instance is considered uncertain,
although this might be relevant for judging the usefulness of an example. In
this paper, we advocate a distinction between two different types of uncer-
tainty, referred to as epistemic and aleatoric—roughly speaking, these capture
the reducible and the irreducible part of the total uncertainty in a prediction,
respectively. The conjecture that, in uncertainty sampling, the usefulness of an
instance is better reflected by its epistemic than by its aleatoric uncertainty leads
us to the idea of “epistemic uncertainty sampling”. Our approach, which builds
on a formalization of epistemic and aleatoric uncertainty as proposed by [19],
is generic in the sense that is can be instantiated for any learning algorithm;
concretely, we present instantiations for a Parzen window classifier, decision tree
learning, and logistic regression.

The rest of this paper is organized as follows. In the next section, we recall the
general framework of uncertainty sampling and provide a brief survey of related
work on active learning. In Sect. 3, we recall the approach of [19] for modeling
epistemic and aleatoric uncertainty, and then present our idea of generalizing
uncertainty sampling on the basis of this approach. Instantiations of our app-
roach for local learning (Parzen window classifier), decision tree learning and
logistic regression are presented in Sect.4. Experimental evaluations are given
in the Sect.5. The paper concludes with a short summary and an outlook on
future work in Sect. 6.

2 Uncertainty Sampling

As usual in active learning, we assume to be given a labelled set of training data
D and a pool of unlabeled instances U that can be queried by the learner:

D = {(wlyyl)v"'a(wNayN)}a U= {wlwu,iﬂJ}

Instances are represented as features vectors @; = (z},...,2¢) € X = R%. In

this paper, we only consider the case of binary classification, where labels y; are
taken from Y = {0, 1}, leaving the more general case of multi-class classification
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for future work. We denote by H C Y% the underlying hypothesis space, i.e.,
the class of candidate models h : X — Y the learner can choose from. Often,
hypotheses are parametrized by a parameter vector 8 € ©; in this case, we equate
a hypothesis h = hy € H with the parameter 0, and the model space H with the
parameter space O.

In uncertainty sampling, instances are queried in a greedy fashion. Given the
current model 6 that has been trained on D, each instance x; in the current
pool U is assigned a utility score s(6,x;), and the next instance to be queried is
the one with the highest score [11,20,21]. The chosen instance is labelled (by an
oracle or expert) and added to the training data D, on which the model is then
re-trained. The active learning process for a given budget B (i.e., the number of
unlabelled instances to be queried) is summarized in Algorithm 1.

Algorithm 1: Uncertainty sampling

Input: U, D, 6¢- initial pool, training data, classifier, and B-budget
Output: U, D, 0 - updated pool, training data, classifier
initialize b = 0;
while b < B do
foreach = € U do
L compute s(6, x)

W N =

query the label of the optimal instance &* with respect to s(, x)
D=DU{a"y'} ;

U=U\{z"y"};

train 6 from D;

b=b+1;

Return U, D, 6;

91

© 0w N o

Assuming a probabilistic model producing predictions in the form of proba-
bility distributions pe(- | ) on Y, the utility score is typically defined in terms of
a measure of uncertainty. Thus, instances on which the current model is highly
uncertain are supposed to be maximally informative [20,21]. Popular examples
of such measures include

— the entropy:
s(0,2) = =) po(A|z)logpe(A| @), (1)
AEY

— the least confidence:

0 =1- A 2
s(0, ) max py(A | ), (2)
— the smallest margin:

s(0, ) = po(An | ) — po (A | ), 3)

where \,, = argmaxycy po(A | ) and \, = arg maxecy\x,, Po(A|x).
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All the three measures ought to be maximized. In the case of binary classification,
ie., Y ={0,1}, all these measures rank unlabelled instances in the same order
and look for instances with small difference between pg(0|x) and py(1|x).

3 Epistemic and Aleatoric Uncertainty

A main building block of our approach to active learning is the distinction
between the epistemic and aleatoric uncertainty involved in the prediction for
an instance x. Although this distinction is well accepted in the literature on
uncertainty [8], it has been considered in machine learning only very recently
[9,13,19]. Here, we adopt the formal model proposed by [19], which is based on
the use of relative likelihoods, historically proposed by [2] and then justified in
other settings such as possibility theory [23]. For the sake of completeness and
self-containedness, we briefly recall the essence of this approach.

As before, we proceed from an instance space X, an output space Y = {0,1}
encoding the two classes, and a hypothesis space H consisting of probabilistic
classifiers h : X — [0, 1]. We denote by pp(1|x) = h(x) and pp (0| x) = 1—h(x)
the (predicted) probability that instance & € X belongs to the positive and
negative class, respectively. Given a set of training data D = {(z;,y;)}Y, C
X x Y, the normalized likelihood of a model h is defined as

_ Lw L
- L(hmY)  maxpen LK)’ )

m3(h)

where L(h) = Hfil pn(yi | ;) is the likelihood of h, and h™ € H the maximum
likelihood estimation on the training data. For a given instance x, the degrees
of support (plausibility) of the two classes are defined as follows:

m(1|@) = sup min [m3(h), pr (1] @) = pa(0] )], ()
m(0]x) = }Slgimin [m3(h), pr (0] ) — pu(1] )] (6)

So, (1| x) is high if and only if a highly plausible model supports the positive
class much stronger (in terms of the assigned probability mass) than the negative
class (and m(0|z) can be interpreted analogously)!. Note that, with f(a) =
2a — 1, we can also rewrite (5)—(6) as follows:

(1] 2) = sup min [ (1). £(h(a))]. (7)
7(0| &) = sup min [mx(h), f(1 — h(z))]. (8)
heH

Given the above degrees of support, the degrees of epistemic uncertainty u. and
aleatoric uncertainty u, are defined as follows:

Uue(x) = min [7(1]x), 7(0]z)], (9)
uq(z) =1 — max [r(1|x), 7 (0] x)]. (10)

! Technically, we assume that, for each € X, there are hypotheses h,h’ € H such
that h(z) > 0.5 and h'(z) < 0.5, which implies m(1|x) > 0 and «(0|z) > 0.
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Thus, epistemic uncertainty refers to the case where both the positive and the
negative class appear to be plausible, while the degree of aleatoric uncertainty
(10) is the degree to which none of the classes is supported. These uncertainty
degrees are completed with degrees s1(x) and so(x) of (strict) preference in favor
of the positive and negative class, respectively:

1 — (ua() + uc(x)) if 7(1]x) > =(0]| ),
si(x) = w if m(1|x) = (0] ),
0 ifr(l|z) <w(0]x).
With an analogous definition for sg(x), we have so(x)+s1 () +tuq () tue(x) =1

Besides, it has the following properties:

— s1(x) (so(x)) will be high if and only if, for all plausible models, the prob-
ability of the positive (negative) class is significantly higher than the one of
the negative (positive) class;

— ue () will be high if class probabilities strongly vary within the set of plausible
models, i.e., if we are unsure how to compare these probabilities. In particular,
it will be 1 if and only if we have h(z) = 1 and A/(x) = 0 for two totally
plausible models h and h';

— ug(x) will be high if class probabilities are similar for all plausible models,
i.e., if there is strong evidence that h(x) ~ 0.5. In particular, it will be close
to 1 if all plausible models allocate their probability mass around h(x) = 0.5.

Roughly speaking, aleatoric uncertainty is due to influences on the data-
generating process that are inherently random, whereas epistemic uncertainty
is caused by a lack of knowledge. Or, stated differently, u. and u, measure the
reducible and the irreducible part of the total uncertainty, respectively. It thus
appears reasonable to assume that epistemic uncertainty is more relevant for
active learning: While it makes sense to query additional class labels in regions
where uncertainty can be reduced, doing so in regions of high aleatoric uncer-
tainty appears to be less reasonable. This leads us to the principle of epistemic
uncertainty sampling, which prescribes the selection

* = e(x). 11
" =argmaxu (x) (11)

For comparison, we will also consider an analogous selection rule based on the
aleatoric uncertainty, i.e.,

* — (). 12
@ =argmaxu (x) (12)

Let us note that the above approach is completely generic and can in principle
be instantiated with any hypothesis space H. The uncertainty measures (11-12)
can be derived very easily from the support degrees (7-8). The computation
of the latter may become difficult, however, as it requires the solution of an
optimization problem, the properties of which depend on the choice of H.
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4 Instantiations of the General Approach

We are going to present practical methods to determine (7-8) for the cases of
local learning and logistic regression in Sects. 4.1 and 4.2, respectively.

4.1 Local Learning

This section presents an instantiation of our approach for the case of local learn-
ing using a Parzen window classifier [4]. The method is then adapted to the case
where the decision tree classifier [16,18] is employed as the based learner.

As already said, instantiating the approach essentially means to address the
question of how to compute the degrees of support (7-8), from which everything
else can easily be derived.

By local learning, we refer to a class of non-parametric models that derive
predictions from the training information in a local region of the instance space,
for example the local neighborhood of a query instance [3,5]. As a simple exam-
ple, we consider the Parzen window classifier [4], to which our approach can be
applied in a quite straightforward way. To this end, for a given instance x, define
the set of its neighbours as follows:

R(z.c) = {(xi.y;) € D| |z, —al| < e}, (13)

where € is the width of the Parzen window (a practical method to determine
such a width will be given latter).

In binary classification, a local region R can be associated with a constant
hypothesis hg, 6 € © = [0, 1], where hg(x) = 0 is the probability of the positive
class in the region; thus, hg predicts the same probabilities p,(1|x) = 6 and
pr(0]x) =1 — 0 for all x € R. The underlying hypothesis space is given by
H = {hg|0 < 0 < 1}. With n and p the number of positive and negative
instances, respectively, within a Parzen window R(z, ¢), the likelihood and the
maximum likelihood estimate of 6 are respectively given by

_(n+p n1_ p\p N
L(H)-( n )9 (1-6) and9_n+p. (14)
Therefore, the degrees of support for the positive and negative classes are
0P (1 —6)™
m(l]x) = sup min (p(pn)m 20 — 1) ) (15)
o(o.1] (55)" (=55)

4 _ n
m(0]x) = sup min %7 1-20). (16)
0€(0,1] (+55)" (45)

Solving (15) and (16) comes down to maximizing a scalar function over a
bounded domain, for which standard solvers can be used. We applied Brent’s
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method? (which is a variant of the golden section method) to find a local mini-
mum in the interval 8 € [0,1]. From (15-16), the epistemic and aleatoric uncer-
tainty associated with the region R can be derived according to (11) and (12),
respectively. For different combinations of n and p, these uncertainty degrees can
be pre-computed (cf. Fig. 1).

10

0 0 0
0 5 10 0 5 10 0 5 10

Fig. 1. From left to right: Epistemic, aleatoric, and total uncertainty (epistemic +
aleatoric) as a function of the numbers p,n € {0,1,...,10} of positive and negative
examples in a region (Parzen window) of the instance space (lighter colors indicate
higher values).

How to determine the width e of the Parzen window? This value is difficult
to assess, and an appropriate choice strongly depends properties of the data and
the dimensionality of the instance space. Intuitively, it is even difficult to say
in which range this value should lie. Therefore, instead of fixing €, we fixed an
absolute number K of neighbors in the training data, which is intuitively more
meaningful and easier to interpret. A corresponding value of € is then determined
in such a way that the average number of nearest neighbours of instances «; in
the training data D is just K (see Algorithm 2). In other words, € is determined
indirectly via K.

Since K is an average, individual instances may have more or less neighbors
in their Parzen windows. In particular, a Parzen window may also be empty. In
this case, we set u.(x) = 1 by definition, i.e., we consider this as a case of full
epistemic uncertainty. Likewise, the uncertainty is considered to be maximal for
all other sampling techniques. If the accuracy of the Parzen classifier needs to
be determined, we assume that it yields a wrong prediction.

In a similar way, the approach can be applied to decision tree learning [16,18].
In fact recall that a decision tree partitions the instance space X into (rectangu-
lar) regions Ry, ..., Ry (i.e., UiL=1 R; = X and R, N R; = () for i # j) associated
with corresponding leafs of the tree (each leaf node defines a region R). Again,
in the case of binary classification, we can assume each region R to be associated
with a constant hypothesis hg, § € © = [0, 1], where hg(x) = 6 is the probability

2 For an implementation in Python, see https://docs.scipy.org/doc/scipy-0.19.1/
reference/generated /scipy.optimize.minimize_scalar.html.
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Algorithm 2: Determining the width e.

Input: D-normalized data, K-number
Output: the local width ex
1 foreach z, € D do
2 foreach ., # x, do
3 | compute d(zn, Tm);
4 form 1 x (n — 1) vector d, = (d(mn,mm) |n # m);
5 sort d,, by increasing order and determine the K-th element dX;

ID| 4K
6 return ex = 7211/‘:]& n_

of the positive class. Therefore, degrees of epistemic and aleatoric uncertainty
degrees can be derived in the same way as described above.

4.2 Logistic Regression

In this section, we present another instantiation of our approach for a commonly
used learning algorithm, namely logistic regression. In contrast to nonparametric,
local learning methods such as the Parzen window classifier, logistic regression
is a parametric class of linear models, and hence coming with comparatively
restrictive assumptions.

Recall that logistic regression assumes posterior probabilities to depend on

feature vectors = (x!,...,2%) € R? in the following way:

exp (90 + Z?zl 0; xl)
1+ exp (00 + Z?:I 6; Jﬂ)

h(z) = p(l]z) = (17)

This means that learning the model comes down to estimating a parameter vector
6 = (0o, ...,04), which is commonly done through likelihood maximization [12].
To avoid numerical issues (e.g, having to deal with the exponential function for
large #) when maximizing the target function, we employ Lo-regularization. The
corresponding version of the log-likelihood function (18) is strictly concave [17]:

N d
10) =105 L(0) =Y vn (eo > m;) (18)

N d d
_ Zln <1+exp (904—29@;)) — %Z@?,
n=1 i=1 i=0

where the regularization term ~ will be fixed to 1.
We now focus on determining the degree of support (7) for the positive class,
and then summarize the results for the negative class (which can be determined
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in a similar manner). Associating each hypothesis h € H with a vector § € R4+,
the degree of support (7) can be rewritten as follows:

m(1|x) = sup min [7(6),2h(x)— 1] (19)
R+

It is easy to see that the target function to be maximized in (19) is not necessarily
concave. Therefore, we propose the following approach.

Let us first note that whenever h(x) < 0.5, we have 2h(z) —1 < 0 and
min [7(h),2h(z) — 1] < 0. Thus the optimal value of the target function (7)
can only be achieved for some hypotheses h such that h(zx) € [0.5,1]. For a given
value « € [0.5,1], the set of hypotheses h such that h(x) = « corresponds to the
convex set

9a{9|90+i0iziln(1fa)}. (20)

i=1

The optimal value 7% (1| «) that can be achieved within the region (20) can be
determined as follows:

74 (1] 2) = sup min [7(6), 2« — 1] = min [ sup 7(6), 20 — 1]. (21)
9o 9co°

Thus, to find this value, we maximize the concave log-likelihood over a convex set:

0% = arg sup 1(9) (22)
oco~

As the log-likelihood function (18) is concave and has second-order derivatives,
we tackle the problem with a Newton-CG algorithm [14]. Furthermore, the opti-
mization problem (22) can be solved using sequential least squares programming?®
[15]. Since regions defined in (20) are parallel hyperplanes, the solution of the
optimization problem (7) can then be obtained by solving the following problem:

sup 7a(l|lz) = sup min [7(6), 20 — 1]. (23)
a€l0.5,1) a€[0.5,1)

Following a similar procedure, we can estimate the degree of support for the
negative class (8) as follows:

sup 74 (0lz) = sup min [7(6}),1 - 2a] (24)
a€(0,0.5] «€(0,0.5]

Note that limit cases & = 1 and o = 0 cannot be solved, since the region (20)
is then not well-defined (as In(co) and In(0) do not exist). For the purpose of
practical implementation, we handle (23) by discretizing the interval over a.
That is, we optimize the target function for a given number of values « € [0.5,1)

3 For an implementation in Python, see https://docs.scipy.org/doc/scipy /reference/
generated /scipy.optimize.minimize.html.
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and consider the solution corresponding to the o with the highest optimal value
of the target function 7% (1|x) as the maximum estimator. Similarly, (24) can
be handled over the domain (0, 0.5].

In practice, we evaluate (23) and (24) on uniform discretizations of cardinal-
ity 50 of [0.5,1) and (0, 0.5], respectively. We can further increase efficiency by
avoiding computations for values of a for which we know that 2a—1 and 1 — 2«
are lower than the current highest support value given to class 1 and 0, respec-
tively. See Algorithm 3 for a pseudo-code description of the whole procedure.

Algorithm 3: Degrees of support for logistic regression

Input: Q, D, ™ z- initial pool, training data, classifier, unlabelled instance
Output: 7(1|x), 7(0|x) - degrees of support

1 initialize subsets @Qp, Qn of cardinality Q;

2 7(1|2) = max(2h™ (z) — 1,0) , 7(0 | 2) = max(1 — 2h™ (), 0) ;

3 forg=1,...,Q do

4 ap = max(Qp); an = min(Qn) ;

5 if 20, — 1 > 7(1| ) then

6 solve (22) for z, o, and return 0;

7 (1| x) = max(7(1|x), min(mx(0), 2a, — 1)) ;

8 if 1 —2a, > 7(0]x) then

9 solve (22) for x, a, and return 0;
10 7(0]z) = max(7(0 | x), min(mx (0),1 — 2ap)) ;
11 %Qp:Qp\{O‘p}a Qn =Qn \{an};

12 Return n(1|z), 7(0]x) ;

5 Experimental Results

To illustrate the performance of our uncertainty measures in active learning,
we conducted experiments on data sets from the UCI repository?, the main
properties of which are summarized in Table 1.

5.1 Local Learning

We follow a 10-fold cross-validation procedure, considering each fold as the test
set, while the other folds are used for learning. The latter is randomly split into
a training data set and a pool set. The proportions of training/pool/test sets
are 10/80/10% and accuracies are averaged. The budget of the active learner is
fixed to be 30% of the original data.

* http://archive.ics.uci.edu/ml/index.php.
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Table 1. Data sets used in the experiments

# | Name # instances | # features | Attributes
1 | Parkinsons 197 22 Real

2 | Vertebral-column 310 6 Real

3 | Ionosphere 351 34 Real

4 | Climate-model 540 18 Real

5 | Breast-cancer 569 30 Real

6 | Blood-transfusion 748 5 Real

7 |QSAR 1055 41 Integer, real
8 | Banknote-authentication | 1372 4 Real

After each query, we update the data sets and, correspondingly, the classi-
fiers. The improvements of the classifiers are compared for four different uncer-
tainty measures, i.e., uncertainty sampling (following the strategy presented in
Algorithm 1) based on four measures for selecting unlabelled instances: random
sampling, standard uncertainty (2), epistemic uncertainty (9), aleatoric uncer-
tainty (10).

To reduce the computational efforts, in each iteration, the learner is allowed
to evaluate and query instances from a randomly selected subset consisting of
10% of the data in the pool. Since we are not, in the first place, interested in
maximizing performance, but in analyzing the effectiveness of active learning
approaches, we simply fix the neighborhood size K as the square root of the size
of the data set (number of instances in the initial training set and pool) [10].

As can be seen in Fig. 2, the results are nicely in agreement with our expec-
tations: Epistemic uncertainty sampling performs the best and aleatoric uncer-
tainty sampling the worst. Moreover, standard uncertainty sampling and ran-
dom sampling are in-between the two. This supports our conjecture that, from
an active learning point of view, epistemic uncertainty is the more useful infor-
mation. Even if the improvements compared to standard uncertainty sampling
are not huge, they are still visible and quite consistent.

The results for decision tree learning (cf. Fig.3) are quite similar and again
in agreement with our expectations.

5.2 Logistic Regression

For logistic regression, we start with a relatively small amount of initial training
data, thereby making improvements in the beginning more visible. More specifi-
cally, the proportions of training/pool/test set are 1/89/10%, and the accuracies
are averaged. The budget is fixed to be 20% of the original data, and in each iter-
ation, the learner is allowed to evaluate and query instances from a (randomly)
subset consisting of 10% data of the pool.

In the case of logistic regression, the improvements through epistemic uncer-
tainty sampling are less pronounced—on the contrary, the performance of epis-
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Fig. 2. Average accuracies (y-axis) for the Parzen window classifier as a function of
the number of examples queried from the pool (x-axis).

temic and standard uncertainty sampling is quite comparable. Two examples,
which are quite representative, are shown in Fig.4. As a plausible explanation,
note that logistic regression comes with a very strong learning bias in the form
of a linearity assumption. Therefore, the epistemic (or model) uncertainty dis-
appears quite quickly.
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Fig. 3. Average accuracies (y-axis) for the decision tree classifier as a function of the
number of examples queried from the pool (x-axis).
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Fig. 4. Average accuracies (y-axis) for logistic regression as a function of the number
of examples queried from the pool (x-axis).

6 Conclusion

This paper reconsiders the principle of uncertainty sampling in active learning
from the perspective of uncertainty modeling. More specifically, it starts from the
supposition that, when it comes to the question of which instances to select from
a pool of candidates, a learner’s predictive uncertainty due to “not knowing”
should be more relevant than its uncertainty due to inherent randomness.

To corroborate this conjecture, we proposed epistemic uncertainty sampling,
in which standard uncertainty measures such as entropy are replaced by a novel
measure of epistemic uncertainty. The latter is borrowed from a recent frame-
work for uncertainty modeling, in which epistemic uncertainty is distinguished
from aleatoric uncertainty [19]. We interpret our experimental results, especially
those for local learning (Parzen window classifier and decision trees) as evidence
in favor of our conjecture. They clearly show that a separation of the total uncer-
tainty (into epistemic and aleatoric) is effective, and that the epistemic part is
the better criterion for selecting instances to be queried. This was the main
purpose of the paper.

Given this affirmation, we are now encouraged to elaborate on epistemic
uncertainty sampling in more depth, and to develop it in more sophistication.
This includes an extension to other learning algorithms and more general learn-
ing problems (such as multi-class classification), as well as a comparison to other
variants of uncertainty sampling, such as [1] and [21].

Acknowledgements. This work was supported by the German Research Foundation
(DFG) and the French National Agency for Research (Labex MS2T).
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Abstract. Methods for online prediction of structured values are
becoming more and more popular. However, hierarchical prediction,
which has recently been shown to produce good results in terms of predic-
tive performance in the batch learning setting, has not yet been applied
in the online learning setting. We address the recently introduced task
of hierarchical multi-target regression. To this end, we propose a hierar-
chical extension of iISOUP-Tree, which can address online multi-target
regression. The extension weighs the split evaluation heuristic according
to the location of the targets in the hierarchy. We design the experimental
setup to ascertain whether the additional information contained in the
hierarchy can be utilized to improve the predictive performance in the
leaf targets. The proposed method shows promising results, producing
potential improvements that should be investigated further.

Keywords: Online hierarchical prediction - Hierarchical multi-target
regression

1 Introduction

The recent popularity of online predictive modeling has also extended toward
tasks where the predicted values are composed of multiple components. Com-
monly, this encompasses the prediction of multiple nominal or continuous val-
ues. Interestingly, hierarchical prediction, a fairly popular approach used in the
batch learning setting, has not yet been applied to online learning. In hierarchi-
cal prediction, the nominal or continuous values to be predicted are arranged
in a hierarchy, which can be utilized to provide superior predictions over the
unstructured case [12,17].

In this paper, we seek to explore how hierarchical prediction can be applied to
online predictive modeling. In online predictive modeling, data examples arrive
one by one and the predictive model must be periodically updated. In particular,
we seek to answer the question of whether the use of a hierarchy on the target
space can improve the predictive performance over using a flat set of targets in
the online setting. To this end, we propose a hierarchical extension [12,17] of
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the iISOUP-Tree method [13,14] and explore how well its various configurations
utilize the information provided in the hierarchy.

In particular, we focus on the online predictive task of multi-target regression
and its hierarchical extension called hierarchical multi-target regression. Multi-
target regression (MTR) is concerned with predicting multiple continuous target
variables. Furthermore, we define the hierarchical prediction task pf hierarchical
multi-target regression (HMTR), where the individual targets are arranged into
a hierarchy. As the base method we extend to address hierarchical prediction
addresses online MTR, we focus on HMTR, though we briefly discuss the related
task of hierarchical multi-label classification and how to approach it.

The hierarchy of targets is generally represented by a graph. We distinguish
between tree hierarchies and directed acyclic graph (DAG) hierarchies. In a tree
hierarchy, each target only has one parent, while in a DAG hierarchy a target
can have multiple parents. In this paper, we evaluate the proposed approach on
datasets with tree hierarchies, but, the proposed method also works with DAG
hierarchies.

Before properly defining HMTR, we start with a definition of hierarchical
multi-label classification (HMLC), as some concepts are introduced more easily
in this context. In multi-label classification (MLC), each example is annotated
with a set of labels and in HMLC, the binary targets/labels are arranged in a
hierarchy, e.g., as in Fig. 1. A key property of the HMLC task is the hierarchy
constraint, which is satisfied when, for each label that is present in an example,
all its ancestors are also present. In other words, labels lower in the hierarchy
are refinements of their ancestor labels.

Animal

/\

Vertebrate Insect

N N

Cat Dog Fly Bee

Fig. 1. A sample (tree) hierarchy for use HMLC.

Hierarchical multi-target regression (HMTR) is a hierarchical variant of mul-
ti-target regression. In place of the binary values, now continuous targets are
arranged in a hierarchy. In hierarchical multi-target regression, the hierarchy
constraint is not as straightforward as in hierarchical multi-label classification.
In HMLC, the value of a non-leaf label is based on the values of its children. If
any of its children are present, so must be the observed label according to the
hierarchy constraint. In other words, the label is present if we take the disjunction
of its children’s labels’ presence, i.e.,

label A is present <= V(label A’ is present).
A is a child of A
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The observed label’s presence is an aggregate of the presences of its children.
This prompts us to define the hierarchy constraint in hierarchical multi-target
regression in a similar way. In HMTR, a non-leaf target is assumed to have a
value that is an aggregate of its children’s values. The aggregate can be a sum,
minimum, maximum, etc. However, due to the targets being continuous, the
enforcement of the hierarchy constraint is not as simple as in HMLC. Instead
of expecting the aggregate values to be matched exactly, we instead expect the
predictions to be as close to the aggregate values as possible according to the
chosen evaluation measure.

Notably, when we observe a single example (x,vy), where  and y are the
descriptive and target vectors, respectively, we do not encode the hierarchy
explicitly in y. Instead, we use the standard vector representation as flat MTR
and encode the hierarchy as a relation of the components of the target vector.
We then define evaluation measures that take the hierarchy into account, as
shown later in the paper.

This paper continues with an overview of related work in Sect.2. The pro-
posed hierarchical iSOUP-Tree method is presented in Sect.3. In Sect.4, we
describe the experimental setup, including the evaluation measures and datasets.
We present and discuss the experimental results in Sect. 5 and conclude the paper
with plans for further work in Sect. 6.

2 Related Work

Hierarchical prediction problems are found in many application domains, most
notably in text classification [15], functional genomics [1] and object recognition
[16]. Historically, the only hierarchical prediction task that was addressed for
was for a long time hierarchical multi-label classification. The task of hierar-
chical multi-target regression was introduced recently [12]. To the best of our
knowledge, there are no methods that address online hierarchical prediction.
Hence, we present related work for batch HMTR and online MTR.

Batch HMTR. The hierarchical multi-target regression task has only been
introduced recently by Mileski et al. [12]. They address hierarchical multi-target
regression by using predictive clustering trees, which had previously been used
for batch MTR and hierarchical multi-label classification [17].

Online MTR. In the online setting, some attention has been given to
multi-target regression, exclusively based on the Hoeffding bound. Namely,
Tkonomovska et al. [10] proposed the FIMT-DD method for online regression,
which was extended to the multi-target regression setting in the FIMT-MT
method [9].

iSOUP-Tree [14] extends FIMT-MT with support for nominal input
attributes and multi-target leaf models. iISOUP-Tree has also been applied to
online MLC [13]. Recently, Duarte and Gama [5] implemented a rule-based learn-
ing method for multi-target regression.
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3 iSOUP-Tree for Online Hierarchical Prediction

iSOUP-Tree [13,14] is a tree-based method for online multi-target regression
and online multi-label classification. It uses a similar learning mechanism to
Hoeffding trees [4] for classification and FIMT-DD [10] for regression; that is,
it periodically checks if enough data instances have accumulated in any leaves
and, based on the appropriate heuristic and the Hoeffding bound [8], determines
weather the best split is statistically supported. To evaluate a split candidate
S, iISOUP-Tree uses as a heuristic the intra-cluster variance reduction (ICVR),
defined as

|ST|Varj(ST) |SL|Varj(SL)>
ICVR(S AP . ,
M Z( IS| Var’(9) IS| Var’(S)

where j indexes the target variables, M is the number of targets, S is the set of
examples accumulated in the given leaf and S+ and S| are the post-split subsets
of S and for which the considered split test is evaluated either as true and false,
respectively. Var’ is the variance of the j-th target:

Var(§) = o> (vl - %)

where 7 indexes the examples from (sub)set .S, yf is the value of the j-th target
of the i-th example, and 77 is the average value of the j-th target in the set S.
For further details on the iISOUP-Tree algorithm, see Osojnik et al. [14].

In order to address online hierarchical prediction, we utilize a weighted split-
ting heuristic, commonly used in the batch setting for hierarchical multi-label
classification [2,17], as well as in hierarchical multi-target regression [12]. The
weighted heuristic assigns a weight to each target based on its location in the
hierarchy.

The weighted ICVR heuristic is calculated as above, however instead of using
regular variance, we use the weighted variance

Z‘zsu (yz )

wVar’ (S) = w; 5] ,

where w; is the weight of the j-th target, which is calculated as w; = w0

where wg € R is the weight of the root node and depth(j) is the average depth
of the j-th target over all paths from the root to it in the hierarchy. In the
case of a tree hierarchy, this depth(j) coincides with the standard definition of
depth. When the weight of the root node is less than one, i.e., wg < 1, a larger
emphasis is placed on the variances of the targets higher in the hierarchy, i.e.,
nodes which are closer to the root of the hierarchy. This aims to address the
fact that a wrong prediction higher in the hierarchy is more detrimental than
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a mistake lower in the hierarchy, i.e., wrongly predicting a high-level concept
results in wrong predictions of the lower-level concepts, due to the hierarchy
constraint.

On the other hand, when wg > 1, variances of the targets deeper in the
hierarchy, in particular of leaf targets, are emphasized. This directly prioritizes
splits which reduce the variances of the leaf targets. The variances of non-leaf
targets are then used as a discrimination factor for splits with similar variances
in the leaf targets.

4 Experimental Setup

In the experiments for hierarchical tasks, we consider the task of online multi-
target regression, presented here. To this aim, we use HMTR datasets. More
specifically, we are exploring if and how the hierarchically adjusted splitting
heuristic [17] affects the predictive performance of the iSOUP-Tree method.

Experimental Scenarios. In hierarchical prediction tasks, we are often inter-
ested primarily in the predictions for the leaf targets. In these experiments, we
examine how the hierarchy and the adapted method affect the predictive per-
formance in the leaf targets. To this end we define three scenarios. The first sce-
nario serves as a “control group”. We remove all non-leaf targets in the observed
datasets and keep only the leaf targets. Essentially, this yields an online MTR
task that we can address with tje regular iSOUP-Tree approach. This scenario is
named leaves-only. In the second scenario, we use a bottom-weighted hier-
archical iSOUP-Tree, as described in Sect. 3, by selecting a root node weight of
wo = 2. This method places greater emphasis on the homogeneity of the leaf
targets when selecting splits. In the third scenario, we use a top-weighted hier-
archical iISOUP-Tree, which places emphasis on the targets that are closer to the
root node of the hierarchy by selecting a root node weight of wg = 0.5.

Performance Evaluation. There are several approaches for evaluating the
predictive performance of hierarchical prediction models. They differ in what
they are trying to measure, and are different for different hierarchical tasks.

In this paper, we wish to observe whether the addition of the hierarchy can
improve the prediction in the leaves. We can think of the hierarchy as a tool
to improve the predictive performance and we are evaluating whether it can
improve the performance and what its effectiveness is in this regard.

As we are most interested in the predictive performance in the leaves, we
calculate the evaluation measures only on the leaf targets. To obtain the pre-
dictions of all the models, we use the prequential evaluation approach [7]. The
evaluation measure we use is the average relative mean absolute error (RMAE)
measure, defined on an evaluation sample S as

7, l‘y]_gg

y—y%ﬂ

RMAE(S E:

j=1 z 1
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Fig. 2. The hierarchy of targets for the (a) Bicycles and (b) Mars Express datasets.

where yf is a true value of the target j for example 1, g}f are the predictions of
the evaluated model, and 37 (¢) is the value predicted by the j-th mean regressor
for the i-th example. Lower values of RMAE mean better performance.

Datasets. For our experimental evaluation, we use two datasets. The first is a
modified Bicycles [6] dataset, in which we arrange the targets into a very simple
hierarchy, where the registered users and unregistered users targets are children
of the total users target. The second dataset is the Mars Fxpress dataset, where
the task is to predict the power consumption at 33 locations in the Mars Express
satellite [3]. The targets have been arranged into a hierarchy according to their
physical location within the satellite [11]. The hierarchies of the Bicycles and
the Mars Express dataset are shown in Fig. 2.

5 Experimental Results and Discussion

The results of applying hierarchical and leaves-only variants of iSOUP-Tree to
the two datasets described in Sect.4 are shown in Fig. 3. In both datasets, the
bottom-weighted hierarchical models outperform the top-weighted models. The
bottom-weighted models start out slightly worse than the leaves-only tree; how-
ever, at some point, the bottom-weighted models reach and even slightly out-
perform the leaves-only tree. On the other hand, top-weighted models perform
worse than the leaves-only model, with the exception of a few intervals in both
datasets, where their predictive performances are comparable. Both the differ-
ence between the leaves-only model and the bottom-weighted model and the
difference between the leaves-only model and the top-weighted models might be
a consequence of slower growth of the model trees.

Above, we clearly see a difference between the top- and bottom-weighted hier-
archical methods, where the bottom-weighted method appears superior in terms
of predictive performance. However, we must consider that we have chosen an
evaluation procedure that is solely focused on the predictive performance in the
leaf targets. Intuitively, by putting a larger weight on the variance of the leaves
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Fig. 3. The evolution of the performance (RMAE) of iSOUP-Tree using the different
heuristics on two HMTR datasets.

of the target hierarchy, as in the bottom-weighted iSOUP-Tree, we are select-
ing splits which first and foremost reduce the variance of the leaf targets. If we
were to use a different evaluation methodology which would consider hierarchical
evaluation measures where the “cost” of an error higher up in the hierarchy is
higher than for targets lower in the hierarchy, the top-weighted models might
outperform the bottom-weighted ones.

With regard to the question of whether the use of target hierarchy improves
predictive performance, these experiments do not conclusively confirm this is
the case. In our results, bottom-weighted models do eventually outperform the
leaves-only ones. However, we must also consider whether adding additional tar-
gets to a multi-target regression problem inhibits the growth of the models.
As we are averaging more and more individual variances in the calculation of
the ICVR heuristic, we might encounter the effects of the central limit the-
orem, which states that the normalized sum of independent random variables
tends toward a normal distribution. In particular, as we average more values, the
resulting heuristics of the split candidates will be distributed closer and closer
to the normal distribution, with a prescribed mean. To address this problem,
we might explore the use of option trees, as they try to address some of the
shortcomings of Hoeffding inequality-based approaches.

6 Further Work

The most needed extension of this paper concerns the evaluation methodology.
Due to our specific inquiry into whether a hierarchy can improve the predictive
performance in the leaves, we have focused exclusively on the predictions in
the leaves. However, in many applications, the remaining non-leaf targets are at
least as important as the leaf targets. As such, it would be prudent to extend
the evaluation measures and methodology to explore how the proposed method
performs in these scenarios.
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Additionally, in this paper, we rely rather heavily on the few available hierar-
chical datasets which are of appropriate size for use with online learning methods.
In the future, we plan to prepare additional datasets of sufficient size and apply
the proposed methods to them. Additionally, we plan to apply the multi-label
classification via multi-target regression methodology [13] to also address the
task of online hierarchical multi-label classification.
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As many real-world classification problems require to assign more than one label
to an instance, multi-label classification (MLC) has become a well-established
topic in the machine learning community. There are various applications of MLC
such as text categorization [16], the annotation of images [4,18] and music [24,
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Abstract. Recently, several authors have advocated the use of rule
learning algorithms to model multi-label data, as rules are interpretable
and can be comprehended, analyzed, or qualitatively evaluated by
domain experts. Many rule learning algorithms employ a heuristic-guided
search for rules that model regularities contained in the training data
and it is commonly accepted that the choice of the heuristic has a sig-
nificant impact on the predictive performance of the learner. Whereas
the properties of rule learning heuristics have been studied in the realm
of single-label classification, there is no such work taking into account
the particularities of multi-label classification. This is surprising, as the
quality of multi-label predictions is usually assessed in terms of a variety
of different, potentially competing, performance measures that cannot all
be optimized by a single learner at the same time. In this work, we show
empirically that it is crucial to trade off the consistency and coverage
of rules differently, depending on which multi-label measure should be
optimized by a model. Based on these findings, we emphasize the need
for configurable learners that can flexibly use different heuristics. As our
experiments reveal, the choice of the heuristic is not straight-forward,
because a search for rules that optimize a measure locally does usually
not result in a model that maximizes that measure globally.

Keywords: Multi-label classification - Rule learning - Heuristics

Introduction

26], as well as use cases in bioinformatics [8] and medicine [20].

Rule learning algorithms are a well-researched approach to solve classification
problems [13]. In comparison to complex statistical methods, like for example
support vector machines or artificial neural networks, their main advantage is
the interpretability of the resulting models. Rule-based models can easily be
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understood by humans and form a structured hypothesis space that can be ana-
lyzed and modified by domain experts. Ideally, rule-based approaches are able
to yield insight into the application domain by revealing patterns and regular-
ities hidden in the data and allow to reason why individual predictions have
been made by a system. This is especially relevant in safety-critical domains,
such as medicine, power systems, or financial markets, where malfunctions and
unexpected behavior may entail the risk of health damage or financial harm.

Motivation and Goals. To assess the quality of multi-label predictions in
terms of a single score, several commonly used performance measures exist. Even
though some of them originate from measures used in binary or multi-class clas-
sification, different ways to aggregate and average the predictions for individual
labels and instances—most prominently micro- and macro-averaging—exist in
MLC. Some measures like subset accuracy are even unique to the multi-label
setting. No studies that investigate the effects of using different rule learning
heuristics in MLC and discuss how they affect different multi-label performance
measures have been published so far.

In accordance with previous publications in single-label classification, we
argue that all common rule learning heuristics basically trade off between two
aspects, consistency and coverage [12]. Our long-term goal is to better under-
stand how these two aspects should be weighed to assess the quality of candi-
date rules during training if one is interested in a model that optimizes a certain
multi-label performance measure. As a first step towards this goal, we present
a method for flexibly creating rule-based models that are built with respect
to certain heuristics. Using this method, we empirically analyze how different
heuristics affect the models in terms of predictive performance and model char-
acteristics. We demonstrate how models that aim to optimize a given multi-label
performance measure can deliberately be trained by choosing a suitable heuris-
tic. By comparing our results to a state-of-the-art rule learner, we emphasize the
need for configurable approaches that can flexibly be tailored to different multi-
label measures. Due to space limitations, we restrict ourselves to micro-averaged
measures, as well as to Hamming and subset accuracy.

Structure of This Work. We start in Sect. 2 by giving a formal definition of
multi-label classification tasks as well as an overview of inductive rule learning
and the rule evaluation measures that are relevant to this work. Based on these
foundations, in Sect. 3, we discuss our approach for flexibly creating rule-based
classifiers that are built with respect to said measures. In Sect. 4, we present the
results of the empirical study we have conducted, before we provide an overview
of related work in Sect.5. Finally, we conclude in Sect.6 by recapitulating our
results and giving an outlook on planned future work.
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2 Preliminaries

MLC is a supervised learning problem in which the task is to associate an
instance with one or several labels \; out of a finite label space L. = {\1, ..., A\, },
with n = |L| being the total number of predefined labels. An individual
instance x; is represented in attribute-value form, i.e., it consists of a vector
z; = (v1,...,u) € D = Ay x --- x Aj, where A; is a numeric or nominal
attribute. Additionally, each instance x; is associated with a binary label vector
y; = (y1,.--,yn) = {0,1}", where y; indicates the presence (1) or absence (0) of
label A;. Consequently, the training data set of a MLC problem can be defined
as a set of tuples T' = {(x1,¥1),---, (Tm, Y,,)}, with m = |T'| being the num-
ber of available training instances. The classifier function g (.), that is deduced
from a given training data set, maps an instance x to a predicted label vector

g = (glv"'vgn) = {Oal}n

2.1 Classification Rules

In this work, we are concerned with the induction of conjunctive, propositional
rules r : H <+ B. The body B of such a rule consists of one or several conditions
that compare an attribute-value v; of an instance to a constant by using a rela-
tional operator such as = (in case of nominal attributes), or < and > (in case of
numerical attributes). On the one hand, the body of a conjunctive rule can be
viewed as a predicate B : & — {true, false} that states whether an instance x
satisfies all of the given conditions, i.e., whether the instance is covered by the
rule or not. On the other hand, the head H of a (single-label head) rule consists
of a single label assignment (; = 0 or ¢; = 1) that specifies whether the label
A; should be predicted as present (1) or absent (0).

2.2 Binary Relevance Method

In the present work, we use the binary relevance transformation method (cf. [4]),
which reduces MLC to binary classification by treating each label \; € L of a
MLC problem independently. For each label A;, we aim at learning rules that
predict the minority class t; € {0, 1}, i.e., rules that contain the label assignment
7; = t; in their head. We define ¢; = 1, if the corresponding label \; is associated
with less than 50% of the training instances, or ¢; = 0 otherwise.

A rule-based classifier—also referred to as a theory—combines several rules
into a single model. In this work, we use (unordered) rule sets containing all rules
that have been induced for the individual labels. Such a rule set can be considered
as a disjunction of conjunctive rules (DNF). At prediction time, all rules that
cover a given instance are taken into account to determine the predicted label
vector §. An individual element §; € g, that corresponds to the label \;, is set
to the minority class ¢; if at least one of the covering rules contains the label
assignment ¢; = t; in its head. Otherwise, the element is set to the majority class
1 —t¢;. As all rules that have been induced for a label A; have the same head, no
conflicts may arise in the process.
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2.3 Bipartition Evaluation Functions

To assess the quality of individual rules, usually bipartition evaluation functions
§ : N2%2 — R are used [25]. Such functions—also called heuristics—map a two-
dimensional confusion matrix to a heuristic value h € [0,1]. A confusion matrix
consists of the number of true positive (TP), false positive (FP), true negative
(TN), and false negative (FN) labels that are predicted by a rule. We calculate
the example-wise aggregated confusion matrix C, for a rule r : §; < B as

Cr::(FNTN)ZCi@”.@Cg@”.@Cim (1)
where @& denotes the cell-wise addition of atomic confusion matrices Cij that
correspond to label )\; and instance x;.

Further, let 47 and ¢ denote the absence (0) or presence (1) of label \; for an
instance y; according to the ground truth and a rule’s prediction, respectively.

Based on these variables, we calculate the elements of Cij as

TP, = [[yf =t; N =t] FPJZ ly! #ti/\ﬁf‘zti]]

P

FN] = [yl =t: N # 6] TN, = [y} # t: A g} # ti]

where [z] = 1, if z is true, 0 otherwise.

2)

2.4 Rule Learning Heuristics

A good rule learning heuristic should (among other aspects) take both, the
consistency and coverage of a rule, into account [13,15]. On the one hand, rules
should be consistent, i.e., their prediction should be correct for as many of the
covered instances as possible. On the other hand, rules with great coverage, i.e.,
rules that cover a large number of instances, tend to be more reliable, even
though they may be less consistent.

The precision metric exclusively focuses on the consistency of a rule. It cal-
culates as the fraction of correct predictions among all covered instances:

TP
) C)=——— 3
P"'ec( ) TP+ FP ( )
In contrast, recall focuses on the coverage of a rule. It measures the fraction
of covered instances among all—covered and uncovered—instances for which the
label assignment in the rule’s head is correct:

TP
Orec (C) = ———
(©) TP+ FN
The F-measure calculates as the (weighted) harmonic mean of precision and
recall. It allows to trade off the consistency and coverage of a rule depending on
the user-configurable parameter (3:
B +1
o (C) = 2 1
3ee(@) T 5prec(©)

(4)

, with 3 € [0, +00] (5)
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As an alternative to the F-measure, we use different parameterizations of the
m-estimate in this work. It is defined as

m (€)= TP+ FP+m
where P = TP+ FN and N = FP+ TN. Depending on the parameter m, this
measure trades off precision and weighted relative accuracy (WRA). If m =0, it
is equivalent to precision and therefore focuses on consistency. As m approaches

400, it converges to WRA and puts more emphasis on coverage, respectively
[13].

, with m >0 (6)

3 Induction of Rule-Based Theories

For our experimental study, we implemented a method that allows to generate
a large number of rules for a given training data set in a short amount of time
(cf. Sect.3.1).! The rules should ideally be unbiased, i.e., they should not be
biased in favor of a certain heuristic, and they should be diverse, i.e., general rules
should be included as well as specific rules. Given that these requirements are
met, we consider the generated rules to be representative samples for the space of
all possible rules, which is way too large to be explored exhaustively. We use the
generated candidate rules as a starting point for building different theories. They
consist of a subset of rules that are selected with respect to a specific heuristic
(cf. Sect.3.2) and filtered according to a threshold (cf. Sect.3.3). Whereas the
first step yields a theory with great coverage, the threshold selection aims at
improving its consistency.

3.1 Generation of Candidate Rules

As noted in Sect. 2.2, we consider each label \; € L of a MLC problem indepen-
dently. For each of the labels we train multiple random forests [5], using varying
configuration parameters, and extract rules from their decision trees.? As illus-
trated in Algorithm 1, we repeat the process until a predefined number of rules
~ has been generated.

Each random forest consists of a predefined number of decision trees (we
specify I = 10). To ensure that we are able to generate diverse rules later on,
we vary the configuration parameter depth € [0, 8] that specifies the maximum
depth of trees (unrestricted, if depth = 0) (cf. Algorithm 1, trainForest). For
building individual trees, we only take a subset of the available training instances
and attributes into account, which guarantees a diverse set of trees. Bagging is
used for sampling the training instances, i.e., if m instances are available in total,
m - P instances (P = 100%, by default) are drawn randomly with replacement.
Additionally, each time a new node is added to a decision tree, only a random
selection of K out of [ attributes (K = log, (I — 1) +1, by default) is considered.

! Source code available at https://github.com /mrapp-ke/RuleGeneration.
2 We use the random forest implementation provided by Weka 3.9.3, which is available
at https://www.cs.waikato.ac.nz/ml/weka.
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Algorithm 1: Iterative generation of rules from random forests

input : min. number of rules to be generated ~y
output: rule set R
R=10
while |R| < v do
foreach \; € L and depth € [0, 8] do
rf = trainForest (\;, depth)
R = R U extractRules (rf)

return R

To extract rules from a random forest (cf. Algorithm 1, extractRules), we
traverse all paths from the root node to a leaf in each of its decision trees. We
only consider paths that lead to a leaf where the minority class ¢; is predicted.
As a consequence, all rules that are generated with respect to a certain label \;
have the same head ¢; = t;. The body of a rule consists of a conjunction of all
conditions encountered on the path from the root to the corresponding leaf.

3.2 Candidate Subset Selection

Like many traditional rule learning algorithms, we use a separate-and-conquer
(SeCo) strategy for selecting candidate rules, i.e., new rules are added to the
theory until all training instances are covered (or until it describes the training
data sufficiently according to some stopping criterion). Whenever a new rule
is added to the theory the training instances it covers are removed (“separate”
step), and the next rule is chosen according to its performance on the remaining
instances (“conquer” step).

To create different theories, we select subsets of the rules that have been
generated earlier (cf. Sect.3.1). We therefore apply the SeCo strategy for each
label independently, i.e., for each label \; we take all rules with head ¢; = t;
into account. Among these candidates we successively select the best rule
according to a heuristic § (cf. Sect.2.4) until all positive training instances
P, = {(x,y) € T | y; = t;}, with respect to label )\;, are covered. To measure
the quality of a candidate r according to J, we only take yet uncovered instances
into account for computing the confusion matrix C,.. If two candidates evaluate
to the same heuristic value, we prefer the one that (a) covers more true posi-
tives, or (b) contains fewer conditions in its body. Whenever a new rule is added,
the overall coverage of the theory increases, as more positive training instances
are covered. However, the rule may also cover some of the negative instances
N; =T\ P;. As the rule’s prediction is incorrect in such cases, the consistency
of the theory may decrease.

3.3 Threshold Selection

As described in Sect. 3.2, we use a SeCo strategy to select more rules until all
positive training instances are covered for each label. In this way, the coverage



102 M. Rapp et al.

of the resulting theory is maximized at the expense of consistency, because each
rule contributes to the overall coverage, but might introduce wrong predictions
for some instances. To trade off between these aspects, we allow to (optionally)
specify a threshold ¢ that aims at diminishing the effects of inconsistent rules.
It is compared to a heuristic value that is calculated for each rule according to
the heuristic d. For calculating the heuristic value, the rule’s predictions on the
entire training data set are taken into account. This is different from the can-
didate selection discussed in Sect. 3.2, where instances that are already covered
by previously selected rules are not considered. Because the candidate selection
aims at selecting non-redundant rules, that cover the positive training instances
as uniformly as possible, it considers rules in the context of their predecessors. In
contrast, the threshold ¢ is applied at prediction time when no order is imposed
on the rules, i.e., all rules whose heuristic value exceeds the threshold equally
contribute to the prediction.

4 Evaluation

In this section, we present an empirical study that emphasises the need to use
varying heuristics for candidate selection and filtering to learn theories that are
tailored to specific multi-label measures. We further compare our method to
different baselines to demonstrate the benefits of being able to flexibly adjust a
learner to different measures, rather than employing a general-purpose learner.

4.1 Experimental Setup

We applied our method to eight different data sets taken from the Mulan
project.> We set the minimum number of rules to be generated to 300.000
(cf. Algorithm 1, parameter 7). For candidate selection according to Sect. 3.2,
we used the m-estimate (cf. Eq.6) with m = 0,2%,22,...,2'9. For each of these
variants, we applied varying thresholds ¢ according to Sect.3.3. The thresholds
have been chosen such that they are satisfied by at least 100%, 95%, ...,5% of
the selected rules. All results have been obtained using 10-fold cross validation.

In addition to the m-estimate, we also used the F-measure (cf. Eq.5) with
varying (B-parameters. As the conclusions drawn from these experiments are very
similar to those for the m-estimate, we focus on the latter at this point.

Among the performance measures that we report are micro-averaged preci-
sion and recall. Given a global confusion matrix C :==C} &---®C! @& --- & C™"
that consists of the TP, FP, TN, and F'N aggregated over all test instances x;
and labels \;, these two measures are calculated as defined in Egs. 3 and 4. More-
over, we report the micro-averaged F1 score (cf. Eq.5 with 8 = 1) as well as
Hamming and subset accuracy. Hamming accuracy calculates as

TP+ TN

Ontamm (C) = 5 b TN T N

(7)

3 Data sets and detailed statistics available at http://mulan.sourceforge.net/datasets-
mlc.html.
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whereas subset accuracy differs from the other measures, because it is computed
instance-wise. Given true label vectors Y = (yq,...,¥,,) and predicted label
vectors Y = (44, ..., Y,,), it measures the fraction of perfectly labeled instances:

dace (Y, Y) = %Zﬂyg =9l (8)

4.2 Analysis of Different Parameter Settings

For a broad analysis, we trained 202 = 400 theories per data set using the same
candidate rules, but selecting and filtering them differently by using varying
combinations of the parameters m and ¢ as discussed in Sect.4.1. We visualize
the performance and characteristics of the resulting models as two-dimensional
matrices of scores (cf. e.g. Fig.1). One dimension corresponds to the used m-
parameter, the other refers to the threshold ¢, respectively.

Some of the used data sets (CAL500, FLAGS, and YEAST) contain very fre-
quent labels for which the minority class ¢; = 0. This is rather atypical in MLC
and causes the unintuitive effect that the removal of individual rules results in a
theory with greater recall and/or lower precision. To be able to compare differ-
ent parameter settings across multiple data sets, we worked around this effect
by altering affected data sets., i.e., inverting all labels for which ¢; = 0.

Predictive Performance. In Figs.1 and 2 the average ranks of the tested
configurations according to different performance measures are depicted. The
rank of each of the 400 parameter settings was determined for each data set
separately and then averaged over all data sets. The depicted standard deviations
show that the optimal parameter settings for a respective measure may vary
depending on the data set. However, for each measure there is an area in the
parameter space where a good setting can be found with high certainty.

As it can clearly be seen, precision and recall are competing measures. The
first is maximized by choosing small values for m and filtering extensively, the
latter benefits from large values for m and no filtering. Interestingly, setting
m = 0, i.e., selecting candidates according to the precision metric, does not
result in models with the highest overall precision. This is in accordance with
Fig. 3, where the models with the highest F1 score do not result from using the
F1l-measure for candidate selection. Instead, optimizing the F1 score requires to
choose small values for m to trade off between consistency and coverage. The
same applies to Hamming and subset accuracy, albeit both of these measure
demand to put even more weight on consistency and filtering more extensively
compared to F1.

Model Characteristics. Besides the predictive performance, we are also inter-
ested in the characteristics of the theories. Figure4 shows how the number of
rules in a theory as well as the average number of conditions are affected by
varying parameter settings. The number of rules independently declines when
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Fig. 1. Ranks and standard deviation of average ranks over all data sets according to
Hamming and subset accuracy using different parameters m (horizontal axis) and ¢
(vertical axis). Best parameters for different data sets specified by red + signs. (Color
figure online)

using greater values for the parameter m and/or smaller values for ¢. resulting
in less complex theories that can be comprehended by humans more easily. The
average number of conditions is mostly affected by the parameter m.

Figure 5 provides an example of how different parameters affect the model
characteristics. It shows the rules for predicting the same label as induced by
two fundamentally different approaches. The first approach (m = 16,¢ = 0.3)
reaches high scores according to the F1-measure, Hamming accuracy, and subset
accuracy, whereas the second one (m = 262144, ¢ = 1.0) results in high recall.

4.3 Baseline Comparison

Although the goal of this work is not to develop a method that generally out-
performs existing rule learners, we want to ensure that we achieve competi-
tive results. For this reason, we compared our method to JRip, Weka's re-
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Fig. 2. Ranks and standard deviation of average ranks over all data sets according to
micro-averaged precision, recall, and Fl-measure. Best parameters for different data
sets specified by red + signs. (Color figure online)
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Fig. 3. Ranks and standard deviation of average ranks over all data sets according
to micro-averaged F1l-measure, when using the F-measure with varying [-parameters
(horizontal axis) instead of the m-estimate for candidate selection. Best parameters for
different data sets specified by red -+ signs. (Color figure online)
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Fig. 4. Ranks and standard deviation of average ranks over all data sets regarding the
number of rules and conditions. A smaller rank means more rules or conditions.
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m=16,¢0=0.3 Mi. Precision = 74.07%, Mi. Recall = 78.26%

Cough <+ “cough” A “aldrich” A “opacity” N\ “tachypnea” N\ “streaky” A “side” A
“distal” A “diaphragm”

Cough <+ “cough” N\ “xz — rays” A “vomiting” N “proximity” A “hematuria” A
TF

focal

Cough < “cough” A\ “group” A “edema” A “ fever”

Cough <+ “cough” A “lobe” N “breathing”

Cough <+ “coughing”

m = 262144, ¢ = 1.0 Mi. Precision = 65.61%, Mi. Recall = 89.57%

Cough <+ “cough” N\ “ureteral” A “stones” A “contrast”
Cough <+ “coughing”

Cough <+ “code”

Cough <+ “substance”

Fig. 5. Exemplary rule sets predicting the label 786.2:Cough of the data set MEDICAL,
which contains textual radiology reports that were categorized into diseases.

Table 1. Predictive performance of Ripper using IREP and post-processing (Rs),
without using post-processing (R2), and using neither IREP nor post-processing (R1)
compared to approaches trying to optimize micro-averaged F1 (Mp), Hamming accu-
racy (Mm), and subset accuracy (Mg).

Fl Hamming acc. Subset acc.
Ry Ro R3 Mg |Ry Ro R3 My |R1 Ro R3 Mg
BIRDS 43.65/41.12/46.01/45.33/94.39/94.48|95.17|95.10|44.20/45.57/51.48/48.85

cAL500 33.63/33.18/33.7640.10/82.14/83.66/85.39/86.02| 0.00/ 0.00, 0.00| 0.00
EMOTIONS |56.96/58.68/60.97/65.20(75.12(75.38|77.21|77.65(18.0420.4023.60(22.42
ENRON 50.57/53.05/55.33/51.0794.3594.70/94.93|94.54| 6.17| 7.99| 9.16| 7.81
FLAGS 71.81/72.96/74.85/72.83|73.02(74.08/75.20(73.39(15.47/17.0521.00| 9.82
GENBASE [98.83/98.68/98.68/99.14(99.89(99.88/99.88/99.9297.28/96.8396.83|97.89
MEDICAL [81.40/83.67/84.81/81.67/99.01/99.1099.1598.98/66.7469.9172.16/66.43
SCENE 63.97/63.25/64.55/67.44/87.87/87.25/88.03/88.93146.6144.5446.24/49.73
YEAST 58.65/60.41/61.19/64.2578.50/78.29|78.77/79.24| 8.73| 7.86| 9.18/11.75
Avg. rank| 3.44| 3.00| 1.67| 1.78| 3.44| 2.89| 1.67| 1.89| 2.89| 2.67| 1.56| 2.11

implementation of Ripper [7], using the binary relevance method. By default,
Ripper uses incremental reduced error pruning (IREP) and post-processes the
induced rule set. Although our approach could make use of such optimizations,
this is out of the scope of this work. For a fair comparison, we also report the
results of JRip without using IREP (P = false) and/or with post-processing
turned off (O = 0).

Note that we do not consider the random forests from which we generate rules
(cf. Sect. 3.1) to be relevant baselines. This is, because random forests use voting
for making a prediction, which is fundamentally different than rule learners that
model a DNF. Also, we train random forests consisting of a very large number
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of trees with varying depths to generate diverse rules. In our experience, these
random forests perform badly compared to commonly used configurations.

We tested three different configurations of our approach. The parameters m
and ¢ used by these approaches have been determined on a validation set by
using nested 5-fold cross validation on the training data. For the approach Mp,
the parameters have been chosen such that the Fl-measure is maximized. My
and Mg were tuned with respect to Hamming and subset accuracy, respectively.

According to Table1, our method is able to achieve reasonable predictive
performances. With respect to the measure they try to optimize, our approaches
generally rank before JRip with optimizations turned off (R;), which is the
competitor that is conceptually closest to our method. Although IREP definitely
has a positive effect on the predictive performance, our approaches also tend to
outperform JRip with IREP enabled, but without using post-processing (Rxz).
Despite the absence of advanced pruning and post-processing techniques, our
approaches are even able to surpass the fully fledged variant of JRip (R;) on some
data sets. We consider these results as a clear indication that it is indispensable
to be able to flexibly adapt the heuristic used by a rule learner if one aims at
deliberately optimizing a specific multi-label performance measure.

5 Related Work

Several rule-based approaches to multi-label classification have been proposed
in the literature. On the one hand, there are methods based on descriptive rule
learning, such as association rule discovery [17,18,22,23|, genetic algorithms
[1,6], or evolutionary classification systems [2,3]. On the other hand, there are
algorithms that adopt the separate-and-conquer strategy used by many tradi-
tional rule learners for binary or multi-class classification, e.g. by Ripper [7], and
transfer it to MLC [19,21]. Whereas in descriptive rule learning one does usually
not aim at discovering rules that minimize a certain (multi-label) loss, the latter
approaches employ a heuristic-guided search for rules that optimize a given rule
learning heuristic and hence could benefit from the results of this work.

Similar to our experiments, empirical studies aimed at discovering optimal
rule learning heuristics have been published in the realm of single-label classifi-
cation [14,15]. Moreover, to investigate the properties of bipartition evaluation
functions, ROC space isometrics have been proven to be a helpful tool [9,10].
They have successfully been used to study the effects of using different heuristics
in separate-and-conquer algorithms [12], or for ranking and filtering rules [11].

6 Conclusions

In this work, we presented a first empirically study that thoroughly investigates
the effects of using different rule learning heuristics for candidate selection and fil-
tering in the context of multi-label classification. As commonly used multi-label
measures, such as micro-averaged F1, Hamming accuracy, or subset accuracy,
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require to put more weight on the consistency of rules rather than on their cov-
erage, models that perform well with respect to these measures are usually small
and tend to contain specific rules. This is beneficial in terms of interpretability
as less complex models are assumed to be easier to understand by humans.

As our main contribution, we emphasise the need to flexibly trade off the
consistency and coverage of rules, e.g., by using parameterized heuristics like
the m-estimate, depending on the multi-label measure that should be optimized
by the model. Our study revealed that the choice of the heuristic is not straight-
forward, because selecting rules that minimize a certain loss functions locally
does not necessarily result in that loss being optimized globally. E.g., selecting
rules according to the Fl-measure does not result in the overall F1 score to be
maximized. For optimal results, the trade-off between consistency and coverage
should be fine-tuned depending on the data set at hand. However, our results
indicate that, even across different domains, the optimal settings for maximizing
a measure can often be found in the same region of the parameter space.

In this work, we restricted our study to DNFs, i.e., models that consist of
non-conflicting rules predicting the same outcome for a label. This restriction
simplifies the implementation and comprehensibility of the learner, as no conflicts
may arise at prediction time. However, we expect that including both, rules that
model the presence as well as the absence of labels, could be beneficial in terms
of robustness and could have similar, positive effects on the consistency of the
models as the threshold selection used in this work. Furthermore, we leave the
empirical analysis of macro-averaged performance measures for future work.
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Residual neural networks [10] are among the state-of-the-art for image classifi-
cation tasks. Given sufficient data and proper hyperparameter settings, resid-
ual neural networks can achieve remarkable results, but their performance (and
that of other neural networks) highly depends on their hyperparameter settings.
As a consequence, there has been a lot of recent work and progress on hyper-
parameter optimization, with methods including Bayesian optimization [1,29],
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Abstract. Residual neural networks (ResNets) are among the state-
of-the-art for image classification tasks. With the advent of automated
machine learning (AutoML), automated hyperparameter optimization
methods are by now routinely used for tuning various network types.
However, in the thriving field of deep neural networks, this progress is
not yet matched by equal progress on rigorous techniques that yield infor-
mation beyond performance-optimizing hyperparameter settings. In this
work, we aim to answer the following question: Given a residual neu-
ral network architecture, what are generally (across datasets) its most
important hyperparameters? In order to answer this question, we assem-
bled a benchmark suite containing 10 image classification datasets. For
each of these datasets, we analyze which of the hyperparameters were
most influential using the functional ANOVA framework. This experi-
ment both confirmed expected patterns, and revealed new insights. With
these experimental results, we aim to form a more rigorous basis for
experimentation that leads to better insight towards what hyperparam-
eters are important to make neural networks perform well.

Keywords: Hyperparameter importance - Residual neural networks

Introduction

meta-learning [4] and bandit-based methods [18]; see [8] for a review.

Despite impressive results both on common benchmarks and various appli-
cation domains, the experiments in many academic machine learning papers are
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designed to answer which particular method works better, typically by introduc-
ing a new algorithm and demonstrating success over a limited set of baselines or
benchmarks [31]. In a recent paper, Sculley et al. (2018) identify this as a prob-
lem: ‘Empirical studies have become challenges to be won, rather than a process
for developing insight and understanding’ [27]. Additionally, many advances in
deep learning have been evaluated on a small number of datasets. It has long
been recognized that small-scale studies can create a false sense of progress [9].
Recht et al. (2018) speculate that by overly using the same test set, reported
results tend to overfit and demonstrate that performance results of many intro-
duced models does not generalize to other (newly assembled) test sets [24].

In this work, we aim to provide a more rigorous approach to the follow-
ing question: Given a residual neural network architecture, what are generally
(across datasets) its most important hyperparameters? In order to answer this
question, we assembled an image classification benchmark suite consisting of
10 popular datasets from the literature. On each of these datasets we obtained
performance results with varying hyperparameter settings. Although the aim
of this paper is not to improve predictive performance, we compare the results
with state-of-the-art results reported by other researchers, to ensure that the
results are credible and applicable. We see this as a first step towards creating
more rigorous insights about the conditions under which residual neural networks
perform well and which hyperparameters influence this.

Our contributions are the following: (i) We assembled a benchmark suite of
10 well-known image classification datasets, allowing researchers to draw con-
clusions across datasets. We made all code, data and results publicly available;!
(ii) we apply functional ANOVA [30] on performance results of residual neural
networks, to identify the importance of the various hyperparameters to predic-
tive accuracy; and (iii) we verified expected behaviour regarding hyperparame-
ter interactions, and gained new insights regarding typical marginal curves and
hyperparameter interactions. Most notable is the observation that for the con-
cerning datasets the marginals of important hyperparameters exhibit very simi-
lar landscapes. Overall, this work is the first to provide large-scale quantitative
evidence for which hyperparameters of residual neural networks are important,
providing a better scientific basis for the field than previous knowledge based on
small-scale studies and intuition.

2 Related Work

In this section we review related work on residual neural networks, hyperparam-
eter importance and landscape analysis.

Residual Neural Networks. Deep residual neural networks were introduced
in [10] and have set the benchmark for image recognition tasks in recent years.
They provide good predictive accuracy while maintaining an affordable model
size. Their defining characteristic is the use of residual learning, in which deeper
layers of the network are linked to shallower layers directly using ‘shortcut con-
nections’ skipping several layers in between. These shortcut connections perform

! https://www.github.com/janvanrijn/openml-pimp
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an identity mapping which ensures the convergence of the deep network is at
least as good as its shallower counterpart and hence limit divergence during
training. In this way, the residual learning framework eases the training of net-
works that are substantially deeper. Furthermore, empirical evidence suggests
that these residual neural networks are easier to optimize, and can gain accu-
racy from considerably increased depth. On the ImageNet dataset the residual
nets were evaluated with a depth of up to 152 layers — 8 times deeper than VGG
nets [28] but still having lower complexity. Furthermore, residual learning can be
used on networks of varying depth to fit the task at hand. Smaller residual neural
networks, like ‘ResNet18’ (as the name suggests, consisting of 18 layers), provide
great performance while being very efficient in terms of size and speed [10].

Hyperparameter Importance. When using a new algorithm on a given
dataset, it is typically a priori unknown which hyperparameters should be tuned,
what are the good ranges for these hyperparameters to sample from, and which
values in these ranges are most likely to yield high performance. Various tech-
niques exist that allow for the assessment of hyperparameter importance. These
techniques generally consider either local importance (dependent on a specific
setting for other hyperparameters) or global importance (independent of specific
hyperparameter settings).

Forward selection [12] is based on the assumption that important attributes
in a dataset have high impact on the performance of classifiers trained on it.
It trains a model which predicts the performance of a configuration based on
a subset of hyperparameters. This set is initialized empty and greedily filled
with the next most important hyperparameter. Ablation analysis [2] requires a
default setting and an optimized setting and calculates a so-called ablation trace,
which embodies how much the hyperparameters contributed towards the differ-
ence in performance between the two settings. Local Parameter Importance [3]
studies the performance changes of a configuration along each parameter using
an empirical performance model (sometimes also called a ‘surrogate’ model).
Functional ANOVA [30] is a global hyperparameter importance framework that
can detect the importance of both individual hyperparameters and interaction
effects between arbitrary subsets of hyperparameters. It is the key technique
upon which this research is built.

Functional ANOVA depends on the concept of the marginal of a hyperpa-
rameter, i.e., how a given value for a hyperparameter performs, averaged over
all possible combinations of the other hyperparameters’ values. While there are
an exponential number of combinations, the authors of [13] showed how this can
be calculated efficiently using tree-based surrogate models.

All the aforementioned techniques are post-hoc techniques, i.e., when con-
fronted with a new dataset, these do not reveal what hyperparameters are
important prior to experimenting on that particular dataset. Contrary, various
researchers argued that it is more useful to generalize the notion of hyperpa-
rameter importance across datasets [22,25,26]. In particular, it has been shown
how to apply functional ANOVA across datasets for a given algorithm [25,26].
These works build upon the assumption that if this hyperparameter importance
quantification method is applied on a large enough set of datasets, we can draw
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conclusions regarding which hyperparameters are generally important. However,
neither of these studies applied this methodology to convolutional neural net-
works. To the best of our knowledge, this is the first work that addresses hyper-
parameter importance for residual neural networks.

Landscape Analysis. The interaction between configurations and the respec-
tive results can be seen as an high-dimensional landscape, which in turn can
be analyzed for mathematical properties [23]. Although this particular study is
executed on ‘satisfiability’, ‘mixed integer programming’ and ‘traveling salesman
problems’ benchmarks, it shows evidence that configuration landscapes are often
uni-model and even convex.

3 Background and Methods

We follow the notation that was introduced in [13]. We assume that a given
residual neural network model has n hyperparameters with domains 64, ...,60,
and configuration space @ = O1 X ... x O,. Let N = {1,...,n} be the set of
all hyperparameters of the classifier. An instantiation (or configuration) of the
classifier is a vector 8 = (61,...,6,) with 6; € ©;. A partial instantiation is a
vector Oy = (0;,...,0;) with a subset U C N of the hyperparameters fixed,
and the values for other hyperparameters unspecified. The marginal af,(6y) is
defined as the average performance on measure p of all complete instantiations 6
that agree with @y in the instantiations of hyperparameters U. The variance of
ay;(8y) is denoted as V7. Intuitively, if the marginal af;(6y) has a high variance,
this means that hyperparameter was of high importance to performance measure
p, and vice versa. For a more complete description, the reader is referred to [13].

In this research, we address the following problem. Given (i) a residual
neural network architecture with configuration space @, (ii) a set of datasets
DM ..., DM with M being the number of datasets, and (iii) for each of the
datasets, a set of empirical performance measurements (8;,Y;)X | for different
hyperparameter settings 8; € @, where Y; is a tuple of all relevant performance
measures (in this case, predictive accuracy), we aim to determine which hyper-
parameters affect the algorithm’s empirical performance most, and which values
are likely to yield good performance.

For a given dataset, we use the performance data (6;,Y;)X, collected on
this dataset to fit an internal tree-based surrogate model, in this case, a random
forest with 16 trees. Functional ANOVA then uses this surrogate model to cal-
culate the variance contribution V? /VP of every hyperparameter j € N, with
high values indicating high importance. We then study the distribution of these
variance contributions across datasets to obtain empirical data regarding which
hyperparameters tend to be most important.

It is possible that a hyperparameter is responsible for a high variance on
many datasets, but that its best value is the same across all of them. We note
that functional ANOVA will flag such hyperparameters as important, although
it could be argued that they have appropriate defaults and do not need to be
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tuned [22,26]. For example, it is reasonable to expect that for any type of neu-
ral network the marginal of the number of epochs has a high variance, where
obviously better performances are achieved for higher values (at the cost of addi-
tional run-time). For this reason, it is always important to consider the individual
marginals, as well as the generalizations across datasets.

4 Experimental Setup

Section4.1 describes the training procedure of the residual neural network,
Sect. 4.2 the configuration space from which we sampled the various configu-
rations, and Sect. 4.3 the datasets that we included in this study.

4.1 Models

In this work, we focus on the fixed architecture of ‘ResNet18’. This model gives
good predictive accuracy for datasets while being small in size which allows for
faster training [10]. As the datasets in this research all contain images, with
relatively similar dimensions, we could use the same architecture for all of them
(see Sect.4.3). The optimizer is fixed to Stochastic Gradient Descent (SGD),
parameterized by momentum and weight decay. The training starts with an
initial learning rate. Thereafter an adaptive learning rate scheduler is used which
decays the learning rate by a factor (hyperparameter: learning rate decay) when
the test accuracy plateaus for a given number (hyperparameter: patience) of
epochs. The details of the hyperparameter space are described in Sect. 4.2.

We record the time taken (in seconds) and the accuracy on the test set
after every epoch. The goal is not to identify an optimum parameter setting, as
using a test-set simply computing the maximum would result in overly optimistic
evaluation. If one would be interested in using the results for hyperparameter
optimization a proper nested cross-validation procedure should be applied [5].
We performed all runs on single NVIDIA P100 GPU.

4.2 Configuration Space

We selected twelve hyperparameters. This selection was made based on visual
inspection of the modules in the ‘Torch’ package, as well as personal experi-
ence. Even though it feels natural to fix the values for some hyperparameters to
seemingly good values, in this work we aim to verify the applicability of these
values.

Our hyperparameter space contains six hyperparameters for the SGD opti-
mizer (number of epochs, initial learning rate, learning rate decay, momentum,
batch size, and whether to shuffle the data), two early stopping hyperparame-
ters (tolerance and patience), and four regularization hyperparameters (weight
decay, and data augmentation by resize crop, horizontal flips, and vertical flips).
Note that since we keep a fixed network structure, we do not modify any archi-
tectural hyperparameters (this would be very interesting, but is out of scope for
the current study).
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Table 1. Overview of the hyperparameters used in this research.

Hyperparameter Range Description

Batch size 213,4,5,6,7,8,9} Number of samples in one batch of gradient descent
used during training

Epochs [1-200] The number of times each training observation is
passed to the network

Horizontal flip Boolean Whether to apply data augmentation by flipping
the image horizontally

Vertical flip Boolean Whether to apply data augmentation by flipping
the image vertically

Learning rate [10—6-1] (log) The learning rate with which the network starts
training

Learning rate decay | [2-1000] (log) Factor to reduce the learning rate with, if no
improvement is obtained after several epochs

Momentum [0-1] Value of momentum multiplier used during
gradient descent

Patience [2-200] Number of epochs without improvements that are
being tolerated before learning rate is reduced

Shuffle Boolean Whether to shuffle the train set before an epoch

Resize crop Boolean Whether to apply data augmentation by resizing
and then cropping the image

Tolerance [1075-1072] (log) | Tolerance for early stopping criterion

Weight decay [1076-1072] (log) | L2 loss on the weights

We note that some of the hyperparameters we tune are sometimes rather
chosen manually on a per-dataset basis based on domain knowledge (e.g., certain
data augmentations don’t make sense for some types of images, and the batch
size is often set to the maximum feasible given the GPU’s memory). We still
included these in our study to study how large their impact is on performance.

Table 1 lists all the hyperparameters and their maximal ranges we considered.
In order to obtain reasonable performance for datasets of different input sizes, we
had to use slightly different hyperparameter spaces across datasets; in particular,
the datasets with large input size (Fruits 360, Flower, STL-10 and Dog vs. Cat)
would have led to memory issues with batch sizes of 256 or 512, and we therefore
only considered batch size values of 2{3:45.6.7} in those cases and of 2{%:6.7.8,9}
in all other cases. Also, owing to limited computational resources, some other
manual modifications were made to speed up experiments and focus on a region
of good hyperparameters: for datasets MNIST, Fashion MNIST and Fruits, the
maximum number of epochs was set to 50, for datasets Dog vs. Cat the maximum
number of epochs was set to 100, and for datasets Fruits 360, Flower, Dog vs.
Cat, MNIST and Fashion MNIST, the maximum learning rate was set to 0.1.

For each dataset, we sampled K = 200 configurations uniformly from this
configuration space, with the maximum number of epochs. For each run we stored
performance results after every epoch, allowing functional ANOVA to model the
marginal of this hyperparameter more accurately.
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Table 2. Overview of the datasets used in this research.

Name Description Dimensions | Class | Train| Test | Ref
MNIST Handwritten digits 28 x 28 10 |60,000 | 10,000 | [17]
Fashion MNIST | Gray-scale objects 28 x 28 10 |60,000 | 10,000 | [34]
CIFAR-10 Colored objects 32x32x3| 10 50,000 10,000 [16]
CIFAR-~100 Colored objects 32 x32x3/100 | 50,000 10,000 | [16]
STL-10 Colored objects 96 x 96 x 3| 10 5,000 | 8,000 | [6]

HAM10000 Skin cancer images 28 X 28 x 3 7 9,013 1,002 [32]
SVHN House number images | 32 x 32 x 3| 10 | 73,257 26,032 | [21]
Flower Flower images 96 x 96 x 3| 5 3,888 435 | [19]
Fruits 360 Fruit images 96 x 96 x 3| 82 41,814 14,041 | [20]
Dog vs. Cats Dog and cat images |96 x 96 x 3| 2 |22,500| 2,500 | [15]

When computing hyperparameter importances across different datasets, the
question arises how to treat differing hyperparameter spaces. For the important
learning rate hyperparameter we felt it to be important to use identical ranges
everywhere and therefore used a reduced range of [107%,0.1]. However, for the
batch size hyperparameter, no single range makes sense for all datasets, and
we therefore simply computed hyperparameter importance separately based on
the range used for the dataset at hand. Likewise, for the maximum number of
epochs, we used 200 throughout; this is justified by the assumption that the
internal random forest model would correctly model the plateaued performance.

4.3 Datasets

This section reviews the datasets that were used in this research. We assembled
a diverse set of image classification datasets, including often used datasets (e.g.,
MNIST and CIFAR-100). We excluded the common benchmark ImageNet to
keep the computational costs reasonable.

All our datasets, listed in Table 2, are classification tasks (the respective task
is briefly described in column ‘Description’). For example, in the MNIST dataset
the task is to classify hand-written digits, whereas for the CIFAR-10 dataset
the task is to identify images into 10 classes (airplane, automobile, bird, cat,
deer, dog, frog, horse, ship or truck). Column ‘Dimensions’ represents the size
and number of channels of the training images. Black and white or gray-scale
datasets have two dimensions (width and height), whereas colored datasets have
three dimensions (width, height and number of color channels; in this study the
number of color channels is always 3). Column ‘Class.” represents the number of
classes, column ‘Train’ the number of train observations and column ‘Test’ the
number of test observations. Finally, column ‘Ref.” contains a reference to the
publication where the dataset was introduced.

As the dimensions of these datasets are all approximately the same, we could
use the same architecture for all of them. There are minor modifications to the
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Fig. 1. Performance results of the various configurations per dataset, sorted by median
performance. Complementary, Table 3 shows the best obtained result per dataset.

input and output layers due to different input dimensions and output classes
of each dataset. For datasets with gray-scale images (i.e., MNIST and Fash-
ion MNIST) the pixel values are duplicated over three dimensions during pre-
processing. Whether data augmentation techniques like random crops and ran-
dom flips were performed is controlled by the respective hyperparameter.

5 Results

In this section we analyze the results of the experiments. In Sect. 5.1 we discuss
some basic performance characteristics compared to state-of-the-art algorithms.
In Sects. 5.2 and 5.3 we discuss the main contribution of this work, the impor-
tance of hyperparameters according to functional ANOVA. Finally, Sect. 5.4 dis-
cusses limitations that could inspire future work.

5.1 Performance Results

We explore some basic characteristics about the performance results obtained
on the datasets. As mentioned before, obtaining state-of-the-art performance is
neither the aim nor the contribution of this paper, but in order for the results
to be credible and applicable, it is important to verify that the results are in the
same ballpark as good results reported in literature. Figure 1 shows the predic-
tive accuracy (left) and run-time (right) of all hyperparameter configurations 6
grouped per dataset in a box-plot. Both plots include only the measured perfor-
mance (run-time or accuracy) after the final epoch, and thus not the recorded
intermediate results.

We made a best effort to find established state-of-the-art results for existing
datasets. Table 3 compares the best results of the conducted experiments with
the best found result in literature. We obtained the results of state-of-the-art
methods from public sources on the internet?:3. For some lesser known datasets,

2 https://benchmarks.ai/
3 https://github.com/RedditSota/state-of-the-art-result-for-machine-learning-
problems
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there was no established state-of-the-art. In these cases, we did not report any
state-of-the-art result, as that might be misleading. Column ‘ResNet’ denotes
the best obtained performance (optimistic, as was argued in Sect.4.1) of the
residual neural network through random search. Column ‘SOTA’ denotes the
(also optimistic) performance of the state-of-the-art network.

The comparison between residual Table 3. Comparison between the best
neural network results and state-of- results obtained by the residual neural net-
the-art results contains various con- works in this study and state-of-the-art
ditions that need to be accounted for. results.

As a consequence, this comparison is

somewhat biased. However, it serves Dataset ResNet | SOTA | Source
the purpose of providing context to MNIST 99.62 | 99.79 | [33]
the obtained results. In some cases the paghion MNIST | 94.18 | 96.35 (35]
bes.t results obtained by the trained CIFAR-10 0329 | 99.00 | [11]
residual neural networks are close to

the best reported results in litera- CIFAR-100 72.66 |91.30 | [11]
ture (e.g., for MNIST and Fashion STL-10 79.91 | 88.80 |[14]
MNIST), while for others the differ- HAM10000 82.83 |-

ences are bigger (e.g., CIFAR~-100 and SVHN 96.66 | 98.98 |[7]
STL-10). Overall, the performance Flower 89.20 |-

results are good enough to expect that g+ “a60 99.38 |-

some conclusions drawn may carr,

over to state-of-the-art modeléf. ¥ Dogvs Cats 9652 -

5.2 Marginals per Dataset

This section details the results of the hyperparameter importance experiment.
Figure 2 shows the predictive accuracy marginals of important (combinations)
of hyperparameters, per dataset.

For each of the 10 datasets, we plotted the marginal of several important
hyperparameters and one pair of hyperparameters. From left to right this image
displays the marginals of the ‘number of epochs’, the ‘initial learning rate’,
‘weight decay’, ‘momentum’ and the combination of ‘number of epochs and
initial learning rate’. Note that we calculated the marginals for all 12 hyper-
parameters and all 65 hyperparameter pairs, but only show this subset due to
space reasons. The z-axis shows the value of the hyperparameter and the y-axis
shows the marginal performance (predictive accuracy). The epochs marginals
are most detailed, presumably because of the recorded performance after every
epoch.

The marginals reveal several patterns about the interaction between hyper-
parameter values and final performance of the network. Firstly, as the number of
epochs increases, so does the performance of the network. Although this is quite
obvious, it is important to verify that the proposed methodology can discover
known and expected behaviors. Secondly, the marginals for the initial learn-
ing rate reveal that there is no perfect default across datasets, but that values
between 1072 and 1072 generally perform quite well, whereas setting it much
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lower or higher typically results in suboptimal performance. For weight decay
and momentum we see similar trends, however there seems to be a tendency
that setting their values too low is less harmful than setting them too high.
Thirdly, also the combined marginal of number of epochs and initial learning
rate is interesting, as it reveals that there is very little interplay between these
two hyperparameters. Interestingly, both hyperparameters are important, but
setting one hyperparameter to a specific value does not have a large influence
on the optimal value for the other (maximum variance contribution: 0.026 on
Cifar-10).

Most interestingly, we observe that for each hyperparameter the marginals
follow similar trends across the datasets. Although the marginals exhibit a
rough and edgy pattern, based on visual inspection we conclude that after some
smoothing the landscapes would be uni-modal and convex. Even though the
methodology and application domain are slightly different, these results seem to
be in line with earlier reported findings [23].
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5.3 Importance Across Datasets

Figure 3(a) shows box-plots for the variance per hyperparameter, presented sim-
ilarly to [26]. For each partial configuration 8y with U = 1 and the three most
important partial configurations with U = 2, we record variance of the marginal
V7, per dataset, and present these across datasets in box-plots. We observe var-
ious expected results. Hyperparameters related to the optimizer seem generally
most important, i.e., ‘weight decay’, ‘momentum’, and ‘learning rate init’. The
data augmentation hyperparameters are among the least important hyperparam-
eters. We note that functional ANOVA is meant as a tool for assessing global
hyperparameter importance; data augmentation techniques are generally used
to be applied on already good performing models, in order to further improve
the performance. As such, the utility of data augmentation techniques might not
be detected by functional ANOVA but can most likely be measured with local
hyperparameter importance tools, such as Ablation Analysis [2].

Furthermore, we observe that the number of epochs, a hyperparameter which
we expected to be important, ranks only 5th when analyzing the marginals.
We note that the variance of the marginal (upon which functional ANOVA is
built) is highly dependent on the selected ranges. To alleviate this problem,
Fig. 3(b) shows the results in an alternative way. For each partial configuration
0y with U = 1, we record the maximum of marginal (i.e., maz(a},;(8y))) and
the minimum of the marginal (i.e., min(af,(6y))) per dataset, and present the
difference between these across datasets in box-plots. We observe that this plot
confirms the importance of the epochs hyperparameter, making it the second
most important hyperparameter after the learning rate. Also note that the other
hyperparameters with the highest median variances according to Fig.3(a) are
still ranked as important in Fig. 3(b), albeit in a slightly changed order.

Finally, based on Fig. 3(a) we note that most of the variance can be explained
by the effect of single hyperparameters. Apart from the variance contribution
of single hyperparameters (U = 1) it shows the 3 most important combi-
nations of hyperparameters (U = 2). The variance contribution of combined

10% "
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Variance Contribution
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(a) Functional ANOVA (b) Marginal max-min

Fig. 3. Importance per (combination of) hyperparameters across datasets
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hyperparameters seems rather low, as none are ranked highly compared to the
variance contribution of single hyperparameters. However, like the data augmen-
tation techniques, we speculate that even though the combined effect is relatively
small, it will still be important to consider when optimizing for performance.

5.4 Limitations

Looking at the results in Fig.3, the following result stands out. The shuffle
hyperparameter value has a rather low median but a very high tail. This indi-
cates that for most datasets the marginal is not particularly affected by this
hyperparameter, however for some datasets (i.e., Flower, Fruits 360, Dog vs.
Cat and HAM10000) it seems extremely important.

Furthermore, Fig. 1 reveals that the median performance is quite low, despite
the decent maximal performance. This is confirmed by the marginals in Fig. 2.
For example, none of the marginals for CIFAR-10 exceed the 80% accuracy
threshold, whereas the best found configuration obtained an accuracy of 93.29%
(according to Table 3). This gives rise to the question whether a hyperparameter
tool like functional ANOVA can still reveal hyperparameters that are impor-
tant for fine-tuning models (such as data augmentation), or whether only global
trends are detected.

Finally, functional ANOVA highly relies on a proper configuration space. A
seemingly important hyperparameter like ‘number of epochs’ will account for a
relative low variance if the range is selected in such a way that it exceeds the
values for which the performance reaches the plateau. It is currently an open
question how to construct the configuration space to avoid this problem.

6 Conclusions

This work was motivated by the call for more rigor in hyperparameter optimiza-
tion and neural network research [24,27]. We assembled a benchmark suite with
corresponding performance results of residual neural networks, and made it pub-
licly available. Our hyperparameter importance experiment confirmed existing
beliefs about which hyperparameters are most influential across datasets, i.e., the
initial learning rate and the number of epochs. Other important hyperparame-
ters are the weight decay and momentum. Most of the other hyperparameters
did not have a large variance of the marginal, however we note that in many
image classification benchmarks the devil is in the detail. In order to go from
a reasonable performance to state-of-the-art performance, also hyperparameters
with a small effect should be set to adequate values.

We confirmed some well expected patterns, for example the form of the
marginals for the number of epochs and the volatility across datasets of the
marginals for the initial learning rate.

We acknowledge that this is only a first step towards more rigorous results
in neural network research. While this research focused specifically on residual
neural networks with a fixed architecture, future work should focus on other
network types and also important parameters in architecture search.
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Abstract. Prediction of user traffic in cellular networks has attracted
profound attention for improving the reliability and efficiency of network
resource utilization. In this paper, we study the problem of cellular net-
work traffic prediction and classification by employing standard machine
learning and statistical learning time series prediction methods, includ-
ing long short-term memory (LSTM) and autoregressive integrated mov-
ing average (ARIMA), respectively. We present an extensive experimen-
tal evaluation of the designed tools over a real network traffic dataset.
Within this analysis, we explore the impact of different parameters on
the effectiveness of the predictions. We further extend our analysis to the
problem of network traffic classification and prediction of traffic bursts.
The results, on the one hand, demonstrate the superior performance of
LSTM over ARIMA in general, especially when the length of the training
dataset is large enough and its granularity is fine enough. On the other
hand, the results shed light onto the circumstances in which, ARIMA
performs close to the optimal with lower complexity.

Keywords: Statistical learning - Machine learning - LSTM -
ARIMA - Cellular traffic - Predictive network management

1 Introduction

A major driver for the beyond fifth-generation (5G) wireless networks consists
in offering the wide set of cellular services in an energy and cost-efficient way
[22]. Toward this end, the legacy design approach, in which resource provision-
ing and operation control are performed based on the peak traffic scenarios, are
substituted with predictive analysis of mobile network traffic and proactive net-
work resource management [5,9,22]. Indeed, in cellular networks with limited
and highly expensive time-frequency radio resources, precise prediction of user
traffic arrival can contribute significantly in improving the resource utilization
[5]. As a result, in recent years, there has been an increasing interest in leveraging
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Fig. 1. A communication network including access point, users, and uplink and down-
link data communications. (a) service is offered without prediction of bursts, (b) service
is adapted to the probability of occurrence of bursts.

machine learning tools in analyzing the aggregated traffic served in a service area
for optimizing the operation of the network [1,28,30,32]. Scaling of fronthaul and
backhaul resources for 5G networks has been investigated in [1] by leveraging
methods from recurrent neural networks (RNNs) for traffic estimation. Analysis
of cellular traffic for finding anomaly in the performance and provisioning of
on-demand resources for compensating such anomalies have been investigated in
[32]. Furthermore, prediction of light-traffic periods, and saving energy for access
points (APs) through sleeping them in the respective periods has been investi-
gated in [28,30]. Moreover, Light-weight reinforcement learning for figuring out
statistics of interfering packet arrival over different wireless channels has been
recently explored [4]. While one observes that analysis of the aggregated traffic
at the network side is an established field, there is lack of research on the analysis
and understanding at the user level, i.e., of the specific users’ traffic arrival. In
5G-and-beyond networks, the (i) explosively growing demand for radio access,
(ii) intention for serving battery- and radio-limited devices requiring low-cost
energy-efficient service [4], and (iii) intention for supporting ultra-reliable low-
latency communications [5], mandate studying not only the aggregated traffic
arrival from users, but also studying the features of traffic arrival in all users,
or at least for critical users. A critical user could be defined as a user whose
quality-of-service (QoS) is at risk due to the traffic behavior of other devices, or
its behavior affects the QoS of other users. Let us exemplify this challenge in the
sequel in the context of cellular networks.

Example. Figure 1(a) represents a communication network in which, an AP is
serving users in the uplink (towards AP) and downlink (towards users). One
further observes that traffic from user-2 represents a semi-stable shape, which
is usually the case in video streaming, while the traffic from user-1 represents
a bursty shape, which could be the case in surfing and on-demand file down-
load. One observes that once a burst in traffic of user-1 occurs, the server (i.e.
AP) will have difficulty in serving both users in a timely manner, and hence,
QoS degradation occurs. Figure 1(a) represents a similar network in which, AP
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predicts the arrival of burst to user-1, immediately fills the buffer of user-2. Thus,
at the time of arrival of burst for user-1, user-2 will require minimal data transfer
from the AP, and hence, QoS degradation for user-2 will be prevented. Backed
to this motivation, the remainder of this paper is dedicated to investigating the
feasibility of exploiting the traffic history at the user level and employing it for
future traffic prediction via machine learning and statistical learning approaches.

Research Problem. Let us assume time in our problem is quantized into inter-
vals of length 7seconds. The research problem tackled in this work could be
stated as follows: Given the history of traffic arrival for a certain number of
time intervals, how accurately can we estimate (a) the intensity of traffic in the
next time intervals, (b) the occurrence of burst in future time intervals (c) the
application which is generating the traffic?

This problem can be approached as a time series forecasting problem, where
for example, the number of packet arrivals in each unit of time constitutes the
value of the time series at that point. While the literature on time series fore-
casting using statistical and machine learning approaches is mature, e.g., refer to
[24,31] and references herein, finding patterns in the cellular traffic and making
the decision based on such prediction is never an easy task due to the following
reasons [33]. First, the traffic per device originates from different applications,
e.g. surfing, video and audio calling, video streaming, gaming, and etc. Each of
these applications could be mixed with another, and could have different modes,
making the time series seasonal and mode switching. Second, each application
can generate data at least in two modes, in active use and in the background, e.g.
for update and synchronization purposes. Third, each user could be in different
modes in different hours, days, and months, e.g. the traffic behavior in working
days differs significantly from the one in the weekends. Fourth, and finally, the
features in the traffic, e.g., the inter-arrival time of packets, vary significantly in
traffic -generating applications and activity modes.

Contributions. Our contributions in this paper are summarized as follows:

— We present a comprehensive comparative evaluation for prediction and classi-
fication of network traffic; autoregressive integrated moving average (ARIMA)
against the long short-term memory (LSTM);

— We investigate how a deep learning model compares with a linear statistical
predictor model in terms of short-term and long-term predictive performance,
and how additional engineered features, such as the ratio of uplink to down-
link packets and protocol used in packet transfer, can improve the predictive
performance of LSTM;

— Within these analyses, the impact of different design parameters, including
the length of training data, length of future prediction, the feature set used in
machine learning, and traffic intensity, on the performance are investigated;

— We further extend our analysis to the classification of the application gen-
erating the traffic and prediction of packet and burst arrivals. The results
presented in this work pave the way for the design of traffic-aware network
planning, resource management, and network security.
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The remainder of this paper is organized as follows: In Sect. 2, we outline the
related work in the area and introduce the knowledge gaps of state-of-the-art. In
Sect. 3, we formulate the problem studied in this paper, while Sect. 4 presents the
two methods used for solving it. Section 5 presents the experimental evaluation
results for different methods and feature sets, as well as provides a conclusive
discussion on the results. Finally, concluding remarks and future direction of
research are provided in Sect. 6.

2 Related Work and Research Gap

We summarize state-of-the-art research on cellular traffic prediction and classi-
fication, and introduce the research gaps which motivate our work.

Cellular Traffic Prediction. Understanding dynamics of cellular traffic and
prediction of future demands are, on the one hand, crucial requirements for
improving resource efficiency [5], and on the other hand, are complex prob-
lems due to the diverse set of applications that are behind the traffic. Dealing
with network traffic prediction as a time series prediction, one may categorize
the state-of-the-art proposed schemes into three categories: statistical learning
[8,19], machine learning [26,27], and hybrid schemes [12]. ARIMA and LSTM, as
two popular methods of statistical learning and machine learning time series fore-
casting, have been compared in a variety of problems, from economics [10,19,23]
to network engineering [6]. A comprehensive survey on cellular traffic prediction
schemes, including convolutional and recurrent neural networks, could be found
in [13,15]. A deep learning-powered approach for prediction of overall network
demand in each region of cities has been proposed in [2]. In [18,27], the spa-
tial and temporal correlations of the cellular traffic in different time periods and
neighboring cells, respectively, have been explored using neural networks in order
to improve the accuracy of traffic prediction. In [14], convolutional and recur-
rent neural networks have been combined in order to further capture dynamics
of time series, and enhance the prediction performance. In [6,26], preliminary
results on network traffic prediction using LSTM have been presented, where the
set of features used in the experiment and other technical details are missing.
Reviewing the state-of-the-art, one observes there is a lack of research of lever-
aging advanced learning tools for cellular traffic prediction, selection of adequate
features, especially when it comes to each user with a specific set of applications
and behaviors.

Cellular Traffic Classification. Traffic classification has been a hot topic
in computer/communication networks for more than two decades due to its
vastly diverse applications in resource provisioning, billing and service prioritiza-
tion, and security and anomaly detection [20,29]. While different statistical and
machine learning tools have been used till now for traffic classification, e.g. refer
to [16] and references herein, most of these works are dependent upon features
which are either not available in encrypted traffic, or cannot be extracted in real-
time, e.g. port number and payload data [16,20]. In [25], classification of traffic
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using convolutional neural network using 1400 packet-based features as well as
network flow features has been investigated for classification of encrypted traffic,
which is too complex for a cellular network to be used for each user. Reviewing
the state-of-the-art reveals that there is a need for investigation of low-complex
scalable cellular traffic classification schemes (i) without looking into the pack-
ets, due to encryption and latency, (ii) without analyzing the inter-packet arrival
for all packets, due to latency and complexity, and (iii) with a few numbers of
features as possible. This research gap is addressed in this work (Fig. 3).
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Fig. 2. The number of uplink packet arrivals for 24 days in 10-s intervals

3 Problem Description and Traffic Prediction Framework

In this section, we first provide our problem setup and formulate the research
problem addressed in the paper. Then, we present the overall structure of the
traffic prediction framework, which is introduced in this work.

We consider a cellular device, on which a set of applications, denoted by A,
are running, e.g., User-1 in Fig. 1. At a given time interval [¢,t 4 7] of length T,
each application could be in an active or background mode, based on the user
behaviour. We further consider a set of features describing the aggregated cellular
traffic in [¢, t+7] for a specific user, such as the overall number of uplink/downlink
packets and the overall size of uplink/downlink packets, which don’t require
decoding the packets. Let vector x;(¢) denote the set of features describing the
traffic in interval [t —iT,t — (i — 1)7] for ¢ > 1, and in interval [t — (i 4+ 1)7,t — i7]
for i < 0 respectively. Furthermore, X,,(¢) is a matrix containing m feature
vectors of the traffic, including x1(t):x,,(t) for m > 0, and x_1(¢):x_,(t) for
m < 0. Further, denote by s an indicator vector, with elements either 0 or 1.
Then, given a matrix X,,,(t) and a binary indicator vector s, we define X (t) the
submatrix of X,,,(¢), such that all respective rows, for which s indicates a zero
value, are removed. For example, let X,,(t) = [1,2;3,4] and s = [1,0]. Then,
X:, (1) = [1,2).
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Now, the research question in Sect. 1 could be rewritten as:

Given X,,(t),m > 1;
minimize L(Xs_n(t),Y(t)) (1)

where n > 0 is the length of the future predictions, e.g., n = 1 for one 7 future
prediction, Y (¢) is of the same size as X%, (¢) and represents the predicted matrix
at time ¢, while L(-) is the desired error function, e.g., it may compute the mean
squared error between X*  (t) and Y(t).

4 Time Series Prediction

In this section, we give a short description of the two methods benchmarked in
this paper to be used within the proposed prediction framework in Sect.4.1.

4.1 The Proposed Traffic Prediction Framework

Recall the challenges described in the previous section on the prediction of cellu-
lar traffic, where the major challenge consists of dependency of traffic arrival to
user behavior and type of the application(s) generating the traffic. Then, as part
of the solution to this problem, one may first predict the application(s) in use and
behavior of the user, and then use them as extra features in the solution. This
approach for solving (1) has been illustrated in Fig. 3. In order to realize such a
framework, it is of crucial importance to first evaluate the traffic predictability
and classification using only statistics of traffic with granularity 7, and then,
to investigate hybrid models for augmenting predictors by online classifications,
and finally to investigate traffic-aware network management design.

time series of traffic

The mode-switching,
trainded toolbox

selected window|of time series

user
activity
class

inactive

classification prediction

Fig. 3. The proposed framework for cellular traffic prediction



Cellular Traffic Prediction and Classification 135

4.2 Statistical Learning: ARIMA

The first method we consider in our work is Autoregressive integrated moving
average (ARIMA), which is essentially a statistical regression model. The pre-
dictions performed by ARIMA are based on considering the lagged values of
a given time series, while at the same time accommodating non-stationarity.
ARIMA is one of the most popular linear models in statistical learning for time
series forecasting, originating from three models: the autoregressive (AR) model,
the moving average (MA) model, and their combination, ARMA [7].

More concretely, let X = X4,...,X,, define a uni-variate time series, with
X; € R, for each i € [1,n]. A p-order AR model, AR(p), is defined as follows:

Xt =c+ 051Xt_1 + agXt_Q + ...+ apXt—p + €t, (2)

where X, is the predicted value at time ¢, c is a constant, aq,...,®, are the
parameters of the model and ¢; corresponds to a white noise variable.

In a similar, a g-order moving average process, M A(q), expresses the time
series as a linear combination of its current and ¢ previous values:

Xi=p+ e+ Breg—1 + Boci—o + ... + By€i—qg, (3)

where p is the mean of X, 31, ..., B, are the model parameters and ¢; corresponds
to a white noise random variable. The combination of an AR and an M A process
coupled with their corresponding p and g order parameters, respectively, defines
an ARMA process, denoted as ARMA(p,q), and defined as X; = AR(p) +
M A(q). The original limitation of ARMA is that, by definition, it can only be
applied to stationary time series. Nonetheless, non-stationary time series can
be stationarized using the d* differentiation process, where the main objective
is to eliminate any trends and seasonality, hence stabilizing the mean of the
time series. This process is simply executed by computing pairwise differences
between consecutive observations. For example, a first-order differentiation is
defined as Xt(l) = X; — X¢_1, and a second order differentiation is defined as
x® = x — XY Finally, an ARIMA model, ARIMA(p,d,q), is defined
by three parameters p,d,q [17], where p and ¢ correspond to the AR and MA
processes, respectively, while d is the number of differentiations performed to
the original time series values, that is X; is converted to Xt(d) = V%X,, with
Xt(d) being the time series value at time ¢, with differentiation applied d times.
The full ARIM A(p,d, q) model is computed as Xt(d) =>r, aiXt(d) + e +c+

23:1 Bo€t—q + 1.

Finding Optimized Parameters. In this study, the ARIMA parameters,
including p, d, and ¢, are optimized by carrying out a grid search over potential
values in order to locate the best set of parameters. In experimental results,
Fig.5, we represent the root mean square error (RMSE) results for different
ARIMA (p,d, q) configurations, when they are applied to the dataset for predic-
tion of the number of future packet arrivals. From these results and Bayesian
information criterion (BIC), the best performance is achieved by ARIMA(6,1,0).
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4.3 Machine Learning: LSTM

Next, we consider is a long short-term memory (LSTM) architecture based on a
Recurrent Neural Network (RNN), a generalization of the feed forward network
model for dealing with sequential data, with the addition of an ongoing internal
state serving as a memory buffer for processing sequences. Let {X71,..., X}
define the input (features) of the RNN, {Y7,...,Y,} be the set of outputs, and
let {Y7{,...,Y,} denote the actual time series observations that we aim to predict.
For this study the internal state of the network is processed by Gated Recurrent
Units (GRU) [11] defined by iterating the following three equations:

rj = sigm((Wr X]; + [Urhi1];), (4)
zj = sigm([W.X]; + [U:he—1]5)), (5)
he = z;h! 7 4+ (1= 2) hnew, (6)
Rt = tanh([WX]; + [U(r o hy—1)];), where (7)

— r;: a reset gate showing if a previous state is ignored for the j'* hidden unit,
— hy_1; the previous hidden internal state h;_1,

— W and U: parameter matrices containing weights to be learned,

— z;: an update gate that determines if a hidden state should be updated,

— h}: the activation function of hidden unit hj,

— sigm(+): the sigmod function, and

— o: the Hadamard product.

Finally, the loss function we optimize is the squared error, defined for all
inputs as £ =", (Y; — ¥/)?. The RNN tools leveraged in this work for traffic
prediction consist of 3 layers, including the LSTM layer, with 100 hidden ele-
ments, the fully connected (FC) layer, and the regression layer. The regression
layer is substituted with the softmax layer in the classification experiments.

5 Experimental Evaluation

In this section, we investigate the performance of the proposed prediction and
classification tools over a real cellular dataset.

5.1 Dataset

We generated our own cellular traffic dataset and made part of it available online
[3]. The data generation was done by leveraging a packet capture tool, e.g. Wire-
Shark, at the user side. Using these tools, packets are captured at the Internet
protocol (IP) level. One must note that the cellular traffic is encrypted in layer 2,
and hence, the payload of captured traffic is neither accessible nor intended for
analysis. The latter is due to the fact that for the realization of a low-complexity
low-latency traffic prediction/classification tool, we are interested in achieving
the objectives just by looking at the traffic statistics. For generating labels for
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part of the dataset, to be used for classification, a controlled environment at the
user-side is prepared in which, we filter internet connectivity for all applications
unless a subset of applications, e.g., Skype. Then, the traffic labels will be gen-
erated based on the different filters used at different time intervals. In our study,
we focus on seven packet features: (i) time of packet arrival/departure, (i)
packet length, (iii) whether the packet is uplink or downlink, (iv) the source IP
address, (v) the destination IP address, (vi) the communication protocol, e.g.,
UDP, and (vii) the encrypted payload, where only the first three features are
derived without looking into the header of packets. We experimented with differ-
ent values for the interval length parameter 7, and for most of our experiments 7
was set to 10s. Table 1 provides the set of features for each time interval in rows,
and the subsets of features used in different feature sets (FSs). It is straightfor-
ward to infer that 7 tunes a tradeoff between complexity and reliability of the
prediction. If 7 tends to zero, i.e., 7 = 1ms, one can predict traffic arrival for
the next 7 interval with high reliability at the cost of extra effort for keeping
track of data with such a fine granularity. On the other hand, when 7 tends to
seconds or minutes, the complexity and memory needed for prediction decrease,
which also results in lower predictive performance during the next intervals.

5.2 Setup

The experimental results in the following sections are presented within 3 cate-
gories, i.e., (i) prediction of the number of packet arrivals in future time intervals,
(ii) prediction of burst occurrence in future intervals, and (iii) classification of
applications generating the traffic. In the first two categories, we performed a
comprehensive set of Monte Carlo MATLAB simulations [21], over the data set,
varying different data parameters, such as length of the training set, length of
future prediction, feature sets used in learning and prediction. Each RMSE result
in Fig. 5 for each scheme has been derived by averaging over 37 experiments. In
each experiment, each scheme is trained using a training dataset, and then tested
over 2000 future time intervals (non-overlapping with the training dataset). For
the classification performance evaluation, we have leveraged 16 labeled datasets,
each containing traffic from 4 mobile applications. Then, we constructed 16 tests,
where in each test, one dataset is used for performance evaluation. The notation
of the schemes used in the experiments, extracted from the basic ARIMA and
LSTM methods described in Sect. 4, is as follows: (i) AR(1), representing the
traffic prediction based on the last observation; (ii) optimized ARIMA, in which
the number of lags and coefficients of ARIMA are optimized using a grid search
for RMSE minimization; and (iii) LSTM(FS-z), in which FS-z for « € {1,--- ,6}
represents the feature set used in the LSTM prediction/classification tool. The
overall configuration of experiments can be found in Table 2.

Reproducibility. All experiments can be reproduced using the anonymized
GDPR-compliance traffic dataset available at the supporting repository [3].
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5.3 Empirical Results

In this section, we present the prediction and classification performance results.

Prediction of Traffic Intensity. Figure 5 depicts the RMSE results for differ-
ent ARIMA and LSTM configurations versus AR(1), when the number of uplink
packets in intervals of 10s is to be estimated. Towards this end, the right y-axis
represents the absolute RMSE of AR(1), the left y-axis represents the relative
performance of other schemes versus AR(1), and the z-axis represents the stan-
dard deviation (SD) of the test dataset. The results are insightful and shed light
to the regions in which ARIMA and LSTM perform favorably, as follows. When
the SD of traffic from its average value is more than 30% of the long-term SD
of the dataset!, which is almost the case in the active mode of phone usage by
human users, LSTM outperforms the benchmark schemes. On the other hand,
when there is only infrequent light background traffic, which is the case on the
right-end side of Fig. 5, ARIMA outperforms the benchmark schemes. When we
average the performance over a 24-days dataset, we observe that LSTM(FS-6),
LSTM(FS-5), LSTM(FS-3), and optimized ARIMA outperform the AR(1) by
16%, 14.5%, 14%, and 12%, respectively, for 7 = 10s. Recall that LSTM(FS-6)
keeps track of the number of uplink and downlink packets, as well as statis-
tics of the communication protocol used by packets in each time interval, while
LSTM(FS-5) does not care about the protocol used by packets. The superior
performance of LSTM(FS-6) with regards to LSTM(FS-5), as depicted in Fig. 5,
represents that how adding features to the LSTM predictor can further improve
the prediction performance in comparison with the linear predictors.

Table 1. Feature sets. Table 2. Parameter configuration.
Feature sets (F'Ss) 1/2]3/4/5|6 Parameters Description
Num. of UL packets |1 |1|1|1|1|1 Traffic type Cellular traffic
Num. of DL packets |1/ 0/0|1]1]1 Capture point IP layer, device side
Size of UL packets |1]/0/0/0/0|0 Length of dataset |48 days traffic
Size of DL packets |1]/0/0/0/0|0 RNN for prediction | [LSTM, FC,
UL/DL packets 1/1/0/1/0/0 (eq. classification) |regression(eq. softmax)]
Comm. protocol 0/0|0|0|0|1 Time granularity, 7| Default: 10s

We investigate if LSTM can further outperform the benchmark schemes by
increasing time-granularity of the dataset, decreasing length of future obser-
vation, and increasing length of the training set. First, let us investigate the
performance impact of 7, i.e. the time granularity of dataset. Figure5 (left)
represents the absolute (left y-axis) and rational (right y-axis) RMSE results
for the proposed and benchmark schemes as a function of time granularity of

! The long-term SD of the dataset is 90.
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dataset (7, the z-axis). One must further consider the fact that 7 not only rep-
resents how fine we have access to the history of the traffic, but also represents
the length of future prediction. It is clear that the best results for the lowest
7, e.g. when 7 = 1, the LSTM (FS-6) outperforms the optimized ARIMA by
5% and the AR(1) by 18%. One further observes that by increasing the 7, not
only the RMSE increases but also the merits of leveraging predictors decrease,
e.g. for 7 = 60, LSTM(FS-6) outperforms AR(1) by 7%. Now, we investigate
the performance impact of the length of the training set on the prediction in
Fig.5 (right). One observes that the LSTM(FS-6) with poor training (1 day)
even performs worse than optimized ARIMA. However, as the length of training
data set increases, the RMSE performance for the LSTM predictors, especially
for LSTM(FS-3) with further features, decreases significantly.

Prediction of Event Bursts. We investigate the usefulness of the proposed
schemes for burst prediction in future time intervals. For the following exper-
iments, we label a subset of time intervals as bursts, based on the underlying
traffic intensity, i.e., the number and length of packets. Then, based on this train-
ing dataset, we aim at predicting whether a burst will occur in the next time
interval. As a benchmark to the LSTM predictors, we compare the performance
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against AR(1), i.e., we estimate a time interval as burst if the previous time inter-
val was labeled as a burst. In Fig. 6 (left) we see the recall of bursty and normal
(non-bursty) intervals for a burst definition in which, time intervals with more
than 90 uplink packet arrivals are treated as burst when the SD of packet arrivals
in the dataset is 90. The LSTM predictor developed in this experiment returns
the probability of burst occurrence in the next time interval. In order to declare
the decision as burst or non-burst, we set a probability threshold value. The
z-axis of Fig.6 (left) represents the decision threshold, which tunes the weight
of recall and accuracy of decisions. In this figure, we observe that the probability
of missing a burst is very low on the left side, while the accuracy of decisions is
low (it can be inferred from the recall of normal intervals). Furthermore, on the
right side of the figure, the probability of missing a burst has decreased, how-
ever, the accuracy has increased (high recall of normal intervals). The crossover
point, where the recall values of bursty and non-bursty intervals match, could be
an interesting point for investigating the prediction performance. In this figure,
one observes that when the decision threshold is 0.02, 91% of bursts could be
predicted, while only 9% of normal intervals are labeled as bursty (false alarm).

In Fig. 6 (right) we observe some insightful results on the coupling between
recall of predictions and degree of rareness of the bursts. The z-axis represents
the definition of bursts, e.g. for x = 90, we label time intervals with more than
90 packets as a burst. From this figure, it is clear that LSTM outperforms the
benchmarks in recalling the burst with a reasonable non-burst recall cost. For
example, for z = 1(~ 0.015D), we aim at predicting if the next time interval
will contain a packet or not, i.e., time intervals with a packet transmission are
defined as bursts. One observes that 78% of bursts could be predicted using
LSTM(FS-5), while only 28% of non-bursts are declared as bursts. Having the
information that 20% of time internals contain bursts, we infer that the accuracy
of prediction is 78%. As the frequency of burst occurrence decreases, i.e., we move
to the right side of the figure, the recall performance of LSTM increases slightly
up to some point beyond which, it starts decreasing. On the other hand, the
accuracy of prediction by moving from left to right decreases substantially due
to the rareness of the bursts. Clearly, LSTM outperforms AR(1), especially when
bursts are occurring infrequently.
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Fig. 6. (left) Prediction of bursts as a function of decision threshold; (right) Prediction
of bursts as a function of frequency of occurrence of bursts. (7 = 105s)



Cellular Traffic Prediction and Classification 141

100 : - e
. Time length of test data: 0.1 sec B
290 Time length of test data: 1 sec 08
% | =o—Time length of test data: 5 sec S
g 3 0.6
3 Q0.
o (s}
870 e
$ 204
o g —+— Surf (TLT=5 sec)
25 = Video call (TLT=5 sec)
2 2021 —#— Voice call (TLT=5 sec)
< < Video streaming (TLT=5 sec)
&) o
30 0
FS-1 Fs-2 Fs-3 FS-4 FS-5 FS-1 FS-2 FS-3 FS-4 FS-5
The feature set (FS) used in classification The feature set (FS) used in classification

Fig. 7. (left) The overall accuracy of classification as a function of the feature set used
in the experiment; (right) Per application accuracy of classification.

Traffic Classification. We investigate leveraging machine learning schemes for
classification of the application generating the cellular traffic in this subsection.
For the classification purpose, a controlled experiment at the user-side has been
carried out in which, 4 popular applications including surfing, video calling, voice
calling, and video streaming have been used by the user. Figure 7 (left) represents
the overall accuracy of classification for different feature sets used in the machine
learning tool. One observes that the LSTM(FS-5) and LSTM(FS) outperform the
others significantly in the accuracy of classification. Furthermore, in this Fig. 3
curves for different lengths of the test data, to be classified, have been depicted.
For example, when the length of the test data is 0.1s, the time granularity of
dataset (7) is 0.1s, and we also predict labels of intervals of length 0.1s. It
is clear here that as the length of 7 increases, the classification performance
increase because we will have more evidence from the data in the test set to be
matched to each class. To further observe the recall of classification for different
applications, Fig. 7 (right) represents the accuracy results per each application.
One observes that the LSTM(FS-4) and LSTM(FS-5) outperform the others. It
is also insightful that adding the ratio of uplink to downlink packets to FS-5, and
hence constructing FS-4 (based on Table 1), can make the prediction performance
more fair for different applications. It is further insightful to observe that the
choice of feature set to be used is sensitive to the application used in the traffic
dataset. In other words, FS-3, which benefits from one feature, outperforms
the others in the accuracy of classification for video calling, while it results in
classification error for other traffic types.

5.4 Discussion

The experimental results represent that the accuracy of prediction strongly
depends on the length of the training dataset, time granularity of dataset,
length of future prediction, mode of activity of the user (standard deviation
of test dataset), and the feature set used in the learning scheme. The results, for
example, indicate that the proposed LSTM(FS-3) is performing approximately
5% better than optimized ARIMA, and 18% better than AR(1) for 7 = 10s.
The results further indicated that the performance of LSTM could be further
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improved by designing more features related to the traffic, e.g. the protocol in
use for packets, and the ratio of uplink to downlink packets. Moreover, our exper-
iments indicated that the design of a proper loss function, and equivalently the
decision threshold, can significantly impact the recall and accuracy performance.
Furthermore, we observed that the frequency of occurrence of bursts (definition
of burst), the time granularity of dataset, and length of future prediction, can
also significantly impact the prediction performance. The results, for example,
indicated that a busy interval, i.e. an interval with at least one packet, could be
predicted by 78% accuracy as well as recall. The experimental results represented
the facts that, first, accuracy and recall performance of classification is highly
dependent on the feature set used in the classification. For example, a feature
set that can achieve an accuracy of 90% for classification of one application may
result in a recall of 10% for another application. Then, the choice of feature set
should be in accordance with the set of applications used by the user. Second, if
we can tolerate delay in the decision, e.g. 5s, the classification performance will
be much more accurate when we gather more information and decide on longer
time intervals. The overall accuracy performance for different applications using
the developed classification tool is approximately 90%.

6 Conclusions

In this work, the feasibility of per-user traffic prediction for cellular networks has
been investigated. Towards this end, a framework for cellular traffic prediction
has been introduced, which leverages statistical/machine learning units for traffic
classification and prediction. A comprehensive comparative analysis of predic-
tion tools based on statistical learning, ARIMA, and the one based on machine
learning, LSTM, has been carried out, under different traffic circumstances and
design parameter selections. The LSTM model, in particular, when the length of
training data is long enough and the model is augmented by additional features
like the ratio of uplink to downlink packets and the communication protocol used
in prior packet transfers, exhibited demonstrable improvement over the bench-
mark schemes for future traffic predictions. Furthermore, the usefulness of the
developed LSTM model for classification of cellular traffic has been investigated,
where the results represent high sensitivity of accuracy and recall of classifica-
tion to the feature set in use. Additional investigations could be performed in
the future works regarding making the prediction tool mode-switching, in order
to reconfigure the feature set and prediction parameters based on the changes
in the behavior of user/applications in an hourly/daily basis.
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Abstract. Email Marketing is one of the most important traffic sources in
Digital Marketing. It yields a high return on investment for the company and
offers a cheap and fast way to reach existent or potential clients. Getting the
recipients to open the email is the first step for a successful campaign. Thus, it is
important to understand how marketers can improve the open rate of a mar-
keting campaign. In this work, we analyze what are the main factors driving the
open rate of financial email marketing campaigns. For that purpose, we develop
a classification algorithm that can accurately predict if a campaign will be
labeled as Successful or Failure. A campaign is classified as Successful if it has
an open rate higher than the average, otherwise it is labeled as Failure. To
achieve this, we have employed and evaluated three different classifiers. Our
results showed that it is possible to predict the performance of a campaign with
approximately 82% accuracy, by using the Random Forest algorithm and the
redundant filter selection technique. With this model, marketers will have the
chance to sooner correct potential problems in a campaign that could highly
impact its revenue. Additionally, a text analysis of the subject line and preheader
was performed to discover which keywords and keyword combinations trigger a
higher open rate. The results obtained were then validated in a real setting
through A/B testing.

Keywords: Digital Marketing - Email Marketing + Marketing campaigns *
Open rate

1 Introduction

The introduction of the Internet allowed a new form of communication, known as
Digital Marketing. One of the most important traffic sources in Digital Marketing is
Email Marketing. A recent study showed that 59% of the marketers' inquired stated
that Email Marketing is the source that brings the highest return on investment
(ROI) for the firm [8]. Thus, it’s is crucial for email marketers to know how to improve
the performance of their marketing campaigns.

! A person or company that advertises or promotes something.
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In this work, we analyze what are the main factors driving the open rate of financial
email marketing campaigns. Getting the recipients to open the email is the first step for
a successful campaign, since it determines the reach of the campaign [6, 7]. Therefore,
it’s important for marketers to first understand how they can improve the email open
rate. With that purpose, we developed a classification algorithm that can accurately
predict if a campaign will be classified as Successful or Failure. A campaign is labeled
as Successful if it has an open rate higher than the average, otherwise it is classified as
Failure Additionally, we did a text analysis of the subject line and preheader to
discover which keywords and keyword combinations are associated with a higher email
open rate. To validate the results obtained in a real setting, we performed A/B testing in
the deployment stage. This framework was applied in a Portuguese Digital Marketing
company, as a case study.

By using data-driven models, advertisers can predict the performance of a cam-
paign before even sending it. In fact, if a marketer knows in advance if a campaign is
going to be successful or not, it provides the opportunity to sooner correct problems
that could strongly impact its revenue. To our knowledge, this is the first publication
that does an extensive qualitative analysis of the main factors driving the opening
behavior of financial marketing campaigns. Nowadays, financial institutions are using
Email Marketing as an important source to reach their clients. Thus, this work will
guide marketers on how to implement successful campaigns in this field.

This paper follows the CRISP-DM methodology [15], which consists of the fol-
lowing stages: Business Understanding, Data Understanding, Data Preparation, Mod-
elling, Evaluation and Deployment.

2 Related Work

The existent research studies on email open rate prediction assume an approach at the
recipient level [13] or at the campaign level [2, 11]. In this work, we studied the email open
rate at the campaign level because we didn "t have access to data at the recipient level, due
to the General Data Protection Regulation (GDPR) requirements. We treated this work as
a classification problem because our objective was to analyze qualitatively the main
factors contributing to marketing campaigns with an email open rate above the average.

In 2014, Balakrishnan and Parekh [2] proposed a method for predicting the open
rate of an email subject line, by learning from past subject lines. They used syntactical,
historical and derived features of each keyword in the subject line and of the entire
subject line. The model developed for the prediction was the Random Forest regression
model, which predictions improved over the baseline. For the baseline, the open rate
prediction was equal to the mean open rate of past emails that used the same subject
line. For new subject lines, the open rate was predicted as the average open rate of all
the subject lines.

In 2015, Luo et al. [13] developed a classification algorithm to predict if a targeted
email will be open or not. For each email recipient, the model classified the email in
“open” or “unopen”. The model used features extracted from the emails and from the



Main Factors Driving the Open Rate of Email Marketing Campaigns 147

email recipients’ profiles. For the prediction phase they used two different classifiers,
Support Vector Machine and Decision Tree, on two different datasets using different
feature selection methods (include or not include the recipient’s domains). The Deci-
sion Tree outputted the other classifier, achieving a F1-measure rate of approximately
80% on the “opens”, in the case of considering all features. In the case where the
recipient’s domains were not considered, the performance of both classifiers dropped,
which indicates this component is important to predict the email open behavior.

In 2018, Jaidka et al. [11] also studied the problem of predicting email opens, based
on the subject line. They explored the differences in the recipient’s preferences for
subject lines sent by different business areas (Finance, Cosmetics and Television). The
methodology used was a Data Mining model to predict the open rate of different email
subject lines, a regression analysis to study the effect of different subject line language
styles in the open rate and a domain adaptation method. The learning model used was a
five—fold cross—validated weighted linear regression, which predictions improved over
the baselines - state-of-the-art model [2] and the mean open rate of the entire dataset.
The use of the domain adaptation method improved the prediction of the model for
unseen domains and business. They concluded that using certain styling strategies in
the subject line, according to the business area of the campaign, can strongly impact the
email open rate.

The contributions of our work to these papers are the inclusion of the preheader and
the email sender as features in the prediction task. Before opening an email, the
recipient has also information of these components; therefore, we decided to test if
these features are important to predict the open behavior of a campaign.

3 Business Understanding

The objective of the Portuguese company involved in this study was to understand how
they could improve the open rate of their email marketing campaigns. The company
has an online publishing business that sends Spanish marketing campaigns, mainly
from financial institutions. To satisfy that business objective, we developed a classi-
fication algorithm that can accurately predict if a campaign will be classified as Suc-
cessful or Failure. In addition, we applied a text analysis of the subject line and
preheader to find which keywords and keyword combinations trigger a higher open
rate. To validate the results obtained in the company business, we conducted A/B
testing.

The tools that were used in this study were the software Knime [3] and SPSS [10].

4 Data Understanding

4.1 Data Extraction

For this work, we collected data of 217 Spanish email campaigns from the company in
study, sent since February 2018 until February 2019. The features extracted were the
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following: campaign name; email senderz; subject line3; preheader4; number of emails
sent; number of emails delivered; number of emails opened.

Keyword Extraction Process: To calculate the number of keywords in each email
subject line and preheader, we first had to extract the set of keywords. That process is
shown in Fig. 1 and Table 1.

Dict Replacer  Bag Of Words
Excel Reader (XLS) Strings To Document Stop Word Fitter  Punctuation Erasure ~ Case Converter ~ Number Filter (2In-Ports) Creator  Excel Witer (XLS)

E—& & &8 BB
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Spanish Lemmatizer Keywords
Excel Reader (XLS)

A5
-+

Spanish Lemmatizer

Fig. 1. Keyword extraction process.

— Excel Reader: Dataset composed by the campaign name, the subject line and pre-
header of each campaign, the respective email open rate and classification.

— Stop Word Filter: This node removes the terms of the input documents which are in
the Spanish Stop Word list.

— Dict Replacer: This node replaces the terms of the input documents that match with
the specified dictionary terms by the corresponding specified value. The dictionary
file used was an external source Spanish Lemmatizer (GitHub source), as the Knime
software only allows Lemmatization for English terms.

Table 1. Keywords.

Campaign Subject line & preheader Keywords
id
4 “Ahorra un 30% en el seguro de tu hogar. Sin renunciar a ahorrar
ninguna cobertura.” seguro
hogar
renunciar
cobertura

2 Person or entity that sends the email.
3 Short description of the email content.
“ Description that complements the email subject line.
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The variables used for this study are described in Table 2. These variables were
extracted and derived from email campaigns of the studied company.

Table 2. Data description.

Variables Description
Campaign | Sent (Sent) Number of emails sent
statistics | Sent days (Sent_days) Number of days the campaign was sent
Syntactical | Length subject line (Length_subject) | The number of characters in the subject
variables line
Length preheader The number of characters in the
(Length_preheader) preheader
Personalization Whether the email subject line and/or
(Personalization) preheader has a personalized greeting
(i.e., the recipient’s name). Categories:
No; Yes
Digits (HasDigits) Whether the email subject line and/or
preheader has digits. Categories: No; Yes
Punctuation The type of punctuation of the subject
(Punctuation) line. Categories: Affirmative;
Exclamation; Interrogation
Sender Recognizable Whether the email sender corresponds to
(Sender_recognize) the name of the financial institution that
is sending the campaign, i.e., if the email
sender is recognizable by the recipient.
Categories: No; Yes
Number of keywords (Nr_keywords) | The total number of keywords in the
email subject line and preheader
Historical | Occurrence score 1%, 2", 3™ and 4™ | Occurrence score of the first, second,
variables keyword (OC_Istkey; OC_2ndkey; | third and fourth keyword of the subject
OC_3rdkey; OC_4thkey) line and preheader, counting from the left
to the right
Target Classification Categories:
variable (Classification) *Successful — if the open rate is above the
average;
*Failure — if the open rate is below the
average;

The email open rate of a campaign is
calculated by dividing the number of
emails opened by the number of emails
delivered.

Average Email Open Rate ~ 16,81%




150 A. Conceigdo and J. Gama

The occurrence score of a keyword is equal to the difference between the number of
times the keyword was in the “Successful” set in past campaigns and the number of
times it was in the “Failure” set [2]. This feature captures the consistency in perfor-
mance of a keyword. In fact, a positive occurrence score indicates the keyword has a
good opening performance, as it was mostly present in campaigns with an email open
rate above the average.

4.3 Data Exploration

Bivariate Analysis

This study aims to discover how marketers can improve the email open rate of their
marketing campaigns. Hence, in this analysis the goal was to find the variables sig-
nificantly associated with the open rate.

Since none of the numerical variables follows a Normal distribution, the proper test
to analyze the correlation between pairs of numerical variables is the Spearman’s rank
correlation coefficient. The results of this test demonstrated that all the numerical
variables are significantly correlated with the open rate, except the occurrence score of
the first, third and fourth keyword (for a significance level of 5%). The variables more
correlated with the open rate are the number of emails sent and the number of days the
campaign was sent. Note that the length of the email subject line is negatively corre-
lated with the open rate, as Chittenden and Rettie pointed out [7]. On the other hand,
the length of the preheader and the number of keywords is slightly positively corre-
lated. The dataset campaigns with a higher email open rate have a subject line with a
number of characters between 33 and 42 and a preheader with a number of characters
between 93 and 115. The occurrence score of the first and second keyword is positively
correlated with the email open rate. This means that a better performance of the first
and second keyword in past campaigns increases the open rate.

To finish, we performed the Kruskal-Wallis test to study the distribution of the open
rate in the campaigns with and without a recognizable sender. We concluded that the
dataset campaigns with a sender different than the company name tend to have a higher
open rate (p-value approximately equal to 0). That statement is slightly controversial
because, in general, using an email sender that is not recognizable by the recipient can
negatively impact the open rate [4]. A possible reason that can justify this might be related
to the bad sender’s reputation of financial institutions in the market [1]. For those insti-
tutions, using their names as the sender can induce the recipient to not open the email.

Text Visualization

The goal of this text analysis was to discover which keywords and keyword combi-
nations are associated with a higher open rate. To derive the set of keyword combi-
nations we used the Knime node Term Neighborhood Extractor, which extracts the first
right neighbor of each keyword in the email subject line and preheader. Afterwards, the
Frequency filter method was applied to remove the low-frequency terms, i.e., those that
were present in less than two marketing campaigns. To finish, we used a keyword
cloud to visualize the terms that were linked with higher email open rates. We could
infer that some of the best keywords to use in the dataset campaigns are rapido,
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comision, crédito, préstamo, gratis, dinero and facil’. Additionally, some of the best
keyword combinations are {cambiar; banco}, {tarjeta; gratis}, {rapido; online},
{rapido; facil} and {gratis; comisién}G.

5 Data Preparation

5.1 Data Transformation

Data transformation is the process of transforming data from one format to another,
more suitable for applying Data Mining techniques. In this process we performed
feature transformation, as many algorithms require the input features to be numerical.

The categorical variables, HasDigits, Personalization and Sender_recognize, only
take two possible classes. Thus, for these variables the transformation made was to
replace the observations belonging to the class Yes by the number 1 and the ones
belonging to the class No by the number 0. For the categorical variables without any
ordinal relationship between the categories, the One-Hot Encoding is one of the most
used methods. According to this method, for each category of a variable a new column
is created, where the value is 1 if for that observation the original feature assumes that
value and O otherwise. We used this method for the variable Punctuation, that has three
possible classes: Affirmative, Exclamation and Interrogation.

5.2 Feature Selection

The Feature Selection process has a huge impact in the performance of an algorithm.
Hence, it is important to determine what are the most relevant features to the target
variable. For that purpose, the feature selection experiment performed was to filter the
input redundant features i.e., the features that are highly correlated. We identified these
variables as being the pair of variables with a Spearman’s rank correlation coefficient
higher than 50%. Having redundant features does not add significant information to the
existing set of features, as they carry similar information. Therefore, we can remove
one of two highly correlated variables without losing important data. By reducing the
set of features, the running time of the algorithm considerably decreases and, at the
same time, the performance of the model increases [12].

6 Modelling

In this study, supervised classification algorithms were applied because the Data
Mining problem in hand was to find to which set of classes (Successful or Failure) a
new campaign belongs to, based on the training set containing past campaigns whose
classification is already known. The classification algorithms used were the following:
Decision Tree (C4.5) [14], Random Forest [5] and Gradient Tree Boosting [9]. The set

s Fast, commission, credit, loan, free, money and easy.
6 {change; bank}, {card; free}, {fast; online}, {fast; easy} and {free; commission}.
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of features that were used to train and test these algorithms were: Sent; Sent_days;
Nr_keywords; Length_subject; Length_preheader; Affirmative; Exclamation, Interro-
gation; HasDigits; Personalization; Sender_recognize; OC_Istkey; OC_2ndkey;
OC_3rdkey; OC_4thkey and Classification. To validate the performance of these
models in new and unseen data, the 10-Fold Cross Validation method was used.

7 Evaluation

In this section we describe the experiments performed to select the best model for this
classification problem, by using the 10-Fold Cross Validation method.

Feature Selection Techniques*:

1. No Feature Selection;
2. Filter the redundant variables’: variable Sent_days, Nr_keywords and Exclamation.

After comparing the results in Table 3, we concluded that the model that had the
best performance was the Random Forest, when using the redundant feature selection
technique. This model accurately predicted 82% of the observations, achieving
approximately an AUC of 89% and a F-score of 71% (for the Successful class). The
model achieved a very good precision and recall for the Failure class, of 83% and 93%
respectively. The recall for the Successful class was slightly lower. This is probably
justified by the unbalanced dataset, where 65,44% of the campaigns belong to the
Failure class. The standard deviation of the 10-fold Cross Validation estimates of this
model was approximately equal to 8,3%.

Table 3. Evaluation metrics.

Technique* | Decision tree Random forest Gradient tree boosting
AUC | F-s | Accuracy | AUC | F-s | Accuracy | AUC | F-s | Accuracy

1 0,77 10,52 10,74 0,84 10,61|0,77 0,85 10,66 0,78

2 0,73 10,53/0,73 0,89 10,71 |0,82 0,87 10,66 0,78

F-s: F-Score for the Successful class

The features that have the most significant impact on the classification are the
number of emails sent, the occurrence score of the 4th, 3rd and 2nd keyword, the length
of the preheader and the occurrence score of the 1st keyword (by decreasing order of
weighted feature importance).

7 This filter selection was performed inside each one of the ten Cross Validation loops.



Main Factors Driving the Open Rate of Email Marketing Campaigns 153

8 Deployment

In this section, the insights gained from the previous analysis were validated in the
company business through A/B testing. With this experiment, we could test small
variations in the subject line of a campaign and find which version leads to a higher
open rate. During the test period, half of the email recipients are randomly sent the
control version (the actual version) and the other half receives simultaneously the
treatment version (the new version being tested). After the test ends, the recipients will
then receive the winning version, i.e. the version with a higher open rate. The elements
of the subject line that we could test were the type of punctuation (with or without
exclamation point; with or without question mark), the use of personalization (with or
without a personalized greeting) and digits (with or without digits). These features were
present in the Random Forest model developed, that correctly predicted the opening
performance of 82% marketing campaigns.

To test the significance of the A/B test results, we used the Two Sample Z-Test with
a significance level of 5%. The results regarding the use of personalization and the
question mark in the subject line were statistically significant in increasing the open
rate (p-value equal to O for both tests). The presence of digits and the exclamation point
doesn’t have a strong impact in the open rate, as the test results were not statistically
significant (p-value equal to 0,42 and 0,35 respectively). Thus, we advise the company
to include, if possible, personalization and the question mark in the email subject line to
improve the open rate of the campaigns in study.

9 Conclusion

To our knowledge, this is the first publication that does a profound qualitative analysis
of the key factors driving the opening behavior of financial marketing campaigns.
These days, financial institutions are using Email Marketing as an important traffic
source in their marketing strategy. Therefore, this study will be important in guiding
financial marketers on how to improve the open rate of an email campaign. With that
purpose, we developed a classification algorithm that can predict if a campaign will be
labeled as Successful or Failure. A campaign is classified as Successful if it has an open
rate above the average, else it is labeled as Failure. We tested three different classifiers
— Decision Tree, Random Forest and Gradient Tree Boosting. The model that achieved
the best performance was the Random Forest, when using the redundant filter selection
technique. This model could accurately predict the performance of 82% campaigns,
achieving an AUC of 89% and a F-score of 71% (for the Successful class). By using
this model, marketers will have the chance to sooner correct potential problems in a
campaign that could highly impact its revenue.

The features that revealed to be important to predict the opening performance of a
campaign were the number of emails sent, the length of the preheader and the
occurrence score of the keywords used in the subject line and preheader. As Balakr-
ishnan and Parekh [2], our study acknowledges the importance of taking in account the
historic performance of a keyword, in the past campaigns, when predicting the effec-
tiveness of an email campaign. Concerning the email sender, we concluded that the
dataset campaigns with a sender different than the name of the company tend to have a
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higher open rate. Note that we were not able to validate this in the deployment stage.
Regarding the email subject line, we advise marketers to avoid using long subject lines
since it can negatively impact the open rate. In addition, using a personalized greeting
and the question mark in the subject line can significantly improve the open rate of the
email marketing campaigns in study.

For future research, we consider important to also include features at the recipient
level. For instance, the recipient location, device type, domain and time the email is
sent and opened by the recipient. Lastly, it will be interesting to analyze the impact of
email segmentation in the open rate of financial campaigns.
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Abstract. The purpose of this study was to redefine health and fit-
ness categories of students, which were defined based on body mass
index (BMI). BMI enables identifying overweight and obese persons,
however, it inappropriately classifies overweight-and-fit and normal-
weight-and-non-fit persons. Such a classification is required when person-
alized advice on healthy life style and exercises is provided to students.
To overcome this issue, we introduced a clustering-based approach that
takes into account a fitness score of students. This approach identifies
fit and not-fit students, and in combination with BMI, students that are
overweight-and-fit and those that are normal-weight-and-non-fit. These
results enable us to better target students with personalized advice based
on their actual physical characteristics.

Keywords: Improving BMI-based classification - Fitness-based
clustering - Multiobjective problem

1 Introduction

According to WHO, overweight and obesity have become urgent global health
issues in recent decades [5]. Overweight and obese persons are classified accord-
ing to the body mass index (BMI). This weight-to-height index enables defining
categories of adolescents such as Overweight and Obese Adolescents (OOA) cat-
egories [1]. OOA defines four categories from the lowest to the highest BMI:
underweight, normal weight, overweight, and obese. The BMI bounds for these
categories are sex- and age-specific, and are typically given with sex-specific
BMI-for-age charts.
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The main advantage of the BMI index and the resulting categories is its sim-
plicity to measure. More precisely, it requires only two easy-to-obtain measure-
ments: body weight and height. Its simplicity also represents its drawback: BMI
fails to identify persons that, for example, have high muscle mass. Although they
are overweight according to BMI, they are fit and should be treated differently
than overweight persons without high muscle mass. This is a key issue when pro-
viding personalized advice on healthy life style and exercises, e.g., to students in
high school. For example, the advice for students with high BMI and high muscle
mass should be significantly different than for those with high BMI only.

BMI in combination with OOA has been widely used to study the correlation
between obesity and health conditions in the last decades. For example, various
risk factors were analyzed with respect to the OOA categories [1]. In some cases,
however, BMI is not enough for accurate prediction. For example, it was shown
that the prevalence of excess adiposity is overestimated by BMI in blacks within
the pediatric population [10], which mirrors our own observation that BMI is
not always appropriate for health-related clustering.

There were also studies on the relation between BMI and fitness. For example,
cardiovascular risk profile was investigated in Caucasian males with at least 3h of
sports activity per week and the results showed that the threshold for an optimal
BMI concerning cardiovascular risk factors might be far below 25kg/m? even if
other lifestyle conditions are apparently optimal [7]. Heart failure mortality in
men was studied in relation to cardiorespiratory fitness and BMI, and the results
showed that the risk factor was significantly lower in fit compared with unfit men
in normal and overweight body mass index but not in obese men [4].

The existing research shows that both BMI and fitness are important for
assessing health status of persons and predicting health issues. In addition, it
also shows that BMI and fitness score are two distinctive measurements: we
cannot precisely predict one from the other, although some correlation exists.
See, for example, Farrell et al. [4] who showed that there are unfit and normal
weight persons, and those that are fit and obese. However, in contrast to BMI,
there is no commonly used definition of fitness score. We propose to overcome this
issue by considering a widely used test battery. This test battery is performed
by students in Slovenian schools once a year and enables us to calculate an
overall fitness score as well as access the main components of physical fitness
(see Table1). In contrast to related work, we do not predefine the clusters of fit
and not fit persons, but we apply a multiobjective approach with three objectives
to search for the best split into fit/non-fit clusters. In addition, the fitness score
in combination with OOA categories enables the identification of persons that
are overweight or obese but are fit, and those that have normal weight but are
not fit. The resulting categories of students enable the teachers, parents and
policy makers to create and provide personalized and better-targeted advice,
recommendations and curricula.

The paper is further organized as follows. The fitness-based approach for clus-
tering students is described in Sect. 2. Section 3 reports the experiments including
the dataset and the results. Finally, Sect.4 concludes the paper with ideas for
future work.
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Table 1. The physical fitness tests of the test battery. All the test measurements are
in percentiles.

Fitness test| Measurement

PTSF Thickness of triceps skinfold

PAPT Reaction time during arm plate tapping

PSBJ Distance jumped during standing broad jump

POCB Time to pass a polygon backwards and on all fours

PSU Number of sit-ups in 60s

PSR Distance between fingertips and toes when standing and bending forward
PBAH Time in a bent arm position while hanging from a bar

P60m Time to run 60 m

P600m Time to run 600 m

2 A Fitness-Based Approach for Clustering Normal
Weight, Overweight and Obese Students

There is no golden standard for deciding who is fit and who is not. The most
straightforward approach to separate students who are fit from those who are
not is to apply a threshold to the overall fitness score. However, it is not clear
what this threshold should be, and since we have measurements of the main
components of physical fitness available, we should consider whether they can be
used to achieve a better separation. In our clustering, we explore these questions
and finally propose an approach for separating the fit students from the non-fit.

2.1 Fitness Score

The fitness score is calculated by taking into account a set of physical fitness
measurements. These measurements are obtained with the SLOfit test battery!,
i.e, a version of Eurofit Physical Fitness Test Battery [3], which is a set of physi-
cal fitness tests covering flexibility, speed, endurance, and strength. The selected
set of measurements is shown in Table 1. For each measurement, a quantile (per-
centile) rank is calculated by taking into account sex and age. Utility functions
then transform these ranks on a scale ranging from 0 to 100 points, where 0 is
the worst possible score and 100 is the best. Finally, the points of all the mea-
surements are summed up and the fitness score is determined as the quantile
rank by taking into account reference population, sex and age.

2.2 Measuring Clustering Error

The fitness score enables the evaluation of clusters of students within a dataset:
students within a cluster should have similar fitness score, while fitness score

! http://en.slofit.org/measurements/test-battery.
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Fig. 1. Examples of clusters: (a) good clusters, i.e., there is no intersection between
clusters; (b) bad clusters, i.e., intersection between the clusters is very high.

of various clusters should be different. To evaluate a pair of clusters, we firstly
calculate the histograms of both clusters with respect to the fitness score. Next,
we find the intersection between the histograms. The intersection represents the
overlap between clusters, which ideally should be 0, since clusters should be dis-
junctive. Therefore, this intersection represents the error that is then normalized
with respect to the size of both clusters. The resulting maximal error percentage
between both clusters is then used as the amount of error with respect to the
fitness score (ey). Examples of histograms of clusters and intersections between
them are presented in Fig. 1: Good clusters with no overlap are shown in Fig. 1a,
while Fig. 1b depicts bad clusters with high percentage of overlap.

The same error function can be also applied to percentile ranks of fitness
components (i.e., physical fitness measurements), which can be interpreted as
follows: we want to find clusters in which students have similar percentile ranks
of fitness components, while the percentile ranks between clusters should differ.
As a consequence, the performance of fit and non-fit students with respect to
individual components should be different. The error measure based on percentile
ranks of fitness components (e.) is thus calculated as the average of all the errors
of individual fitness components.

Although the clusters of students with respect to the fitness score can signif-
icantly differ from the clusters based on OOA, it is reasonable to assume that
the ratio between students with normal weight and those that are overweight
or obese is similar to the ratio between fit and non-fit students. Note that the
boundary between people with normal weight and those that are overweight or
obese is to some degree arbitrary, and the same can be said for those who are fit
or not. Therefore we assume the same ratio for the latter as for the former. As
a consequence, the number of fat-and-fit students should be roughly the same
as the number normal-weight-and-non-fit students. However, the exact numbers
might differ, therefore we measure the error with respect to size difference (ey)
as the normalized difference between the size of normal weight students and the
size of fit students.

The proposed approach enables us to evaluate and compare various clustering
algorithms that aim at clustering students into fit and non-fit clusters. The
comparison is done in three-objective space, where the errors (ey, e., €,) represent
the dimensions, i.e., objectives, of this space: the error with respect to the total
fitness (ey), the average error with respect to individual fitness components (e.),
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and the error with respect to the size (es). Note that all the errors should be
minimized.

2.3 Clustering Based on Fitness Score

Besides applying existing clustering algorithms to solve the problem of finding
clusters of fit and non-fit students, we also propose the following algorithm. First,
the fitness score is discretized equidistantly. Second, each discretized value is used
as a limit as follows: all the students with lower fitness score are added to the first
cluster, while the students with higher score are added to the second cluster. Each
such pair of clusters is evaluated with respect to the error functions (ey, e, es).
In comparison to other clustering algorithms, this approach has the advantage
of being intuitive, easy to understand, and very effective. Its performance in
comparison to other clustering algorithms is presented in the following section.

3 Experiments and Results

This section presents the dataset of students that were clustered, the clustering
algorithms the were applied, and the obtained results with discussion.

3.1 Dataset of Physical Fitness Measurements

We evaluated our approach on a dataset of students from Slovenian schools,
SLOfit2. More precisely, we only analyzed the data of high school students (ages
16-21). In addition, only the most recent year of measurements was used, i.e.,
2018. The attributes for the clustering algorithms were percentile ranks of fit-
ness components and are shown in Table 1. Moreover, only normal weight, over-
weight and obese students were selected. Note that the same approach can also
be applied to underweight students, however, for the domain experts the most
relevant division is between normal weight and overweight students. In total,
27,304 students were taken into account.

3.2 Clustering Algorithms

The clusters of fit and not-fit students were found with a set of clustering algo-
rithms. Since the goal was to cluster in two clusters, only those algorithms that
enabled defining the number of clusters were selected. However, several cluster-
ing algorithms have a high computational complexity, therefore, only a subset
of data was clustered with those. In addition, some algorithms enabled creat-
ing a model on the subset and afterward cluster all the data with that model.
The applied clustering algorithms and their characteristics are shown in Table 2.
This table shows, for example, that spectral clustering has a high computational
complexity, since only 5000 data could be clustered at once, and does not build

2 http://www.slofit.org/.
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Table 2. Evaluated clustering algorithms.

Clustering algorithm Clustered | Cluster all data with | Randomly set
data a model parameters

OOA (Default, based on [5]) | All Not needed /

k-means [6] All Not needed Random state

BIRCH [11] 5000 Yes Threshold, Data
sample

Spectral clustering [9] 5000 No Random state, Data
sample

Hierarchical clustering [8] 5000 No Data sample

Fitness score (see Sect.2.3) |All Not needed Fitness score bound

a model to cluster the entire dataset after clustering the subset of data. On
the contrary, k-means has a lower computational complexity since it was able
to cluster the entire dataset at once. Consequently, it was not required to use
subset of data and build a model to cluster all the data. BIRCH is something
in between: it has a high computational complexity, therefore it could cluster
only subset of data. However, it enables building a model on this subset of data,
which was then used to cluster the entire dataset.

In our experiment, all of these algorithms were run 1000 times with randomly
set parameter values (and randomly selected subset of data, if all the data could
not be clustered due to algorithm’s high computational complexity).

3.3 Results of the Clustering Algorithms

All the algorithms had to cluster the students into two clusters, i.e., students
that are fit and those that are not fit. As described in Sect. 3.2, 1000 runs of
each algorithm were performed, therefore the results of all the runs are pre-
sented. Each algorithm run was evaluated and is presented in terms of three
objective/error functions (e, e., ;) as described in Sect. 2.3.

The results in three-dimensional objective space are shown in Fig.2a. In
addition, Figs. 2b—c show two additional perspective of the objective space: the
first one focuses on the fitness score error, while the second one focuses on fitness
components’ and delta size errors. Since all three objectives are minimized, the
optimal solution would be in (0, 0, 0), which is at the bottom left of all three
figures.

These results show that the OOA clustering is not good with respect to the
fitness score and fitness components’ errors, since all the other algorithms are
better in these two objectives. On the other hand, it is optimal with respect to
the delta size error, which is true by definition, since delta size error measures
the difference of sizes of the obtained clusters compared to the OOA clusters.
In addition, k-means, spectral clustering and Fitness score clustering find the
best splits with respect to the fitness components’ error, while the Fitness score
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Fig. 2. Results of the clustering algorithms: (a) three-dimensional objective space;
(b) focus on fitness score error; (c) projection on two objectives: fitness components’
and delta size errors; (d) nondominated solutions in the three-dimensional objective
space; (e) nondominated solutions projected on two objectives: fitness components’ and

delta size errors.
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Table 3. Hypervolume of the clustering algorithms.

Clustering algorithm | Hypervolume

OOA 0.006
k-means 0.368
BIRCH 0.372

Spectral clustering 0.309

Hierarchical clustering | 0.343
Fitness score 0.450

clustering also finds the best splits with respect to the delta size error. Moreover,
the Fitness score clustering outperforms all the other algorithms with respect
to the fitness score error, which is expected since the Fitness score clustering
defines clusters that do not overlap with respect to fitness score (thus fitness
score error is 0).

Figures 2a—c show all the solutions found by the clustering algorithms. How-
ever, when comparing the algorithms, it is simpler to only show nondominated
solutions of each algorithm. A solution is nondominated if none of the objective
functions can be improved in value without degrading some of the other objec-
tive values [2]. Therefore, a dominated solution can be discarded since there
exists at least one (nondominated) solution that is equal or better in all the
objectives. The nondominated solutions of the clustering algorithms are shown
in Figs. 2d—e. These solutions confirm the above described comparison between
the clustering algorithms.

Objective space enables us to compare results of clustering algorithms visu-
ally. However, a more appropriate approach for algorithm comparison consists
of applying a unary operator suitable for multiobjective problems. A commonly
used operator is the hypervolume [12]. Hypervolume measures the volume of the
portion of the objective space that is dominated by the (nondominated) solu-
tions. As a consequence, a higher hypervolume is preferable. The hypervolumes
covered by the solutions of the clustering algorithms are listed in Table 3. This
table shows that the Fitness score clustering found solutions that better cover
the objective space in comparison to the other algorithms. Another argument
in favor of the Fitness score clustering is that other algorithms only rarely out-
perform it in terms of fitness components and delta size error (as best seen in
Figs. 2c and e), while the Fitness score clustering significantly outperforms the
other algorithms in terms of the fitness score error (as best seen in Fig. 2b).

A solution found with the Fitness score clustering is presented in Fig.3
in terms of distributions of BMI, OOA, fitness score and fitness components
between the two clusters. This figure shows the clusters divided by fitness score
0.5, i.e., the division with the lowest fitness components’ error.
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Fig. 3. Distribution of data with respect to BMI, OOA, fitness score and fitness com-
ponents, which are additionally clustered with the Fitness score clustering in students
with fitness score <0.5 and students with fitness score >0.5.

3.4 Discussion

The presented experiment has shown that the best clusters with respect to the
three objectives are found by the Fitness score clustering. This can be seen in
visual representation of the solutions in the objective space, and it is also con-
firmed by the hypervolumes obtained by the clustering algorithms. In addition,
the Fitness score clustering enables finding clusters with the lowest (zero) delta
size error, and with the lowest fitness components’ error (the same fitness com-
ponents’ error is also achieved by the k-means algorithm). Even more, all the
clusters of the Fitness score clustering have zero fitness score error, while none
of the other clustering algorithms found clusters with zero fitness score error.
Therefore, the Fitness score clustering performed the best among the tested
algorithms.

4 Conclusion

This paper presented a new approach for identifying students that are overweight
and fit, and those that have normal weight, but are not fit. This classification
enhances the widely used BMI index that is suitable to classify students only
as normal weight or overweight/obese. The presented approach introduces the
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fitness score calculated based on a set of physical fitness measurements per-
formed in schools by all the students once a year. In addition, it also defines
three objectives, i.e., (fitness score error, fitness components’ error and delta
size error), which are used to assess the quality of the clustering algorithms that
find clusters of students. Furthermore, the Fitness score clustering is developed,
which clusters students with respect to their fitness score. The results show that
the Fitness score clustering finds better clusters of students in comparison to
widely-used general-purpose clustering algorithms. The obtained clusters enable
the identification of students that are overweight or obese but are fit, and those
that have normal weight but are not fit, which makes it possible to define per-
sonalized and better targeted advice, recommendations and curricula for the
students.

In our future work we will evaluate the proposed approach on additional
datasets of students from Slovenia and abroad. This approach will be also com-
bined with algorithms that predict students’ future performance in order to
assess whether the discovered clusters can improve this prediction. A particular
challenge also represents the definition/generation of personalized and better-
targeted advice, recommendations and curricula.

References

1. Bacha, F., Saad, R., Gungor, N., Janosky, J., Arslanian, S.A.: Obesity, regional
fat distribution, and syndrome X in obese black versus white adolescents: race
differential in diabetogenic and atherogenic risk factors. J. Clin. Endocrinol. Metab.
88, 2534-2540 (2003)

2. Deb, K., Pratap, A., Agrawal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182-197 (2002)

3. Eurofit: Eurofit Tests of Physical Fitness. Council of Europe, Strasbourg, 2 edn.
(1993)

4. Farrell, S.W., Finley, C.E., Radford, N.B., Haskell, W.L.: Cardiorespiratory fitness,
body mass index, and heart failure mortality in men. Circ. Hear. Fail. 6(5), 898-905
(2013)

5. Kallioinen, M., Granheim, S.I.: Overweight and obesity in the western pacific
region. Technical report, World Health Organization (2017)

6. Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu,
A.Y.. An efficient k-means clustering algorithm: analysis and implementation.
IEEE Trans. Pattern Anal. Mach. Intell. 24, 881-892 (2002)

7. Ortlepp, J.R., Metrikat, J., Albrecht, M., Maya-Pelzer, P., Pongratz, H., Hoffmann,
R.: Relation of body mass index, physical fitness, and the cardiovascular risk profile
in 3127 young normal weight men with an apparently optimal lifestyle. Int. J. Obes.
27, 979-982 (2003)

8. Rokach, L., Maimon, O.: Clustering methods. In: Maimon, O., Rokach, L. (eds.)
Data Mining and Knowledge Discovery Handbook, pp. 321-352. Springer, Boston
(2005). https://doi.org/10.1007/0-387-25465-X_15

9. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern
Anal. Mach. Intell. 22, 888-905 (2000)


https://doi.org/10.1007/0-387-25465-X_15

10.

11.

12.

Enhancing BMI-Based Student Clustering 165

Weber, D.R., Moore, R.H., Leonard, M.B., Zemel, B.S.: Fat and lean BMI reference
curves in children and adolescents and their utility in identifying excess adiposity
compared with BMI and percentage body fat. Am. J. Clin. Nutr. 98(1), 49-56
(2013)

Zhang, T., Ramakrishnan, R., Livny, M.: Birch: an efficient data clustering method
for very large databases. In: Proceedings of the 1996 ACM SIGMOD International
Conference on Management of Data, pp. 103-114 (1996)

Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case
study and the strength Pareto approach. IEEE Trans. Evol. Comput. 3(4), 257271
(1999)



l‘)

Check for
updates

Deep Learning Does Not (Generalize Well
to Recognizing Cats and Dogs
in Chinese Paintings

Qiangian Gu'®™) and Ross King?

! The University of Manchester, Manchester M13 9PL, UK
qiangian.gu@manchester.ac.uk
2 The Alan Turing Institute, London NW1 2DB, UK

Abstract. Although Deep Learning (DL) image analysis has made
recent rapid advances, it still has limitations that indicate that its app-
roach differs significantly from human vision, e.g. the requirement for
large training sets, and adversarial attacks. Here we show that DL
also differs in failing to generalize well to Traditional Chinese Paint-
ings (TCPs). We developed a new DL object detection method A-RPN
(Assembled Region Proposal Network), which concatenates low-level
visual information, and high-level semantic knowledge to reduce coarse-
ness in region-based object detection. A-RPN significantly outperforms
YOLO2 and Faster R-CNN on natural images (P < 0.02). We applied
YOLO2, Faster R-CNN and A-RPN to TCPs with a 12.9%, 13.2% and
13.4% drop in mAP compared to natural images. There was little or no
difference in recognizing humans, but a large drop in mAP for cats and
dogs (27% & 31%), and very large drop for horses (35.9%). The abstract
nature of TCPs may be responsible for DL poor performance.

Keywords: Traditional Chinese Paintings - Computational
aesthetics - Deep Learning + Object recognition + Machine learning

1 Introduction

One of the greatest mysteries in cognitive science is the architecture of human
visual system and its virtuosity in object recognition. Human have the impressive
ability to recognize visually presented objects with both high speed and accuracy.
Attempts to replicate this ability have been made since the start of Artificial
Intelligence (AI) research, but these have met with only limited success. Object
recognition is traditionally one of the most intractable problems in AI [1].

Recently, with the advent of very large annotated image databases, and
advances in Deep Learning (DL), have greatly improved AI object recognition
[2]. However, despite many claims to the opposite, DL object recognition is
still not nearly as good as in humans. Example of the weaknesses of DL are:
the requirement for large training sets, and their susceptibility to adversarial
attacks that do not confuse humans. It is hypothesized that the reason for this
© Springer Nature Switzerland AG 2019
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is compiled background knowledge about the world encoded in the human visual
system architecture [3,4]. This knowledge was learnt through millions of years
of Darwinian evolution.

Visual art is present in all human societies, and dates back as long ago
as the Paleolithic. Computational visual aesthetics investigates the relationship
between art and computational science. There is a close relationship between
the human visual system and the appreciation of art (Gombrich (2000) Art
and Illusion, Princeton University Press;) Computational Aesthetics is the
computational investigation of aesthetics. Computational aesthetics is a large
subject [5-7], but relatively little work has been done at the interface between
computational aesthetics and DL object recognition [8,9]. The limited evidence,
based on Western art, points to significant differences in performance between
natural image trained classifiers and painting-trained classifiers. To the best of
our knowledge the relationship and differences between object recognition in
natural images and art has not been investigated.

Traditional Chinese Painting (TCP) is one of the great art traditions of the
World (206 BC - now) [10]. Its unique style, which dates back over 2000 years,
is instantly recognizable to humans. Here, to explore the differences between
human and DL object recognition, we investigate DL object recognition in nat-
ural images and TCPs.

2 Object Detection in Chinese Painting

Object detection is one of the most widely studied topics in image processing.
It differs from the classical image classification problems where models classify
images into a single category corresponding to their most salient object. Here
we investigate transferring Deep Learning (DL) object detection models from
natural image to TCPs.

There are two potential challenges in applying DL to detecting objects in Chi-
nese Paintings. First, there does not exist an official well-structured Chinese Paint-
ing Image Database and associated Ontology. And existing work in this area [11]
is limited. Second, the characteristics of TCP images are different from natural
images as they are produced using specialized tools, materials and techniques.

2.1 Chinese Painting and TCPs Data

Chinese painting can be categorized into two major schools of styles: XieYi,
or GongBi [12]. XieYi (freehand strokes, Fig.2) paintings are characterized by
exaggerated forms, with the painted objects abstract and sometimes without
fully connected edges. GongBi (skilled brush or meticulous approach, Fig.1)
paintings are characterized by close attention to detail and fine brushwork, and
the painted objects are more realistic. TCPs can be further classified as: figure
painting, landscapes painting, or flower-and-bird painting; only figure paintings
and flower-and-bird paintings depict objects as their main subject.

To form our TCPs object detection dataset we integrated two datasets: a self-
collected dataset obtained from online open sources, and a high-resolution image
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Fig.1. Emperor Huizong Song’s Fig. 2. Beihong Xu’s freehand strokes flower-
skilled brush flower-and-bird paint- and-bird painting
ing from Song Dynasty

dataset provided by the Chinese Painting and Calligraphy Community. The sizes
of these datasets are: 3,000 images, and 10,000 images respectively. The TCP
objects dataset we used in this experiment contains 1,400 images in seven classes:
human, horse, cow, bird, plant, cat, and dog. We manually annotated the data
with class labels and segmentation knowledge (bounding box), as ground truth.
(List of paintings we have used could be found: https://github.com/hiris1228/
TCP_object_detect.git).

2.2 Object Detection

Current DL object detection models generally identify various objects and loca-
tion within one single image. A naive approach to solving this problem is to
take different regions of interest from the image, and to classify the presence of
the object within that region — usually using a ConvNets [13,14]. The R-CNN
(Regions + CNN) method was developed to avoid the use of excessive num-
ber of regions in object detection. This relies on an external region proposal
system based on a selective search algorithm [15-17]. The cost-reduced compu-
tational shared model R-FCN [18] attempts to balance translation-invariance
in image classification, and translation translation-variance in object detection.
The Mask R-CNN approach [19] applies FCN (Fully Convolutional Networks)
[20] to each Region of Interest (Rol), and then applies classification and bounding
box regression in parallel. Single Shot detectors like YOLO [21] and SSD (Single
Shot MultiBox Detector [22]) and are able to obtain relatively good results.

3 Chinese Painting Object Detection Approach

The architecture of our TCPs Object Detector A-RPN is a VGG-16 [23] back-
bone base model as shown in Fig.3. We adopted the popular two-stage object
detection strategy of Faster R-CNN [17]. We generate a set of Rols, and a classi-
fication model independent of selected Rols. Comparing to ResNet [23], VGG-16
is not very ‘deep’ (ResNet has 152 layers), but its depth is appropriate given the
limited TCP data.
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The assembled Region Proposal Network (A-RPN) has three components: a
general RPN that return Rols and Intersection of Union (IoU) scores; a Chinese-
Kitten RPN (CN-Kitten RPN), which concatenate both lower-level and high-
level features to generate small object sensitive proposals, and refines the Rols;
and a Detection Network R-FCN that takes proposed Rols, and classifies them
into categories and background. All the sub-networks within the A-RPN are
fully convolutional with respect to Rols. All three components are initialized by
a hierarchical feature map M0 through shared convolutional layers to form a
pre-trained resembling VGG-16.

The region proposals (Rols) processed in our A-RPN are divided into two
parts. One comes from the generated RPN (Rols-setl), the other is the small-
scale region boxes generated by sliding window run on convCNK (Rols-set2).
The same NMS operation, with threshold 0.7, was applied to both general RPN
and CN-Kitten RPN to reduce redundancy. This process returned two set of 2k
proposals. Each of these regions has an Intersection of Union (IoU) score, which
estimates the chance that the current Rol contains an object.

CN-Kitten RPN is an enhanced RPN that combines multi-layer features
knowledge and Rol pooling layer to refine Rol proposals. This approach is
designed to increase the model’s sensitivity to small-scale object detection from
knowledge of Feature Pyramid Networks [24]. With differing low-level visual
information, the high-level convolutional features may be too coarse when we
project our Rols from the feature map to the original image. The aim is to
better fit small objects, and to better utilize fine-grained features due to TCPs
characteristics. We observed no significant drop in recall with small objects.

Rols-set2 is generated from a 1x1x 256 fully-connected layer which is reduced
from fine-grained feature map convCNK. convCNK is the multi-layer feature
concatenation of convb and conv4 which is similar FCN-16s [20]. We apply an
unsampling filter on convb to obtain transposed convolutional layer [25] conv5’.
Then L2-normalize each layer per spatial location, and re-scales it with the same
resolution as conv4 to obtain convCNK. Simultaneously, we applied a bilinear
interpretation on convCNK, and obtained a semantic segmentation heat-map of
the entire image for later refinement.

In order to obtain the final top 300 proposals as input of Detection Network
R-FCN. A top rank voting model was applied to both Rol-setl and Rol-set2.
This ranks all anchors with their IoU scores from the highest to the lowest.
It then projects all the selected anchors to the semantic segmentation heat-
map, and computes an extra IoU score with the overlapped percentage. Then it
looks to find whether there are existing anchors in its opposite set that have an
overlapped rate higher than 0.7, if yes, it merges these two anchors by averaging
their coordinates. The method repeats this procedure until it obtains proposals
with the highest 300 pairs of IoU scores.

The detection network identifies and regresses the bounding box of regions
likely to contain classes base on each proposed region. Unlike in the original
Faster R-CNN [17], we apply Fast R-CNN [16] with R-FCN [18] as the detection
network. As a member of FCN [20] family, it construct a set of position-sensitive
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Fig. 3. Assembled Region Proposal Network (A-RPN) architecture.

score maps to incorporate translation variance. As there are no learning layers
after the Rol layer, only a shared fully convolutional architecture, R-FCN is
nearly cost-free, and even faster than the other pioneering DL image classification
architectures [13,15-17,23] with a competitive mAP (mean Average Precision).

R-FCN uses a bank of specialized convolutional layers to encode as score maps
position information with respect to a relative spatial position [18]. Our Detection
network removes all FC layers, and computes all learn-able weight layers on the
entire image to create a bank of position-sensitive score maps for C + 1 categories
(C object categories + 1 background). Each set of score maps for one particular
category represents a k X k spatial grid describing relative position information.
Selective pooling only returns one score out of k x k on class prediction after per-
forming average voting on these shared sets of score maps.

4 Experiment and Results

To investigate the differences between DL and human image analysis we applied
DL to images that humans can easily interpret: natural image and Traditional
Chinese Paintings (TCPs). We compared our A-RPN’s outputs with two pop-
ular DL object detection models. We ran six experiments: Single Shot detec-
tors on natural images, YOLO(N), and on Chinese paintings, YOLO(P); Faster
R-CNN on natural images, Faster R-CNN(N), and on Chinese paintings, Faster
R-CNN(P); A-RPN on natural images, A-RPN(N), and on Chinese paintings,
A-RPN(P). The natural image dataset that we used was PASCAL VOC2007
trainval. Both datasets contains the same seven classes. We kept one-third of
the data as test set, and divided the remaining data into 90% training set and
10% validation set. The results are shown in Table 1.
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Table 1. The mAP Comparison for Flower-and-Bird and Figure Classification. And
A-RPN has proved that it outperforms the other two models.

Methods | YOLO(N) | YOLO(P) | Faster RCNN(N) | Faster RCNN(P)| ARPN(N) | ARPN(P)
Human |82.1 76.3 81.1 79.5 83.2 82.4
Horse 71.8 28.3 75.9 39.7 78.3 42.4
Cow 75.4 69.1 76.4 74.3 78.7 80.5

Bird 81.1 75.2 79.3 e 76.8 70.0
Plant 32.0 33.8 36.2 42.9 43.5 50.0

Cat 78.7 65.1 81.3 52.0 82.7 55.5

Dog 79.2 61.6 82.4 53.8 83.6 52.2
Overall |71.37 58.48 73.22 59.98 75.25 61.85

Table1 shows that all the DL models can achieve more than 70% mAP
on natural image object detection. A-RPN achieved the best performance in
classification, and has significantly higher mAP (P < 0.02) than YOLO2 and
Faster R-CNN. (Using the McNemar test, the Z-model statistic against YOLO2
and Faster R-CNN are respectively —3.7905 and —2.4188). Object recognition
performance significantly drops when applied to TCPs. The YOLO2 model has
a mAP performance drop of 12.9% while Faster R-CNN drops 13.2% and A-
RPN drops 13.4%. The statistical difference in performance between the three
methods on TCP object recognition is not significant.

The success of object recognition varies greatly between object class. The
performance on classes ‘Human’ and ‘Bird’ is stable and accurate for all methods.
Performance on the class ‘Plant’ is stable but has low mAP in all models. Class
‘Cow’ works better in natural image dataset than TCPs, but the drop is relatively
small, while A-RPN increases with 1.8% mAP. All three models confuse the ‘Cat’
and ‘Dog’ classes in TCPs. For the class ‘Cat’ the decreases in performance
were 13.6%, 29.3%, and 27.2% for A-RPN. For the class ‘Dog’ the decreases in
performance were 17.6%, 28.6%, and 31.4%. The largest drop in performance
was for the class ‘Horse’ in TCPs. Only A-RPN could achieve more than 40%
mAP, while their mAPs on Nature Image data are all above 70%.

Table2 and Fig.4 show that our region proposals network has limitations
when allocating object bounding boxes. There are 5 classes (out of 7 in total) that
failed to achieve 85% detecting rate of one particular type of object. Intersections
of Unions (IoU) is the region of interest union with the ground truth bounding
box. Our threshold was set as 0.5. But after verifying, we noticed that only 63%
of the ground truth bounding boxes were detected with ratios above 0.5. 22%
of the objects were not detected, especially in the plant class, and 15% of all
bounding box which does not cover objects.
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Table 2. Heat-Map for A-RPN classification. Miss-classification scenarios with error
more than 15% have been highlighted in the table. The N/A column represents the sce-
nario that — there is no bounding box detected over the current ground truth bounding
box.

Truth | Prediction

Human | Horse | Cow | Bird | Plant | Cat | Dog | N/A
Human | 0.82 0 0 0 0 0 0 0.18
Horse |0 0.35 |0.03 /0.180.02 |0 0.27/0.15
Cow 0 0.09 10.72 |0 0 0 0.01 1 0.18
Bird 0 0 0 0.78 10.01 |0.03 |0 0.18
Plant |0 0 0 0.04 |0.38 |0.01 0.01 |0.56
Cat 0 0 0 0.02 1 0.01 |0.51 |0.38/|0.08
Dog 0 0.01 1 0.09 |0 0 0.29 | 0.51 | 0.10

5 Discussion and Future Works

Putting to one side the differences between human and DL image recognition,
it is interesting to consider whether in principle images in TCPs are harder to
recognize using DL. We have shown A-RPN performs slightly better than YOLO
and Faster R-CNN, but its success in natural image cannot be transferred to
TCPs. There are a number of possible reasons for the drop in performance of
DL in TCPs. First, DL models require large training sets, but the number of
TCPs is quite limited, and their usage generally involve licenses. Therefore the
limited size of the data set we used potentially prevented the DL models being
fully trained.

Another reason may be the initialization of the layer MO feature map. When
the A-RPN is initialized, we use a pre-trained CNN layer trained on natural
images. Natural images differ in a number of ways from images in TCPs. They
inherently include perspective, while most Chinese paintings do not. In TCPs
objects are often depicted in a highly abstract manner, easily comprehended by
the human, but quite different from natural images.

Ineffective feature formation may also be a factor. CNN models have their
own texture representations [23,26]. Whether the work was ‘linear’ (contour-led)
or ‘painterly’ (reliant more on brushstrokes denoting light and shadow) [27] has
been proven to have effect on prediction. The majority of Chinese paintings are
only black and white. In CNN models white color is often treated as ‘no color’,
with a probability of being an object of zero, and the ‘black ink’ textures are
similar in every single class.

We hypothesize that the abstract nature of TCPs may fundamentally restrict
the ability of DL systems to recognize objects in TCPs. Objects in TCPs do
not have fully connected edges. When CNN edge detection filters are applied
on non-edge pixels in low-level layers, the resulting matrices will be filled with
really small numbers or even zeros. In CNN texture representation strategy, the
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Fig. 4. Bounding Box Detection Cases: Left, object detected with IoU score greater
than 0.5; Middle, object detected with IoU less than threshold; Right, object not
detected.

smaller the edge detection matrix is, the lower the convolution value will be. And
this situation gets worse during strided convolutions. Finally, CNNs weakens
the contribution from ambiguous edge pixels, and further separates edges that
should be treated as connected in TCPs. This complicates object detection task
in TCPs, and is also the reason why we absorbed the concept from FPN [24]
to assemble features from different convolutional layers to try to maximize the
sensitivity on learning edge information.

Many principles of Chinese Painting are derived from Daoism [28]. For exam-
ple in Daoism empty space is an important concept, and a symbol of the void or
nothingness. The most important text in Daoism states: ‘Having and not having
arise together’ (Laozi 2). Chinese Painting has also been influenced by Buddhism,
which emphasizes that ‘What is form that is emptiness, what is emptiness that
is form’ (Paramita Hridaya Sutra). These beliefs have led Chinese paintings to
stress the concept of Designing White Space — if one’s mind can reach there,
there is no need for the touch of any brush and ‘formless is the image grand’
(Laozi 4). Similarly, an important canon of Chinese painting describes its rhyth-
mic vitality as Qi, a metaphysical concept of cosmic power: with Qi empty space
is not blank, it is alive, like air. This prominent characteristic of Chinese paint-
ing turns its treatment of empty space as solid space. Taking the horse in XieYi
style in Fig. 2 as an example, the absence of clear edges depicting the outline of
a horse feed the human imagination.

6 Conclusion

We have demonstrated that state-of-the-art object DL recognition methods per-
form substantially worse on TCPs compared to natural images. We argue that
these results point to interesting and important differences between DL systems
and the human visual system that require further investigation. For example:
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what features of the human visual system that enable it to effortlessly recognize
cats and horses in Chinese paintings, deal with the white space, etc.; What is
the relationship between aesthetics and image recognition? We hope, and expect,
that further research will investigate these important questions, and lead to com-
putational systems that can recognize objects in Chinese paintings as well as
humans, and perhaps also appreciate their beauty as greatly as humans.
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Abstract. Growing conditions of agricultural crops are increasingly
affected by global climate change. Not only the overall agro-climatic con-
ditions are changing, but also climatic variability and the occurrence of
extreme weather events are becoming more frequent. This will affect
crop yields and impact food supply both locally and globally. Located in
the north, with short growing seasons and long days, Finland is not an
exception. Drought- and temperature-related adverse events have been
identified as most harmful abiotic factors on the production. Farmers try
to mitigate with a range of management options. However, they need to
adapt them over time as the climate is changing.

This study aims to identify the most adverse weather events that affect
the spring wheat production in Finland and to ascertain if there have
been changes on the most harmful abiotic weather-related factors during
the last decades. Adverse weather conditions studied include frequency
and length of periods with exceptional snow, drought, intensive rainfall
and extreme heat. This was studied by modeling the wheat production
using the adverse weather events as predictors with different lengths of
training period (consecutive number of years) using LASSO regression.

The results reveal clear shift from early season drought and periodical
intensive rainfall to the adverse effects of frequent and long periods of
extremely high temperatures during later development stages.

Keywords: Wheat production - Adverse weather event -
Data analysis - Time series

1 Introduction

Finland is located on the northern edge of the world’s agricultural area, which
makes the production conditions special. The growing seasons are short, with
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long days, and variations in weather, both temporally and spatially. Most harm-
ful weather events for cultivation of spring cereals under Finnish conditions
are identified to be drought- and elevated temperature-related adverse events
[9], with south-western Finland being an area where crop yield formation is
mostly prone to climate-induced (abiotic) stresses [12,15]. The trend is likely
to develop under future climate projections. [10] used temperature- and rainfall-
based weather indices to explain variation in spring wheat production in Finland.
The results hedge about 38% of wheat yield risk, suggesting that marginal prod-
ucts of weather events varies significantly during physiological development.

With the current knowledge and a range of management options farmers can
try to mitigate many of the harmful effects from adverse weather conditions.
Such management options include (but not limited to) changing the timing of
growing season, selection of cultivar types or irrigation [6]. It has been shown, for
example, that farmers use their earlier experiences of weather events to decide
on crop and cultivars to be sown [8]. However, more detailed information on the
relative impacts of adverse weather conditions on yields is very important to be
able to find cost-effective means for adaptation.

This study aims to discover the impact of adverse weather conditions on
production of spring wheat in Finland by analyzing: (i) effects of adverse weather
events throughout the physiological development of the plants; and (ii) shifts
in adverse weather conditions affecting crop yields. The impact is examined
over both temporal scales, physiological development (short scale) and global
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Fig. 1. (a) Map of ELY administrative regions in Finland. Following regions are con-
sidered in the study: Uusimaa (15), Southwest Finland (14), South Ostrobothnia (5),
Satakunta (9), Pirkanmaa (10) and Hame (11); (b) Visualization of approximated
spring wheat growth period and development stages across ELY regions, since 1965.
Development stages are given with their length (in degree days) and corresponding
Zadoks classification. Vertical lines mark the first day of August and September.
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warming (long scale). Weather conditions are generalized over shorter and longer
periods of recent history.

2 Material and Methods

2.1 Data

Data are collected from two sources: open-access databases of Natural Resource
Institute Finland — Luke [5] and Finnish Meteorological Institute — FMI [2]. The
former contains data on cultivation area, production and sowing time. The latter
provides weather data such as daily temperature, precipitation and snow depth.
The study is performed over 6 out of 15 ELY administrative regions represent-
ing the main cultivation area of spring wheat in Finland: Uusimaa, Southwest
Finland, South Ostrobothnia, Satakunta, Pirkanmaa and Hame (Fig. 1a).

Data are transformed so that to fit the annual temporal scale of the defined
problem. Each season, representing a single life cycle (plant growing period
between sowing and harvesting) in a single region, is defined with three broader
development stages: vegetative, generative and grain-filling, as defined in [7].

Development stages are expressed in thermal time, defined with degree days
(°D). Review by [11] suggests a range of base temperature for calculating the
degree days, but [10] recommend 5°C as base in case of northern cultivars of
spring wheat. Figure 1b visualizes length and Zadoks classification [16] of devel-
opment stages, along with approximated duration of plants’ life cycle across
considered ELY regions, in the period 1965-2018. Each season is taken to start
at the first day of the provided sowing period in corresponding region.

Adverse weather conditions are defined annually through a set of daily events
with extreme weather condition. Single adverse event is in form of frequency of
appearance (number of days within a period) or a length of a longest streak of
such events (number of consecutive days with certain weather conditions). The
literature emphasizes different definition of such events [4,11], out of which five
are considered in this study (Table 1). The selection is bounded by the availability
of data.

Set of descriptors is a Cartesian product of the defined development stages
and the set of adverse weather events, given in the form of a frequency and

Table 1. List of events considered as annual adverse weather conditions. The last
column gives the conditions in regard with variable names used throughout the study.

Event Description Condition

Thin snow cover |Daily snow cover not exceeding 1cm Snow_depth < 1
Thick snow cover | Daily snow cover exceeding 4 cm Snow_depth > 4
Drought Total daily precipitation not exceeding 0.1 mm |Precipitation < 0.1
Intensive rainfall | Total daily precipitation exceeding 40 mm Precipitation > 40
Extreme heat Maximum daily temperature above 31 °C Max_temp > 31
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length of a longest streak. Additionally, each development stage is given with
number of days since: beginning of a year, and sowing date.

The complete dataset is defined with 36 descriptive variables over sample
size of 318 instances (53 years of records in 6 ELY administrative regions).

2.2 Methodology

The study is performed with multivariate linear regression method using Least
Absolute Shrinkage and Selection Operator — LASSO regression [13]. LASSO
regression uses L1 regularization with penalties equal to absolute magnitude of
coefficients. As such it builds sparse models that improves their interpretabil-
ity. In addition, LASSO regression is indifferent to highly correlated descriptive
variables, so it tends to pick one by ignoring the rest and setting their coefficient
close to zero. Lasso penalty corresponds to Laplace prior by expecting more of
coefficients to be close to zero, and a small subset of them greater than zero [3].

The selection of method for modeling the wheat production is justified by
three main criteria: interpretability, variables vs. instances ratio, and parametric
dimension of a model’s run. Interpretability of models is of highest importance in
this study as it comes along the need to understand the effect of adverse weather
conditions over wheat production, by distinguishing effects of underlying adverse
events over biologically processes and physiological development of plants.

High dimensionality of a variable’s set in combination with a limited sam-
ple size can result in models with high bias. LASSO minimizes residual sum
of squares by shrinking some coefficients to zero, which allows stable variable
selection and avoids model’s over-fitting [14].

Finally, LASSO implementation [3] requires setting up only one parameter -
lambda (), a parameter for optimal /;-norm regularization. It is optimized by
performing a cross-validation over the training set and minimizing the A value
that minimizes mean squared error — MSE.

2.3 Experimental Design

Experimental design defines the three-fold structure of the analysis in a workflow
fashion: definition of short and long periods of training set, investigation of
a model’s robustness, and comprehensive analysis of effects from the adverse
weather conditions.

Temporal analysis is performed using short and long memory, i.e., short and
long periods of evidence in recent history. The analysis examines possible pat-
terns from historical periods of 5 to 30 years. Intergovernmental Panel on Climate
Change (IPCC) states that 30years period is efficient for investigating the cli-
mate change and effects related to it [1]. However, due to the limited length of
the time series of data on annual production of wheat, area and daily weather,
the upper considered boundary is 30 years. Lower bound is set to be 5 years.

A selection of short and long periods is done in accordance to models’ per-
formance expressed with Root Relative Squared Error — RRSE and Pearson
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correlation coefficient. RRSE is an error metric that measures relative error of a
model compared to the error of default model (average value):

where m; is observed and p; predicted value, for i € [1,n]. m is average observed
value of n observations (number of instances). In other words, it measures the
fraction of unexplained variable and value range is [0, 00) with best value being
the lower bound.

Periods with smaller number of years is set to randomly pick equal number
of years for testing (24 years), as the longest possible period (30 years). Due to
the stochastic properties of the testing set of years, the process is repeated 10
times and the average performance is reported.

Throughout the manuscript, the period of n years is interchangeably referred
to as sliding window size or window size, as well as short and long window for
short and long historical periods, respectively. In fact, the period defined as a
window represents a training set used for building models, while the consecutive
year represents a testing set. All further elements of the experimental design
adopt such definition and perform the tests with the technique of sliding window
(Fig.2), until the last year is tested, i.e., year 2018.

The robustness analysis includes comparison of performance of models built
with a step-ahead predictions and a step-ahead simulation. Both utilizes the
sliding window techniques over available years of the time series, for testing.
The difference is in construction of training set. The prediction approach learns
on collected data (original data on wheat production). The simulation approach
constantly updates the training set by predictions from the previous year. The
simulation approach allows predicting the effect of adverse weather conditions
longer ahead. The length of such period depicts the robustness of a model build
over certain window size.

Comprehensive analysis of variables selected in the process of building mod-
els for years from the testing set is the last part of the design. Due to the A
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Fig. 2. Example of sliding window techniques applied throughout the experimental
design. Window size represents the number of years in training set (green-filled tiles).
The testing set (transparent tile) consists of one year in each trial. Trials are executed
consequently, arranged from the bottom to the top of y-axis. (Color figure online)
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parameter optimization using 10-fold cross validation, the process of building
model for particular testing year is repeated 10 times. Weights of selected vari-
ables among all models built for particular testing year are averaged. Final selec-
tion is performed by picking out variables that appear in 8 out of 10 repeats and
that have an average weight greater than 1073,

3 Results and Discussion

The range of window sizes is visually examined in regard with median, intra-
variance and outliers of models’ performance, built over the given range of years.

The performance of models, built over different lengths of the sliding window
ranging between 5 and 30, are given on Fig.3a. As the window enlarges, the
median performance in regard with both the error and correlation, increases
and decreases, respectively. The variance of the performance among the models
built with same window size is higher for very small and very high window sizes.
The third criterion, appearance of outliers, shows significant decrease in regard
with error and slight decrease in regard with correlation, as the window increases.

Accordingly, window sizes depicting lower variability, better median perfor-
mance and fewer outliers are 12 and 23 years for short- and long-term conditions’
aggregation, respectively. Built models will be referred to as short-term models
and long-term models, respectively.

Average performance emphasizes that short-term models are more accurate
compared to long-term (Table 2). However, considering the range of performance
of individual models built over each year, higher stability and robustness is
observed in long-term models compared to short-term (Fig.3b). Such robust-
ness is mainly adopted due to the encapsulated variety of events with higher
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Fig. 3. (a) Performance of models (RRSE and Correlation coefficient) built over dif-
ferent window sizes varying from 5 to 30 years; (b) Predictive performance (RRSE)
of the sliding-window models built with both step-ahead approaches (prediction and
simulation) and window sizes of 12 and 23 years, for periods 1977-2018 and 1989-2018,
respectively.
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Table 2. Average performance of models built over short and long windows. Both
window sizes are given with prediction (P) and simulation (S) approaches, as well as
reference models built without weather conditions — given with (ref)

Window size | RRSE (P) | Correlation (P) | RRSE (S) | Correlation (S)
Short (ref) |0.191 0.995 0.506 0.995
Short 0.176 0.995 0.449 0.996
Long (ref) 0.237 0.995 0.426 0.995
Long 0.212 0.996 0.374 0.995

probability to appear in longer period of time. Consequently, the predictions are
smoother when using the short-term models, while the long-term models sharpen
the peaks (Fig.4).

In addition, Table 2 shows performance of reference models, i.e. models built
over data excluding variables that represent the adverse weather conditions.
Although such models perform well, the difference of around 10% stresses out the
impact of the adverse weather events. The impact is higher when long window is
used and it is mostly reflected to the error measure. Considering the time-course
of the predicted values, such improvement is mainly reflected to the magnitude
of the residuals.

The robustness of models in regard with the step-ahead simulation is differ-
ent compared to the task of prediction (Fig.3b). Short-term term models fail
to follow the performance of those with prediction approach and their perfor-
mance deviates significantly after the year 2000 or 15 years of accumulation. The
long-term models follow the prediction approach approximately until year 2005.
Although they both depict good performance before year 2000 and 2005, it is
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built with: (a) short window of 12 years; and (b) long window of 23 years. (Color
figure online)
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hard to conclude the exact range of stability of long-term simulations. Similar
behaviour is observed in Fig.4, where simulations are underestimating the real
production of spring wheat in the years after 2005.

Examination of variables selected during models’ building, reveals a change
in abiotic weather-related factors with influence on wheat production in Finland,
over the course of time (Fig. 5). A change in conditions can be analyzed from two
dimensions: typomorphic and physiological. The former is a synonym for type
of adverse weather event and examines whether certain type of event appears
to affect the production. The latter, concentrates on the life cycle of wheat and
depicts changes of effects observed in affected development stages.

Drought appears to be important in both short- and long-term models. His-
torically, it has been more harmful for the production, unlike recently. It causes a
lot more damage in vegetative stage than in the later development. The longest
streak is identified as more frequent source of negative effect, although frequency
of dry days affects the production, as well.

Intensive rainfall appears in both short- and long-term models. Similar to
drought, intensive rainfall used to have a large negative effect, during the vege-
tative stage. It is the case in both type of models where negative effect increases
significantly until year 2010. Historically, the intensive rainfall is positive during
generative and grain-filling stage, but without significant impact after the year
2005. The frequency of this event is predominant, thus the non-continuity of
appearance does not have an effect.
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Fig. 5. Variables of models with windows size of: (a) 12 years; and (b) 23 years.
Time is given on x-axis, while y-axis shows variables ordered by physiological stages
of wheat development (from wvegetative (upper), through generative, to grain-filling
stage (lower)). Size of circles depicts variables’ importance (weight), and color depicts
their effect (positive or negative). Names are constructed of development stage, weather
event and type of aggregation (frequency - “fq” or streak - “sk”). Exceptions are z_area
that represents cultivated area, as well as since-nyear and since-seed — number of days
since beginning of a year or seeding till beginning of a stage, respectively.
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Extreme temperature shows most clear pattern of change on the long scale.
Namely, historically it shows positive effect in the generative stage and less sig-
nificant effect during the grain-filling stage. However, as approaching the recent
years the effect shifted and posing a clear threat to the latest development stage.
The changes are observable in both type of models with more clear evidence in
the long-term models, with streaks being the main form of the adverse event.

Historically, development delay (postponed sowing) negatively influenced the
overall production, unlike the length of the initial (vegetative) stage (gen_since-
seed) that had positive affect on production. In recent years, postponed appear-
ance of the grain-filling stage is beneficial for the overall production, a pattern
visible in both type of models.

Vegetative stage is shown to be least affected by variety of conditions (adverse
events), as both type of models stress out five lethal factors that affect the
wheat development. In both cases, it turns being mostly vulnerable in the past
especially under condition of frequent intensive rainfalls. Figure5 emphasizes
that the drought and, in particular, intensive rainfall had negative effect.

Generative stage has been historically stable in regard with negative effects
from adverse conditions (Fig. 5a). Such stability diminish over time as the length
of drought streaks increases, accompanied with extreme temperatures.

Grain-filling stage is shown to be constantly affected by variety of adverse
conditions. However, the type of stress and their impact is changing along the
course of time. Historically, both absence and intensive rainfall had positive
impact. Nowadays, the maturity phase is highly affected by frequent and long
periods of extremely high temperature.

4 Conclusion

The analysis revealed weather patterns that have importantly affected the yields
and the way most effective weather patterns have changed during the studied
period. Results support the earlier findings, for example, the well-known chal-
lenge with early-season droughts, which are also reflected in positive impacts of
rainy seasons. There were also some less-obvious results, like the positive impacts
of intensive rainfalls during the grain-filling stage.

A trend of adverse weather stress, in both short- and long-term models,
shows clear shift throughout the time (Fig. 5). Historically, the adverse conditions
negatively affect the earlier stages of wheat development, while it shifts toward
the later stages over the course of time. Similarly, the negative effect originates
as stress condition related to the precipitation and terminates as stress related to
the elevated temperatures. Heat stress tolerance of cultivars are thus becoming
increasingly important adaptation measure also for Northern production regions.

The selection of LASSO regression model class is justified by the consistent
improvement of performance compared to the simpler reference models. Inter-
pretation of models is easy for domain experts and simulation performance of
the long-term models is rather close to step-ahead prediction for longer period,
indicating that the models have incorporated many important weather-related
factors affecting the production.
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Abstract. Orbiting Mars, the European Space Agency (ESA) operated
spacecraft - Mars Express (MEX), provides extraordinary science data
for the past 15 years. To continue the great contribution, MEX requires
accurate power modeling, mainly to compensate for aging and battery
degradation. The only unknown variable in the power budget is the power
provided to the autonomous thermal subsystem, which in a challenging
environment, keeps all equipment under its operating temperature. In
this paper, we address the task of predicting the thermal power con-
sumption (TPC) of MEX on all 33 thermal power lines, having available
the stream of its telemetry data. Considering the problem definition, we
face the task of multi-target regression, learning from data streams. To
analyze such data streams, we use the incremental Structured Output
Prediction tree (iISOUP-Tree) and the Adaptive Model Rules from High
Speed Data Streams (AMRules) to model the power consumption. The
evaluation aims to investigate the potential of the methods for learning
from data streams for the task of predicting satellite power consumption
and the influence of the time resolution of the measurements of thermal
power consumption on the performance of the methods.

Keywords: Data streams - Multi-target regression - iSOUP-Trees -
AMRules - Satellite - Thermal power consumption

1 Introduction

In June 2003, the Mars Express (MEX) spacecraft was launched from Earth,
and after a six month cruise it arrived at Mars [5]. This mission of the European
Space Agency (ESA) is ongoing up to the present time, and MEX is still in orbit
around the planet Mars.

MEX’s power source is electricity, either generated by its solar arrays, or
alternatively (in the case of an eclipse), stored in its batteries. In addition to
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powering platform units, electricity is used by the internal autonomous thermal
subsystem, and only the remaining power can be allocated for science operations.
Further considering the aging of the probe and the decaying capacity of the
batteries, predicting the power consumption of the thermal subsystem allows for
optimization of the science operations of the satellite.

Prediction of thermal power consumption (TPC) of MEX, is a crucial, but
far from trivial task. The operating temperatures of the instruments and the on-
board equipment vary from —180°C for some, to room temperature for other.
This spectrum of temperatures must be maintained in a challenging environment,
where the side of an object illuminated by the Sun can reach temperatures
more than 400 °C higher than the unilluminated side. Even activating a radio
transmitter results in a 28 °C temperature increase of one side of MEX [14].

Initially, ESA used a manually constructed model for predicting TPC. How-
ever, it diverged from actual data year on year and an engineer’s calibration was
needed. Thus, a need arised for switching to a new approach, which would be
able to automatically learn through experience.

Machine learning (ML) is the science that studies computer algorithms [15]
with such abilities. In a very significant part of the research in machine learning,
the experience is given as data in the form of a table. Each row in the table
represents a data example and each column represents some feature (attribute).

A learning task can be categorized as supervised or unsupervised. The goal
of the algorithms in the latter category is to find general descriptions of the
examples, while the ones in the former category aim to predict the values for
one or more target attributes for some data examples. If the values in the tar-
get attributes are nominal or numerical, the supervised learning task is said to
be classification or regression, respectively. Another perspective for categorizing
supervised learning tasks is based on the number of the target attributes. The
tasks where one or more target attributes are present for the task of classifica-
tion, are named single- and multi-class classification. The analogous terms for
regression are single- and multi-target regression.

As devices that generate huge amounts of data are omnipresent, machine
learning is facing increasing data complexity - not only in the number of target
or descriptive columns, but also in the number of rows and the velocity at which
they become available. In the extreme case, there are an infinite number of rows
that are continuously arriving, whose storing for future knowledge extraction is
obviously impossible. In this case, we are talking about data streams.

Learning from data streams (data stream mining) is a dynamic process. The
implicit assumption made when working with finite amount of data examples (in
the classical machine learning approach or in the batch setting) that all of the
data is available before the learning process starts, is no longer valid for streams.
Furthermore, since the data examples are arriving continuously and with high
velocities, each can be processed at most once and in a limited amount of time.

The TPC prediction in MEX can be viewed as a task of data stream mining of
its telemetry data, to produce real-time multi-target predictions of the electricity
use on each of the 33 power lines of the heaters and coolers in its thermal
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subsystem. This field of multi-target learning from data streams has been given
some attention, and has been researched only recently. Namely, there are two
state-of-the-art methods in this field - the tree-based incremental Structured
Output Prediction tree (iISOUP-Tree) [16], which is based on the Fast Incremental
Model Tree for Multi Target (FIMT-MT) method [11] (the multi-target extension
of Fast Incremental Model Tree with Drift Detection (FIMT-DD) [12]), and the
rule-based Adaptive Model Rules from High Speed Data Streams (AMRules) [2].
In this paper, two research questions are investigated:

1. How do different methods for learning from multi-target data streams perform
on the task of predicting satellite power consumption?

2. How does the time resolution, at which the measurements of thermal power
consumption are considered, influence the performance of the methods?

The rest of the paper is organized as follows. In Sect.2 MEX is discussed
in greater detail, focusing on its telemetry data. Section 3 explains the used
methods for data stream mining, while Sect. 4 discusses how they were employed
for the task of TPC prediction. Section 5 presents the results, and finally Sect. 6
concludes the paper and gives directions for future work.

2 MEX Satellite and Its Power Consumption

2.1 Power Consumption of MEX

The 3D imagery of Mars that MEX has generated during the past 15 years has
provided unprecedented information about the red planet. In order for MEX
to continue providing valuable information, which would support ground explo-
ration missions and other research, as well as to enable the proper function of
MEX without breaking, twisting, deforming or failure of any equipment, careful
power management is needed.

The available power, @qyaiabie, Stored in the batteries or generated by the
solar arrays, that is not consumed by the platform, ¢4t form, or by the thermal
subsystem, ¢;permai, can be used in science operations @gcience-

¢science = ¢available - ¢platfo’rm - ¢thermal (1)

Two of the three terms in the right hand side of Eq. 1 are well known. The
200 thermistors in the spacecraft continually measure the temperatures around
it and therefore enable the autonomous turning on or off of the electrical heaters,
making the @permar an unknown variable, difficult to predict.

In the initial, empirical, model to predict this variable, ESA has identified and
incorporated key influencing factors, such as the distance of the spacecraft to the
Sun and to Mars, the orbit phase and instrument and spacecraft operations [14].
However, the aging of the spacecraft has confronted this approach with many
challenges. This motivated ESA to organize the Mars Express Power Challenge'
and reach out to the machine learning community by releasing MEX data for
four Martian years.

! https://kelvins.esa.int /mars-express-power-challenge/ [Last accessed: 12 June 2019)].
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2.2 MEX Power Challenge Data

The data released for the purpose of the MEX Power Challenge consists of (i)
raw telemetry (context) data; and (ii) measurements of the electric current on
the 33 thermal power lines (observation data). The time period covered in the
data spans 4 Martian (or cca. 7.5 Earth) years, starting from the 22nd of August
2008 to the 1st of March 2016.

The context data consists of five components:

— SAA (Solar Aspect Data): timestamped data expressing the angles of the
Sun-MEX line with the axes of MEX’s coordinate system and with the panels’
normal line

— DMOP (Detailed Mission Operations Plans): data about the execution of
different subsystems’ commands at a specific time, such as ON/OFF com-
mands of radio communications or of the science instruments

— FTL (Flight dynamics TimeLine): timestamped data regarding the point-
ing and action commands that impact MEX’s position, such as pointing the
spacecraft towards Earth or Mars

— EVTF (Miscellaneous events): data about more events and their timestamp,
such as the time intervals during which MEX was in Mars’s shadow

— LTDATA (Long Term Data): timestamped long term data including the
Sun-Mars distance and the value of the solar constant on Mars

The observational data represents the measurements of the electrical cur-
rent/power on all 33 thermal power lines, recorded once or twice per minute.
Predicting the average hourly power/current was the competition’s goal.

2.3 Data Pre-processing and Feature Engineering

Considering the different time resolutions of the different components of the
context data and the unstructured format of some data entries, the raw data
cannot be used directly without pre-processing. The data pre-processing and
feature engineering taken in this paper follows the approach taken in the winning
solution of the MEX Power Challenge [4].

During this step, the time resolution is matched for all features. Namely, for
a resolution At, the data is divided into intervals [t;, ¢;41) with length A¢. The
competition required the prediction of the average TPC over one-hour intervals.
Since the context data allows for finer time resolutions, in this paper smaller
values of At, i.e., At € {5,10,15,30,60} minutes, are considered.

A common issue in data science tasks is the handling missing data, which
occurs in this task as well. Both the context and the observation data have
missing values. In our work, examples with missing observation data for time
periods longer than 10 min are removed. If the missing values for the context data
span over a period shorter than 10 min, the values are linearly interpolated, and
left intact otherwise.

The following subsections describe the feature categories constructed and
later used by the data stream mining methods.
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Fig. 1. Illustration of MEX and its coordinate system [4].

Energy Influx Features. As mentioned above, the solar energy irradiating a
side of the spacecraft may increase its temperature by 400 °C. Furthermore, the
energy collected by the solar panels is directly proportional with the generated
energy. Hence, one of the feature classes represents the energy incident to the
solar panels and to each of the six sides of MEX’s cuboid in the interval [t;, ¢;11).
Formally, the energy F% of the surface S in time interval [t;,¢;11) is defined
as
) tit1
Eg = / A x mazx{cos(a(t)),0} x c(t) x U(t)dt (2)
t;
where A, cos(a(t)) and c(t) denote the area of the surface S, angle between
the Sun-MEX line and the normal n of the surface, and the solar coefficient
at time ¢, respectively. A visual illustration of these notations is presented in
Fig. 1. Since the data stream mining methods used in the paper are invariant to
monotonic transformations of the features, A is taken to be constant (1). U(t)
is the approximation of the Sun visible from the spacecraft at time ¢, referred to
as the umbra coefficient, represented as a simple piecewise function:

0  if MEX is in umbra
U(t) =405 if MEX is in penumbra (3)

1 otherwise

Although Eq.2 defines the energy as an integral, the integral is not exactly
computed. Instead, it is approximated by using the trapezoid-rule.

Historical Energy Influx Features. Since temperature is not a fast-changing
variable, if a surface received a lot of solar energy and hence heated during the
previous time interval, this will affect the current energy state. Therefore, for
each surface S, a historical feature is defined as:

H
i i—(j—1
HS — ZES (J ) (4)
j=1
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Table 1. Values of H and the corresponding time spans for different time resolutions

At | Values of H Time spans

5 {1, 3,613, 25} {5, 15, 30, 65, 125}
10 | {1, 2, 3, 6, 13} | {10, 20, 30, 60, 130}
15 {1, 2, 3, 4,9} | {15, 30, 45, 60, 135}
30 {1, 2,3,4,5 | {30, 60,90, 120, 150}
60 {1, 2, 3} {60, 120, 180}

where H is the total count of historical time intervals considered.

The variable H is dependent on the time resolution. Intuitively, for H = 25
for example, the energy from 25h ago, in the case of At = 60 min, has little to
no impact in the current time, while the energy from about 2h, when At = 5,
has a large one. Given the time resolution, the values for H used are given in
Table 1.

DMOP Features. The raw DMOP data consists of a log of commands, whose
names have been obfuscated, issued to MEX’s subsystems. These commands
can concern flight dynamics events or events that contain information about the
subsystem and the executed command.

Assuming a delay between triggering a command and its thermal effect, the
features constructed represent “time since last activation” of a specific subsystem
command. The value of such a feature at time ¢ corresponding to event k is:

) 0 if k is activated at t;
fe= { (5)

B min{fi~' + At,0} otherwise

where 6 (set to 1 day) regulates the diminishing importance of f} with time.

Such features are constructed for each flying dynamic event, each subsystem
- command pair, and each subsystem when multiple commands are issued to it.
Also binary indicator features for each subsystem and flying dynamic event are
included, where f,é = 1 only if the subsystem was triggered within time step t;,
and fi = 0 otherwise.

FTL Features. From the raw FTL data, containing logs of pointing events and
their times, where simultaneously occurring events are possible, new features
are constructed which display the proportion of the time in the interval [t;,t;41)
during which the event is in progress. The range of possible values these features
can have is [0, 1] - 0 if the event never happened, and 1 if it was active during
the whole interval. Since these events typically last longer that the time unit
considered, most values are the extremes of the domain range - either 0 or 1.
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2.4 Final Dataset Overview

An overview of the datasets obtained for the different time resolutions is given
in Table 2. Note that coarser time resolutions yield smaller datasets.

Table 2. Final datasets’ properties

At [min] | Number of examples | Number of features | Memory size [MB]
5 784773 462 2077
10 392474 462 1041
15 261697 462 699
30 130900 462 352
60 65493 448 167

3 Learning for Multi-target Prediction on Data Streams

3.1 Overview of Classical Batch Setting and Data Streams

The explosive growth of data generated and collected every day has brought
data streams into the spotlight. Data streams are an algorithmic abstraction for
continuously arriving sequences of examples, possibly infinitely many examples,
at high velocities. The task of learning from such sequences poses challenges not
present in the batch setting, where the entire dataset is available at the start of
the learning process. For example, in data stream mining, real- or near-real time
response is of crucial importance.

In addition to the fact that the dataset is not complete before the learning
process begins, the theoretical infinite number of data examples makes it impos-
sible for data stream mining methods to store them as they arrive, since there
exists no infinitely large memory storage. Instead, each example is processed
once, at the time of arrival, and later discarded. Besides memory efficiency, the
high velocity of the stream imposes a time efficiency requirement even for the
one-time processing of the example, in order to be ready to process the next one.

The underlying distribution of the data examples in the batch setting is
assumed to be constant, and thus any learned generalization is applicable for
future examples. This statement, however, does not hold in the data stream
case. The temporal dimension there implies the possibility of distribution change,
which is known as concept drift.

3.2 Multi-target Prediction in the Batch and Data Stream Settings

There are two general types of approaches to multi-target prediction - local and
global. The former category builds models for each single primitive target, and
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later combines their prediction into a multi-target one. The global approach
builds only one global model, for all targets.

Multi-target prediction has been researched extensively for the batch setting.
The approaches taken for multi-target regression and classification include tree-
based [6,8,20], rule-based [1,7], kernel-based [13,21] and instance-based [17,22]
methods. In the current literature, little attention is given to multi-target predic-
tion for data streams, as compared to the batch case. There are some methods for
classification [18,19], while for regression there are rule-based [2] and tree-based
[11,16] methods (the former is mainly based on the latter). Since our problem,
i.e., predicting MEX’s TPC, is a multi-target regression task, only the methods
that fall under this category are discussed in greater detail.

Massive Online Analysis (MOA). The Java-based Massive Online Anal-
ysis (MOA) open-source framework includes a collection of data stream min-
ing methods for classification, regression, multi-label classification, multi-target
regression, clustering and concept drift detection [3]. The authors of iSOUP-Tree
and AMRules have published the implementations of their methods in MOA.
MOA is similar and related to the WEKA project. However, MOA is designed
to scale to more demanding problems. This work uses MOA and the original
implementations of iSOUP-Tree and AMRules that MOA contains.

iSOUP-Tree. The iSOUP-Tree method is an instance-incremental method,
meaning it takes exactly one instance to update the current generalization model.
Initially, when no instance has been processed, the iSOUP-Tree is just an empty
leaf node.

Once enough examples have been processed (but not stored directly) in a
leaf node, a check is made to examine if there is a significant statistical support
to split it. All possible binary splits, A < ¢ or A = n for some numerical ¢ or
nominal value n of the attribute A, are calculated and evaluated using multi-
target intra-cluster variance reduction (ICVR) as a heuristic function. Formally,
the ICVR evaluates a split candidate S as

ICVR(S) = f: L (varis) - Eilvai(sy) - Btlyais,)
M = Vari(S) |S] |S|

(6)
where M is the total number of target variables (indexed by j), St and S, are
the post-split sets of accumulated examples for which the evaluated split test is
true or false respectively, S is their union and Var/ denotes the variance of the
jth target attribute.

ICVR represents the homogeneity gain on the target values if split S is cho-
sen. Hence, the candidates with higher ICVR values are more desirable. It is
important to note that the data examples of S, S+ or S| are not stored in
memory. Instead, only the statistics necessary for computing the variances are
recorded.
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According to the heuristic in Eq. (6), the best candidate split h is selected,
as well as the second-best ho. Next, the following sequence is constructed

ha(k) ho(k+1) hao(k+2)
" hi(k) hi(k+1) hi(k+2)

where k denotes the number of accumulated examples considered.

Let X be a random variable denoting the ratio ng:;, and xj be one sample

(7)

of it. Then the observed average can be computed as & = %(zl +aa+-Fa)9)),
which is a sample from the random variable X = +(X; + X2 + -+ + X|g/). The
Hoeffding bound [10] is then applied to make an (e, §)-approximation, using the
standard notation of E[X] to denote the expected value of the random variable
X. The Hoeffding bound is of the following form:

P(IX — E[X]| > ¢) < 2 2A51€" = 5 (8)

The value ¢ is a parameter to the iISOUP-Tree method named splitting confi-
dence. The value € can be formulated as an expression of § and |S].

Plugging Z as observation of X in Eq.8, one gets E[X] € [T — ¢, 7 + €] with
probability 1 — 6, i.e., if Z + € < 1 then E[X] < 1 implying h—f < 1 (with
probability 1 — J), or in other words, there exists a significant support to take
the currently best candidate and split the leaf node. In the case when T +¢€¢ > 1,
the leaf waits for more examples.

This condition is checked only when enough examples have accumulated in
the leaf. The check is made whenever the leaf has accumulated a number of
examples which is a multiple of the parameter G P, which stands for grace period.

In order to overcome a drawback of the Hoeffding bound, which occurs when
the values of the two best heuristics are close to each other, iSOUP-Tree intro-
duces a new parameter - 7. This so-called tie breaking threshold T determines the
minimal value € can have before the leaf is split. The underlying data structure
used to compute the statistics is the extended binary search tree (E-BST), also
used by [12].

Each leaf makes a prediction by using an adaptive multi-target model, con-
sisting of a multi-target perceptron and a multi-target mean predictor. The per-
ceptron updates its weights by a backpropagation rule with a given learning rate.
When a leaf is constructed, its learning rate is set to the parameter 79, named
initial learning rate. After each incoming example, the learning rate 7 is updated
by using the rule .

0
Al (9)
where n is the number of recorded values and n is a parameter called learning
rate decay factor. Finally, a prediction is made by using the perceptron or the
mean regressor, depending on which one has the lower fading mean absolute
error (IMAE) for that target:

i1 095" g — y]]

MAE (e,,) = ,
! (en) ST 0.95m

(10)
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where e, y}j and yf are the n** observed example, predicted and real values of
the j*" target for the i* example.

AMRules. This algorithm is a representative of rule-based approaches to multi-
target prediction on data streams, which build rule sets (RS). Initially, AMRules
starts with an empty RS and a default rule {} — L, where £, initialized to
NULL, is a modified version of the data structure E-BST used in iSOUP-Tree
for storing statistics, which limits the maximum number of splitting points to a
predefined value. This modification reduces the memory consumption as well as
speeds up the split selection procedure [9].

When a new data example arrives, AMRules checks if some rule in the RS
covers it, i.e., if all of the literals on the left hand side of the rule for that
example are true. Target values are utilized to update the statistics of the rule.
The Page-Hinkley (PG) change detection test is used to discover a concept drift.
It considers a cumulative variable mr:

mp = Z(mt — I — Q) (11)

where x; is a previously observed value, Tp = % 23:1 x;, and « corresponds
to the magnitude of allowed changes. Also, the minimum value of this variable
is computed My = min;—q, _7(m;). When the difference between these values
PHp = mp — My is larger than the value of the parameter A\, concept drift is
signaled. If change is detected, the rule is removed from the RS.

If a rule is not removed, it is considered for expansion. Here, again a grace
period parameter is used. The expansion procedure is almost identical to the
leaf node splitting of iSOUP-Tree discussed, using the Hoeffding bound, with
the same heuristic function along with 7 threshold and § confidence parameters.
The rule expansion is a process where the hypothetical candidate split is added
to the literals on the rule’s left hand side. As a special case, expanding the default
rule means adding a new one in RS, with the extended literals.

The prediction and model building strategies depend on whether the rules
are ordered or unordered. In the former case, only the first rule that covers the
example is removed, expanded or used in prediction. The latter one enables all
the rules that cover an example to have same treatment, independent of their
order, and the final prediction is made as the aggregation (mean) of individual
predictions.

The rules learned by the AMRules method generate predictions in a similar
manner as the leaves in iISOUP-Tree. They use an adaptive strategy, choosing
between a perceptron’s and a mean regressor’s prediction. AMRules and iSOUP-
Tree differ is the learning rate, which in AMRules is a constant.
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4 Experimental Design

4.1 Methods’ Parameter Values

Both iSOUP-Tree and AMRules have been implemented and published into the
open source framework MOA. Their authors recommend values for their param-
eters, which are implemented as default parameter values in MOA. Those values
are again reused in this paper, e.g., we use the ordered version of AMRules.

Because of the discussed similarities between the two approaches, many of
their parameters overlap. Table 3 provides an overview of the parameters, includ-
ing their values. It specifies which parameters are unique to each methods and
which are shared.

4.2 Evaluation Procedure and Evaluation Measures

In batch prediction, two phases, clearly separated in time, are present - first the
model is trained, and only when this phase finishes, the evaluation can start. On
the other hand, in data stream setting, since examples never stop arriving, the
training and evaluation must be interleaved. Additionally, the streams’ evalua-
tion posses a new challenge - to assess how the models perform over time. Two
main approaches are present:

— Holdout: Each incoming example is firstly used for testing. Once the model
makes the prediction for its target, it is stored in a buffer, and only after it
is filled, all stored examples are used for training.

— Prequential: This approach also uses the newly received example for testing,
but once that is done, the model proceeds to training, without waiting for
other examples. In other words, this approach is a special case of the holdout
approach, where the buffer size is 1.

Since in holdout evaluation, the model is not updating for each example,
towards the end of the buffer, it is getting “stale”. Thus, in this work, the
prequential approach is taken.

Table 3. The values of the parameters of iSOUP-Tree and AMRules

Designation | Description Value | Method
GP Grace period 200 | Both
Split confidence 10~" | Both
T Tie breaking threshold 0.05 | Both
o Initial learning rate 0.2 iSOUP-Tree
na Learning rate decay 0.001 |iSOUP-Tree
n Learning rate 0.01 | AMRules
« Magnitude of allowed changes | 0.05 | AMRules
A Concept drift threshold 50 AMRules




Predicting Thermal Power Consumption of the MEX Satellite 197

A prediction is generated for each example as it arrives. In order to evaluate
model performance, as in batch setting, evaluation measures are needed. In the
single target scenario, there exist wide-spread evaluation metrics adopted from
statistics. When multiple target attributes are present, one possibility is to treat
them individually, and produce as many evaluation scores as there are targets.
However, this can be cumbersome, especially when there are more than just a
few targets, as in the case of MEX’s TPC where we have 33 targets.

A common approach in multi-target evaluation is to average the individual
singe-target scores. This is also the one taken in this paper. In particular, the
average relative mean absolute error (RM AE) [16] is reported over a window
with length n (here, n = 1000), and calculated as follows:

- 1% "l =i
RMAE = — I I (12)
M j=1 > i vl — 97 (3)]

where yf and g}i are the real and predicted values of the target j for the data
example i by the evaluated model, respectively, while the 77 (i) is the prediction
by the mean regressor.

If the model evaluated is the mean regressor for each target value, then (12)
would yield a score of 1, since the nominator and denominator would be the same
expression. For any other model, its performance is compared with the mean
regressor as a baseline, such that if the RM AFE score is below 1, the evaluated
model outperforms the baseline mean regressor. Lower values for RM AFE scores
are desired, where the perfect model has a score of 0.

5 Results and Discussion

In this Section, the empirical evaluation results are presented and discussed.
They are given in the form of graphs in order to better capture and visualize
the performance of the two methods over time. The results are presented in two
parts - one for each of the two posed research questions.

5.1 Method Comparison on the Task of TPC on MEX

Figure 2 contains five graphs, one for each time resolution, comparing the perfor-
mance of iSOUP-Tree and AMRules over time. At all time resolutions, concept
drift as an important aspect of data stream mining is visible. Focusing on the last
time period, AMRules score lower RM AFE than iSOUP-Tree. AMRules detects
and handles concept drift and is able to adapt to changes, even when changes
occur after a long period without changes. On the other hand, iSOUP-Tree does
not address change detection and adaptation explicitly: As seen in Fig. 2, this
makes it vulnerable to concept drift, which is more likely to occur when learning
over a long period of time.

If the last time period is left out of the analysis, iISOUP-Tree clearly outper-
forms AMRules. This is the case for all time resolutions, except for the 60 min
one. For the 60 min resolution, the RM AFE's of the two methods are very close.
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Overall, AMRules has more stable error throughout time. iSOUP-Tree on the
other hand, models MEX’s TPC significantly better, but suffers from sensitivity
to changes of the underlying distribution. Finally, it is important to note that
both algorithms outperform the mean regressor, as both have RMAFE < 1.

5.2 The Influence of Time Resolution on Predictive Performance

To address the second research question, Fig.3 compares the performance on
the tasks of predicting the TPC of the MEX at different time resolutions, for
each of the two methods. The lowest overall error is achieved at medium time
resolutions, i.e., at 10 and 15 min, for both AMRules and iSOUP-Tree. For the
finest resolution of 5 min, the performance is in the middle, while predicting at
the coarsest resolution of 60 min results in the highest error through the majority
of the time period.
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Fig. 2. A comparison of the performance of iISOUP-Tree and AMRules on the task of
predicting the TPC of the MEX at different time resolutions.

At the 30 min resolution, on the other hand, there is a difference in behaviour
between the two methods. In the last time period covered by the data, iSOUP-
Tree performs the best. In contrast, for this resolution and time period, AMRules
performs worst. Learning at coarser time resolutions yields less accurate models,
since some of the fine-grained detail of the data are lost at these resolution. At
very high resolutions, there is too much detail and noise can be confused for real
signal more easily. Figure 3 shows that a medium resolution (10 to 15 min) is the
most appropriate for the task at hand.
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Time resolutions comparison for AMRules

Time resolutions comparison for iISOUP-Tree
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Fig. 3. The performance of each of AMRules and iSOUP-Trees at different time reso-
lutions.

6 Summary, Conclusions and Further Work

In this paper, we first presented an overview of the MEX (Mars Express) space-
craft and its TPC (thermal power consumption). After a thorough discussion of
the MEX telemetry data used to predict its TPC, we described the data pre-
processing and feature extraction process. We continued with an introduction
to data stream mining and multi-target prediction, focusing on their combina-
tion (multi-target regression on data streams) and two methods (AMRules and
iSOUP-Tree) that address this task.

The central part of the paper addresses the details of using the two methods
for multi-target regression on data streams to solve the problem of predicting
TPC for the MEX. After clarifying the experimental design, the results are pre-
sented and discussed in the context of our research questions. More specifically,
we compare the two methods as well as the performances of each method at
different time resolutions.

Regarding the first question of how the two methods compare to each other,
we note that iISOUP-Tree outperforms AMRules for most of the time. However,
iSOUP-Tree does have a weakness, namely handling concept drift. At finer time
resolutions, it performs slightly worse than AMRules at the end of the time
period covered by the data released by ESA.

Regarding the second question, our results imply that medium time reso-
lutions might be the best to consider when predicting the TPC of the MEX.
Namely, at coarser time resolutions, some of the fine-grained detail of the data
are lost. At very high resolutions, too much detail can contribute to confusing
noise and signal.

Our current research agenda includes an extension of the work done in the
paper by i