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Preface

The Discovery Science conference presents a unique combination of latest advances in
the development and analysis of methods for discovering scientific knowledge, coming
from machine learning, data mining, and intelligent data analysis, with their application
in various scientific domains.

The 22nd International Conference on Discovery Science (DS 2019) was held in
Split, Croatia, during October 28–30, 2019. This was the first time the conference was
organized as a stand-alone event. For its first 20 editions, DS was co-located with the
International Conference on Algorithmic Learning Theory (ALT). In 2018 it was
co-located with the 24th International Symposium on Methodologies for Intelligent
Systems (ISMIS 2018).

DS 2019 received 63 international submissions. Each submission was reviewed by
at least three Program Committee (PC) members. The PC decided to accept 21 regular
papers and 19 short papers. This resulted in an acceptance rate of 33% for regular
papers.

The conference included three keynote talks. Marinka Žitnik (Stanford University)
contributed a talk titled “Representation Learning as a New Approach to Biomedical
Research,” Guido Caldarelli (IMT Lucca and ECLT Venice) gave a presentation titled
“The Structure of Financial Networks,” and Dino Pedreschi (University of Pisa),
contributed a talk titled “Data and Algorithmic Bias: Explaining the Network Effect in
Opinion Dynamics and the Training Data Bias in Machine Learning.” Abstracts of the
invited talks with short biographies of the invited speakers are included in these
proceedings.

Besides the presentation of regular and short papers in the main program, the
conference offered two new sessions. The “PhD Symposium” gave an opportunity to
PhD students at an early stage of their studies to participate in the conference by
presenting the topics of and early results from their research and discuss their work and
experiences with peers, senior researchers and leading experts working on similar
problems. The session titled “Late Breaking Contributions” featured poster and
spotlight presentations of very recent research results on topics related to Discovery
Science.

We are grateful to Springer for their long-term support, which got even stronger this
year. Springer publishes the conference proceedings, as well as a regular special issue
of the Machine Learning journal on Discovery Science. The latter offers authors a
chance of publishing in this prestigious journal significantly extended and reworked
versions of their DS conference papers, while being open to all submissions on DS
conference topics.

This year, Springer (LNCS and Machine Learning journal), supported the best
student paper awards. For DS 2019, the awardees are Anton Björklund, Andreas
Henelius, Emilia Oikarinen, Kimmo Kallonen and Kai Puolamäki (for the paper
“Sparse Robust Regression for Explaining Classifiers”) and Yannik Klein, Michael



Rapp and Eneldo Loza Mencía (for the paper “Efficient Discovery of Expressive
Multi-label Rules Using Relaxed Pruning.”) We would like to thank the Best Paper
Award committee composed of Dragan Gamberger and Toon Calders for their precious
and timely evaluations.

On the program side, we would like to thank all the authors of submitted papers, the
PC members and the additional reviewers for their efforts in evaluating the submitted
papers, as well as the keynote speakers. On the organization side, we would like to
thank all the members of the Organizing Committee: Tomislav Lipić, Ana Vidoš,
Matija Piškorec and Ratko Mileta, for the smooth preparation and organization of all
conference associated activities. We are also grateful to the people behind EasyChair
for developing the conference organization system that proved to be an essential tool in
the paper submission and evaluation process, as well as in the preparation of the
Springer proceedings.

The DS 2019 conference was organized under the auspices of the Rudjer Bošković
Institute in Zagreb. The event was also supported by the Project of the Croatian Center
for Excellence in Data Science and Advanced Cooperative Systems. Significant
support, especially through human resources, was also provided by the Jožef Stefan
Institute from Ljubljana. Finally, we are indebted to all conference participants, who
contributed to making this exciting event a worthwhile endeavor for all involved.

October 2019 Petra Kralj Novak
Tomislav Šmuc
Sašo Džeroski

vi Preface
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The Structure of Financial Networks

Guido Caldarelli

IMT School for Advanced Studies,
Lucca and European Centre for Living Technology, Venice

Abstract. Financial inter-linkages play an important role in the emergence of
financial instabilities and the formulation of systemic risk can greatly benefit
from a network approach. In this talk, we focus on the role of linkages along the
two dimensions of contagion and liquidity, and we discuss some insights that
have recently emerged from network models. With respect to the issue of the
determination of the optimal architecture of the financial system, models suggest
that regulators have to look at the interplay of network topology, capital
requirements, and market liquidity. With respect to the issue of the determina-
tion of systemically important financial institutions, the findings indicate that
both from the point of view of contagion and from the point of view of liquidity
provision, there is more to systemic importance than just size. In particular for
contagion, the position of institutions in the network matters and their impact
can be computed through stress tests even when there are no defaults in the
system.
We present an overview of the use of networks in Finance and Economics.

We show how this approach enables us to address important questions as, for
example, the stability of financial systems and the systemic risk associated with
the functioning of the interbank market. For example with DebtRank, a novel
measure of systemic impact inspired by feedback-centrality we are able to
measure the nodes that become systemically important at the peak of the crisis.
Moreover, a systemic default could have been triggered even by small dispersed
shocks. The results suggest that the debate on too-big-to-fail institutions should
include the even more serious issue of too-central-to-fail. All these results are
new in the field and allow for a better understanding and modelling of different
Financial systems.

Keywords: Financial networks � Systemic risk � Interbank market

Short Biography of the Lecturer: Guido Caldarelli is Full Professor in Theoretical
Physics at IMT School for Advanced Studies Lucca, and is Research associate at the
European Centre for Living Technology, Venice. His main scientific activity is the
study of networks, mostly analysis and modelling of financial networks. Author of
more than 200 publication on the subject and three books, he is currently the president
of the Complex Systems Society. He has been coordinator of the FET IP Project
MULTIPLEX: Foundational Research on Multilevel Complex Networks and Systems
(2012–2016), the FET OPEN Project FoC: Forecasting Financial Crises (2010–2014),
and the FET OPEN Project COSIN: Coevolution and Self Organization in Complex



Networks (2002–2005). Guido Caldarelli received his Ph.D. from SISSA, after which
he was a postdoc in the Department of Physics and School of Biology, University of
Manchester. He then worked at the Theory of Condensed Matter Group, University of
Cambridge. He returned to Italy as a lecturer at National Institute for Condensed Matter
(INFM) and later as Primo Ricercatore in the Institute of Complex Systems of the
National Research Council of Italy. In this period, he was also the coordinator of the
Networks subproject, part of the Complexity Project, for the Fermi Centre. He also
spent some terms at University of Fribourg (Switzerland) and in 2006 he has been
visiting professor at École Normale Supérieure in Paris. More information and a
complete CV are available at: http://www.guidocaldarelli.com.

xiv G. Caldarelli

http://www.guidocaldarelli.com


Data and Algorithmic Bias: Explaining
the Network Effect in Opinion Dynamics
and the Training Data Bias in Machine

Learning

Dino Pedreschi

Università di Pisa, Istituto di Scienza e Tecnologie dell’Informazione,
Consiglio Nazionale delle Ricerche
http://kdd.isti.cnr.it

Abstract. Data science and network science are creating novel means to study
the complexity of our societies and to measure, understand and predict social
phenomena. My talk gives an overview of recent research at the Knowledge
Discovery (KDD) Lab in Pisa within the SoBigData.eu research infrastructure,
targeted at explaining the effects of data and algorithmic bias in different
domains, using both data-driven and model-driven arguments. First, I introduce
a model showing how algorithmic bias instilled in an opinion diffusion process
artificially yields increased polarisation, fragmentation and instability in a
population. Second, I focus on the urgent open challenge of how to construct
meaningful explanations of opaque AI/ML black-box decision systems, intro-
ducing the local-to-global framework for the explanation of ML classifiers as a
way towards explainable AI. The two cases show how the combination of
data-driven and model-driven interdisciplinary research has a huge potential to
shed new light on complex phenomena like discrimination and polarisation, as
well as to explain how decision making black-boxes, both human and artificial,
actually work. I conclude with an account of the open data science paradigm
pursued in SoBigData.eu Research Infrastructure and its importance for inter-
disciplinary data driven science that impacts societal challenges.

Keywords: Explainable AI � Data bias � Algorithmic bias

Short Biography of the Lecturer: Dino Pedreschi is a professor of computer science
at the University of Pisa, and a pioneering scientist in data science. He co-leads the
Pisa KDD Lab – Knowledge Discovery and Data Mining Laboratory http://kdd.isti.cnr.
it, a joint research initiative of the University of Pisa and the Information Science and
Technology Institute of the Italian National Research Council. His research focus is on
big data analytics and mining and their impact on society. He is a founder of the
Business Informatics MSc program at University of Pisa, a course targeted at the
education of interdisciplinary data scientists, and of SoBigData.eu, the European
H2020 Research Infrastructure “Big Data Analytics and Social Mining Ecosystem”
www.sobigdata.eu. Dino has been a visiting scientist at Barabasi Lab (Center for

http://kdd.isti.cnr.it
http://kdd.isti.cnr.it
http://www.sobigdata.eu


Complex Network Research) of Northeastern University, Boston, and earlier at the
University of Texas at Austin, at CWI Amsterdam and at UCLA. In 2009, Dino
received a Google Research Award for his research on privacy-preserving data mining.
Dino is a member of the expert group in AI of the Italian Ministry of research and the
director of the Data Science PhD program at Scuola Normale Superiore in Pisa. Dino is
a co-PI of the 2019 ERC grant XAI – Science and technology for the explanation of AI
decision making (PI: Fosca Giannotti).

xvi D. Pedreschi



Representation Learning as a New Approach
to Biomedical Research

Marinka Žitnik

Computer Science Department, School of Engineering, Stanford University

Abstract. Large datasets are being generated that can transform science and
medicine. New machine learning methods are necessary to unlock these data
and open doors for scientific discoveries. In this talk, I will argue that machine
learning models should not be trained in the context of one particular dataset.
Instead, we should be developing methods that combine data in their broadest
sense into knowledge networks, enhance these networks to reduce biases and
uncertainty, and then learn and reason over the networks. My talk will focus on
two key aspects of this goal: representation learning and network science for
knowledge networks. I will show how realizing this goal can set sights on new
frontiers beyond classic applications of neural networks on biomedical image
and sequence data. I will start by presenting a framework that learns deep
models by embedding knowledge networks into compact embedding spaces
whose geometry is optimized to reflect network topology, the essence of net-
works. I will then describe two applications of the framework to drug discovery
and medicine. First, the framework allowed us to, for the first time, predict the
safety of drug combinations at scale. We embedded a knowledge network of
molecular, drug, and patient data at the scale of billions of interactions for all
medications in the U.S. Using the embeddings, the approach can predict
unwanted side effects for any combination of drugs that patients take, and we
can validate predictions in the clinic using real patient data. Second, I will
discuss how the framework enabled us to predict what diseases a new drug
could treat. I will show how the new approach can make correct predictions for
many recently repurposed drugs and can operate even on the hardest, yet critical,
diseases for which no good treatments exist. I will conclude with future direc-
tions for learning over interaction data and translation of machine learning
methods into solutions for biomedical problems.

Keywords: Biomedicine � Representation learning � Network science �
Knowledge graphs

Short Biography of the Lecturer: Marinka Žitnik is a postdoctoral scholar in
Computer Science at Stanford University. She will join Harvard University as a
tenure-track assistant professor in December 2019. Her research investigates machine
learning for sciences. Her methods have had a tangible impact in biology, genomics,
and drug discovery, and are used by major biomedical institutions, including Baylor
College of Medicine, Karolinska Institute, Stanford Medical School, and Massachusetts
General Hospital. She received her Ph.D. in Computer Science from University of



Ljubljana while also researching at Imperial College London, University of Toronto,
Baylor College of Medicine, and Stanford University. Her work received several best
paper, poster, and research awards from the International Society for Computational
Biology. She was named a Rising Star in EECS by MIT and also a Next Generation in
Biomedicine by The Broad Institute of Harvard and MIT, being the only young sci-
entist who received such recognition in both EECS and Biomedicine. She is also a
member of the Chan Zuckerberg Biohub at Stanford.

xviii M. Žitnik
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Abstract. Addressing the class imbalance problem is critical for sev-
eral real world applications. The application of pre-processing methods
is a popular way of dealing with this problem. These solutions increase
the rare class examples and/or decrease the normal class cases. However,
these procedures typically only take into account the characteristics of
each individual class. This segmented view of the data can have a nega-
tive impact. We propose a new method that uses an integrated view of
the data classes to generate new examples and remove cases. ClUstered
REsampling (CURE) is a method based on a holistic view of the data
that uses hierarchical clustering and a new distance measure to guide
the sampling procedure. Clusters generated in this way take into account
the structure of the data. This enables CURE to avoid common mistakes
made by other resampling methods. In particular, CURE prevents the
generation of synthetic examples in dangerous regions and undersamples
safe, non-borderline, regions of the majority class. We show the effec-
tiveness of CURE in an extensive set of experiments with benchmark
domains. We also show that CURE is a user-friendly method that does
not require extensive fine-tuning of hyper-parameters.

Keywords: Imbalanced domains · Resampling · Clustering

1 Introduction

Class imbalance is a problem encountered in a wide variety of important clas-
sification tasks including oil spill, fraud detection, action recognition, text clas-
sification, radiation monitoring and wildfire prediction [4,17,21,22,24,27]. Prior
research has shown that class imbalance has a negative impact on the perfor-
mance of the learned binary classifiers. This problem becomes even more difficult
when the underlying distribution is complex and when the minority class is rare
[14,26]. Given the frequency of imbalanced learning problems and the possibility
for negative impacts on learning, the study of class imbalance and methods for
handling it have become important research topics. Indeed, it has been recog-
nised as one of the ten challenging problems in data mining research [29].

The solutions proposed by the research community to solve the class imbal-
ance problem include special-purpose learning methods, pre-processing and post-
processing methods. Pre-processing (or resampling) methods transform the orig-
inal training set making it more suitable for learning the important class(es).
c© Springer Nature Switzerland AG 2019
P. Kralj Novak et al. (Eds.): DS 2019, LNAI 11828, pp. 3–17, 2019.
https://doi.org/10.1007/978-3-030-33778-0_1
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This is accomplished by following a certain strategy for up- or down-sampling
cases. Resampling methods are popular due to their versatility, effectiveness and
ease of application. Moreover, they enable the use of any standard learning tool.

In addition to suffering from the class imbalance problem, many real-world
domains are also complex by nature. They potentially include noisy instances and
sub-concepts that exacerbate the imbalance problem. This complexity dictates
that it is important to consider the inherent structure of the data. Failure to
do so may negatively impact the effectiveness of the resampling strategy. The
problem relates to: (i) the removal of majority class instances from sparse regions
of the domain; (ii) the generation of synthetic minority cases between minority
class sub-concepts (clusters); (iii) the reinforcement of noisy instances; and/or
(iv) the obfuscation of overlapping regions.

To address these issues, we propose the ClUstered REsampling (CURE)
method. CURE uses hierarchical clustering with a new class-sensitive distance
measure prior to the resampling process. This allows the extraction of essen-
tial structural information that is used to guide the resampling. The advantages
of this approach are: (i) meaningful clusters of the minority class are empha-
sised: (ii) the generation of minority class cases is avoided in error-prone regions
between sub-concepts; (iii) only “safe” majority class samples are undersam-
pled (i.e., borderline cases are not removed.) In an extensive set of experiments,
we show that the CURE algorithm is effective for tackling the class imbalance
problem. We also show that CURE does not requires extensive fine-tuning of
hyper-parameters to achieve good performance.

This paper is organised as follows. Section 2 provides an overview of the
related work. In Sect. 3 the CURE algorithm is described. The results of an
extensive experimental evaluation are presented and discussed in Sect. 4. Finally,
Sect. 5 presents the main conclusions of the paper.

2 Related Work

Numerous resampling methods have been proposed and applied to address imbal-
anced classification problems [5]. Random oversampling and random undersam-
pling (e.g. [16]) are the classic approaches to handling imbalance. They are well-
known to suffer from the risk of overfitting the minority samples and discarding
informative cases, respectively. The SMOTE algorithm [8] incorporates oversam-
pling and undersampling, and was proposed to overcome the issues of over- and
under-sampling. It attempts to do so by interpolating new synthetic instances
between nearest neighbours rather than replicating instances of the minority
class. Two key issues with SMOTE are: (a) it does not account for the structure
of the training data when performing the under and oversampling, and (b) it
uniformly applies oversampling and undersampling. On complex data domains,
this generation process can reinforce noise and increase the class overlap.

Many variations of SMOTE have been proposed to either clean the data after
synthetic oversampling or to preemptively avoid generating instances that would
negatively impact classifier performance [3,7,11,12]. For instance, Tomek links
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(examples from different classes that are each other closest neighbours) can be
removed from the training set after the application of SMOTE [3]. ADASYN [13]
and Borderline-SMOTE [12] are examples of methods that apply SMOTE only
in specific regions of the domain that are considered useful. ADASYN generates
more synthetic examples from minority class cases that have more nearest neigh-
bours from the majority class. Borderline-SMOTE generates more examples near
the minority class border. However, Borderline-SMOTE applies uniform under-
sampling and may generate new cases between subconcepts of the minority class
while ADASYN uses the local structure disregarding the global structure of the
data. Resampling with a neighbourhood bias [6] is an alternative that introduces
a bias in the selection of seed cases for both over and undersampling based on
the class distribution in the local neighbourhood of each instance. Different bias-
ing modes are proposed allowing to reinforce the most frontier or the most safe
cases. Our proposal advances this idea by replacing the need for users to specify
the k value necessary for the k-nearest neighbours computation, which is applied
homogeneously across all instances and may be difficult to determine a-priori.
Alternatively, we utilise hierarchical clustering that automatically finds variable
sized clusters in the underlying structure of the data for resampling.

Previous research has applied clustering plus random oversampling, clus-
tering plus random undersampling, and clustering plus synthetic oversampling
[2,15,18–20,28,30]. Of these methods, our proposal is most closely related to
[30]. Whereas the other methods only cluster one class, our method and that of
Yen et al. [30], clusters the complete training sets, and use the class distribution
in each cluster to inform if, and how much, resampling should be applied. By
clustering both classes instead of just one, we acquire a more complete view of
the data structure. The work of Yen et al. [30], uses k-means clustering which
has important limitations such as requiring the a-priori knowledge of the correct
number of clusters. By using hierarchical clustering, we are able to dynamically
discover the sub-clusters (clusters at different levels of the hierarchy) that best
address our resampling objectives. In addition, our method differs in the fact
that it applies both undersampling and synthetic oversampling which inflates the
minority class space while smoothing over-represented concepts of the majority
class.

3 The CURE Method

3.1 Overview

In this section, we present the ClUstered REsampling (CURE) method. The key
feature of CURE is that it utilises the intrinsic structure of the training data from
all of the problem classes to decide where and how to apply resampling. This
way, CURE avoids resampling mistakes incurred by SMOTE-based methods. In
particular, CURE reduces the risk of:

– Synthesising minority class samples deep inside the majority class space; and,
– Naively undersampling informative instances in the majority class.
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Fig. 1. Illustration of the intrusion into
the majority class caused by SMOTE.
(Color figure online)

Fig. 2. Illustration of the synthetic over-
sampling of natural minority class group-
ings discovery of CURE.

The oversampling issue of SMOTE-based methods is demonstrated in Fig. 1.
Here, the nearest neighbours of XB are all minority class examples and thus
interpolating between them is safe. However, between XA and some of its near-
est minority class neighbours, there is an area populated with majority class
examples. Interpolating between these neighbours risks generating new synthetic
minority class case in the majority class space (the blue region).

The undersampling issue is highlighted in Fig. 3. Here, the resampler näıvely
discards some user-specified percentage, p, of the majority class samples (the
removed samples are shown as grey y) in order to balance the training set.
The random removal process risks the loss of information from the edge of the
majority class region, which could have a significant negative impact in the
learned decision boundary.

CURE avoids the over/undersampling issues discussed above by ensuring
that instances are generated in, and removed from, safe regions of the data-
space. This is achieved by applying hierarchical clustering and then resampling
each cluster in a manner that is determined by the class makeup of the cluster.

Fig. 3. Illustration of the removal of
informative majority samples via random
undersampling.

Fig. 4. Illustration of CURE keeping
potentially information samples in mixed
and small majority class clusters.



The CURE for Class Imbalance 7

Figure 2 illustrates where and how resampling is applied to clusters involving
minority class samples. Specifically, interpolation is only applied between minor-
ity class instances in the same cluster. This avoids the generation of samples deep
inside the majority class (grey zone in figure). Figure 4 demonstrates how CURE
randomly undersamples a percentage, p, of instances from each pure majority
class cluster, rather than at random from the complete set of majority class
instances. After undersampling, CURE will always leave at least one sample in
each cluster to avoid wiping out information about edge cases and sub-concepts.

3.2 Hierarchical Clustering

A hierarchical clustering is formed by successively merging instances that are
similar to each other. At the bottom of this hierarchy, we have the individual
training cases, and at the top node we have a single cluster containing all of the
cases. In between these extremes we have different groupings of the training data.
Thus, the hierarchy specifies a set of possible clusterings of the data, where the
clusters near the bottom of the hierarchy are smaller and more specific, and those
nearer the top are larger and more general. It is up to the users to determine
which clustering is best for their objectives.

The requirement to identify the “best” clusters from the hierarchy is a limi-
tation in many pure clustering applications. For our purposes, however, it means
we do not have to specify the number of clusters a-priori. Rather, we develop a
method to automatically discover the clusters in the constructed hierarchy that
are appropriate for resampling.

To produce the cluster hierarchy:

1. The pair-wise distance between each sample is calculated; and
2. A hierarchy is constructed by agglomeratively merging similar clusters.

The Ward variance minimisation algorithm [25] is used to construct the link-
ages in the hierarchy because it minimises the total within-cluster variance. This
objective is appropriate for our goal of finding concise sub-concepts in the data
to apply informed resampling on.

Given the set of clusters (also known as a forest) Ci at level i in the tree con-
structed thus far, the Ward variance minimisation algorithm search for clusters
s and t in Ci that have the minimum variance according to the Ward metric.
The clusters s and t are then merged to form a new cluster w = {s ∪ t} at
level i − 1. The linkage process halts when all samples are merged into a single
cluster.

3.3 Supervised Distance Measure

Clustering is typically an unsupervised process. We postulate, however, that the
discovery of natural groupings in the training data for the purposes of resampling
should not be unsupervised. Our hypothesis is that the class labels should have
some influence on the cluster formation, but this influence should not be absolute.
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Given a seed instance I1 = 〈x1, A〉 and two query instances I2 = 〈x2, A〉 and
I3 = 〈x3, B〉, where Euclidean(x1,x2) is equal to Euclidean(x1,x3), then I2
should be considered to be more similarly to I1 because it is from the same class.
Alternatively, if Euclidean(x1,x3) is significantly less than Euclidean(x1,x2),
then I3 should be considered to be more similarity regardless of its different
class association.

To achieve this, we propose a new supervised measure named Distance with
Class Label Integration (DCLIα). The DCLIα measure is based on a standard
user selected distance metric (d) and a parameter α that controls the importance
of matching class labels. The DCLIα measure is defined as,

DCLIα(〈xi, yi〉, 〈xj , yj〉) =

{
m + α(d(xi,xj) − m) if yi = yj

d(xi,xj) ifyi �= yj

(1)

where 〈xi, yi〉 represents an example with feature vector xi and target class yi,
d is a user selected distance metric, parameter α ∈ [0, 1] controls the influence of
the class labels in the DCLIα distance measure and m is the minimum distance
between instances in the training set measured using metric d.

The parameter α in Eq. 1 has the effect of weighting the significance of
the class label agreement, i.e. instances with matching class labels are brought
slightly closer together than their respective distances, d. Specifically, the DCLIα

distance between two instances xi, xj with matching class labels is equal to
some point, p, between d(xi,xj) and the minimum distance is the data set
arg minxl,xk∈D m = d(xl,xk). The proximity of p to either extreme is controlled
by the α parameter. In this paper, we have used the Euclidean distance for
parameter d in DCLIα. Figure 5 shows the effect of the α parameter on the
DCLIα distances for instances with matching class labels (x1, and x2), and
instances with mismatched class labels (x1, and x3).

To summarise, the purpose of the measure is to promote the clustering of
sparse groups of minority samples, even when a subset of those samples is slightly
closer to the majority class. In Fig. 5, instances 〈x1, A〉 and 〈x2, A〉 will be linked
in the hierarchy before 〈x3, B〉 for α < 0.8. We discuss the sensitivity of α in
Sect. 4.2.

3.4 CURE Algorithm

As previously stated, the CURE method consists of constructing a hierarchy
using our proposed DCLIα measure, and then automatically extracting clusters
from the hierarchy for resampling. For clarity, we refer to the sets of instances
at each level of the hierarchy as groups or groupings, and we refer to the subset
of these groups automatically identified for resampling as clusters.

The groupings for each level of the hierarchy are stored in a data structure
along with the corresponding intra-cluster distances, which we use for cluster
formation. Each instance in the training set is assigned to a cluster defined by the
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Fig. 5. Illustration of the impact of the α parameter on the DCLIα score.

largest grouping to which it belongs that has an intra-cluster distance less than
the threshold τ = μ+s×σ, where μ and σ are the mean and standard deviation of
the intra-cluster distances, and s is the number of standard deviations above the
mean to set the threshold. Empirically, we found the intra-cluster distances to
be approximately log-normal, thus it makes statistical sense to set the threshold
in this manner.

We view the distribution of intra-cluster distances as a proxy for the overall
spread of the data (variance is distances between training samples). As a result, s
should be set large enough to represent the variance in single sub-concepts (nat-
ural groupings) so as to form clusters around these sub-concepts, but not so large
as to join multiple sub-concepts into one cluster. The setting of the s parameter
is simplified by the log-normal assumption. We postulate that approximately one
standard deviation above the mean should achieve the required balance because
it covers most of the variance in the data, whilst excluding exceptional levels of
spread. The sensitivity of s is discussed in more detail in Sect. 4.2. The details of
the cluster method are shown in Algorithm 1, and Fig. 6 illustrates the process
of generating these clusters.

We define three cluster composition for resampling: (i) the cluster includes
only majority class cases; (ii) those with exactly one minority class case and
zero or more majority class instances; and (iii) those with more than one minor-
ity class case and zero or more majority class. If a cluster contains more than
one minority class case, we will interpolate between them generating new syn-
thetic cases and will maintain the majority class examples. When the cluster
contains exactly one minority class case, synthetic cases are generated by apply-
ing Gaussian jitter to it. Finally, if the cluster is formed exclusively by majority
class examples, this means we randomly undersample the cluster. Algorithm 2
provides an high level overview of the proposed CURE method.

In summary, the main idea of CURE is to carry out case generation and
undersampling inside regions of the input space that are safer. These regions
are found by taking into account the intrinsic structure of the training data.
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Fig. 6. Illustration of clusters generation using hierarchical clustering (Algorithm 1).
The resampling strategy to apply in each cluster is based on the cluster examples.

Fig. 7. Impact of changing CURE method hyper parameters in an artificial data set.

Fig. 8. Impact of changing the number of nearest neighbours considered in SMOTE
algorithm in an artificial data set.

We achieve this using a new distance measure in the context of a hierarchical
clustering process.

To better understand the way CURE avoids unsafe oversampling when com-
pared to SMOTE, we prepared the 2-dimensional artificial data1 in Figs. 7 and
8. These figures show the behaviour of each method with respect to their main
hyper parameters. These figures illustrate that CURE is capable of detecting safe
regions as opposed to SMOTE that generates new cases in regions that belong
to the majority class.

1 This is a hand curated 2-dimensional data set developed to demonstrate the strengths
of CURE.
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Algorithm 1. Generation of Clusters
Input: D - a classification data set

α ∈ [0, 1] - weights the influence of the class labels in DCLI distance
s - threshold on the standard deviation considered during clusters formation

Output: C - the clusters
1: function GenClusters(D, α, s)
2: MD ← pairwise distance matrix using DCLIα measure
3: Z ← agglomerative linkage tree calculated over MD
4: L ← log transform of the inter-cluster distances obtained in Z
5: μL ← mean of the inter-cluster distances in L
6: σL ← standard deviation of the inter-cluster distances in L
7: τ ← μL + s × σL � maximum inter-cluster distance for cluster formation
8: C ← Form clusters using Z s.t. the inter-cluster distances of the new clusters

is less or equal to τ
9: return C

10: end function

Algorithm 2. CURE Algorithm
Input: D - a classification data set

Smin, Smaj - number of minority and majority class instances to obtain in
the new data set

α - class labels weight parameter in DCLIα distance
s - threshold on the standard deviation considered during clusters formation

Output: D′ - new resampled data set
1: function CURE(D, Smin, Smaj , α, s)
2: k ← Smin/|minority class instances in D|� minority class instances to generate

for each instance
3: q ← [1 − (Smaj/|majority class instances in D|)] × 100 � % of majority class

examples to remove
4: C ← GenClusters(D, α, s)
5: D′ ← D
6: for each cluster ci in C do
7: if ci contains only majority class instances then
8: D′ ← D′\{random selection of q% of the instances in ci}
9: else if ci contains exactly one minority class instance then

10: new ← generate k synthetic cases using Gaussian jitter
11: D′ ← D′ ⋃ new
12: else � several minority class instances in the cluster
13: new ← generate k synthetic cases by interpolating minority cases in ci

14: D′ ← D′ ⋃ new
15: end if
16: end for
17: return D′

18: end function
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4 Experimental Evaluation

4.1 Materials and Methods

We have selected a diverse set of 29 benchmark data sets from the KEEL repos-
itory [1]. In order to consider the effectiveness of CURE at different levels of
absolute and relative imbalance, we process each original data set into three
new versions for the purpose of our experiments. The new versions contain 10,
30 and 50 minority class cases, for which we use the notation of IR10, IR30 and
IR50 to refer to these respectively. We conducted our experiments on 87 data
sets (29 × 3). The average imbalance ratios (|min|/|maj|) of the three versions
range between 0.186 and 0.037. Therefore, they include a wide range of absolute
and relative imbalance levels. Table 1 displays the main characteristics of the
used data sets.

Table 1. Data sets name, dimensions (Dim), majority class cases (|maj|), and imbal-
ance ratios when using 50, 30 and 10 minority class cases (IR50, IR30 and IR10).

We compare the performance of CURE to 7 state-of-the-art resampling meth-
ods, namely, random undersampling (RUS), random oversampling (ROS), the
combined application of RUS and ROS simultaneously (ROS + RUS), adap-
tive synthetic oversampling (ADASYN), SMOTE algorithm, Borderline-SMOTE
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(Borderline), and SMOTE with the removal of Tomek links (SMOTE + TL),
and no resampling (None).

Support vector machines (SVM) with the radial basis function (RBF) kernel
is selected for classification, because it is an effective non-parametric method
that can be trained on small amounts of data relative to deep learning methods.
Automatic parameter tuning is conducted after resampling via random search
over the γ ∈ [0.001, 20] and C ∈ [0.001, 20]. This promotes the discovery of the
best SVM model for the resampled training set.

The evaluation is performed via 5 × 2-fold cross validation, because it has
been observed that it has a lower probability of issuing a Type I error [9]. The
performance is reported in terms of the geometric mean (g-mean) [16] and the
Fβ measure [23]. Given the accuracy on the target class a+ and the accuracy
on the outlier class a−, the g-mean for a classification model f on test set X
is calculated as: g-meanf(X) =

√
a+ × a−. This metric enables us to evaluate

whether the resampling methods are helping to improving the performance on
the minority class, whilst having minimal impact on the majority class. The Fβ

measure expresses the harmonic mean of precision and recall. We used β = 1
which assigns the same weight to precision and recall measures. The Fβ measure
is popular in imbalanced domains as it provides a reliable assessment of the
models effectiveness on the minority class (e.g. [10]).

Regarding the CURE algorithm, we have set parameters Smin and Smaj

(c.f. Algorithm 2) as follows: Smin = |min| + 0.5 × |maj| and Smaj = 0.5 ×
|maj|, where |maj| and |min| correspond respectively to the number of minority
and majority class cases in the original data set. We apply this policy to the
alternative resampling methods as well. To ensure an easy replication of our
work all code and data sets used in the experiments are available at https://
ltorgo.github.io/CURE/.

4.2 Results and Discussion

Aggregated Results: The first set of experiments focuses on the effectiveness
of CURE for tackling the class imbalance problem. Figures 9 and 10 show the
number of times each resampling method was the best (won) in terms of the
average results during cross validation. The results are grouped according to the
number of minority cases. Thus, Winner 10 FM in Fig. 9 specifies the number of
times each resampling method won on the datasets with 10 minority class cases.

The figures illustrate that CURE has the highest number of wins in compar-
ison to the 8 tested alternatives. Regarding the F1 measure, CURE achieves 7,
12 and 10 wins for the IR10, IR30 and IR50 data sets respectively. The alterna-
tive that shows the most competitive results is Borderline with only 4, 3, and 2
wins for IR10, IR30 and IR50 data sets. Regarding the performance on G-Mean
measure we observe that the advantage displayed by CURE method is over-
whelming with 8, 14 and 12 wins on IR10, IR30 and IR50 data sets respectively.
In this setting, the method showing the second most competitive performance
is ADASYN displaying 6, 3 and 4 wins for the IR10, IR30 and IR50 data sets.

https://ltorgo.github.io/CURE/
https://ltorgo.github.io/CURE/
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Fig. 9. Number of wins obtained by each tested resampling approach aggregated by
data sets with 10, 30 and 50 minority class cases, for the F1 measure.

Fig. 10. Number of wins obtained by each tested resampling approach aggregated by
data sets with 10, 30 and 50 minority class cases, for the G-Mean metric.

(a) F1 on IR10. (b) F1 on IR30. (c) F1 on IR50.

(d) G-Mean on IR10. (e) G-Mean on IR30. (f) G-Mean on IR50.

Fig. 11. Ranks of each resampling approach on the three data set versions, IR10, IR30
and IR50, for both the F1 (top row) and G-Mean (bottom row) metrics.
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Fig. 12. CURE rankings for IR10 data set versions for: α = 0.25 and 0.25 ≤ s ≤ 1.

Figure 11 displays the boxplot of the rankings achieved by each resampling
method on each performance assessment metric by data set version. The rank-
ings shown were obtained using the average of the cross-validation results. These
results clearly show the advantage of using CURE. Overall, the results obtained
demonstrate the versatility of our proposed method over different class ratios,
and demonstrates the benefit of utilising the inherent structure of data for resam-
pling.

Hyper-parameter Sensitivity: CURE has two parameters: α and s. The α
parameter determines the influence of matching class labels on the distance score
(DCLIα). The second parameter, s, is number of standard deviations used in
threshold for cluster formation.

Figure 12 shows the variation in the rankings of CURE method, on data
sets from IR10 version, for parameter α fixed at 0.25 and parameter s ranging
between 0.25 and 1. Due to space constraints, we provide more figures that show
the results for other parameter variations in: https://ltorgo.github.io/CURE/.
The results obtained for s ≈ 1 are concentrated around the lower (and thus
better) rankings. As stated in Sect. 3, setting s ≈ 1 makes good statistical sense,
as well. The α parameter results suggest that values of α between 0.1 and 0.25
provides the best overall results. The good performance of CURE allied to this
user-friendly perspective make CURE an excellent approach to tackle the prob-
lem of imbalanced domains.

5 Conclusion

We presented CURE, a novel method that uses the inherent structure of data to
discover safer regions for resampling. These regions are found using a new class-
sensitive distance measure and hierarchical clustering. A suitable resampling
strategy is applied inside each cluster based on its characteristics. CURE aims at:
(i) avoiding the generation of synthetic cases in unsafe regions of the data space,

https://ltorgo.github.io/CURE/
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and (ii) preventing the removal of informative majority class cases. State-of-the-
art resampling methods fail these goals because they only consider a segmented
view of the data as opposed to CURE that considers a holistic view of the data.

We demonstrate the effectiveness of CURE on a diverse set of 29 benchmark
domains and 87 imbalanced classification datasets. The results show that CURE
has an advantage over 7 state-of-the-art alternatives for resampling methods in
terms of the g-mean and Fβ measures on 5 × 2-fold cross-validation. In addition,
we show that the key parameters of CURE, α and s are easy to set and perform
well over a large range of values. Thus, CURE does not require extensive hyper-
parameter tuning.

As future work, we plan to demonstrate CURE in multi-class domains, and
further improve the method for automatically detect the safe regions. Moreover,
we also plan to explore the application of other resampling methods inside each
safe region based on the regions characteristics.
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Abstract. The objective of the maximum weighted set of disjoint sub-
matrices problem is to discover K disjoint submatrices that together
cover the largest sum of entries of an input matrix. It has many practical
data-mining applications, as the related biclustering problem, such as
gene module discovery in bioinformatics. It differs from the maximum-
weighted submatrix coverage problem introduced in [6] by the explicit
formulation of disjunction constraints: submatrices must not overlap. In
other words, all matrix entries must be covered by at most one submatrix.
The particular case of K = 1, called the maximal-sum submatrix prob-
lem, was successfully tackled with constraint programming in [5]. Unfor-
tunately, the case of K > 1 is more challenging to solve as the selection of
rows cannot be decided in polynomial time solely from the selection of K
sets of columns. It can be proved to be NP-hard. We introduce a hybrid
column generation approach using constraint programming to generate
columns. It is compared to a standard mixed integer linear program-
ming (MILP) through experiments on synthetic datasets. Overall, fast
and valuable solutions are found by column generation while the MILP
approach cannot handle a large number of variables and constraints.

Keywords: Constraint programming · Maximum weighted
submatrix · Column generation · Maximum weighted set of disjoint
submatrices problem · Bi-cliques · Data-mining

1 Introduction

1.1 Problem Definition

We are interested in the mining of a numerical matrix to discover submatrices
capturing a high total value. Precisely, we consider an input matrix M with
m rows and n columns where element Mi,j is a given real value. The matrix
is associated with a set of rows R = {r1, . . . , rm} and a set of columns C =
{c1, . . . , n}. We use (R;C) to denote the matrix M.

If I ⊆ R and J ⊆ C are subsets of the rows and of the columns, respectively,
the submatrix (I;J) denotes all the elements Mi,j of M such that i ∈ I ∧ j ∈ J .
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The max-sum submatrix problem (MSSP), introduced in [5], consists in iden-
tifying a subset of rows and of columns of an input matrix that maximizes the
sum of the covered entries, which is the submatrix weight. The problem is for-
mally stated below.

The Max-Sum Submatrix Problem (MSSP): Given a matrix M ∈ R
m×n,

R = {1, . . . , m} and C = {1, . . . , n} the associated sets of rows and columns,
respectively. The submatrix (I∗ ⊆ R, J∗ ⊆ C) is of max-sum iff:

(I∗;J∗) = argmax
I,J

∑

i∈I,j∈J

Mi,j (1)

In this paper, we consider only the non-trivial problem matrices containing both
positive and negative entries. Such a problem is both compelling and challenging
to solve. A constraint programming (CP) implementation successfully tackled
this difficult problem for matrices of thousands of rows and hundreds of columns,
as is typical in several biological applications [5].

A natural extension of the MSSP is to identify K submatrices. The maximum
weighted submatrix coverage problem (MWSCP) proposed in [6] is an extension
to the identification of K possibly overlapping submatrices with maximal weight.
It relies on a modification of the objective function such that covered entries
contribute strictly once to the objective. However, it favors overlaps on negative
entries: penalties are distributed among overlaps. Moreover, overlaps on positive
entries will not improve the objective value.

In the present work, we consider an alternative extension to the identification
of K submatrices, relying on an objective function computed as the sum of sub-
matrix weights, and the explicit addition of disjunction constraints. By allowing
overlaps on the rows or the columns (but not both simultaneously due to the
disjunction constraint) we avoid the unexpected behavior of the MWSCP. More-
over, the solution’s interpretability by a domain expert is eased. Such a solution
is usually called nonoverlapping nonexclusive nonexhaustive in the biclustering
context [10].

Definition 1. The Maximum Weighted Set of Disjoint Submatrices
Problem (MWSDSP): Given a matrix M ∈ R

m×n, R = {1, . . . , m} and
C = {1, . . . , n} be the associated sets of rows and of columns, respectively,
and K be a target number of submatrices. The maximum weighted set of dis-
joint submatrices problem is to select a set of K submatrices (Ik∗;Jk∗), with
Ik∗ ⊆ R and Jk∗ ⊆ C for all k ∈ {1, . . . , K}, such that each matrix entry is cov-
ered by at most one submatrix and the weight of the covered entries is maximal:

(I1∗; J1∗), · · · , (IK∗; JK∗) = argmax
(I1;J1),··· ,(IK ;JK)

K∑

k=1

wk (2)

s.t. (Ik × Jk) ∩ (Ik′ × Jk′
) = ∅ ∀k, k′ ∈ {1, . . . , K}, k �= k′ (3)

where wk =
∑

r∈Ik,c∈Jk Mr,c is the weight of submatrix k.
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Disjunction constraints (3) enforce that each matrix entry is selected by at
most one submatrix. Restricting to G (> 1) overlaps would result in �K/G�
groups of G identical submatrices. While any submatrix pair may share rows
or columns, the constraint prevents any pair from sharing rows and columns
simultaneously. Note that the specific submatrix ordering is irrelevant.

1.2 Contributions

Our contributions are: (1) The introduction of the maximum weighted set of
disjoint submatrices problem (MWSDSP) as a generalization of the max-sum sub-
matrix (MSSP) problem; (2) A mathematical programming approach to solve the
MWSDSP; (3) The formulation of the MWSDSP as an integer linear program (ILP)

relying on constraint programming (CP) to produce relevant variables; (4) An
evaluation of the performances of these two alternatives and the benefit of the
ILP+CP over a greedy approach on synthetic datasets.

1.3 Motivation

The MWSDSP has many practical data-mining applications where one is inter-
ested in discovering K specific relations between two groups of variables.

As an example, in gene expression analysis, Mi,j corresponds to the expres-
sion value of gene i in sample j. One is typically interested in finding a subset
of genes that present high expression value, i.e., an active biological pathway,
in a subset of the samples. Finding multiple pathways specific to some samples
is a common task in gene expression analysis. Submatrices overlaps would cor-
respond to non-specific signal. In contrast, shared rows only would correspond
to gene simultaneously active in multiple pathways, and shared columns only to
subpopulations of samples exhibiting the same pathway activity.

1.4 Related Work

The max-sum submatrix problem (MSSP) and the maximum weighted subma-
trix coverage problem (MWSCP), presented in Sect. 1.1, are NP-hard [6]. The
present work and the MWSCP extend the MSSP to K > 1 by adding disjunction
constraint and by adapting the objective function, respectively.

In the maximum subarray problem, introduced in [3], the aim is to find a
subset of contiguous columns with maximal weight from an array. Polynomial-
time complexity algorithms have been proposed for matrices [14]. This problem
is simpler than the MWSDSP, however, as a single submatrix is required and it
is constrained to be formed of contiguous subsets of rows and columns.

The biclustering problems are concerned with the discovery of homogeneous
submatrices rather than maximizing the weight of covered entries. Madeira et al.
provided a comprehensive review of biclustering problems [10].

The minimum sum-of-squares clustering problem involves the definition of
non-overlapping sets of rows (or columns) covering all matrix entries. Although
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the problem differs, we use a similar approach as in [2]: the combination of an
ILP and delayed column generation.

In the ranked tile mining problem, introduced in [9], entries are discrete
ranks, corresponding to a permutation of column indices on each row. Moreover,
the definition of a parametrized penalty for overlapping coverage discourages
but allows identification of repetitive solutions.

2 Constraint Programming Approaches

2.1 Search Space

Let us define a set variable T k (resp. Uk) to represent the rows (resp. columns)
included in submatrix k. The search space of the MSSP can be limited to search-
ing on a single dimension, for instance the column set variable U1. Indeed, opti-
mal T 1 can be found in polynomial time: ∀i ∈ R :

∑
j∈U1 Mi,j > 0 =⇒ i ∈ T 1.

Let us define the MWSDSP with fixed column selections formally.

Definition 2. The MWSDSP with fixed column selections. The notations
are the same as in Definition (1), but in this case the selections of columns for
each submatrices (the Ck sets) are given.

R1∗, · · · , RK∗ = argmax
R1∗,··· ,RK∗

K∑

k=1

∑

r∈Rk,c∈Ck

Mr,c (4)

s.t. (Rk × Ck) ∩ (Rk′ × Ck′
) = ∅ ∀k, k′ ∈ {1, . . . , K}, k �= k′ (5)

For K > 1, once all the column set variables Uk are fixed, it remains to
decide for each row i and each submatrix k whether i is to be selected (i ∈ T k)
or not. These K decisions per row cannot be optimally taken in polynomial time,
as stated in Theorem (1). As a consequence, the search will have to assign both
the row and column set variables, as opposed to the simpler K = 1 problem.

Theorem 1. The MWSDSP with fixed column selections is NP-Hard.

Proof. We reduce the Maximum Weighted Independent Set (MWIS) problem to
our problem. MWIS is NP-Hard (by immediate reduction from the Independent
Set problem [8]), and aims at finding, in a graph G = <V,E> with weights wv

on each vertex v ∈ V , the set of vertices with the maximum sum such that
they do not share edges in G. For simplicity, we represent edges and vertices
as numbers: V = {1, . . . , |V |} and E = {1, . . . , |E|}. We reduce an instance of
the MWIS to an instance of the MWSDSP with fixed column selections. We
create a 1 by (|V | + |E|) matrix M : M1,i = wi if i ∈ {1, . . . , |V |}, and M1,i = 0
otherwise. The columns sets C1, . . . , C|V | are constructed as follows: Cv = {v}∪
{|V | + e | e ∈ E ∧ edge e has v as origin or destination}. Each vertex in the
graph G is transformed in a submatrix. If the single row of matrix M is selected
by a submatrix, then the vertex is included in the MWIS. The non-overlapping
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constraint of MWSDSP forbids two adjacent vertices (i.e., submatrices) to both
be included in the solution (constructing an independent set), due to the way the
column selections C1, . . . , C|V | are constructed. Resolving the MWSDSP then
leads to the same optimal objective result as the original MWIS problem, and
the selected rows Rv, ∀v ∈ [1, . . . , |V |], indicates, for each node v, if the node
is inside the MWIS (Rv = {1}) or not (Rv = ∅). As computing the MWIS in
general graphs is NP-Hard, and as the MWSDSP with fixed column selections
can encode the MWIS problem, we conclude that the MWSDSP with fixed
column selections is NP-Hard. ��

2.2 Greedy Approach

A simple approach to solving the MWSDSP is to solve the MSSP repeatedly.
For each new max-sum submatrix found, the corresponding values are replaced
by −∞, forbidding subsequent iterations from selecting these entries again.

Each iteration is performed until optimality or absence of solution are proved;
or at least one solution has been found.

2.3 Column Generation

We propose a column generation (CG) approach [7] to find solutions to the
MWSDSP. It relies on CP1 in an ILP setting. The CP part identifies candidate
submatrices. The ILP efficiently combines submatrices and guides the CP part.

Let us represent the given matrix M of m × n entries as the vector V of
v = m × n entries obtained by stacking the columns of the matrix M on top
of one another. The MWSDSP is formulated using a v × 2m+n binary matrix
B representing all 2m+n possible submatrices. Each column l of B corresponds
to a submatrix l such that Bi,l = 1 if and only if entry Vi is covered by the
submatrix l. The weight wl of submatrix l is the sum of its covered entries:
wl =

∑v
i=1 Vi × Bi,l. Equations (2) and (3) can be formulated as an ILP:

maximize
∑

l∈L

wl × xl (6a)

s.t.
∑

l∈L

Bi,l × xl ≤ 1 ∀i ∈ {1, . . . , v} (6b)

∑

l∈L

xl ≤ K (6c)

xl ∈ {0, 1} ∀l ∈ L (6d)

where L = {1, . . . , 2m+n} denotes all possible submatrices. The decision vari-
able xl encodes the selection of submatrix l. Equation (6b) ensures submatrices
disjunction and Eq. (6c) enforces the selection of at most K submatrices.

Defining the matrix B before solving the ILP is computationally not feasible,
even for small input matrices M. In subproblem solving, the master problem

1 See [11] for an introduction to CP.
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(or ILP), in Eq. (6a)–(6d), is restricted to a subset L′ ⊆ L of submatrices effec-
tively defining a restricted master problem (RMP). Iteratively, an RMP is solved,
and one or multiple new submatrices (columns) are inserted in L′, defining a new
RMP. Submatrices (columns) are candidates for insertion to an RMP if its inser-
tion can improve the objective function of the RMP.

To find such candidate submatrices, we define a Linear Programming relax-
ation of the RMP (LP-RMP) which comes along the integrality constraints (6d)
relaxation of the ILP (in an LP) and the subsetting of L. We use the dual of the
LP-RMP to find submatrices with a positive reduced cost2. Such submatrix can
improve the LP-RMP. If no such submatrix exists, the optimal solution to the
LP-RMP is an optimal solution to the LP. The dual of the LP-RMP is:

minimize θ × K +
v∑

i=1

λi (7a)

s.t. θ +

v∑

i=1

Bi,l × λi ≥ wl ∀l ∈ L′ (7b)

λi ≥ 0 ∀i ∈ {1, . . . , v} (7c)

θ ≥ 0 (7d)

The dual values λi and θ corresponding to the primal constraints defined
in Eq. (6b) and (6c), respectively, are obtained by solving an LP-RMP. Each
column xl of the RMP is associated with a constraint in the dual (Eq. 7b).

Finding a submatrix with a positive reduced cost is called pricing. Such a sub-
matrix is defined as any submatrix l ∈ L for which −θ − ∑v

i=1 Bi,l × λi + wl < 0.
The LP-RMP is optimal if the pricing problem has no solution. Moreover, if the
LP-RMP (being optimal) and the RMP have the same objective value, then the
solution to the ILP is optimal.

The pricing problem can be reformulated as:
∑v

i=1 [Bi,l × (Vi − λi)] > θ.
Solving this pricing problem is not trivial: it amounts to identifying a subma-

trix in the input matrix modified by the λi values such that its weight is larger
than some θ. While the pricing routine usually tries to identify a solution with
maximum reduced cost, it can return any submatrix with positive reduced cost.

In practice, we use the greedy approach described earlier to find submatrices
of weight larger than θ from an input matrix modified according to the λi values.
This provides solutions to the pricing problem.

Implementation details may have an important role in the effectiveness of the
approach. Such details are present next.

To maximize the information given by the dual values, we avoid having redun-
dant constraints, notably the constraints (6b). For example, if two submatrices
overlap on more than one cell, we enforce only one constraint representing all
the overlapping cells. Precisely, constraint (6b) is replaced by the following:

∑

l∈S

xl ≤ 1 ∀S ∈
{

{l | Bi,l = 1}
∣∣∣ i ∈ {1, . . . , v}

}
. (8)

2 Given that the problem is a maximization problem.
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That is, we enforce one non-overlap constraint per group of entries sharing
the same intersecting submatrices (an overlapping group)3. We then redistribute
the dual value of the constraint equally (we divide it by the number of entries)
over all the entries in this overlapping group. This allows the method to avoid
a pitfall of most solvers: when facing multiple equivalent constraint, only one
will be tight, i.e. having a non-zero dual value. Redistributing the duals on all
the entries in an overlapping group allows the subproblem solver to find more
interesting submatrices.

The LP-RMP does not necessarily provide a binary decision on the submatrix
selection. To effectively identify a solution to the original MWSDSP, the RMP is
solved for any solution to the LP-RMP. Observe that the objective value of the
LP-RMP is an upper bound to the objective value of the RMP. All experiments
present the results of the RMP solution.

The subset L′ defining the first RMP to solve is obtained using the greedy
approach searching for K submatrices. This serves as a greedy hot-start for
the column generation approach.

Given the non-trivial pricing problem, there is no guarantee that the greedy
subroutine identifies an optimal solution to the pricing problem. While it would
be possible to use a branch-and-price algorithm [13], it would be non-trivial to
solve the pricing problem to optimality. The running time needed to solve the
LP-RMP to optimality (i.e. to the point where no new submatrix with positive
reduced cost exists) is already quite high, as shown in the experiment section
below. The authors consider that the use of a branch-and-price algorithm is
outside of the paper’s scope.

Guidance on the search for better submatrices requires many submatrices in
the RMP with large weight. Moreover, the greedy subroutine may identify many
solutions (i.e. submatrices) to the pricing problem. As the number of submatrices
to find increases, the weight of these submatrices likely decreases. It is then more
useful to seek multiple submatrices later in the column generation process. As
a consequence, at iteration p of the column generation, up to p solutions, or
submatrices, to the pricing problem are identified and are inserted in the RMP.

2.4 Mixed Integer Linear Programming

We propose a Mixed Integer Linear Programming model using the binary vari-
ables T k

i and Uk
j to represent the selection of row i and column j for submatrix

k. These decision variables are used to compute the contribution of the row i
for the submatrix k (rk+i ). The sum of the row contributions is the objective
function to be maximized. The model presented below is based on a Big-M for-
mulation of the MWSDSP where, ∀i ∈ R, constants M−

i =
∑

j∈C min(0,Mi,j)
and M+

i =
∑

j∈C max(0,Mi,j) are respectively the lower bound and upper
bound on the sum of row i’s entries. The MILP model is formulated as follows:

3 Equation (8) uses the set notation to implicitly remove duplicates.
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maximize
∑

i∈R,k∈K
rk+i (9a)

s.t. rk+i ≤
∑

j∈C

(
Mi,j × Uk

j

)
+ (T k

i − 1) × M−
i ∀i, k (9b)

rk+i ≤ M+
i × T k

i ∀i, k (9c)

2 × vk
i,j ≤ T k

i + Uk
j ∀i, j, k (9d)

T k
i + Uk

j ≤ 1 + vk
i,j ∀i, j, k (9e)

∑

k∈K
vk
i,j ≤ 1 ∀i, j (9f)

Constraints (9b) and (9c) ensure that the row contribution rk+i is computed
correctly. If T k

i = 0, constraint (9c) ensures the row contribution is zero, with
the right hand side of constraint (9b) being always positive. Otherwise (T k

i = 1),
constraints (9b) and (9c) ensure rk+i =

∑
j∈C

(Mi,j × Uk
j

)
, thus computing the

effective value of the contribution.
Equations (9d) and (9e) linearize vk

i,j = T k
i × Uk

j . The binary variable vk
i,j

indicates if cell (i, j) is selected by submatrix k and ensures submatrices disjunc-
tion through constraint (9f).

This model is plagued by the number of variables and constraints which are
both in O(mnK), mainly due to the non-overlap constraints.

3 Experiments

This section describes experiments conducted to assess the performances of the
proposed algorithms and to provide guidance on the selection of the appropri-
ate solution. Given enough time and memory, both the column generation (CG)
approach and the MILP approach converge to the optimal solution. Therefore
comparing performances solely on the objective value of an approach is irrele-
vant. As a consequence, CG and MILP approaches are evaluated and compared
given a budget of time, the time-out TO, on synthetic datasets with implanted
submatrices using any-time profiles:

Definition 3. Any-Time Profile. Let f(a, i, t) be the objective value of the best solu-
tion found so far by an algorithm a for an instance i at time t. Let tmax be the provided
budget of time before breaking a run. The any-time profile of a is the solution quality
Qa(t) of a on all instances as a function of time:

Qa(t) =
1

|i|
∑

i

f(a, i, t)

f(a∗
i , i, t

max)
with a∗

i = argmax
a

f(a, i, tmax) . (10)

All experiments are performed using Java 1.8.0 on an AMD Bulldozer clocked
at 2.1 GHz; one core and 6 GB of RAM per instance and a time-out TO of 2 h.
MILP and CG approaches rely on Gurobi 8.1.0 [1]. The greedy hot-start of the
CG process is given 5 min evenly split between each of its K iterations of solving
an MSSP. Solutions to the MSSP are carried out on OscaR [12] using a constraint
programming approach relying on a global constraint (CPGC) provided in [5].
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It is a depth-first search approach composed of major CP ingredients: (1) filter-
ing rules, (2) bounding procedure, (3) dominance rules and (4) variable-value
heuristic.

3.1 Datasets and Performances

Datasets are generated by implanting K submatrices (called + entries) on a
background noise (called − entries). In a first dataset, we consider alternative
dispositions of + and − entries drawn from different distributions. Each combi-
nation defines a scenario presented in Fig. (1a–b). For each scenario, 14 different
matrices are generated according to different input matrix size and number of
implanted submatrices, as presented in Fig. (1c). These 70 instances are gener-
ated such that the hot-start is bound to find suboptimal solutions, giving very
little information to the CG method. The benefit of CG is evaluated relative to
the suboptimal hot-start solution through the objective value improvement.

Figure (2a) presents the any-time profile of each method for the first dataset.
It clearly illustrates that CG can escape the suboptimal regions of the search
space trapping the hot-start. Given roughly 25 times larger time-out than the
suboptimal hot-start, MILP is outperformed by the greedy and the CG.

Local optimums (trapping the hot-start) are provided as starting solutions
for CG. Such local optimum can be found before the given time-out. The shift
between hot-start and CG curves in the first 300 s is explained by the fact that
CG can refine solutions as soon as the hot-start subroutine is completed.

In the second dataset, 720 instances are generated according to the layout
of scenarios 3 and 4 from Fig. (1a). It differs, however, by the size of the input
matrix, the number, and size of implanted submatrices. More importantly, values
are drawn from different distributions: − entries ∼ N (−1, 1) and + entries
∼ N (1, 0.5). Such matrices, generated following a similar protocol as in [6],
are considered better representatives of gene expression matrices. Our script is
available on Zenodo [4].

(a)
Scenario + entries - entries
1 and 3 K + 1 −1
2 and 4 ∼ N (K + 1, 1) ∼ N (−1, 0.8)

5 ∼ N (2, 2) ∼ N (−2, 1)

(b)

m × n K = 2 K = 5 K = 8 K = 10 K = 20
50 × 50 s = s1 s = s1

100 × 100 s = s1 s = s1 s = s1
200 × 200 s = s1 s = s1 s = s1 s = s1 s = s1
500 × 500 s = s1 s = s1 s = s1 s = s1

(c)
m × n K = 2 K = 5 K = 10

400 × 100 s = s2 s = s2 s = s2
320 × 125 s = s2 s = s2 s = s2
200 × 200 s = s2 s = s2 s = s2

(d)

Fig. 1. Dataset construction. (a) Layout and (b) generative distribution of implanted
+ and − entries. (c) Parameters considered in the first dataset with s1 = {1.0}. (d)
Parameters considered in the second dataset with s2 = {0.05, 0.01, 0.2, 0.5}. Implanted
submatrices are of size

(
m×s
K

; n×s
K

)
.
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(a) Averaged results on the first dataset. (b) Averaged results on the second dataset.

Fig. 2. Comparison of the different methods proposed to solve the MWSDSP. The
graph presents the any-time profile described in Eq. (3). For each instance, the time-
out is fixed at 2 h. The hot-start time-out equals 5min. Col.Generation starts as soon
as the hot-starts is completed.

Figure (2b) presents the any-time profile of CG and MILP on the second
dataset. Whereas the average solution quality of CG and MILP should rise to 1,
given enough time, it is clear that CG is significantly faster than MILP. The poor
performances of MILP are explained by the number of variables and constraints
required to model the problem: MILP obtains satisfactory results for the smaller
problems, with K = 2, only (results not shown). In this experiment, the hot-
start rarely ends before the allocated 5 min, explaining the near-perfect overlap
between hot-start and CG curves.

4 Conclusions

We present a new optimization problem, called the Maximum Weighted Set of
Disjoint Submatrix Problem (MWSDSP) along with two methods to solve it. One
is based on mathematical programming, the other on constraint programming.

Our main contribution, the column generation (CG) method for the MWS-
DSP, finds new candidate submatrices using dual variables of a linear relaxation
of the submatrix selection problem. Experiments on synthetic datasets indicate
that CG finds better solutions than the MILP approach.

The performances of the CG can be further improved by complementing the
exploration with a branch-and-price algorithm [13]. Such improvement is non-
trivial, however: the time taken to solve the underlying LP problem is already
quite long but is nonetheless an attractive direction for future work.
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André Correia1(B), Carlos Soares1,2,3, and Aĺıpio Jorge3,4
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Abstract. Machine Learning algorithms are often too complex to be
studied from a purely analytical point of view. Alternatively, with a rea-
sonably large number of datasets one can empirically observe the behavior
of a given algorithm in different conditions and hypothesize some general
characteristics. This knowledge about algorithms can be used to choose
the most appropriate one given a new dataset. This very hard problem can
be approached using metalearning. Unfortunately, the number of datasets
available may not be sufficient to obtain reliable meta-knowledge. Addi-
tionally, datasets may change with time, by growing, shrinking and edit-
ing, due to natural actions like people buying in a e-commerce site. In this
paper we propose dataset morphing as the basis of a novel methodology
that can help overcome these drawbacks and can be used to better under-
stand ML algorithms. It consists of manipulating real datasets through
the iterative application of gradual transformations (morphing) and by
observing the changes in the behavior of learning algorithms while relating
these changes with changes in the meta features of the morphed datasets.
Although dataset morphing can be envisaged in a much wider framework,
we focus on one very specific instance: the study of collaborative filtering
algorithms on binary data. Results show that the proposed approach is fea-
sible and that it can be used to identify useful metafeatures to predict the
best collaborative filtering algorithm for a given dataset.

Keywords: Recommender Systems · Metalearning

1 Introduction

In this paper, we propose an empirical methodology for improved understanding
of the behavior of algorithms that combines a novel data manipulation app-
roach, dataset morphing, with a Metalearning (MtL) approach. MtL consists
of relating data characteristics (metafeatures) to the performance of learning
algorithms. These metafeatures are expected to contain some useful information
about the performance of the algorithms. To generalize the extracted (meta)
c© Springer Nature Switzerland AG 2019
P. Kralj Novak et al. (Eds.): DS 2019, LNAI 11828, pp. 29–39, 2019.
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knowledge and, therefore, make it applicable to new problems, MtL approaches
require a large collection of datasets, which is often not the case. Dataset morph-
ing addresses this issue by iteratively transforming (morphing) one real dataset
into another. If the two datasets display interesting contrasting behavior of algo-
rithms (e.g. algorithm A is better than B on one dataset but not on the other)
then interesting metaknowledge can be obtained (e.g. determine the turning
point on the performance of the algorithms, and carefully analyzing what hap-
pens around the performance boundary in terms of data characteristics). The
proposed methodology can be used to select the most appropriate algorithm for
a new problem or to analyze algorithm behaviour with evolving data.

As a an example of application for Recommender Systems (RS), we instan-
tiate the above proposed method to study two popular Collaborative Filtering
(CF) algorithms: item-based and user-based neighborhood approaches. We focus
on item recommendation (top-N ), where the aim is to recommend ordered lists
of items in a binary setting [12]. To automatically identify the most adequate
CF algorithm for a given data set has proven challenging [2]. Empirical results
about algorithm behavior are limited due to the absence of a large number of
datasets [2] and purely artificially generated data does not entirely solve the
problem because it is unlikely that it reflects real world distributions.

This work extends existing studies [2,3] by proposing dataset morphing as a
process of generating multiple realistic datasets (viewed as meta-examples), that
could be useful to enrich the metadata and, therefore, to improve the results
of MtL processes that learn the relationship between the performance of RS
algorithms and data characteristics. Despite the provided example with CF,
dataset morphing is virtually applicable to any Machine Learning domain.

2 Metalearning

MtL studies how Machine Learning (ML) can be employed to understand the
learning process and improve the use of ML in future applications [11]. A success-
ful MtL approach can provide a solution to the problem of selecting an algorithm
for a given dataset [2]. It allows the extraction of knowledge that explains why
a suggested algorithm is a good choice. It uses ML techniques to obtain predic-
tive models, which associate data characteristics to algorithm performance. The
methodology involves extracting characteristics, named metafeatures, from mul-
tiple datasets and assessing the performance, which will be used as metalabels,
of a group of algorithms. Afterwards, this data is used to induce a predictive
model to represent the relationship between the metafeatures and metalabels.
After obtaining an accurate MtL model we can predict the most promising algo-
rithm without running a full-fledged empirical evaluation and also explain why
an algorithms performs better or worse [3].

MtL has been used for algorithm selection in RS [2,3,6]. These authors man-
ually define metafeatures, which aggregate information from datasets into single
number statistics. For example, the number of instances in the dataset is a sim-
ple metafeature, the mean or kurtosis of a column is a statistical metafeature.
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They then use supervised ML to learn the relationships between the metafea-
tures and the performance of recommendation algorithms on datasets, measured
by standard metrics. Although the use of MtL for the selection of CF algorithms
has already been investigated, the approaches proposed have limited scope: the
set of datasets, recommendation algorithms and metafeatures studied was rather
restricted An extensive overview of their positive and negative aspects can be
seen in a recent survey [3].

3 Morphing Recommendation Datasets

Image morphing has proven to be a powerful tool for visual effects in film
and television, enabling the fluid transformation of one digital image into
another [14]. We believe that the principle behind image morphing can be applied
to generate datasets that can be used to study the behavior of RS algorithms.
Actually, we can generalize the morphing technique to any type of ML problem.
Thus, dataset morphing can be defined, in general, as a process of gradually
transforming a source dataset into a target dataset. That way, we can explore
the space of datasets along trajectories and study the behavior of algorithms
in regions of that space that are not currently available, particularly in regions
where algorithms’ performances change.

The approach proposed here consists in starting with two datasets—the
source (Ds) and the target (Dt). The operational goal is to analyze the evolution
in the behavior of one or more algorithms between two points of interest. In par-
ticular, we will pick up pairs of datasets where two RS algorithms A and B have
contrasting relative performances. A is better than B in one dataset and vice-
versa. This set up will originate two regions of the space of datasets. We can study
those two regions, their boundary and the trajectory that crosses that boundary.
We get from one dataset to the other by sequentially applying transformations
{T1, T2, ..., Tn−1, Tn} (Fig. 1). The initial datasets have contrasting algorithm
performance. The color gradient, illustrated in Space D, means that during the
transformation process, (intermediate) datasets {D1,D2, ...,Dn−2,Dn−1} will
gradually become more similar to the target dataset (Dt). As previously men-
tioned it is important to keep datasets as realistic as possible. To have that,
intermediate datasets {D1,D2, ...,Dn−2,Dn−1} are a mixture of real—source
and target—datasets. In short, considering source (Ds) and target (Dt) datasets
and a transformation function (τ), we define dataset morphing as a process of
iteratively getting intermediate datasets (Dj) such that:

Dmorph : {Dj | D0 = Ds,Dn = Dt,Dj = τ(Dj−1)}, 1 ≤ j < n (1)

where Dmorph is the set of datasets and n is the number of transformations
needed to get from source (Ds) to target (Dt). The function (τ) is guaranteed
to converge.

The upper layer of Fig. 1 illustrates the trajectory in the dataset space. The
feature space F , represented with vectors of metafeatures {MF1,MF2, ...,MFf},
is the middle layer. These metafeatures are important to characterize the relative
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Fig. 1. Analysis of algorithm behavior between two points of interest using a metalearn-
ing approach based on dataset morphing. D is the data space; F is the metafeatures
space; and P is the algorithm performance space.

performance of the algorithms. As transformations are applied, some metafea-
tures may change a lot, others only slightly and others not at all. These different
types of changes are illustrated in Fig. 1 with the magnitude of change in the
colors between adjacent vectors. Finally, in the bottom layer, the performance
space P with {P1, P2, ..., Pp} is represented. The performance of the algorithms in
the datasets of space D may be evaluated using several standard metrics. Once
again, colors are intended to represent performance variation. To learn about
algorithm behaviour, our focus will be on metafeatures that vary according to
the changes in algorithm performance.

3.1 Dataset Transformations

Source and target datasets could be selected based on a specific property of
interest. In this paper we focus on contrasting algorithm performance, where a
given algorithm A outperforms an algorithm B in (Ds) and the opposite happens
in (Dt). Other possibilities can be considered, such as different performances of
the same algorithm, comparison with baselines or effects of parameters.

One of the key issues in the methodology is the definition of the transforma-
tion function. One important property it should have is convergence. After each
application the resulting dataset is more similar to the target and less similar to
the source. Another important property is smoothness. The difference between
two consecutive datasets should be small both in terms of metafeatures and of
performance. Other characteristics may depend on the task and the type of data
available. In this paper, we will focus on CF with binary data. Transformations
may be simple (e.g., random bit flipping, random rows/columns switching) or
more complex (e.g., switch the most similar row/column first). They can also be
applied in batches (e.g., flipping a portion of all bits, switching a portion of all
rows/columns).
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We also have natural morphing processes when users’ preferences have a very
volatile nature [9]. In real world RS, it is reasonable to approach ratings data
as evolving datasets: ratings are continuously being generated, and we have no
control over the data rate or the ordering of the arrival of new ratings. Actually,
adding or removing a row means a new customer application or disassociation,
respectively. Likewise, adding or removing a column denotes a new item arrival
or removal, respectively.

4 Empirical Evaluation

The main aim of these experiments is to show that dataset morphing can be
useful for identifying predictive metafeatures of the relative performance of CF
algorithms using a limited number of original datasets. We intend to illustrate
how dataset morphing enriches the metadata and improves the results of MtL
processes.

4.1 Base-Level

In this study, we focus on the item recommendation CF task and evaluate top−1,
3, 5, 10, 15 and 20 recommendation lists. CF algorithms are evaluated using a 10-
fold cross-validation scheme with the all-but-1 protocol to collect data about the
behavior of two CF algorithms: user-based and item-based. As both are k Nearest
Neighbors (NN) algorithms, we considered k = 20 and k = 50 for user-based and
item-based, respectively. The performance of these algorithms is estimated on
each dataset, using precision@k. In terms of implementation we use on the
recommenderlab package1 since the comparison of recommender algorithms is
readily available [7]. Other algorithms, parameters or platform could have been
chosen, without loss of generality. Table 1 lists the 3 real-world datasets selected
for this study. They were binarized by making items with a rating of 1, or
higher, a positive rating. Due to the very large number of experiments needed
for meta learning, to have feasible computational times we have used subsets of
the original datasets, obtaining 60000 random samples from each dataset. Each
sample has 250 rows (users) and 1000 columns (items).

Table 1. Datasets used in the base-level experiments.

Dataset #users #items #ratings Ratings scale Ref

amazon-movies 73 k 4 k 111 k [1;5] [10]

movielens1m 6 k 4 k 1 M [0;5] [5]

palcoprincipal-playlist 4 k 5 k 37 k [0;1] [4]

1 https://cran.r-project.org/web/packages/recommenderlab/index.html.

https://cran.r-project.org/web/packages/recommenderlab/index.html
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Regarding the source (Ds) and target (Dt) datasets selection, we followed
two main approaches: selecting two subsets from the same dataset or select-
ing source and target from different datasets. The first approach was applied
both on amazon-movies and palcoprincipal-playlist datasets. The second app-
roach was applied both on movielens1m and palcoprincipal-playlist datasets,
selecting source (Ds) datasets from movielens1m, and target (Dt) datasets from
palcoprincipal-playlist. As mentioned, the criterion considered in the experiments
was the contrasting algorithm performance. This means that for the source
dataset (Ds) a given algorithm A outperforms another given algorithm B and,
in target dataset (Dt), B outperforms A. In the experiments, the algorithms A
and B are user-based CF and item-based CF, respectively. For each dataset, we
evaluated both algorithms on each sample (out of the 60000 samples). For each
algorithm, we selected the top-100 samples with the highest difference in preci-
sion (delta). Therefore, for each dataset selection approach described above, we
formed 100 pairs, selecting, for each algorithm, the 100 samples with the highest
delta values.

Regarding the dataset transformations, we decided to use random one row
replacements. We iteratively replace rows in the source dataset (Ds) with rows
from the target (Dt). This enforces smoothness and trivially guarantees conver-
gence in a pre-defined number of steps. By way of illustration, to obtain dataset
D1 we start with source dataset (Ds). We randomly sample, without replace-
ment, one row index and copy that row from (Dt) to D1. Likewise, dataset D2 has
all but one row from dataset D1. This procedure is repeated until intermediate
and target datasets match. In the experiments, for each pair created we obtain
250 intermediate datasets. However, the wide variety of possibilities to get from
source (Ds) to target (Dt) datasets, deserves future exploration. To minimize
time and computational resources, in the experiments, for each pair created, we
sampled 10 different trajectories between source (Ds) to target (Dt) datasets.
This means that, for each pair, we applied the random row-wise transformations
in 10 different ways.

4.2 Meta-level

One of the most important factors in the success of a MtL approach is the defi-
nition of a set of metafeatures that contain information about the performance
of algorithms [1]. Part of the metafeatures used in this study are obtained proce-
durely [2] and are based on two different perspectives on their distribution: users
and items. These distributions are aggregated, by row and by column, using sim-
ple, standard statistical functions (count and mean) and post-processing func-
tions: maximum, minimum, mean, standard deviation, median, mode, entropy,
Gini index, skewness and kurtosis. The notation used to represent metafeatures
follows the format: object.function.post function (e.g., column.mean.entropy).
Other metafeatures used in this study are based on [13]. That work orga-
nizes metafeatures in five groups i.e., subsets of data characterization measures
that share similarities among them [1]. Since this study focuses only on binary
rating-based CF datasets, we only considered metafeatures from the Simple
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and Information-theoretic groups [13]. From the Information-theoretic group,
we used the attributes concentration (attrConc) and the attributes entropy
(attrEnt) [13]. These metafeatures were implemented using the mfe package.2

Lastly, we used two other metafeatures: number of zeros of the entire dataset
and sparsity [8].

The techniques used in the meta-level are usually either classification or
regression. This study focuses on classification tasks. Considering the 100 identi-
fied pairs of subset datasets, the 10 different trajectories between each pair and
the 250 intermediate datasets for each trajectory as a result of dataset morph-
ing process, we created 18 meta-datasets with 250.000 meta-examples. One for
each of the 3 selected original dataset (Table 1), and for each of the 6 top-N .
The algorithm selection problem is formulated as a classification task, where the
class label is the best algorithm, according to the precision metric. Either IB
(item-based) or UB (user-based). The predictive attributes are the metafeatures
described above. We did some exploratory experiments with a set of classification
algorithms: Adaboost, C5.0, Gradient Boosting Machine, Logistic Regression,
Naive Bayes, Random Forest, rpart and XGBoost. Regarding the classification
problem, we chose the following error measures: accuracy, recall for item-based
class (RecallIB), recall for user-based class (RecallUB) and area under the curve
(AUC). We performed tuning on algorithms, optimizing the AUC metric i.e., for
each meta-level algorithm we considered different values for its hyperparame-
ters. Despite considering many trajectories for each pair, intermediate datasets
of same pair are very similar to each other. Therefore, the algorithms were evalu-
ated in a leave 20 pairs out strategy. This means that we use 80 pairs of datasets
for training and leave the remaining 20 pairs for testing. Meta-learning was done
using the caret package,3.

5 Experimental Results

Base-Level: as an example of the algorithm performance evaluation at the base-
level, Fig. 2 illustrates the results for palcoprincipal-playlist dataset, for one pair
and trajectory. The performance of user-based CF is represented in blue colour
and the results of item-based CF are represented in red colour. We can observe
that for top-3 and top-5 tasks item-based CF starts presenting higher values
at approximately (intermediate) dataset D100. This means that D100 is on an
interesting boundary and is worth looking into.

Meta-level: The exploratory data analysis allows to identify metafeatures that
are good indicators of the relative performance of the algorithms. From the
vast number of experiments we have performed, we show one figure, where the
winning algorithm for each intermediate dataset is illustrated in different colours.
Once again, user-based CF is in blue and item-based CF is in red. The presented
results are only for one pair created and one trajectory of palcoprincipal-playlist
2 https://cran.r-project.org/web/packages/mfe/index.html.
3 https://cran.r-project.org/web/packages/caret/index.html.

https://cran.r-project.org/web/packages/mfe/index.html
https://cran.r-project.org/web/packages/caret/index.html
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Fig. 2. Performance of IB and UB through morphing. (Color figure online)

dataset, and for the top-3 task. As an example, the metafeature illustrated in
Fig. 3 seems to contain useful information about the relative performance of the
algorithms i.e., it varies accordingly with algorithm performance. In fact, higher
values of this metafeature indicate that user-based performs best. Item-based
CF algorithm seems to be the winner when this metafeature has lower values.
This is true for the following metafeatures: attrConc.mean, column.count.mean,
row.count.entropy, row.count.kurtosis and row.count.max.

Fig. 3. Results of meta-level evaluation on palcoprincipal-playlist dataset—Entropy of
row count. (Color figure online)

Regarding the meta-learning results, we firstly tested the meta-models
against test sets obtained within the same dataset used for training. Then, in
order to ensure that the extracted metaknowledge could be generalizable, we
also tested each meta-model against the test set of remaining domains. Lastly,
we present performance results of meta-models created with random samples.
To serve as baseline, we did some experiments training meta-models with only
the source and target datasets i.e., without the intermediate datasets.

Results on Table 2 show that the meta-models created help in intra-domain
algorithm selection. The meta-models obtained from amazon-movies and palco
principal-playlist datasets, seem to clearly identify the item-based CF instances.
On the other hand, the movielens1m/palcoprincipal-playlist dataset yields a
meta-model that seems to identify reasonably well both classes. The inter-
domain test set results, partially support the conclusions of intra-domain results.
In fact, meta-models obtained from amazon-movies and palco principal-playlist
datasets, presented high values for RecallIB i.e., they seem to clearly identify the
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item-based CF instances. On the other hand, unlike the intra-domain results,
the meta-model obtained from movielens1m/palcoprincipal-playlist dataset pre-
sented low values for RecallIB and high values for RecallUB . This seems to mean
that it clearly identifies the user-based CF instances, unlike the item-based CF
ones. In short, the results of these experiments show that the extracted meta-
knowledge could be generalized and transferred across the studied domains.

Concerning the performance results of meta-models trained without the inter-
mediate datasets, and based on intra-domain results, it is possible to conclude
that the meta-data obtained from morphing datasets leads to better meta-
knowledge, when compared to meta-data obtained from random samples. Nev-
ertheless, considering the inter-domain results, some performance metrics (e.g.,
RecallIB) presented better overall results, on meta-models trained with trajec-
tories, and some others don’t (e.g., AUC).

Table 2. Summary of results. Green (red) dots indicate that meta-models from tra-
jectories beat (loose against) random samples. Delta is the winning margin.

Model/Test set
amazon-movies mlens/ palco palco

Metric Delta Metric Delta Metric Delta

amazon-movies
AUC 0.21 AUC 0.13 AUC 0.01
RecallIB 0.36 RecallIB 0.07 RecallIB 0.33
RecallUB 0.19 RecallUB 0.277 RecallUB 0.45

movielens1m/
palcoprincipal-
playlist

AUC 0.07 AUC 0.07 AUC 0.03
RecallIB 0.29 RecallIB 0.13 RecallIB 0.45
RecallUB 0.18 RecallUB 0.17 RecallUB 0.37

palcoprincipal-
playlist

AUC 0.01 AUC 0.01 AUC 0.11
RecallIB 0.20 RecallIB 0.02 RecallIB 0.04
RecallUB 0.22 RecallUB 0.25 RecallUB 0.22

To extract meta-knowledge we assess features frequency in the best models.
The best metafeatures are: row.count.entropy, row.count.max, row.count. kurto-
sis, attrConc.mean and attrEnt.mean. We observe that both rows and columns
hold important characteristics to solve the algorithm selection problem. This
confirms previous studies [2,3]. Nevertheless, row.count is the most relevant dis-
tribution to be analyzed here. Actually, the choice between user-based and item-
based depends on the ratio between the number of rows and the items.

6 Conclusions

In this study, we have proposed a methodology that generates new datasets
by manipulating existing ones, for understanding algorithm behavior using MtL
approaches. In the experiments, the proposed methodology was used to select CF
algorithms. The algorithm selection problem was formulated as a classification
task, where the target attribute is the best CF algorithm, according to precision
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metric. The results show that the proposed approach is feasible and that it can
be used to identify useful metafeatures to predict the best collaborative filtering
algorithm for a given dataset. Considering the majority of the scenarios studied,
the results support the importance of dataset morphing to enrich the metadata
and, therefore, to improve the results of MtL processes. As future work we intend
to explore the multiple avenues offered to machine learning by dataset morphing.
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Abstract. For a given set of samples with a numeric variable and a
set of nominal variables, we address a problem of constructing a his-
togram drawn by K bins with variable widths, so as to have relatively
large numbers of narrow bins for some ranges where numeric values dis-
tribute densely and change substantially, while small numbers of wide
bins for the other ranges, together with the characteristic nominal values
for describing these bins as annotation terms. For this purpose, we pro-
pose a new method, which incorporates a change point detection method
to numeric values based on an L1 or L2 error criterion, and an anno-
tation terms identification method for these bins based on the z-score
with respect to the distribution of nominal values. In our experiments
using four datasets of humidity deficit (HD) collected from vinyl green-
houses, we show that our proposed method can construct more natu-
ral histograms with appropriate variable bin widths than those with an
equal bin width constructed by the standard method based on square-
root choice or Sturges’ formula, the histograms constructed with the L1
error criterion has more desirable property than those with the L2 error
criterion, and our method can produce a series of naturally interpretable
annotation terms for the constructed bins.
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1 Introduction

Histogram visualization has been widely used to analyze distribution of data. In
general, the bin width of the histogram is a fixed size. It is important to set this
bin width properly, and various methods and indicators have been proposed [3,6].
The agricultural environmental data dealt with in this study are often concen-
trated because they are controlled by farmers so as to take desirable values.
In addition, concentrated parts might contain multiple agriculturally important
sets. When such data are analyzed using a fixed-width histogram, important
information is buried in one bin, and it is difficult to achieve further analysis.

To overcome this shortcoming, for a set of numeric data, we attempt to con-
struct a histogram with variable bin-width where relatively large numbers of
narrow bins for densely distributed and drastically changed values, while small
numbers of wide bins for the other values. For this purpose, we propose a new
method based on change point detection for the arranged values in ascending
order. In our method, we produce a step function consisting of K steps based on
an L1 or L2 error criterion, and then by using these change points information,
we construct a histogram drawn by K bins with variable widths. In our experi-
ments using real datasets collected from four vinyl greenhouses, we confirm that
our proposed method can construct more natural histograms with appropriate
variable bin widths than those with an equal bin width.

The paper is organized as follows. Section 2 describes related work. Section 3
gives our problem setting and proposed method. In Sects. 4 and 5, we report
and discuss experimental results using real world data. Finally, Sect. 6 concludes
this paper and address the future work.

2 Related Work

In this study, for the purpose of revealing the underlying mechanism of agri-
cultural environment data, we employ the change points detection method [5]
to individually determine adequate bin-widths for our histogram construc-
tion, where this detection method is formulated as a regime-switching problem
(e.g., [4,5]). This problem setting is different from anomaly detections for sta-
tistically significant short-term outliers compared to stationary models and the
statistical machine learning frameworks that set up stationary models as mixed
models of probability distributions [2].

There are also some works about histogram with variable bin-width. For
example, a method of constructing the equal-area histogram (also called the
percentile mesh) of Scott et al., and a Denby & Mallows method to construct
an intermediate histogram of equal-width bins and equal-areas were proposed
[3,6]. In particular, these techniques are said to be effective in identifying sharp
peaks, etc. These methods are based solely on the data distribution attributed
to the bins. On the other hand, in the proposed method, since the histogram is
constructed based on the minimization of the empirical error by the L2 and L1
distance scales, the proposed method and the conventional method are essentially
different.
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There are some works about evaluating environmental control technology by
collecting various agricultural data and analyzing those data [1,7]. For example,
there are works that draw environmental changes as a graph and give reasons to
each change for a specific day. On the other hand, there is no discussion about
the cause by automatically dividing and visualizing biased data.

3 Proposed Method

For a given set of samples described by both a numeric variable and a set of
nominal variables, we propose a new method for producing a histogram with
variable bin-width, some of whose bins are annotated by characteristic nominal
variables. More specifically, we first construct a histogram with variable bin-
width from the numeric values, and then provide annotation terms with some of
the obtained bins by using the nominal variables. In what follows, we describe
the details of our proposed algorithm.

3.1 Histogram Construction

For a given set of samples described by a numeric variable, X = {xt | t =
1, · · · , T}, we first construct a histogram with variable bin-width. Similarly to the
case of a standard histogram with a fixed bin-width, its horizontal and vertical
axes correspond to the range of numeric values and the number of samples in the
range, respectively. More specifically, we divide the entire range of numeric values
into a series of adjacent intervals, and then compute the frequency of samples
that fall into each interval. In this paper, we also express such a histogram as a
step function where a variable s and a function h(s) are used for representing
a numeric value and frequency, respectively. For instance, when the numbers of
samples in intervals, 0 ≤ s ≤ 10 and 11 ≤ s ≤ 20, are 20 and 30, respectively,
this step function returns the frequency h(s) = 20 if 0 ≤ s ≤ 10, and h(s) = 30
if 11 ≤ s ≤ 20.

For a predetermined number of bins denoted by K, we describe an algorithm
for constructing a standard histogram with a fixed bin-width using the above
notations. For a given set X , we first arrange the numeric values in ascending

(a) Sorting in ascending order (b) Detecting change points (c) Visualizing histogram

Fig. 1. Procedure of our proposed method
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Algorithm 1. Variable Bin-width Histogram
1: Input: A numeric data set X = {x1, . . . , xT }, the number of bins K
2: Output: Variable bin-width histogram h(s)
3: Initialize: Sort the elements of X in ascending order so as to satisfy xt ≤ xt+1

4: Find change-points G = {0 ≤ G(k) ≤ T ; 0 ≤ k ≤ K} by minimizing the objective
function �2K(G) or �1K(G)

5: Set end-points F = {F (k) ← xG(k); 0 ≤ k ≤ K}
6: Enumerate the number of elements h(s) ← |Tk|, Tk = {s ∈ [x0, xT ]; F (k − 1) <

s ≤ F (k)}

order so as to satisfy xt ≤ xt+1 for each t(< T ). Then, in order to assign each
sample to one of K adjacent intervals, after setting the bin-width δ to δ =
(xT − x1)/K, we produce the end-point for the k-th interval as F (k) = x1 + kδ
where k ∈ {1, · · · ,K − 1}. Here, by using two additional values, F (0) = x0 and
F (K) = xT , we consider a set of end-points defined by F = {F (0), · · · , F (K)},
where x0 means some value smaller than x1. Finally, since the samples belonging
to the k-th bin are obtained as Tk = {t | F (k−1) < xt ≤ F (k)}, we can construct
a histogram as a step function defined by h(s) = |Tk|, where k = �(s − x1)/δ�
and s ∈ [x0, xT ]. Hereafter, this method is referred to as NM (Naive histograM).
Evidently, the NM method might have a severe limitation when the distribution
of values X contains both coarse and dense parts. Namely, we want to have
relatively large numbers of narrow bins for some ranges when values distribute
densely and change substantially, and to have small numbers of wide bins for
the other ranges.

The idea of the proposed method is shown in Fig. 1. First, we sort the numeric
data set X in ascending order like Fig. 1(a), where the horizontal and the vertical
axes respectively show the order and the value. Next, we detect change points
from the sorted values by minimizing the errors between the value of data points
and approximated step functions like Fig. 1(b), where the vertical red line is the
change point. When analyzing data, it is important how the number of elements
changes before and after the change point. Now, data between change points can
be interpreted as a gradual change in value. Therefore, by separating elements
at change points, elements can be divided into major K sets. Finally, we count
the number of elements between the change points, and draw a histogram as
shown in Fig. 1(c). The overview of our algorithm is as follows.

In Algorithm 1, G is a set of change points, �2K(G) and �1K(G) are objective
functions used to find change-points, and F (k) ← xG(k) is a value of each change-
point G(k). The details of the algorithm are as follows.

As mentioned above, we produce a step function so as to minimize the sum
of errors with respect to X . For this purpose, by employing either L2-norm or
L1-norm as a standard error criterion, we can derive two different change-point
detection methods, which are simply referred to as the L2 and L1 methods,
respectively. First, we consider the case that there is no change-point, which
means that the sum of errors is minimized by only one value. Then, in case
of the L2 method, the L2-norm error �20 =

∑T
t=1(xt − μ(1, T ))2 is minimized
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by using the mean value μ(1, T ), where the mean function μ(a, b) is defined by
μ(a, b) = (b−a+1)−1

∑b
t=a xt. On the other hand, in case of the L1 method, the

L1-norm error �10 =
∑T

t=1 |xt − ν(1, T )| is minimized by using the median value
ν(1, T ), where the median function ν(a, b) is defined by ν(a, b) = x(a+b)/2 if a+b
is even; otherwise (x(a+b)/2 + x(a+b)/2+1)/2, Here note that we can efficiently
obtain ν(a, b) in case that the values in X are sorted in advance. Next, we
consider the case that there exists only one change-point expressed by a sample
index τ . Then, the following formulae respectively minimize the L2-norm error
�21(τ) and L1-norm error �11(τ):

�21(τ) =
τ∑

t=1

(xt − μ(1, τ))2 +
T∑

t=τ+1

(xt − μ(τ + 1, T ))2

�11(τ) =
τ∑

t=1

|xt − ν(1, τ)| +
T∑

t=τ+1

|xt − ν(τ + 1, T )|.

Evidently, we also need to minimize �21(τ) and �11(τ) with respect to τ .
Now, we generalize these error functions, �21(τ) and �11(τ). Namely, in case

that the number of change-points is K − 1, let G(k) be a sample index which
corresponds to the k-th change point. Again, by using two additional indices,
G(0) = 0 and G(K) = T , we can consider a set of sample indices defined by
G = {G(0), · · · , G(K)}. Then, we can express the generalized error functions for
�2K(G) and �1K(G) as follows:

�2K−1(G) =
K∑

k=1

G(k)∑

t=G(k−1)+1

(xt − μ(G(k − 1) + 1, G(k)))2

�1K−1(G) =
K∑

k=1

G(k)∑

t=G(k−1)+1

|xt − ν(G(k − 1) + 1, G(k))|.

Therefore, we can formalize our change-point detection problem as the minimiza-
tion problem of �K(G) with respect to G. In order to obtain G, we employ an
efficient local improvement algorithm described in [5]. After obtaining the set of
sample indices, G, we can produce a set of end-points F by setting F (k) = xG(k)

for k ∈ {0, · · · ,K}, where recall that x0 means a value smaller than x1. Thus,
we can construct the following histogram with variable bin-widths:

h(s) = |Tk|, where F (k − 1) < s ≤ F (k), s ∈ [x0, xT ].

Evidently, we can analyze rough structure of histogrmas by setting the number
K of bins to a small one, while some details of them by relatively large ones.

3.2 Annotation Generation

After obtaining the histogram with variable bin-width from a set of samples
with a numeric variable, we generate annotation terms for these obtained bins
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from a set of the same samples with nominal variables. Let Y(i) = {y
(i)
t | t =

1, · · · , T} be a set of nominal values for the i-th variable, where i ∈ {1, · · · , I},
I denotes the number of variables, and we assume that each nominal variable
has only one of J (i) categories identified by positive integers from 1 to J (i), i.e.,
y
(i)
t ∈ {1, · · · , J (i)} . Moreover, we assume that each sample with numeric value

xt has the corresponding nominal variables {y
(1)
t , · · · , y

(I)
t }.

For a pair of the i-th variable and its category j ∈ {1, · · · , J (i)}, we can define
the set of samples such that y

(i)
t = j by T (i,j) = {t | y

(i)
t = j}, and compute the

empirical probability p(i,j) by p(i,j) = |T (i,j)|/T . For the k-th bin of the obtained
histogram, we can compute the expected number of samples such that y

(i)
t = j

and its standard deviation by p(i,j)|Tk| and
√

p(i,j)(1 − p(i,j))|Tk|. Thus, we can
compute the following z-score z

(i,j)
k of appearing the samples to be y

(i)
t = j in

the k-th bin.

z
(i,j)
k =

|T (i,j) ∩ Tk| − p(i,j)|Tk|
√

p(i,j)(1 − p(i,j))|Tk| . (1)

In case that the z-score z
(i,j)
k is substantially large, we can consider that the i-th

variable with the j-th category appears characteristically in the k-th bin. In our
proposed method, for a predetermined number H, we output the top-H pairs
of the i-th variable and j-th category as an annotation term to the k-th bin,
according to the z-score z

(i,j)
k .

4 Experimental Evaluations

4.1 Datasets and Settings

In this section, we confirm the validity of the proposed method by experimental
evaluation using real datasets. Specifically, the effectiveness is evaluated by ana-
lyzing environmental data obtained from vinyl greenhouses of four rose farmers,
which we call House A, B, C and D, in Shizuoka prefecture. In this paper, we
employed the humidity deficit (HD), which is an indicator of how much water
vapor can be contained at a particular temperature and humidity. Controlling
HD within a specific range is considered important for the growth of agricul-
tural products. The IoT device we used does not have a sensor that measures
HD directly, so it was calculated using the following formula:

HD = (100 − Humi) ∗
217 ∗ 6.1078∗10

7.5∗Temp
Temp+237.3

Temp+273.15

100
. (2)

where Humi and Temp represents humidity and Celsius temperature, respec-
tively, and HD values of 3 to 6 g/m3 are considered to be optimal. The data
consists of HD observed from 00:00 on March 27, 2018, to 24:00 on May 7, 2018,
i.e. observed for 42 days. 288 data points are contained per day so the data of
each house is represented as 12,096 values.
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4.2 Results of Fixed Bin-Width Histogram

First, we look over the fixed bin-width histograms shown in Fig. 2, where
histograms of HD observed in each rose-farm-vinyl-house are depicted for each
number of bins, K = 16, 32, 128. According to Sturges’ formula and Square-root
choice, for the data with the number of data points, T = 12, 096, the appropriate
number of bins is �log2 T + 1� ≈ 15 and

√
T ≈ 100, in an existing fixed-width

histogram. Figure 2(a) shows the histograms with the number of bins as K = 16,
which is nearly corresponding to the results of Starges’ formula, and Fig. 2(b) is
those with the number of bins as K = 32. Figure 2(c) includes histograms with
K = 128, which is roughly corresponding to the results of Square-root choice
criteria. From these figures, we can observe that many data points are distributed
relatively densely in the range HD < 10 than in the range 10 < HD. That is,
at K = 128, in the range of 10 < HD where the data points are sparse, the
division is too fine and the redundancy is high. On the other hand, at K = 16
and K = 32, the division is coarse and the resolution is low in the range of
HD < 10 where the data points are dense. From these results, it is necessary to
increase the resolution of densely distributed data and to reduce the resolution
of sparsely distributed data.

4.3 Comparing Histograms by Changing the Number of Bins

Next, we compared histograms by changing the number of bins. Figures 3 and 4
show the variable bin-width histograms obtained by the L1 and L2 methods,
respectively. When the number of bins K is set to 8, as shown in Figs. 3(a) and
4(a), we can see that almost half of the bins are constructed in the rang of
HD < 10, and these numbers of bins increase when K becomes large as shown
in Figs. 3 and 4. These characteristics are inherently dofferent those obtained
in Fig. 2. In addition, as to House D, although the NM method cannot detect
outlier points like HD � 0 at K = 16 as shown in Fig. 2, the L2 and the L1
method can detect some outlier points as separated bin, at all the number of
bins.

To summarize the findings obtained from these figures: (1) histograms have
similar tendency regardless of the number of bins, K, (2) data points densely
distributed, like 2 < HD < 7, are finely divided in the variable bin-width his-
togram, and (3) in the proposed histogram, outlier data points can be detected
as a separated bin.

Even when the data points of the data set X are distributed in a biased man-
ner, the proposed method can automatically adjust the bin width appropriately
so that the resolution is low in the sparse part and the resolution is high in the
dense part. In order to quantitatively confirm that the data points are assigned
to each bin without concentrating on some bins, we calculate the entropy defined
by the following equation for the constructed histogram h(·):

E(h(·)) = −
K∑

k=1

|Xk|
T

log
|Xk|
T

= −
K∑

k=1

h(F (k))
T

log
h(F (k))

T
. (3)
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Fig. 2. Results of fixed bin-width histogram

Fig. 3. Results of variable bin-width histogram based on L1 norm

Fig. 4. Results of variable bin-width histogram based on L2 norm

Fig. 5. Entropy: Concentration degree of data points
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Table 1. Annotation terms of each bin (House C)

Rank Proposed method (L1, K = 8) Proposed method (L2,K = 8) NM method (K = 8)

Bin term z-score Bin term z-score Bin term z-score

1 1 Humi80-90 81.56 1 Humi80-90 72.68 8 Temp35-40 70.99

2 2 Humi70-80 67.06 5 Humi50-60 66.80 6 Temp30-35 53.44

3 4 Humi50-60 58.22 8 Humi20-30 59.68 3 Humi50-60 50.34

4 7 Temp30-35 53.66 8 Temp30-35 59.14 5 Humi40-50 49.65

5 3 Humi60-70 49.61 4 Humi60-70 52.80 1 Temp20-25 47.53

6 6 Humi40-50 48.14 6 Humi40-50 52.23 1 Humi80-90 46.74

7 8 Humi20-30 46.71 3 Humi70-80 50.33 6 Humi20-30 46.08

8 7 Humi30-40 46.55 8 Humi30-40 45.95 6 Humi30-40 46.00

9 2 Temp20-25 43.21 5 Temp25-30 42.78 3 Temp25-30 43.90

10 5 Humi40-50 42.46 7 Humi40-50 40.68 4 Humi40-50 42.02

When E(h(·)) holds high value, it means that the data points are divided into
bins evenly, which is the desired histogram. The result of quantitative evaluation
based on the entropy of Eq. (3) is shown in Fig. 5, where the horizontal and the
vertical axes stand for the number of bins and the entropy E(h(·)), respectively.
It can be seen that the histogram constructed by the L1 method has desirable
properties because the value of E(h(·)) is larger than the L2 method, also larger
than the NM method.

4.4 Annotating to Each Bin

Finally, we generated annotation terms for each bin of histograms constructed
by our proposed and the naive methods. We employed time-window (Hour),
humidity (Humi), and Celsius temperature (Temp) as an annotation term, e.g.,
eight terms for Hour form “Hour0-3” to “Hour21-24”, ten terms for Humi from
“Humi0-10” to “Humi90-100”, and ten terms for Temp from “Temp0-5” to
“Temp45-”. where eacg postfix means the range of values.

Table 1 shows the annotation result for the histogram of House C, where
10 terms with the highest z-score values for each bin are shown. The value of
the bin column in these tables means what number bin from the left (lowest).
For example, when the value of HD is large as in the 7th and 8th bins, higher
temperature such as Temp30-35 and Temp35-40 are extracted as a characteristic.

5 Discussion

Basically, in a viewpoint of our research purpose, we want to construct a his-
togram with a relatively small number of bins, K, due to the following two
reasons. First, we want to visualize the distribution of numeric values as a his-
togram consisting of high and coarse resolution parts by virtue of individual
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variable bin-widths. Second, we want to generate statistically significant anno-
tation terms for the obtained bins according to the z-score. Below we discuss that
our constructed histograms with annotation terms meet our research purpose.

From the results shown in Fig. 2 by the NM method, we can observe that
the numeric values are concentrated in a narrow range between 0 and 7. More
specifically, in the case of K = 16, we can observe that the concentrated peaks
locate around left parts in this range for House A and B, while around right
parts for House C and D. On the other hand, in the case of K = 128, we can
clearly observe that the concentrated peaks for House A, B, C, and D have
uniquely different characteristics. This means that the histograms by the NM
method with K = 16 are not enough for analyzing these situations. Besides, it
is not easy to visually identify each bin in the case of K = 128, together with
bringing about the difficulty of identifying annotation terms for many bins.

From the results shown in Figs. 3 and 4 by the proposed method, we can also
observe that the numeric values are concentrated in a narrow range between
0 and 7. More speciffically, even in the case of K = 8, from the results by
our proposed methods, we can roughly observe that the concentrated peaks for
House A, B, C, and D have uniquely different characteristics. Moreover, in the
case of K = 16, we can observe quite similar characteristics for this range, which
are observed from the results by the NM method with K = 128 shown in Fig. 2.
These experimental results indicate that in a viewpoint of our research purpose,
we can successfully visualize the distribution of numeric values as a histogram
consisting of high and coarse resolution parts by virtue of individual variable
bin-widths.

Finally, we discuss the validity of generated annotation terms by using the
results from House C shown in Table 1. From this table, for the constructed
bins by each method, we can consistently observe that the annotation terms
indicating higher Humi values are generated for the bins with lower numbers
indicating lower HD values, and the annotation terms using the Hour variable
are not generated. Here, we can easily confirm that the validity of these obser-
vations from the definition of HD shown in the Eq. (2), i.e., the HD values have
a negative correlation to the Humi values, and are independent of the Hour
values. On the other hand, from Figs. 3(a) and 4(a), we can see that the second
bin from the left constructed by the L1 method can be regarded as unique one
not constructed by neither the NM method nor the L2 method. It might be
notable that the annotation term “Humi70-80” is generated for this unique bin,
which naturally interpolates the degradation of the Humi values. We believe
that these experimental results support the vitality of the L1 method equipped
with annotation generation.

6 Conclusion

In this study, for the purpose of constructing a histogram drawn by K bins with
variable widths and extracting the characteristic nominal values for describing
these bins as annotation terms, we proposed a new method, which applies a
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change points detection method based on an L1 or L2 error criterion, and iden-
tifies some annotation terms for the bins in our constructed histogram based on
the z-score with respect to the distribution of nominal values. From experimen-
tal evaluations using the dataset of humidity deficit (HD) collected from vinyl
greenhouses, we confirmed the following results: (1) our proposed method can
construct more natural histograms with appropriate variable bin widths com-
pared to histograms with an equal bin width; (2) the histograms constructed
with the L1 error criterion has more desirable property than those with the
L2 error criterion; and (3) our method can produce a series of naturally inter-
pretable annotation terms for the constructed bins. As a future task, further
experiments are needed where we utilize various types of datasets obtained from
other domain such as educational field, also including multivariate data, and
compare to existing methods proposed in previous studies. In addition, assum-
ing application to agricultural scenarios, we plan to extend our method so that
it can be applied to continuously obtained streaming data and add discussions
with practical utility.
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Abstract. In a matrix representing a numerical dataset, a bicluster is a
submatrix whose cells exhibit similar behavior. Biclustering is naturally
related to Formal Concept Analysis (FCA) where concepts correspond
to maximal and closed biclusters in a binary dataset. In this paper, a
unified characterization of biclustering algorithms is proposed using FCA
and pattern structures, an extension of FCA for dealing with numbers
and other complex data. Several types of biclusters – constant-column,
constant-row, additive, and multiplicative – and their relation to interval
pattern structures is presented.

Keywords: Biclustering · FCA · Gene expression · Pattern structures

1 Introduction

Given a numerical dataset represented as a table or a matrix with objects in
rows and attributes in columns, the objective of clustering is to group a set
of objects according to all attributes using a similarity or distance measure. By
contrast, biclustering simultaneously operates on the set of objects and the set of
attributes, where a subset of objects can be grouped w.r.t. a subset of attributes,
based on user-defined constraints such as having constant values, constant values
within columns or rows. Then, if a cluster represents object relations at a global
scale, a bicluster represents it at a local scale w.r.t. the set of attributes. More
generally, biclustering searches in a data matrix for sub-matrices or biclusters
composed of a subset of objects (rows) and a subset of attributes (columns)
which exhibit a specific behavior w.r.t. some criteria.

Biclustering is an important tool in many domains, e.g. bioinformatics and
gene expression data, recommendation and collaborative filtering, text mining,
social networks, dimensionality reduction, etc. As surveyed in [17], biclustering
received a lot of attention in biology, and especially, for analyzing gene expression
data, where biologists are searching for a set of genes whose behavior is consis-
tent across certain experiments/conditions [3,4,20]. Biclustering is still actively
studied in biology [9,18,19]. Biclustering is also actively studied in recommen-
dation systems [12,13], where the objective is to retrieve a set of users sharing
similar interest across a subset of items instead of the set of all possible items.
c© Springer Nature Switzerland AG 2019
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Table 1. Examples of some bicluster types.

Following the lines of [8–10], in this paper we are interested in biclustering
algorithms based on “pattern-mining” techniques [1]. These techniques allow an
exhaustive and flexible search with efficient algorithms. Moreover, authors in [9]
discuss the benefits of using pattern-based biclustering w.r.t. scalability require-
ments, and mostly w.r.t. generality and diversity of the types of biclusters which
are mined. In addition, they point out the fact that pattern-based biclustering
algorithms can naturally take into account overlapping biclusters, and as well,
additive, multiplicative and symmetric assumptions concerning biclusters.

In this paper, we revisit all these aspects and propose an alternative frame-
work for pattern-based biclustering based on Formal Concept Analysis (FCA
[7]). In [21], authors directly reuse the FCA framework and adapt the algorithms
for biclustering. By contrast, in this paper, we go further and we consider the
so-called “pattern-structures”, an extension of FCA for dealing with complex
values such as numbers, sequences, or graphs [6]. We especially reuse “interval
pattern structures” – which are detailed in the following – for defining a unique
framework for pattern-based biclustering. In this way, we introduce an alterna-
tive approach than [9], as we do not need to apply any scaling, discretization, or
transformation procedures over the data to discover biclusters.

This paper is organized as follows. First we describe some types of biclus-
tering in Sect. 2 and basic definitions about FCA in Sect. 3. We then propose
our approach of biclustering based on interval pattern structures in Sect. 4 and
present the empirical experiments in Sect. 5. Finally, we conclude our work and
give some future works in Sect. 6.

2 Biclustering

In this section, we recall the basic background and discuss illustrative examples
of the different types of biclusters [17]. We consider that a dataset is a matrix
(G,M) where G is a set of objects and M is a set of attributes. The value
of m ∈ M for object g ∈ G is written as m(g). In this paper, we work with
numerical datasets. In such a dataset, it may be interesting to find which subset
of objects have the same values w.r.t. a subset of attributes. Regarding the matrix
representation, this is equivalent to the problem of finding a submatrix where
all elements have the same value. This task is called biclustering with constant
values, which is a simultaneous clustering of the rows and columns of a matrix.
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Table 2. A numerical context and an SC bicluster in gray.

Moreover, given a dataset (G,M), a pair (A,B) (where A ⊆ G, B ⊆ M)
is a constant-column (CC) bicluster iff ∀m ∈ B,∀g, h ∈ A,m(g) = m(h). An
example of CC bicluster is illustrated in Table 1a. CC biclustering have more
relaxed variations, namely similar-column (SC) biclustering. With these relax-
ations, instead of finding biclusters with exactly constant columns, we can obtain
biclusters whose columns have similar values as shown in Table 1b. These types
of biclusters are widely used in recommendation systems to detect a set of users
sharing similar preference over a set of items.

An additive bicluster is illustrated in Table 1c. Here we see that there is a con-
stant difference between any two columns. For example, each value in the second
column is two more than the corresponding value in the fourth row. Therefore,
given a dataset (G,M), a pair (A,B) (where A ⊆ G, B ⊆ M) is an additive
bicluster iff ∀g, h ∈ A,∀m,n ∈ B,m(g)−n(g) = m(h)−n(h); or a multiplicative
bicluster iff ∀g, h ∈ A,∀m,n ∈ B,m(g)/n(g) = m(h)/n(h). Both additive and
multiplicative biclusters were studied in the domain of gene expression dataset
[4,5,16]. They represent a set of genes having similar expression patterns across
a set of experiments.

Bicluster discovery is naturally related to FCA. In this paper, we show that an
extension of FCA called partition pattern structures can be used for discovering
biclusters. In the following section, we explain some basic theories about FCA
and pattern structures.

3 FCA and Pattern Structure

In a binary matrix, FCA tries to find maximal submatrices with a constant value
across all of its cells. Therefore, a formal concept is a bicluster with constant
value. More precisely, FCA is a mathematical framework based on lattice theory
and used for classification, data analysis, and knowledge discovery [7]. From a
formal context, FCA detects all formal concepts, and arranges them in a concept
lattice. FCA is restricted to specific datasets where each attribute is binary (e.g.
has only yes/no value). This limitation prohibits FCA to work in more complex
datasets, e.g. a user-rating matrix or a gene expression dataset, which are not
binary. Therefore, FCA is then generalized into pattern structures [6].

A pattern structure is a triple (G, (D,�), δ), where G is a set of objects, (D,�)
is a complete meet-semilattice (of descriptions), and δ : G → D maps an object to
a description. The operator � is a similarity operation that returns the common
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Table 3. Example of additive column alignments. (a) Original table and the additive
bicluster in gray, (b) alignment on m1, (c) alignment on m2.

elements between any two descriptions. It is verified that c � d = c ⇔ c � d.
A description can be a number, a set, a sequence, a tree, a graph, or another
complex structure. The Galois connection for a pattern structure (G, (D,�), δ)
is defined as:

A� = ⊔

g∈A

δ(g), A ⊆ G, (1)

d� = {g ∈ G|d � δ(g)}, d ∈ D. (2)

A pattern concept is a pair (A, d), A ⊆ G and d ∈ D, where A� = d and d� = A.
FCA can be understood as a particular pattern structure. The description of

an object is a set of attributes, and the � operator between two description is
the intersection of two sets of attributes.

4 Biclustering Using Interval Pattern Structure

In gene expression data, we often have a numerical matrix. Biclustering in such
matrix should find submatrices whose cells present regularities, e.g. each column
has similar value in the case of similar-column (SC) biclustering. SC biclustering
task is similar to FCA in the sense that FCA also searches consistent submatrix.
But since SC biclustering works on a numerical matrix, we need to generalize
FCA to a pattern structure. One such generalization is where the description
of each object is a set of numerical values and the similarity between any two
descriptions is the intervals that encompass those values. This kind of pattern
structure is called an interval pattern structure.

Interval pattern structures (IPS) was introduced by Kaytoue et al. [14] to
analyze gene expression data (GED). A GED is typically represented as a 2-D
numerical matrix with genes as rows and conditions as columns, as shown in
Table 2. In this matrix, the submatrix ({g1, g2, g3}, {m1,m2,m3,m5}) is an SC
bicluster, defined by the parameter θ = 1. It means that the range of values of
each column in the submatrix has the length of at most 1.

4.1 Interval Pattern Structure

In IPS, a description is several intervals describing the values of every col-
umn. For example, the description of g1 – denoted by δ(g1) – in Table 2 is
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Table 4. Some interval pattern concepts with θ = 1 from Table 2.

Extent Intent

{g1} 〈[1, 1][2, 2][2, 2][1, 1][6, 6]〉
{g1, g3} 〈[1, 2][2, 2][1, 2] ∗ [6, 6]〉
{g1, g4} 〈∗ ∗ [2, 2] ∗ [6, 7]〉
{g1, g2, g3} 〈[1, 2][1, 2][1, 2] ∗ [6, 6]〉
{g1, g2, g3, g4} 〈∗ ∗ [1, 2] ∗ [6, 7]〉

〈[1, 1][2, 2][2, 2][1, 1][6, 6]〉. The similarity operator (�) for IPS is defined as the con-
vex hull of two intervals. Therefore, the similarity of δ(g1) and δ(g4) – denoted by
δ(g1) � δ(g4) – is 〈[1, 8][2, 9][2, 2][1, 6][6, 7]〉.

Given a subset of objects A ⊆ G, Eq. 1 says that A� is the similarity of
the description of all objects in A. Therefore, in IPS the corresponding A� is
the convex hull of the descriptions of all objects in A. For example, with A =
{g1, g2, g4}, A� = 〈[1, 8][1, 9][1, 2][0, 6][6, 7]〉.

Furthermore, given a description d ∈ D, Eq. 2 indicates that d� is the set of
all objects whose description subsumes d. In IPS, a description d1 is subsumed
by another description d2 – denoted by d1 � d2 – if every interval in d2 is a sub
interval in the corresponding interval in d1. Notice that in IPS, a sub interval
subsumes a larger interval. Therefore, if dx = 〈[1, 8][1, 9][1, 2][0, 6][6, 7]〉, then
d�
x = {g1, g2, g4}. Since δ(g3) = 〈[2, 2][2, 2][1, 1][7, 7][6, 6]〉, g3 is not included in

d�
x because the fourth interval ([7, 7]) is not sub interval of the fourth interval of

dx ([0, 6]).
Following the definition of a concept of any pattern structure (in Sect. 3), an

interval pattern concept is a pair (A, d), for A ⊆ G and d ∈ D, where A� = d
and d� = A. Furthermore, the set of interval pattern concepts are partially
ordered, and can be depicted as a lattice. An interval pattern concept (A1, d1)
is a subconcept of (A2, d2) if A1 ⊆ A2 (equivalently d2 � d1).

4.2 Similar-Column Biclustering

A similar-column (SC) bicluster can be found in an interval pattern concept
by introducing a parameter θ. This parameter acts as the maximum difference
between any two values to be considered as similar. For example, with θ = 1,
the value 1 is similar to 2, but not similar to 3.

In calculating the similarity between any two descriptions, if the length of
an interval is larger than θ, then the star sign (∗) is put as the interval. From
Table 2, δ(g2) � δ(g4) without θ is 〈[2, 8][1, 9][1, 2][0, 6][6, 7]〉, and with θ = 1 is
〈∗ ∗ [1, 2] ∗ [6, 7]〉.

The similarity � between ∗ and any other interval is ∗. For example, sup-
pose that we have two descriptions dx = 〈[1, 1][2, 3]〉 and dy = 〈[2, 2]∗〉. Then,
dx � dy = 〈[1, 2]∗〉. This also means that ∗ is subsumed by any other interval.
Therefore, the description of each object in Table 2 subsumes 〈∗ ∗ [1, 2] ∗ [6, 7]〉.
With θ = 1, ({g1, g2, g3, g4}, 〈∗ ∗ [1, 2] ∗ [6, 7]〉) is an interval pattern concept.
Some interval pattern concepts from Table 2 are listed in Table 4.
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Table 5. Example of multiplicative column alignments. (a) Original table and the
multiplicative bicluster in gray, (b) alignment on m2.

From an interval pattern concept, an SC bicluster can be formed by the
concept’s extent and the set of columns where the interval is not ∗ in the con-
cept’s intent. For example, from the concept ({g1, g2, g3}, 〈[1, 2][1, 2][1, 2]∗[6, 6]〉),
({g1, g2, g3}, {m2,m2,m3,m5}) is an SC bicluster with θ = 1.

By using IPS with parameter θ, constant-column biclustering is a specific
case of SC biclustering. It can be noticed that with θ = 0, we obtain intervals
with length 0, and that corresponds to constant-column biclusters.

4.3 Additive and Multiplicative Biclustering

An additive bicluster is a submatrix where there is a constant (or similar) differ-
ence between any two columns across all of its rows (see Sect. 2). Constant (or
similar) column biclustering is a specific case of additive biclustering. Using this
fact, we can obtain additive biclusters by aligning (similar to [9]) each column,
and then find interval pattern concepts on the alignments.

Table 3 provides an example of column alignment for additive biclustering.
The original matrix is shown in Table 3a, having 4 rows and 4 columns. The
submatrix ({g1, g2, g3}, {m2,m3,m4}) is an additive bicluster in the original
matrix. This bicluster can be found by applying constant-column or similar-
column biclustering to the column alignments. Table 3b shows the first column
alignment, can be seen by the consistency of the first column (m1). In this exam-
ple, each object value is converted such that its m1 value is equal to the value
of m1 in g1. This means that the values 0, −2, 2, and 3 are added to g1, g2, g3,
and g4 respectively. This alignment is repeated for every column. Table 3c is the
alignment of m2, by adding 0, −3, −2, and −5 to g1, g2, g3, and g4 respectively.

Constant-column (or similar-column) biclustering is applied to every column
alignment to find additive biclusters. In the second column alignment (Table 3c),
we obtain ({g1, g2, g3}, {m2,m3,m4}) as a constant-column bicluster. This corre-
sponds to the additive bicluster ({g1, g2, g3}, {m2,m3,m4}) in the original matrix
(Table 3a).

Multiplicative biclusters can also be obtained using similar column align-
ment. In multiplicative column alignment, instead of adding values to each row,
we multiply each row such that a column has a constant value. Table 5b shows
the second column alignment of the original matrix in Table 5a. Here, a con-
stant value is achieved for m2 by multiplying g1, g2, g3, and g4 by 1, 1

3 , 1
2 ,

and 1
2 respectively. Then, by applying IPS to each alignment, we can obtain

the multiplicative biclusters. For example, constant-column biclustering using
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Fig. 1. Effect of θ on a 500 × 60 dataset with min col = 20 and min row = 1.

IPS in Table 5b returns ({g1, g2, g3}, {m2,m3,m4}), which is the corresponding
multiplicative bicluster in Table 5a.

4.4 Concept Mining

Being a generalization of FCA, the mining of interval pattern concepts can be
performed using some existing algorithms that generate a complete list of formal
concepts. In this paper, we use CloseByOne (CbO) [15] since it requires us to only
define the similarity (�) and subsumption relation (�) of any two descriptions.

In a given numerical matrix, we may obtain an exponential number of interval
pattern concepts. To reduce the number of concepts, we should introduce some
parameters that can filter out some uninteresting concepts.

The first parameter, θ, is previously mentioned in Sect. 4.2. It limits the
length of intervals, and later in Sect. 5 we demonstrate the effect of θ on the
runtime and number of concepts.

The second parameter min col is the minimum number of columns in the
retrieved biclusters. The number of columns in a bicluster corresponds to the num-
ber of non-star intervals in the concept’s intent. For example, the concept with
intent 〈∗ ∗ [2, 2] ∗ [6, 7]〉 gives us a bicluster with two columns (the third and the
fifth). To take into account the min col parameter, it is necessary to modify the
definition of similarity between any two descriptions. In addition to the definition
of � in Sect. 4.1, we verify if the number of non-star intervals in the description.
The number of non-star intervals should be more than mincol. If not, we “skip”
the concept, by converting each interval to ∗. In Table 2 with θ = 1, g1 � g4 is
〈∗ ∗ [2, 2] ∗ [6, 7]〉. Using min col = 3 for example, g1 � g4 becomes 〈∗ ∗ ∗ ∗ ∗〉.

Related to min col is min row, a parameter that put a constraint on the
number of rows in a bicluster. It corresponds to the number of objects in a con-
cept’s extent. With the inclusion of min row, the calculation of Y � (all objects
whose description subsumes Y ) is performed only if the number of objects in Z
(extent of the candidate concept) is at least min row.
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Fig. 2. Effect of min col (with θ = 1 and min row = 5) and min row (with θ = 1 and
min col = 6) on a 500 × 60 dataset.

5 Experiments

In this section, we report some experimental results to show the scalability of
IPS in the task of biclustering. By using CbO as concept miner, the space/time
complexity of IPS follows CbO (see [15]). We use the synthetic datasets pro-
vided by Henriques and Madeira [9]: 500 × 60 and 1000 × 100, with hidden SC
biclusters.

First, we investigate the effect of θ on the runtime and the number of con-
cepts. The results are illustrated in Fig. 1. The left figure confirms that the larger
θ generates more interval pattern concepts, and generally longer runtime as it
can be seen in the right figure. The θ = 0.4 requires longer runtime than θ = 0.5
to 0.9. This is normal since for similar number of concepts, the probability of
smaller θ obtaining a concept is smaller than the larger θ. Using CbO with
smaller θ, a candidate concept will have shorter intervals in its intent, hence
smaller number of objects whose description subsumes this interval.

The effect of min col is shown in Fig. 2 left. Lesser min col produces more
concepts, and therefore longer runtime. Similarly, Fig. 2 right shows that larger
min row generates more concepts.

In the previous experiments, the CbO was terminated until all interval pat-
tern concepts were retrieved. In the following experiment, CbO is terminated
until 500 concepts are found. We compare them to BicPAM [9] that uses a dis-
cretization parameter (as a number of alphabet/items), while IPS uses the length
of intervals as θ. After the mapping step (normalization, discretization, and miss-
ing values and noise handling), BicPAM applies a pattern mining method (F2G
[11] as default), and the closing step (extension, merging, and filtering) is per-
formed. Results in Table 6 show a similar performance of both methods. It should
be noted that the number of biclusters from BicPAM is lower due to the merging
and/or filtering.

Furthermore, still from Table 6, the runtime of IPS is not exactly correlated
with θ (especially with θ = 2), similar to our previous experiment shown in
Fig. 1. Overall, with similar runtime, biclustering with IPS can return similar
number of biclusters without discretization.



A Unified Approach to Biclustering Based on Formal Concept Analysis 59

Table 6. Comparison with BicPAM on 1000×100 dataset. For the IPS, the parameters
min row = 10 and min col = 5 are used, with varying θ.

Method Parameter Runtime (s) Number of biclusters

BicPAM alphabet = 20 <15 ∼100

alphabet = 10 <15 <200

alphabet = 7 <15 <200

alphabet = 5 <30 ∼200

IPS θ = 1 37 500

θ = 2 >500 500

θ = 4 47 500

θ = 8 39 500

6 Conclusion

In this paper, we propose an alternative method of biclustering in numeri-
cal datasets. Discretization is a general preprocessing step while working with
numerical values. Here we explore the possibility of working directly on numer-
ical datasets without discretization. This can be achieved using interval pattern
structures, where a bicluster can be found from any interval pattern concept.
To filter the number of concepts (which can be very large) it is necessary to
provide some parameters, like the length of intervals, minimum number of rows
and columns, or even minimum number of biclusters. Our experiments show that
these parameters can reduce the computation to a reasonable runtime. Another
way to reduce the number of biclusters is to develop post-processing techniques
similar to BicPAM, which include merging, filtering, and extension.

We use the CbO algorithm, a formal concept generator that can be general-
ized to interval pattern structures. In-Close 2 [2] in particular is faster than CbO
in formal concept mining, but its efficiency in interval pattern concept mining
should be studied. Another future research is to extend our FCA-based approach
to other types of biclusters, e.g. coherent-evolution, coherent-sign-changes, etc.
Furthermore, the existence of missing values and/or outliers should be consid-
ered in improving the proposed biclustering method.
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Abstract. Subspace clustering aims to discover clusters in projections
of highly dimensional numerical data. In this paper, we focus on discov-
ering small collections of interesting subspace clusters that do not try to
cluster all data points, leaving noisy data points unclustered. To this end,
we propose a randomised method that first converts the highly dimen-
sional database to a binarised one using projected samples of the original
database. This database is then mined for frequent itemsets, which we
show can be translated back to subspace clusters. In our extensive exper-
imental analysis, we show on synthetic as well as real world data that our
method is capable of discovering highly interesting subspace clusters.

1 Introduction

The main task of clustering is to group similar objects together, while keeping
sufficiently different objects apart. However, due to the curse of dimensionality,
traditional clustering methods struggle with high-dimensional data. In short,
with high-dimensional data, the distances between pairs of objects, measured
over all dimensions, become increasingly similar. As a result, no proper clusters
can be formed, as all objects end up almost equally distant from each other.

Subspace clustering attempts to solve this problem by discovering clusters of
objects that are similar in a limited number of dimensions. However, given the
exponential complexity of the search space, identifying the relevant set of dimen-
sions is computationally demanding, which is why existing subspace clustering
methods suffer from long run-times [1]. Furthermore, some existing approaches
produce full clusterings, thereby ensuring that each object is assigned to exactly
one cluster. This is not always desirable: (1) the data may contain a lot of noise,
that should ideally not be assigned to any cluster and (2) there is no reason why
a particular object should not be assigned to multiple clusters, especially if the
sets of dimensions that define these clusters are entirely different.

In this paper, we take a similar approach as CartiClus [2]: we first convert
a numeric database to a transactional one and then use frequent pattern mining
to extract subspace clusters. Our method can efficiently produce highly interest-
ing subspace clusters, along with the dimensions that define them. We avoid the
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computational complexity of existing methods by deploying a randomised algo-
rithm. We first take a large number of samples from the original data, such that
each sample consists of a number of objects in a fixed (random) set of dimen-
sions. In each sample, we then cluster the objects, and subsequently assign all
objects in the original data to the nearest cluster centroid. This produces a set of
objects per centroid, which we interpret as a transaction. By merging the trans-
actions produced for all different samples, we obtain a transaction database. We
then sample maximal frequent itemsets from this database to obtain potential
clusters. Finally, we identify the relevant dimensions for each discovered cluster.

The main contributions of this paper can be summarised as follows: we pro-
pose a randomised sampling algorithm that efficiently identifies localised clus-
ters and their relevant dimensions, we allow data objects to be part of multiple
clusters, and we leave noise objects unclustered, and we perform a theoretical
evaluation to show the efficiency of our method and an extensive experimental
evaluation to demonstrate the quality of our output.

2 Background

Subspace Clustering. Let D = {D1, . . . ,Dm} be a set of m dimensions. Each
dimension Di comes with a domain dom(Di). An m-dimensional data point
p = (d1, . . . , dm) is a tuple of values over D, such that di ∈ dom(Di) for each i =
{1, . . . , m}. The input database P = (p1, . . . , pq) contains a collection of q such
m-dimensional data points. Furthermore, each dimension Di comes with a dis-
tance function δDi

: dom(Di) × dom(Di) → R. Additionally, we assume that for
any subset of dimensions D = {D1, . . . , Dl}, with 1 ≤ l ≤ m and D ⊆ D there exists
a distance function δD : (dom(D1)×. . .×dom(Dl))×(dom(D1)×. . .×dom(Dl)) → R.
All used distance functions must satisfy the usual conditions (non-negativity,
identity, symmetry and the triangle inequality). Given a subset of dimensions
D ⊆ D, we denote by pD a data point, and by PD a set of data points, projected
onto the given dimensions. A subspace cluster S is a tuple containing a subset
of datapoints and dimensions, i.e., S = (P, D), with P ⊆ P and D ⊆ D.

Frequent Itemset Mining. Let I = (i1, ...in) be a finite set of n items. A
transaction t is a subset of items. We denote by T = (t1, ..., to) a database of
o transactions. An itemset I is also a subset of items. A transaction t is said
to support an itemset I if I ⊆ t. The set of all transactions that support an
itemset is called the cover of that itemset, i.e., cov(I) = {t | t ∈ T ∧ I ⊆ t}.
The support of an itemset is the size of its cover, i.e., sup(I) = |cov(I)|. Given
a minimal support threshold σ ≥ 0, an itemset I is considered frequent if its
support is larger than or equal to σ, i.e., sup(I) ≥ σ. An itemset I is called
maximal if there exists no superset of I that is also frequent with respect to
σ. The anti-monotonic property of the support of itemsets guarantees that all
subsets of a frequent itemset are also frequent.
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3 Randomised Subspace Clusters

Existing methods for discovering subspace clusters from numeric data often focus
on the complete raw dataset to compute subspace clusters using a bottom-up
[1,3] or a top-down approach [4]. In this paper we introduce Rascl, which uses
randomised subsets of the data (both in the data points and in the dimensions) as
a starting point for detecting subspace clusters. The discovered clusters are then
checked for occurrence in multiple subsamples of the data. If a cluster occurs
frequently enough in the set of samples we output it as a subspace cluster.
Our algorithm relies on two simple premises: (1) higher dimensional subspace
clusters also form subspace clusters in lower dimensions; (2) if we take enough
samples and use them to detect clusters, a lot of similar subclusters of the same
true cluster will be found in different projections. Moreover, by repeating such
a randomised procedure many times we end up with a stable solution.

3.1 Randomised Data Transformation

Data Binarisation. To binarise a numeric database P into a transaction
database T we use the indices of data points as the items for T , resulting in
|P| items. In addition, we obtain a mapping between data points and items.
Ideally, a transaction contains data points that are close together in some set of
dimensions. Then an itemset (essentially a set of data points) that occurs in a
large fraction of transactions can be seen as a subspace cluster over some set of
dimensions.

We define a randomised process for constructing a single transaction
database. We repeat this process n times and concatenate all transactions into a
single database T ∗. We first sample a small subset of data points P and a small
subset of dimensions D (the sampling strategy is explained below). The data
points are projected onto the subset of dimensions and used as input for the
K-means clustering algorithm. The resulting cluster centroids are used to parti-
tion the original data points, assigning each data point to the closest centroid.
As such, each centroid represents one transaction and its items are the data
points assigned to it. Formally, for a set of centroids C D the closest centroid for
a projected data point pD is given by cp

D

= argmincD∈C D(δD(pD, cD)).

Fig. 1. (a) A fictitious example dataset with 2 dimensions, 11 data points (black dots)
and 4 centroids (red circles). (b) Binarised dataset in short format for the toy dataset.
(Color figure online)
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Example 1: Figure 1(a) shows a toy database of 11 data points in a 2D space.
A red circle represents a synthetic cluster centroid and the surrounding square
visually shows data points closest to that centroid. When constructing the bina-
rised database, the index of a data point is added to the transaction of the nearest
cluster centroid. The resulting transaction database is shown in Fig. 1(b).

Generating Data Samples. As mentioned previously, our binarisation strat-
egy requires a sample of data points and a sample of dimensions. The main
question now is how we can bias the sampling procedure to obtain samples that
will have a higher potential to contain cluster structures.

For the data points, we can sample k data points uniformly at random. By
repeating this a large number of times, we expect each cluster to be represented
by a sufficient number of data points in a high enough number of samples.

For the dimensions, a naive solution would be to sample uniformly at random
a subset of dimensions of size x, with 1 ≤ x ≤ |D|. However, since the number
of combinations larger than 2 can blow up, a random sample of dimensions will
likely be too large to contain a meaningful cluster. Sampling just one dimension
may result in discovering cluster structures that do not span multiple dimensions.
Our empirical results (omitted due to space constraints) have shown that sam-
pling 2 dimensions results in higher quality clusters. We apply weighted sampling
to boost the probability of sampling dimensions that contain cluster structures.
Similar to Moise et al. [1], we assume that uniformly distributed dimensions do
not contain any cluster structure. As such, to detect non-uniformity of a dimen-
sion we create a histogram using the Freedman-Diaconis’ rule [5] to compute
an appropriate number of bins for the data. This rule is robust to outliers and
does not assume data to be normally distributed. Let us denote by BD the bins
for a given dimension using the Freedman-Diaconis’ rule and let |b| denote the
number of data points falling in bin b. We compute how many bins contain less
than the number of expected data points under uniform data distribution. The
unnormalised sampling potential W of a dimension is given by

W(D) =

√
√
√
√

|{b
∣
∣ b ∈ BD ∧ |b| ≤ |P|

|BD|}|
|BD| . (1)

The resulting distribution favours dimensions with more cluster potential.

Time Complexity. The worst case complexity of our binarisation method is
mostly dependent on K -means. However, we use only a small subset of data
points, typically |P| � |P|, to compute cluster centroids. For this small subset
the complexity for clustering is O(n × (|P| × |D| × K × i)) with n the number of
database samples and i the number of iterations. Generation of samples for both
data points can be done in O(|P|) and for dimensions can be done in O(|D|).
Assignment of data points to cluster centroids is done in a single sweep, i.e.,
O(K×|P|). The total time complexity for generating samples and binarising the
database is O(K × |P| + |D| + n × (|P| × |D| × K × i)).



A Sampling-Based Approach for Discovering Subspace Clusters 65

3.2 Extracting Subspace Clusters

We previously constructed a binarised database T ∗ by concatenating n binarised
ones built using random samples of data points and dimensions. The premise is
that transactions represent cluster centroids and their items are indices of data
points in their close proximity for the set of dimensions. Since we generated n
samples, we know that each index occurs n times within T ∗. If then a set of items
occurs often together in the database, i.e., it is a frequent itemset with high sup-
port, then we know that in many sets of dimensions the same set of data points
occur in close proximity, which is exactly the objective for a subspace cluster.
However, typically the number of frequent itemsets is huge (largely because all
subsets of frequent itemsets are frequent). To alleviate this problem we use max-
imal itemsets and, more particularly, our algorithm samples μ maximal frequent
itemsets from the binarised database. The resulting itemsets are the data points
for subspace clusters. An effective method for sampling maximal frequent item-
sets was introduced by Moens and Goethals [6]. It iteratively extends an itemset
with new items, until the set is found to be maximal given a threshold τ and a
monotonic quality measure (e.g., support).

After extracting a collection of data points, we have to discover the dimen-
sions in which the data points form a cluster. In contrast to some existing meth-
ods [1,4], we do not require to go back to the data itself to check each dimension
individually, since our binarisation process preserved some essential information
that can guide us here. That is, our algorithm previously sampled collections of
dimensions which can be reused to determine a valid subset of dimensions. We
denote by dims(t) a map that for a transaction returns its linked dimensions, i.e.,
the dimensions that were used for its construction in the binarisation process.
For a maximal itemset I we can use the transactions in its cover to determine its
relevant dimensions, i.e., the set containing all linked dimensions for transactions
in cov(I). Formally, dims(I) = {d|d ∈ D ∧ d ∈ dims(t)∧ t ∈ cov(I)}. An itemset
I, mapped to the data points P, forms together with its relevant dimensions the
subspace cluster S = (P, dims(I)).

3.3 Selecting the Best Subspace Clusters

After discovering a large number of subspace clusters (depending on parameter
μ), we finally select a small collection of r clusters that can be deemed the
most interesting subspace clusters. The number of data points that is present
in the subspace cluster is an indication that the same set of data points are
often related even in different subsets of dimensions (experiments omitted due
to space constraints). In our method we will employ this heuristic (i.e., the
larger the cluster, the better) for sorting discovered subspace clusters. Finally,
to reduce redundancy in the cluster results, we sequentially evaluate each cluster
and select those clusters that have less than 25% cluster overlap with previously
selected ones. Note that when sorting clusters using the number of objects, this
results in smaller clusters as r increases. Finally, we exclude very small clusters
with less than 10 data points.
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4 Experiments

In our experiments, we use synthetic data provided by Günnemann et al. [7].
The dataset characteristics are shown in Table 1. To measure the performance
we use precision and recall scores on object level, as well as their harmonic
mean F1. Additionally we use their dimensionality aware counterparts which
are indicated by the subscripts D (for scores about the dimensions) and SC (for
scores about the combination of objects and dimensions) [7]. Finally, we also use
ME4SC [7], a measure to assess the quality of clusterings. Note that unless stated
otherwise, we assign just one discovered cluster to each ground truth cluster.

We compare two variants1: Rascl sets k > K and RasclR sets k = K which
essentially skips the clustering step. For each dataset we use the ground truth
and select the ground truth cluster with the largest overlap with the cluster being
evaluated to compute its quality. We run each experiment 10 times and report
the average results for the first r subspace clusters. Less than r clusters may be
reported. Unless stated otherwise, we fix the following parameters: n = 1000,
k = 100, K = 20, σ = 200, μ = 100 and r = 10. We provide the following
guidance: n should be set high enough to obtain a representative sample, k
should be sufficiently larger than K for the clustering to make sense, r should be
set to the desired number of clusters, μ should be high enough so no information
is lost due to randomisation. K and σ are more difficult to set, but we show that
the performance of Rascl is not overly sensitive to changes in their values.

Table 1. Main characteristics of the synthetic datasets.

#rows#dimensions#clusters#objects/cluster#dimensions/cluster

dbsizescales1500 1,595 20 10 166.3 14.0

dbsizescales2500 2,658 20 10 276.5 14.0

dbsizescales3500 3,722 20 10 385.8 14.0

dbsizescales4500 4,785 20 10 496.2 14.0

dbsizescales5500 5,848 20 10 608.5 14.0

dimscaled05 1,595 5 10 182.6 3.5

dimscaled10 1,595 10 10 181.5 6.7

dimscaled25 1,595 25 10 180.9 16.9

dimscaled50 1,595 50 10 181.6 33.5

dimscaled75 1,595 75 10 181.9 50.4

noisescalen10 1,611 20 10 166.5 14.6

noisescalen30 2,071 20 10 166.1 14.6

noisescalen50 2,900 20 10 166.3 14.6

noisescalen70 4,833 20 10 166.8 14.6

1 Source code and experiments are available via https://gitlab.com/adrem/rascl.

https://gitlab.com/adrem/rascl
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Fig. 2. Object quality (a–f) and dimension quality (g–l) scores for different datasets.

Cluster Quality. We compare our methods to CartiClus [2] and
ProClus [4]. We used different instantiations of Rascl and RasclR by vary-
ing K and σ. For CartiClus we use the parameter settings as selected by the
authors [2] as basis for this experiment. For ProClus we set parameters follow-
ing the ground truth.

Object quality results are shown in Fig. 2(a–f). All algorithms perform very
well with respect to precision except ProClus, and setting K = 20 and
σ = 200 we slightly outperform CartiClus. RasclK10σ100

R , RasclK10σ100 and
RasclK20σ200 outperform the competitors on recall, while RasclK20σ200

R often
fails to deliver good results. This is due to the introduced randomness: using ran-
dom centroids leads to more partially similar transactions. Combined with a high
support this results in small subclusters of the true ground truth clusters.

Results for the dimension quality are shown in Fig. 2(g–l). We see that our
algorithms generally outperform the competitors by quite a margin and we
see that our simple solution of using linked dimensions (Sect. 3.2) works really
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Fig. 3. Grid search quality results for various methods on the dimscaled25 dataset.

Fig. 4. Subspace cluster 1 for the pendigits datasets using Rascl. (Color figure online)

well. For smaller subspace clusters with lower precision, the dimension quality
decreases as a result. Comparing (K = 10, σ = 100) to (K = 20, σ = 200), the
latter produces better results, mostly because there are more linked dimensions
tied to the cover of the maximal itemset, boosting recallD.

Parameter Sensitivity. We test the influence of K and σ on the dimscaled25
dataset and show the ME4SC scores. Note that even though our algorithm is
not meant for producing full clusterings, it produces very high quality results on
this metric. Figure 3 shows scores for the first 10 subspace clusters using vari-
ous parameter settings for the algorithms. For our algorithm we use a window
around the default parameters. For CartiClus we use a grid around the optimal
parameters and for ProClus we define sensible grids. We see that Rascl is not
overly susceptible to parameter changes and that, in general, the default param-
eters produce good and stable results. In contrast, RasclR can still produce
very good results, but the quality diminishes quickly when the parameters are
not too far from the optimal parameters. Increasing K or σ results in subclusters
of the true clusters, thus decreasing the overall score. We see that finding good
settings for CartiClus and ProClus is much harder. For ProClus l cannot
exceed the number of dimensions in the data, resulting in lots of 0 scores in the
figures. The experiments on other datasets produced similar results.

Real World Datasets. We tested our method on the pendigits dataset, a clas-
sification dataset found in the UCI machine learning repository2. Using Rascl
with n = 1000, k = 100, K = 10, σ = 100, μ = 100 and r = 10 we discover
multiple subspace clusters for each class. A general trend we found was that
the discovered clusters have a very high precision of approx. 91%, but they

2 https://archive.ics.uci.edu/ml/datasets.html.

https://archive.ics.uci.edu/ml/datasets.html
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have rather low recall averaging around 20%. We evaluate the largest sub-
space cluster in Fig. 4. The silhouette plot shows high similarity for points in
the cluster (red) and a much lower score for points outside the cluster (blue). A
similar trend is found in the scatter plots, which are obtained using t-SNE trans-
formation [8] based on the relevant dimensions. The left scatter plot shows all
data (blue) together with the subspace cluster (red), while the right scatter plot
shows only data points not in the cluster. This shows that using our method we
do not miss many data points that are within the region of the subspace cluster
according to this transformation. The plot on the right is the Andrews plot [9],
which is a smoothed parallel coordinates plot, showing cluster structures more
clearly. Similar plots are found for the remaining clusters.

5 Related Work

Subspace clustering attempts to find clusters in subsets of dimensions. However,
some traditional clustering models, unsuited to this setting, have been adapted
for this purpose. ProClus [4], one of the first methods for subspace clustering,
adapts K-means [10] to this setting. The analogy to our work is the initialisation:
a two-step randomised procedure is used to obtain an approximation to a piercing
set, i.e., a set of points each from a different cluster, which are refined to clusters.

DOC [11] is an algorithm that finds subspace clusters using a Monte Carlo
method to sample a random point from a cluster as well as a discriminating set
of points. It then extends the random point to a full subspace cluster using a
bounding box around that point. Its extension MineClus [12] uses the same
medoid points for expanding the cluster, but it drops the randomised procedure.
Similar to our approach, it also converts the data to a binarised dataset. Other
clustering algorithms, such as DBSCAN [13], have also been adapted for the
subspace clustering task [14]. Recently, more general techniques have been pro-
posed for searching the subspace [15], where the discovery of clusters is left to
specialised algorithms. However, all of the above methods are computationally
very expensive as they search in an exponential set of subspaces.

FIRES [16] is a generic framework for finding subspace clusters, employ-
ing existing clustering techniques to compute a set of base clusters in single
dimensions. These base clusters are then merged based on their similarity, and
the resulting clusters are then pruned and refined to optimise accuracy. The
CartiClus algorithm [2], like our method, creates a binarised dataset. However,
in CartiClus, the dimensions are defined during the construction of transac-
tions (or carts), such that all carts rely on the same dimension sets. Finally,
the carts are mined for frequent itemsets which are then translated back to sub-
space clusters. Bi-clustering [17] also simultaneously clusters rows and columns of
numeric matrices. However, bi-clusters allow for more general clusters as they, for
instance, group rows with constant values for a set of columns or group columns
that decrease similarly over a set of rows. Typically, such methods are used for
analysis of biological data such as gene expression data.
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6 Conclusion

In this paper, we present a novel method for discovering interesting clusters in
high-dimensional data. We started by converting the original data into a trans-
action database by selecting a small number of random data objects, project-
ing them to a small number of random dimensions, then clustering them, and,
finally, building transactions by assigning all data objects to their closest clus-
ter centroids. We repeat this procedure many times and merge the results. We
then sample maximal itemsets randomly from the resulting transaction database,
and consider each such itemset to be a potentially interesting cluster of objects.
Finally, for each discovered cluster, we identify a relevant set of dimensions.

A major advantage of our method is that, by using the two randomised
procedures, we avoid both the combinatorial explosion of possible dimension
sets, and the computational cost of frequent itemset mining. In addition, we do
not attempt to produce full clusterings, and we allow data objects to be part
of multiple clusters, while noise objects will not be part of any cluster at all.
Experimentally, we demonstrate that our method produces quality clusters and
is not overly sensitive to changes in the parameter settings, which is crucial for
an unsupervised learning task.
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1 Heinz Nixdorf Institute, Department of Computer Science, Paderborn University,
Paderborn, Germany

vu.linh.nguyen@uni-paderborn.de, eyke@upb.de
2 UMR CNRS 7253 Heudiasyc, Sorbonne Universités, Université de Technologie
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Abstract. Various strategies for active learning have been proposed in
the machine learning literature. In uncertainty sampling, which is among
the most popular approaches, the active learner sequentially queries the
label of those instances for which its current prediction is maximally
uncertain. The predictions as well as the measures used to quantify the
degree of uncertainty, such as entropy, are almost exclusively of a prob-
abilistic nature. In this paper, we advocate a distinction between two
different types of uncertainty, referred to as epistemic and aleatoric, in
the context of active learning. Roughly speaking, these notions capture
the reducible and the irreducible part of the total uncertainty in a pre-
diction, respectively. We conjecture that, in uncertainty sampling, the
usefulness of an instance is better reflected by its epistemic than by its
aleatoric uncertainty. This leads us to suggest the principle of “epistemic
uncertainty sampling”, which we instantiate by means of a concrete app-
roach for measuring epistemic and aleatoric uncertainty. In experimental
studies, epistemic uncertainty sampling does indeed show promising per-
formance.

Keywords: Active learning · Uncertainty sampling · Epistemic
uncertainty · Aleatoric uncertainty

1 Introduction

The goal in standard supervised learning, such as binary or multi-class classifi-
cation, is to learn models with high predictive accuracy from labelled training
data [7,22]. However, labelled data does normally not come for free. On the con-
trary, labelling can be expensive, time-consuming, and costly. The ambition of
active learning, therefore, is to exploit labelled data in the most effective way.
More specifically, the idea is to let the learning algorithm itself decide which
examples it considers to be most informative. Compared to random sampling,
the hope is to achieve better performance with the same amount of training
data, or to reach the same performance with less data [6,20].
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The selection of training examples is often done in an iterative manner, i.e.,
the active learner alternates between re-training and selecting new examples. In
each iteration, the usefulness of a candidate example is estimated in terms of a
utility score, and the one with the highest score is queried. In this regard, the
notion of utility typically refers to uncertainty reduction: To what extent will
the knowledge about the label of a specific instance help to reduce the learner’s
uncertainty about the sought model? In uncertainty sampling [20], which is
among the most popular approaches, utility is quantified in terms of predictive
uncertainty, i.e., the active learner selects those instances for which its current
prediction is maximally uncertain. The predictions as well as the measures used
to quantify the degree of uncertainty, such as entropy, are almost exclusively of
a probabilistic nature. Such approaches indeed proved to be successful in many
applications.

Yet, as pointed out by [21], existing approaches can be criticized for not
informing about the reasons for why an instance is considered uncertain,
although this might be relevant for judging the usefulness of an example. In
this paper, we advocate a distinction between two different types of uncer-
tainty, referred to as epistemic and aleatoric—roughly speaking, these capture
the reducible and the irreducible part of the total uncertainty in a prediction,
respectively. The conjecture that, in uncertainty sampling, the usefulness of an
instance is better reflected by its epistemic than by its aleatoric uncertainty leads
us to the idea of “epistemic uncertainty sampling”. Our approach, which builds
on a formalization of epistemic and aleatoric uncertainty as proposed by [19],
is generic in the sense that is can be instantiated for any learning algorithm;
concretely, we present instantiations for a Parzen window classifier, decision tree
learning, and logistic regression.

The rest of this paper is organized as follows. In the next section, we recall the
general framework of uncertainty sampling and provide a brief survey of related
work on active learning. In Sect. 3, we recall the approach of [19] for modeling
epistemic and aleatoric uncertainty, and then present our idea of generalizing
uncertainty sampling on the basis of this approach. Instantiations of our app-
roach for local learning (Parzen window classifier), decision tree learning and
logistic regression are presented in Sect. 4. Experimental evaluations are given
in the Sect. 5. The paper concludes with a short summary and an outlook on
future work in Sect. 6.

2 Uncertainty Sampling

As usual in active learning, we assume to be given a labelled set of training data
D and a pool of unlabeled instances U that can be queried by the learner:

D =
{
(x1, y1), . . . , (xN , yN )

}
, U =

{
x1, . . . ,xJ

}

Instances are represented as features vectors xi =
(
x1

i , . . . , x
d
i

) ∈ X = R
d. In

this paper, we only consider the case of binary classification, where labels yi are
taken from Y = {0, 1}, leaving the more general case of multi-class classification
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for future work. We denote by H ⊂ YX the underlying hypothesis space, i.e.,
the class of candidate models h : X −→ Y the learner can choose from. Often,
hypotheses are parametrized by a parameter vector θ ∈ Θ; in this case, we equate
a hypothesis h = hθ ∈ H with the parameter θ, and the model space H with the
parameter space Θ.

In uncertainty sampling, instances are queried in a greedy fashion. Given the
current model θ that has been trained on D, each instance xj in the current
pool U is assigned a utility score s(θ,xj), and the next instance to be queried is
the one with the highest score [11,20,21]. The chosen instance is labelled (by an
oracle or expert) and added to the training data D, on which the model is then
re-trained. The active learning process for a given budget B (i.e., the number of
unlabelled instances to be queried) is summarized in Algorithm 1.

Algorithm 1: Uncertainty sampling
Input: U, D, θ- initial pool, training data, classifier, and B-budget
Output: U, D, θ - updated pool, training data, classifier

1 initialize b = 0;
2 while b < B do
3 foreach x ∈ U do
4 compute s(θ,x)

5 query the label of the optimal instance x∗ with respect to s(θ,x)
D = D ∪ {x∗, y∗} ;

6 U = U \ {x∗, y∗} ;
7 train θ from D;
8 b = b + 1;

9 Return U, D, θ;

Assuming a probabilistic model producing predictions in the form of proba-
bility distributions pθ(· |x) on Y, the utility score is typically defined in terms of
a measure of uncertainty. Thus, instances on which the current model is highly
uncertain are supposed to be maximally informative [20,21]. Popular examples
of such measures include

– the entropy:

s(θ,x) = −
∑

λ∈Y
pθ(λ |x) log pθ(λ |x), (1)

– the least confidence:

s(θ,x) = 1 − max
λ∈Y

pθ(λ |x), (2)

– the smallest margin:

s(θ,x) = pθ(λn |x) − pθ(λm |x), (3)

where λm = arg maxλ∈Y pθ(λ |x) and λn = arg maxλ∈Y\λm
pθ(λ |x).
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All the three measures ought to be maximized. In the case of binary classification,
i.e., Y = {0, 1}, all these measures rank unlabelled instances in the same order
and look for instances with small difference between pθ(0 |x) and pθ(1 |x).

3 Epistemic and Aleatoric Uncertainty

A main building block of our approach to active learning is the distinction
between the epistemic and aleatoric uncertainty involved in the prediction for
an instance x. Although this distinction is well accepted in the literature on
uncertainty [8], it has been considered in machine learning only very recently
[9,13,19]. Here, we adopt the formal model proposed by [19], which is based on
the use of relative likelihoods, historically proposed by [2] and then justified in
other settings such as possibility theory [23]. For the sake of completeness and
self-containedness, we briefly recall the essence of this approach.

As before, we proceed from an instance space X , an output space Y = {0, 1}
encoding the two classes, and a hypothesis space H consisting of probabilistic
classifiers h : X −→ [0, 1]. We denote by ph(1 |x) = h(x) and ph(0 |x) = 1−h(x)
the (predicted) probability that instance x ∈ X belongs to the positive and
negative class, respectively. Given a set of training data D = {(xi, yi)}N

i=1 ⊂
X × Y, the normalized likelihood of a model h is defined as

πH(h) =
L(h)

L(hml)
=

L(h)
maxh′∈H L(h′)

, (4)

where L(h) =
∏N

i=1 ph(yi |xi) is the likelihood of h, and hml ∈ H the maximum
likelihood estimation on the training data. For a given instance x, the degrees
of support (plausibility) of the two classes are defined as follows:

π(1 |x) = sup
h∈H

min
[
πH(h), ph(1 |x) − ph(0 |x)

]
, (5)

π(0 |x) = sup
h∈H

min
[
πH(h), ph(0 |x) − ph(1 |x)

]
. (6)

So, π(1 |x) is high if and only if a highly plausible model supports the positive
class much stronger (in terms of the assigned probability mass) than the negative
class (and π(0 |x) can be interpreted analogously)1. Note that, with f(a) =
2a − 1, we can also rewrite (5)–(6) as follows:

π(1 |x) = sup
h∈H

min
[
πH(h), f(h(x))

]
, (7)

π(0 |x) = sup
h∈H

min
[
πH(h), f(1 − h(x))

]
. (8)

Given the above degrees of support, the degrees of epistemic uncertainty ue and
aleatoric uncertainty ua are defined as follows:

ue(x) = min
[
π(1 |x), π(0 |x)

]
, (9)

ua(x) = 1 − max
[
π(1 |x), π(0 |x)

]
. (10)

1 Technically, we assume that, for each x ∈ X , there are hypotheses h, h′ ∈ H such
that h(x) ≥ 0.5 and h′(x) ≤ 0.5, which implies π(1 |x) ≥ 0 and π(0 |x) ≥ 0.
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Thus, epistemic uncertainty refers to the case where both the positive and the
negative class appear to be plausible, while the degree of aleatoric uncertainty
(10) is the degree to which none of the classes is supported. These uncertainty
degrees are completed with degrees s1(x) and s0(x) of (strict) preference in favor
of the positive and negative class, respectively:

s1(x) =

⎧
⎨

⎩

1 − (ua(x) + ue(x)) if π(1 |x) > π(0 |x),
1−(ua(x)+ue(x))

2 if π(1 |x) = π(0 |x),
0 if π(1 |x) < π(0 |x).

With an analogous definition for s0(x), we have s0(x)+s1(x)+ua(x)+ue(x) ≡ 1.
Besides, it has the following properties:

– s1(x) (s0(x)) will be high if and only if, for all plausible models, the prob-
ability of the positive (negative) class is significantly higher than the one of
the negative (positive) class;

– ue(x) will be high if class probabilities strongly vary within the set of plausible
models, i.e., if we are unsure how to compare these probabilities. In particular,
it will be 1 if and only if we have h(x) = 1 and h′(x) = 0 for two totally
plausible models h and h′;

– ua(x) will be high if class probabilities are similar for all plausible models,
i.e., if there is strong evidence that h(x) ≈ 0.5. In particular, it will be close
to 1 if all plausible models allocate their probability mass around h(x) = 0.5.

Roughly speaking, aleatoric uncertainty is due to influences on the data-
generating process that are inherently random, whereas epistemic uncertainty
is caused by a lack of knowledge. Or, stated differently, ue and ua measure the
reducible and the irreducible part of the total uncertainty, respectively. It thus
appears reasonable to assume that epistemic uncertainty is more relevant for
active learning: While it makes sense to query additional class labels in regions
where uncertainty can be reduced, doing so in regions of high aleatoric uncer-
tainty appears to be less reasonable. This leads us to the principle of epistemic
uncertainty sampling, which prescribes the selection

x∗ = arg max
x∈U

ue(x). (11)

For comparison, we will also consider an analogous selection rule based on the
aleatoric uncertainty, i.e.,

x∗ = arg max
x∈U

ua(x). (12)

Let us note that the above approach is completely generic and can in principle
be instantiated with any hypothesis space H. The uncertainty measures (11–12)
can be derived very easily from the support degrees (7–8). The computation
of the latter may become difficult, however, as it requires the solution of an
optimization problem, the properties of which depend on the choice of H.
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4 Instantiations of the General Approach

We are going to present practical methods to determine (7–8) for the cases of
local learning and logistic regression in Sects. 4.1 and 4.2, respectively.

4.1 Local Learning

This section presents an instantiation of our approach for the case of local learn-
ing using a Parzen window classifier [4]. The method is then adapted to the case
where the decision tree classifier [16,18] is employed as the based learner.

As already said, instantiating the approach essentially means to address the
question of how to compute the degrees of support (7–8), from which everything
else can easily be derived.

By local learning, we refer to a class of non-parametric models that derive
predictions from the training information in a local region of the instance space,
for example the local neighborhood of a query instance [3,5]. As a simple exam-
ple, we consider the Parzen window classifier [4], to which our approach can be
applied in a quite straightforward way. To this end, for a given instance x, define
the set of its neighbours as follows:

R(x, ε) =
{
(xi, yi) ∈ D | ‖xi − x‖ ≤ ε

}
, (13)

where ε is the width of the Parzen window (a practical method to determine
such a width will be given latter).

In binary classification, a local region R can be associated with a constant
hypothesis hθ, θ ∈ Θ = [0, 1], where hθ(x) ≡ θ is the probability of the positive
class in the region; thus, hθ predicts the same probabilities ph(1 |x) = θ and
ph(0 |x) = 1 − θ for all x ∈ R. The underlying hypothesis space is given by
H = {hθ | 0 ≤ θ ≤ 1}. With n and p the number of positive and negative
instances, respectively, within a Parzen window R(x, ε), the likelihood and the
maximum likelihood estimate of θ are respectively given by

L(θ) =
(

n + p
n

)
θn(1 − θ)p and θ̂ =

n

n + p
. (14)

Therefore, the degrees of support for the positive and negative classes are

π(1 |x) = sup
θ∈[0,1]

min

(
θp(1 − θ)n

(
p

n+p

)p( n
n+p

)n , 2θ − 1

)

, (15)

π(0 |x) = sup
θ∈[0,1]

min

(
θp(1 − θ)n

(
p

n+p

)p( n
n+p

)n , 1 − 2θ

)

. (16)

Solving (15) and (16) comes down to maximizing a scalar function over a
bounded domain, for which standard solvers can be used. We applied Brent’s
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method2 (which is a variant of the golden section method) to find a local mini-
mum in the interval θ ∈ [0, 1]. From (15–16), the epistemic and aleatoric uncer-
tainty associated with the region R can be derived according to (11) and (12),
respectively. For different combinations of n and p, these uncertainty degrees can
be pre-computed (cf. Fig. 1).

Fig. 1. From left to right: Epistemic, aleatoric, and total uncertainty (epistemic +
aleatoric) as a function of the numbers p, n ∈ {0, 1, . . . , 10} of positive and negative
examples in a region (Parzen window) of the instance space (lighter colors indicate
higher values).

How to determine the width ε of the Parzen window? This value is difficult
to assess, and an appropriate choice strongly depends properties of the data and
the dimensionality of the instance space. Intuitively, it is even difficult to say
in which range this value should lie. Therefore, instead of fixing ε, we fixed an
absolute number K of neighbors in the training data, which is intuitively more
meaningful and easier to interpret. A corresponding value of ε is then determined
in such a way that the average number of nearest neighbours of instances xi in
the training data D is just K (see Algorithm 2). In other words, ε is determined
indirectly via K.

Since K is an average, individual instances may have more or less neighbors
in their Parzen windows. In particular, a Parzen window may also be empty. In
this case, we set ue(x) = 1 by definition, i.e., we consider this as a case of full
epistemic uncertainty. Likewise, the uncertainty is considered to be maximal for
all other sampling techniques. If the accuracy of the Parzen classifier needs to
be determined, we assume that it yields a wrong prediction.

In a similar way, the approach can be applied to decision tree learning [16,18].
In fact recall that a decision tree partitions the instance space X into (rectangu-
lar) regions R1, . . . , RL (i.e.,

⋃L
i=1 Ri = X and Ri ∩ Rj = ∅ for i �= j) associated

with corresponding leafs of the tree (each leaf node defines a region R). Again,
in the case of binary classification, we can assume each region R to be associated
with a constant hypothesis hθ, θ ∈ Θ = [0, 1], where hθ(x) ≡ θ is the probability

2 For an implementation in Python, see https://docs.scipy.org/doc/scipy-0.19.1/
reference/generated/scipy.optimize.minimize scalar.html.

https://docs.scipy.org/doc/scipy-0.19.1/reference/generated/scipy.optimize.minimize_scalar.html
https://docs.scipy.org/doc/scipy-0.19.1/reference/generated/scipy.optimize.minimize_scalar.html
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Algorithm 2: Determining the width ε.
Input: D-normalized data, K-number
Output: the local width εK

1 foreach xn ∈ D do
2 foreach xm �= xn do
3 compute d

(
xn,xm

)
;

4 form 1 × (n − 1) vector dn =
(
d
(
xn,xm

) | n �= m
)
;

5 sort dn by increasing order and determine the K-th element dK
n ;

6 return εK =
∑ | D |

n=1 dK
n

| D | ;

of the positive class. Therefore, degrees of epistemic and aleatoric uncertainty
degrees can be derived in the same way as described above.

4.2 Logistic Regression

In this section, we present another instantiation of our approach for a commonly
used learning algorithm, namely logistic regression. In contrast to nonparametric,
local learning methods such as the Parzen window classifier, logistic regression
is a parametric class of linear models, and hence coming with comparatively
restrictive assumptions.

Recall that logistic regression assumes posterior probabilities to depend on
feature vectors x = (x1, . . . , xd) ∈ R

d in the following way:

h(x) = p(1 |x) =
exp

(
θ0 +

∑d
i=1 θi xi

)

1 + exp
(
θ0 +

∑d
i=1 θi xi

) (17)

This means that learning the model comes down to estimating a parameter vector
θ = (θ0, . . . , θd), which is commonly done through likelihood maximization [12].
To avoid numerical issues (e.g, having to deal with the exponential function for
large θ) when maximizing the target function, we employ L2-regularization. The
corresponding version of the log-likelihood function (18) is strictly concave [17]:

l(θ) = log L(θ) =
N∑

n=1

yn

(

θ0 +
d∑

i=1

θix
i
n

)

(18)

−
N∑

n=1

ln

(

1 + exp

(

θ0 +
d∑

i=1

θix
i
n

))

− γ

2

d∑

i=0

θ2i ,

where the regularization term γ will be fixed to 1.
We now focus on determining the degree of support (7) for the positive class,

and then summarize the results for the negative class (which can be determined
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in a similar manner). Associating each hypothesis h ∈ H with a vector θ ∈ R
d+1,

the degree of support (7) can be rewritten as follows:

π(1 |x) = sup
θ∈Rd+1

min
[
π(θ), 2h(x) − 1

]
(19)

It is easy to see that the target function to be maximized in (19) is not necessarily
concave. Therefore, we propose the following approach.

Let us first note that whenever h(x) < 0.5, we have 2h(x) − 1 ≤ 0 and
min

[
πH(h), 2h(x) − 1

] ≤ 0. Thus the optimal value of the target function (7)
can only be achieved for some hypotheses h such that h(x) ∈ [0.5, 1]. For a given
value α ∈ [0.5, 1], the set of hypotheses h such that h(x) = α corresponds to the
convex set

θα =
{

θ
∣
∣ θ0 +

d∑

i=1

θix
i = ln

(
α

1 − α

)}
. (20)

The optimal value π∗
α(1 |x) that can be achieved within the region (20) can be

determined as follows:

π∗
α(1 |x) = sup

θ∈θα

min
[
π(θ), 2α − 1

]
= min

[
sup
θ∈θα

π(θ), 2α − 1
]
. (21)

Thus, to find this value, we maximize the concave log-likelihood over a convex set:

θ∗
α = arg sup

θ∈θα

l(θ) (22)

As the log-likelihood function (18) is concave and has second-order derivatives,
we tackle the problem with a Newton-CG algorithm [14]. Furthermore, the opti-
mization problem (22) can be solved using sequential least squares programming3

[15]. Since regions defined in (20) are parallel hyperplanes, the solution of the
optimization problem (7) can then be obtained by solving the following problem:

sup
α∈[0.5,1)

π∗
α(1|x) = sup

α∈[0.5,1)

min
[
π(θ∗

α), 2α − 1
]
. (23)

Following a similar procedure, we can estimate the degree of support for the
negative class (8) as follows:

sup
α∈(0,0.5]

π∗
α(0|x) = sup

α∈(0,0.5]

min
[
π(θ∗

α), 1 − 2α
]

(24)

Note that limit cases α = 1 and α = 0 cannot be solved, since the region (20)
is then not well-defined (as ln(∞) and ln(0) do not exist). For the purpose of
practical implementation, we handle (23) by discretizing the interval over α.
That is, we optimize the target function for a given number of values α ∈ [0.5, 1)

3 For an implementation in Python, see https://docs.scipy.org/doc/scipy/reference/
generated/scipy.optimize.minimize.html.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html
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and consider the solution corresponding to the α with the highest optimal value
of the target function π∗

α(1 |x) as the maximum estimator. Similarly, (24) can
be handled over the domain (0, 0.5].

In practice, we evaluate (23) and (24) on uniform discretizations of cardinal-
ity 50 of [0.5, 1) and (0, 0.5], respectively. We can further increase efficiency by
avoiding computations for values of α for which we know that 2α−1 and 1−2α
are lower than the current highest support value given to class 1 and 0, respec-
tively. See Algorithm 3 for a pseudo-code description of the whole procedure.

Algorithm 3: Degrees of support for logistic regression
Input: Q, D, θml, x- initial pool, training data, classifier, unlabelled instance
Output: π(1 |x), π(0 |x) - degrees of support

1 initialize subsets Qp, Qn of cardinality Q;

2 π(1 |x) = max(2hml(x) − 1, 0) , π(0 |x) = max(1 − 2hml(x), 0) ;
3 for q = 1, . . . , Q do
4 αp = max(Qp); αn = min(Qn) ;
5 if 2αp − 1 > π(1 |x) then
6 solve (22) for x, αp and return θ;
7 π(1 |x) = max(π(1 |x), min(πH(θ), 2αp − 1)) ;

8 if 1 − 2αn > π(0 |x) then
9 solve (22) for x, αn and return θ;

10 π(0 |x) = max(π(0 |x), min(πH(θ), 1 − 2αp)) ;

11 Qp = Qp \ {αp}, Qn = Qn \ {αn} ;

12 Return π(1 |x), π(0 |x) ;

5 Experimental Results

To illustrate the performance of our uncertainty measures in active learning,
we conducted experiments on data sets from the UCI repository4, the main
properties of which are summarized in Table 1.

5.1 Local Learning

We follow a 10-fold cross-validation procedure, considering each fold as the test
set, while the other folds are used for learning. The latter is randomly split into
a training data set and a pool set. The proportions of training/pool/test sets
are 10/80/10% and accuracies are averaged. The budget of the active learner is
fixed to be 30% of the original data.

4 http://archive.ics.uci.edu/ml/index.php.

http://archive.ics.uci.edu/ml/index.php
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Table 1. Data sets used in the experiments

# Name # instances # features Attributes

1 Parkinsons 197 22 Real

2 Vertebral-column 310 6 Real

3 Ionosphere 351 34 Real

4 Climate-model 540 18 Real

5 Breast-cancer 569 30 Real

6 Blood-transfusion 748 5 Real

7 QSAR 1055 41 Integer, real

8 Banknote-authentication 1372 4 Real

After each query, we update the data sets and, correspondingly, the classi-
fiers. The improvements of the classifiers are compared for four different uncer-
tainty measures, i.e., uncertainty sampling (following the strategy presented in
Algorithm 1) based on four measures for selecting unlabelled instances: random
sampling, standard uncertainty (2), epistemic uncertainty (9), aleatoric uncer-
tainty (10).

To reduce the computational efforts, in each iteration, the learner is allowed
to evaluate and query instances from a randomly selected subset consisting of
10% of the data in the pool. Since we are not, in the first place, interested in
maximizing performance, but in analyzing the effectiveness of active learning
approaches, we simply fix the neighborhood size K as the square root of the size
of the data set (number of instances in the initial training set and pool) [10].

As can be seen in Fig. 2, the results are nicely in agreement with our expec-
tations: Epistemic uncertainty sampling performs the best and aleatoric uncer-
tainty sampling the worst. Moreover, standard uncertainty sampling and ran-
dom sampling are in-between the two. This supports our conjecture that, from
an active learning point of view, epistemic uncertainty is the more useful infor-
mation. Even if the improvements compared to standard uncertainty sampling
are not huge, they are still visible and quite consistent.

The results for decision tree learning (cf. Fig. 3) are quite similar and again
in agreement with our expectations.

5.2 Logistic Regression

For logistic regression, we start with a relatively small amount of initial training
data, thereby making improvements in the beginning more visible. More specifi-
cally, the proportions of training/pool/test set are 1/89/10%, and the accuracies
are averaged. The budget is fixed to be 20% of the original data, and in each iter-
ation, the learner is allowed to evaluate and query instances from a (randomly)
subset consisting of 10% data of the pool.

In the case of logistic regression, the improvements through epistemic uncer-
tainty sampling are less pronounced—on the contrary, the performance of epis-
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Fig. 2. Average accuracies (y-axis) for the Parzen window classifier as a function of
the number of examples queried from the pool (x-axis).

temic and standard uncertainty sampling is quite comparable. Two examples,
which are quite representative, are shown in Fig. 4. As a plausible explanation,
note that logistic regression comes with a very strong learning bias in the form
of a linearity assumption. Therefore, the epistemic (or model) uncertainty dis-
appears quite quickly.
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Fig. 3. Average accuracies (y-axis) for the decision tree classifier as a function of the
number of examples queried from the pool (x-axis).
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Fig. 4. Average accuracies (y-axis) for logistic regression as a function of the number
of examples queried from the pool (x-axis).

6 Conclusion

This paper reconsiders the principle of uncertainty sampling in active learning
from the perspective of uncertainty modeling. More specifically, it starts from the
supposition that, when it comes to the question of which instances to select from
a pool of candidates, a learner’s predictive uncertainty due to “not knowing”
should be more relevant than its uncertainty due to inherent randomness.

To corroborate this conjecture, we proposed epistemic uncertainty sampling,
in which standard uncertainty measures such as entropy are replaced by a novel
measure of epistemic uncertainty. The latter is borrowed from a recent frame-
work for uncertainty modeling, in which epistemic uncertainty is distinguished
from aleatoric uncertainty [19]. We interpret our experimental results, especially
those for local learning (Parzen window classifier and decision trees) as evidence
in favor of our conjecture. They clearly show that a separation of the total uncer-
tainty (into epistemic and aleatoric) is effective, and that the epistemic part is
the better criterion for selecting instances to be queried. This was the main
purpose of the paper.

Given this affirmation, we are now encouraged to elaborate on epistemic
uncertainty sampling in more depth, and to develop it in more sophistication.
This includes an extension to other learning algorithms and more general learn-
ing problems (such as multi-class classification), as well as a comparison to other
variants of uncertainty sampling, such as [1] and [21].
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Abstract. Methods for online prediction of structured values are
becoming more and more popular. However, hierarchical prediction,
which has recently been shown to produce good results in terms of predic-
tive performance in the batch learning setting, has not yet been applied
in the online learning setting. We address the recently introduced task
of hierarchical multi-target regression. To this end, we propose a hierar-
chical extension of iSOUP-Tree, which can address online multi-target
regression. The extension weighs the split evaluation heuristic according
to the location of the targets in the hierarchy. We design the experimental
setup to ascertain whether the additional information contained in the
hierarchy can be utilized to improve the predictive performance in the
leaf targets. The proposed method shows promising results, producing
potential improvements that should be investigated further.

Keywords: Online hierarchical prediction · Hierarchical multi-target
regression

1 Introduction

The recent popularity of online predictive modeling has also extended toward
tasks where the predicted values are composed of multiple components. Com-
monly, this encompasses the prediction of multiple nominal or continuous val-
ues. Interestingly, hierarchical prediction, a fairly popular approach used in the
batch learning setting, has not yet been applied to online learning. In hierarchi-
cal prediction, the nominal or continuous values to be predicted are arranged
in a hierarchy, which can be utilized to provide superior predictions over the
unstructured case [12,17].

In this paper, we seek to explore how hierarchical prediction can be applied to
online predictive modeling. In online predictive modeling, data examples arrive
one by one and the predictive model must be periodically updated. In particular,
we seek to answer the question of whether the use of a hierarchy on the target
space can improve the predictive performance over using a flat set of targets in
the online setting. To this end, we propose a hierarchical extension [12,17] of
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the iSOUP-Tree method [13,14] and explore how well its various configurations
utilize the information provided in the hierarchy.

In particular, we focus on the online predictive task of multi-target regression
and its hierarchical extension called hierarchical multi-target regression. Multi-
target regression (MTR) is concerned with predicting multiple continuous target
variables. Furthermore, we define the hierarchical prediction task pf hierarchical
multi-target regression (HMTR), where the individual targets are arranged into
a hierarchy. As the base method we extend to address hierarchical prediction
addresses online MTR, we focus on HMTR, though we briefly discuss the related
task of hierarchical multi-label classification and how to approach it.

The hierarchy of targets is generally represented by a graph. We distinguish
between tree hierarchies and directed acyclic graph (DAG) hierarchies. In a tree
hierarchy, each target only has one parent, while in a DAG hierarchy a target
can have multiple parents. In this paper, we evaluate the proposed approach on
datasets with tree hierarchies, but, the proposed method also works with DAG
hierarchies.

Before properly defining HMTR, we start with a definition of hierarchical
multi-label classification (HMLC), as some concepts are introduced more easily
in this context. In multi-label classification (MLC), each example is annotated
with a set of labels and in HMLC, the binary targets/labels are arranged in a
hierarchy, e.g., as in Fig. 1. A key property of the HMLC task is the hierarchy
constraint, which is satisfied when, for each label that is present in an example,
all its ancestors are also present. In other words, labels lower in the hierarchy
are refinements of their ancestor labels.

Fig. 1. A sample (tree) hierarchy for use HMLC.

Hierarchical multi-target regression (HMTR) is a hierarchical variant of mul-
ti-target regression. In place of the binary values, now continuous targets are
arranged in a hierarchy. In hierarchical multi-target regression, the hierarchy
constraint is not as straightforward as in hierarchical multi-label classification.
In HMLC, the value of a non-leaf label is based on the values of its children. If
any of its children are present, so must be the observed label according to the
hierarchy constraint. In other words, the label is present if we take the disjunction
of its children’s labels’ presence, i.e.,

label λ is present ⇐⇒
∨

λ′ is a child of λ

(label λ′ is present).
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The observed label’s presence is an aggregate of the presences of its children.
This prompts us to define the hierarchy constraint in hierarchical multi-target
regression in a similar way. In HMTR, a non-leaf target is assumed to have a
value that is an aggregate of its children’s values. The aggregate can be a sum,
minimum, maximum, etc. However, due to the targets being continuous, the
enforcement of the hierarchy constraint is not as simple as in HMLC. Instead
of expecting the aggregate values to be matched exactly, we instead expect the
predictions to be as close to the aggregate values as possible according to the
chosen evaluation measure.

Notably, when we observe a single example (x,y), where x and y are the
descriptive and target vectors, respectively, we do not encode the hierarchy
explicitly in y. Instead, we use the standard vector representation as flat MTR
and encode the hierarchy as a relation of the components of the target vector.
We then define evaluation measures that take the hierarchy into account, as
shown later in the paper.

This paper continues with an overview of related work in Sect. 2. The pro-
posed hierarchical iSOUP-Tree method is presented in Sect. 3. In Sect. 4, we
describe the experimental setup, including the evaluation measures and datasets.
We present and discuss the experimental results in Sect. 5 and conclude the paper
with plans for further work in Sect. 6.

2 Related Work

Hierarchical prediction problems are found in many application domains, most
notably in text classification [15], functional genomics [1] and object recognition
[16]. Historically, the only hierarchical prediction task that was addressed for
was for a long time hierarchical multi-label classification. The task of hierar-
chical multi-target regression was introduced recently [12]. To the best of our
knowledge, there are no methods that address online hierarchical prediction.
Hence, we present related work for batch HMTR and online MTR.

Batch HMTR. The hierarchical multi-target regression task has only been
introduced recently by Mileski et al. [12]. They address hierarchical multi-target
regression by using predictive clustering trees, which had previously been used
for batch MTR and hierarchical multi-label classification [17].

Online MTR. In the online setting, some attention has been given to
multi-target regression, exclusively based on the Hoeffding bound. Namely,
Ikonomovska et al. [10] proposed the FIMT-DD method for online regression,
which was extended to the multi-target regression setting in the FIMT-MT
method [9].

iSOUP-Tree [14] extends FIMT-MT with support for nominal input
attributes and multi-target leaf models. iSOUP-Tree has also been applied to
online MLC [13]. Recently, Duarte and Gama [5] implemented a rule-based learn-
ing method for multi-target regression.
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3 iSOUP-Tree for Online Hierarchical Prediction

iSOUP-Tree [13,14] is a tree-based method for online multi-target regression
and online multi-label classification. It uses a similar learning mechanism to
Hoeffding trees [4] for classification and FIMT-DD [10] for regression; that is,
it periodically checks if enough data instances have accumulated in any leaves
and, based on the appropriate heuristic and the Hoeffding bound [8], determines
weather the best split is statistically supported. To evaluate a split candidate
S, iSOUP-Tree uses as a heuristic the intra-cluster variance reduction (ICVR),
defined as

ICV R(S) =
1
M

M∑

j=1

(
1 − |S�|

|S|
Varj(S�)
Varj(S)

− |S⊥|
|S|

Varj(S⊥)
Varj(S)

)
,

where j indexes the target variables, M is the number of targets, S is the set of
examples accumulated in the given leaf and S� and S⊥ are the post-split subsets
of S and for which the considered split test is evaluated either as true and false,
respectively. Varj is the variance of the j-th target:

Varj(S) =
1

|S|
|S|∑

i=1

(
yj

i − yj
)2

,

where i indexes the examples from (sub)set S, yj
i is the value of the j-th target

of the i-th example, and yj is the average value of the j-th target in the set S.
For further details on the iSOUP-Tree algorithm, see Osojnik et al. [14].

In order to address online hierarchical prediction, we utilize a weighted split-
ting heuristic, commonly used in the batch setting for hierarchical multi-label
classification [2,17], as well as in hierarchical multi-target regression [12]. The
weighted heuristic assigns a weight to each target based on its location in the
hierarchy.

The weighted ICVR heuristic is calculated as above, however instead of using
regular variance, we use the weighted variance

wVarj(S) = wj

∑|S|
i=1(y

j
i − yj)

|S| ,

where wj is the weight of the j-th target, which is calculated as wj = w
depth(j)
0

where w0 ∈ R
+ is the weight of the root node and depth(j) is the average depth

of the j-th target over all paths from the root to it in the hierarchy. In the
case of a tree hierarchy, this depth(j) coincides with the standard definition of
depth. When the weight of the root node is less than one, i.e., w0 < 1, a larger
emphasis is placed on the variances of the targets higher in the hierarchy, i.e.,
nodes which are closer to the root of the hierarchy. This aims to address the
fact that a wrong prediction higher in the hierarchy is more detrimental than
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a mistake lower in the hierarchy, i.e., wrongly predicting a high-level concept
results in wrong predictions of the lower-level concepts, due to the hierarchy
constraint.

On the other hand, when w0 > 1, variances of the targets deeper in the
hierarchy, in particular of leaf targets, are emphasized. This directly prioritizes
splits which reduce the variances of the leaf targets. The variances of non-leaf
targets are then used as a discrimination factor for splits with similar variances
in the leaf targets.

4 Experimental Setup

In the experiments for hierarchical tasks, we consider the task of online multi-
target regression, presented here. To this aim, we use HMTR datasets. More
specifically, we are exploring if and how the hierarchically adjusted splitting
heuristic [17] affects the predictive performance of the iSOUP-Tree method.

Experimental Scenarios. In hierarchical prediction tasks, we are often inter-
ested primarily in the predictions for the leaf targets. In these experiments, we
examine how the hierarchy and the adapted method affect the predictive per-
formance in the leaf targets. To this end we define three scenarios. The first sce-
nario serves as a “control group”. We remove all non-leaf targets in the observed
datasets and keep only the leaf targets. Essentially, this yields an online MTR
task that we can address with tje regular iSOUP-Tree approach. This scenario is
named leaves-only. In the second scenario, we use a bottom-weighted hier-
archical iSOUP-Tree, as described in Sect. 3, by selecting a root node weight of
w0 = 2. This method places greater emphasis on the homogeneity of the leaf
targets when selecting splits. In the third scenario, we use a top-weighted hier-
archical iSOUP-Tree, which places emphasis on the targets that are closer to the
root node of the hierarchy by selecting a root node weight of w0 = 0.5.

Performance Evaluation. There are several approaches for evaluating the
predictive performance of hierarchical prediction models. They differ in what
they are trying to measure, and are different for different hierarchical tasks.

In this paper, we wish to observe whether the addition of the hierarchy can
improve the prediction in the leaves. We can think of the hierarchy as a tool
to improve the predictive performance and we are evaluating whether it can
improve the performance and what its effectiveness is in this regard.

As we are most interested in the predictive performance in the leaves, we
calculate the evaluation measures only on the leaf targets. To obtain the pre-
dictions of all the models, we use the prequential evaluation approach [7]. The
evaluation measure we use is the average relative mean absolute error (RMAE)
measure, defined on an evaluation sample S as

RMAE(S) =
1
M

M∑

j=1

∑n
i=1

∣∣∣yi
j − ŷj

i

∣∣∣
∑n

i=1

∣∣∣yj
i − yj(i)

∣∣∣
,
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Fig. 2. The hierarchy of targets for the (a) Bicycles and (b) Mars Express datasets.

where yj
i is a true value of the target j for example i, ŷj

i are the predictions of
the evaluated model, and yj(i) is the value predicted by the j-th mean regressor
for the i-th example. Lower values of RMAE mean better performance.

Datasets. For our experimental evaluation, we use two datasets. The first is a
modified Bicycles [6] dataset, in which we arrange the targets into a very simple
hierarchy, where the registered users and unregistered users targets are children
of the total users target. The second dataset is the Mars Express dataset, where
the task is to predict the power consumption at 33 locations in the Mars Express
satellite [3]. The targets have been arranged into a hierarchy according to their
physical location within the satellite [11]. The hierarchies of the Bicycles and
the Mars Express dataset are shown in Fig. 2.

5 Experimental Results and Discussion

The results of applying hierarchical and leaves-only variants of iSOUP-Tree to
the two datasets described in Sect. 4 are shown in Fig. 3. In both datasets, the
bottom-weighted hierarchical models outperform the top-weighted models. The
bottom-weighted models start out slightly worse than the leaves-only tree; how-
ever, at some point, the bottom-weighted models reach and even slightly out-
perform the leaves-only tree. On the other hand, top-weighted models perform
worse than the leaves-only model, with the exception of a few intervals in both
datasets, where their predictive performances are comparable. Both the differ-
ence between the leaves-only model and the bottom-weighted model and the
difference between the leaves-only model and the top-weighted models might be
a consequence of slower growth of the model trees.

Above, we clearly see a difference between the top- and bottom-weighted hier-
archical methods, where the bottom-weighted method appears superior in terms
of predictive performance. However, we must consider that we have chosen an
evaluation procedure that is solely focused on the predictive performance in the
leaf targets. Intuitively, by putting a larger weight on the variance of the leaves
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Fig. 3. The evolution of the performance (RMAE) of iSOUP-Tree using the different
heuristics on two HMTR datasets.

of the target hierarchy, as in the bottom-weighted iSOUP-Tree, we are select-
ing splits which first and foremost reduce the variance of the leaf targets. If we
were to use a different evaluation methodology which would consider hierarchical
evaluation measures where the “cost” of an error higher up in the hierarchy is
higher than for targets lower in the hierarchy, the top-weighted models might
outperform the bottom-weighted ones.

With regard to the question of whether the use of target hierarchy improves
predictive performance, these experiments do not conclusively confirm this is
the case. In our results, bottom-weighted models do eventually outperform the
leaves-only ones. However, we must also consider whether adding additional tar-
gets to a multi-target regression problem inhibits the growth of the models.
As we are averaging more and more individual variances in the calculation of
the ICVR heuristic, we might encounter the effects of the central limit the-
orem, which states that the normalized sum of independent random variables
tends toward a normal distribution. In particular, as we average more values, the
resulting heuristics of the split candidates will be distributed closer and closer
to the normal distribution, with a prescribed mean. To address this problem,
we might explore the use of option trees, as they try to address some of the
shortcomings of Hoeffding inequality-based approaches.

6 Further Work

The most needed extension of this paper concerns the evaluation methodology.
Due to our specific inquiry into whether a hierarchy can improve the predictive
performance in the leaves, we have focused exclusively on the predictions in
the leaves. However, in many applications, the remaining non-leaf targets are at
least as important as the leaf targets. As such, it would be prudent to extend
the evaluation measures and methodology to explore how the proposed method
performs in these scenarios.



94 A. Osojnik et al.

Additionally, in this paper, we rely rather heavily on the few available hierar-
chical datasets which are of appropriate size for use with online learning methods.
In the future, we plan to prepare additional datasets of sufficient size and apply
the proposed methods to them. Additionally, we plan to apply the multi-label
classification via multi-target regression methodology [13] to also address the
task of online hierarchical multi-label classification.
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Abstract. Recently, several authors have advocated the use of rule
learning algorithms to model multi-label data, as rules are interpretable
and can be comprehended, analyzed, or qualitatively evaluated by
domain experts. Many rule learning algorithms employ a heuristic-guided
search for rules that model regularities contained in the training data
and it is commonly accepted that the choice of the heuristic has a sig-
nificant impact on the predictive performance of the learner. Whereas
the properties of rule learning heuristics have been studied in the realm
of single-label classification, there is no such work taking into account
the particularities of multi-label classification. This is surprising, as the
quality of multi-label predictions is usually assessed in terms of a variety
of different, potentially competing, performance measures that cannot all
be optimized by a single learner at the same time. In this work, we show
empirically that it is crucial to trade off the consistency and coverage
of rules differently, depending on which multi-label measure should be
optimized by a model. Based on these findings, we emphasize the need
for configurable learners that can flexibly use different heuristics. As our
experiments reveal, the choice of the heuristic is not straight-forward,
because a search for rules that optimize a measure locally does usually
not result in a model that maximizes that measure globally.

Keywords: Multi-label classification · Rule learning · Heuristics

1 Introduction

As many real-world classification problems require to assign more than one label
to an instance, multi-label classification (MLC) has become a well-established
topic in the machine learning community. There are various applications of MLC
such as text categorization [16], the annotation of images [4,18] and music [24,
26], as well as use cases in bioinformatics [8] and medicine [20].

Rule learning algorithms are a well-researched approach to solve classification
problems [13]. In comparison to complex statistical methods, like for example
support vector machines or artificial neural networks, their main advantage is
the interpretability of the resulting models. Rule-based models can easily be
c© Springer Nature Switzerland AG 2019
P. Kralj Novak et al. (Eds.): DS 2019, LNAI 11828, pp. 96–111, 2019.
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understood by humans and form a structured hypothesis space that can be ana-
lyzed and modified by domain experts. Ideally, rule-based approaches are able
to yield insight into the application domain by revealing patterns and regular-
ities hidden in the data and allow to reason why individual predictions have
been made by a system. This is especially relevant in safety-critical domains,
such as medicine, power systems, or financial markets, where malfunctions and
unexpected behavior may entail the risk of health damage or financial harm.

Motivation and Goals. To assess the quality of multi-label predictions in
terms of a single score, several commonly used performance measures exist. Even
though some of them originate from measures used in binary or multi-class clas-
sification, different ways to aggregate and average the predictions for individual
labels and instances—most prominently micro- and macro-averaging—exist in
MLC. Some measures like subset accuracy are even unique to the multi-label
setting. No studies that investigate the effects of using different rule learning
heuristics in MLC and discuss how they affect different multi-label performance
measures have been published so far.

In accordance with previous publications in single-label classification, we
argue that all common rule learning heuristics basically trade off between two
aspects, consistency and coverage [12]. Our long-term goal is to better under-
stand how these two aspects should be weighed to assess the quality of candi-
date rules during training if one is interested in a model that optimizes a certain
multi-label performance measure. As a first step towards this goal, we present
a method for flexibly creating rule-based models that are built with respect
to certain heuristics. Using this method, we empirically analyze how different
heuristics affect the models in terms of predictive performance and model char-
acteristics. We demonstrate how models that aim to optimize a given multi-label
performance measure can deliberately be trained by choosing a suitable heuris-
tic. By comparing our results to a state-of-the-art rule learner, we emphasize the
need for configurable approaches that can flexibly be tailored to different multi-
label measures. Due to space limitations, we restrict ourselves to micro-averaged
measures, as well as to Hamming and subset accuracy.

Structure of This Work. We start in Sect. 2 by giving a formal definition of
multi-label classification tasks as well as an overview of inductive rule learning
and the rule evaluation measures that are relevant to this work. Based on these
foundations, in Sect. 3, we discuss our approach for flexibly creating rule-based
classifiers that are built with respect to said measures. In Sect. 4, we present the
results of the empirical study we have conducted, before we provide an overview
of related work in Sect. 5. Finally, we conclude in Sect. 6 by recapitulating our
results and giving an outlook on planned future work.
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2 Preliminaries

MLC is a supervised learning problem in which the task is to associate an
instance with one or several labels λi out of a finite label space L = {λ1, . . . , λn},
with n = |L| being the total number of predefined labels. An individual
instance xj is represented in attribute-value form, i.e., it consists of a vector
xj = (v1, . . . , vl) ∈ D = A1 × · · · × Al, where Ai is a numeric or nominal
attribute. Additionally, each instance xj is associated with a binary label vector
yj = (y1, . . . , yn) = {0, 1}n, where yi indicates the presence (1) or absence (0) of
label λi. Consequently, the training data set of a MLC problem can be defined
as a set of tuples T = {(x1,y1) , . . . , (xm,ym)}, with m = |T | being the num-
ber of available training instances. The classifier function g (.), that is deduced
from a given training data set, maps an instance x to a predicted label vector
ŷ = (ŷ1, . . . , ŷn) = {0, 1}n.

2.1 Classification Rules

In this work, we are concerned with the induction of conjunctive, propositional
rules r : H ← B. The body B of such a rule consists of one or several conditions
that compare an attribute-value vi of an instance to a constant by using a rela-
tional operator such as = (in case of nominal attributes), or < and ≥ (in case of
numerical attributes). On the one hand, the body of a conjunctive rule can be
viewed as a predicate B : x → {true, false} that states whether an instance x
satisfies all of the given conditions, i.e., whether the instance is covered by the
rule or not. On the other hand, the head H of a (single-label head) rule consists
of a single label assignment (ŷi = 0 or ŷi = 1) that specifies whether the label
λi should be predicted as present (1) or absent (0).

2.2 Binary Relevance Method

In the present work, we use the binary relevance transformation method (cf. [4]),
which reduces MLC to binary classification by treating each label λi ∈ L of a
MLC problem independently. For each label λi, we aim at learning rules that
predict the minority class ti ∈ {0, 1}, i.e., rules that contain the label assignment
ŷi = ti in their head. We define ti = 1, if the corresponding label λi is associated
with less than 50% of the training instances, or ti = 0 otherwise.

A rule-based classifier—also referred to as a theory—combines several rules
into a single model. In this work, we use (unordered) rule sets containing all rules
that have been induced for the individual labels. Such a rule set can be considered
as a disjunction of conjunctive rules (DNF). At prediction time, all rules that
cover a given instance are taken into account to determine the predicted label
vector ŷ. An individual element ŷi ∈ ŷ, that corresponds to the label λi, is set
to the minority class ti if at least one of the covering rules contains the label
assignment ŷi = ti in its head. Otherwise, the element is set to the majority class
1− ti. As all rules that have been induced for a label λi have the same head, no
conflicts may arise in the process.
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2.3 Bipartition Evaluation Functions

To assess the quality of individual rules, usually bipartition evaluation functions
δ : N2×2 → R are used [25]. Such functions—also called heuristics—map a two-
dimensional confusion matrix to a heuristic value h ∈ [0, 1]. A confusion matrix
consists of the number of true positive (TP), false positive (FP), true negative
(TN), and false negative (FN) labels that are predicted by a rule. We calculate
the example-wise aggregated confusion matrix Cr for a rule r : ŷi ← B as

Cr :=
(
TP FP
FN TN

)
= C1

i ⊕ · · · ⊕ Cj
i ⊕ · · · ⊕ Cm

i (1)

where ⊕ denotes the cell-wise addition of atomic confusion matrices Cj
i that

correspond to label λi and instance xj .
Further, let yj

i and ŷj
i denote the absence (0) or presence (1) of label λi for an

instance yj according to the ground truth and a rule’s prediction, respectively.
Based on these variables, we calculate the elements of Cj

i as

TPj
i = �yj

i = ti ∧ ŷj
i = ti� FPj

i = �yj
i �= ti ∧ ŷj

i = ti�

FNj
i = �yj

i = ti ∧ ŷj
i �= ti� TN

j
i = �yj

i �= ti ∧ ŷj
i �= ti�

(2)

where �x� = 1, if x is true, 0 otherwise.

2.4 Rule Learning Heuristics

A good rule learning heuristic should (among other aspects) take both, the
consistency and coverage of a rule, into account [13,15]. On the one hand, rules
should be consistent, i.e., their prediction should be correct for as many of the
covered instances as possible. On the other hand, rules with great coverage, i.e.,
rules that cover a large number of instances, tend to be more reliable, even
though they may be less consistent.

The precision metric exclusively focuses on the consistency of a rule. It cal-
culates as the fraction of correct predictions among all covered instances:

δprec (C) :=
TP

TP+ FP
(3)

In contrast, recall focuses on the coverage of a rule. It measures the fraction
of covered instances among all—covered and uncovered—instances for which the
label assignment in the rule’s head is correct:

δrec (C) :=
TP

TP+ FN
(4)

The F-measure calculates as the (weighted) harmonic mean of precision and
recall. It allows to trade off the consistency and coverage of a rule depending on
the user-configurable parameter β:

δF (C) :=
β2 + 1

β2

δrec(C) +
1

δprec(C)

, with β ∈ [0,+∞] (5)
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As an alternative to the F-measure, we use different parameterizations of the
m-estimate in this work. It is defined as

δm (C) :=
TP+ m · P

P+N

TP+ FP+ m
, with m ≥ 0 (6)

where P = TP + FN and N = FP + TN. Depending on the parameter m, this
measure trades off precision and weighted relative accuracy (WRA). If m = 0, it
is equivalent to precision and therefore focuses on consistency. As m approaches
+∞, it converges to WRA and puts more emphasis on coverage, respectively
[13].

3 Induction of Rule-Based Theories

For our experimental study, we implemented a method that allows to generate
a large number of rules for a given training data set in a short amount of time
(cf. Sect. 3.1).1 The rules should ideally be unbiased, i.e., they should not be
biased in favor of a certain heuristic, and they should be diverse, i.e., general rules
should be included as well as specific rules. Given that these requirements are
met, we consider the generated rules to be representative samples for the space of
all possible rules, which is way too large to be explored exhaustively. We use the
generated candidate rules as a starting point for building different theories. They
consist of a subset of rules that are selected with respect to a specific heuristic
(cf. Sect. 3.2) and filtered according to a threshold (cf. Sect. 3.3). Whereas the
first step yields a theory with great coverage, the threshold selection aims at
improving its consistency.

3.1 Generation of Candidate Rules

As noted in Sect. 2.2, we consider each label λi ∈ L of a MLC problem indepen-
dently. For each of the labels we train multiple random forests [5], using varying
configuration parameters, and extract rules from their decision trees.2 As illus-
trated in Algorithm 1, we repeat the process until a predefined number of rules
γ has been generated.

Each random forest consists of a predefined number of decision trees (we
specify I = 10). To ensure that we are able to generate diverse rules later on,
we vary the configuration parameter depth ∈ [0, 8] that specifies the maximum
depth of trees (unrestricted, if depth = 0) (cf. Algorithm 1, trainForest). For
building individual trees, we only take a subset of the available training instances
and attributes into account, which guarantees a diverse set of trees. Bagging is
used for sampling the training instances, i.e., if m instances are available in total,
m · P instances (P = 100%, by default) are drawn randomly with replacement.
Additionally, each time a new node is added to a decision tree, only a random
selection of K out of l attributes (K = log2 (l − 1)+1, by default) is considered.
1 Source code available at https://github.com/mrapp-ke/RuleGeneration.
2 We use the random forest implementation provided by Weka 3.9.3, which is available

at https://www.cs.waikato.ac.nz/ml/weka.

https://github.com/mrapp-ke/RuleGeneration
https://www.cs.waikato.ac.nz/ml/weka
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Algorithm 1: Iterative generation of rules from random forests
input : min. number of rules to be generated γ
output: rule set R
R = ∅
while |R| < γ do

foreach λi ∈ L and depth ∈ [0, 8] do
rf = trainForest(λi, depth)
R = R ∪ extractRules(rf)

return R

To extract rules from a random forest (cf. Algorithm 1, extractRules), we
traverse all paths from the root node to a leaf in each of its decision trees. We
only consider paths that lead to a leaf where the minority class ti is predicted.
As a consequence, all rules that are generated with respect to a certain label λi

have the same head ŷi = ti. The body of a rule consists of a conjunction of all
conditions encountered on the path from the root to the corresponding leaf.

3.2 Candidate Subset Selection

Like many traditional rule learning algorithms, we use a separate-and-conquer
(SeCo) strategy for selecting candidate rules, i.e., new rules are added to the
theory until all training instances are covered (or until it describes the training
data sufficiently according to some stopping criterion). Whenever a new rule
is added to the theory the training instances it covers are removed (“separate”
step), and the next rule is chosen according to its performance on the remaining
instances (“conquer” step).

To create different theories, we select subsets of the rules that have been
generated earlier (cf. Sect. 3.1). We therefore apply the SeCo strategy for each
label independently, i.e., for each label λi we take all rules with head ŷi = ti
into account. Among these candidates we successively select the best rule
according to a heuristic δ (cf. Sect. 2.4) until all positive training instances
Pi = {(x,y) ∈ T | yi = ti}, with respect to label λi, are covered. To measure
the quality of a candidate r according to δ, we only take yet uncovered instances
into account for computing the confusion matrix Cr . If two candidates evaluate
to the same heuristic value, we prefer the one that (a) covers more true posi-
tives, or (b) contains fewer conditions in its body. Whenever a new rule is added,
the overall coverage of the theory increases, as more positive training instances
are covered. However, the rule may also cover some of the negative instances
Ni = T \ Pi. As the rule’s prediction is incorrect in such cases, the consistency
of the theory may decrease.

3.3 Threshold Selection

As described in Sect. 3.2, we use a SeCo strategy to select more rules until all
positive training instances are covered for each label. In this way, the coverage
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of the resulting theory is maximized at the expense of consistency, because each
rule contributes to the overall coverage, but might introduce wrong predictions
for some instances. To trade off between these aspects, we allow to (optionally)
specify a threshold φ that aims at diminishing the effects of inconsistent rules.
It is compared to a heuristic value that is calculated for each rule according to
the heuristic δ. For calculating the heuristic value, the rule’s predictions on the
entire training data set are taken into account. This is different from the can-
didate selection discussed in Sect. 3.2, where instances that are already covered
by previously selected rules are not considered. Because the candidate selection
aims at selecting non-redundant rules, that cover the positive training instances
as uniformly as possible, it considers rules in the context of their predecessors. In
contrast, the threshold φ is applied at prediction time when no order is imposed
on the rules, i.e., all rules whose heuristic value exceeds the threshold equally
contribute to the prediction.

4 Evaluation

In this section, we present an empirical study that emphasises the need to use
varying heuristics for candidate selection and filtering to learn theories that are
tailored to specific multi-label measures. We further compare our method to
different baselines to demonstrate the benefits of being able to flexibly adjust a
learner to different measures, rather than employing a general-purpose learner.

4.1 Experimental Setup

We applied our method to eight different data sets taken from the Mulan
project.3 We set the minimum number of rules to be generated to 300.000
(cf. Algorithm 1, parameter γ). For candidate selection according to Sect. 3.2,
we used the m-estimate (cf. Eq. 6) with m = 0, 21, 22, . . . , 219. For each of these
variants, we applied varying thresholds φ according to Sect. 3.3. The thresholds
have been chosen such that they are satisfied by at least 100%, 95%, . . . , 5% of
the selected rules. All results have been obtained using 10-fold cross validation.

In addition to the m-estimate, we also used the F-measure (cf. Eq. 5) with
varying β-parameters. As the conclusions drawn from these experiments are very
similar to those for the m-estimate, we focus on the latter at this point.

Among the performance measures that we report are micro-averaged preci-
sion and recall. Given a global confusion matrix C := C1

1 ⊕ · · · ⊕ Cj
i ⊕ · · · ⊕ Cm

n

that consists of the TP, FP, TN, and FN aggregated over all test instances xj

and labels λi, these two measures are calculated as defined in Eqs. 3 and 4. More-
over, we report the micro-averaged F1 score (cf. Eq. 5 with β = 1) as well as
Hamming and subset accuracy. Hamming accuracy calculates as

δHamm (C) :=
TP+ TN

TP+ FP+ TN+ FN
(7)

3 Data sets and detailed statistics available at http://mulan.sourceforge.net/datasets-
mlc.html.

http://mulan.sourceforge.net/datasets-mlc.html
http://mulan.sourceforge.net/datasets-mlc.html
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whereas subset accuracy differs from the other measures, because it is computed
instance-wise. Given true label vectors Y = (y1, . . . ,ym) and predicted label
vectors Ŷ = (ŷ1, . . . , ŷm), it measures the fraction of perfectly labeled instances:

δacc

(
Y, Ŷ

)
:=

1
m

∑
j

�yj = ŷj� (8)

4.2 Analysis of Different Parameter Settings

For a broad analysis, we trained 202 = 400 theories per data set using the same
candidate rules, but selecting and filtering them differently by using varying
combinations of the parameters m and φ as discussed in Sect. 4.1. We visualize
the performance and characteristics of the resulting models as two-dimensional
matrices of scores (cf. e.g. Fig. 1). One dimension corresponds to the used m-
parameter, the other refers to the threshold φ, respectively.

Some of the used data sets (cal500, flags, and yeast) contain very fre-
quent labels for which the minority class ti = 0. This is rather atypical in MLC
and causes the unintuitive effect that the removal of individual rules results in a
theory with greater recall and/or lower precision. To be able to compare differ-
ent parameter settings across multiple data sets, we worked around this effect
by altering affected data sets., i.e., inverting all labels for which ti = 0.

Predictive Performance. In Figs. 1 and 2 the average ranks of the tested
configurations according to different performance measures are depicted. The
rank of each of the 400 parameter settings was determined for each data set
separately and then averaged over all data sets. The depicted standard deviations
show that the optimal parameter settings for a respective measure may vary
depending on the data set. However, for each measure there is an area in the
parameter space where a good setting can be found with high certainty.

As it can clearly be seen, precision and recall are competing measures. The
first is maximized by choosing small values for m and filtering extensively, the
latter benefits from large values for m and no filtering. Interestingly, setting
m = 0, i.e., selecting candidates according to the precision metric, does not
result in models with the highest overall precision. This is in accordance with
Fig. 3, where the models with the highest F1 score do not result from using the
F1-measure for candidate selection. Instead, optimizing the F1 score requires to
choose small values for m to trade off between consistency and coverage. The
same applies to Hamming and subset accuracy, albeit both of these measure
demand to put even more weight on consistency and filtering more extensively
compared to F1.

Model Characteristics. Besides the predictive performance, we are also inter-
ested in the characteristics of the theories. Figure 4 shows how the number of
rules in a theory as well as the average number of conditions are affected by
varying parameter settings. The number of rules independently declines when
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Fig. 1. Ranks and standard deviation of average ranks over all data sets according to
Hamming and subset accuracy using different parameters m (horizontal axis) and φ
(vertical axis). Best parameters for different data sets specified by red + signs. (Color
figure online)

using greater values for the parameter m and/or smaller values for φ. resulting
in less complex theories that can be comprehended by humans more easily. The
average number of conditions is mostly affected by the parameter m.

Figure 5 provides an example of how different parameters affect the model
characteristics. It shows the rules for predicting the same label as induced by
two fundamentally different approaches. The first approach (m = 16, φ = 0.3)
reaches high scores according to the F1-measure, Hamming accuracy, and subset
accuracy, whereas the second one (m = 262144, φ = 1.0) results in high recall.

4.3 Baseline Comparison

Although the goal of this work is not to develop a method that generally out-
performs existing rule learners, we want to ensure that we achieve competi-
tive results. For this reason, we compared our method to JRip, Weka’s re-
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Fig. 2. Ranks and standard deviation of average ranks over all data sets according to
micro-averaged precision, recall, and F1-measure. Best parameters for different data
sets specified by red + signs. (Color figure online)
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Fig. 3. Ranks and standard deviation of average ranks over all data sets according
to micro-averaged F1-measure, when using the F-measure with varying β-parameters
(horizontal axis) instead of the m-estimate for candidate selection. Best parameters for
different data sets specified by red + signs. (Color figure online)

Fig. 4. Ranks and standard deviation of average ranks over all data sets regarding the
number of rules and conditions. A smaller rank means more rules or conditions.
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Fig. 5. Exemplary rule sets predicting the label 786.2:Cough of the data set medical,
which contains textual radiology reports that were categorized into diseases.

Table 1. Predictive performance of Ripper using IREP and post-processing (R3),
without using post-processing (R2), and using neither IREP nor post-processing (R1)
compared to approaches trying to optimize micro-averaged F1 (MF ), Hamming accu-
racy (MH), and subset accuracy (MS).

F1 Hamming acc. Subset acc.
R1 R2 R3 MF R1 R2 R3 MH R1 R2 R3 MS

birds 43.6541.1246.0145.3394.3994.4895.1795.1044.2045.5751.4848.85

cal500 33.6333.1833.7640.1082.1483.6685.3986.02 0.00 0.00 0.00 0.00

emotions 56.9658.6860.9765.2075.1275.3877.2177.6518.0420.4023.6022.42

enron 50.5753.0555.3351.0794.3594.7094.9394.54 6.17 7.99 9.16 7.81

flags 71.8172.9674.8572.8373.0274.0875.2073.3915.4717.0521.00 9.82

genbase 98.8398.6898.6899.1499.8999.8899.8899.9297.2896.8396.8397.89

medical 81.4083.6784.8181.6799.0199.1099.1598.9866.7469.9172.1666.43

scene 63.9763.2564.5567.4487.8787.2588.0388.9346.6144.5446.2449.73

yeast 58.6560.4161.1964.2578.5078.2978.7779.24 8.73 7.86 9.18 11.75

Avg. rank 3.44 3.00 1.67 1.78 3.44 2.89 1.67 1.89 2.89 2.67 1.56 2.11

implementation of Ripper [7], using the binary relevance method. By default,
Ripper uses incremental reduced error pruning (IREP) and post-processes the
induced rule set. Although our approach could make use of such optimizations,
this is out of the scope of this work. For a fair comparison, we also report the
results of JRip without using IREP (P = false) and/or with post-processing
turned off (O = 0).

Note that we do not consider the random forests from which we generate rules
(cf. Sect. 3.1) to be relevant baselines. This is, because random forests use voting
for making a prediction, which is fundamentally different than rule learners that
model a DNF. Also, we train random forests consisting of a very large number
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of trees with varying depths to generate diverse rules. In our experience, these
random forests perform badly compared to commonly used configurations.

We tested three different configurations of our approach. The parameters m
and φ used by these approaches have been determined on a validation set by
using nested 5-fold cross validation on the training data. For the approach MF ,
the parameters have been chosen such that the F1-measure is maximized. MH

and MS were tuned with respect to Hamming and subset accuracy, respectively.
According to Table 1, our method is able to achieve reasonable predictive

performances. With respect to the measure they try to optimize, our approaches
generally rank before JRip with optimizations turned off (R1), which is the
competitor that is conceptually closest to our method. Although IREP definitely
has a positive effect on the predictive performance, our approaches also tend to
outperform JRip with IREP enabled, but without using post-processing (R2).
Despite the absence of advanced pruning and post-processing techniques, our
approaches are even able to surpass the fully fledged variant of JRip (R1) on some
data sets. We consider these results as a clear indication that it is indispensable
to be able to flexibly adapt the heuristic used by a rule learner if one aims at
deliberately optimizing a specific multi-label performance measure.

5 Related Work

Several rule-based approaches to multi-label classification have been proposed
in the literature. On the one hand, there are methods based on descriptive rule
learning, such as association rule discovery [17,18,22,23], genetic algorithms
[1,6], or evolutionary classification systems [2,3]. On the other hand, there are
algorithms that adopt the separate-and-conquer strategy used by many tradi-
tional rule learners for binary or multi-class classification, e.g. by Ripper [7], and
transfer it to MLC [19,21]. Whereas in descriptive rule learning one does usually
not aim at discovering rules that minimize a certain (multi-label) loss, the latter
approaches employ a heuristic-guided search for rules that optimize a given rule
learning heuristic and hence could benefit from the results of this work.

Similar to our experiments, empirical studies aimed at discovering optimal
rule learning heuristics have been published in the realm of single-label classifi-
cation [14,15]. Moreover, to investigate the properties of bipartition evaluation
functions, ROC space isometrics have been proven to be a helpful tool [9,10].
They have successfully been used to study the effects of using different heuristics
in separate-and-conquer algorithms [12], or for ranking and filtering rules [11].

6 Conclusions

In this work, we presented a first empirically study that thoroughly investigates
the effects of using different rule learning heuristics for candidate selection and fil-
tering in the context of multi-label classification. As commonly used multi-label
measures, such as micro-averaged F1, Hamming accuracy, or subset accuracy,
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require to put more weight on the consistency of rules rather than on their cov-
erage, models that perform well with respect to these measures are usually small
and tend to contain specific rules. This is beneficial in terms of interpretability
as less complex models are assumed to be easier to understand by humans.

As our main contribution, we emphasise the need to flexibly trade off the
consistency and coverage of rules, e.g., by using parameterized heuristics like
the m-estimate, depending on the multi-label measure that should be optimized
by the model. Our study revealed that the choice of the heuristic is not straight-
forward, because selecting rules that minimize a certain loss functions locally
does not necessarily result in that loss being optimized globally. E.g., selecting
rules according to the F1-measure does not result in the overall F1 score to be
maximized. For optimal results, the trade-off between consistency and coverage
should be fine-tuned depending on the data set at hand. However, our results
indicate that, even across different domains, the optimal settings for maximizing
a measure can often be found in the same region of the parameter space.

In this work, we restricted our study to DNFs, i.e., models that consist of
non-conflicting rules predicting the same outcome for a label. This restriction
simplifies the implementation and comprehensibility of the learner, as no conflicts
may arise at prediction time. However, we expect that including both, rules that
model the presence as well as the absence of labels, could be beneficial in terms
of robustness and could have similar, positive effects on the consistency of the
models as the threshold selection used in this work. Furthermore, we leave the
empirical analysis of macro-averaged performance measures for future work.

Acknowledgments. This research was supported by the German Research Founda-
tion (DFG) (grant number FU 580/11).
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Abstract. Residual neural networks (ResNets) are among the state-
of-the-art for image classification tasks. With the advent of automated
machine learning (AutoML), automated hyperparameter optimization
methods are by now routinely used for tuning various network types.
However, in the thriving field of deep neural networks, this progress is
not yet matched by equal progress on rigorous techniques that yield infor-
mation beyond performance-optimizing hyperparameter settings. In this
work, we aim to answer the following question: Given a residual neu-
ral network architecture, what are generally (across datasets) its most
important hyperparameters? In order to answer this question, we assem-
bled a benchmark suite containing 10 image classification datasets. For
each of these datasets, we analyze which of the hyperparameters were
most influential using the functional ANOVA framework. This experi-
ment both confirmed expected patterns, and revealed new insights. With
these experimental results, we aim to form a more rigorous basis for
experimentation that leads to better insight towards what hyperparam-
eters are important to make neural networks perform well.

Keywords: Hyperparameter importance · Residual neural networks

1 Introduction

Residual neural networks [10] are among the state-of-the-art for image classifi-
cation tasks. Given sufficient data and proper hyperparameter settings, resid-
ual neural networks can achieve remarkable results, but their performance (and
that of other neural networks) highly depends on their hyperparameter settings.
As a consequence, there has been a lot of recent work and progress on hyper-
parameter optimization, with methods including Bayesian optimization [1,29],
meta-learning [4] and bandit-based methods [18]; see [8] for a review.

Despite impressive results both on common benchmarks and various appli-
cation domains, the experiments in many academic machine learning papers are
c© Springer Nature Switzerland AG 2019
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designed to answer which particular method works better, typically by introduc-
ing a new algorithm and demonstrating success over a limited set of baselines or
benchmarks [31]. In a recent paper, Sculley et al. (2018) identify this as a prob-
lem: ‘Empirical studies have become challenges to be won, rather than a process
for developing insight and understanding’ [27]. Additionally, many advances in
deep learning have been evaluated on a small number of datasets. It has long
been recognized that small-scale studies can create a false sense of progress [9].
Recht et al. (2018) speculate that by overly using the same test set, reported
results tend to overfit and demonstrate that performance results of many intro-
duced models does not generalize to other (newly assembled) test sets [24].

In this work, we aim to provide a more rigorous approach to the follow-
ing question: Given a residual neural network architecture, what are generally
(across datasets) its most important hyperparameters? In order to answer this
question, we assembled an image classification benchmark suite consisting of
10 popular datasets from the literature. On each of these datasets we obtained
performance results with varying hyperparameter settings. Although the aim
of this paper is not to improve predictive performance, we compare the results
with state-of-the-art results reported by other researchers, to ensure that the
results are credible and applicable. We see this as a first step towards creating
more rigorous insights about the conditions under which residual neural networks
perform well and which hyperparameters influence this.

Our contributions are the following: (i) We assembled a benchmark suite of
10 well-known image classification datasets, allowing researchers to draw con-
clusions across datasets. We made all code, data and results publicly available;1

(ii) we apply functional ANOVA [30] on performance results of residual neural
networks, to identify the importance of the various hyperparameters to predic-
tive accuracy; and (iii) we verified expected behaviour regarding hyperparame-
ter interactions, and gained new insights regarding typical marginal curves and
hyperparameter interactions. Most notable is the observation that for the con-
cerning datasets the marginals of important hyperparameters exhibit very simi-
lar landscapes. Overall, this work is the first to provide large-scale quantitative
evidence for which hyperparameters of residual neural networks are important,
providing a better scientific basis for the field than previous knowledge based on
small-scale studies and intuition.

2 Related Work

In this section we review related work on residual neural networks, hyperparam-
eter importance and landscape analysis.

Residual Neural Networks. Deep residual neural networks were introduced
in [10] and have set the benchmark for image recognition tasks in recent years.
They provide good predictive accuracy while maintaining an affordable model
size. Their defining characteristic is the use of residual learning, in which deeper
layers of the network are linked to shallower layers directly using ‘shortcut con-
nections’ skipping several layers in between. These shortcut connections perform
1 https://www.github.com/janvanrijn/openml-pimp

https://www.github.com/janvanrijn/openml-pimp
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an identity mapping which ensures the convergence of the deep network is at
least as good as its shallower counterpart and hence limit divergence during
training. In this way, the residual learning framework eases the training of net-
works that are substantially deeper. Furthermore, empirical evidence suggests
that these residual neural networks are easier to optimize, and can gain accu-
racy from considerably increased depth. On the ImageNet dataset the residual
nets were evaluated with a depth of up to 152 layers – 8 times deeper than VGG
nets [28] but still having lower complexity. Furthermore, residual learning can be
used on networks of varying depth to fit the task at hand. Smaller residual neural
networks, like ‘ResNet18’ (as the name suggests, consisting of 18 layers), provide
great performance while being very efficient in terms of size and speed [10].

Hyperparameter Importance. When using a new algorithm on a given
dataset, it is typically a priori unknown which hyperparameters should be tuned,
what are the good ranges for these hyperparameters to sample from, and which
values in these ranges are most likely to yield high performance. Various tech-
niques exist that allow for the assessment of hyperparameter importance. These
techniques generally consider either local importance (dependent on a specific
setting for other hyperparameters) or global importance (independent of specific
hyperparameter settings).

Forward selection [12] is based on the assumption that important attributes
in a dataset have high impact on the performance of classifiers trained on it.
It trains a model which predicts the performance of a configuration based on
a subset of hyperparameters. This set is initialized empty and greedily filled
with the next most important hyperparameter. Ablation analysis [2] requires a
default setting and an optimized setting and calculates a so-called ablation trace,
which embodies how much the hyperparameters contributed towards the differ-
ence in performance between the two settings. Local Parameter Importance [3]
studies the performance changes of a configuration along each parameter using
an empirical performance model (sometimes also called a ‘surrogate’ model).
Functional ANOVA [30] is a global hyperparameter importance framework that
can detect the importance of both individual hyperparameters and interaction
effects between arbitrary subsets of hyperparameters. It is the key technique
upon which this research is built.

Functional ANOVA depends on the concept of the marginal of a hyperpa-
rameter, i.e., how a given value for a hyperparameter performs, averaged over
all possible combinations of the other hyperparameters’ values. While there are
an exponential number of combinations, the authors of [13] showed how this can
be calculated efficiently using tree-based surrogate models.

All the aforementioned techniques are post-hoc techniques, i.e., when con-
fronted with a new dataset, these do not reveal what hyperparameters are
important prior to experimenting on that particular dataset. Contrary, various
researchers argued that it is more useful to generalize the notion of hyperpa-
rameter importance across datasets [22,25,26]. In particular, it has been shown
how to apply functional ANOVA across datasets for a given algorithm [25,26].
These works build upon the assumption that if this hyperparameter importance
quantification method is applied on a large enough set of datasets, we can draw
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conclusions regarding which hyperparameters are generally important. However,
neither of these studies applied this methodology to convolutional neural net-
works. To the best of our knowledge, this is the first work that addresses hyper-
parameter importance for residual neural networks.

Landscape Analysis. The interaction between configurations and the respec-
tive results can be seen as an high-dimensional landscape, which in turn can
be analyzed for mathematical properties [23]. Although this particular study is
executed on ‘satisfiability’, ‘mixed integer programming’ and ‘traveling salesman
problems’ benchmarks, it shows evidence that configuration landscapes are often
uni-model and even convex.

3 Background and Methods

We follow the notation that was introduced in [13]. We assume that a given
residual neural network model has n hyperparameters with domains Θ1, . . . , Θn

and configuration space Θ = Θ1 × . . . × Θn. Let N = {1, . . . , n} be the set of
all hyperparameters of the classifier. An instantiation (or configuration) of the
classifier is a vector θ = 〈θ1, . . . , θn〉 with θi ∈ Θi. A partial instantiation is a
vector θU = 〈θi, . . . , θj〉 with a subset U ⊆ N of the hyperparameters fixed,
and the values for other hyperparameters unspecified. The marginal âp

U (θU ) is
defined as the average performance on measure p of all complete instantiations θ
that agree with θU in the instantiations of hyperparameters U . The variance of
âp
U (θU ) is denoted as Vp

U . Intuitively, if the marginal âp
U (θU ) has a high variance,

this means that hyperparameter was of high importance to performance measure
p, and vice versa. For a more complete description, the reader is referred to [13].

In this research, we address the following problem. Given (i) a residual
neural network architecture with configuration space Θ, (ii) a set of datasets
D(1), . . . ,D(M), with M being the number of datasets, and (iii) for each of the
datasets, a set of empirical performance measurements 〈θi, Yi〉Ki=1 for different
hyperparameter settings θi ∈ Θ, where Yi is a tuple of all relevant performance
measures (in this case, predictive accuracy), we aim to determine which hyper-
parameters affect the algorithm’s empirical performance most, and which values
are likely to yield good performance.

For a given dataset, we use the performance data 〈θi, Yi〉Ki=1 collected on
this dataset to fit an internal tree-based surrogate model, in this case, a random
forest with 16 trees. Functional ANOVA then uses this surrogate model to cal-
culate the variance contribution V

p
j/V

p of every hyperparameter j ∈ N , with
high values indicating high importance. We then study the distribution of these
variance contributions across datasets to obtain empirical data regarding which
hyperparameters tend to be most important.

It is possible that a hyperparameter is responsible for a high variance on
many datasets, but that its best value is the same across all of them. We note
that functional ANOVA will flag such hyperparameters as important, although
it could be argued that they have appropriate defaults and do not need to be
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tuned [22,26]. For example, it is reasonable to expect that for any type of neu-
ral network the marginal of the number of epochs has a high variance, where
obviously better performances are achieved for higher values (at the cost of addi-
tional run-time). For this reason, it is always important to consider the individual
marginals, as well as the generalizations across datasets.

4 Experimental Setup

Section 4.1 describes the training procedure of the residual neural network,
Sect. 4.2 the configuration space from which we sampled the various configu-
rations, and Sect. 4.3 the datasets that we included in this study.

4.1 Models

In this work, we focus on the fixed architecture of ‘ResNet18’. This model gives
good predictive accuracy for datasets while being small in size which allows for
faster training [10]. As the datasets in this research all contain images, with
relatively similar dimensions, we could use the same architecture for all of them
(see Sect. 4.3). The optimizer is fixed to Stochastic Gradient Descent (SGD),
parameterized by momentum and weight decay. The training starts with an
initial learning rate. Thereafter an adaptive learning rate scheduler is used which
decays the learning rate by a factor (hyperparameter: learning rate decay) when
the test accuracy plateaus for a given number (hyperparameter: patience) of
epochs. The details of the hyperparameter space are described in Sect. 4.2.

We record the time taken (in seconds) and the accuracy on the test set
after every epoch. The goal is not to identify an optimum parameter setting, as
using a test-set simply computing the maximum would result in overly optimistic
evaluation. If one would be interested in using the results for hyperparameter
optimization a proper nested cross-validation procedure should be applied [5].
We performed all runs on single NVIDIA P100 GPU.

4.2 Configuration Space

We selected twelve hyperparameters. This selection was made based on visual
inspection of the modules in the ‘Torch’ package, as well as personal experi-
ence. Even though it feels natural to fix the values for some hyperparameters to
seemingly good values, in this work we aim to verify the applicability of these
values.

Our hyperparameter space contains six hyperparameters for the SGD opti-
mizer (number of epochs, initial learning rate, learning rate decay, momentum,
batch size, and whether to shuffle the data), two early stopping hyperparame-
ters (tolerance and patience), and four regularization hyperparameters (weight
decay, and data augmentation by resize crop, horizontal flips, and vertical flips).
Note that since we keep a fixed network structure, we do not modify any archi-
tectural hyperparameters (this would be very interesting, but is out of scope for
the current study).
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Table 1. Overview of the hyperparameters used in this research.

Hyperparameter Range Description

Batch size 2{3,4,5,6,7,8,9} Number of samples in one batch of gradient descent
used during training

Epochs [1–200] The number of times each training observation is
passed to the network

Horizontal flip Boolean Whether to apply data augmentation by flipping
the image horizontally

Vertical flip Boolean Whether to apply data augmentation by flipping
the image vertically

Learning rate [10−6–1] (log) The learning rate with which the network starts
training

Learning rate decay [2–1000] (log) Factor to reduce the learning rate with, if no
improvement is obtained after several epochs

Momentum [0–1] Value of momentum multiplier used during
gradient descent

Patience [2–200] Number of epochs without improvements that are
being tolerated before learning rate is reduced

Shuffle Boolean Whether to shuffle the train set before an epoch

Resize crop Boolean Whether to apply data augmentation by resizing
and then cropping the image

Tolerance [10−5–10−2] (log) Tolerance for early stopping criterion

Weight decay [10−6–10−2] (log) L2 loss on the weights

We note that some of the hyperparameters we tune are sometimes rather
chosen manually on a per-dataset basis based on domain knowledge (e.g., certain
data augmentations don’t make sense for some types of images, and the batch
size is often set to the maximum feasible given the GPU’s memory). We still
included these in our study to study how large their impact is on performance.

Table 1 lists all the hyperparameters and their maximal ranges we considered.
In order to obtain reasonable performance for datasets of different input sizes, we
had to use slightly different hyperparameter spaces across datasets; in particular,
the datasets with large input size (Fruits 360, Flower, STL-10 and Dog vs. Cat)
would have led to memory issues with batch sizes of 256 or 512, and we therefore
only considered batch size values of 2{3,4,5,6,7} in those cases and of 2{5,6,7,8,9}

in all other cases. Also, owing to limited computational resources, some other
manual modifications were made to speed up experiments and focus on a region
of good hyperparameters: for datasets MNIST, Fashion MNIST and Fruits, the
maximum number of epochs was set to 50, for datasets Dog vs. Cat the maximum
number of epochs was set to 100, and for datasets Fruits 360, Flower, Dog vs.
Cat, MNIST and Fashion MNIST, the maximum learning rate was set to 0.1.

For each dataset, we sampled K = 200 configurations uniformly from this
configuration space, with the maximum number of epochs. For each run we stored
performance results after every epoch, allowing functional ANOVA to model the
marginal of this hyperparameter more accurately.
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Table 2. Overview of the datasets used in this research.

Name Description Dimensions Class Train Test Ref

MNIST Handwritten digits 28 × 28 10 60,000 10,000 [17]

Fashion MNIST Gray-scale objects 28 × 28 10 60,000 10,000 [34]

CIFAR-10 Colored objects 32 × 32 × 3 10 50,000 10,000 [16]

CIFAR-100 Colored objects 32 × 32 × 3 100 50,000 10,000 [16]

STL-10 Colored objects 96 × 96 × 3 10 5,000 8,000 [6]

HAM10000 Skin cancer images 28 × 28 × 3 7 9,013 1,002 [32]

SVHN House number images 32 × 32 × 3 10 73,257 26,032 [21]

Flower Flower images 96 × 96 × 3 5 3,888 435 [19]

Fruits 360 Fruit images 96 × 96 × 3 82 41,814 14,041 [20]

Dog vs. Cats Dog and cat images 96 × 96 × 3 2 22,500 2,500 [15]

When computing hyperparameter importances across different datasets, the
question arises how to treat differing hyperparameter spaces. For the important
learning rate hyperparameter we felt it to be important to use identical ranges
everywhere and therefore used a reduced range of [10−6, 0.1]. However, for the
batch size hyperparameter, no single range makes sense for all datasets, and
we therefore simply computed hyperparameter importance separately based on
the range used for the dataset at hand. Likewise, for the maximum number of
epochs, we used 200 throughout; this is justified by the assumption that the
internal random forest model would correctly model the plateaued performance.

4.3 Datasets

This section reviews the datasets that were used in this research. We assembled
a diverse set of image classification datasets, including often used datasets (e.g.,
MNIST and CIFAR-100). We excluded the common benchmark ImageNet to
keep the computational costs reasonable.

All our datasets, listed in Table 2, are classification tasks (the respective task
is briefly described in column ‘Description’). For example, in the MNIST dataset
the task is to classify hand-written digits, whereas for the CIFAR-10 dataset
the task is to identify images into 10 classes (airplane, automobile, bird, cat,
deer, dog, frog, horse, ship or truck). Column ‘Dimensions’ represents the size
and number of channels of the training images. Black and white or gray-scale
datasets have two dimensions (width and height), whereas colored datasets have
three dimensions (width, height and number of color channels; in this study the
number of color channels is always 3). Column ‘Class.’ represents the number of
classes, column ‘Train’ the number of train observations and column ‘Test’ the
number of test observations. Finally, column ‘Ref.’ contains a reference to the
publication where the dataset was introduced.

As the dimensions of these datasets are all approximately the same, we could
use the same architecture for all of them. There are minor modifications to the
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Fig. 1. Performance results of the various configurations per dataset, sorted by median
performance. Complementary, Table 3 shows the best obtained result per dataset.

input and output layers due to different input dimensions and output classes
of each dataset. For datasets with gray-scale images (i.e., MNIST and Fash-
ion MNIST) the pixel values are duplicated over three dimensions during pre-
processing. Whether data augmentation techniques like random crops and ran-
dom flips were performed is controlled by the respective hyperparameter.

5 Results

In this section we analyze the results of the experiments. In Sect. 5.1 we discuss
some basic performance characteristics compared to state-of-the-art algorithms.
In Sects. 5.2 and 5.3 we discuss the main contribution of this work, the impor-
tance of hyperparameters according to functional ANOVA. Finally, Sect. 5.4 dis-
cusses limitations that could inspire future work.

5.1 Performance Results

We explore some basic characteristics about the performance results obtained
on the datasets. As mentioned before, obtaining state-of-the-art performance is
neither the aim nor the contribution of this paper, but in order for the results
to be credible and applicable, it is important to verify that the results are in the
same ballpark as good results reported in literature. Figure 1 shows the predic-
tive accuracy (left) and run-time (right) of all hyperparameter configurations θ
grouped per dataset in a box-plot. Both plots include only the measured perfor-
mance (run-time or accuracy) after the final epoch, and thus not the recorded
intermediate results.

We made a best effort to find established state-of-the-art results for existing
datasets. Table 3 compares the best results of the conducted experiments with
the best found result in literature. We obtained the results of state-of-the-art
methods from public sources on the internet2,3. For some lesser known datasets,
2 https://benchmarks.ai/
3 https://github.com/RedditSota/state-of-the-art-result-for-machine-learning-

problems

https://benchmarks.ai/
https://github.com/RedditSota/state-of-the-art-result-for-machine-learning-problems
https://github.com/RedditSota/state-of-the-art-result-for-machine-learning-problems
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there was no established state-of-the-art. In these cases, we did not report any
state-of-the-art result, as that might be misleading. Column ‘ResNet’ denotes
the best obtained performance (optimistic, as was argued in Sect. 4.1) of the
residual neural network through random search. Column ‘SOTA’ denotes the
(also optimistic) performance of the state-of-the-art network.

Table 3. Comparison between the best
results obtained by the residual neural net-
works in this study and state-of-the-art
results.

Dataset ResNet SOTA Source

MNIST 99.62 99.79 [33]

Fashion MNIST 94.18 96.35 [35]

CIFAR-10 93.29 99.00 [11]

CIFAR-100 72.66 91.30 [11]

STL-10 79.91 88.80 [14]

HAM10000 82.83 -

SVHN 96.66 98.98 [7]

Flower 89.20 -

Fruits 360 99.38 -

Dog vs. Cats 96.52 -

The comparison between residual
neural network results and state-of-
the-art results contains various con-
ditions that need to be accounted for.
As a consequence, this comparison is
somewhat biased. However, it serves
the purpose of providing context to
the obtained results. In some cases the
best results obtained by the trained
residual neural networks are close to
the best reported results in litera-
ture (e.g., for MNIST and Fashion
MNIST), while for others the differ-
ences are bigger (e.g., CIFAR-100 and
STL-10). Overall, the performance
results are good enough to expect that
some conclusions drawn may carry
over to state-of-the-art models.

5.2 Marginals per Dataset

This section details the results of the hyperparameter importance experiment.
Figure 2 shows the predictive accuracy marginals of important (combinations)
of hyperparameters, per dataset.

For each of the 10 datasets, we plotted the marginal of several important
hyperparameters and one pair of hyperparameters. From left to right this image
displays the marginals of the ‘number of epochs’, the ‘initial learning rate’,
‘weight decay’, ‘momentum’ and the combination of ‘number of epochs and
initial learning rate’. Note that we calculated the marginals for all 12 hyper-
parameters and all 65 hyperparameter pairs, but only show this subset due to
space reasons. The x-axis shows the value of the hyperparameter and the y-axis
shows the marginal performance (predictive accuracy). The epochs marginals
are most detailed, presumably because of the recorded performance after every
epoch.

The marginals reveal several patterns about the interaction between hyper-
parameter values and final performance of the network. Firstly, as the number of
epochs increases, so does the performance of the network. Although this is quite
obvious, it is important to verify that the proposed methodology can discover
known and expected behaviors. Secondly, the marginals for the initial learn-
ing rate reveal that there is no perfect default across datasets, but that values
between 10−3 and 10−2 generally perform quite well, whereas setting it much
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Fig. 2. Marginal plots for predictive accuracy on the test set per dataset. The first four
columns show the marginal of a single hyperparameter. The blue line represents the
marginal, the red area represents the standard deviation. The fifth column shows the
combined marginal of two hyperparameters (note that the ranges per dataset differ).
(Color figure online)
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Fig. 2. (continued)

lower or higher typically results in suboptimal performance. For weight decay
and momentum we see similar trends, however there seems to be a tendency
that setting their values too low is less harmful than setting them too high.
Thirdly, also the combined marginal of number of epochs and initial learning
rate is interesting, as it reveals that there is very little interplay between these
two hyperparameters. Interestingly, both hyperparameters are important, but
setting one hyperparameter to a specific value does not have a large influence
on the optimal value for the other (maximum variance contribution: 0.026 on
Cifar-10).

Most interestingly, we observe that for each hyperparameter the marginals
follow similar trends across the datasets. Although the marginals exhibit a
rough and edgy pattern, based on visual inspection we conclude that after some
smoothing the landscapes would be uni-modal and convex. Even though the
methodology and application domain are slightly different, these results seem to
be in line with earlier reported findings [23].
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5.3 Importance Across Datasets

Figure 3(a) shows box-plots for the variance per hyperparameter, presented sim-
ilarly to [26]. For each partial configuration θU with U = 1 and the three most
important partial configurations with U = 2, we record variance of the marginal
V

p
U per dataset, and present these across datasets in box-plots. We observe var-

ious expected results. Hyperparameters related to the optimizer seem generally
most important, i.e., ‘weight decay’, ‘momentum’, and ‘learning rate init’. The
data augmentation hyperparameters are among the least important hyperparam-
eters. We note that functional ANOVA is meant as a tool for assessing global
hyperparameter importance; data augmentation techniques are generally used
to be applied on already good performing models, in order to further improve
the performance. As such, the utility of data augmentation techniques might not
be detected by functional ANOVA but can most likely be measured with local
hyperparameter importance tools, such as Ablation Analysis [2].

Furthermore, we observe that the number of epochs, a hyperparameter which
we expected to be important, ranks only 5th when analyzing the marginals.
We note that the variance of the marginal (upon which functional ANOVA is
built) is highly dependent on the selected ranges. To alleviate this problem,
Fig. 3(b) shows the results in an alternative way. For each partial configuration
θU with U = 1, we record the maximum of marginal (i.e., max(âp

U (θU ))) and
the minimum of the marginal (i.e., min(âp

U (θU ))) per dataset, and present the
difference between these across datasets in box-plots. We observe that this plot
confirms the importance of the epochs hyperparameter, making it the second
most important hyperparameter after the learning rate. Also note that the other
hyperparameters with the highest median variances according to Fig. 3(a) are
still ranked as important in Fig. 3(b), albeit in a slightly changed order.

Finally, based on Fig. 3(a) we note that most of the variance can be explained
by the effect of single hyperparameters. Apart from the variance contribution
of single hyperparameters (U = 1) it shows the 3 most important combi-
nations of hyperparameters (U = 2). The variance contribution of combined

Fig. 3. Importance per (combination of) hyperparameters across datasets



124 A. Sharma et al.

hyperparameters seems rather low, as none are ranked highly compared to the
variance contribution of single hyperparameters. However, like the data augmen-
tation techniques, we speculate that even though the combined effect is relatively
small, it will still be important to consider when optimizing for performance.

5.4 Limitations

Looking at the results in Fig. 3, the following result stands out. The shuffle
hyperparameter value has a rather low median but a very high tail. This indi-
cates that for most datasets the marginal is not particularly affected by this
hyperparameter, however for some datasets (i.e., Flower, Fruits 360, Dog vs.
Cat and HAM10000) it seems extremely important.

Furthermore, Fig. 1 reveals that the median performance is quite low, despite
the decent maximal performance. This is confirmed by the marginals in Fig. 2.
For example, none of the marginals for CIFAR-10 exceed the 80% accuracy
threshold, whereas the best found configuration obtained an accuracy of 93.29%
(according to Table 3). This gives rise to the question whether a hyperparameter
tool like functional ANOVA can still reveal hyperparameters that are impor-
tant for fine-tuning models (such as data augmentation), or whether only global
trends are detected.

Finally, functional ANOVA highly relies on a proper configuration space. A
seemingly important hyperparameter like ‘number of epochs’ will account for a
relative low variance if the range is selected in such a way that it exceeds the
values for which the performance reaches the plateau. It is currently an open
question how to construct the configuration space to avoid this problem.

6 Conclusions

This work was motivated by the call for more rigor in hyperparameter optimiza-
tion and neural network research [24,27]. We assembled a benchmark suite with
corresponding performance results of residual neural networks, and made it pub-
licly available. Our hyperparameter importance experiment confirmed existing
beliefs about which hyperparameters are most influential across datasets, i.e., the
initial learning rate and the number of epochs. Other important hyperparame-
ters are the weight decay and momentum. Most of the other hyperparameters
did not have a large variance of the marginal, however we note that in many
image classification benchmarks the devil is in the detail. In order to go from
a reasonable performance to state-of-the-art performance, also hyperparameters
with a small effect should be set to adequate values.

We confirmed some well expected patterns, for example the form of the
marginals for the number of epochs and the volatility across datasets of the
marginals for the initial learning rate.

We acknowledge that this is only a first step towards more rigorous results
in neural network research. While this research focused specifically on residual
neural networks with a fixed architecture, future work should focus on other
network types and also important parameters in architecture search.
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20. Mureşan, H., Oltean, M.: Fruit recognition from images using deep learning. Acta
Universitatis Sapientiae, Informatica 10(1), 26–42 (2018)

21. Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits
in natural images with unsupervised feature learning. In: NIPS Workshop on Deep
Learning and Unsupervised Feature Learning (2011)

22. Probst, P., Boulesteix, A.L., Bischl, B.: Tunability: importance of hyperparameters
of machine learning algorithms. J. Mach. Learn. Res. 20(53), 1–32 (2019)

23. Pushak, Y., Hoos, H.: Algorithm configuration landscapes: more benign than
expected? In: Auger, A., Fonseca, C.M., Lourenço, N., Machado, P., Paquete, L.,
Whitley, D. (eds.) PPSN 2018. LNCS, vol. 11102, pp. 271–283. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-99259-4 22

24. Recht, B., Roelofs, R., Schmidt, L., Shankar, V.: Do CIFAR-10 Classifiers Gener-
alize to CIFAR-10? arXiv preprint arXiv:1806.00451 (2018)

25. van Rijn, J.N., Hutter, F.: An empirical study of hyperparameter importance across
datasets. In: AutoML@ PKDD/ECML, pp. 91–98 (2017)

26. van Rijn, J.N., Hutter, F.: Hyperparameter importance across datasets. In: Pro-
ceedings of the 24th ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pp. 2367–2376. ACM (2018)

27. Sculley, D., Snoek, J., Wiltschko, A., Rahimi, A.: Winner’s curse? on pace, progress,
and empirical rigor. In: Proceedings of ICLR 2018 (2018)

28. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

29. Snoek, J., Larochelle, H., Adams, R.P.: Practical Bayesian optimization of machine
learning algorithms. In: Advances in Neural Information Processing Systems, vol.
25, pp. 2951–2959. ACM (2012)

30. Sobol, I.M.: Sensitivity estimates for nonlinear mathematical models. Math. Model.
Comput. Exp. 1(4), 407–414 (1993)

31. Strang, B., Putten, P., Rijn, J.N., Hutter, F.: Don’t rule out simple models pre-
maturely: a large scale benchmark comparing linear and non-linear classifiers in
OpenML. In: Duivesteijn, W., Siebes, A., Ukkonen, A. (eds.) IDA 2018. LNCS,
vol. 11191, pp. 303–315. Springer, Cham (2018). https://doi.org/10.1007/978-3-
030-01768-2 25

32. Tschandl, P., Rosendahl, C., Kittler, H.: The HAM10000 dataset, a large collection
of multi-source dermatoscopic images of common pigmented skin lesions. Sci. Data
(2018)

33. Wan, L., Zeiler, M., Zhang, S., Le Cun, Y., Fergus, R.: Regularization of neural
networks using DropConnect. In: International Conference on Machine Learning,
pp. 1058–1066 (2013)

34. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for bench-
marking machine learning algorithms. arXiv preprint arXiv:1708.07747 (2017)

35. Zhong, Z., Zheng, L., Kang, G., Li, S., Yang, Y.: Random erasing data augmenta-
tion. arXiv preprint arXiv:1708.04896 (2017)

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://www.kaggle.com/alxmamaev/flowers-recognition
https://www.kaggle.com/alxmamaev/flowers-recognition
https://doi.org/10.1007/978-3-319-99259-4_22
http://arxiv.org/abs/1806.00451
http://arxiv.org/abs/1409.1556
https://doi.org/10.1007/978-3-030-01768-2_25
https://doi.org/10.1007/978-3-030-01768-2_25
http://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1708.04896


Applications



Cellular Traffic Prediction and
Classification: A Comparative Evaluation

of LSTM and ARIMA

Amin Azari1(B), Panagiotis Papapetrou1, Stojan Denic2, and Gunnar Peters2

1 Department of Computer and Systems Sciences, Stockholm University,
Stockholm, Sweden

{amin.azari,panagiotis}@dsv.su.se
2 Huawei, Stockholm, Sweden

{stojan.denic,gunnar.peters}@huawei.com

Abstract. Prediction of user traffic in cellular networks has attracted
profound attention for improving the reliability and efficiency of network
resource utilization. In this paper, we study the problem of cellular net-
work traffic prediction and classification by employing standard machine
learning and statistical learning time series prediction methods, includ-
ing long short-term memory (LSTM) and autoregressive integrated mov-
ing average (ARIMA), respectively. We present an extensive experimen-
tal evaluation of the designed tools over a real network traffic dataset.
Within this analysis, we explore the impact of different parameters on
the effectiveness of the predictions. We further extend our analysis to the
problem of network traffic classification and prediction of traffic bursts.
The results, on the one hand, demonstrate the superior performance of
LSTM over ARIMA in general, especially when the length of the training
dataset is large enough and its granularity is fine enough. On the other
hand, the results shed light onto the circumstances in which, ARIMA
performs close to the optimal with lower complexity.

Keywords: Statistical learning · Machine learning · LSTM ·
ARIMA · Cellular traffic · Predictive network management

1 Introduction

A major driver for the beyond fifth-generation (5G) wireless networks consists
in offering the wide set of cellular services in an energy and cost-efficient way
[22]. Toward this end, the legacy design approach, in which resource provision-
ing and operation control are performed based on the peak traffic scenarios, are
substituted with predictive analysis of mobile network traffic and proactive net-
work resource management [5,9,22]. Indeed, in cellular networks with limited
and highly expensive time-frequency radio resources, precise prediction of user
traffic arrival can contribute significantly in improving the resource utilization
[5]. As a result, in recent years, there has been an increasing interest in leveraging
c© Springer Nature Switzerland AG 2019
P. Kralj Novak et al. (Eds.): DS 2019, LNAI 11828, pp. 129–144, 2019.
https://doi.org/10.1007/978-3-030-33778-0_11
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Fig. 1. A communication network including access point, users, and uplink and down-
link data communications. (a) service is offered without prediction of bursts, (b) service
is adapted to the probability of occurrence of bursts.

machine learning tools in analyzing the aggregated traffic served in a service area
for optimizing the operation of the network [1,28,30,32]. Scaling of fronthaul and
backhaul resources for 5G networks has been investigated in [1] by leveraging
methods from recurrent neural networks (RNNs) for traffic estimation. Analysis
of cellular traffic for finding anomaly in the performance and provisioning of
on-demand resources for compensating such anomalies have been investigated in
[32]. Furthermore, prediction of light-traffic periods, and saving energy for access
points (APs) through sleeping them in the respective periods has been investi-
gated in [28,30]. Moreover, Light-weight reinforcement learning for figuring out
statistics of interfering packet arrival over different wireless channels has been
recently explored [4]. While one observes that analysis of the aggregated traffic
at the network side is an established field, there is lack of research on the analysis
and understanding at the user level, i.e., of the specific users’ traffic arrival. In
5G-and-beyond networks, the (i) explosively growing demand for radio access,
(ii) intention for serving battery- and radio-limited devices requiring low-cost
energy-efficient service [4], and (iii) intention for supporting ultra-reliable low-
latency communications [5], mandate studying not only the aggregated traffic
arrival from users, but also studying the features of traffic arrival in all users,
or at least for critical users. A critical user could be defined as a user whose
quality-of-service (QoS) is at risk due to the traffic behavior of other devices, or
its behavior affects the QoS of other users. Let us exemplify this challenge in the
sequel in the context of cellular networks.

Example. Figure 1(a) represents a communication network in which, an AP is
serving users in the uplink (towards AP) and downlink (towards users). One
further observes that traffic from user-2 represents a semi-stable shape, which
is usually the case in video streaming, while the traffic from user-1 represents
a bursty shape, which could be the case in surfing and on-demand file down-
load. One observes that once a burst in traffic of user-1 occurs, the server (i.e.
AP) will have difficulty in serving both users in a timely manner, and hence,
QoS degradation occurs. Figure 1(a) represents a similar network in which, AP
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predicts the arrival of burst to user-1, immediately fills the buffer of user-2. Thus,
at the time of arrival of burst for user-1, user-2 will require minimal data transfer
from the AP, and hence, QoS degradation for user-2 will be prevented. Backed
to this motivation, the remainder of this paper is dedicated to investigating the
feasibility of exploiting the traffic history at the user level and employing it for
future traffic prediction via machine learning and statistical learning approaches.

Research Problem. Let us assume time in our problem is quantized into inter-
vals of length τ seconds. The research problem tackled in this work could be
stated as follows: Given the history of traffic arrival for a certain number of
time intervals, how accurately can we estimate (a) the intensity of traffic in the
next time intervals, (b) the occurrence of burst in future time intervals (c) the
application which is generating the traffic?

This problem can be approached as a time series forecasting problem, where
for example, the number of packet arrivals in each unit of time constitutes the
value of the time series at that point. While the literature on time series fore-
casting using statistical and machine learning approaches is mature, e.g., refer to
[24,31] and references herein, finding patterns in the cellular traffic and making
the decision based on such prediction is never an easy task due to the following
reasons [33]. First, the traffic per device originates from different applications,
e.g. surfing, video and audio calling, video streaming, gaming, and etc. Each of
these applications could be mixed with another, and could have different modes,
making the time series seasonal and mode switching. Second, each application
can generate data at least in two modes, in active use and in the background, e.g.
for update and synchronization purposes. Third, each user could be in different
modes in different hours, days, and months, e.g. the traffic behavior in working
days differs significantly from the one in the weekends. Fourth, and finally, the
features in the traffic, e.g., the inter-arrival time of packets, vary significantly in
traffic -generating applications and activity modes.

Contributions. Our contributions in this paper are summarized as follows:

– We present a comprehensive comparative evaluation for prediction and classi-
fication of network traffic; autoregressive integrated moving average (ARIMA)
against the long short-term memory (LSTM);

– We investigate how a deep learning model compares with a linear statistical
predictor model in terms of short-term and long-term predictive performance,
and how additional engineered features, such as the ratio of uplink to down-
link packets and protocol used in packet transfer, can improve the predictive
performance of LSTM;

– Within these analyses, the impact of different design parameters, including
the length of training data, length of future prediction, the feature set used in
machine learning, and traffic intensity, on the performance are investigated;

– We further extend our analysis to the classification of the application gen-
erating the traffic and prediction of packet and burst arrivals. The results
presented in this work pave the way for the design of traffic-aware network
planning, resource management, and network security.
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The remainder of this paper is organized as follows: In Sect. 2, we outline the
related work in the area and introduce the knowledge gaps of state-of-the-art. In
Sect. 3, we formulate the problem studied in this paper, while Sect. 4 presents the
two methods used for solving it. Section 5 presents the experimental evaluation
results for different methods and feature sets, as well as provides a conclusive
discussion on the results. Finally, concluding remarks and future direction of
research are provided in Sect. 6.

2 Related Work and Research Gap

We summarize state-of-the-art research on cellular traffic prediction and classi-
fication, and introduce the research gaps which motivate our work.

Cellular Traffic Prediction. Understanding dynamics of cellular traffic and
prediction of future demands are, on the one hand, crucial requirements for
improving resource efficiency [5], and on the other hand, are complex prob-
lems due to the diverse set of applications that are behind the traffic. Dealing
with network traffic prediction as a time series prediction, one may categorize
the state-of-the-art proposed schemes into three categories: statistical learning
[8,19], machine learning [26,27], and hybrid schemes [12]. ARIMA and LSTM, as
two popular methods of statistical learning and machine learning time series fore-
casting, have been compared in a variety of problems, from economics [10,19,23]
to network engineering [6]. A comprehensive survey on cellular traffic prediction
schemes, including convolutional and recurrent neural networks, could be found
in [13,15]. A deep learning-powered approach for prediction of overall network
demand in each region of cities has been proposed in [2]. In [18,27], the spa-
tial and temporal correlations of the cellular traffic in different time periods and
neighboring cells, respectively, have been explored using neural networks in order
to improve the accuracy of traffic prediction. In [14], convolutional and recur-
rent neural networks have been combined in order to further capture dynamics
of time series, and enhance the prediction performance. In [6,26], preliminary
results on network traffic prediction using LSTM have been presented, where the
set of features used in the experiment and other technical details are missing.
Reviewing the state-of-the-art, one observes there is a lack of research of lever-
aging advanced learning tools for cellular traffic prediction, selection of adequate
features, especially when it comes to each user with a specific set of applications
and behaviors.

Cellular Traffic Classification. Traffic classification has been a hot topic
in computer/communication networks for more than two decades due to its
vastly diverse applications in resource provisioning, billing and service prioritiza-
tion, and security and anomaly detection [20,29]. While different statistical and
machine learning tools have been used till now for traffic classification, e.g. refer
to [16] and references herein, most of these works are dependent upon features
which are either not available in encrypted traffic, or cannot be extracted in real-
time, e.g. port number and payload data [16,20]. In [25], classification of traffic
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using convolutional neural network using 1400 packet-based features as well as
network flow features has been investigated for classification of encrypted traffic,
which is too complex for a cellular network to be used for each user. Reviewing
the state-of-the-art reveals that there is a need for investigation of low-complex
scalable cellular traffic classification schemes (i) without looking into the pack-
ets, due to encryption and latency, (ii) without analyzing the inter-packet arrival
for all packets, due to latency and complexity, and (iii) with a few numbers of
features as possible. This research gap is addressed in this work (Fig. 3).

Fig. 2. The number of uplink packet arrivals for 24 days in 10-s intervals

3 Problem Description and Traffic Prediction Framework

In this section, we first provide our problem setup and formulate the research
problem addressed in the paper. Then, we present the overall structure of the
traffic prediction framework, which is introduced in this work.

We consider a cellular device, on which a set of applications, denoted by A,
are running, e.g., User-1 in Fig. 1. At a given time interval [t, t + τ ] of length τ ,
each application could be in an active or background mode, based on the user
behaviour. We further consider a set of features describing the aggregated cellular
traffic in [t, t+τ ] for a specific user, such as the overall number of uplink/downlink
packets and the overall size of uplink/downlink packets, which don’t require
decoding the packets. Let vector xi(t) denote the set of features describing the
traffic in interval [t− iτ, t− (i− 1)τ ] for i ≥ 1, and in interval [t− (i+1)τ, t− iτ ]
for i < 0 respectively. Furthermore, Xm(t) is a matrix containing m feature
vectors of the traffic, including x1(t):xm(t) for m > 0, and x−1(t):x−m(t) for
m < 0. Further, denote by s an indicator vector, with elements either 0 or 1.
Then, given a matrix Xm(t) and a binary indicator vector s, we define Xs

m(t) the
submatrix of Xm(t), such that all respective rows, for which s indicates a zero
value, are removed. For example, let Xm(t) = [1, 2; 3, 4] and s = [1, 0]. Then,
Xs

m(t) = [1, 2].
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Now, the research question in Sect. 1 could be rewritten as:

Given Xm(t),m ≥ 1;

minimize L
(
Xs

−n(t),Y(t)
)

(1)

where n > 0 is the length of the future predictions, e.g., n = 1 for one τ future
prediction, Y(t) is of the same size as Xs

−n(t) and represents the predicted matrix
at time t, while L(·) is the desired error function, e.g., it may compute the mean
squared error between Xs

−n(t) and Y(t).

4 Time Series Prediction

In this section, we give a short description of the two methods benchmarked in
this paper to be used within the proposed prediction framework in Sect. 4.1.

4.1 The Proposed Traffic Prediction Framework

Recall the challenges described in the previous section on the prediction of cellu-
lar traffic, where the major challenge consists of dependency of traffic arrival to
user behavior and type of the application(s) generating the traffic. Then, as part
of the solution to this problem, one may first predict the application(s) in use and
behavior of the user, and then use them as extra features in the solution. This
approach for solving (1) has been illustrated in Fig. 3. In order to realize such a
framework, it is of crucial importance to first evaluate the traffic predictability
and classification using only statistics of traffic with granularity τ , and then,
to investigate hybrid models for augmenting predictors by online classifications,
and finally to investigate traffic-aware network management design.

Fig. 3. The proposed framework for cellular traffic prediction
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4.2 Statistical Learning: ARIMA

The first method we consider in our work is Autoregressive integrated moving
average (ARIMA), which is essentially a statistical regression model. The pre-
dictions performed by ARIMA are based on considering the lagged values of
a given time series, while at the same time accommodating non-stationarity.
ARIMA is one of the most popular linear models in statistical learning for time
series forecasting, originating from three models: the autoregressive (AR) model,
the moving average (MA) model, and their combination, ARMA [7].

More concretely, let X = X1, . . . , Xn define a uni-variate time series, with
Xi ∈ R, for each i ∈ [1, n]. A p-order AR model, AR(p), is defined as follows:

Xt = c + α1Xt−1 + α2Xt−2 + . . . + αpXt−p + εt, (2)

where Xt is the predicted value at time t, c is a constant, α1, . . . , αp are the
parameters of the model and εt corresponds to a white noise variable.

In a similar, a q-order moving average process, MA(q), expresses the time
series as a linear combination of its current and q previous values:

Xt = μ + εt + β1εt−1 + β2εt−2 + . . . + βqεt−q, (3)

where μ is the mean of X, β1, . . . , βq are the model parameters and εi corresponds
to a white noise random variable. The combination of an AR and an MA process
coupled with their corresponding p and q order parameters, respectively, defines
an ARMA process, denoted as ARMA(p, q), and defined as Xt = AR(p) +
MA(q). The original limitation of ARMA is that, by definition, it can only be
applied to stationary time series. Nonetheless, non-stationary time series can
be stationarized using the dth differentiation process, where the main objective
is to eliminate any trends and seasonality, hence stabilizing the mean of the
time series. This process is simply executed by computing pairwise differences
between consecutive observations. For example, a first-order differentiation is
defined as X

(1)
t = Xt − Xt−1, and a second order differentiation is defined as

X
(2)
t = X

(1)
t − X

(1)
t−1. Finally, an ARIMA model, ARIMA(p, d, q), is defined

by three parameters p, d, q [17], where p and q correspond to the AR and MA
processes, respectively, while d is the number of differentiations performed to
the original time series values, that is Xt is converted to X

(d)
t = ∇dXt, with

X
(d)
t being the time series value at time t, with differentiation applied d times.

The full ARIMA(p, d, q) model is computed as X
(d)
t =

∑p
i=1 αiX

(d)
t−i + εt + c +∑q

i=1 βqεt−q + μ.

Finding Optimized Parameters. In this study, the ARIMA parameters,
including p, d, and q, are optimized by carrying out a grid search over potential
values in order to locate the best set of parameters. In experimental results,
Fig. 5, we represent the root mean square error (RMSE) results for different
ARIMA (p, d, q) configurations, when they are applied to the dataset for predic-
tion of the number of future packet arrivals. From these results and Bayesian
information criterion (BIC), the best performance is achieved by ARIMA(6,1,0).
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4.3 Machine Learning: LSTM

Next, we consider is a long short-term memory (LSTM) architecture based on a
Recurrent Neural Network (RNN), a generalization of the feed forward network
model for dealing with sequential data, with the addition of an ongoing internal
state serving as a memory buffer for processing sequences. Let {X1, . . . , Xn}
define the input (features) of the RNN, {Y1, . . . , Yn} be the set of outputs, and
let {Y ′

1 , . . . , Y
′
n} denote the actual time series observations that we aim to predict.

For this study the internal state of the network is processed by Gated Recurrent
Units (GRU) [11] defined by iterating the following three equations:

rj = sigm([WrX]j + [Urht−1]j), (4)
zj = sigm([WzX]j + [Uzht−1]j)), (5)
ht
j = zjh

t−1
j + (1 − zj)hnew, (6)

ht
new = tanh([WX]j + [U(r ◦ ht−1)]j),where (7)

– rj : a reset gate showing if a previous state is ignored for the jth hidden unit,
– ht−1; the previous hidden internal state ht−1,
– W and U : parameter matrices containing weights to be learned,
– zj : an update gate that determines if a hidden state should be updated,
– ht

j : the activation function of hidden unit hj ,
– sigm(·): the sigmod function, and
– ◦: the Hadamard product.

Finally, the loss function we optimize is the squared error, defined for all
inputs as L =

∑n
t=1(Yt − Y ′

t )
2. The RNN tools leveraged in this work for traffic

prediction consist of 3 layers, including the LSTM layer, with 100 hidden ele-
ments, the fully connected (FC) layer, and the regression layer. The regression
layer is substituted with the softmax layer in the classification experiments.

5 Experimental Evaluation

In this section, we investigate the performance of the proposed prediction and
classification tools over a real cellular dataset.

5.1 Dataset

We generated our own cellular traffic dataset and made part of it available online
[3]. The data generation was done by leveraging a packet capture tool, e.g. Wire-
Shark, at the user side. Using these tools, packets are captured at the Internet
protocol (IP) level. One must note that the cellular traffic is encrypted in layer 2,
and hence, the payload of captured traffic is neither accessible nor intended for
analysis. The latter is due to the fact that for the realization of a low-complexity
low-latency traffic prediction/classification tool, we are interested in achieving
the objectives just by looking at the traffic statistics. For generating labels for
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part of the dataset, to be used for classification, a controlled environment at the
user-side is prepared in which, we filter internet connectivity for all applications
unless a subset of applications, e.g., Skype. Then, the traffic labels will be gen-
erated based on the different filters used at different time intervals. In our study,
we focus on seven packet features: (i) time of packet arrival/departure, (ii)
packet length, (iii) whether the packet is uplink or downlink, (iv) the source IP
address, (v) the destination IP address, (vi) the communication protocol, e.g.,
UDP, and (vii) the encrypted payload, where only the first three features are
derived without looking into the header of packets. We experimented with differ-
ent values for the interval length parameter τ , and for most of our experiments τ
was set to 10 s. Table 1 provides the set of features for each time interval in rows,
and the subsets of features used in different feature sets (FSs). It is straightfor-
ward to infer that τ tunes a tradeoff between complexity and reliability of the
prediction. If τ tends to zero, i.e., τ = 1 ms, one can predict traffic arrival for
the next τ interval with high reliability at the cost of extra effort for keeping
track of data with such a fine granularity. On the other hand, when τ tends to
seconds or minutes, the complexity and memory needed for prediction decrease,
which also results in lower predictive performance during the next intervals.

5.2 Setup

The experimental results in the following sections are presented within 3 cate-
gories, i.e., (i) prediction of the number of packet arrivals in future time intervals,
(ii) prediction of burst occurrence in future intervals, and (iii) classification of
applications generating the traffic. In the first two categories, we performed a
comprehensive set of Monte Carlo MATLAB simulations [21], over the data set,
varying different data parameters, such as length of the training set, length of
future prediction, feature sets used in learning and prediction. Each RMSE result
in Fig. 5 for each scheme has been derived by averaging over 37 experiments. In
each experiment, each scheme is trained using a training dataset, and then tested
over 2000 future time intervals (non-overlapping with the training dataset). For
the classification performance evaluation, we have leveraged 16 labeled datasets,
each containing traffic from 4 mobile applications. Then, we constructed 16 tests,
where in each test, one dataset is used for performance evaluation. The notation
of the schemes used in the experiments, extracted from the basic ARIMA and
LSTM methods described in Sect. 4, is as follows: (i) AR(1), representing the
traffic prediction based on the last observation; (ii) optimized ARIMA, in which
the number of lags and coefficients of ARIMA are optimized using a grid search
for RMSE minimization; and (iii) LSTM(FS-x), in which FS-x for x ∈ {1, · · · , 6}
represents the feature set used in the LSTM prediction/classification tool. The
overall configuration of experiments can be found in Table 2.

Reproducibility. All experiments can be reproduced using the anonymized
GDPR-compliance traffic dataset available at the supporting repository [3].
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5.3 Empirical Results

In this section, we present the prediction and classification performance results.

Prediction of Traffic Intensity. Figure 5 depicts the RMSE results for differ-
ent ARIMA and LSTM configurations versus AR(1), when the number of uplink
packets in intervals of 10 s is to be estimated. Towards this end, the right y-axis
represents the absolute RMSE of AR(1), the left y-axis represents the relative
performance of other schemes versus AR(1), and the x-axis represents the stan-
dard deviation (SD) of the test dataset. The results are insightful and shed light
to the regions in which ARIMA and LSTM perform favorably, as follows. When
the SD of traffic from its average value is more than 30% of the long-term SD
of the dataset1, which is almost the case in the active mode of phone usage by
human users, LSTM outperforms the benchmark schemes. On the other hand,
when there is only infrequent light background traffic, which is the case on the
right-end side of Fig. 5, ARIMA outperforms the benchmark schemes. When we
average the performance over a 24-days dataset, we observe that LSTM(FS-6),
LSTM(FS-5), LSTM(FS-3), and optimized ARIMA outperform the AR(1) by
16%, 14.5%, 14%, and 12%, respectively, for τ = 10 s. Recall that LSTM(FS-6)
keeps track of the number of uplink and downlink packets, as well as statis-
tics of the communication protocol used by packets in each time interval, while
LSTM(FS-5) does not care about the protocol used by packets. The superior
performance of LSTM(FS-6) with regards to LSTM(FS-5), as depicted in Fig. 5,
represents that how adding features to the LSTM predictor can further improve
the prediction performance in comparison with the linear predictors.

Table 1. Feature sets.

Feature sets (FSs) 1 2 3 4 5 6

Num. of UL packets 1 1 1 1 1 1

Num. of DL packets 1 0 0 1 1 1

Size of UL packets 1 0 0 0 0 0

Size of DL packets 1 0 0 0 0 0

UL/DL packets 1 1 0 1 0 0

Comm. protocol 0 0 0 0 0 1

Table 2. Parameter configuration.

Parameters Description

Traffic type Cellular traffic

Capture point IP layer, device side

Length of dataset 48 days traffic

RNN for prediction
(eq. classification)

[LSTM, FC,
regression(eq. softmax)]

Time granularity, τ Default: 10 s

We investigate if LSTM can further outperform the benchmark schemes by
increasing time-granularity of the dataset, decreasing length of future obser-
vation, and increasing length of the training set. First, let us investigate the
performance impact of τ , i.e. the time granularity of dataset. Figure 5 (left)
represents the absolute (left y-axis) and rational (right y-axis) RMSE results
for the proposed and benchmark schemes as a function of time granularity of

1 The long-term SD of the dataset is 90.
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Fig. 4. Prediction of the future number of uplink packets (τ = 10 s). (left) Finding
optimized ARIMA(p, d, q) configuration; (right) The RMSE performance comparison
of LSTM and ARIMA.

Fig. 5. (left) RMSE of prediction as a function of τ (time granularity of dataset);
(right) RMSE of prediction of number of uplink packets as a function of length of the
training dataset (as well as length of future prediction).

dataset (τ , the x-axis). One must further consider the fact that τ not only rep-
resents how fine we have access to the history of the traffic, but also represents
the length of future prediction. It is clear that the best results for the lowest
τ , e.g. when τ = 1, the LSTM (FS-6) outperforms the optimized ARIMA by
5% and the AR(1) by 18%. One further observes that by increasing the τ , not
only the RMSE increases but also the merits of leveraging predictors decrease,
e.g. for τ = 60, LSTM(FS-6) outperforms AR(1) by 7%. Now, we investigate
the performance impact of the length of the training set on the prediction in
Fig. 5 (right). One observes that the LSTM(FS-6) with poor training (1 day)
even performs worse than optimized ARIMA. However, as the length of training
data set increases, the RMSE performance for the LSTM predictors, especially
for LSTM(FS-3) with further features, decreases significantly.

Prediction of Event Bursts. We investigate the usefulness of the proposed
schemes for burst prediction in future time intervals. For the following exper-
iments, we label a subset of time intervals as bursts, based on the underlying
traffic intensity, i.e., the number and length of packets. Then, based on this train-
ing dataset, we aim at predicting whether a burst will occur in the next time
interval. As a benchmark to the LSTM predictors, we compare the performance
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against AR(1), i.e., we estimate a time interval as burst if the previous time inter-
val was labeled as a burst. In Fig. 6 (left) we see the recall of bursty and normal
(non-bursty) intervals for a burst definition in which, time intervals with more
than 90 uplink packet arrivals are treated as burst when the SD of packet arrivals
in the dataset is 90. The LSTM predictor developed in this experiment returns
the probability of burst occurrence in the next time interval. In order to declare
the decision as burst or non-burst, we set a probability threshold value. The
x-axis of Fig. 6 (left) represents the decision threshold, which tunes the weight
of recall and accuracy of decisions. In this figure, we observe that the probability
of missing a burst is very low on the left side, while the accuracy of decisions is
low (it can be inferred from the recall of normal intervals). Furthermore, on the
right side of the figure, the probability of missing a burst has decreased, how-
ever, the accuracy has increased (high recall of normal intervals). The crossover
point, where the recall values of bursty and non-bursty intervals match, could be
an interesting point for investigating the prediction performance. In this figure,
one observes that when the decision threshold is 0.02, 91% of bursts could be
predicted, while only 9% of normal intervals are labeled as bursty (false alarm).

In Fig. 6 (right) we observe some insightful results on the coupling between
recall of predictions and degree of rareness of the bursts. The x-axis represents
the definition of bursts, e.g. for x = 90, we label time intervals with more than
90 packets as a burst. From this figure, it is clear that LSTM outperforms the
benchmarks in recalling the burst with a reasonable non-burst recall cost. For
example, for x = 1(≈ 0.01SD), we aim at predicting if the next time interval
will contain a packet or not, i.e., time intervals with a packet transmission are
defined as bursts. One observes that 78% of bursts could be predicted using
LSTM(FS-5), while only 28% of non-bursts are declared as bursts. Having the
information that 20% of time internals contain bursts, we infer that the accuracy
of prediction is 78%. As the frequency of burst occurrence decreases, i.e., we move
to the right side of the figure, the recall performance of LSTM increases slightly
up to some point beyond which, it starts decreasing. On the other hand, the
accuracy of prediction by moving from left to right decreases substantially due
to the rareness of the bursts. Clearly, LSTM outperforms AR(1), especially when
bursts are occurring infrequently.

Fig. 6. (left) Prediction of bursts as a function of decision threshold; (right) Prediction
of bursts as a function of frequency of occurrence of bursts. (τ = 10 s)
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Fig. 7. (left) The overall accuracy of classification as a function of the feature set used
in the experiment; (right) Per application accuracy of classification.

Traffic Classification. We investigate leveraging machine learning schemes for
classification of the application generating the cellular traffic in this subsection.
For the classification purpose, a controlled experiment at the user-side has been
carried out in which, 4 popular applications including surfing, video calling, voice
calling, and video streaming have been used by the user. Figure 7 (left) represents
the overall accuracy of classification for different feature sets used in the machine
learning tool. One observes that the LSTM(FS-5) and LSTM(FS) outperform the
others significantly in the accuracy of classification. Furthermore, in this Fig. 3
curves for different lengths of the test data, to be classified, have been depicted.
For example, when the length of the test data is 0.1 s, the time granularity of
dataset (τ) is 0.1 s, and we also predict labels of intervals of length 0.1 s. It
is clear here that as the length of τ increases, the classification performance
increase because we will have more evidence from the data in the test set to be
matched to each class. To further observe the recall of classification for different
applications, Fig. 7 (right) represents the accuracy results per each application.
One observes that the LSTM(FS-4) and LSTM(FS-5) outperform the others. It
is also insightful that adding the ratio of uplink to downlink packets to FS-5, and
hence constructing FS-4 (based on Table 1), can make the prediction performance
more fair for different applications. It is further insightful to observe that the
choice of feature set to be used is sensitive to the application used in the traffic
dataset. In other words, FS-3, which benefits from one feature, outperforms
the others in the accuracy of classification for video calling, while it results in
classification error for other traffic types.

5.4 Discussion

The experimental results represent that the accuracy of prediction strongly
depends on the length of the training dataset, time granularity of dataset,
length of future prediction, mode of activity of the user (standard deviation
of test dataset), and the feature set used in the learning scheme. The results, for
example, indicate that the proposed LSTM(FS-3) is performing approximately
5% better than optimized ARIMA, and 18% better than AR(1) for τ = 10 s.
The results further indicated that the performance of LSTM could be further
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improved by designing more features related to the traffic, e.g. the protocol in
use for packets, and the ratio of uplink to downlink packets. Moreover, our exper-
iments indicated that the design of a proper loss function, and equivalently the
decision threshold, can significantly impact the recall and accuracy performance.
Furthermore, we observed that the frequency of occurrence of bursts (definition
of burst), the time granularity of dataset, and length of future prediction, can
also significantly impact the prediction performance. The results, for example,
indicated that a busy interval, i.e. an interval with at least one packet, could be
predicted by 78% accuracy as well as recall. The experimental results represented
the facts that, first, accuracy and recall performance of classification is highly
dependent on the feature set used in the classification. For example, a feature
set that can achieve an accuracy of 90% for classification of one application may
result in a recall of 10% for another application. Then, the choice of feature set
should be in accordance with the set of applications used by the user. Second, if
we can tolerate delay in the decision, e.g. 5 s, the classification performance will
be much more accurate when we gather more information and decide on longer
time intervals. The overall accuracy performance for different applications using
the developed classification tool is approximately 90%.

6 Conclusions

In this work, the feasibility of per-user traffic prediction for cellular networks has
been investigated. Towards this end, a framework for cellular traffic prediction
has been introduced, which leverages statistical/machine learning units for traffic
classification and prediction. A comprehensive comparative analysis of predic-
tion tools based on statistical learning, ARIMA, and the one based on machine
learning, LSTM, has been carried out, under different traffic circumstances and
design parameter selections. The LSTM model, in particular, when the length of
training data is long enough and the model is augmented by additional features
like the ratio of uplink to downlink packets and the communication protocol used
in prior packet transfers, exhibited demonstrable improvement over the bench-
mark schemes for future traffic predictions. Furthermore, the usefulness of the
developed LSTM model for classification of cellular traffic has been investigated,
where the results represent high sensitivity of accuracy and recall of classifica-
tion to the feature set in use. Additional investigations could be performed in
the future works regarding making the prediction tool mode-switching, in order
to reconfigure the feature set and prediction parameters based on the changes
in the behavior of user/applications in an hourly/daily basis.
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Abstract. Email Marketing is one of the most important traffic sources in
Digital Marketing. It yields a high return on investment for the company and
offers a cheap and fast way to reach existent or potential clients. Getting the
recipients to open the email is the first step for a successful campaign. Thus, it is
important to understand how marketers can improve the open rate of a mar-
keting campaign. In this work, we analyze what are the main factors driving the
open rate of financial email marketing campaigns. For that purpose, we develop
a classification algorithm that can accurately predict if a campaign will be
labeled as Successful or Failure. A campaign is classified as Successful if it has
an open rate higher than the average, otherwise it is labeled as Failure. To
achieve this, we have employed and evaluated three different classifiers. Our
results showed that it is possible to predict the performance of a campaign with
approximately 82% accuracy, by using the Random Forest algorithm and the
redundant filter selection technique. With this model, marketers will have the
chance to sooner correct potential problems in a campaign that could highly
impact its revenue. Additionally, a text analysis of the subject line and preheader
was performed to discover which keywords and keyword combinations trigger a
higher open rate. The results obtained were then validated in a real setting
through A/B testing.

Keywords: Digital Marketing � Email Marketing � Marketing campaigns �
Open rate

1 Introduction

The introduction of the Internet allowed a new form of communication, known as
Digital Marketing. One of the most important traffic sources in Digital Marketing is
Email Marketing. A recent study showed that 59% of the marketers1 inquired stated
that Email Marketing is the source that brings the highest return on investment
(ROI) for the firm [8]. Thus, it´s is crucial for email marketers to know how to improve
the performance of their marketing campaigns.

1 A person or company that advertises or promotes something.
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In this work, we analyze what are the main factors driving the open rate of financial
email marketing campaigns. Getting the recipients to open the email is the first step for
a successful campaign, since it determines the reach of the campaign [6, 7]. Therefore,
it´s important for marketers to first understand how they can improve the email open
rate. With that purpose, we developed a classification algorithm that can accurately
predict if a campaign will be classified as Successful or Failure. A campaign is labeled
as Successful if it has an open rate higher than the average, otherwise it is classified as
Failure Additionally, we did a text analysis of the subject line and preheader to
discover which keywords and keyword combinations are associated with a higher email
open rate. To validate the results obtained in a real setting, we performed A/B testing in
the deployment stage. This framework was applied in a Portuguese Digital Marketing
company, as a case study.

By using data-driven models, advertisers can predict the performance of a cam-
paign before even sending it. In fact, if a marketer knows in advance if a campaign is
going to be successful or not, it provides the opportunity to sooner correct problems
that could strongly impact its revenue. To our knowledge, this is the first publication
that does an extensive qualitative analysis of the main factors driving the opening
behavior of financial marketing campaigns. Nowadays, financial institutions are using
Email Marketing as an important source to reach their clients. Thus, this work will
guide marketers on how to implement successful campaigns in this field.

This paper follows the CRISP-DM methodology [15], which consists of the fol-
lowing stages: Business Understanding, Data Understanding, Data Preparation, Mod-
elling, Evaluation and Deployment.

2 Related Work

The existent research studies on email open rate prediction assume an approach at the
recipient level [13] or at the campaign level [2, 11]. In thiswork,we studied the email open
rate at the campaign level because we didn´t have access to data at the recipient level, due
to the General Data Protection Regulation (GDPR) requirements. We treated this work as
a classification problem because our objective was to analyze qualitatively the main
factors contributing to marketing campaigns with an email open rate above the average.

In 2014, Balakrishnan and Parekh [2] proposed a method for predicting the open
rate of an email subject line, by learning from past subject lines. They used syntactical,
historical and derived features of each keyword in the subject line and of the entire
subject line. The model developed for the prediction was the Random Forest regression
model, which predictions improved over the baseline. For the baseline, the open rate
prediction was equal to the mean open rate of past emails that used the same subject
line. For new subject lines, the open rate was predicted as the average open rate of all
the subject lines.

In 2015, Luo et al. [13] developed a classification algorithm to predict if a targeted
email will be open or not. For each email recipient, the model classified the email in
“open” or “unopen”. The model used features extracted from the emails and from the
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email recipients’ profiles. For the prediction phase they used two different classifiers,
Support Vector Machine and Decision Tree, on two different datasets using different
feature selection methods (include or not include the recipient´s domains). The Deci-
sion Tree outputted the other classifier, achieving a F1-measure rate of approximately
80% on the “opens”, in the case of considering all features. In the case where the
recipient´s domains were not considered, the performance of both classifiers dropped,
which indicates this component is important to predict the email open behavior.

In 2018, Jaidka et al. [11] also studied the problem of predicting email opens, based
on the subject line. They explored the differences in the recipient´s preferences for
subject lines sent by different business areas (Finance, Cosmetics and Television). The
methodology used was a Data Mining model to predict the open rate of different email
subject lines, a regression analysis to study the effect of different subject line language
styles in the open rate and a domain adaptation method. The learning model used was a
five–fold cross–validated weighted linear regression, which predictions improved over
the baselines - state-of-the-art model [2] and the mean open rate of the entire dataset.
The use of the domain adaptation method improved the prediction of the model for
unseen domains and business. They concluded that using certain styling strategies in
the subject line, according to the business area of the campaign, can strongly impact the
email open rate.

The contributions of our work to these papers are the inclusion of the preheader and
the email sender as features in the prediction task. Before opening an email, the
recipient has also information of these components; therefore, we decided to test if
these features are important to predict the open behavior of a campaign.

3 Business Understanding

The objective of the Portuguese company involved in this study was to understand how
they could improve the open rate of their email marketing campaigns. The company
has an online publishing business that sends Spanish marketing campaigns, mainly
from financial institutions. To satisfy that business objective, we developed a classi-
fication algorithm that can accurately predict if a campaign will be classified as Suc-
cessful or Failure. In addition, we applied a text analysis of the subject line and
preheader to find which keywords and keyword combinations trigger a higher open
rate. To validate the results obtained in the company business, we conducted A/B
testing.

The tools that were used in this study were the software Knime [3] and SPSS [10].

4 Data Understanding

4.1 Data Extraction

For this work, we collected data of 217 Spanish email campaigns from the company in
study, sent since February 2018 until February 2019. The features extracted were the
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following: campaign name; email sender2; subject line3; preheader4; number of emails
sent; number of emails delivered; number of emails opened.

Keyword Extraction Process: To calculate the number of keywords in each email
subject line and preheader, we first had to extract the set of keywords. That process is
shown in Fig. 1 and Table 1.

– Excel Reader: Dataset composed by the campaign name, the subject line and pre-
header of each campaign, the respective email open rate and classification.

– Stop Word Filter: This node removes the terms of the input documents which are in
the Spanish Stop Word list.

– Dict Replacer: This node replaces the terms of the input documents that match with
the specified dictionary terms by the corresponding specified value. The dictionary
file used was an external source Spanish Lemmatizer (GitHub source), as the Knime
software only allows Lemmatization for English terms.

Fig. 1. Keyword extraction process.

Table 1. Keywords.

Campaign
id

Subject line & preheader Keywords

4 “Ahorra un 30% en el seguro de tu hogar. Sin renunciar a
ninguna cobertura.”

ahorrar
seguro
hogar
renunciar
cobertura

2 Person or entity that sends the email.
3 Short description of the email content.
4 Description that complements the email subject line.
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4.2 Data Description

The variables used for this study are described in Table 2. These variables were
extracted and derived from email campaigns of the studied company.

Table 2. Data description.

Variables Description

Campaign
statistics

Sent (Sent) Number of emails sent
Sent days (Sent_days) Number of days the campaign was sent

Syntactical
variables

Length subject line (Length_subject) The number of characters in the subject
line

Length preheader
(Length_preheader)

The number of characters in the
preheader

Personalization
(Personalization)

Whether the email subject line and/or
preheader has a personalized greeting
(i.e., the recipient´s name). Categories:
No; Yes

Digits (HasDigits) Whether the email subject line and/or
preheader has digits. Categories: No; Yes

Punctuation
(Punctuation)

The type of punctuation of the subject
line. Categories: Affirmative;
Exclamation; Interrogation

Sender Recognizable
(Sender_recognize)

Whether the email sender corresponds to
the name of the financial institution that
is sending the campaign, i.e., if the email
sender is recognizable by the recipient.
Categories: No; Yes

Number of keywords (Nr_keywords) The total number of keywords in the
email subject line and preheader

Historical
variables

Occurrence score 1st, 2nd, 3rd and 4th

keyword (OC_1stkey; OC_2ndkey;
OC_3rdkey; OC_4thkey)

Occurrence score of the first, second,
third and fourth keyword of the subject
line and preheader, counting from the left
to the right

Target
variable

Classification
(Classification)

Categories:
•Successful – if the open rate is above the
average;
•Failure – if the open rate is below the
average;
The email open rate of a campaign is
calculated by dividing the number of
emails opened by the number of emails
delivered.
Average Email Open Rate � 16,81%
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The occurrence score of a keyword is equal to the difference between the number of
times the keyword was in the “Successful” set in past campaigns and the number of
times it was in the “Failure” set [2]. This feature captures the consistency in perfor-
mance of a keyword. In fact, a positive occurrence score indicates the keyword has a
good opening performance, as it was mostly present in campaigns with an email open
rate above the average.

4.3 Data Exploration

Bivariate Analysis
This study aims to discover how marketers can improve the email open rate of their
marketing campaigns. Hence, in this analysis the goal was to find the variables sig-
nificantly associated with the open rate.

Since none of the numerical variables follows a Normal distribution, the proper test
to analyze the correlation between pairs of numerical variables is the Spearman’s rank
correlation coefficient. The results of this test demonstrated that all the numerical
variables are significantly correlated with the open rate, except the occurrence score of
the first, third and fourth keyword (for a significance level of 5%). The variables more
correlated with the open rate are the number of emails sent and the number of days the
campaign was sent. Note that the length of the email subject line is negatively corre-
lated with the open rate, as Chittenden and Rettie pointed out [7]. On the other hand,
the length of the preheader and the number of keywords is slightly positively corre-
lated. The dataset campaigns with a higher email open rate have a subject line with a
number of characters between 33 and 42 and a preheader with a number of characters
between 93 and 115. The occurrence score of the first and second keyword is positively
correlated with the email open rate. This means that a better performance of the first
and second keyword in past campaigns increases the open rate.

To finish, we performed the Kruskal-Wallis test to study the distribution of the open
rate in the campaigns with and without a recognizable sender. We concluded that the
dataset campaigns with a sender different than the company name tend to have a higher
open rate (p-value approximately equal to 0). That statement is slightly controversial
because, in general, using an email sender that is not recognizable by the recipient can
negatively impact the open rate [4]. A possible reason that can justify this might be related
to the bad sender´s reputation of financial institutions in the market [1]. For those insti-
tutions, using their names as the sender can induce the recipient to not open the email.

Text Visualization
The goal of this text analysis was to discover which keywords and keyword combi-
nations are associated with a higher open rate. To derive the set of keyword combi-
nations we used the Knime node Term Neighborhood Extractor, which extracts the first
right neighbor of each keyword in the email subject line and preheader. Afterwards, the
Frequency filter method was applied to remove the low-frequency terms, i.e., those that
were present in less than two marketing campaigns. To finish, we used a keyword
cloud to visualize the terms that were linked with higher email open rates. We could
infer that some of the best keywords to use in the dataset campaigns are rápido,
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comisión, crédito, préstamo, gratis, dinero and fácil5. Additionally, some of the best
keyword combinations are {cambiar; banco}, {tarjeta; gratis}, {rápido; online},
{rápido; fácil} and {gratis; comisión}6.

5 Data Preparation

5.1 Data Transformation

Data transformation is the process of transforming data from one format to another,
more suitable for applying Data Mining techniques. In this process we performed
feature transformation, as many algorithms require the input features to be numerical.

The categorical variables, HasDigits, Personalization and Sender_recognize, only
take two possible classes. Thus, for these variables the transformation made was to
replace the observations belonging to the class Yes by the number 1 and the ones
belonging to the class No by the number 0. For the categorical variables without any
ordinal relationship between the categories, the One-Hot Encoding is one of the most
used methods. According to this method, for each category of a variable a new column
is created, where the value is 1 if for that observation the original feature assumes that
value and 0 otherwise. We used this method for the variable Punctuation, that has three
possible classes: Affirmative, Exclamation and Interrogation.

5.2 Feature Selection

The Feature Selection process has a huge impact in the performance of an algorithm.
Hence, it is important to determine what are the most relevant features to the target
variable. For that purpose, the feature selection experiment performed was to filter the
input redundant features i.e., the features that are highly correlated. We identified these
variables as being the pair of variables with a Spearman’s rank correlation coefficient
higher than 50%. Having redundant features does not add significant information to the
existing set of features, as they carry similar information. Therefore, we can remove
one of two highly correlated variables without losing important data. By reducing the
set of features, the running time of the algorithm considerably decreases and, at the
same time, the performance of the model increases [12].

6 Modelling

In this study, supervised classification algorithms were applied because the Data
Mining problem in hand was to find to which set of classes (Successful or Failure) a
new campaign belongs to, based on the training set containing past campaigns whose
classification is already known. The classification algorithms used were the following:
Decision Tree (C4.5) [14], Random Forest [5] and Gradient Tree Boosting [9]. The set

5 Fast, commission, credit, loan, free, money and easy.
6 {change; bank}, {card; free}, {fast; online}, {fast; easy} and {free; commission}.
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of features that were used to train and test these algorithms were: Sent; Sent_days;
Nr_keywords; Length_subject; Length_preheader; Affirmative; Exclamation; Interro-
gation; HasDigits; Personalization; Sender_recognize; OC_1stkey; OC_2ndkey;
OC_3rdkey; OC_4thkey and Classification. To validate the performance of these
models in new and unseen data, the 10-Fold Cross Validation method was used.

7 Evaluation

In this section we describe the experiments performed to select the best model for this
classification problem, by using the 10-Fold Cross Validation method.

Feature Selection Techniques*:

1. No Feature Selection;
2. Filter the redundant variables7: variable Sent_days, Nr_keywords and Exclamation.

After comparing the results in Table 3, we concluded that the model that had the
best performance was the Random Forest, when using the redundant feature selection
technique. This model accurately predicted 82% of the observations, achieving
approximately an AUC of 89% and a F-score of 71% (for the Successful class). The
model achieved a very good precision and recall for the Failure class, of 83% and 93%
respectively. The recall for the Successful class was slightly lower. This is probably
justified by the unbalanced dataset, where 65,44% of the campaigns belong to the
Failure class. The standard deviation of the 10-fold Cross Validation estimates of this
model was approximately equal to 8,3%.

The features that have the most significant impact on the classification are the
number of emails sent, the occurrence score of the 4th, 3rd and 2nd keyword, the length
of the preheader and the occurrence score of the 1st keyword (by decreasing order of
weighted feature importance).

Table 3. Evaluation metrics.

Technique* Decision tree Random forest Gradient tree boosting
AUC F-s Accuracy AUC F-s Accuracy AUC F-s Accuracy

1 0,77 0,52 0,74 0,84 0,61 0,77 0,85 0,66 0,78
2 0,73 0,53 0,73 0,89 0,71 0,82 0,87 0,66 0,78

F-s: F-Score for the Successful class

7 This filter selection was performed inside each one of the ten Cross Validation loops.
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8 Deployment

In this section, the insights gained from the previous analysis were validated in the
company business through A/B testing. With this experiment, we could test small
variations in the subject line of a campaign and find which version leads to a higher
open rate. During the test period, half of the email recipients are randomly sent the
control version (the actual version) and the other half receives simultaneously the
treatment version (the new version being tested). After the test ends, the recipients will
then receive the winning version, i.e. the version with a higher open rate. The elements
of the subject line that we could test were the type of punctuation (with or without
exclamation point; with or without question mark), the use of personalization (with or
without a personalized greeting) and digits (with or without digits). These features were
present in the Random Forest model developed, that correctly predicted the opening
performance of 82% marketing campaigns.

To test the significance of the A/B test results, we used the Two Sample Z-Test with
a significance level of 5%. The results regarding the use of personalization and the
question mark in the subject line were statistically significant in increasing the open
rate (p-value equal to 0 for both tests). The presence of digits and the exclamation point
doesn´t have a strong impact in the open rate, as the test results were not statistically
significant (p-value equal to 0,42 and 0,35 respectively). Thus, we advise the company
to include, if possible, personalization and the question mark in the email subject line to
improve the open rate of the campaigns in study.

9 Conclusion

To our knowledge, this is the first publication that does a profound qualitative analysis
of the key factors driving the opening behavior of financial marketing campaigns.
These days, financial institutions are using Email Marketing as an important traffic
source in their marketing strategy. Therefore, this study will be important in guiding
financial marketers on how to improve the open rate of an email campaign. With that
purpose, we developed a classification algorithm that can predict if a campaign will be
labeled as Successful or Failure. A campaign is classified as Successful if it has an open
rate above the average, else it is labeled as Failure. We tested three different classifiers
– Decision Tree, Random Forest and Gradient Tree Boosting. The model that achieved
the best performance was the Random Forest, when using the redundant filter selection
technique. This model could accurately predict the performance of 82% campaigns,
achieving an AUC of 89% and a F-score of 71% (for the Successful class). By using
this model, marketers will have the chance to sooner correct potential problems in a
campaign that could highly impact its revenue.

The features that revealed to be important to predict the opening performance of a
campaign were the number of emails sent, the length of the preheader and the
occurrence score of the keywords used in the subject line and preheader. As Balakr-
ishnan and Parekh [2], our study acknowledges the importance of taking in account the
historic performance of a keyword, in the past campaigns, when predicting the effec-
tiveness of an email campaign. Concerning the email sender, we concluded that the
dataset campaigns with a sender different than the name of the company tend to have a
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higher open rate. Note that we were not able to validate this in the deployment stage.
Regarding the email subject line, we advise marketers to avoid using long subject lines
since it can negatively impact the open rate. In addition, using a personalized greeting
and the question mark in the subject line can significantly improve the open rate of the
email marketing campaigns in study.

For future research, we consider important to also include features at the recipient
level. For instance, the recipient location, device type, domain and time the email is
sent and opened by the recipient. Lastly, it will be interesting to analyze the impact of
email segmentation in the open rate of financial campaigns.

Acknowledgements. This work is financed by National Funds through the Portuguese funding
agency, FCT - Fundação para a Ciência e a Tecnologia within project: UID/EEA/50014/2019.
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Abstract. The purpose of this study was to redefine health and fit-
ness categories of students, which were defined based on body mass
index (BMI). BMI enables identifying overweight and obese persons,
however, it inappropriately classifies overweight-and-fit and normal-
weight-and-non-fit persons. Such a classification is required when person-
alized advice on healthy life style and exercises is provided to students.
To overcome this issue, we introduced a clustering-based approach that
takes into account a fitness score of students. This approach identifies
fit and not-fit students, and in combination with BMI, students that are
overweight-and-fit and those that are normal-weight-and-non-fit. These
results enable us to better target students with personalized advice based
on their actual physical characteristics.

Keywords: Improving BMI-based classification · Fitness-based
clustering · Multiobjective problem

1 Introduction

According to WHO, overweight and obesity have become urgent global health
issues in recent decades [5]. Overweight and obese persons are classified accord-
ing to the body mass index (BMI). This weight-to-height index enables defining
categories of adolescents such as Overweight and Obese Adolescents (OOA) cat-
egories [1]. OOA defines four categories from the lowest to the highest BMI:
underweight, normal weight, overweight, and obese. The BMI bounds for these
categories are sex- and age-specific, and are typically given with sex-specific
BMI-for-age charts.
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The main advantage of the BMI index and the resulting categories is its sim-
plicity to measure. More precisely, it requires only two easy-to-obtain measure-
ments: body weight and height. Its simplicity also represents its drawback: BMI
fails to identify persons that, for example, have high muscle mass. Although they
are overweight according to BMI, they are fit and should be treated differently
than overweight persons without high muscle mass. This is a key issue when pro-
viding personalized advice on healthy life style and exercises, e.g., to students in
high school. For example, the advice for students with high BMI and high muscle
mass should be significantly different than for those with high BMI only.

BMI in combination with OOA has been widely used to study the correlation
between obesity and health conditions in the last decades. For example, various
risk factors were analyzed with respect to the OOA categories [1]. In some cases,
however, BMI is not enough for accurate prediction. For example, it was shown
that the prevalence of excess adiposity is overestimated by BMI in blacks within
the pediatric population [10], which mirrors our own observation that BMI is
not always appropriate for health-related clustering.

There were also studies on the relation between BMI and fitness. For example,
cardiovascular risk profile was investigated in Caucasian males with at least 3 h of
sports activity per week and the results showed that the threshold for an optimal
BMI concerning cardiovascular risk factors might be far below 25 kg/m2 even if
other lifestyle conditions are apparently optimal [7]. Heart failure mortality in
men was studied in relation to cardiorespiratory fitness and BMI, and the results
showed that the risk factor was significantly lower in fit compared with unfit men
in normal and overweight body mass index but not in obese men [4].

The existing research shows that both BMI and fitness are important for
assessing health status of persons and predicting health issues. In addition, it
also shows that BMI and fitness score are two distinctive measurements: we
cannot precisely predict one from the other, although some correlation exists.
See, for example, Farrell et al. [4] who showed that there are unfit and normal
weight persons, and those that are fit and obese. However, in contrast to BMI,
there is no commonly used definition of fitness score. We propose to overcome this
issue by considering a widely used test battery. This test battery is performed
by students in Slovenian schools once a year and enables us to calculate an
overall fitness score as well as access the main components of physical fitness
(see Table 1). In contrast to related work, we do not predefine the clusters of fit
and not fit persons, but we apply a multiobjective approach with three objectives
to search for the best split into fit/non-fit clusters. In addition, the fitness score
in combination with OOA categories enables the identification of persons that
are overweight or obese but are fit, and those that have normal weight but are
not fit. The resulting categories of students enable the teachers, parents and
policy makers to create and provide personalized and better-targeted advice,
recommendations and curricula.

The paper is further organized as follows. The fitness-based approach for clus-
tering students is described in Sect. 2. Section 3 reports the experiments including
the dataset and the results. Finally, Sect. 4 concludes the paper with ideas for
future work.
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Table 1. The physical fitness tests of the test battery. All the test measurements are
in percentiles.

Fitness test Measurement

PTSF Thickness of triceps skinfold

PAPT Reaction time during arm plate tapping

PSBJ Distance jumped during standing broad jump

POCB Time to pass a polygon backwards and on all fours

PSU Number of sit-ups in 60 s

PSR Distance between fingertips and toes when standing and bending forward

PBAH Time in a bent arm position while hanging from a bar

P60m Time to run 60 m

P600m Time to run 600 m

2 A Fitness-Based Approach for Clustering Normal
Weight, Overweight and Obese Students

There is no golden standard for deciding who is fit and who is not. The most
straightforward approach to separate students who are fit from those who are
not is to apply a threshold to the overall fitness score. However, it is not clear
what this threshold should be, and since we have measurements of the main
components of physical fitness available, we should consider whether they can be
used to achieve a better separation. In our clustering, we explore these questions
and finally propose an approach for separating the fit students from the non-fit.

2.1 Fitness Score

The fitness score is calculated by taking into account a set of physical fitness
measurements. These measurements are obtained with the SLOfit test battery1,
i.e, a version of Eurofit Physical Fitness Test Battery [3], which is a set of physi-
cal fitness tests covering flexibility, speed, endurance, and strength. The selected
set of measurements is shown in Table 1. For each measurement, a quantile (per-
centile) rank is calculated by taking into account sex and age. Utility functions
then transform these ranks on a scale ranging from 0 to 100 points, where 0 is
the worst possible score and 100 is the best. Finally, the points of all the mea-
surements are summed up and the fitness score is determined as the quantile
rank by taking into account reference population, sex and age.

2.2 Measuring Clustering Error

The fitness score enables the evaluation of clusters of students within a dataset:
students within a cluster should have similar fitness score, while fitness score
1 http://en.slofit.org/measurements/test-battery.

http://en.slofit.org/measurements/test-battery
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Fig. 1. Examples of clusters: (a) good clusters, i.e., there is no intersection between
clusters; (b) bad clusters, i.e., intersection between the clusters is very high.

of various clusters should be different. To evaluate a pair of clusters, we firstly
calculate the histograms of both clusters with respect to the fitness score. Next,
we find the intersection between the histograms. The intersection represents the
overlap between clusters, which ideally should be 0, since clusters should be dis-
junctive. Therefore, this intersection represents the error that is then normalized
with respect to the size of both clusters. The resulting maximal error percentage
between both clusters is then used as the amount of error with respect to the
fitness score (ef ). Examples of histograms of clusters and intersections between
them are presented in Fig. 1: Good clusters with no overlap are shown in Fig. 1a,
while Fig. 1b depicts bad clusters with high percentage of overlap.

The same error function can be also applied to percentile ranks of fitness
components (i.e., physical fitness measurements), which can be interpreted as
follows: we want to find clusters in which students have similar percentile ranks
of fitness components, while the percentile ranks between clusters should differ.
As a consequence, the performance of fit and non-fit students with respect to
individual components should be different. The error measure based on percentile
ranks of fitness components (ec) is thus calculated as the average of all the errors
of individual fitness components.

Although the clusters of students with respect to the fitness score can signif-
icantly differ from the clusters based on OOA, it is reasonable to assume that
the ratio between students with normal weight and those that are overweight
or obese is similar to the ratio between fit and non-fit students. Note that the
boundary between people with normal weight and those that are overweight or
obese is to some degree arbitrary, and the same can be said for those who are fit
or not. Therefore we assume the same ratio for the latter as for the former. As
a consequence, the number of fat-and-fit students should be roughly the same
as the number normal-weight-and-non-fit students. However, the exact numbers
might differ, therefore we measure the error with respect to size difference (es)
as the normalized difference between the size of normal weight students and the
size of fit students.

The proposed approach enables us to evaluate and compare various clustering
algorithms that aim at clustering students into fit and non-fit clusters. The
comparison is done in three-objective space, where the errors (ef , ec, es) represent
the dimensions, i.e., objectives, of this space: the error with respect to the total
fitness (ef ), the average error with respect to individual fitness components (ec),
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and the error with respect to the size (es). Note that all the errors should be
minimized.

2.3 Clustering Based on Fitness Score

Besides applying existing clustering algorithms to solve the problem of finding
clusters of fit and non-fit students, we also propose the following algorithm. First,
the fitness score is discretized equidistantly. Second, each discretized value is used
as a limit as follows: all the students with lower fitness score are added to the first
cluster, while the students with higher score are added to the second cluster. Each
such pair of clusters is evaluated with respect to the error functions (ef , ec, es).
In comparison to other clustering algorithms, this approach has the advantage
of being intuitive, easy to understand, and very effective. Its performance in
comparison to other clustering algorithms is presented in the following section.

3 Experiments and Results

This section presents the dataset of students that were clustered, the clustering
algorithms the were applied, and the obtained results with discussion.

3.1 Dataset of Physical Fitness Measurements

We evaluated our approach on a dataset of students from Slovenian schools,
SLOfit2. More precisely, we only analyzed the data of high school students (ages
16–21). In addition, only the most recent year of measurements was used, i.e.,
2018. The attributes for the clustering algorithms were percentile ranks of fit-
ness components and are shown in Table 1. Moreover, only normal weight, over-
weight and obese students were selected. Note that the same approach can also
be applied to underweight students, however, for the domain experts the most
relevant division is between normal weight and overweight students. In total,
27,304 students were taken into account.

3.2 Clustering Algorithms

The clusters of fit and not-fit students were found with a set of clustering algo-
rithms. Since the goal was to cluster in two clusters, only those algorithms that
enabled defining the number of clusters were selected. However, several cluster-
ing algorithms have a high computational complexity, therefore, only a subset
of data was clustered with those. In addition, some algorithms enabled creat-
ing a model on the subset and afterward cluster all the data with that model.
The applied clustering algorithms and their characteristics are shown in Table 2.
This table shows, for example, that spectral clustering has a high computational
complexity, since only 5000 data could be clustered at once, and does not build

2 http://www.slofit.org/.

http://www.slofit.org/
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Table 2. Evaluated clustering algorithms.

Clustering algorithm Clustered
data

Cluster all data with
a model

Randomly set
parameters

OOA (Default, based on [5]) All Not needed /

k-means [6] All Not needed Random state

BIRCH [11] 5000 Yes Threshold, Data
sample

Spectral clustering [9] 5000 No Random state, Data
sample

Hierarchical clustering [8] 5000 No Data sample

Fitness score (see Sect. 2.3) All Not needed Fitness score bound

a model to cluster the entire dataset after clustering the subset of data. On
the contrary, k-means has a lower computational complexity since it was able
to cluster the entire dataset at once. Consequently, it was not required to use
subset of data and build a model to cluster all the data. BIRCH is something
in between: it has a high computational complexity, therefore it could cluster
only subset of data. However, it enables building a model on this subset of data,
which was then used to cluster the entire dataset.

In our experiment, all of these algorithms were run 1000 times with randomly
set parameter values (and randomly selected subset of data, if all the data could
not be clustered due to algorithm’s high computational complexity).

3.3 Results of the Clustering Algorithms

All the algorithms had to cluster the students into two clusters, i.e., students
that are fit and those that are not fit. As described in Sect. 3.2, 1000 runs of
each algorithm were performed, therefore the results of all the runs are pre-
sented. Each algorithm run was evaluated and is presented in terms of three
objective/error functions (ef , ec, es) as described in Sect. 2.3.

The results in three-dimensional objective space are shown in Fig. 2a. In
addition, Figs. 2b–c show two additional perspective of the objective space: the
first one focuses on the fitness score error, while the second one focuses on fitness
components’ and delta size errors. Since all three objectives are minimized, the
optimal solution would be in (0, 0, 0), which is at the bottom left of all three
figures.

These results show that the OOA clustering is not good with respect to the
fitness score and fitness components’ errors, since all the other algorithms are
better in these two objectives. On the other hand, it is optimal with respect to
the delta size error, which is true by definition, since delta size error measures
the difference of sizes of the obtained clusters compared to the OOA clusters.
In addition, k-means, spectral clustering and Fitness score clustering find the
best splits with respect to the fitness components’ error, while the Fitness score
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Fig. 2. Results of the clustering algorithms: (a) three-dimensional objective space;
(b) focus on fitness score error; (c) projection on two objectives: fitness components’
and delta size errors; (d) nondominated solutions in the three-dimensional objective
space; (e) nondominated solutions projected on two objectives: fitness components’ and
delta size errors.
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Table 3. Hypervolume of the clustering algorithms.

Clustering algorithm Hypervolume

OOA 0.006

k-means 0.368

BIRCH 0.372

Spectral clustering 0.309

Hierarchical clustering 0.343

Fitness score 0.450

clustering also finds the best splits with respect to the delta size error. Moreover,
the Fitness score clustering outperforms all the other algorithms with respect
to the fitness score error, which is expected since the Fitness score clustering
defines clusters that do not overlap with respect to fitness score (thus fitness
score error is 0).

Figures 2a–c show all the solutions found by the clustering algorithms. How-
ever, when comparing the algorithms, it is simpler to only show nondominated
solutions of each algorithm. A solution is nondominated if none of the objective
functions can be improved in value without degrading some of the other objec-
tive values [2]. Therefore, a dominated solution can be discarded since there
exists at least one (nondominated) solution that is equal or better in all the
objectives. The nondominated solutions of the clustering algorithms are shown
in Figs. 2d–e. These solutions confirm the above described comparison between
the clustering algorithms.

Objective space enables us to compare results of clustering algorithms visu-
ally. However, a more appropriate approach for algorithm comparison consists
of applying a unary operator suitable for multiobjective problems. A commonly
used operator is the hypervolume [12]. Hypervolume measures the volume of the
portion of the objective space that is dominated by the (nondominated) solu-
tions. As a consequence, a higher hypervolume is preferable. The hypervolumes
covered by the solutions of the clustering algorithms are listed in Table 3. This
table shows that the Fitness score clustering found solutions that better cover
the objective space in comparison to the other algorithms. Another argument
in favor of the Fitness score clustering is that other algorithms only rarely out-
perform it in terms of fitness components and delta size error (as best seen in
Figs. 2c and e), while the Fitness score clustering significantly outperforms the
other algorithms in terms of the fitness score error (as best seen in Fig. 2b).

A solution found with the Fitness score clustering is presented in Fig. 3
in terms of distributions of BMI, OOA, fitness score and fitness components
between the two clusters. This figure shows the clusters divided by fitness score
0.5, i.e., the division with the lowest fitness components’ error.
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Fig. 3. Distribution of data with respect to BMI, OOA, fitness score and fitness com-
ponents, which are additionally clustered with the Fitness score clustering in students
with fitness score <0.5 and students with fitness score >0.5.

3.4 Discussion

The presented experiment has shown that the best clusters with respect to the
three objectives are found by the Fitness score clustering. This can be seen in
visual representation of the solutions in the objective space, and it is also con-
firmed by the hypervolumes obtained by the clustering algorithms. In addition,
the Fitness score clustering enables finding clusters with the lowest (zero) delta
size error, and with the lowest fitness components’ error (the same fitness com-
ponents’ error is also achieved by the k-means algorithm). Even more, all the
clusters of the Fitness score clustering have zero fitness score error, while none
of the other clustering algorithms found clusters with zero fitness score error.
Therefore, the Fitness score clustering performed the best among the tested
algorithms.

4 Conclusion

This paper presented a new approach for identifying students that are overweight
and fit, and those that have normal weight, but are not fit. This classification
enhances the widely used BMI index that is suitable to classify students only
as normal weight or overweight/obese. The presented approach introduces the
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fitness score calculated based on a set of physical fitness measurements per-
formed in schools by all the students once a year. In addition, it also defines
three objectives, i.e., (fitness score error, fitness components’ error and delta
size error), which are used to assess the quality of the clustering algorithms that
find clusters of students. Furthermore, the Fitness score clustering is developed,
which clusters students with respect to their fitness score. The results show that
the Fitness score clustering finds better clusters of students in comparison to
widely-used general-purpose clustering algorithms. The obtained clusters enable
the identification of students that are overweight or obese but are fit, and those
that have normal weight but are not fit, which makes it possible to define per-
sonalized and better targeted advice, recommendations and curricula for the
students.

In our future work we will evaluate the proposed approach on additional
datasets of students from Slovenia and abroad. This approach will be also com-
bined with algorithms that predict students’ future performance in order to
assess whether the discovered clusters can improve this prediction. A particular
challenge also represents the definition/generation of personalized and better-
targeted advice, recommendations and curricula.
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Abstract. Although Deep Learning (DL) image analysis has made
recent rapid advances, it still has limitations that indicate that its app-
roach differs significantly from human vision, e.g. the requirement for
large training sets, and adversarial attacks. Here we show that DL
also differs in failing to generalize well to Traditional Chinese Paint-
ings (TCPs). We developed a new DL object detection method A-RPN
(Assembled Region Proposal Network), which concatenates low-level
visual information, and high-level semantic knowledge to reduce coarse-
ness in region-based object detection. A-RPN significantly outperforms
YOLO2 and Faster R-CNN on natural images (P < 0.02). We applied
YOLO2, Faster R-CNN and A-RPN to TCPs with a 12.9%, 13.2% and
13.4% drop in mAP compared to natural images. There was little or no
difference in recognizing humans, but a large drop in mAP for cats and
dogs (27% & 31%), and very large drop for horses (35.9%). The abstract
nature of TCPs may be responsible for DL poor performance.

Keywords: Traditional Chinese Paintings · Computational
aesthetics · Deep Learning · Object recognition · Machine learning

1 Introduction

One of the greatest mysteries in cognitive science is the architecture of human
visual system and its virtuosity in object recognition. Human have the impressive
ability to recognize visually presented objects with both high speed and accuracy.
Attempts to replicate this ability have been made since the start of Artificial
Intelligence (AI) research, but these have met with only limited success. Object
recognition is traditionally one of the most intractable problems in AI [1].

Recently, with the advent of very large annotated image databases, and
advances in Deep Learning (DL), have greatly improved AI object recognition
[2]. However, despite many claims to the opposite, DL object recognition is
still not nearly as good as in humans. Example of the weaknesses of DL are:
the requirement for large training sets, and their susceptibility to adversarial
attacks that do not confuse humans. It is hypothesized that the reason for this
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is compiled background knowledge about the world encoded in the human visual
system architecture [3,4]. This knowledge was learnt through millions of years
of Darwinian evolution.

Visual art is present in all human societies, and dates back as long ago
as the Paleolithic. Computational visual aesthetics investigates the relationship
between art and computational science. There is a close relationship between
the human visual system and the appreciation of art (Gombrich (2000) Art
and Illusion, Princeton University Press;) Computational Aesthetics is the
computational investigation of aesthetics. Computational aesthetics is a large
subject [5–7], but relatively little work has been done at the interface between
computational aesthetics and DL object recognition [8,9]. The limited evidence,
based on Western art, points to significant differences in performance between
natural image trained classifiers and painting-trained classifiers. To the best of
our knowledge the relationship and differences between object recognition in
natural images and art has not been investigated.

Traditional Chinese Painting (TCP) is one of the great art traditions of the
World (206 BC - now) [10]. Its unique style, which dates back over 2000 years,
is instantly recognizable to humans. Here, to explore the differences between
human and DL object recognition, we investigate DL object recognition in nat-
ural images and TCPs.

2 Object Detection in Chinese Painting

Object detection is one of the most widely studied topics in image processing.
It differs from the classical image classification problems where models classify
images into a single category corresponding to their most salient object. Here
we investigate transferring Deep Learning (DL) object detection models from
natural image to TCPs.

There are two potential challenges in applying DL to detecting objects in Chi-
nese Paintings. First, there does not exist an official well-structured Chinese Paint-
ing Image Database and associated Ontology. And existing work in this area [11]
is limited. Second, the characteristics of TCP images are different from natural
images as they are produced using specialized tools, materials and techniques.

2.1 Chinese Painting and TCPs Data

Chinese painting can be categorized into two major schools of styles: XieYi,
or GongBi [12]. XieYi (freehand strokes, Fig. 2) paintings are characterized by
exaggerated forms, with the painted objects abstract and sometimes without
fully connected edges. GongBi (skilled brush or meticulous approach, Fig. 1)
paintings are characterized by close attention to detail and fine brushwork, and
the painted objects are more realistic. TCPs can be further classified as: figure
painting, landscapes painting, or flower-and-bird painting; only figure paintings
and flower-and-bird paintings depict objects as their main subject.

To form our TCPs object detection dataset we integrated two datasets: a self-
collected dataset obtained from online open sources, and a high-resolution image
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Fig. 1. Emperor Huizong Song’s
skilled brush flower-and-bird paint-
ing from Song Dynasty

Fig. 2. Beihong Xu’s freehand strokes flower-
and-bird painting

dataset provided by the Chinese Painting and Calligraphy Community. The sizes
of these datasets are: 3,000 images, and 10,000 images respectively. The TCP
objects dataset we used in this experiment contains 1,400 images in seven classes:
human, horse, cow, bird, plant, cat, and dog. We manually annotated the data
with class labels and segmentation knowledge (bounding box), as ground truth.
(List of paintings we have used could be found: https://github.com/hiris1228/
TCP object detect.git).

2.2 Object Detection

Current DL object detection models generally identify various objects and loca-
tion within one single image. A naive approach to solving this problem is to
take different regions of interest from the image, and to classify the presence of
the object within that region – usually using a ConvNets [13,14]. The R-CNN
(Regions + CNN) method was developed to avoid the use of excessive num-
ber of regions in object detection. This relies on an external region proposal
system based on a selective search algorithm [15–17]. The cost-reduced compu-
tational shared model R-FCN [18] attempts to balance translation-invariance
in image classification, and translation translation-variance in object detection.
The Mask R-CNN approach [19] applies FCN (Fully Convolutional Networks)
[20] to each Region of Interest (RoI), and then applies classification and bounding
box regression in parallel. Single Shot detectors like YOLO [21] and SSD (Single
Shot MultiBox Detector [22]) and are able to obtain relatively good results.

3 Chinese Painting Object Detection Approach

The architecture of our TCPs Object Detector A-RPN is a VGG-16 [23] back-
bone base model as shown in Fig. 3. We adopted the popular two-stage object
detection strategy of Faster R-CNN [17]. We generate a set of RoIs, and a classi-
fication model independent of selected RoIs. Comparing to ResNet [23], VGG-16
is not very ‘deep’ (ResNet has 152 layers), but its depth is appropriate given the
limited TCP data.

https://github.com/hiris1228/TCP_object_detect.git
https://github.com/hiris1228/TCP_object_detect.git
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The assembled Region Proposal Network (A-RPN) has three components: a
general RPN that return RoIs and Intersection of Union (IoU) scores; a Chinese-
Kitten RPN (CN-Kitten RPN), which concatenate both lower-level and high-
level features to generate small object sensitive proposals, and refines the RoIs;
and a Detection Network R-FCN that takes proposed RoIs, and classifies them
into categories and background. All the sub-networks within the A-RPN are
fully convolutional with respect to RoIs. All three components are initialized by
a hierarchical feature map M0 through shared convolutional layers to form a
pre-trained resembling VGG-16.

The region proposals (RoIs) processed in our A-RPN are divided into two
parts. One comes from the generated RPN (RoIs-set1), the other is the small-
scale region boxes generated by sliding window run on convCNK (RoIs-set2).
The same NMS operation, with threshold 0.7, was applied to both general RPN
and CN-Kitten RPN to reduce redundancy. This process returned two set of 2k
proposals. Each of these regions has an Intersection of Union (IoU) score, which
estimates the chance that the current RoI contains an object.

CN-Kitten RPN is an enhanced RPN that combines multi-layer features
knowledge and RoI pooling layer to refine RoI proposals. This approach is
designed to increase the model’s sensitivity to small-scale object detection from
knowledge of Feature Pyramid Networks [24]. With differing low-level visual
information, the high-level convolutional features may be too coarse when we
project our RoIs from the feature map to the original image. The aim is to
better fit small objects, and to better utilize fine-grained features due to TCPs
characteristics. We observed no significant drop in recall with small objects.

RoIs-set2 is generated from a 1×1×256 fully-connected layer which is reduced
from fine-grained feature map convCNK. convCNK is the multi-layer feature
concatenation of conv5 and conv4 which is similar FCN-16s [20]. We apply an
unsampling filter on conv5 to obtain transposed convolutional layer [25] conv5’.
Then L2-normalize each layer per spatial location, and re-scales it with the same
resolution as conv4 to obtain convCNK. Simultaneously, we applied a bilinear
interpretation on convCNK, and obtained a semantic segmentation heat-map of
the entire image for later refinement.

In order to obtain the final top 300 proposals as input of Detection Network
R-FCN. A top rank voting model was applied to both RoI-set1 and RoI-set2.
This ranks all anchors with their IoU scores from the highest to the lowest.
It then projects all the selected anchors to the semantic segmentation heat-
map, and computes an extra IoU score with the overlapped percentage. Then it
looks to find whether there are existing anchors in its opposite set that have an
overlapped rate higher than 0.7, if yes, it merges these two anchors by averaging
their coordinates. The method repeats this procedure until it obtains proposals
with the highest 300 pairs of IoU scores.

The detection network identifies and regresses the bounding box of regions
likely to contain classes base on each proposed region. Unlike in the original
Faster R-CNN [17], we apply Fast R-CNN [16] with R-FCN [18] as the detection
network. As a member of FCN [20] family, it construct a set of position-sensitive
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Fig. 3. Assembled Region Proposal Network (A-RPN) architecture.

score maps to incorporate translation variance. As there are no learning layers
after the RoI layer, only a shared fully convolutional architecture, R-FCN is
nearly cost-free, and even faster than the other pioneering DL image classification
architectures [13,15–17,23] with a competitive mAP (mean Average Precision).

R-FCN uses a bank of specialized convolutional layers to encode as score maps
position information with respect to a relative spatial position [18]. Our Detection
network removes all FC layers, and computes all learn-able weight layers on the
entire image to create a bank of position-sensitive score maps for C + 1 categories
(C object categories + 1 background). Each set of score maps for one particular
category represents a k × k spatial grid describing relative position information.
Selective pooling only returns one score out of k × k on class prediction after per-
forming average voting on these shared sets of score maps.

4 Experiment and Results

To investigate the differences between DL and human image analysis we applied
DL to images that humans can easily interpret: natural image and Traditional
Chinese Paintings (TCPs). We compared our A-RPN’s outputs with two pop-
ular DL object detection models. We ran six experiments: Single Shot detec-
tors on natural images, YOLO(N), and on Chinese paintings, YOLO(P); Faster
R-CNN on natural images, Faster R-CNN(N), and on Chinese paintings, Faster
R-CNN(P); A-RPN on natural images, A-RPN(N), and on Chinese paintings,
A-RPN(P). The natural image dataset that we used was PASCAL VOC2007
trainval. Both datasets contains the same seven classes. We kept one-third of
the data as test set, and divided the remaining data into 90% training set and
10% validation set. The results are shown in Table 1.
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Table 1. The mAP Comparison for Flower-and-Bird and Figure Classification. And
A-RPN has proved that it outperforms the other two models.

Methods YOLO(N) YOLO(P) Faster RCNN(N) Faster RCNN(P) ARPN(N) ARPN(P)

Human 82.1 76.3 81.1 79.5 83.2 82.4

Horse 71.8 28.3 75.9 39.7 78.3 42.4

Cow 75.4 69.1 76.4 74.3 78.7 80.5

Bird 81.1 75.2 79.3 77.7 76.8 70.0

Plant 32.0 33.8 36.2 42.9 43.5 50.0

Cat 78.7 65.1 81.3 52.0 82.7 55.5

Dog 79.2 61.6 82.4 53.8 83.6 52.2

Overall 71.37 58.48 73.22 59.98 75.25 61.85

Table 1 shows that all the DL models can achieve more than 70% mAP
on natural image object detection. A-RPN achieved the best performance in
classification, and has significantly higher mAP (P < 0.02) than YOLO2 and
Faster R-CNN. (Using the McNemar test, the Z-model statistic against YOLO2
and Faster R-CNN are respectively −3.7905 and −2.4188). Object recognition
performance significantly drops when applied to TCPs. The YOLO2 model has
a mAP performance drop of 12.9% while Faster R-CNN drops 13.2% and A-
RPN drops 13.4%. The statistical difference in performance between the three
methods on TCP object recognition is not significant.

The success of object recognition varies greatly between object class. The
performance on classes ‘Human’ and ‘Bird’ is stable and accurate for all methods.
Performance on the class ‘Plant’ is stable but has low mAP in all models. Class
‘Cow’ works better in natural image dataset than TCPs, but the drop is relatively
small, while A-RPN increases with 1.8% mAP. All three models confuse the ‘Cat’
and ‘Dog’ classes in TCPs. For the class ‘Cat’ the decreases in performance
were 13.6%, 29.3%, and 27.2% for A-RPN. For the class ‘Dog’ the decreases in
performance were 17.6%, 28.6%, and 31.4%. The largest drop in performance
was for the class ‘Horse’ in TCPs. Only A-RPN could achieve more than 40%
mAP, while their mAPs on Nature Image data are all above 70%.

Table 2 and Fig. 4 show that our region proposals network has limitations
when allocating object bounding boxes. There are 5 classes (out of 7 in total) that
failed to achieve 85% detecting rate of one particular type of object. Intersections
of Unions (IoU) is the region of interest union with the ground truth bounding
box. Our threshold was set as 0.5. But after verifying, we noticed that only 63%
of the ground truth bounding boxes were detected with ratios above 0.5. 22%
of the objects were not detected, especially in the plant class, and 15% of all
bounding box which does not cover objects.
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Table 2. Heat-Map for A-RPN classification. Miss-classification scenarios with error
more than 15% have been highlighted in the table. The N/A column represents the sce-
nario that – there is no bounding box detected over the current ground truth bounding
box.

Truth Prediction

Human Horse Cow Bird Plant Cat Dog N/A

Human 0.82 0 0 0 0 0 0 0.18

Horse 0 0.35 0.03 0.18 0.02 0 0.27 0.15

Cow 0 0.09 0.72 0 0 0 0.01 0.18

Bird 0 0 0 0.78 0.01 0.03 0 0.18

Plant 0 0 0 0.04 0.38 0.01 0.01 0.56

Cat 0 0 0 0.02 0.01 0.51 0.38 0.08

Dog 0 0.01 0.09 0 0 0.29 0.51 0.10

5 Discussion and Future Works

Putting to one side the differences between human and DL image recognition,
it is interesting to consider whether in principle images in TCPs are harder to
recognize using DL. We have shown A-RPN performs slightly better than YOLO
and Faster R-CNN, but its success in natural image cannot be transferred to
TCPs. There are a number of possible reasons for the drop in performance of
DL in TCPs. First, DL models require large training sets, but the number of
TCPs is quite limited, and their usage generally involve licenses. Therefore the
limited size of the data set we used potentially prevented the DL models being
fully trained.

Another reason may be the initialization of the layer M0 feature map. When
the A-RPN is initialized, we use a pre-trained CNN layer trained on natural
images. Natural images differ in a number of ways from images in TCPs. They
inherently include perspective, while most Chinese paintings do not. In TCPs
objects are often depicted in a highly abstract manner, easily comprehended by
the human, but quite different from natural images.

Ineffective feature formation may also be a factor. CNN models have their
own texture representations [23,26]. Whether the work was ‘linear’ (contour-led)
or ‘painterly’ (reliant more on brushstrokes denoting light and shadow) [27] has
been proven to have effect on prediction. The majority of Chinese paintings are
only black and white. In CNN models white color is often treated as ‘no color’,
with a probability of being an object of zero, and the ‘black ink’ textures are
similar in every single class.

We hypothesize that the abstract nature of TCPs may fundamentally restrict
the ability of DL systems to recognize objects in TCPs. Objects in TCPs do
not have fully connected edges. When CNN edge detection filters are applied
on non-edge pixels in low-level layers, the resulting matrices will be filled with
really small numbers or even zeros. In CNN texture representation strategy, the
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Fig. 4. Bounding Box Detection Cases: Left, object detected with IoU score greater
than 0.5; Middle, object detected with IoU less than threshold; Right, object not
detected.

smaller the edge detection matrix is, the lower the convolution value will be. And
this situation gets worse during strided convolutions. Finally, CNNs weakens
the contribution from ambiguous edge pixels, and further separates edges that
should be treated as connected in TCPs. This complicates object detection task
in TCPs, and is also the reason why we absorbed the concept from FPN [24]
to assemble features from different convolutional layers to try to maximize the
sensitivity on learning edge information.

Many principles of Chinese Painting are derived from Daoism [28]. For exam-
ple in Daoism empty space is an important concept, and a symbol of the void or
nothingness. The most important text in Daoism states: ‘Having and not having
arise together’ (Laozi 2). Chinese Painting has also been influenced by Buddhism,
which emphasizes that ‘What is form that is emptiness, what is emptiness that
is form’ (Paramita Hridaya Sutra). These beliefs have led Chinese paintings to
stress the concept of Designing White Space — if one’s mind can reach there,
there is no need for the touch of any brush and ‘formless is the image grand’
(Laozi 4). Similarly, an important canon of Chinese painting describes its rhyth-
mic vitality as Qi, a metaphysical concept of cosmic power: with Qi empty space
is not blank, it is alive, like air. This prominent characteristic of Chinese paint-
ing turns its treatment of empty space as solid space. Taking the horse in XieYi
style in Fig. 2 as an example, the absence of clear edges depicting the outline of
a horse feed the human imagination.

6 Conclusion

We have demonstrated that state-of-the-art object DL recognition methods per-
form substantially worse on TCPs compared to natural images. We argue that
these results point to interesting and important differences between DL systems
and the human visual system that require further investigation. For example:
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what features of the human visual system that enable it to effortlessly recognize
cats and horses in Chinese paintings, deal with the white space, etc.; What is
the relationship between aesthetics and image recognition? We hope, and expect,
that further research will investigate these important questions, and lead to com-
putational systems that can recognize objects in Chinese paintings as well as
humans, and perhaps also appreciate their beauty as greatly as humans.
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Abstract. Growing conditions of agricultural crops are increasingly
affected by global climate change. Not only the overall agro-climatic con-
ditions are changing, but also climatic variability and the occurrence of
extreme weather events are becoming more frequent. This will affect
crop yields and impact food supply both locally and globally. Located in
the north, with short growing seasons and long days, Finland is not an
exception. Drought- and temperature-related adverse events have been
identified as most harmful abiotic factors on the production. Farmers try
to mitigate with a range of management options. However, they need to
adapt them over time as the climate is changing.

This study aims to identify the most adverse weather events that affect
the spring wheat production in Finland and to ascertain if there have
been changes on the most harmful abiotic weather-related factors during
the last decades. Adverse weather conditions studied include frequency
and length of periods with exceptional snow, drought, intensive rainfall
and extreme heat. This was studied by modeling the wheat production
using the adverse weather events as predictors with different lengths of
training period (consecutive number of years) using LASSO regression.

The results reveal clear shift from early season drought and periodical
intensive rainfall to the adverse effects of frequent and long periods of
extremely high temperatures during later development stages.

Keywords: Wheat production · Adverse weather event ·
Data analysis · Time series

1 Introduction

Finland is located on the northern edge of the world’s agricultural area, which
makes the production conditions special. The growing seasons are short, with
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long days, and variations in weather, both temporally and spatially. Most harm-
ful weather events for cultivation of spring cereals under Finnish conditions
are identified to be drought- and elevated temperature-related adverse events
[9], with south-western Finland being an area where crop yield formation is
mostly prone to climate-induced (abiotic) stresses [12,15]. The trend is likely
to develop under future climate projections. [10] used temperature- and rainfall-
based weather indices to explain variation in spring wheat production in Finland.
The results hedge about 38% of wheat yield risk, suggesting that marginal prod-
ucts of weather events varies significantly during physiological development.

With the current knowledge and a range of management options farmers can
try to mitigate many of the harmful effects from adverse weather conditions.
Such management options include (but not limited to) changing the timing of
growing season, selection of cultivar types or irrigation [6]. It has been shown, for
example, that farmers use their earlier experiences of weather events to decide
on crop and cultivars to be sown [8]. However, more detailed information on the
relative impacts of adverse weather conditions on yields is very important to be
able to find cost-effective means for adaptation.

This study aims to discover the impact of adverse weather conditions on
production of spring wheat in Finland by analyzing: (i) effects of adverse weather
events throughout the physiological development of the plants; and (ii) shifts
in adverse weather conditions affecting crop yields. The impact is examined
over both temporal scales, physiological development (short scale) and global

Fig. 1. (a) Map of ELY administrative regions in Finland. Following regions are con-
sidered in the study: Uusimaa (15), Southwest Finland (14), South Ostrobothnia (5),
Satakunta (9), Pirkanmaa (10) and Häme (11); (b) Visualization of approximated
spring wheat growth period and development stages across ELY regions, since 1965.
Development stages are given with their length (in degree days) and corresponding
Zadoks classification. Vertical lines mark the first day of August and September.
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warming (long scale). Weather conditions are generalized over shorter and longer
periods of recent history.

2 Material and Methods

2.1 Data

Data are collected from two sources: open-access databases of Natural Resource
Institute Finland – Luke [5] and Finnish Meteorological Institute – FMI [2]. The
former contains data on cultivation area, production and sowing time. The latter
provides weather data such as daily temperature, precipitation and snow depth.
The study is performed over 6 out of 15 ELY administrative regions represent-
ing the main cultivation area of spring wheat in Finland: Uusimaa, Southwest
Finland, South Ostrobothnia, Satakunta, Pirkanmaa and Häme (Fig. 1a).

Data are transformed so that to fit the annual temporal scale of the defined
problem. Each season, representing a single life cycle (plant growing period
between sowing and harvesting) in a single region, is defined with three broader
development stages: vegetative, generative and grain-filling, as defined in [7].

Development stages are expressed in thermal time, defined with degree days
(◦D). Review by [11] suggests a range of base temperature for calculating the
degree days, but [10] recommend 5 ◦C as base in case of northern cultivars of
spring wheat. Figure 1b visualizes length and Zadoks classification [16] of devel-
opment stages, along with approximated duration of plants’ life cycle across
considered ELY regions, in the period 1965–2018. Each season is taken to start
at the first day of the provided sowing period in corresponding region.

Adverse weather conditions are defined annually through a set of daily events
with extreme weather condition. Single adverse event is in form of frequency of
appearance (number of days within a period) or a length of a longest streak of
such events (number of consecutive days with certain weather conditions). The
literature emphasizes different definition of such events [4,11], out of which five
are considered in this study (Table 1). The selection is bounded by the availability
of data.

Set of descriptors is a Cartesian product of the defined development stages
and the set of adverse weather events, given in the form of a frequency and

Table 1. List of events considered as annual adverse weather conditions. The last
column gives the conditions in regard with variable names used throughout the study.

Event Description Condition

Thin snow cover Daily snow cover not exceeding 1 cm Snow depth ≤ 1

Thick snow cover Daily snow cover exceeding 4 cm Snow depth ≥ 4

Drought Total daily precipitation not exceeding 0.1 mm Precipitation ≤ 0.1

Intensive rainfall Total daily precipitation exceeding 40 mm Precipitation ≥ 40

Extreme heat Maximum daily temperature above 31 ◦C Max temp ≥ 31
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length of a longest streak. Additionally, each development stage is given with
number of days since: beginning of a year, and sowing date.

The complete dataset is defined with 36 descriptive variables over sample
size of 318 instances (53 years of records in 6 ELY administrative regions).

2.2 Methodology

The study is performed with multivariate linear regression method using Least
Absolute Shrinkage and Selection Operator – LASSO regression [13]. LASSO
regression uses L1 regularization with penalties equal to absolute magnitude of
coefficients. As such it builds sparse models that improves their interpretabil-
ity. In addition, LASSO regression is indifferent to highly correlated descriptive
variables, so it tends to pick one by ignoring the rest and setting their coefficient
close to zero. Lasso penalty corresponds to Laplace prior by expecting more of
coefficients to be close to zero, and a small subset of them greater than zero [3].

The selection of method for modeling the wheat production is justified by
three main criteria: interpretability, variables vs. instances ratio, and parametric
dimension of a model’s run. Interpretability of models is of highest importance in
this study as it comes along the need to understand the effect of adverse weather
conditions over wheat production, by distinguishing effects of underlying adverse
events over biologically processes and physiological development of plants.

High dimensionality of a variable’s set in combination with a limited sam-
ple size can result in models with high bias. LASSO minimizes residual sum
of squares by shrinking some coefficients to zero, which allows stable variable
selection and avoids model’s over-fitting [14].

Finally, LASSO implementation [3] requires setting up only one parameter -
lambda (λ), a parameter for optimal l1-norm regularization. It is optimized by
performing a cross-validation over the training set and minimizing the λ value
that minimizes mean squared error – MSE.

2.3 Experimental Design

Experimental design defines the three-fold structure of the analysis in a workflow
fashion: definition of short and long periods of training set, investigation of
a model’s robustness, and comprehensive analysis of effects from the adverse
weather conditions.

Temporal analysis is performed using short and long memory, i.e., short and
long periods of evidence in recent history. The analysis examines possible pat-
terns from historical periods of 5 to 30 years. Intergovernmental Panel on Climate
Change (IPCC) states that 30 years period is efficient for investigating the cli-
mate change and effects related to it [1]. However, due to the limited length of
the time series of data on annual production of wheat, area and daily weather,
the upper considered boundary is 30 years. Lower bound is set to be 5 years.

A selection of short and long periods is done in accordance to models’ per-
formance expressed with Root Relative Squared Error – RRSE and Pearson
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correlation coefficient. RRSE is an error metric that measures relative error of a
model compared to the error of default model (average value):

RRSE =

√∑n
i=1(pi − mi)2∑n
i=1(mi − m̄)2

, (1)

where mi is observed and pi predicted value, for i ∈ [1, n]. m̄ is average observed
value of n observations (number of instances). In other words, it measures the
fraction of unexplained variable and value range is [0,∞) with best value being
the lower bound.

Periods with smaller number of years is set to randomly pick equal number
of years for testing (24 years), as the longest possible period (30 years). Due to
the stochastic properties of the testing set of years, the process is repeated 10
times and the average performance is reported.

Throughout the manuscript, the period of n years is interchangeably referred
to as sliding window size or window size, as well as short and long window for
short and long historical periods, respectively. In fact, the period defined as a
window represents a training set used for building models, while the consecutive
year represents a testing set. All further elements of the experimental design
adopt such definition and perform the tests with the technique of sliding window
(Fig. 2), until the last year is tested, i.e., year 2018.

The robustness analysis includes comparison of performance of models built
with a step-ahead predictions and a step-ahead simulation. Both utilizes the
sliding window techniques over available years of the time series, for testing.
The difference is in construction of training set. The prediction approach learns
on collected data (original data on wheat production). The simulation approach
constantly updates the training set by predictions from the previous year. The
simulation approach allows predicting the effect of adverse weather conditions
longer ahead. The length of such period depicts the robustness of a model build
over certain window size.

Comprehensive analysis of variables selected in the process of building mod-
els for years from the testing set is the last part of the design. Due to the λ

Fig. 2. Example of sliding window techniques applied throughout the experimental
design. Window size represents the number of years in training set (green-filled tiles).
The testing set (transparent tile) consists of one year in each trial. Trials are executed
consequently, arranged from the bottom to the top of y-axis. (Color figure online)
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parameter optimization using 10-fold cross validation, the process of building
model for particular testing year is repeated 10 times. Weights of selected vari-
ables among all models built for particular testing year are averaged. Final selec-
tion is performed by picking out variables that appear in 8 out of 10 repeats and
that have an average weight greater than 10−3.

3 Results and Discussion

The range of window sizes is visually examined in regard with median, intra-
variance and outliers of models’ performance, built over the given range of years.

The performance of models, built over different lengths of the sliding window
ranging between 5 and 30, are given on Fig. 3a. As the window enlarges, the
median performance in regard with both the error and correlation, increases
and decreases, respectively. The variance of the performance among the models
built with same window size is higher for very small and very high window sizes.
The third criterion, appearance of outliers, shows significant decrease in regard
with error and slight decrease in regard with correlation, as the window increases.

Accordingly, window sizes depicting lower variability, better median perfor-
mance and fewer outliers are 12 and 23 years for short- and long-term conditions’
aggregation, respectively. Built models will be referred to as short-term models
and long-term models, respectively.

Average performance emphasizes that short-term models are more accurate
compared to long-term (Table 2). However, considering the range of performance
of individual models built over each year, higher stability and robustness is
observed in long-term models compared to short-term (Fig. 3b). Such robust-
ness is mainly adopted due to the encapsulated variety of events with higher

Fig. 3. (a) Performance of models (RRSE and Correlation coefficient) built over dif-
ferent window sizes varying from 5 to 30 years; (b) Predictive performance (RRSE)
of the sliding-window models built with both step-ahead approaches (prediction and
simulation) and window sizes of 12 and 23 years, for periods 1977–2018 and 1989–2018,
respectively.
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Table 2. Average performance of models built over short and long windows. Both
window sizes are given with prediction (P) and simulation (S) approaches, as well as
reference models built without weather conditions – given with (ref)

Window size RRSE (P) Correlation (P) RRSE (S) Correlation (S)

Short (ref) 0.191 0.995 0.506 0.995

Short 0.176 0.995 0.449 0.996

Long (ref) 0.237 0.995 0.426 0.995

Long 0.212 0.996 0.374 0.995

probability to appear in longer period of time. Consequently, the predictions are
smoother when using the short-term models, while the long-term models sharpen
the peaks (Fig. 4).

In addition, Table 2 shows performance of reference models, i.e. models built
over data excluding variables that represent the adverse weather conditions.
Although such models perform well, the difference of around 10% stresses out the
impact of the adverse weather events. The impact is higher when long window is
used and it is mostly reflected to the error measure. Considering the time-course
of the predicted values, such improvement is mainly reflected to the magnitude
of the residuals.

The robustness of models in regard with the step-ahead simulation is differ-
ent compared to the task of prediction (Fig. 3b). Short-term term models fail
to follow the performance of those with prediction approach and their perfor-
mance deviates significantly after the year 2000 or 15 years of accumulation. The
long-term models follow the prediction approach approximately until year 2005.
Although they both depict good performance before year 2000 and 2005, it is

Fig. 4. Visualization of collected (red solid line), predicted (green dotted) and simu-
lated (blue dashed) wheat production per ELY administrative centers, using models
built with: (a) short window of 12 years; and (b) long window of 23 years. (Color
figure online)
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hard to conclude the exact range of stability of long-term simulations. Similar
behaviour is observed in Fig. 4, where simulations are underestimating the real
production of spring wheat in the years after 2005.

Examination of variables selected during models’ building, reveals a change
in abiotic weather-related factors with influence on wheat production in Finland,
over the course of time (Fig. 5). A change in conditions can be analyzed from two
dimensions: typomorphic and physiological. The former is a synonym for type
of adverse weather event and examines whether certain type of event appears
to affect the production. The latter, concentrates on the life cycle of wheat and
depicts changes of effects observed in affected development stages.

Drought appears to be important in both short- and long-term models. His-
torically, it has been more harmful for the production, unlike recently. It causes a
lot more damage in vegetative stage than in the later development. The longest
streak is identified as more frequent source of negative effect, although frequency
of dry days affects the production, as well.

Intensive rainfall appears in both short- and long-term models. Similar to
drought, intensive rainfall used to have a large negative effect, during the vege-
tative stage. It is the case in both type of models where negative effect increases
significantly until year 2010. Historically, the intensive rainfall is positive during
generative and grain-filling stage, but without significant impact after the year
2005. The frequency of this event is predominant, thus the non-continuity of
appearance does not have an effect.

Fig. 5. Variables of models with windows size of: (a) 12 years; and (b) 23 years.
Time is given on x-axis, while y-axis shows variables ordered by physiological stages
of wheat development (from vegetative (upper), through generative, to grain-filling
stage (lower)). Size of circles depicts variables’ importance (weight), and color depicts
their effect (positive or negative). Names are constructed of development stage, weather
event and type of aggregation (frequency - “fq” or streak - “sk”). Exceptions are x area
that represents cultivated area, as well as since-nyear and since-seed – number of days
since beginning of a year or seeding till beginning of a stage, respectively.
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Extreme temperature shows most clear pattern of change on the long scale.
Namely, historically it shows positive effect in the generative stage and less sig-
nificant effect during the grain-filling stage. However, as approaching the recent
years the effect shifted and posing a clear threat to the latest development stage.
The changes are observable in both type of models with more clear evidence in
the long-term models, with streaks being the main form of the adverse event.

Historically, development delay (postponed sowing) negatively influenced the
overall production, unlike the length of the initial (vegetative) stage (gen since-
seed) that had positive affect on production. In recent years, postponed appear-
ance of the grain-filling stage is beneficial for the overall production, a pattern
visible in both type of models.

Vegetative stage is shown to be least affected by variety of conditions (adverse
events), as both type of models stress out five lethal factors that affect the
wheat development. In both cases, it turns being mostly vulnerable in the past
especially under condition of frequent intensive rainfalls. Figure 5 emphasizes
that the drought and, in particular, intensive rainfall had negative effect.

Generative stage has been historically stable in regard with negative effects
from adverse conditions (Fig. 5a). Such stability diminish over time as the length
of drought streaks increases, accompanied with extreme temperatures.

Grain-filling stage is shown to be constantly affected by variety of adverse
conditions. However, the type of stress and their impact is changing along the
course of time. Historically, both absence and intensive rainfall had positive
impact. Nowadays, the maturity phase is highly affected by frequent and long
periods of extremely high temperature.

4 Conclusion

The analysis revealed weather patterns that have importantly affected the yields
and the way most effective weather patterns have changed during the studied
period. Results support the earlier findings, for example, the well-known chal-
lenge with early-season droughts, which are also reflected in positive impacts of
rainy seasons. There were also some less-obvious results, like the positive impacts
of intensive rainfalls during the grain-filling stage.

A trend of adverse weather stress, in both short- and long-term models,
shows clear shift throughout the time (Fig. 5). Historically, the adverse conditions
negatively affect the earlier stages of wheat development, while it shifts toward
the later stages over the course of time. Similarly, the negative effect originates
as stress condition related to the precipitation and terminates as stress related to
the elevated temperatures. Heat stress tolerance of cultivars are thus becoming
increasingly important adaptation measure also for Northern production regions.

The selection of LASSO regression model class is justified by the consistent
improvement of performance compared to the simpler reference models. Inter-
pretation of models is easy for domain experts and simulation performance of
the long-term models is rather close to step-ahead prediction for longer period,
indicating that the models have incorporated many important weather-related
factors affecting the production.
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Abstract. Orbiting Mars, the European Space Agency (ESA) operated
spacecraft - Mars Express (MEX), provides extraordinary science data
for the past 15 years. To continue the great contribution, MEX requires
accurate power modeling, mainly to compensate for aging and battery
degradation. The only unknown variable in the power budget is the power
provided to the autonomous thermal subsystem, which in a challenging
environment, keeps all equipment under its operating temperature. In
this paper, we address the task of predicting the thermal power con-
sumption (TPC) of MEX on all 33 thermal power lines, having available
the stream of its telemetry data. Considering the problem definition, we
face the task of multi-target regression, learning from data streams. To
analyze such data streams, we use the incremental Structured Output
Prediction tree (iSOUP-Tree) and the Adaptive Model Rules from High
Speed Data Streams (AMRules) to model the power consumption. The
evaluation aims to investigate the potential of the methods for learning
from data streams for the task of predicting satellite power consumption
and the influence of the time resolution of the measurements of thermal
power consumption on the performance of the methods.

Keywords: Data streams · Multi-target regression · iSOUP-Trees ·
AMRules · Satellite · Thermal power consumption

1 Introduction

In June 2003, the Mars Express (MEX) spacecraft was launched from Earth,
and after a six month cruise it arrived at Mars [5]. This mission of the European
Space Agency (ESA) is ongoing up to the present time, and MEX is still in orbit
around the planet Mars.

MEX’s power source is electricity, either generated by its solar arrays, or
alternatively (in the case of an eclipse), stored in its batteries. In addition to
c© Springer Nature Switzerland AG 2019
P. Kralj Novak et al. (Eds.): DS 2019, LNAI 11828, pp. 186–201, 2019.
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http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33778-0_16&domain=pdf
https://doi.org/10.1007/978-3-030-33778-0_16


Predicting Thermal Power Consumption of the MEX Satellite 187

powering platform units, electricity is used by the internal autonomous thermal
subsystem, and only the remaining power can be allocated for science operations.
Further considering the aging of the probe and the decaying capacity of the
batteries, predicting the power consumption of the thermal subsystem allows for
optimization of the science operations of the satellite.

Prediction of thermal power consumption (TPC) of MEX, is a crucial, but
far from trivial task. The operating temperatures of the instruments and the on-
board equipment vary from −180 ◦C for some, to room temperature for other.
This spectrum of temperatures must be maintained in a challenging environment,
where the side of an object illuminated by the Sun can reach temperatures
more than 400 ◦C higher than the unilluminated side. Even activating a radio
transmitter results in a 28 ◦C temperature increase of one side of MEX [14].

Initially, ESA used a manually constructed model for predicting TPC. How-
ever, it diverged from actual data year on year and an engineer’s calibration was
needed. Thus, a need arised for switching to a new approach, which would be
able to automatically learn through experience.

Machine learning (ML) is the science that studies computer algorithms [15]
with such abilities. In a very significant part of the research in machine learning,
the experience is given as data in the form of a table. Each row in the table
represents a data example and each column represents some feature (attribute).

A learning task can be categorized as supervised or unsupervised. The goal
of the algorithms in the latter category is to find general descriptions of the
examples, while the ones in the former category aim to predict the values for
one or more target attributes for some data examples. If the values in the tar-
get attributes are nominal or numerical, the supervised learning task is said to
be classification or regression, respectively. Another perspective for categorizing
supervised learning tasks is based on the number of the target attributes. The
tasks where one or more target attributes are present for the task of classifica-
tion, are named single- and multi-class classification. The analogous terms for
regression are single- and multi-target regression.

As devices that generate huge amounts of data are omnipresent, machine
learning is facing increasing data complexity - not only in the number of target
or descriptive columns, but also in the number of rows and the velocity at which
they become available. In the extreme case, there are an infinite number of rows
that are continuously arriving, whose storing for future knowledge extraction is
obviously impossible. In this case, we are talking about data streams.

Learning from data streams (data stream mining) is a dynamic process. The
implicit assumption made when working with finite amount of data examples (in
the classical machine learning approach or in the batch setting) that all of the
data is available before the learning process starts, is no longer valid for streams.
Furthermore, since the data examples are arriving continuously and with high
velocities, each can be processed at most once and in a limited amount of time.

The TPC prediction in MEX can be viewed as a task of data stream mining of
its telemetry data, to produce real-time multi-target predictions of the electricity
use on each of the 33 power lines of the heaters and coolers in its thermal
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subsystem. This field of multi-target learning from data streams has been given
some attention, and has been researched only recently. Namely, there are two
state-of-the-art methods in this field - the tree-based incremental Structured
Output Prediction tree (iSOUP-Tree) [16], which is based on the Fast Incremental
Model Tree for Multi Target (FIMT-MT) method [11] (the multi-target extension
of Fast Incremental Model Tree with Drift Detection (FIMT-DD) [12]), and the
rule-based Adaptive Model Rules from High Speed Data Streams (AMRules) [2].

In this paper, two research questions are investigated:

1. How do different methods for learning from multi-target data streams perform
on the task of predicting satellite power consumption?

2. How does the time resolution, at which the measurements of thermal power
consumption are considered, influence the performance of the methods?

The rest of the paper is organized as follows. In Sect. 2 MEX is discussed
in greater detail, focusing on its telemetry data. Section 3 explains the used
methods for data stream mining, while Sect. 4 discusses how they were employed
for the task of TPC prediction. Section 5 presents the results, and finally Sect. 6
concludes the paper and gives directions for future work.

2 MEX Satellite and Its Power Consumption

2.1 Power Consumption of MEX

The 3D imagery of Mars that MEX has generated during the past 15 years has
provided unprecedented information about the red planet. In order for MEX
to continue providing valuable information, which would support ground explo-
ration missions and other research, as well as to enable the proper function of
MEX without breaking, twisting, deforming or failure of any equipment, careful
power management is needed.

The available power, φavailable, stored in the batteries or generated by the
solar arrays, that is not consumed by the platform, φplatform, or by the thermal
subsystem, φthermal, can be used in science operations φscience.

φscience = φavailable − φplatform − φthermal (1)

Two of the three terms in the right hand side of Eq. 1 are well known. The
200 thermistors in the spacecraft continually measure the temperatures around
it and therefore enable the autonomous turning on or off of the electrical heaters,
making the φthermal an unknown variable, difficult to predict.

In the initial, empirical, model to predict this variable, ESA has identified and
incorporated key influencing factors, such as the distance of the spacecraft to the
Sun and to Mars, the orbit phase and instrument and spacecraft operations [14].
However, the aging of the spacecraft has confronted this approach with many
challenges. This motivated ESA to organize the Mars Express Power Challenge1

and reach out to the machine learning community by releasing MEX data for
four Martian years.
1 https://kelvins.esa.int/mars-express-power-challenge/ [Last accessed: 12 June 2019].

https://kelvins.esa.int/mars-express-power-challenge/
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2.2 MEX Power Challenge Data

The data released for the purpose of the MEX Power Challenge consists of (i)
raw telemetry (context) data; and (ii) measurements of the electric current on
the 33 thermal power lines (observation data). The time period covered in the
data spans 4 Martian (or cca. 7.5 Earth) years, starting from the 22nd of August
2008 to the 1st of March 2016.

The context data consists of five components:

– SAA (Solar Aspect Data): timestamped data expressing the angles of the
Sun-MEX line with the axes of MEX’s coordinate system and with the panels’
normal line

– DMOP (Detailed Mission Operations Plans): data about the execution of
different subsystems’ commands at a specific time, such as ON/OFF com-
mands of radio communications or of the science instruments

– FTL (Flight dynamics TimeLine): timestamped data regarding the point-
ing and action commands that impact MEX’s position, such as pointing the
spacecraft towards Earth or Mars

– EVTF (Miscellaneous events): data about more events and their timestamp,
such as the time intervals during which MEX was in Mars’s shadow

– LTDATA (Long Term Data): timestamped long term data including the
Sun-Mars distance and the value of the solar constant on Mars

The observational data represents the measurements of the electrical cur-
rent/power on all 33 thermal power lines, recorded once or twice per minute.
Predicting the average hourly power/current was the competition’s goal.

2.3 Data Pre-processing and Feature Engineering

Considering the different time resolutions of the different components of the
context data and the unstructured format of some data entries, the raw data
cannot be used directly without pre-processing. The data pre-processing and
feature engineering taken in this paper follows the approach taken in the winning
solution of the MEX Power Challenge [4].

During this step, the time resolution is matched for all features. Namely, for
a resolution Δt, the data is divided into intervals [ti, ti+1) with length Δt. The
competition required the prediction of the average TPC over one-hour intervals.
Since the context data allows for finer time resolutions, in this paper smaller
values of Δt, i.e., Δt ∈ {5, 10, 15, 30, 60} minutes, are considered.

A common issue in data science tasks is the handling missing data, which
occurs in this task as well. Both the context and the observation data have
missing values. In our work, examples with missing observation data for time
periods longer than 10 min are removed. If the missing values for the context data
span over a period shorter than 10 min, the values are linearly interpolated, and
left intact otherwise.

The following subsections describe the feature categories constructed and
later used by the data stream mining methods.
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Fig. 1. Illustration of MEX and its coordinate system [4].

Energy Influx Features. As mentioned above, the solar energy irradiating a
side of the spacecraft may increase its temperature by 400 ◦C. Furthermore, the
energy collected by the solar panels is directly proportional with the generated
energy. Hence, one of the feature classes represents the energy incident to the
solar panels and to each of the six sides of MEX’s cuboid in the interval [ti, ti+1).

Formally, the energy Ei
S of the surface S in time interval [ti, ti+1) is defined

as

Ei
S =

∫ ti+1

ti

A × max{cos(α(t)), 0} × c(t) × U(t)dt (2)

where A, cos(α(t)) and c(t) denote the area of the surface S, angle between
the Sun-MEX line and the normal n of the surface, and the solar coefficient
at time t, respectively. A visual illustration of these notations is presented in
Fig. 1. Since the data stream mining methods used in the paper are invariant to
monotonic transformations of the features, A is taken to be constant (1). U(t)
is the approximation of the Sun visible from the spacecraft at time t, referred to
as the umbra coefficient, represented as a simple piecewise function:

U(t) =

⎧⎪⎨
⎪⎩

0 if MEX is in umbra
0.5 if MEX is in penumbra
1 otherwise

(3)

Although Eq. 2 defines the energy as an integral, the integral is not exactly
computed. Instead, it is approximated by using the trapezoid-rule.

Historical Energy Influx Features. Since temperature is not a fast-changing
variable, if a surface received a lot of solar energy and hence heated during the
previous time interval, this will affect the current energy state. Therefore, for
each surface S, a historical feature is defined as:

Hi
S =

H∑
j=1

E
i−(j−1)
S (4)
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Table 1. Values of H and the corresponding time spans for different time resolutions

Δt Values of H Time spans

5 {1, 3, 6, 13, 25} {5, 15, 30, 65, 125}
10 {1, 2, 3, 6, 13} {10, 20, 30, 60, 130}
15 {1, 2, 3, 4, 9} {15, 30, 45, 60, 135}
30 {1, 2, 3, 4, 5} {30, 60, 90, 120, 150}
60 {1, 2, 3} {60, 120, 180}

where H is the total count of historical time intervals considered.
The variable H is dependent on the time resolution. Intuitively, for H = 25

for example, the energy from 25 h ago, in the case of Δt = 60 min, has little to
no impact in the current time, while the energy from about 2 h, when Δt = 5,
has a large one. Given the time resolution, the values for H used are given in
Table 1.

DMOP Features. The raw DMOP data consists of a log of commands, whose
names have been obfuscated, issued to MEX’s subsystems. These commands
can concern flight dynamics events or events that contain information about the
subsystem and the executed command.

Assuming a delay between triggering a command and its thermal effect, the
features constructed represent “time since last activation” of a specific subsystem
command. The value of such a feature at time t corresponding to event k is:

f i
k =

{
0 if k is activated at ti

min{f i−1
k + Δt, θ} otherwise

(5)

where θ (set to 1 day) regulates the diminishing importance of f i
k with time.

Such features are constructed for each flying dynamic event, each subsystem
- command pair, and each subsystem when multiple commands are issued to it.
Also binary indicator features for each subsystem and flying dynamic event are
included, where f i

k = 1 only if the subsystem was triggered within time step ti,
and f i

k = 0 otherwise.

FTL Features. From the raw FTL data, containing logs of pointing events and
their times, where simultaneously occurring events are possible, new features
are constructed which display the proportion of the time in the interval [ti, ti+1)
during which the event is in progress. The range of possible values these features
can have is [0, 1] - 0 if the event never happened, and 1 if it was active during
the whole interval. Since these events typically last longer that the time unit
considered, most values are the extremes of the domain range - either 0 or 1.
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2.4 Final Dataset Overview

An overview of the datasets obtained for the different time resolutions is given
in Table 2. Note that coarser time resolutions yield smaller datasets.

Table 2. Final datasets’ properties

Δt [min] Number of examples Number of features Memory size [MB]

5 784773 462 2077

10 392474 462 1041

15 261697 462 699

30 130900 462 352

60 65493 448 167

3 Learning for Multi-target Prediction on Data Streams

3.1 Overview of Classical Batch Setting and Data Streams

The explosive growth of data generated and collected every day has brought
data streams into the spotlight. Data streams are an algorithmic abstraction for
continuously arriving sequences of examples, possibly infinitely many examples,
at high velocities. The task of learning from such sequences poses challenges not
present in the batch setting, where the entire dataset is available at the start of
the learning process. For example, in data stream mining, real- or near-real time
response is of crucial importance.

In addition to the fact that the dataset is not complete before the learning
process begins, the theoretical infinite number of data examples makes it impos-
sible for data stream mining methods to store them as they arrive, since there
exists no infinitely large memory storage. Instead, each example is processed
once, at the time of arrival, and later discarded. Besides memory efficiency, the
high velocity of the stream imposes a time efficiency requirement even for the
one-time processing of the example, in order to be ready to process the next one.

The underlying distribution of the data examples in the batch setting is
assumed to be constant, and thus any learned generalization is applicable for
future examples. This statement, however, does not hold in the data stream
case. The temporal dimension there implies the possibility of distribution change,
which is known as concept drift.

3.2 Multi-target Prediction in the Batch and Data Stream Settings

There are two general types of approaches to multi-target prediction - local and
global. The former category builds models for each single primitive target, and
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later combines their prediction into a multi-target one. The global approach
builds only one global model, for all targets.

Multi-target prediction has been researched extensively for the batch setting.
The approaches taken for multi-target regression and classification include tree-
based [6,8,20], rule-based [1,7], kernel-based [13,21] and instance-based [17,22]
methods. In the current literature, little attention is given to multi-target predic-
tion for data streams, as compared to the batch case. There are some methods for
classification [18,19], while for regression there are rule-based [2] and tree-based
[11,16] methods (the former is mainly based on the latter). Since our problem,
i.e., predicting MEX’s TPC, is a multi-target regression task, only the methods
that fall under this category are discussed in greater detail.

Massive Online Analysis (MOA). The Java-based Massive Online Anal-
ysis (MOA) open-source framework includes a collection of data stream min-
ing methods for classification, regression, multi-label classification, multi-target
regression, clustering and concept drift detection [3]. The authors of iSOUP-Tree
and AMRules have published the implementations of their methods in MOA.

MOA is similar and related to the WEKA project. However, MOA is designed
to scale to more demanding problems. This work uses MOA and the original
implementations of iSOUP-Tree and AMRules that MOA contains.

iSOUP-Tree. The iSOUP-Tree method is an instance-incremental method,
meaning it takes exactly one instance to update the current generalization model.
Initially, when no instance has been processed, the iSOUP-Tree is just an empty
leaf node.

Once enough examples have been processed (but not stored directly) in a
leaf node, a check is made to examine if there is a significant statistical support
to split it. All possible binary splits, A ≤ c or A = n for some numerical c or
nominal value n of the attribute A, are calculated and evaluated using multi-
target intra-cluster variance reduction (ICVR) as a heuristic function. Formally,
the ICVR evaluates a split candidate S as

ICV R(S) =
1
M

M∑
j=1

1
V arj(S)

(
V arj(S) − |S�|

|S| V arj(S�) − |S⊥|
|S| V arj(S⊥)

)

(6)
where M is the total number of target variables (indexed by j), S� and S⊥ are
the post-split sets of accumulated examples for which the evaluated split test is
true or false respectively, S is their union and V arj denotes the variance of the
jth target attribute.

ICVR represents the homogeneity gain on the target values if split S is cho-
sen. Hence, the candidates with higher ICVR values are more desirable. It is
important to note that the data examples of S, S� or S⊥ are not stored in
memory. Instead, only the statistics necessary for computing the variances are
recorded.
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According to the heuristic in Eq. (6), the best candidate split h1 is selected,
as well as the second-best h2. Next, the following sequence is constructed

. . .
h2(k)
h1(k)

,
h2(k + 1)
h1(k + 1)

,
h2(k + 2)
h1(k + 2)

. . . (7)

where k denotes the number of accumulated examples considered.
Let Xk be a random variable denoting the ratio h2(k)

h1(k)
, and xk be one sample

of it. Then the observed average can be computed as x̄ = 1
k (x1 +x2 + · · ·+x|S|),

which is a sample from the random variable X̄ = 1
k (X1 + X2 + · · · + X|S|). The

Hoeffding bound [10] is then applied to make an (ε, δ)-approximation, using the
standard notation of E[X] to denote the expected value of the random variable
X. The Hoeffding bound is of the following form:

P (|X̄ − E[X̄]| > ε) ≤ 2e−2|S|ε2 =: δ (8)

The value δ is a parameter to the iSOUP-Tree method named splitting confi-
dence. The value ε can be formulated as an expression of δ and |S|.

Plugging x̄ as observation of X̄ in Eq. 8, one gets E[X̄] ∈ [x̄ − ε, x̄ + ε] with
probability 1 − δ, i.e., if x̄ + ε < 1 then E[X̄] < 1 implying h2

h1
< 1 (with

probability 1 − δ), or in other words, there exists a significant support to take
the currently best candidate and split the leaf node. In the case when x̄ + ε ≥ 1,
the leaf waits for more examples.

This condition is checked only when enough examples have accumulated in
the leaf. The check is made whenever the leaf has accumulated a number of
examples which is a multiple of the parameter GP , which stands for grace period.

In order to overcome a drawback of the Hoeffding bound, which occurs when
the values of the two best heuristics are close to each other, iSOUP-Tree intro-
duces a new parameter - τ . This so-called tie breaking threshold τ determines the
minimal value ε can have before the leaf is split. The underlying data structure
used to compute the statistics is the extended binary search tree (E-BST), also
used by [12].

Each leaf makes a prediction by using an adaptive multi-target model, con-
sisting of a multi-target perceptron and a multi-target mean predictor. The per-
ceptron updates its weights by a backpropagation rule with a given learning rate.
When a leaf is constructed, its learning rate is set to the parameter η0, named
initial learning rate. After each incoming example, the learning rate η is updated
by using the rule

η =
η0

1 + nηΔ
(9)

where n is the number of recorded values and ηΔ is a parameter called learning
rate decay factor. Finally, a prediction is made by using the perceptron or the
mean regressor, depending on which one has the lower fading mean absolute
error (fMAE) for that target:

fMAEj(en) =
∑n

i=1 0.95n−i|ŷi
j − yj

i |∑n
i=1 0.95n−i

(10)
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where en, ŷi
j and yj

i are the nth observed example, predicted and real values of
the jth target for the ith example.

AMRules. This algorithm is a representative of rule-based approaches to multi-
target prediction on data streams, which build rule sets (RS). Initially, AMRules
starts with an empty RS and a default rule {} → L, where L, initialized to
NULL, is a modified version of the data structure E-BST used in iSOUP-Tree
for storing statistics, which limits the maximum number of splitting points to a
predefined value. This modification reduces the memory consumption as well as
speeds up the split selection procedure [9].

When a new data example arrives, AMRules checks if some rule in the RS
covers it, i.e., if all of the literals on the left hand side of the rule for that
example are true. Target values are utilized to update the statistics of the rule.
The Page-Hinkley (PG) change detection test is used to discover a concept drift.
It considers a cumulative variable mT :

mT =
T∑

t=1

(xt − x̄T − α) (11)

where xt is a previously observed value, x̄T = 1
T

∑T
t=1 xt, and α corresponds

to the magnitude of allowed changes. Also, the minimum value of this variable
is computed MT = mint=1,...,T (mt). When the difference between these values
PHT = mT − MT is larger than the value of the parameter λ, concept drift is
signaled. If change is detected, the rule is removed from the RS.

If a rule is not removed, it is considered for expansion. Here, again a grace
period parameter is used. The expansion procedure is almost identical to the
leaf node splitting of iSOUP-Tree discussed, using the Hoeffding bound, with
the same heuristic function along with τ threshold and δ confidence parameters.
The rule expansion is a process where the hypothetical candidate split is added
to the literals on the rule’s left hand side. As a special case, expanding the default
rule means adding a new one in RS, with the extended literals.

The prediction and model building strategies depend on whether the rules
are ordered or unordered. In the former case, only the first rule that covers the
example is removed, expanded or used in prediction. The latter one enables all
the rules that cover an example to have same treatment, independent of their
order, and the final prediction is made as the aggregation (mean) of individual
predictions.

The rules learned by the AMRules method generate predictions in a similar
manner as the leaves in iSOUP-Tree. They use an adaptive strategy, choosing
between a perceptron’s and a mean regressor’s prediction. AMRules and iSOUP-
Tree differ is the learning rate, which in AMRules is a constant.
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4 Experimental Design

4.1 Methods’ Parameter Values

Both iSOUP-Tree and AMRules have been implemented and published into the
open source framework MOA. Their authors recommend values for their param-
eters, which are implemented as default parameter values in MOA. Those values
are again reused in this paper, e.g., we use the ordered version of AMRules.

Because of the discussed similarities between the two approaches, many of
their parameters overlap. Table 3 provides an overview of the parameters, includ-
ing their values. It specifies which parameters are unique to each methods and
which are shared.

4.2 Evaluation Procedure and Evaluation Measures

In batch prediction, two phases, clearly separated in time, are present - first the
model is trained, and only when this phase finishes, the evaluation can start. On
the other hand, in data stream setting, since examples never stop arriving, the
training and evaluation must be interleaved. Additionally, the streams’ evalua-
tion posses a new challenge - to assess how the models perform over time. Two
main approaches are present:

– Holdout: Each incoming example is firstly used for testing. Once the model
makes the prediction for its target, it is stored in a buffer, and only after it
is filled, all stored examples are used for training.

– Prequential: This approach also uses the newly received example for testing,
but once that is done, the model proceeds to training, without waiting for
other examples. In other words, this approach is a special case of the holdout
approach, where the buffer size is 1.

Since in holdout evaluation, the model is not updating for each example,
towards the end of the buffer, it is getting “stale”. Thus, in this work, the
prequential approach is taken.

Table 3. The values of the parameters of iSOUP-Tree and AMRules

Designation Description Value Method

GP Grace period 200 Both

δ Split confidence 10−7 Both

τ Tie breaking threshold 0.05 Both

η0 Initial learning rate 0.2 iSOUP-Tree

ηΔ Learning rate decay 0.001 iSOUP-Tree

η Learning rate 0.01 AMRules

α Magnitude of allowed changes 0.05 AMRules

λ Concept drift threshold 50 AMRules
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A prediction is generated for each example as it arrives. In order to evaluate
model performance, as in batch setting, evaluation measures are needed. In the
single target scenario, there exist wide-spread evaluation metrics adopted from
statistics. When multiple target attributes are present, one possibility is to treat
them individually, and produce as many evaluation scores as there are targets.
However, this can be cumbersome, especially when there are more than just a
few targets, as in the case of MEX’s TPC where we have 33 targets.

A common approach in multi-target evaluation is to average the individual
singe-target scores. This is also the one taken in this paper. In particular, the
average relative mean absolute error (RMAE) [16] is reported over a window
with length n (here, n = 1000), and calculated as follows:

RMAE =
1
M

M∑
j=1

∑n
i=1 |yj

i − ŷj
i |∑n

i=1 |yj
i − ȳj(i)| (12)

where yj
i and ŷj

i are the real and predicted values of the target j for the data
example i by the evaluated model, respectively, while the ȳj(i) is the prediction
by the mean regressor.

If the model evaluated is the mean regressor for each target value, then (12)
would yield a score of 1, since the nominator and denominator would be the same
expression. For any other model, its performance is compared with the mean
regressor as a baseline, such that if the RMAE score is below 1, the evaluated
model outperforms the baseline mean regressor. Lower values for RMAE scores
are desired, where the perfect model has a score of 0.

5 Results and Discussion

In this Section, the empirical evaluation results are presented and discussed.
They are given in the form of graphs in order to better capture and visualize
the performance of the two methods over time. The results are presented in two
parts - one for each of the two posed research questions.

5.1 Method Comparison on the Task of TPC on MEX

Figure 2 contains five graphs, one for each time resolution, comparing the perfor-
mance of iSOUP-Tree and AMRules over time. At all time resolutions, concept
drift as an important aspect of data stream mining is visible. Focusing on the last
time period, AMRules score lower RMAE than iSOUP-Tree. AMRules detects
and handles concept drift and is able to adapt to changes, even when changes
occur after a long period without changes. On the other hand, iSOUP-Tree does
not address change detection and adaptation explicitly: As seen in Fig. 2, this
makes it vulnerable to concept drift, which is more likely to occur when learning
over a long period of time.

If the last time period is left out of the analysis, iSOUP-Tree clearly outper-
forms AMRules. This is the case for all time resolutions, except for the 60 min
one. For the 60 min resolution, the RMAEs of the two methods are very close.
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Overall, AMRules has more stable error throughout time. iSOUP-Tree on the
other hand, models MEX’s TPC significantly better, but suffers from sensitivity
to changes of the underlying distribution. Finally, it is important to note that
both algorithms outperform the mean regressor, as both have RMAE < 1.

5.2 The Influence of Time Resolution on Predictive Performance

To address the second research question, Fig. 3 compares the performance on
the tasks of predicting the TPC of the MEX at different time resolutions, for
each of the two methods. The lowest overall error is achieved at medium time
resolutions, i.e., at 10 and 15 min, for both AMRules and iSOUP-Tree. For the
finest resolution of 5 min, the performance is in the middle, while predicting at
the coarsest resolution of 60 min results in the highest error through the majority
of the time period.

5 minute 10 minute 15 minute

30 minute 60 minute

Fig. 2. A comparison of the performance of iSOUP-Tree and AMRules on the task of
predicting the TPC of the MEX at different time resolutions.

At the 30 min resolution, on the other hand, there is a difference in behaviour
between the two methods. In the last time period covered by the data, iSOUP-
Tree performs the best. In contrast, for this resolution and time period, AMRules
performs worst. Learning at coarser time resolutions yields less accurate models,
since some of the fine-grained detail of the data are lost at these resolution. At
very high resolutions, there is too much detail and noise can be confused for real
signal more easily. Figure 3 shows that a medium resolution (10 to 15 min) is the
most appropriate for the task at hand.
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Fig. 3. The performance of each of AMRules and iSOUP-Trees at different time reso-
lutions.

6 Summary, Conclusions and Further Work

In this paper, we first presented an overview of the MEX (Mars Express) space-
craft and its TPC (thermal power consumption). After a thorough discussion of
the MEX telemetry data used to predict its TPC, we described the data pre-
processing and feature extraction process. We continued with an introduction
to data stream mining and multi-target prediction, focusing on their combina-
tion (multi-target regression on data streams) and two methods (AMRules and
iSOUP-Tree) that address this task.

The central part of the paper addresses the details of using the two methods
for multi-target regression on data streams to solve the problem of predicting
TPC for the MEX. After clarifying the experimental design, the results are pre-
sented and discussed in the context of our research questions. More specifically,
we compare the two methods as well as the performances of each method at
different time resolutions.

Regarding the first question of how the two methods compare to each other,
we note that iSOUP-Tree outperforms AMRules for most of the time. However,
iSOUP-Tree does have a weakness, namely handling concept drift. At finer time
resolutions, it performs slightly worse than AMRules at the end of the time
period covered by the data released by ESA.

Regarding the second question, our results imply that medium time reso-
lutions might be the best to consider when predicting the TPC of the MEX.
Namely, at coarser time resolutions, some of the fine-grained detail of the data
are lost. At very high resolutions, too much detail can contribute to confusing
noise and signal.

Our current research agenda includes an extension of the work done in the
paper by investigating how the iSOUP-Tree and AMRules methods perform on
multi-target versus single-target versions of the task of predicting TPC for MEX.
Although the methods considered outperform the mean regressor, we would also
like to consider parameter optimization, to further boost their modeling capabili-
ties. Finally, iSOUP-Tree is capable of learning tree ensembles, which can greatly
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improve performance - We thus plan to use tree ensembles in iSOUP-Trees for
the task at hand.
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20. Struyf, J., Džeroski, S.: Constraint based induction of multi-objective regression
trees. In: Bonchi, F., Boulicaut, J.-F. (eds.) KDID 2005. LNCS, vol. 3933, pp.
222–233. Springer, Heidelberg (2006). https://doi.org/10.1007/11733492 13

21. Vazquez, E., Walter, E.: Multi-output suppport vector regression. IFAC Proc. Vol.
36(16), 1783–1788 (2003)

22. Zhang, M.L., Zhou, Z.H.: A k-nearest neighbor based algorithm for multi-label
classification. In: International Conference on Granular Computing, pp. 718–721.
IEEE (2005)

https://doi.org/10.1007/11733492_13


Data and Knowledge Representation



Parameter-Less Tensor Co-clustering

Elena Battaglia(B) and Ruggero G. Pensa

Department of Computer Science, University of Turin, Turin, Italy
{elena.battaglia,ruggero.pensa}@unito.it

Abstract. Tensors co-clustering has been proven useful in many appli-
cations, due to its ability of coping with high-dimensional data and spar-
sity. However, setting up a co-clustering algorithm properly requires the
specification of the desired number of clusters for each mode as input
parameters. This choice is already difficult in relatively easy settings, like
flat clustering on data matrices, but on tensors it could be even more
frustrating. To face this issue, we propose a tensor co-clustering algo-
rithm that does not require the number of desired co-clusters as input,
as it optimizes an objective function based on a measure of association
across discrete random variables (called Goodman and Kruskal’s τ) that
is not affected by their cardinality. The effectiveness of our algorithm is
shown on both synthetic and real-world datasets, also in comparison with
state-of-the-art co-clustering methods based on tensor factorization.

Keywords: Clustering · Higher-order data · Unsupervised learning

1 Introduction

Tensors are widely used mathematical objects that well represent complex infor-
mation such as social networks [12], heterogenous information networks [8,25],
time-evolving data [1], behavioral patterns [11], and multi-lingual text cor-
pora [17]. From the algebraic point of view, they can be seen as multidimensional
generalizations of matrices and, as such, they can be processed with mathemat-
ical and computational methods that generalize those usually employed to ana-
lyze data matrices (e.g., non-negative factorization [21], singular value decom-
position [26], clustering and co-clustering [2,24]). Clustering, in particular, is
by far one of the most popular unsupervised machine learning techniques since
it allows analysts to obtain an overview of the intrinsic similarity structures of
the data with relatively little background knowledge about them. However, with
the availability of high-dimensional heterogenous data, co-clustering has gained
popularity, since it provides a simultaneous partitioning of each mode (rows and
columns of the matrix, in the two-dimensional case). In practice, it copes with
the curse of dimensionality problem by performing clustering on the main dimen-
sion (data objects or instances) while applying dimensionality reduction on the
other dimension (features). Despite its proven usefulness, the correct application
of tensor co-clustering is limited by the fact that it requires the specification of a
congruent number of clusters for each mode, while, in realistic analysis scenarios,
c© Springer Nature Switzerland AG 2019
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the actual number of clusters is unknown. Furthermore, matrix/tensor cluster-
ing is often based on a preliminary tensor factorization step that, in its turn,
requires further input parameters (e.g., the number of latent factors within each
mode). As a consequence, it is merely impossible to explore all combinations of
parameter values in order to identify the best clustering results.

The main reason for this problem is that most clustering algorithms (and ten-
sor factorization approaches) optimize objective functions that strongly depend
on the number of clusters. Hence, two solutions with two different numbers of
clusters can not be compared directly. Although this reduces considerably the
size of the search space, it prevents the discovery of a better partitioning once a
wrong number of clusters is selected. In this paper, we address this limitation by
proposing a tensor co-clustering algorithm that optimizes an objective function
(a n-mode extension of an association measure called Goodman-Kruskal’s τ [9])
whose local optima do not depend on the number of clusters. Additionally, we
use an optimization schema that improves such objective function after each
iteration. Consequently, our co-clustering approach can be also considered as
an example of anytime algorithm, i.e., it can return a valid co-clustering even
if it is interrupted before convergence is reached. We show experimentally that
our algorithm provides accurate clustering results in each mode of the tensor.
Compared with state-of-the-art techniques that require the desired number of
clusters in each mode as input parameters, it achieves similar or better results.
Additionally, it is also effective in clustering real-world datasets.

In summary, the main contributions of this paper are as follows: (i) we
define an objective function for n-mode tensor co-clustering, based on Goodman-
Kruskal’s τ association measure, which does not require the number of clusters
as input parameter (Sect. 3); (ii) we propose a stochastic optimization algorithm
that improves the objective function after each iteration and supports the rapid
convergence towards a local optimum (Sect. 4); (iii) we show the effectiveness
of our metohd experimentally on both synthetic and real-world data, also in
comparison with state-of-the-art competitors (Sect. 5).

2 Related Work

Analyzing multi-way data (or n-way tensors) has attracted a lot of attention due
to their intrinsic complexity and richness. Hence, to deal with this complexity,
in the last decade, many ad-hoc methods and extension of 2-way matrix meth-
ods have been proposed, many of which are tensor decomposition models and
algorithms [16].

The problem of clustering and co-clustering of higher-order data has also been
extensively addressed. Co-clustering has been developed as a matrix method and
studied in many different application contexts including text mining [6,19], gene
expression analysis [5] and graph mining [4] and has been naturally extended to
tensors for its ability of handling high-dimensional data well. In [2], the authors
perform clustering using a relation graph model that describes all the known
relations between the modes of a tensor. Their tensor clustering formulation
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captures the maximal information in the relation graph by exploiting a family
of loss function known as Bregman divergences. Instead, the authors of [28],
use tensor-based latent factor analysis to address co-clustering in the context
of web usage mining. Their algorithm is executed via the well-known multi-
way decomposition algorithm called CANDECOMP/PARAFAC [10]. Papalex-
akis et al. formulate co-clustering as a constrained multi-linear decomposition
with sparse latent factors [18]. They propose a basic multi-way co-clustering
algorithm exploiting multi-linearity using Lasso-type coordinate updates. Zhang
et al. propose an extension of the tri-factor non-negative matrix factorization
model [7] to a tensor decomposition model performing adaptive dimensionality
reduction by integrating the subspace identification and the clustering process
into a single process [27]. Finally, in [24], the authors introduce a spectral co-
clustering method based on a new random walk model for nonnegative square
tensors.

Differently from all these approaches, our tensor co-clustering algorithm is
not based on any factorization model. Instead, it optimizes an extension of a
measure of association whose effectiveness has been proven in matrix (2-way) co-
clustering [15], and that naturally helps discover the correct number of clusters
in tensor with arbitrary shape and density.

3 An Association Measure for Tensor Co-clustering

In this section, we introduce the objective function we optimize in our tensor co-
clustering algorithm (presented in the next section). It consists in an association
measure, called Goodman and Kruskal’s τ [9], that evaluates the dependence
between two discrete variables and has been used to evaluate the quality of
2-way co-clustering [20]. We generalize its definition to a n-mode tensor setting.

3.1 Goodman and Kruskal τ and Its Generalization

Goodman and Kruskal’s τ [9] is an association measure that estimates the
strength of the link between two discrete variables X and Y according to the
proportional reduction of the error in predicting one of them knowing the other.
In more details, let x1, . . . , xm be the values that variable X can assume, with
probability pX(1), . . . , pX(m) and let y1, . . . , yn be the possible values Y can
assume, with probability pY (1), . . . , pY (n). The error in predicting X can be
evaluated as the probability that two different observations from the marginal
distribution of X fall in different categories:

eX =
m∑

i=1

pX(i)(1 − pX(i)) = 1 −
m∑

i=1

pX(i)2.

Similarly, the error in predicting X knowing that Y has value yj is

eX|Y=yj
=

m∑

i=1

pX|Y=yj
(i|j)(1 − pX|Y=yj

(i|j)) = 1 −
m∑

i=1

pX|Y=yj
(i|j)2
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and the expected value of the error in predicting X knowing Y is

E[eX|Y ] =
n∑

j=1

eX|Y=yj
pY (j)

=
n∑

j=1

(1 −
m∑

i=1

pX|Y=yj
(i|j)2)pY (j) = 1 −

m∑

i=1

n∑

j=1

pX,Y (i, j)2

pY (j)
.

Then the Goodman and Kruskall τX|Y measure of association is defined as

τX|Y =
eX − E[eX|Y ]

eX
=

∑m
i=1

∑n
j=1

pX,Y (i,j)2

pY (j) −
∑m

i=1 pX(i)2

1 −
∑m

i=1 pX(i)2
.

Conversely, the proportional reduction of the error in predicting Y while X is
known is

τY |X =
eY − E[eY |X ]

eY
=

∑n
i=1

∑m
j=1

pX,Y (i,j)2

pX(i) −
∑n

j=1 pY (j)2

1 −
∑n

j=1 pY (j)2
.

In order to use this measure for the evaluation of a tensor co-clustering, we need
to extend it so that τ can evaluate the association of n distinct discrete variables.
Let X1, . . . , Xn be discrete variables such that Xi can assume mi distinct values
(for simplicity, we will denote the possible values as 1, . . . ,mi), for i = 1, . . . , n.
Let pXi

(k) be the probability that Xi = k, for k = 1, . . . , mi, for i = 1, . . . , n.
Reasoning as in the two-dimensional case, we can define the reduction in the
error in predicting Xi while (Xj)j �=i are all known as

τXi
= τXi|(Xj)j �=i

=
eXi

− E[eXi|(Xj)j �=i
]

eXi

=

∑m1
k1=1 · · ·

∑mn

kn=1
pX1,...,Xn (k1,...kn)

2

p(Xj)j �=i((kj)j �=i)
−

∑mi

ki=1 pXi
(ki)2

1 −
∑mi

ki=1 pXi
(ki)2

,

(1)

for all i ≤ n. When n = 2, the measure coincides with Goodman-Kruskal’s τ .
Notice that, in the n-dimensional case as well as in the 2-dimensional case, the

error in predicting Xi knowing the value of the other variables is always positive
and smaller or equal to the error in predicting Xi without any knowledge about
the other variables. It follows that τXi

takes values between [0, 1]. It will be
0 if knowledge of prediction of the other variables is of no help in predicting
Xi, while it will be 1 if knowledge of the values assumed by variables (Xj)j �=i

completely specifies Xi.

3.2 Tensor Co-clustering with Goodman-Kruskal’s τ

Let X ∈ R
m1×···×mn
+ be a tensor with n modes and non-negative values. Let us

denote with xk1...kn
the generic element of X , where ki = 1, . . . ,mi for each mode
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i = 1, . . . , n. A co-clustering P of X is a collection of n partitions {Pi}i=1,...,n,
where Pi = ∪ci

j=1C
i
j is a partition of the elements on the i-th mode of X in

ci groups, with ci ≤ mi for each i = 1, . . . , n. Each co-clustering P can be
associated to a tensor T P ∈ R

c1×···×cn
+ , whose generic element is

ti1...in =
∑

k1∈C1
i1

∑

k2∈C2
i2

· · ·
∑

kn∈Cn
in

xk1...kn
. (2)

Consider now n discrete variables X1, . . . , Xn, where each Xi takes values
in {Ci

1, . . . C
i
ci}. We can look at T P as the contingency n-modal table that

empirically estimates the joint distribution of X1, . . . , Xn: the entry tk1...kn
is

the frequency of the event ({X1 = C1
k1

} ∩ · · · ∩ {Xn = Cn
kn

}) and the fre-
quency of Xi = Ci

k is the marginal frequency obtained by summing all entries
tk1...ki−1kki+1...kn

, with k1, . . . , ki−1, ki+1, . . . , kn varying trough all possible val-
ues and the i-th index ki fixed to k. In the same way, we can compute the
frequency of the event ({Xi = Ci

k} ∩ {Xj = Cj
h}) as the sum of all elements

tk1...kn
of T P having ki = k and kj = h. More in general, we can compute the

marginal joint frequency of d < n variables as the sum of all the entries of T P

having the indices corresponding to the d variables fixed to the values we are
considering. For instance, given T P ∈ R

4×3×5×2
+ , the empirical frequency of the

event ({X1 = 3} ∩ {X3 = 4}) is

t
(1,3)
(3,4) =

3∑

k2=1

2∑

k4=1

t3,k2,4,k4 .

From now on, we will use the newly introduced notation tvw to denote the sum of
all elements of a tensor having the modes in the upper vector v (in the example
(1, 3)) fixed to the values of the lower vector w (in the example (3,4)). A formal
definition of the scalar tvw can result clunky: given a tensor T ∈ R

m1×···×mn
+ and

two vectors v,w ∈ R+
d, with dimension d ≤ n, such that vj ≤ n, vi < vj if i < j

and wi ≤ mvi
for each i, j = 1, . . . , d, we will use the following notation

tvw =
mv̄1∑

kv̄1=1

· · ·
mv̄r∑

kv̄r=1

te1...en

where v̄ is the vector of dimension r = n − d containing all the integers i ≤ n
that are not in v and ei = wi if i ∈ v while ei = ki otherwise.

Summarizing, given a tensor X with n modes and a co-clustering P over
X , we obtain a tensor T P that represents the empirical frequency of n discrete
variables X1, . . . , Xn each of them with ci possible values (where ci is the number
of clusters in the partition on the i-th mode of X ). Therefore, we can derive
from T P the probability distributions of variables X1, . . . , Xn and substitute
them in Eq. 1: in this way we associate to each co-clustering P over X a vector
τP = (τP

X1
, . . . , τP

Xn
) that can be used to evaluate the quality of the co-clustering.
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In particular, for any i, j ≤ n and any ki = 1, . . . , ci:

pX1...Xn
(k1, . . . , kn) =

tk1...kn

T
, pXi

(k1) =
t
(i)
(ki)

T
, p(Xj)j �=i

((kj)j �=i) =
t
(j)j �=i

(kj)j �=i

T
,

where T is the sum of all entries of T P . It follows that

τP
Xi

=

∑c1
k1=1 · · ·

∑cn
kn=1

t2k1...kn

t
(j)j �=i
(kj)j �=i

·T
−

∑ci
ki=1

(
t
(i)
(ki)

)2

T 2

1 −
∑ci

ki=1

(
t
(i)
(ki)

)2

T 2

(3)

for each i = 1, . . . , n.
Suppose now we have two different partitions P and Q on the same tensor X ,

corresponding to two different vectors τP , τQ ∈ [0, 1]n. There is no obvious order
relation in [0, 1]n, so it is not immediately clear which one between τP and τQ is
“better” than the other. In [15], the authors introduce a partial-order over Rn and
exploit the notion of Pareto-dominance relation. Hence, their algorithm solves a
multi-objective optimization problem. Instead, we propose another approach to
compare partitions, based on a scalarization function, that maps the set of the
partitions into R and then uses the natural order in R to compare partitions. In
particular, we opt for the function f that maps each partition P into a weighted
sum f(P) =

∑n
i=1 wiτ

P
Xi

, with fixed wi > 0 such that
∑n

i=1 wi = 1.
In this paper we will fix the weights wi = 1

n , for all i = 1, . . . , n. We choose
those values because we consider all modes equally important. Anyway, if other
configurations of {wi} are used, the substance of the algorithm we will present
in the following section does not change.

4 A Stochastic Local Search Approach to Tensor
Co-clustering

Our co-clustering approach can be formulated as a maximization problem: given
a tensor X with n modes and dimension mi on mode i, an optimal co-clustering
P for X is one that maximizes f(P) =

∑n
i=1 τP

Xi
. Since we do not fix the number

of clusters, the space of possible solutions is huge (for example, given a very small
tensor of dimension 10×10×10, the number of possible partitions is 1.56×1016):
it is clear that a systematic exploration of all possible solutions is not feasible for
a generic tensor X . For this reason we propose a stochastic local search approach
to solve the maximization problem.

4.1 Tensor Co-clustering Algorithm

Algorithm 1 provides a sketch of our tensor co-clustering algorithm, called τTCC.
At each iteration i, it considers one mode by one, sequentially, and tries to
improve the partition on that mode: fixed the k-th mode, the algorithm randomly
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Algorithm 1: τTCC(X , Niter)
Input: X tensor with n modes, Niter

Result: P1, . . . , Pn

1 Initialize P1, . . . , Pn with discrete partitions;
2 i ← 0;
3 T ← X ;
4 maxτ ←

∑n
j=1 τXi(T );

5 while i ≤ Niter do
6 for k = 1 to n do

7 Randomly choose Ck
b in Pk;

8 Randomly choose o in Ck
b ;

9 ck ← |Pk ∪ ∅|;
10 maxe

τ ← maxe∈{1,...,ck},e�=b

∑n
j=1 τXj (T

e) // see section 4.2;

11 e ← argmaxe∈{1,...,ck},e�=b

∑n
j=1 τXj (T

e);

12 if maxe
τ > maxτ then

13 T ← T e;
14 maxτ ← maxe

τ ;

15 end

16 end
17 i ← i + 1;

18 end

selects one cluster Ck
b and one element o ∈ Ck

b . Then it tries to move o in every
other cluster Ck

e , with e �= b, and in the empty cluster Ck
e = ∅: among them,

it selects the one that optimizes the objective function. When all the n modes
have been considered, the i-th iteration of the algorithm is concluded. These
operations are repeated until a stopping condition is met; although this condition
can be a convergence criterion of τ , for simplicity, we fix the maximum number
of iterations by Niter in our algorithm. At the end of each iteration, one of the
following possible moves has been done on mode k:

– an object o has been moved from cluster Ck
b to a pre-existing cluster Ck

e : in
this case the final number of clusters on mode k remains ck if Ck

b is non-empty
after the move. If Ck

b is empty after the move, it will be deleted and the final
number of clusters will be ck − 1;

– an object o has been moved from cluster Ck
b to a new cluster Ck

e = ∅: the
final number of clusters on mode k will be ck + 1 (the useless case when o is
moved from Ck

b = {o} to Ck
e = ∅ is not considered);

– no move has been performed, thus the number of clusters remains ck.

Thus, during the iterative process, the updating procedure is able to increase or
decrease the number of clusters at any time. This is due to the fact that, contrary
to other measures, such as the loss in mutual information [6], τ measure has an
upper limit which does not depend on the numbers of co-clusters and thus enables
comparison of co-clustering solutions of different cardinalities.
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The proposed algorithm has the desirable property of increasing (or at least
not worsening) the objective function after each iteration, i.e.

∑n
i=1 τXi

gets
closer to the optimal value of the objective function. Notice, however, that it is
not guaranteed that the global optimum will be reached. In fact, at each step
i, the algorithm only allows to move from a partition P(i) to a neighboring
one, i.e., a partition obtainable by moving a single element from a cluster to
another. It is not guaranteed that there is a path of neighboring partitions that
connects P(i) with an optimal partition P ′ ∈ Of

X . It is possible, conversely, that
the algorithm comes to a partition with no neighboring solutions improving the
objective function. In this case the algorithm ends in a local optimum.

Algorithm 1 modifies, at each iteration, every partition Pi by evaluating func-
tion τP

Xi
. The computational complexity of this function is in O(m1 ·m2 ·. . .·mn).

Moreover, during each iteration, for each mode these operations are performed
for each cluster (including the empty cluster). Thus, in the worst case, the over-
all complexity of each iteration is in O ((maxi mi) · (m1 · m2 · . . . · mn)) for each
mode. In the next section, we present an optimized version of the algorithm that
reduces the overall time complexity.

4.2 Optimized Computation of τ

In steps 10–11 of Algorithm 1, fixed a mode k, the following quantities are
computed:

max
e∈{1,...,ck},e �=b

n∑

j=1

τXj
(T e) and argmax

e∈{1,...,ck},e �=b

n∑

j=1

τXj
(T e)

where ck is the number of clusters on mode k (including the empty set)
and T e is the contingency tensor associated to co-clustering Pe obtained by
moving an object o from cluster Ck

b to cluster Ck
e in partition Pk, for each

e ∈ {1, . . . , ck}, e �= b.
A way to compute these quantities is to fix an arrival cluster Ck

e , move o in
Ck

e obtaining a new partition Pe
k , compute the contingency tensor associated to

that partition (using Eq. 2), compute vector τe associated to tensor T e (using
Eq. 3) and finally compute

∑n
j=1 τXj

(T e). By repeating these steps for every
e ∈ {1, . . . , ck}, e �= b, we obtain a vector v = (

∑n
j=1 τXj

(T e))e∈{1,...,ck},e �=b of
dimension ck and we can compute maxv and argmaxv. In order to obtain v in a
more efficient way, we can reduce the amount of calculations by only computing
the variation of τe from one step to another. We take advantage of the fact that
a large part in the τ formula remains the same when moving a single element
from a cluster to another. Hence, an important part of the computation of τ can
be saved.

Imagine that o has been selected in cluster C1
b and that we want to move

it in cluster C1
e (for simplicity we consider o on the first mode, but all the

computations below are analogous on any other mode k). Object o is a row
on the first mode (let’s say the j-th row) of tensor X and so o can be
expressed as a tensor M ∈ R

m2×···×mn
+ with n− 1 modes, which generic entry is
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μk2...kn
= xjk2...kn

. We will denote with M the sum of all elements of M. Let T
and τ(T ) be the tensor and the measure associated to the initial co-clustering
and S and τ(S) the tensor and the measure associated to the final co-clustering
obtained after the move. Tensor S differs from T only in those entries having
index k1 ∈ {b, e}. In particular, for each ki = 1, . . . , ci and i = 2, . . . , n:

sbk2...kn
= tbk2...kn

− μk2...kn

sek2...kn
= tek2...kn

+ μk2...kn

sk1k2...kn
= tk1k2...kn

, if k1 /∈ {b, e}.

Replacing these values in Eq. 1, we can compute the variation of τX1 moving
object o from cluster C1

b to cluster C1
e as:

ΔτX1(T , o, b, e, k = 1) = τX1(T ) − τX1(S)

=

Γ1

[
2M
T2 (M + t

(1)

(b) − t
(1)

(e))

]

− Ω1

[
2
T

∑
k2,...,kn

μk2...kn (μk2...kn+tek2...kn−tbk2...kn )

t
(2...n)
(k2...kn)

]

Ω2
1 − Ω1

[
2M
T2 (M + t

(1)

(b) − t
(1)

(e))

] .

where Ω1 = 1 −
∑

k1

(
t
(1)
(k1)

)2

T 2 and Γ1 = 1 −
∑

k1,...,kn

t2k1...kn

T ·t(2...n)
(k2...kn)

only depend

on T and then can be computed once (before choosing b and e). Thanks to this
approach, instead of computing mi times τXi

with complexity O(m1·m2·. . .·mn),
we compute ΔτXi

(T , o, b, e, k = i) with a complexity in O(m1 · m2 · . . . · mi−1 ·
mi+1 · . . . · mn) in the worst case with the discrete partition. Computing Γi is in
O(m1 · m2 · . . . · mn) and Ωi in O(mi) and is done only once for each mode in
each iteration.

In a similar way, we can compute the variation of τXj
for any j �= 1:

ΔτXj
(T , o, b, e, k = 1) = τXj

(T ) − τXj
(S)

=
1

ΩjT

∑

k2...kn

(
t2ek2...kn

t
(i)i�=j

(ki)i�=j,k1=e

− (tek2...kn
+ μk2...kn

)2

t
(i)i�=j

(ki)i�=j,k1=e
+ μ

(i)i�=j−1

(ki)i�=j

+
t2bk2...kn

t
(i)i�=j

(ki)i�=j,k1=b

− (tbk2...kn
− μk2...kn

)2

t
(i)i�=j

(ki)i�=j,k1=b
− μ

(i)i�=j−1

(ki)i�=j

)

where Ωj = 1 −
∑

kj

(
t
(j)
(kj)

)2

T 2 only depends on T and can be computed once for
all e. Consequently, instead of computing mj times τXj

in Algorithm 1 with a
complexity in O(m1 · m2 · . . . · mn), we compute ΔτXj

(T , o, b, e, k = i) with a
complexity in O(m1 · m2 · . . . · mi−1 · mi+1 · . . . · mn) in the worst case with the
discrete partition. Computing Ωj is in O(mj) and is done only once for each
mode in each iteration.

Hence, when we have to decide in which cluster Ck
e it is better to move object

o, instead of computing vector (
∑n

j=1 τXj
(T e))e∈{1,...,ck},e �=b and its maximum,

we can equivalently compute vector Δτ = (
∑n

j=1 ΔτXj
(T , o, e, k))e∈{1,...,ck},e �=b
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and its minimum. In this way we reduce the amount of computations to be
executed for each mode at each iteration of the algorithm from a complexity in
O((maxi mi) · m1 · m2 · . . . · mn) to O(m1 · m2 · . . . · mn).

Based on the above considerations, for a generic square tensor with n modes,
each consisting of m dimensions, the overall complexity is in O(In · mn), where
I is the number of iterations (instead of O(In · mn+1)).

5 Experiments

In this section, we evaluate the performance of our tensor co-clustering algo-
rithm through experiments. We first apply the algorithm to synthetic data and
then we show the results on a real-world dataset. To assess the quality of the
clustering performances, we consider two measures commonly used in the clus-
tering literature: normalized mutual information (NMI) [22] and adjusted rand
index (ARI) [14]. We compare our results with those of other state-of-the-art
co-clustering algorithms, based on CP [10] and Tucker [23] decomposition. nnCP
is the non-negative CP decomposition. It can be used to co-cluster a tensor, as
done in [28], by assigning each element in each mode to the cluster correspond-
ing to the latent factor with highest value. The algorithm requires as input the
number r of latent factors of the decomposition: we set r = max(c1, c2, c3),
where c1, c2 and c3 are the true numbers of classes on the three modes of the
tensor. nnCP+kmeans combines CP with a post-processing phase in which k-
means is applied on each of the latent factor matrices. Here, we set the rank
r to max(c1, c2, c3) + 1 and the number ki of clusters in each dimension equal
to the real number of classes (according to our experiments, this is the choice
that maximizes the performances of the algorithm). Similarly, nnTucker is the
non-negative Tucker decomposition (here we set the ranks of the core tensor
equal to (c1, c2, c3)), while nnT+kmeans combines Tucker decomposition with
k-means on the latent factor matrices [3,13]. Finally, SparseCP is a CP decom-
position with non-negative sparse latent factors [18]. We set the rank r of the
decomposition equal to the maximum number of classes on the three modes of
the tensor. It also requires one parameter λi for each mode of the tensor: for the
choice of their values we follow the instructions suggested in the original paper.
All experiments are performed on a server equipped with 2 Intel Xeon E5-2643
quad-core CPU’s, 128 GB RAM, running Arch Linux (kernel release: 4.19.14)1.

5.1 Experiments on Synthetic Data

The synthetic data we use to assess the quality of the clustering performance
are boolean tensors with three modes, created as follows. We fix the dimensions
m1,m2,m3 of the tensor and the number of embedded clusters c1, c2, c3 on each

1 The source code of our algorithm and all data used in this paper are available at:
https://github.com/elenabattaglia/tensor cc.

https://github.com/elenabattaglia/tensor_cc
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Fig. 1. Mean NMI on the three modes varying the number of embedded clusters on
synthetic tensors with different sizes and levels of noise.

of the three modes. Then, we first construct a block tensor of dimensions m1 ×
m2 × m3 with c1 × c2 × c3 blocks. The blocks are created so that there are
“perfect” clusters in each mode, i.e., all rows on each mode belonging to the
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same cluster are identical, while rows in different clusters are different. Then we
add noise to the “perfect” tensor, by randomly selecting some element tk1k2k3 ,
with ki ∈ {1, . . . , mi}, for each i ∈ {1, 2, 3}, and changing its value (from 0 to
1 or vice versa). The amount of noise is controlled by a parameter ε ∈ [0, 1],
indicating the fraction of elements of the original tensor we change. We generate
tensors of different size (100×100×20, 1000×100×20, 1000×500×20), number
of clusters (different combinations of 2, 3, 5, 10) and values of noise (ε = 0.05
to 0.3 with a step of 0.05), for a total of 198 tensors2. On each tensor, we apply
the algorithm and its competitors five times and report the mean of the results
in Fig. 1.

NMI and ARI of the resulting clusters of τTCC remain stably over 0.9 in
almost all experiments and in the vast majority of cases the resulting clusters
exactly match the correct classes (we omit the results in terms of ARI here for the
sake of brevity, but they are similar to NMI ones). In particular, τTCC always
outperforms nnCP, nnTucker and SparseCP (the latter exhibits very low values
of ARI and NMI for asymmetric tensors); furthermore, the results achieved by
τTCC are similar to those of nnCP+kmeans and nnT+kmeans. Generally the
latter get “better” clusters in cases where the number of clusters is large. In
fact, in these cases it can happen that τTCC does not identifies the correct
number of clusters in all modes (we don’t have the same issue with k-means,
for which the correct number of clusters is given as input). To better investigate
this behavior, we compute the average NMI according to all level of noise and
for increasing number of embedded co-clusters (obtained as c1 · c2 · c3). The
results are shown in Fig. 2. In general, the noise and the number of embedded
co-clusters do not affect the quality of the results to a great extent, although we
observe a combined effect of a high number of co-cluster and level of noise. In
this case, identifying the embedded co-clusters is challenging, unless one knows
exactly their number, which, as explained beforehand, is rather unrealistic in
the vast majority of unsupervised application scenarios.

5.2 Experiments on Real-World Data

As last experiment, we apply our algorithm and its competitors to the “four-
area” DBLP dataset3. It is a bibliographic information network dataset extracted
from DBLP data, downloaded in the year 2008. The dataset includes all papers
published in twenty representative conferences of four research areas. Each ele-
ment of the data set corresponds to a paper and contains the following informa-
tion: authors, venue and terms in the title. The original dataset contains 14376
papers, 14475 authors and 13571 terms. Part of the authors (4057) are labelled
in four classes, roughly corresponding to the four research areas. We select only
these authors and their papers and perform some pre-processing step on the
terms (stemming, stop-words removal). We obtain a dataset with 14328 papers,
from which we create a (6044 × 4057 × 20)-dimensional tensor, highly sparse

2 Here we report only the results of two representative tensors and three noise level.
3 http://web.cs.ucla.edu/∼yzsun/data/DBLP four area.zip.

http://web.cs.ucla.edu/~yzsun/data/DBLP_four_area.zip
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Fig. 2. Average NMI on the three modes varying the overall number of embedded
co-clusters and the level of noise.

Table 1. Results of the co-clustering algorithms on “four-area” DBLP dataset. NMI,
ARI and number of clusters identified are computed for the authors mode.

Algorithm NMI ARI # clusters

τTCC 0.75 ± 0.01 0.80 ± 0.02 9

nnTucker 0.78 ± 0.00 0.84 ± 0.00 4

nnCP 0.74 ± 0.00 0.80 ± 0.00 4

SparseCP 0.00 ± 0.00 0.00 ± 0.00 1

nnCP+kmeans 0.24 ± 0.01 0.08 ± 0.00 4

nnT+kmeans 0.25 ± 0.01 0.06 ± 0.00 4

(99.98% of entries are equal to zero); the generic entry tijk of the tensor counts
the number of times term i was used by author j in conference k.

Table 1 shows that the best results are those of the non-negative Tucker
decomposition where the number of latent factors is set to 4 (the correct num-
ber of embedded clusters). Observe, however, that in standard unsupervised
settings, the number of “naturally” embedded clusters is unknown. Hence, by
fixing the number of latent factors equal to the real number of natural clusters
we are facilitating our competitors; if we modify the number of latent factors
(see Figure 3(a)), the results get worse: this means that, if we don’t specify the
correct number of clusters on the author mode but we set an upper bound, the
results of the Tucker based co-clustering algorithm become lower than those of
τTCC. Also nnCP shows a similar behavior, but with slightly worse results (see
Figure 3(b)). Note that τTCC achieves the second best performance, even if the
number of clusters identified is higher than the correct number of classes (9
instead of 4): indeed, 4042 objects are correctly divided into four large groups
and only 15 elements are assigned to 5 very small clusters, since they proba-
bly are candidate outliers. The ability of our algorithm to also identify outliers
automatically will be investigated as future work.
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Fig. 3. Variation of nnTucker/nnCP results w.r.t. the rank of the decomposition.

6 Conclusions

The majority of tensor co-clustering algorithms optimizes objective functions
that strongly depend on the number of co-clusters. This limits the correct appli-
cation of such algorithms in realistic unsupervised scenarios. To address this lim-
itation, we have introduced a new co-clustering algorithm specifically designed
for tensors that does not require the desired number of clusters as input. Our
experimental validation has shown that our approach is competitive with state-
of-the-art methods that, however, can not work properly without specifying a
correct number of clusters for each mode of the tensor. As future work, we will
further investigate the ability of our method to identify candidate outliers as
small clusters in the data.
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Abstract. In most real world scenarios, experts dispose of limited back-
ground knowledge that they can exploit for guiding the analysis process.
In this context, semi-supervised clustering can be employed to lever-
age such knowledge and enable the discovery of clusters that meet the
analysts’ expectations. To this end, we propose a semi-supervised deep
embedding clustering algorithm that exploits triplet constraints as back-
ground knowledge within the whole learning process. The latter consists
in a two-stage approach where, initially, a low-dimensional data embed-
ding is computed and, successively, cluster assignment is refined via the
introduction of an auxiliary target distribution. Our algorithm is evalu-
ated on real-world benchmarks in comparison with state-of-the-art unsu-
pervised and semi-supervised clustering methods. Experimental results
highlight the quality of the proposed framework as well as the added
value of the new learnt data representation.

1 Introduction

Clustering is by far one of the most popular machine learning task among com-
puter scientists, machine learning specialists and statisticians. Although it is
conceived to work in fully unsupervised scenarios, very often, its application in
real-world domains is supported by the availability of some, scarce, background
knowledge. Unfortunately, producing or extracting such background knowledge
(in terms of available class labels or constraints) is a time consuming and expen-
sive task. Hence, the amount of available background knowledge is not sufficient
for driving a supervised task. Still, it can be helpful in guiding a semi-supervised
learning process.

The aim of semi-supervised clustering is to take advantage of the few avail-
able side information to guide the clustering process towards a partitioning that
takes into account both the natural distribution of the data and the expecta-
tions of the domain experts. One of the most popular class of semi-supervised
clustering algorithms exploit the so-called pairwise constraints: the clustering
process is driven by a set of must-link (or similarity) and cannot-link (or dissim-
ilarity) pairs modeling the fact that two data examples involved in any of these
constraints should belong to the same cluster (must-link) or not (cannot-link).
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Such constraints are successively exploited to either learning a distance met-
ric [7,12,14] or forcing constraints during the clustering process [23], although
the most effective methods usually combine both strategies [3,4,19].

However, all these strategies suffer from the same two problems: (i) two exam-
ples involved in a cannot-link constraint may actually be assigned to the wrong
clusters and still satisfy the constraint; (ii) when constraints are generated from
the labeled portion of the training set (a common practice in semi-supervised
learning), and the class is rather loose (e.g., multiple clusters co-exist within the
same class), the must-link constraints would mislead the clustering algorithm
resulting in poor partitioning results. To address this issue, an alternative form
of supervision has been proposed: given three data examples xa, xp and xn,
one may impose that xa (called reference or anchor example) is closer to xp

(called positive example) than to xn (called negative example). Such relative
comparisons form the so-called triplet constraints [15].

In this paper, we propose Ts2DEC (Triplet Semi-Supervised Deep Embed-
ding Clustering). Ts2DEC is a deep embedding-based clustering framework that
leverages triplet constraints to inject supervision in the learning process. The
framework consists of a two-stage approach: (i) an autoencoder extracts a low-
dimensional representation (embedding) of the original data and (ii) an initial
cluster assignment is refined via the introduction of an auxiliary target distribu-
tion [25]. Both stages are guided by the knowledge supplied by triplet constraints.

By means of an extensive experimental study conducted on several real-
world datasets, we show that our approach outperforms state-of-the-art semi-
supervised clustering methods no matter how much supervision is considered.

2 Related Work

Early semi-supervised approaches used pairwise (e.g., must-link and cannot-link)
constraints to learn a metric space before applying standard clustering [14],
or to drive the clustering process directly [23]. In [23], a simple adaptation of
k-means that enforces must-link and cannot-link constraints during the clus-
tering process is described. [2] proposes a constrained clustering approach that
leverages labeled data during the initialization and clustering steps. Instead, [4]
integrates both constraint-based and metric-based approaches in a k-means-like
algorithm. Davis et al., propose an information-theoretic approach to learning a
Mahalanobis distance function [7]. They leverage a Bregman optimization algo-
rithm [1] to minimize the differential relative entropy between two multivariate
Gaussians under constraints on the distance function. This approach has been
recently extended by Nogueira et al., who combine distance metric learning and
cluster-level constraints [19]. Zhu et al. present a pairwise similarity framework to
perform an effective constraint diffusion handling noisy constraints as well [28].

In recent years, the advances in the deep learning field have also fos-
tered new research in semi-supervised clustering. For instance, in [11], the
author propose a semi-supervised clustering algorithm that directly exploits
labels, instead of pairwise constraints. Their algorithm generates an ensemble of
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multiresolution semi-supervised autoencoders. The final partitioning is obtained
by applying k-means on the new data representation obtained by stacking
together all the different low-dimensional embeddings. In a very recent work [21],
a semi-supervised extension to Deep Embedded Clustering (DEC [25]) is pro-
posed. DEC learns a low-dimensional representation via autoencoder and, suc-
cessively, it gradually refines clusters with an auxiliary target distribution derived
from the current softcluster assignment. Its semi-supervised extension [21], called
Semi-supervised Deep Embedded Clustering (SDEC) makes use of pairwise con-
straints in the cluster refinement stage. Therefore, the learned feature space is
such that examples involved in a must-link (resp. cannot-link) constraint are
forced to be close (resp. far away) from each other.

Our approach is also based on DEC, but, contrary to [21], it exploits triplet
constraints introducing the background knowledge at the different stages of the
process: during the embeddings generation and during the clustering refinement.
We remind that, the expressiveness of triplet constraints has already demon-
strated to be effective in the constrained clustering task [15].

3 Triplet Semi-supervised Deep Embedding Clustering

In this section, we introduce our semi-supervised clustering approach, called
Ts2DEC (Triplet semi-supervised Deep Embedding Clustering). The goal is
to group together a set of examples X = {xi}Ni=1 into C clusters given some
background knowledge in terms of constraints.

To this purpose, we model our problem using neural networks. In a nutshell,
given ML = {(xj , xl)} (resp. CL = {(xj , xl)}) the set of must-link (resp. cannot-
link) constraints, first we derive triplet constraints from these two sets. A triplet
constraint is defined as a tuple (xa, xp, xn) where xa is the anchor example
and xp (resp. xn) is the positive (resp. negative) example with the associated
semantic that xa and xp (resp. xa and xn) belong (resp. do not belong) to the
same cluster. Furthermore, due to transitivity, we also have that xp and xn do
not belong to the same cluster. Successively, due to the exponential number of
triplets we can generate, we adopt a simple and practical strategy to sample a
subset of such triplets. We remind that triplet selection is an hard task and some
research works are investigating how to smartly sample useful and informative
subsets of triplet constraints [26]. It is out of the scope of this work supplying
a method that competes with such strategies. On the other hand, we set up
an easy and ready to use approach that well fits our scenario. Once the set
of triplet constraints are chosen, we inject such background information into a
deep-learning based clustering algorithm [9,26,27].

More in detail, we integrate the semi-supervision during: (i) the data embed-
ding generation, by alternating unsupervised and semi-supervised optimization
of the network parameters and (ii) the clustering refinement stage when clus-
ter assignment hardening loss [18] is employed. Figure 1(a) and 1(b) provide a
general overview of the embedding generation and clustering refinement stage,
respectively. For each stage, we depict with the rose color and the dotted line
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Fig. 1. General Overview of Ts2DEC: (a) Embedding Generation and (b) Clustering
Refinement. We depict with the rose color and the dotted line the components related
to the semi-supervised optimization (working on triplet constraints) while we depict
with the blue color and the solid line the fully unsupervised components (working on
the whole set of data X).

the components related to the semi-supervised optimization (working on triplet
constraints) while we depict with the blue color and the solid line the fully unsu-
pervised components (working on the whole set of data X). In the following, we
provide the details of all the algorithmic steps of our approach.

Triplets Generation Strategy. The first preliminary step of Ts2DEC is the
generation of a set T of triplet constraints from the set ML and CL of must-link
and cannot-link constraints. To achieve this goal, first, we compute the transitive
closure from both sets [6], then, we leverage it to generate all possible triplet
constraints (xa, xp, xn). Generating triplets in such a way can produce a huge
number of constraints. Consequently, we limit the number of triplet constraints
by adopting the following strategy: for each pair (xa, xp), we randomly sample
a subset of possible examples that can play the role of negative examples (xn).
Here, we give more importance to background knowledge that groups together
similar examples (positive information) than information that forces examples
to be clustered apart (negative information). We adopt this strategy because,
during our experimental evaluations, we have empirically observed that positive
information seems more effective in stretching the representation manifold thus
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respecting the given background knowledge. In our experiments, we sample 30%
of all possible negative examples for each pair (xa, xp) in order to obtain a
reasonable trade off between performances and computational cost. The obtained
set of triplet constraints is denoted by T .

Embedding Generation with Background Knowledge. The core of
Ts2DEC involves a first stage in which semi-supervised embedding represen-
tations are generated by means of autoencoder neural networks. This stage is
depicted in Fig. 1(a). Autoencoders [16] are a particular kind of feed-forward
neural network commonly employed to generate low-dimensional representation
of the original data by setting up a reconstruction task. The autoencoder network
is composed by two parts: (i) an encoder network that transforms the original
data X into an embedding representation (EMB) and (ii) a decoder network
that reconstructs the original data from the embedding representation. Further-
more, the autoencoder network is layered and symmetric and the last layer of the
encoder part is generally referred as bottleneck layer. The commonly adopted
loss function optimized by an autoencoder network is the mean squared error
between the original data and the reconstructed one:

Lae =
1

|X|
∑

xi∈X

||xi − dec(enc(xi, Θ1), Θ2)||22 (1)

where enc(z,Θ1) is the encoder network with parameters Θ1, while dec(·, Θ2) is
the decoder network that reconstructs the data, with parameters Θ2.

For the encoder network, similarly to what proposed in [25], we adopt a feed-
forward neural network with four layers (resp. 500, 500, 2000, 10 neurons per
layer). The activation function associated to the first three (hidden) layers is
the Rectifier Linear Unit (ReLU) while, for the last (bottleneck) layer, a simple
linear activation function is employed [25]. The decoder is symmetrically derived
from the encoder reversing the hidden layers.

A semi-supervised autoencoder [8,20] (denoted as SSAE), instead, is a multi-
task network that, in addition to the reconstruction task via its autoencoder
structure, also deals with a discrimination task (mainly classification) leverag-
ing the embedded representation. Conversely to most previous works on semi-
supervised autoencoders [8,11,20] where the SSAE exploits labeled data to per-
form classification as supervised task, here, we design a SSAE that, associated
to the reconstruction task, exploits the set T of triplet constraints to generate
the low-dimensional data embeddings EMB.

The set T of triplets is used to learn a triplet network which consists of three
different encoders/decoders with shared weights (highlighted in rose color and
dotted line in Fig. 1(a)). In addition to the standard reconstruction loss, the
specific loss function (triplet loss) optimized by the model is defined as follows:

L
′
triplet =

∑

(xa,xp,xn)∈T

[d(xa, xp) − d(xa, xn) + α]+ (2)
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with
d(b, c) = ||normL2(enc(b,Θ1)) − normL2(enc(c,Θ1))||22 (3)

where T is the set of triplet constraints, [x]+ = max(0, x) is the hinge loss,
||x||22 is the squared L2 norm of x, enc(x,Θ1) is the encoder network, with
weights parameters Θ1, applied on an example x, normL2 is a function that
performs the L2 normalization of the output of the encoder and α is the margin
hyperparameter usually involved in distance-based loss function to stretch the
representation space [26]. We consider α equal to 1.0 since distances are derived
by L2 normalization.

Additionally, we can observe that, due to the transitivity relation among the
examples in the triplet tuple, we can also define a second triplet loss function:

L
′′
triplet =

∑

(xa,xp,xn)∈T

[d(xa, xp) − d(xp, xn) + α]+ (4)

where the second term of the hinge loss, this time, consider the relationship
between the xp and xn examples. In the rest of the paper, L

′
triplet and L

′′
triplet

are exploited to introduce semi-supervision in the clustering process and we
use the notation Ltriplet to indicate the sum of the two triplet loss functions:
Ltriplet = (L

′
triplet + L

′′
triplet).

The overall architecture of our semi-supervised autoencoder involves the opti-
mization of Ltriplet loss as well as the simultaneous reconstruction of the exam-
ples concerned by the constraints. Given T , the set of triplet constraints, the
loss function optimized by the SSAE is as follows:

Lssae =
1

|T |

([
∑

t∈T

∑

xi∈t

||xi − dec(enc(xi, Θ1), Θ2)||22
]

+ λLtriplet

)
(5)

where t = (xa, xp, xn) is a generic triplet, λ is a hyperparameter that controls the
importance of the triplet loss term. Such loss function optimizes the parameters
Θ1 and Θ2 so as to optimize the data reconstruction as well as to meet the
constraint relationships expressed by the background knowledge. In Lssae, the
reconstruction term is considered with the aim of regularizing the action of
the Ltriplet loss. Therefore, we obtain embeddings that meet the requirements
expressed by the constraints as well as with the main reconstruction task.

We underline that, in our context, the embedding generation process involves
two different stages: the first one implies the optimization of the autoencoder loss
on the full set of data X while, the second one regards the optimization of the
semi-supervised autoencoder loss considering only the set of examples Xt (Xt =
{xi ∈ t|t ∈ T}) covered by the triplet constraint set. Algorithm 1 reports the joint
optimization procedure we employ to learn the weight parameters Θ1, Θ2. In a
generic epoch, the procedure optimizes: (i) the unsupervised loss associated to
data reconstruction on the set of data X (line 3–4) and, (ii) both reconstruction
and triplet losses (Lssae) considering the set of data involved in the set T (line 5–
6). The learning of parameters is achieved via a gradient descent based approach
using mini-batches. Finally, the data embeddings are generated considering the
Θ1 parameters associated to the encoder network enc(·, Θ1).
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Algorithm 1. Semi-supervised autoencoder optimization
Require: X, T , N EPOCHS
Ensure: Θ1, Θ2.
1: i = 0
2: while i < N EPOCHS do
3: Update Θ1 and Θ2 by descending the gradient:
4: ∇Θ1,Θ2

1
|X|

∑
xi∈X ||xi − dec(enc(xi, Θ1), Θ2)||22

5: Update Θ1, Θ2 by descending the gradient:

6: ∇Θ1,Θ2
1

|T |

([∑
t∈T

∑
xi∈t ||xi − dec(enc(xi, Θ1), Θ2)||22

]
+ λLtriplet(T )

)

7: i = i + 1
8: end while
9: return Θ1, Θ2

Clustering Refinement with Background Knowledge. Once the embed-
ding representation produced by the SSAE is obtained, the final stage consists in
a clustering refinement step via cluster assignment hardening [18,25] as depicted
in Fig. 1(b). Here, we iterate between computing an auxiliary target distribution
and minimizing the Kullback-Leibler (KL) divergence with respect to it. More
in detail, as depicted in Fig. 1(b), we discard the decoder part of the previous
model (Θ2 parameters) but we still allow modifications of encoder parameters
Θ1. Given the initial cluster centroids {cj}|C|

j=1, the cluster assignment hardening
technique tries to improve the partitioning using an unsupervised algorithm that
alternates between two steps: (i) compute a soft assignment between the embed-
dings and the cluster centroids and (ii) update the embedded data representation
and refine the cluster centroids by learning from current high confidence assign-
ments leveraging an auxiliary target distribution. The process is repeated until
convergence is achieved or a certain number of iterations is executed. To gen-
erate the clustering centroids we use K-Means on the embeddings produced by
the encoder network.

To compute the soft assignment, as commonly done in deep embedding clus-
tering approaches, we exploit the Student’s t-distribution as a kernel to measure
the similarity [17]:

qij =
(1 + ||EMBi − cj ||2)−1

∑|C|
l=1(1 + ||EMBi − cl||2)−1

(6)

where EMBi is the embedded representation of the i− th example obtained via
enc(xi, Θ1), cj (resp. cl) is the cluster centroid of the j − th (resp. l− th) cluster,
and qij is the soft assignment between example xi and cluster cj .

Once the soft assignments are computed, they are iteratively refined by learn-
ing from their high-confidence assignments with the help of an auxiliary target
distribution. The target distribution is defined as:

pij =
q2ij/

∑
i qij

∑
l(q

2
il/

∑
i qij)

(7)

Such distribution forces the assignment to have stricter probabilities (closer to
0 or 1) by squaring the original distribution and then normalizing it [18].
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To match the soft-assignment q with the auxiliary target distribution p,
we employ the Kullback-Leibler (KL) divergence as loss function to evaluate
the distance between the two probability distributions. The KL divergence is
computed between the soft assignment qi and the auxiliary distribution pi:
KL(P ||Q) =

∑
i pi · log pi

qi
.

Furthermore, we integrate the semi-supervision supplied by the background
knowledge in this step as well, by adding the information carried out by the
triplet constraints to the overall loss function:

Lsscr = KL(P ||Q) + λLtriplet (8)

The resulting loss function considers the auxiliary target distribution together
with the triplet constraints when upgrading the parameters of the encoder (Θ1).
Hence, this last step has also an influence on the way embeddings are computed.
As before, λ is an hyperparameter controlling the importance of the triplet loss
term and it is the same in the two steps of our framework. To optimize such
semi-supervised loss Lsscr we adopt a similar strategy to what proposed in Algo-
rithm 1. Finally, once convergence is reached, each example is assigned to the
cluster that maximizes its assignment score: cluster(xi) = argmaxjqij .

4 Experiments

In this section, we assess the effectiveness of Ts2DEC on several real world
datasets comparing its behavior w.r.t. competitors. Then, we consider the impact
of the different components of Ts2DEC by means of an ablation study. Finally,
we provide a visual inspection of the representation learnt by our strategy.

Competitors. For the quantitative evaluation, we compare the performances
of Ts2DEC with those obtained by different unsupervised and semi-supervised
competing algorithms. The former are employed as baselines to understand the
gain related to the introduction of weak supervision; the latter consist of fair
state-of-the-art competitors that are more closely related to the task at hand.
As regards the unsupervised approaches, we consider K-Means and DEC [25],
a recent deep learning unsupervised clustering approach (the unsupervised clus-
tering algorithm Ts2DEC is built upon).

As semi-supervised clustering algorithms, we consider the following competi-
tors: a semi-supervised variant of K-Means, named MPCKmeans [4]; a recent
constrained spectral clustering method [5], called Spectral; two very recent deep
learning based methods named MSAEClust [11] and SDEC [21]. MPCKmeans
combines metric-learning and pairwise constraint processing to exploit the sup-
plied supervision as much as possible. Spectral captures constrained clustering as
a generalized eigenvalue problem via graph Laplacians. [11] employs an ensemble
of semi-supervised autoencoders to learn embedding representations that fit the
data as well as the background knowledge and that are finally used to perform
clustering. Finally, SDEC is a direct extension of DEC that integrates the pair-
wise constraints in the clustering refinement stage, by adding an extra term to
the cluster assignment hardening loss.
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(a) USPS (b) Reuters10K

(c) fMNIST (d) Optdigits

Fig. 2. Results (in terms of NMI) of the different approaches varying the amount of
labeled samples per class on: (a) USPS, (b) Reuters10K, (c) fMNIST and (d) Optdigits
benchmarks.

Experimental Settings and Datasets. To measure the clustering perfor-
mances of all the methods, we use the Normalized Mutual Information (NMI) [22]
as well the Adjusted Rand Index (ARI) [10]. Both NMI and ARI take their
maximum value when the clustering partition completely matches the original
one, i.e., the partition induced by the available class labels. The NMI measure
ranges between [0, 1] while the ARI index ranges between [−1, 1]. Both evalu-
ation metrics can be considered as an indicator of the purity of the clustering
result. For each dataset, both measures are computed considering the whole
set of examples, including the ones on which the constraints are defined. We
analyze the behavior of the different methods according to increasing levels of
supervision. More in detail, we simulate the supervision in term of constraints,
by selecting a number of labeled examples per class and, successively, induc-
ing the corresponding full set of constraints. We vary such amount of labeled
examples per class between 5 and 25 with a step of 5. Due to the randomness
of the sample selection process and the non deterministic nature of the cluster-
ing algorithms, we repeat the sample selection step 5 times for each number of
per-class labels and, successively, we repeat the clustering process 10 times. For
Ts2DEC we derive the corresponding triplet constraints as explained in Sect. 3.
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Finally, for each level of supervision, we report the average values of NMI and
ARI. For all the methods, the number of clusters is equal to the number of
classes.

Ts2DEC is implemented via the Tensorflow python library and the imple-
mentation is available online1. Model parameters are learnt using the Adam
optimizer [13] with a learning rate equal to 1×10−3 for the autoencoder (recon-
struction and triplet loss functions) and we use Stochastic Gradient Descent with
learning rate equal to 1×10−2 for the Clustering Refinement stage (KL loss func-
tion) as done in DEC [25] and SDEC [21]. We set the value of λ equal to 1×10−3,
a batch size of 256 and a number of epochs equal to 50 for the semi-supervised
autoencoder. For the refinement clustering stage, we iterate the procedure for
20 000 batch iterations as done in DEC [25] and SDEC [21]. For all the competi-
tors, we use publicly available implementations. For SDEC, the source code was
kindly provided by the authors of the related paper. Experiments are carried
out on a workstation equipped with an Intel(R) Xeon(R) W-2133, 3.6Ghz CPU,
with 64Gb of RAM and one GTX1080 Ti GPU. To evaluate the behavior of
all the competing approaches the experiments are performed on four publicly
available datasets: (1) USPS is a handwritten digit recognition benchmark (10
classes) containing 9 298 grayscale images with size 16 × 16 pixels and provided
by the United States Postal Service. (2) fMNIST is a dataset of Zalando’s article
images (shirt, sneakers, bags, etc.) consisting of 70 000 examples. Each example
is a 28 × 28 grayscale image, associated with a label from 10 classes. It serves as
a more complex drop-in replacement for the original MNIST benchmark [24]. (3)
Reuters10k is an archive of English news stories labeled with a category tree that
contains 810 000 textual documents. Following [25], we used 4 root categories:
corporate/industrial, government/social, markets and economics as labels and
excluded all documents with multiple labels. We randomly sampled a subset
of 10 000 examples and computed TF-IDF features on the 2 000 most frequent
words. (4) Optdigits is a dataset of the UCI repository involving optical recog-
nition of handwritten digits. It contains 5 620 examples described by 64 feature
each.

Quantitative Evaluation. Figures 2 and 3 report the performances of the
different approaches on the four benchmarks in terms of NMI and ARI, respec-
tively. Notice that Spectral was not able to process the fMNIST benchmark due
to the fact that the original implementation cannot handle a dataset with 70 000
examples. We observe that both NMI and ARI depict a similar situation. At first
look, we note that Ts2DEC outperforms all the competing approaches regarding
any amount of supervision for all the four benchmarks. In addition, the graphs
generally show that the margin gained by Ts2DEC increases with the amount
of available supervision. This behavior is particularly evident in USPS, fMNIST
and Reuters10k. Considering Optdigits, we observe an improvement between the
supervision value 5 and 10 while, later on, Ts2DEC remains stable according
to NMI and it slightly increases according to ARI. This is not the case for all
1 https://gitlab.irstea.fr/dino.ienco/ts2dec.

https://gitlab.irstea.fr/dino.ienco/ts2dec


230 D. Ienco and R. G. Pensa

(a) USPS (b) Reuters10K

(c) fMNIST (d) Optdigits

Fig. 3. Results (in terms of ARI) of the different approaches varying the amount of
labeled samples per class on: (a) USPS, (b) Reuters10K, (c) fMNIST and (d) Optdigits
benchmarks.

the other semi-supervised competitors. For instance, considering the fMNIST
benchmark, we note that all competitors remain almost stable while varying
the amount of supervision, underlying the fact that they are unable to exploit
increasing amount of background knowledge properly. Unexpectedly, we observe
that one of the best competitor is DEC, which is completely unsupervised. More
surprisingly, SDEC performs similarly to its unsupervised counterpart.

Ablation and Parameter Analysis. In this section, we study the
impact of the different components of Ts2DEC that involve supervision,
as well as the sensitivity of our method to hyperparameter λ. To do
this, we fix the amount of supervision by considering 10 labeled exam-
ples from each class. For the first study, we derive two variants of our
method: (i) Ts2DECv1 which considers background knowledge only to
generate embeddings via semi-supervised autoencoder, and (ii) Ts2DECv2

which considers background knowledge only during the clustering refinement
stage. Table 1 reports the results of this study in terms of NMI. We note
that the best performances are obtained when semi-supervision is injected
at both stages of our process. Furthermore, we observe that Ts2DECv1



Deep Triplet-Driven Semi-supervised Embedding Clustering 231

Table 1. Impact of the different components of Ts2DEC considering the NMI measure.

Dataset Ts2DEC Ts2DECv1 Ts2DECv2

USPS 0.86 ± 0.02 0.86 ± 0.02 0.82 ± 0.03

fMNIST 0.65 ± 0.01 0.64 ± 0.01 0.64 ± 0.02

Reuters10k 0.64 ± 0.03 0.64 ± 0.03 0.61 ± 0.03

Optdigits 0.92 ± 0.01 0.91 ± 0.01 0.91 ± 0.02

(a) NMI (b) ARI

Fig. 4. Sensitivity analysis of the λ hyperparameter: NMI (a) and ARI (b) are reported
for increasing weight of semisupervision.

consistently achieves slightly better results than Ts2DECv2 in terms of NMI.
The results of the sensitivity analysis are given in Fig. 4. In details, we let the
hyperparameter λ varies in the range {10−4, 10−3, 10−2, 10−1, 100}. At first look,
USPS, fMNIST and Optdigits exhibit a similar behavior. When λ is too small
(10−4), supervision is not that effective while, starting from λ equal to 10−3, we
observe that Ts2DEC achieves stable performances and becomes insensitive to
such parameter. On the other hand, for the Reuters10k dataset, we note that
the performances slightly decrease when λ increases. At a deeper inspection, we
observe that raising the value of λ results in an increase of the standard deviation
associated to the average value plotted in Fig. 4. We remind that this bench-
mark is characterized by a high-dimensional feature space (2 000 features) and,
the encoder/decoder architecture (inherited from the DEC method) is unable to
compress the original data properly and, simultaneously, incorporate the super-
vision. This may explain the increasing instability and reduced performances
when augmenting the importance of the semi-supervision.

Visual Inspection. Here, we visually analyze the embedding generated by our
approach on the Optdigits benchmark. To this end, we visually compare the
embeddings derived by Ts2DEC with the embeddings generated by the other
deep learning competitors considering an amount of labeled examples per class
equal to 10 (i), and by increasing the amount of background knowledge from
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(a) DEC (b) SDEC

(c) MSAECLUST (d) Ts2DEC

Fig. 5. Visual inspection of different embeddings processed by TSNE.

(a) USPS (5 labels per class) (b) USPS (10 labels per class)

(c) USPS (15 labels per class) (d) USPS (20 labels per class)

Fig. 6. Visual inspection of the embedding generated by Ts2DEC (and processed by
TSNE) for increasing amounts of background knowledge.
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5 to 20 labels per class (ii). To obtain the two dimensional representations, we
apply the t-distributed stochastic neighbor embedding (TSNE) approach [17].
For this evaluation we consider 300 instances per class. In the former evaluation
(Fig. 5), we clearly note that the visual representation induced by Ts2DEC
provides a better separation among examples belonging to different classes and,
simultaneously, locates examples belonging to the same class close to each other.
The latter experiment (Fig. 5) shows the ability of Ts2DEC to modify the data
manifold exploiting the increasing amount of background knowledge. We observe
that clear differences exist between the embeddings learnt when 5 (Fig. 6(a))
and 15 labeled examples (Fig. 6(c)) per class are considered, the latter providing
significant better class separation than the former.

5 Conclusion

We have presented Ts2DEC, a new semi-supervised deep embedding cluster-
ing technique that integrates background knowledge as triplet constraints. More
precisely, Ts2DEC integrates the background knowledge at two stages: (i) dur-
ing the data embedding generation and (ii) during the clustering refinement.
Extensive evaluations on real-world benchmarks have shown that Ts2DEC
outperforms state-of-the-art competitors w.r.t different amount of background
knowledge.
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Abstract. In this paper, we report on the ontology for the representa-
tion of brain diseases data - NDDO. The proposed ontology facilitates
semantic annotation of datasets containing neurodegenerative diagnos-
tic data (i.e. clinical, imaging, biomarker, etc.) and disease progression
data collected on patients by the hospitals. Rich semantic annotation of
datasets is essential for efficient support of data mining, for example for
the identification of suitable algorithms for data analytics, text mining,
and reasoning over distributed data and knowledge sources. To address
the data analytics perspective, we reused and extended our previous
work on ontology of data types (OntoDT) and ontology of core data
mining entities (OntoDM-core) to represent specific domain datatypes
that occur in the domain datasets. We demonstrate the utility of NDDO
on two use cases: semantic annotation of datasets, and incorporating
information about clinical procedures used to produce neurodegenera-
tive data.

Keywords: Neurodegenerative diseases datasets · Ontology

1 Introduction

Data mining (DM) of medical data is one of the most important interdisciplinary
research areas pertinent to healthcare. It is a complex task that requires expertise
in DM and machine learning (ML), data ethics and relevant medical domains.
Such an expertise is not easily available. One way of dealing with the shortage
of the necessary expertise is to decrease the machine learning knowledge bar-
rier by providing more intelligent ML and DM tools. For example, an intelligent

the Alzheimer’s Disease Neuroimaging Initiative—Data used in preparation of this
article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed
to the design and implementation of ADNI and/or provided data but did not partic-
ipate in analysis or writing of this report. A complete listing of ADNI investigators
can be found at: http://adni.loni.usc.edu/wp-content/uploads/how to apply/ADNI
Acknowledgement List.pdf.

c© Springer Nature Switzerland AG 2019
P. Kralj Novak et al. (Eds.): DS 2019, LNAI 11828, pp. 235–245, 2019.
https://doi.org/10.1007/978-3-030-33778-0_19
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DM system should have the capability of automatically identifying for a given
analysis task the most suitable DM and ML methods and available data, and
invoking a pre-defined workflow or pipeline for constructing high-fidelity mod-
els. Then, domain practitioners, who are usually non-machine learning experts,
will be able to construct accurate models for their tasks with minimal efforts
and in accordance with the best practices. Having formal logical descriptions of
datasets, and DM and ML tasks are essential for enabling such a system [9,10].

Formal knowledge representations define logical links between different
domains, enabling data and knowledge interoperability. Here, we are focusing on
the integration of the areas of data mining and brain diseases, more specifically
neurodegenerative diseases. Neurodegenerative disease is a term that includes a
range of conditions which primarily affect the neurons in the human brain. When
neurons become damaged or die they cannot be replaced by the body. Neurode-
generative diseases are incurable conditions that result in progressive degenera-
tion and consequently death of nerve cells. This leads to problems with move-
ment, or mental functioning. Examples of neurodegenerative diseases include
Parkinson’s, Alzheimer’s, and Huntington’s diseases.

The results reported in this paper are inspired by the needs of the Human
Brain Project (HBP)1. Recently HBP has identified a need to “develop a broad
set of ontologies, covering wide range of brain diseases and types of data”2. Such
ontologies should take into account the structure of the available hospital data
and existing, well accepted ontologies.

In this paper, we report on the development of a specific ontology for neu-
rodegenerative brain diseases named NDDO (Neurodegenerative Disease Data).
NDDO is fully interoperable with Ontology of Core Data Mining Entities
(OntoDM-core) [9], and many other relevant domain-specific knowledge rep-
resentations (e.g., [6,11]). It supports a framework for reasoning over data on
patients with neurodegenerative diseases and can assist in DM tasks. NDDO is
consistent with the structure of available hospital data and with two well-known
studies concerning neurodegenerative diseases: Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI) and Parkinson’s Progression Markers Initiative (PPMI).

2 NDDO: Neurodegenerative Disease Data Ontology

We designed the Neurodegenerative Disease Data Ontology (NDDO) in accor-
dance with best practices in ontology engineering to provide a generic, compliant
with existing standards, and easily extendable framework for the representation
of brain diseases data. More specifically, we adhered to the OBO Foundry prin-
ciples [12] to ensure interoperability with existing standards for brain diseases.

NDDO was developed to provide a comprehensive semantic model for describ-
ing patient data pertinent to two neurodegenerative diseases: Alzheimer’s and
Parkinson’s Disease. The current NDDO model can be used as a template for the
1 URL: https://www.humanbrainproject.eu/.
2 See the HBP Call for Expression of Interest on comprehensive ontologies for brain

diseases at https://www.humanbrainproject.eu/en/collaborate/open-calls/.

https://www.humanbrainproject.eu/
https://www.humanbrainproject.eu/en/collaborate/open-calls/
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representation of other brain diseases. For modeling the core entities and pro-
cesses in the ontology, we used descriptions of procedures from two documented
medical initiatives as a guideline, i.e., the Alzheimer’s Disease Neuroimaging
Initiative3 [1–3], and Parkinson’s Progression Markers Initiative4 [13,14].

The ontology version, reported in this paper, has 1731 classes, 638 of which
are imported from external ontologies. NDDO has 100 object, 75 annotation,
and 11 data properties. The level of expressivity is SROIQ(D). It is developed
in the OWL2 ontology language, using the Protégé5 environment. The ontology
project and all of its resources are publicly available and regularly updated via a
Git repository6 as well as on BioPortal7 [15], with a permanent URL at http://
www.purl.org/nddo. It is published under the CC-BY 4.0. license.

NDDO’s main focus is on formal representation of data collected in neurode-
generative studies. This includes representation of entities such as the study par-
ticipants, their visits of physicians, different assessments conducted during that
visits and their results, and the diagnosis. Figure 1 shows the structure of NDDO
with the four core entities: study participant, visit, health care process assay, and
diagnosis. Depending on the study, a study participant can be a person that is
directly examined during an assessment, i.e. a study subject, or a person close
to the study subject, i.e., study partner, that gives a report for the impact of
their behaviour on the people around them (see Fig. 1a). The latter participates
only in the ADNI study, since the study subjects can sometimes be unaware of
what impact their behaviour has on people around them. The study participant
is a part of a larger group, i.e., cohort. For the ADNI study the cohorts are
determined solely from the subject’s diagnosis, while in the PPMI study they
are determined based on additional criteria, such as, genetic mutations, sleeping
disorders and the Parkinson’s disease history in the subject’s family.

Each study participant participates in several visits (see Fig. 1b). The class
visit is one of the central classes in the ontology, since it links the participants
with the assessments. It is defined by the visit specification and occurs at a site
which has a special site ID. Each visit consists of several health care process
assays. The result of the visit is a diagnosis which is formed based on the scores
from the health care process assays. The class health care process assay has three
subclasses: clinical assessment, biomarker assessment, and imaging assessment
(see Fig. 1c). Since there are two types of study participants, we differ between
clinical assessments of study subject, study partner, or clinical assessment for
both. The last two are conducted only in the ADNI study. Each of the assess-
ments have their own output described by a score. Furthermore, the score of
each assessment is connected with its corresponding datatype. This is done by
reusing and extending classes from the OntoDT ontology.

3 ADNI webpage: http://adni.loni.usc.edu/.
4 PPMI webpage: http://www.ppmi-info.org/.
5 URL: Protégé web page: http://protege.stanford.edu.
6 NDDO Git URL: http://source.ijs.si/ppanov/nddo/tree/master/Development.
7 NDDO at BioPortal: https://bioportal.bioontology.org/ontologies/NDDO.

http://www.purl.org/nddo
http://www.purl.org/nddo
http://adni.loni.usc.edu/
http://www.ppmi-info.org/
http://protege.stanford.edu
http://source.ijs.si/ppanov/nddo/tree/master/Development
https://bioportal.bioontology.org/ontologies/NDDO
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Fig. 1. NDDO core entities: (a) study participant; (b) visit; (c) health care process
assay. The blue rectangles are continuant classes, while green rectangles are process
classes. (Color figure online)

3 Use Cases

NDDO is specifically designed to be easily extendable to support different use
cases. Adherence to the OBO Foundry design principles and NDDO’s modular
architecture enables seamless integration with other ontologies when extended
representations are necessary for new use cases and DM workflows. For exam-
ple, an Ontology for Clinical Laboratory Standard Operating Procedures (OCL-
SOP) [7] can be seamlessly integrated with NDDO to capture information about
clinical procedures pertinent to ADNI and PPMI domains. Such full integration
is possible because both representations were designed following the same prin-
ciples. In the same way, we can integrate NDDO with the ontology of datatypes
(OntoDT) [10] and provide semantic annotation of datasets originating from
neurodegenerative studies (such as ADNI and PPMI) as well as with ontology
of data mining (OntoDM) [9] to provide means of constructing (semi)automatic
analysis workflows. In this paper, we briefly describe two example use cases.

3.1 Use Case: Semantic Annotation of Datasets

In this use case, we show how the NDDO ontology can be used for semantic anno-
tation of datasets containing data on patients with neurodegenerative diseases.
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We integrated NDDO with the OntoDT ontology of datatypes and OntoDM
ontology of data mining to semantically annotate neurodegenerative datasets.
Rich semantic annotation of datasets enables semantic search of datasets suitable
for a particular DM task. It also enables intelligent data mining tools to suggest
adequate for the dataset at hand analysis methods. The considered datasets were
previously used in data analysis tasks: clustering task [5] and predictive model-
ing task [8]. Datasets contain data on patients with neurodegenerative diseases
(Alzheimer’s and Parkinson’s diseases) from two initiatives (ADNI and PPMI).

We reused classes from OntoDM-core and OntoDT for the annotation of the
dataset features, e.g. data types. From OntoDM-core, we reused the class that
contains the specification of a dataset (OntoDM-core: dataset specification) and
the class for the representation of data mining tasks (OntoDM-core: data min-
ing task). Both classes are linked with OntoDT: datatype class via has-part
relation (see Fig. 2a). We generated the semantic annotations using the Apache
Jena library8. This was done in semi-automatic fashion, since we need to man-
ually map the dataset features to the adequate classes defined in NDDO. The
annotations are expressed as RDF facts. Ontology-based annotation of datasets
enables reasoners to infer new knowledge based on the asserted facts.

Example of ADNI Dataset Used for Clustering. The annotation schema
that we propose for the semantic annotation of datasets is governed by the
data mining task at hand. For example in clustering, the task of grouping a set
of objects in such a way that objects in the same group (or cluster) are more
similar to each other than to those in other groups (clusters). On the other hand,
predictive modeling involves prediction of a single property or a set of properties
of a given object from (feature-based) descriptions of the object.

Gamberger et al. [5] performed cluster analysis on an instance of the
ADNI dataset intending to generate homogeneous clusters of male and female
Alzheimer’s disease patients. The dataset they used contains information about
317 female and 342 male patients and has 243 clinical and biological descriptors.

In Fig. 2b, we show the specific classes and relations required for the anno-
tation of datasets used in cluster analysis. First, we reused the OntoDM-core:
feature-based unlabeled dataset class, which is a subclass of the more general
OntoDM-core: dataset specification class. For the representation of the cluster-
ing task, we reused OntoDM-core: batch clustering task. The two classes are con-
nected with the corresponding datatype class OntoDT: feature-based unlabeled
data. This class contains one field component (OntoDT: descriptive record of
primitives field component). The class describes the datatypes of the descriptive
features, which in this case can only be of primitive datatype.

Example of PPMI Dataset for Predictive Modeling. Mileski et al. [8] used
datasets from the PPMI database to predict the motor impairment assessment
scores by utilising the scores of regions of interest (ROIs) from the fMRI imaging
assessment and the DaT scans. The data mining task they were solving was
multi-target regression (MTR).

8 https://jena.apache.org/.

https://jena.apache.org/
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Fig. 2. Semantic annotation schema for the ADNI dataset [5]: (a) top level classes;
(b) specific classes and relations used in cluster analysis; (c) specific NDDO datatype
classes and (d) example annotations of two descriptive features.

In order to semantically annotate the PPMI dataset used in the study, we
followed the same principles as in the ADNI study (see Fig. 3). The difference
is mainly in the representation of the datatype information due to the differ-
ent structure of the dataset in the MTR learning scenario. Namely, opposed to
having just descriptive features, which was the case in the previous example, in
MTR we predict multiple numeric values simultaneously.

From OntoDM-core, we reused the classes representing the MTR task and
MTR dataset specification and connected them with the relevant datatype class
from OntoDT (OntoDT: feature-based completely labeled data with record of
numeric ordered primitive output). This class has two field components. The first
one describes the datatypes of the descriptive features, which are of primitive
datatype. The latter describes the datatypes of the features on the target side.
In the MTR learning setting each target feature is described with the numeric
datatype. The instantiation of the ontology classes was done in the same way as
in ADNI use case (see Fig. 3d).

Semantic annotations of datasets used for ML not only guide the selection
of adequate algorithms, but also promote explicitness of such selections, greater
clarity and reusability.
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Fig. 3. Semantic annotation schema for the PPMI dataset used in [8]: (a) top level
classes (b) specific classes and relations for annotation of datasets used in the MTR
task; (c) NDDO datatype classes and (d) example annotations of two descriptive fea-
tures.

3.2 Use Case: Clinical Laboratory Procedures

Clinical laboratory procedures are essential for ADNI and PPMI domains. Such
procedures are usually captured in a form of manuals expressed in natural lan-
guage (e.g. [1–3,13,14]). Unfortunately, such representations suffer from inherit
ambiguities of human languages. This may lead to different interpretations by
different agents, and consequently - to different implementations and outcomes.
Moreover, it complicates their computational processing and analysis, e.g. it is
difficult to compare procedures expressed in natural language, to identify gaps,
and to check them for logical consistency and completeness.

In our previous work, we have developed a translation engine for translat-
ing and disambiguating laboratory protocols from natural language to a stan-
dardized machine processable format [4]. The translation engine parses natural
language laboratory protocols using the terminology in OCL-SOP (an Ontology
for Clinical Laboratory Standard Operating Procedures). OCL-SOP formally
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Fig. 4. Procedure overview: Human Hemoglobin Elisa Kit.

represents key entities relevant to clinical laboratory procedures [7]. The trans-
lation engine identifies key entities from a given protocol and matches them to
relevant terms in OCL-SOP, to a provided list of chemical entities and to a
list of equipment, and then generates a protocol in a machine processable form.
Laboratory protocols in the OCL-SOP form are suitable for processing by soft-
ware and robotic agents. They are also more accurate, explicit and easier to
understand. We developed a dedicated mobile application for displaying such
processed protocols in a user friendly format to the laboratory practitioners.

In order to adequately represent ADNI and PPMI procedures described in the
respective study procedure manuals, we integrated OCL-SOP with NDDO. We
imported from NDDO such terms as data item, clinical finding, and laboratory
finding. We linked the imported class laboratory finding with the OCL-SOP data
action branch using the has-specified-output object property.

Since the alignment of OCL-SOP with NDDO, now ADNI and PPMI pro-
cedures can be annotated with OCL-SOP terms, standardized, disambiguated
and displayed in a user-friendly application. As an example, using our trans-
lation engine we processed the protocol for testing the presence and levels of
hemoglobin in cerebrospinal fluid (CSF). The PPMI analysis of hemoglobin in
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Fig. 5. Output of the translation engine (a segment).

CSF samples procedure calls for the use of an ELISA assay obtained from Bethyl
Laboratories9. Figure 4 shows a segment of the Human Hemoglobin Elisa Kit
protocol in natural language. The output protocol in a machine readable format
is shown in Fig. 5. Explicit linking of datasets and procedures used to produce
those datasets is important for data and knowledge integration and processing.

4 Conclusions and Future Work

We developed NDDO, an ontology for the representation of data on patients with
neurodegenerative data, required for the hospital data integration and reason-
ing. NDDO was specifically designed to be easily extendable to support various
applications. Depending on the application, a suitable representation can be
‘plugged-in’ to NDDO.

In this paper, we have demonstrated the utility of NDDO on two use cases.
The first use case demonstrates the interoperability of NDDO with OntoDM and
OntoDT to provide semantically rich annotations for neurodegenerative datasets
and advise on data mining tasks. The second use case shows the integration of
NDDO with OCL-SOP for the representation and processing of clinical proce-
dures. This enables a linkage of neurodegenerative datasets with procedures that
were used to obtain them. Having rich semantic representations of neurodegen-
erative data will enable more efficient data mining and knowledge discovery. For
example, information about the procedures should be used for the integration
of datasets to ensure that all the analysed data were collected following similar
procedures. Otherwise, data mining results can be meaningless.
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Abstract. Dimensionality reduction techniques, such as t-SNE, can
construct informative visualizations of high-dimensional data. When
working with multiple data sets, a straightforward application of these
methods often fails; instead of revealing underlying classes, the resulting
visualizations expose data set-specific clusters. To circumvent these batch
effects, we propose an embedding procedure that uses a t-SNE visual-
ization constructed on a reference data set as a scaffold for embedding
new data points. Each data instance in the secondary data is embed-
ded independently, and does not change the reference embedding. This
prevents any interactions between instances in the secondary data and
implicitly mitigates batch effects. We demonstrate the utility of this app-
roach by analyzing six recently published single-cell gene expression data
sets with up to tens of thousands of cells and thousands of genes. The
batch effects in our studies are particularly strong as the data comes
from different institutions and was obtained using different experimental
protocols. The visualizations constructed by our proposed approach are
cleared of batch effects, and the cells from secondary data sets correctly
co-cluster with cells of the same type from the primary data.

Keywords: Batch effects · Embedding · t-SNE · Visualization ·
Single-cell transcriptomics · Data integration · Domain adaptation

1 Introduction

Two-dimensional embeddings and their visualizations may assist in the analy-
sis and interpretation of high-dimensional data. Intuitively, two data instances
should be co-located in the resulting visualization if their multi-dimensional
profiles are similar. For this task, non-linear embedding techniques such as
t-distributed stochastic neighbor embedding (t-SNE) [1] or uniform manifold
approximation and projection [2] have recently complemented traditional data
transformation and embedding approaches such as principal component analysis
(PCA) and multi-dimensional scaling [3,4]. While useful for visualizing data from
a single coherent source, these methods may encounter problems with multiple
c© Springer Nature Switzerland AG 2019
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data sources. Here, when performing dimensionality reduction on a merged data
set, the resulting visualizations would typically reveal source-specific clusters
instead of grouping data instances of the same class, regardless of data sources.
This source-specific confounding is often referred to as domain shift [5], covariate
shift [6] or data set shift [7]. In bioinformatics, the domain-specific differences
are more commonly referred to as batch effects [8–10].

Massive, multi-variate biological data sets often suffer from these source-
specific biases. The focus of this work is single-cell genomics, a domain that was
selected due to high biomedical relevance and abundance of recently published
data. Single-cell RNA sequencing (scRNA-seq) data sets are the result of iso-
lating RNA molecules from individual cells, which serve as an estimate of the
expression of cell’s genes. The studies can exceed thousands of cells and tens of
thousands of genes, and typically start with cell type analysis. Here, it is expected
that cells of the same type would cluster together in two-dimensional data visu-
alization [10]. For instance, Fig. 1a shows t-SNE embedded data from mouse
brain cells originating from the visual cortex [11] and the hypothalamus [12].
The figure reveals distinct clusters but also separates the data from the two
brain regions. These two regions share the same cell types and—contrary to
the depiction in Fig. 1a—we would expect the data points from the two studies
to overlap. Batch effects similarly prohibit the utility of t-SNE in the explo-
ration of pancreatic cells in Fig. 1b, which renders the data from a pancreatic
cell atlas [13] and similarly-typed cells from diabetic patients [14]. Just like with
data from brain cells, pancreatic cells cluster primarily by data source, again
resulting in a visualization driven by batch effects.

Fig. 1. Batch effects are a driving factor of variation between the data sets. We depict
a t-SNE visualization of two pairs of data sets. In each pair, the data sets share cell
types, so we would expect cells from the reference data (blue) to mix with the cells
in a secondary data sets (orange). Instead, t-SNE clusters data according to the data
source. (Color figure online)
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Current solutions to embedding the data from various data sources address
the batch effect problems up-front. The data is typically preprocessed and trans-
formed such that the batch effects are explicitly removed. Recently proposed
procedures for batch effect removal include canonical correlation analysis [8]
and mutual nearest-neighbors [9,10]. In these works, batch effects are deemed
removed when cells from different sources exhibit good mixing in a t-SNE visu-
alization. The elimination of batch effects may require aggressive data prepro-
cessing which may blur the boundaries between cell types. Another problem is
also the inclusion of any new data, for which the entire analysis pipeline must be
rerun, usually resulting in a different embedding layout and clusters that have
little resemblance to original visualization and thus require reinterpretation.

We propose a direct solution of rendering t-SNE visualizations to address
batch effects. Our approach treats one of the data sets as a reference and embeds
the cells from another, secondary data set to a reference-defined low-dimensional
space. We construct a t-SNE embedding using the reference data set, which is
then used as a scaffold to embed the secondary data. The key idea underpinning
our approach is that secondary data points are embedded independently of one
another.

Independent embedding of each secondary datum causes the clustering land-
scape to depend only on the reference scaffold, thus removing data source-driven
variation. In other words, when including new data, the scaffold inferred from the
reference data set is kept unchanged and defines a “gravitational field”, indepen-
dently driving the embedding of each new instance. For example, in Fig. 2, the
cells from the visual cortex define the scaffold (Fig. 2a) into which we embed the
cells from the hypothalamus (Fig. 2b). Unlike in their joint t-SNE visualization
(Fig. 1a), the hypothalamic cells are dispersed across the entire embedding space
and their cell type correctly matches the prevailing type in reference clusters.

The proposed solution implements a mapping of new data into an existing
t-SNE visualization. While the utility of such an algorithm was already hinted
at in recent publication [15], we here provide its practical and theoretically-
grounded implementation. Considering the abundance of recent publications on
batch effect removal, we present surprising evidence that a computationally more
direct and principled embedding procedure solves the batch effects problem when
constructing interpretable visualizations from different data sources.

2 Methods

We describe an end-to-end pipeline that uses fixed t-SNE coordinates as a scaf-
fold for embedding new (secondary) data, enabling joint visualization of multi-
ple data sources while mitigating batch effects. Our proposed approach starts
by using t-SNE to embed a reference data set, with the aim of constructing a
two-dimensional visualization to facilitate interpretation and cluster classifica-
tion. Then, the placement of each new sample is optimized independently via the
t-SNE loss function. Independent treatment of each data instance from a sec-
ondary data set disregards any interactions present in that data set, and prevents
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Fig. 2. A two-dimensional embedding of a reference containing brain cells (a) and
the corresponding mapping of secondary data containing hypothalamic cells. (b) The
majority of hypothalamic cells were mapped to their corresponding reference cluster.
For instance, astrocyte cells marked with red on the right were mapped to an oval
cluster of same-typed cells denoted with the same color in the visualization on the left.
(Color figure online)

the formation of clusters that would be specific to the secondary data. Below,
we start with a summary of t-SNE and its extensions (Sect. 2.1), introducing the
relevant notation, upon which we base our secondary data embedding approach
(Sect. 2.2).

2.1 Data Embedding by T-SNE and Its Extensions

Local, non-linear dimensionality reduction by t-SNE is performed as follows.
Given a multi-dimensional data set X = {x1,x2, . . . ,xN} ∈ R

D where N is
the number of data points in the reference data set, t-SNE aims to find a low
dimensional embedding Y = {y1,y2, . . . ,yN} ∈ R

d where d � D, such that if
points xi and xj are close in the multi-dimensional space, their corresponding
embeddings yi and yj are also close. Since t-SNE is primarily used as a visual-
ization tool, d is typically set to two. The similarity between two data points in
t-SNE is defined as:

pj|i =
exp

(− 1
2D(xi,xj)/σ2

i

)

∑
k �=i exp

(− 1
2D(xi,xk)/σ2

i

) , pi|i = 0 (1)

where D is a distance measure. This is then symmetrized to
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pij =
pj|i + pi|j

2N
. (2)

The bandwidth of each Gaussian kernel σi is selected such that the perplexity
of the distribution matches a user-specified parameter value

Perplexity = 2H(Pi) (3)

where H(Pi) is the Shannon entropy of Pi,

H(Pi) = −
∑

i

pj|i log2(pj|i). (4)

Different bandwidths σi enable t-SNE to adapt to the varying density of the
data in the multi-dimensional space.

The similarity between points yi and yj in the embedding space is defined
using the t-distribution with one degree of freedom

qij =

(
1 + ||yi − yj ||2

)−1

∑
k �=l (1 + ||yk − yl||2)−1 , qii = 0. (5)

The t-SNE method finds an embedding Y that minimizes the Kullback-
Leibler (KL) divergence between P and Q,

C = KL(P || Q) =
∑

ij

pij log
pij
qij

. (6)

The time complexity needed to evaluate the similarities in Eq. 5 is O(N2),
making its application impractical for large data sets. We adopt a recent app-
roach for low-rank approximation of gradients based on polynomial interpolation
which reduces its time complexity to O(N). This approximation enables the visu-
alization of massive data sets, possibly containing millions of data points [16].

The resulting embeddings substantially depend on the value of the perplexity
parameter. Perplexity can be interpreted as the number of neighbors for which
the distances in the embedding space are preserved. Small values of perplexity
result in tightly-packed clusters of points and effectively ignore the long-range
interactions between clusters. Larger values may result in a more globally consis-
tent visualizations—preserving distances on a large scale and organizing clusters
in a more meaningful way—but can lead to merging small clusters and thus
obscuring local aspects of the data [15].

The trade-off between the local organization and global consistency may be
achieved by replacing the Gaussian kernels in Eq. 1 with a mixture of Gaussians
of varying bandwidths [17]. Multi-scale kernels are defined as

pj|i ∝ 1
L

L∑

l=1

exp
(

−1
2
D(xi,xj)/σ2

i,l

)
, pi|i = 0 (7)
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where L is the number of mixture components. The bandwidths σi,l are selected
in the same manner as in Eq. 1, but with a different value of perplexity for each
l. In our experiments, we used a mixture of two Gaussian kernels with perplexity
values of 50 and 500. A similar formulation of multi-scale kernels was proposed
in [15], and we found the resulting embeddings are visually very similar to those
obtained with the approach described above (not shown for brevity).

2.2 Adding New Data Points to Reference Embedding

Our algorithm, which embeds new data points to a reference embedding, consists
of estimating similarities between each new point and the reference data and
optimizing the position of each new data point in the embedding space. Unlike
parametric models such as principal component analysis or autoencoders, t-SNE
does not define an explicit mapping to the embedding space, and embeddings
need to be found through loss function optimization.

The position of a new data point in embedding space is initialized to the
median reference embedding position of its k nearest neighbors. While we found
the algorithm to be robust to choices of k, we use k = 10 in our experiments.

We adapt the standard t-SNE formulation from Eqs. 1 and 5 with

pj|i =
exp

(− 1
2D(xi,vj)/σ2

i

)

∑
i exp

(− 1
2D(xi,vj)/σ2

i

) , (8)

qj|i =

(
1 + ||yi − wj ||2

)−1

∑
i (1 + ||yi − wj ||2)−1 , (9)

where V = {v1,v2, . . . ,vM} ∈ R
D where M is the number of samples in the

secondary data set and W = {w1,w2, . . . ,wM} ∈ R
d. Additionally, we omit the

symmetrization step in Eq. 2. This enables new points to be inserted into the
embedding independently of one another. The gradients of wj with respect to
the loss (Eq. 6) are:

∂C

∂wj
= 2

∑

i

(
pj|i − qj|i

)
(yi − wj)

(
1 + ||yi − wj ||2

)−1
(10)

In the optimization step, we refine point positions using batch gradient
descent. We use an adaptive learning rate scheme with momentum to speed
up the convergence, as proposed by Jacobs [18,19]. We run gradient descent
with momentum α of 0.8 for 250 iterations, where the optimization converged
in all our experiments. The time complexity needed to evaluate the gradients
in Eq. 10 is O(N · M), however, by adapting the same polynomial interpolation
based approximation, this is reduced to O(max{N,M}).

Special care must be taken to reduce the learning rate η as the default value
in most implementations (η = 200) may cause points to “shoot off” from the
reference embedding. This phenomenon is caused due to the embedding to a
previously defined t-SNE space, where the distances between data points and
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corresponding gradients of the optimization function may be quite large. When
running standard t-SNE, points are initialized and scaled to have variance 0.0001.
The resulting gradients tend to be very small during the initial phase, resulting
in stable convergence. When embedding new samples, the span of the embed-
ding is much larger, resulting in substantially larger gradients, and the default
learning rate causes points to move very far from the reference embedding. In
our experiments, we found that decreasing the learning rate to η ∼ 0.1 produces
stable solutions. This is especially important when using the interpolation-based
approximation, which places a grid of interpolation points over the embedding
space, where the number of grid points is determined by the span of the embed-
ding. Clearly, if even one point “shoots off” far from the embedding, the number
of required grid points may grow dramatically, increasing the runtime substan-
tially. The reduced learning rate suppresses this issue, and does not slow the
convergence because of the adaptive learning rate scheme, provided the opti-
mization is run for a sufficient number of steps.

3 Experiments and Discussion

We apply the proposed approach to t-SNE visualizations of single-cell data.
Data in this realm include a variety of cells from specific tissues and are char-
acterized through gene expression. In our experiments, we considered several
recently published data sets where cells were annotated with the cell type. Our
aim was to construct t-SNE visualizations where similarly-typed cells would
cluster together, despite systematic differences between data sources. To that
end, we focus on comparing different ways of using t-SNE rather than differ-
ences to embeddings like PCA or MDS, which have been substantially covered
before [1,4]. Below, we list the data sets, describe single-cell specific data pre-
processing procedures, and display the resulting data visualizations. Finally, we
discuss the success of the proposed approach in alleviating the batch effects.

3.1 Data

We use three pairs of reference and secondary single-cell data sets originating
from different organisms and tissues. The data in each pair were chosen so that
the majority of cell types from the secondary data set were included in the
reference set (Table 1). The cells in the data sets originate from the following
three tissues:

Mouse Brain. The data set from Hrvatin et al. [11] contains cells from the
visual cortex exploring transcriptional changes after exposure to light. This
was used as a reference for the data from Chen et al. [12], containing cells
from the mouse hypothalamus and their reaction to food deprivation. From
the secondary data, we removed cells with no corresponding types in the
reference: tanycytes, ependymal, epithelial, and unlabelled cells.
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Human Pancreas. Baron et al. [13] created an atlas of pancreatic cell types.
We used this set as a reference for data from Xin et al. [14], who examined
transcriptional differences between healthy and type 2 diabetic patients.

Mouse Retina. Macosko et al. [20] created an atlas of mouse retinal cell types.
We used this as a reference for the data from Shekhar et al. [21], who built
an atlas for retinal bipolar cells.

Table 1. Data sets used in our experiments. The first data set in each pair (Hrvatin et
al., Baron et al., and Macoscko et al.) was used as a reference. We relied on the quality
control and annotations from the original publication and report the number of cell
types after preprocessinng. The cell annotations were made consistent to annotations
from the Cell Ontology [22]. Notice that different RNA sequencing protocols were used
to estimate gene expressions.

Study Organism/Tissue Protocol Cells Cell Types Sparsity (%)

Hrvatin et al. mouse brain inDrop 48,266 9 94

Chen et al. Drop-seq 14,437 6 93

Baron et al. human pancreas inDrop 8,569 9 91

Xin et al. SMARTer 1,492 4 86

Macosko et al. mouse retina Drop-seq 44,808 12 97

Shekhar et al. Drop-seq 27,499 5 96

3.2 Single-Cell Data Preprocessing Pipeline

Due to the specific nature of single-cell data, additional steps must be taken
to properly apply t-SNE. We use a standard single-cell preprocessing pipeline,
consisting of the selection of 3,000 representative genes (see Sect. 3.3), library
size normalization, log-transformation, standardization, and PCA-based repre-
sentation that retains 50 principal components [10,23]. To obtain the reference
embedding, we apply multi-scale t-SNE using PCA initialization [15]. Due to
high-dimensionality of the preprocessed input data we use cosine distance to
estimate similarities between reference data points [24]. When adding new data
points from the secondary data set to the reference embedding, we select 1,000
genes present in both data sets and use the cosine similarity to estimate the
similarities between the secondary data item and reference data points. We note
that similarities are computed using the raw count matrices. The preprocessing
stages are detailed in accompanying Python notebooks (Sect. 3.5).

3.3 Gene Selection

Single-cell data sets suffer from high levels of technical noise and low capture
efficiency, resulting in sparse expression matrices [25]. To address this problem,
we use a specialized feature-selection method, which exploits the mean-dropout
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relationship of expression counts as recently proposed by Kobak and Berens [15].
Here, genes with higher than expected dropout rate are regarded as potential
markers for cell subpopulations and are retained in the data.

Given an expression matrix X ∈ R
N×G where N is the number of samples

and G is the number of genes in the data set, we compute the fraction of cells
where a gene g was not expressed

dg =
1
N

∑

i

I (Xig = 0) (11)

The mean log2 expression of gene g considers only cells expressing g:

mg = 〈 log2 Xig | Xig > 0 〉 . (12)

All genes expressed in less than ten cells are discarded. In order to select a
specific number of Ĝ genes, we use a binary search to find a value b such that

∑

g

I (dg > exp [−(mg − b)] + 0.02) = Ĝ. (13)

3.4 Results and Discussion

Figures 2, 3, and 4 show the embeddings of the reference data sets and their
corresponding embeddings of the secondary data sets. In all the figures, the cells
from the secondary data sets were positioned in the cluster of same-typed refer-
ence cells, providing strong evidence of the success of our approach. There are
some deviations to these observations; for instance, in Fig. 2 several oligoden-
drocyte precursor cells (OPCs) were mapped to oligodendrocytes. This may be
due to differences in annotation criteria by different authors, or due to inherent
similarities of these types of cells. Examples of such erroneous placements can
be found in other figures as well, but are uncommon and constitute less then 5%
of the cells (less than 5% in brain, 1% in pancreas and 2% in retina secondary
data).

Notice that we could simulate the split between reference and secondary data
sets using one data set only and perform cross-validation, however this type of
experiment would not incorporate batch effects. We want to remind the reader
that handling batch effects were central to our endeavour and that the disregard
of this effect could lead to overly-optimistic results and data visualizations strik-
ingly different from ours. For example, compare the visualizations from Figs. 1a
and 2b, or Figs. 1b and 3b.

We use a number of additional, recently proposed modifications to enhance
the t-SNE visualization of the reference data set. One important extension is the
use of multi-scale similarities, which, in addition to finding local structure, also
ensure consistent organization of the resulting clusters. For illustration, consider
visualizations with standard and multi-scale t-SNE in Fig. 5. Notice, for instance,
that in multi-scale t-SNE (Fig. 5b) the clusters with neuronal cells are clumped
together, while their placement in standard t-SNE is arbitrary (Fig. 5a).
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Fig. 3. Embedding of pancreatic cells from Baron et al. [13] and cells from the same
tissue from Xin et al. [14]. Just like in Fig. 2, the vast majority of the cells from the
secondary data set were correctly mapped to the same-typed cluster of reference cells.

We also observed the important role of gene selection in crafting the refer-
ence embedding spaces. We found that when selecting an insufficient number of
genes, the resulting visualizations display overly-fragmented clusters. When the
selection is too broad and includes lowly expressed genes, the subclusters tend
to overlap. These effects can all be attributed to sparseness of the data sets and
may be intrinsic to single-cell data. In our studies, we found that selection of
3,000 genes yields most informative visualizations (Fig. 6).

In principle, our theoretically-grounded embedding of secondary data into the
scaffold defined by the reference embedding could be simplified with the applica-
tion of the nearest neighbors-based procedure. For example, while describing a
set of tricks for t-SNE, Kobak and Berens [15] proposed positioning new points
into a known embedding by placing them in the median position of their 10
nearest neighbors, where the neighborhood was estimated in the original data
space. Notice that we use this approach as well, but only for the initialization of
positions of new data instances that are subject to further optimization. Despite
both nearest-neighbors search and t-SNE optimization can be computed in linear
time, the former dominates the runtime (mouse retina example; 44,808 reference,
26,830 secondary cells, 9 min NN-search, 13 s optimization).

We demonstrate a case where nearest neighbor-based positioning is insuffi-
cient in Fig. 7. It may yield clumped visualizations where the optimal position-
ing using the t-SNE loss function is much more dispersed and rightfully shows
a more considerable variation in the secondary data. Some points may also fall
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Fig. 4. An embedding of a large reference of retinal cells from Macosco et al. [20] (a)
and mapping of cells from a smaller study that focuses on bipolar cells from Shekhar
et al. [21]. (b) We use colors consistent with the study by Macosko et al.

into the empty regions, while after optimization they typically move closer to
same-typed groups. While the nearest neighbor-based approach always places
new data points to their most similar cluster, the proposed t-SNE approach can
identify extreme outliers and place them far from the reference cluster.

Our approach assumes that all cell types from the secondary data set are
present in the reference. The method would fail to reveal novel cell types in the
secondary data set, possibly positioning them arbitrarily close to unrelated clus-
ters. Procedures such as scmap were recently proposed to cope with such cases
and identify the cells whose type is new and not included in the reference [26].

Our procedure is, therefore, asymmetrical in the choice of reference and sec-
ondary data set. In practice, however, newly produced secondary data would
be embedded into previously-prepared reference landscapes. Large collections of
data e.g. the Human Cell Atlas initiative [27] make it possible to scale up our
approach to wider sets of cell types.

3.5 Implementation

The procedures described in this paper are provided as Python notebooks that
are, together with the data, available in an open repository1. All experiments
were run using openTSNE, our open and extensible t-SNE library for Python [28].

1 https://github.com/biolab/tsne-embedding.

https://github.com/biolab/tsne-embedding
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Fig. 5. A comparison of standard and multi-scale t-SNE on data from the mouse
visual cortex [11]. (a) Standard t-SNE places clusters arbitrarily. (b) Augmenting
t-SNE with multi-scale similarities and using proper initialization provides a more
meaningful layout of the clusters. Neuronal types occupy one region of the space.
Oligodendrocyte precursor cells (OPCs) are mainly progenitors to oligodendrocytes,
but may also differentiate into neurons or astrocytes.

Fig. 6. Gene selection plays an important role when constructing the reference embed-
ding. (a) Using too few genes results in fragmented clusters. (b) Using an intermediate
number of genes reveals clustering mostly consistent with cell annotations. (c) Includ-
ing all the genes may lead to under-clustering of the more specialized cell types.



258 P. G. Poličar et al.

Fig. 7. Comparison of data placement using the nearest neighbors approach from
Kobak and Berens [15] and the optimized placement using our algorithm. (a) Data
points are placed to the median position of their 10 nearest neighbors in the reference
set. (b) Point positions are optimized, revealing a different, more dispersed placement
that better reflects the variety of cells in the secondary data set.

4 Conclusion

Almost all recent publications of single-cell studies begin with a two-dimensional
visualization of the data that reveals cellular diversity. While many dimensional-
ity reduction techniques are available, different variants of t-SNE are most often
used to produce such visualizations. Single-cell studies enable the exploration
of biological mechanisms at a cellular level, and their publications in the past
couple of years are abundant. One of the central tasks in single-cell studies is the
classification of new cells based on findings from previous studies. Such transfer
of knowledge is often difficult due to batch effects present in data from different
sources. Addressing batch effects by adapting and extending t-SNE, the pre-
vailing method used to present single-cell data in two-dimensional visualization,
motivated the research presented in this paper.

The proposed approach uses a t-SNE embedding as a scaffold for the posi-
tioning of new cells within the visualization, and possibly for aiding in their clas-
sification. The three case studies incorporating pairs of data sets from different
domains but with similar classifications demonstrate that our proposed proce-
dure can effectively deal with batch effects to construct visualizations that cor-
rectly map secondary data sets onto an embedding of the data from an indepen-
dent study that possibly uses different experimental protocol. While we focused
here on reference visualizations constructed using t-SNE, this approach can be
applied using any existing two-dimensional visualization.
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Abstract. Relational data mining is becoming ubiquitous in many fields
of study. It offers insights into behaviour of complex, real-world systems
which cannot be modeled directly using propositional learning. We pro-
pose Symbolic Graph Embedding (SGE), an algorithm aimed to learn
symbolic node representations. Built on the ideas from the field of induc-
tive logic programming, SGE first samples a given node’s neighborhood
and interprets it as a transaction database, which is used for frequent
pattern mining to identify logical conjuncts of items that co-occur fre-
quently in a given context. Such patterns are in this work used as fea-
tures to represent individual nodes, yielding interpretable, symbolic node
embeddings. The proposed SGE approach on a venue classification task
outperforms shallow node embedding methods such as DeepWalk, and
performs similarly to metapath2vec, a black-box representation learner
that can exploit node and edge types in a given graph. The proposed
SGE approach performs especially well when small amounts of data are
used for learning, scales to graphs with millions of nodes and edges, and
can be run on an of-the-shelf laptop.

Keywords: Graphs · Machine learning · Relational data mining ·
Symbolic learning · Embedding

1 Introduction

Many contemporary databases are comprised of vast, linked and annotated data,
which can be hard to exploit for various modeling purposes. In this work, we
explore how learning from heterogeneous graphs (i.e. heterogeneous information
networks with different types of nodes and edges) can be conducted using the
ideas from the fields of symbolic relational learning and inductive logic program-
ming [16], as well as contemporary representation learning on graphs [2].

Relational datasets have been considered in machine learning since the early
1990s, where tools such as Aleph [27] have been widely used for relational data
analysis. However, recent advancements in deep learning, a field of subsymbolic
machine learning, which allows for learning from relational data in the form of
graphs, was shown as useful for many contemporary relational learning tasks
c© Springer Nature Switzerland AG 2019
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at scale, including recommendation, anomaly detection and similar [25]. The
state-of-the-art methodology exploits the notion of node embeddings—nodes,
represented using real-valued vectors. As such, node embeddings can be sim-
ply used with propositional learners such as e.g., logistic regression or neural
networks. The node embeddings, however, directly offer little to no insight into
connectivity patterns relevant for representing individual nodes.

In this work we demonstrate that symbolic pattern mining can be used for
learning symbolic node embeddings in heterogeneous information graphs. The
main contributions of this work include:

1. An efficient graph sampler which samples based on a distribution of lengths
of random walks, implemented in Numba, offering 15x faster sampling than a
Python-native implementation, scaling to graphs with millions of nodes and
edges on an of-the-shelf laptop.

2. Symbolic graph embedding (SGE), a symbolic representation learner that is
explainable and achieves state-of-the-art performance for the task of node
classification.

3. Evidence that symbolic node embeddings can perform comparably to black-
box node embeddings, whilst requiring less space and data.

This paper is structured as follows. We first discuss the related work (Sect. 2),
followed by the description of the proposed approach (Sect. 3), its computational
and spatial complexity (Sect. 4), and its empirical evaluation (Sect. 5). We finally
discuss the obtained results and potential further work (Sect. 6).

2 Related Work

Symbolic representation learning has already been considered in the early 1990s
in the inductive learning community, when addressing multi-relational learning
problems through the so-called propositionalization approach [16]. The goal of
propositionalization is to transform multi-relational data into real-valued vec-
tors describing the individual training instances, that are a part of a relational
data structure. The values of the vectors are obtained by evaluating a relational
feature (e.g., a conjunct of conditions) as true (value 1) or false (value 0). For
example, if all conditions of a conjunct are true, the relational feature is evalu-
ated as true, resulting in value 1, and gets value 0 otherwise. We next discuss the
approaches which were most influential for this work. The in-house developed
Wordification [22] explores how relational databases can be unfolded into bags
of relational words, used in the same manner as done in the area of natural lan-
guage processing via Bag-of-words-based representations. Wordification, albeit
very fast, can be spatially expensive, and was designed for SQL-based datasets.
Our work was also inspired by the recently introduced HINMINE methodology
[14], where Personalized PageRank vectors were used as the propositionalization
mechanism. Here, each node is described via its probability to visit any other
node, thus, a node of a netwrk is described using a distribution over the remain-
der of the nodes. Further, propositionalization has recently been explored in
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combination with artificial neural networks [8], and as a building block of deep
relational machines [6].

Frequent pattern mining is widely used for identifying interesting patterns
in real-world transaction databases. Extension of this paradigm to graphs was
already explored [12], using the Apriori algorithm [1] for the pattern mining. In
this work we rely on the efficient FP-Growth [4] algorithm, which employs more
structured counting compared to Apriori using fp-trees as the data structure.
Frequent pattern mining is commonly used to identify logical patterns which
appear above a certain e.g., frequency threshold. Efficiently mining for such
patterns remains a lively research area on its own, and can be scaled to large
computing clusters [11].

The proposed work also explores how a given graph can be sampled, as well as
embedded efficiently. Many contemporary node representation learning methods,
such as node2vec [9], DeepWalk [23], PTE [28] and metapath2vec [7], exploit
such ideas in combination with e.g., the skip-gram model in order to obtain
low-dimensional embeddings of nodes. Out of the aforementioned methods, only
metapath2vec was adapted specifically to operate on heterogeneous information
networks, i.e. graphs with additional information on node and edge types. It
samples pre-defined meta paths, yielding type-aware node representations which
serve better for classifying e.g., different research venues to topics.

Heterogeneous (non-attributed) graphs are often formalized as RDF triplets.
Relevant methods, which explore how such triplets can be embedded are con-
sidered in [5], as well as in [24]. The latter introduced RDF2vec, a methodology
for direct transformation of a RDF database to the space of real-valued entity
embeddings. Understanding how such graphs can be efficiently sampled, as well
as embedded into low-dimensional, real-valued vectors is a challenging problem
on its own.

3 Proposed SGE Algorithm

In this section we describe Symbolic Graph Embedding (SGE), a new algorithm
for symbolic node embedding. The algorithm is summarized in Fig. 1. The algo-
rithm consists of two basic steps. First, for each node in an input graph, the
neighborhood of the node is sampled (Sect. 3.2). Next, the patterns, emerging
from the walks around a given node are transformed into a set of features whose
values describe the node (Sect. 3.3). In this section, we first introduce some basic
definitions and then explain both steps of SGE in more detail.

3.1 Overview and Definitions

We first define the notions of a graph as used in this work.

Definition 1 (Graph). A graph is a tuple G = (N,E), where N is a set
of nodes and E is a set of edges. The elements of E can be either subset N
of size 2 (e.g., {n1, n2} ⊆ N), in which case, we say the graph is undirected.
Alternatively, E can consist of ordered pairs of elements from N (e.g., (n1, n2) ∈
N × N) – in this case, the graph is directed.
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Fig. 1. Schematic represenatation of SGE. The red square’s neighborhood (red high-
light) is first used to construct symbolic features, forming a propositional graph rep-
resentation (part a of the figure). The presence of various symbolic patterns (FP) is
recorded and used to determine feature vectors for individual nodes (part b of the
figure). The obtained representation can be used for subsequent data analysis tasks
such as classification or visualization. (Color figure online)

In this work we focus on directed graphs, yet the proposed methodology can
also be extended to undirected ones. In this work we also use the notion of a
walk.

Definition 2 (Walk). Given a directed graph G = (N,E), a walk is any
sequence of nodes n1, n2 . . . , nk ∈ N so that each pair ni, ni+1 of consecutive
nodes is connected by an edge, i.e. (ni, ni+k) ∈ E.

Finally, we define the notion of node embedding as used throughout this
work.

Definition 3 (Symbolic node embedding). Given a directed graph G =
(N,E), a d-dimensional node embedding of graph G is a matrix M in a vector
space R

|N |×d, i.e. M ∈ R
|N |×d. Such embedding is considered symbolic, when

each column represents a symbolic expression, which, when evaluated against
a given node’s neighborhood information, returns a real number representing a
given node.

We first discuss the proposed neighborhood sampling routine, followed by
the description of pattern learning as used in this work.

3.2 Sampling Node Neighborhoods

Sampling a given node’s local and global neighborhoods offers insights into con-
nectivity patterns of the node with respect to the rest of the graph. Many con-
temporary methods resort to node neighborhood sampling for obtaining the node
co-occurrence information. In this work we propose a simple sampling scheme
which produces a series of graph walks. The walks can be further used for learn-
ing tasks—in this work, we use them to produce node representations. Building
on recent research ideas [17,18], the proposed scheme consists of two steps: selec-
tion of walk sampling distribution and sampling. We first discuss the notion of
distribution-based sampling, followed by the implemented sampling scheme.



Symbolic Graph Embedding Using Frequent Pattern Mining 265

Distribution-Based Sampling. Our algorithm is based on the assumption
that when learning a representation of a given node, nodes at various distances
from the considered node are relevant. In order to use the information on neigh-
borhood nodes, we sample several random walks starting at each node of the
graph. Because real-world graphs are diverse, it is unlikely that the same sam-
pling scheme would suffice for arbitrary graphs. To account for such uncertainty,
we introduce the notion of walk distribution vector, a vector describing how many
walks of a certain length shall be sampled. Let w ∈ R

s denote a vector of length
s (a parameter of the approach). The i-th value of the vector corresponds to the
proportion of walks of length i that are to be sampled. Note that the longest
walk that can occur is of length s. For example consider the following vector
w of length s = 4, w = [0.2, 0, 0.5, 0.3]. Assuming we sample e.g, 100 random
walks, 20 walks will be of length one, zero of length 2, 50 of length three and
30 of length four. As w represents a probability distribution of different walk
lengths to be sampled,

∑s
i=1 wi = 1 must hold.

Having defined the formalism for describing the number of walks of different
lengths, we have yet to describe the following two aspects in order to fully formal-
ize the proposed sampling scheme: how to parametrize w and walk efficiently?

How to Parametrize w. We next discuss the considered initialization of the
probability vector w. We attempt to model such vector by assuming a prior
walk length distribution, from which we first sample φ samples—these samples
represent different random walk lengths. In this work, we consider Uniform walk
length distribution, where the i-th element of vector w is defined as 1

s , where s
represents the length of w (maximum walk length).

The considered variant of graph sampling procedure does not take into
account node or edge types. One of the purposes of this work is to explore
whether such näıve sampling—when combined with symbolic learning—achieves
good performance. The rationale for not exploring how to incorporate node and
edge types is thus twofold: First, we explore whether symbolic learning, as dis-
cussed in the next section, detects heterogeneous node patterns on its own,

Algorithm 1: Order-aware random walker.
Data: A graph G = (N, E)
Parameters : Starting node ni, walk length s

1 c ← ni;
2 δ ← 0;
3 W ← multiset;
4 for α ∈ [1 . . . s] do
5 o := Uniform(NG(c)) ; � Select a random node.

6 W ← W ∪ (o, α); � Store visited node.

7 c ← o;

8 end
Result: A random walk W
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as the node representations are discrete and could, as such, provide such infor-
mation. Further, as exact node information is kept intact, and each node can be
mapped to its type, the node types are implicitly incorporated. Next, we believe
that by selecting the appropriate prior walk distribution w, node types can be
to some extent taken into account (yet this claim depends largely on a given
graph’s topology).

How to Walk Efficiently. An example random walker, which produces walks
of a given length (used in this work) is formalized in Algorithm 1. Here, we denote
with NG(ni) the neighbors of the i-th node. The Uniform(NG(c)) represents
a randomly picked neighbor of a given node c, where picking each neighbor
is equiprobable. We mark such picked node with o. Note that the walker is
essentially a probabilistic depth-first search. The algorithm returns a list of tuples
where each tuple (o, α) contains both the visited node o and the step α at which
the node was visited. On line 6, we append to a current walk a tuple, comprised
of a certain node and the overall walk length, it is a part of. Note that such
inclusion of node IDs is suitable in a learning setting, where e.g., part of the
graph’s labels are not known and are to be predicted using the remainder of
the graph. Even though inclusion of such information might seem redundant,
we would like to remind the reader that the presented algorithm represents only
a single random walker for a single walk length. In reality, multiple walkers
yielding walks of different lengths are simulated, since including such positional
(walk length) information can be beneficial for the subsequent representation
learning step. The proposed Algorithm 1 represents a simple random walker. In
practice, thousands of random walks are considered. As discussed, their lengths
are distributed according to w. In theory, one could learn the optimal w by using
e.g., stochastic optimization, yet we explore a different, computationally more
feasible approach for obtaining a given w. We next discuss the notion of symbolic
pattern mining and final formalization of the proposed SGE algorithm.

3.3 Symbolic Pattern Mining

In the previous section we discussed how a given node’s neighborhood can be effi-
ciently sampled. In this section we first discuss the general idea behind forming
node representations, followed by a description of the frequent pattern mining
algorithms employed.

Forming Node Representations. Algorithm 1 outputs a multiset comprised
of nodes, represented by (node id, walk order) tuples. Such multisets are in the
following discussion considered as itemsets, as this is the terminology used in
[4]. In the next step of SGE, we use the itemsets to obtain individual node rep-
resentations. We first give an outline of this step, and provide additional details
in the next section. The set of all nodes is considered as a transaction database,
and the itemsets comprised of node id and walk order are used to identify fre-
quent patterns (of tuples). Best patterns, selected based on their frequency of



Symbolic Graph Embedding Using Frequent Pattern Mining 267

occurrence, are used as features. The way of determining the best patterns is
approach specific, and is discussed in the following paragraphs. Feature values
are determined based on the pattern identification method, and are either real-,
natural- or binary-valued. Intuitively, they represent the presence of a given node
pattern in a given node’s neighborhood.

Frequent Pattern Mining. We next discuss the frequent pattern mining
approaches explored as part of SGE. The described approaches constitute the
findPatterns method discussed in the next section. For each node, a multiset of
(node ID, walk length) tuples is obtained. In each of the described approaches,
the result is a transformation of the set of multisets, describing the network
nodes, into a set of feature vectors describing these nodes.

Relational BoW. This paradigm leverages the Bag-of-words (BOW) construc-
tors widely known in natural language processing [31]. Here, the tuples form-
ing the itemsets, output by Algorithm 1, are considered as words. Thus, each
word is comprised of a node and the order of a random walk in which that
node was identified as connected to the node for which the representation is
being constructed.
For the purpose of BOW construction, we consider the multiset of (node ID,
walk length) tuples, generated by random walks that start at node n. This
multiset is viewed as a “node document”, consisting of individual words—i.e.
the tuples contained in the multiset. The number of total features, d, is a
parameter of the SGE algorithm. We consider the following variations of this
paradigm for transforming each node “document” Tn into one feature vector
of size d:

– Binary. In a binary conversion, the values of the vector represent the
presence or absence of a given tuple k-gram (a combination of k tuples; k
is a free parameter of SGE) in the set of random walks associated with a
given node document. The features, represented by such tuple k-grams,
can have values of either 0 or 1.

– TF. Here, counts of a given k-gram t in a given node document Tn are
used as feature values (TFt,Tn

). The values are integers. Note that TFt,Tn

represents the multiplicity of a given tuple k-gram in the multiset (node
document).

– TF-IDF. Here, TF-IDF weighting scheme is employed to weight the val-
ues of individual features. The obtained values are real numbers. Given a
tuple k-gram t and the transaction database T, it is computed as:

TF-IDF(t, n) = (1 + log TFt,Tn
) · log

|N |
Tt

,

where TFt,TN
is the number of t’s occurrences in a given document of node

n and Tt is the overall occurrence of this k-gram in the whole transaction
database.
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FP-Growth. This well known variant of association rule learning [4] constructs
a specialized data structure termed fp-tree, which is used to count combina-
tions of tuples of different lengths. It is more efficient than the well known
Apriori algorithm [3,21].
For the purpuse of FP-growth, the obtained multiset T is viewed as a set of
itemsets - a transaction database. For each itemset, only the set of unique
tuples is considered as the input while their multiplicity is ignored. The FP-
Growth algorithm next considers such non-redundant transaction databse T
to identify frequent combinations of tuples, similarly to the TF and TF-IDF
schemes described above. The free parameter we consider in this work is sup-
port, which controls how frequent tuple combinations shall be considered.
Similarly to TF and TF-IDF schemes, once the representative tuple combi-
nations are obtained, they are considered as features, whose values are deter-
mined based on their presence in a given node document, and are binary (0 =
not present, 1 = present). Note that some of these features may correspond
to the features generated by TF-IDF, however, in the case of FP-growth, we
allow sizes of tuple combinations to be arbitrary, rather than fixed to k. Also
unlike the BOW approaches, the dimension of the constructed feature vectors
constructed is not fixed but is controlled implicitly by varying the value of
the support parameter.

SGE Formulation. The formulation of the whole approach is given in
Algorithm 2. Here, first the sampling vector w is constructed. Next, the vec-
tor is traversed. The i-th component of vector w represents the number of walks
of length i that will be simulated. For each component of w cell, a series of

Algorithm 2: Symbolic graph embedding.
Data: A graph G = (N, E)
Parameters : Number of walk samples ν, sampling distribution η, pattern

finder r, embedding dimensionality d, starting node ni

Result: Symbolic node embedding M
1 τ := generateSamplingVector(η, ν);
2 T ← multiset;
3 for o ∈ τ do
4 α ← o’s index ; � Walk length.

5 D ← {};
6 for k ∈ [1 . . . o] do
7 D ← D ∪ Walk(G, ni, α) ; � Sample with Algorithm 1.

8 end
9 T ← T ∪ D ; � Update walk object.

10 end
11 P ← findPatterns(T, r) ; � Find patterns.

12 M ← representNodes(T, P, r, d) ; � Represent nodes.

13 return M;
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random walks (lines 6–8) is simulated, which produces sequences of nodes that
are used to fill a node-level walk container D. Thus, D, once filled, consists of o
sets representing individual random walks of length α. The walks are added into
a single multiset, prior to being stored into the global transaction structure T.
Once w is traversed, frequent patterns are found (line 11), where the transaction
structure T comprised of all node-level walks is used as the input. The findPat-
terns method in line 11 can be any method that takes a transaction database as
input, the considered ones are discussed in the following section. The top most
frequent d patterns are used as features, and represent the columns (dimensions)
of the final representation M. Here, the representNodes method (line 12) fills
the values according to the considered weighting scheme (part of r)1.

4 Computational and Spatial Complexity

In this section we discuss the computational aspects of the proposed approach.
We split this section into two main parts, where we first discuss the complexity
of the sampling, followed by the pattern mining part.

The time complexity of the proposed sampling strategy depends on the num-
ber of simulated walks and the walk lengths. The complexity of a single walk
is linear with respect to the length of the walk. If we define the average walk
length as l, and the number of all samples as ν, the spatial complexity, required
to store all walks amounts to O(|N | · ν · l). As the complexity of a single random
walk is linear with respect to the length of the walk, the considered sampling’s
time complexity amounts to O(ν · l) for a single node. The proposed approach
is also linear with respect to the number of nodes both in space and time.

The computational complexity of pattern mining varies based on the algo-
rithm used for this step. The considered FP-Growth’s complexity is linear with
respect to the number of transactions, whereas its spatial complexity is, due to
efficient counting employed, similarly efficient and does not explode as for exam-
ple with the Apriori family of algorithms. The result of the pattern mining step
is a |N | × d matrix, where d is the number of patterns considered as features.
Compared to e.g., metapath2vec and other shallow graph embedding methods,
which yield a dense matrix, this matrix is sparse, and potentially requires orders
of magnitude less space for the same d2. As storing large dense matrices can
be spatially demanding, the proposed sparse feature representation requires less
space, especially if high-dimensional embeddings are considered (the black-box
methods commonly yield dense representation matrices). The difference arises
especially for very large datasets, where dense node representations can become
a spatial bottleneck. We observe that ≈10% of elements are non-zero, indicating
that storing the feature space as a sparse matrix results in smaller time com-
plexity. Worst case spatial complexity of storing the embedding, however, is for
both types of methods O(|N | · d).
1 Note that this method takes as input random walk samples for all nodes.
2 In practice, however, larger dimensions are needed to represent the set of nodes well

by using symbolic representations.
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5 Empirical Evaluation

In this section we present the evaluation setting, where we demonstrate the
performance of the proposed Symbolic Graph Embedding approach. We follow
closely the evaluation introduced by metapath2vec, where the representation is
first obtained, and next used for the classification task, where logistic regression
is used as a classifier of choice. We test the performance on a heterogeneous
information graph, comprised of authors, papers and venues3. The task is to
classify venues into one of eight possible topics. The dataset was first used for
evaluation of metapath2vec, hence we refer to the original results when com-
paring with the proposed approach. The considered graph consists of 2,766,148
nodes and 2,503,628 edges, where the 133 venues are to be classified into cor-
rect classes. We compare SGE against previously reported performances [7] of
DeepWalk [23], LINE [29], PTE [28], metapath2vec and metapath2vec++ [7].
All methods are considered state-of-the-art for black-box node representation
learning. The PTE and two variations of metapath2vec can take into account
different (typed) paths during sampling.

We tested the following SGE variants. For pattern learning, we varied the
TF-IDF, BoW and TF-, as well as the FP-Growth methods. The parameter
search space used to obtain the results was as follows. The number of features
= [500,1000,1500,2000,3000], considered vectorizers = [“TF-IDF”,“TF”,“FP-
growth”,“Binary”], relation order (relevant for TF-based vectorizers—the high-
est k-gram order considered) = [2, 3, 4], walks of lengths = [2, 3, 5, 10], and
number of walk samples = [1000, 10000] were considered. The support parame-
ter of the FP-Growth parameter was varied in the range [3, 5, 8]. The Uniform
walk length distribution was used. In addition to the proposed graph sampling
(FS), a simple breadth-first search (BFS) that explores neighborhood of order
two was also tested. We report the best performing learners’ scores based on the
type of the vectorizer and the sampling distribution. Ten repetitions of ten-fold,
stratified cross validation is used, the resulting micro and macro F1 scores are
averaged to obtain the final performance estimate. We report the performance
of logistic regression classifier when varying the percentage of training data.

5.1 Results

In this section we discuss in detail the results for the node classification task.
The results in Table 1 are presented in terms of micro and macro F1 scores, with
respect to training set percentage. We visualize the performance of the compared
representations in Fig. 2.

The first observation is that shallow node embedding methods, e.g., node2vec
and LINE, do not perform as well as the best performing SGE variants (Binary
with Uniform sampling). Further, we can observe that best performing SGE
also outperforms metapath2vec and metapath2vec++, indicating that symbolic
representations can (at least for this particular dataset) offer sufficient node

3 Accessible at https://ericdongyx.github.io/metapath2vec/m2v.html.

https://ericdongyx.github.io/metapath2vec/m2v.html
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Table 1. Numeric results of the proposed SGE approach compared to the state-of-
the-art approaches, presented in terms of micro and macro F1 scores, with respect to
training set percentage. Best performing approaches are highlighted in green.

Method / Percentage 10% 20% 30% 40% 50% 60% 70% 80% 90%
Macro-F1
DeepWalk/node2vec 0.140 0.191 0.280 0.343 0.391 0.442 0.478 0.496 0.446
LINE (1st+2nd) 0.463 0.701 0.847 0.895 0.920 0.931 0.947 0.941 0.947
PTE 0.170 0.654 0.830 0.894 0.921 0.935 0.951 0.953 0.949
metapath2vec 0.525 0.803 0.897 0.940 0.953 0.953 0.970 0.968 0.967
metapath2vec++ 0.544 0.805 0.900 0.947 0.958 0.956 0.968 0.953 0.950
SGE (binary + FS) 0.815 0.883 0.918 0.919 0.922 0.937 0.942 0.931 0.950
SGE (TF + FS) 0.716 0.769 0.826 0.853 0.875 0.886 0.906 0.914 0.919
SGE (TF-IDF + FS) 0.364 0.114 0.121 0.03 0.354 0.353 0.363 0.148 0.146
SGE (FP-growth + FS) 0.523 0.684 0.712 0.771 0.785 0.815 0.801 0.816 0.838
SGE (Binary + BFS) 0.396 0.589 0.685 0.710 0.702 0.772 0.792 0.759 0.778
SGE (TF + BFS) 0.054 0.058 0.070 0.087 0.091 0.083 0.094 0.088 0.091
SGE (TF-IDF + BFS) 0.360 0.090 0.113 0.047 0.324 0.321 0.325 0.122 0.122
SGE (FP-growth + BFS) 0.400 0.547 0.586 0.591 0.594 0.646 0.587 0.609 0.553
Micro-F1
DeepWalk/node2vec 0.214 0.249 0.327 0.379 0.409 0.463 0.498 0.526 0.529
LINE (1st+2nd) 0.517 0.716 0.846 0.895 0.920 0.933 0.950 0.956 0.957
PTE 0.427 0.688 0.837 0.895 0.924 0.935 0.955 0.967 0.957
metapath2vec 0.598 0.833 0.901 0.940 0.952 0.954 0.973 0.982 0.986
metapath2vec++ 0.619 0.834 0.903 0.946 0.958 0.957 0.970 0.974 0.979
SGE (Binary + FS) 0.815 0.880 0.918 0.918 0.921 0.935 0.940 0.933 0.964
SGE (TF + FS) 0.718 0.771 0.824 0.850 0.872 0.881 0.900 0.911 0.921
SGE (TF-IDF + FS) 0.477 0.231 0.245 0.138 0.518 0.522 0.528 0.289 0.279
SGE (FP-growth + FS) 0.515 0.655 0.700 0.758 0.775 0.807 0.800 0.815 0.864
SGE (Binary + BFS) 0.388 0.557 0.657 0.692 0.678 0.750 0.785 0.759 0.821
SGE (TF + BFS) 0.148 0.150 0.155 0.168 0.175 0.167 0.172 0.159 0.193
SGE (TF-IDF + BFS) 0.461 0.195 0.226 0.144 0.469 0.467 0.478 0.252 0.250
SGE (FP-growth + BFS) 0.381 0.512 0.553 0.558 0.563 0.619 0.577 0.600 0.607

description. The best performing SGE variant was the simplest one, with simple
binary features obtained via fast sampling. Here, 10,000 walks were sampled and
feature matrix of dimension 3000 was considered along with up to three-gram
patterns. Finally, we visualized the embeddings by projecting them to 2D using
the UMAP algorithm [19]. The resulting visualization, shown in Fig. 3, shows
that the obtained symbolic node embeddings maintain the class structure of the
data.

5.2 Implementation Details and Reproducibility

In this section we discuss the details of the proposed SGE. The main part of the
implementation is Python-based, where Numpy [30] and Scipy [13] libraries were
used for efficient processing. The Py3plex library4 was used to parse the heteroge-
neous graph used as input [26]. The final graph was returned as a MultiDiGraph
object compatible with NetworkX [10]. The TF, TF-IDF and Binary vectorizers
implementations from the Scikit-learn library [20] were used. As the main bottle-
neck we recognized the graph sampling, which we further implemented using the
Numba [15] framework for production of compiled code from native Python. After
re-implementing the walk sampling part in Numba, we achieved approximately

4 https://github.com/SkBlaz/Py3plex.

https://github.com/SkBlaz/Py3plex
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Fig. 2. Micro and macro F1 performance with respect to train percentages.

Fig. 3. UMAP projection of the best performing SGE embedding into 2D. Colors
represent different types of venues (the class to be predicted). It can be observed that
the obtained embeddings maintain the class-dependent structure, even though they
were constructed in a completely unsupervised manner. The visualization was obtained
using UMAP’s default parameters.
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15x speedup, which was enough to consider up to 10,000 walk samples of the large
benchmark graph used in this work5.

6 Discussion and Conclusions

In this work we compared the down-stream learning performance of symbolic
features, obtained by sampling a given node’s neighborhood, to the performance
of black-box learners. Testing the approaches on the venue classification task,
we find that Symbolic Graph Embedding offers similar performance on a large,
real-world graph comprised of millions of nodes and edges. The proposed method
outperforms the state-of-the-art shallow embeddings by up to ≈65%, and het-
erogeneous graph embeddings by up to ≈27% when only small percentages of
the representation are used for learning (e.g., 10%). The method performs com-
parably to metapath2vec and metapath2vec++ when the whole embedding is
considered for learning. One of the most apparent results is the well perform-
ing Binary + Uniform SGE, which indicates that simply checking the presence
of relational features potentially offers enough descriptive power for success-
ful classification. This result indicates that certain graph patterns emerge as
important, where their presence or absence in a given node’s neighborhood can
serve as relevant for classification. The TF-IDF-based SGE variants performed
the worst, indicating that more complex weighting schemes are not as applica-
ble as in the other areas of text mining. We believe the proposed methodology
could be further compared with RDF2vec and similar triplet embedding meth-
ods. The obtained symbolic embeddings were also explored qualitatively, where
UMAP projection to 2D was leveraged to inspect whether the SGE symbolic
node representations group according to their assigned classes. Such grouping
indicates potential quality of the embedding, as venues of similar topics should
be clustered together in the latent space.
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Abstract. Learning to rank based on principles of analogical reasoning
has recently been proposed as a novel method in the realm of prefer-
ence learning. Roughly speaking, the method proceeds from a regularity
assumption as follows: Given objects A, B, C, D, if A relates to B as
C relates to D, and A is preferred to B, then C is presumably preferred
to D. This assumption is formalized in terms of so-called analogical pro-
portions, which operate on a feature representation of the objects. Con-
sequently, a suitable feature representation is an important prerequisite
for the success of analogy-based learning to rank. In this paper, we there-
fore address the problem of feature selection and adapt common feature
selection techniques, including forward selection, correlation-based filter
techniques, as well as Relief-based methods, to the case of analogical
learning. The usefulness of these approaches is shown in experiments
with synthetic and benchmark data.

Keywords: Feature selection · Leaning to rank · Analogical reasoning

1 Introduction

The idea of applying principles of analogical reasoning in preference learning
[6] has recently attracted increasing attention in the machine learning literature
[1,2,4]. For example, a method for so-called object ranking is proposed in [1].
This task consists of learning a ranking function that accepts any set of objects
(typically though not necessarily represented as feature vectors) as input, and
predicts a ranking in the form of a total strict order as output. To this end,
the authors invoke the following inference pattern: If object A relates to B as C
relates to D, and A is preferred to B, then C is presumably preferred to D.

As an illustration, Fig. 1 shows objects represented as points in R
2. In the left

panel, the relationship between A and B is roughly the same as the relationship
between C and D, in case “relationship” is understood in the (geometric) sense
of “relative location”. Therefore, if A is known to be preferred to B, we may
suspect that C is preferred to D (suggesting that decreasing the value of x1 and
increasing the value of y1 has a positive influence on preference).
c© Springer Nature Switzerland AG 2019
P. Kralj Novak et al. (Eds.): DS 2019, LNAI 11828, pp. 279–289, 2019.
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Fig. 1. Geometric illustration of analogical relationships: In the left picture, the four
objects are in analogical relationship, because the “delta” between A and B is roughly
the same as between C and D. In the right picture, this is not the case.

Obviously, preferences will not always satisfy this form of analogical relation-
ship (e.g., right panel of Fig. 1). Nevertheless, even if they do so only approx-
imately, or the number of quadruples (A,B,C,D) violating the relationship is
sufficiently small, good overall predictions may still be produced, for example
via averaging effects. In any case, as already suggested by Fig. 1, the feature rep-
resentation of objects may have an important influence on how well the analogy
assumption applies. Therefore, prior to applying analogical reasoning methods,
it could be useful to embed the objects in a suitable space, so that the assump-
tion of the above inference pattern holds true in that space. This is comparable,
for example, to embedding objects in R

d such that the nearest neighbor rule
with Euclidean distance yields good predictions in a classification task.

In this paper, by addressing the problem of feature selection in analogical
inference, we make a first step in that direction. Feature selection, which has
been studied quite thoroughly in machine learning [8], can be seen as a specific
type of embedding, namely a projection of the data from the original feature
space to a subspace. By ignoring irrelevant or noisy features and restricting to
the most relevant dimensions, the performance can often be improved.

In the next section, we recall the problem of object ranking and the analogy-
based approach to this problem put forward in [1]. In Sect. 3, we address the task
of feature selection and adapt existing techniques to the case of analogy-based
learning to rank. An empirical evaluation of the proposed methods is presented
in Sect. 4, prior to concluding the paper in Sect. 5.

2 Analogy-Based Learning to Rank

Consider a reference set of objects X , and assume each object x ∈ X to
be described in terms of a feature vector; thus, an object is a vector x =
(x1, . . . , xd) ∈ R

d and X ⊆ R
d. The goal in object ranking is to learn a rank-

ing function ρ that accepts any (query) subset Q = {x1, . . . ,xn} ⊆ X of
n = |Q| objects as input. As output, the function produces a ranking π rep-
resented by a bijection {1, . . . , n} −→ {1, . . . , n}, such that π(k) is the position
of the kth object xk. The ranking function ρ is learned on a set of training data
D =

{
(Q1, π1), . . . , (QM , πM )

}
, where each ranking π� defines a total order of

the set of objects Q�. The predicted ranking is evaluated in terms of a suit-
able loss function or performance metric. A common choice is the ranking loss,
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dRL(π, π̂), which is the number of incorrectly ranked pairs (i, j), i.e., such that
π(i) < π(j) but π̂(i) > π̂(j), divided by the number n(n − 1)/2 of all pairs.

A new approach to object ranking was recently proposed on the basis of ana-
logical reasoning [1]. This approach essentially builds on the following inference
pattern: If object a relates to object b as c relates to d, and knowing that a is
preferred to b, we (hypothetically) infer that c is preferred to d. This principle
is formalized using the concept of analogical proportion [13].

Consider four values a, b, c, d from an attribute domain X. The quadruple
(a, b, c, d) is said to be in analogical proportion, denoted by a : b :: c : d, if
“a relates to b as c relates to d”. More specifically, the quadruple can be in
analogy to a certain degree, denoted v(a, b, c, d), which can be expressed as
E

(R(a, b),R(c, d)
)
. Here, the relation E denotes the “as” part of the above

description, and R can be instantiated in different ways, depending on the under-
lying domain X. An example is the arithmetic proportion

v(a, b, c, d) =

{
1 − |(a − b) − (c − d)|, if (a − b)(c − d) > 0 ,

0, otherwise ,
(1)

on X = [0, 1]. Finally, an analogical proportion on complete feature vectors,
v(a, b, c,d), can be obtained by averaging the proportions v(ai, bi, ci, di) on the
individual components.

With a measure of analogical proportion at hand, the object ranking task
is tackled as follows: Consider any pair of query objects xi,xj ∈ Q. Every
preference z � z′ (i.e., z is preferred to z′) observed in the training data D,
such that (z,z′,xi,xj) are in analogical proportion, suggests that xi � xj . This
principle is referred as analogical transfer of preferences, because the observed
preference for z,z′ is (hypothetically) transferred to xi,xj . Accumulating all
pieces of evidence that can be collected in favor of xi � xj and, vice versa, the
opposite preference xj � xi, an overall degree pi,j is derived for this pair of
objects. The same is done for all other pairs in the query. Eventually, all these
degrees are combined into an overall consensus ranking by using a suitable rank
aggregation technique; see e.g., [3]. We refer to [1] for a detailed description of
this method, which is called “analogy-based learning to rank” (able2rank).

3 Feature Selection

In this paper, we adapt common feature selection techniques for the task of
learning to rank based on analogical reasoning, including filter methods based
on correlation, forward selection as a well-known wrapper approach, and Relief-
based algorithms. More specifically, we propose a strategy that can be seen as a
combination of a filter and a wrapper approach:

(S1) Starting from d original features X1, . . . , Xd, we first evaluate each feature
Xi in terms of a score e(Xi), and sort all features in decreasing order of
their evaluation. The result is a permutation σ of {1, . . . , d}, where σ(k) is
the index of the kth best feature.
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Fig. 2. Illustration of the procedure for determining the optimal number of features:
Fit of an isotonic function for k = k∗ (middle) and for a suboptimal k (right). X-axis
shows k values, and the y-axis is the rank loss estimations.

(S2) As candidates for feature subsets, we then only consider the “top-k” sub-
sets Sk = {Xσ(1), . . . , Xσ(k)}, k ∈ {1, . . . ., d}, instead of the exponential
number of all subsets. For each candidate Sk, we determine the ranking
performance in a wrapper mode, i.e., by running the learning-to-rank algo-
rithm with this subset of features, and finally pick the subset Sk∗ with the
best performance.

Both the evaluation of individual features in step S1 and the evaluation of feature
subsets in step S2 are done on the training data. In particular, to get an unbiased
estimate of the performance, step S2 is done in a (nested) cross-validation mode,
i.e., by splitting the training data again into two parts, running the algorithm
with feature subset Sk on the first part and estimating performance on the second
part. Since different results will be obtained for different splits, the evaluation of a
candidate subset Sk is “noisy” and consists of r performance degrees (estimations
of the rank loss) p̂k,1, . . . , p̂k,r, with r the number of repetitions (which we assume
to be fixed). The question, then, is how to choose the optimal subset Sk∗ , or
equivalently, the optimal number of features k∗. This problem can be seen as a
specific type of noisy function optimization.

The simplest approach is to aggregate the losses p̂k,1, . . . , p̂k,r into a single
estimate p̄k, for example the mean or the median, and determine k∗ on the basis
of these estimates: k∗ = argmink∈{1,...,d} p̄k. Yet, to increase the robustness of
the selection, and to benefit from an averaging effect over the estimates for
different values k, we choose k∗ based on how well a specific k complies with the
hypothesis of being the true optimum (i.e., that k = k∗). To this end, assuming
that the true loss pk is minimal for k and increases toward both sides (referred to
as “umbrella ordering” in [7]), we fit a performance curve with these properties
using isotonic regression.

More specifically, as proposed in [17], we find estimates ˆ̄p1, . . . , ˆ̄pd minimizing

sk =
d∑

i=1

(ˆ̄pi − p̄i)2 ,
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under the constraint ˆ̄p1 ≥ · · · ≥ ˆ̄pk−1 ≥ ˆ̄pk ≤ ˆ̄pk+1 ≤ · · · ≤ ˆ̄pd. The sum of
squared deviations, sk, can be seen as a measure of how well the data supports
the hypothesis k = k∗ (see Fig. 2 for an illustration). Correspondingly, we obtain
sk for all k ∈ {1, . . . , d} and eventually select k∗ = argmink∈{1,...,d} sk.

In what follows, we outline different methods we used to realize step S1
of our approach, i.e., to evaluate individual features Xi and rank them from
(presumably) most to least informative.

3.1 Correlation-Based Selection

The intuition behind the correlation-based approach is to assess the merit of each
feature on the basis of the information it provides about the target variable. In
the context of analogy, we propose the following measure, which is inspired by
measures of correlation as commonly used in regression and classification.

Consider objects (feature vectors) a, b, c,d in the training data, such that
a : b :: c : d and ai : bi :: ci : di. Thus, since the objects as a whole are in
analogical proportion, as well as the values for the ith feature Xi, one can say
that the feature contributes to the analogy. Now, we consider the analogy as a
positive example if the preferences on both sides are coherent, i.e., either a � b
and c � d, or b � a and d � c; otherwise, the analogy is a negative example.
To evaluate the attribute Xi, we count the number of positive examples (i.e.,
quadruples a, b, c,d with the above properties) and negative examples in the
training data, and take the difference between these counts.

3.2 Forward Selection

Sequential forward selection is a well-known wrapper method. Starting from the
empty feature set S = ∅, it successively adds the feature that leads to the highest
improvement. More specifically, forward selection tentatively adds each feature
Xj 	∈ S, runs the learning algorithm with S(j) = S ∪ {Xj}, and then adopts the
S(j) with the best performance.

Normally, forward selection has a stopping condition and terminates with
the current feature subset S if a further expansion does not seem to improve
performance. Recall, however, that we are using this method for the purpose
of feature ranking instead of selection, i.e., to realize step S1 of our general
approach. Therefore, we run forward selection until all features are consumed.
Obviously, this may become quite costly, since the total number of subsets to be
evaluated is as large as d(d+1)

2 .

3.3 Relief-Based Algorithms

The Relief family of algorithms is among the most successful approaches for
feature weighting and selection. The original Relief algorithm, proposed by Kira
and Rendell [10,11], is inspired by instance-based learning for classification [9]:
It seeks to find a weighting of features such that nearest neighbor classifica-
tion with weighted Euclidean distance leads to strong performance. To this end,
the algorithm estimates feature weights iteratively. In each iteration, a target
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instance x = (x1, . . . , xd) is selected at random, and two nearest neighbors of
this instance are found: a first one from the same class, termed near-hit (NH),
and a second one from a different class, called near-miss (NM). The weight wi

of the ith feature Xi is then updated by wi −|xi −NHi|+ |xi −NMi|, where NHi

is the value of Xi in the near-hit instance. After m iterations, the weight vector
w = (w1, . . . , wd) defines a relevance score for each feature.

Since then, several modifications and extensions of Relief have been proposed;
we refer the reader to [18] for a thorough review of Relief-based algorithms. The
most commonly used variant today is Relief-F [12], which enhances the original
algorithm mainly in three aspects: it considers the k nearest neighbors in the
update rule (instead of only a single neighbor), it handles missing (incomplete)
data, and can be applied to multi-class problems.

Another interesting variant is Iterative Relief (I-Relief). It overcomes cer-
tain difficulties of Relief with handling non-monotonic features [5] and, more-
over, addresses two other important flaws of the original version: The nearest
neighbors in the original feature space might not be the nearest neighbors in the
weighted feature space, and the computation of feature weights is quite sensitive
toward outliers in the data [15,16]. In I-Relief, all instances contribute to the
weight update (to some degree, which is controlled by a sigmoidal function of the
distance to the target instance). Moreover, as the name suggests, the algorithm
is iterative and, in each iteration, computes distances between instances based
on the weights from the previous iteration. The algorithm runs until the weight
update is negligible or some other stopping condition is met.

We consider adaptations of Relief-F [12] and I-Relief [15,16] for feature selec-
tion in the context of analogy-based learning to rank, focusing on the analogical
proportion (1), which is a map v : [0, 1]4 −→ [0, 1]. To this end, we establish a
connection between this problem and the problem of binary classification: Sup-
pose that the (latent) utility of an object x ∈ X can be expressed in terms of
a linear function w�x specified by a weight vector w. A preference xi � xj is
then equivalent to w�xi > w�xj , and hence to w�(xi − xj) > 0. From the
point of view of a linear classifier, which produces binary predictions (positive
or negative) by thresholding scores at 0, zi,j = xi −xj can be seen as a positive
example (with class ci,j = +1) and zj,i = xj − xi as a negative example (with
class cj,i = −1). Thus, solving the learning-to-rank problem in the sense of learn-
ing the weight vector w = (w1, . . . , wd) could principally be reduced to training
a linear classifier on positive and negative examples of that kind. The training
data for this classifier, Dbin, can be extracted from the original preference data
D as described above.

With this view of learning to rank as binary classification, and the weight wi

as a degree of relevance of the feature Xi, Relief-based algorithms can be applied
on the data Dbin in a more or less straightforward way. Our main modification
concerns the similarity function used for finding the nearest neighbors of the
target instance in the transformed feature space, which we reasonably define
as a function of our measure of analogical proportion: Given transformed fea-
ture vectors z1 = (z1,1, . . . , z1,d),z2 = (z2,1, . . . , z2,d) ∈ [−1, 1]d, their weighted
similarity is defined as
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simw (z1,z2 ) =
1
d

d∑

i=1

wi v(z1,i,z2,i) , (2)

where v measures the analogical proportion between z1 and z2 (or, more pre-
cisely, the analogical proportion of the objects from which they have been
derived):

v(a, b) =

{
1 − |a − b|, if ab > 0 ,

0, otherwise.

The weight vector in the case of Relief-F is simply the all-one vector. The input
of our adapted Relief-F algorithm comprises the data Dbin and the number K of
nearest neighbors. What the algorithm is doing on the original preference data
D can roughly be described as follows: Given objects a, b, c,d with a high degree
of analogy, and such that a feature Xi contributes to this analogy, the weight
of Xi is increased if the preferences are coherent (a � b and c � d, or b � a
and d � c), and decreased otherwise. Eventually, the algorithm will return a
weight vector representing the merit of each feature for the task of analogy-
based learning to rank. Again, these weights can be used to determine a ranking
σ of the features as required for step S2 of our approach1.

Using I-Relief with the modified similarity measure (2), the weight vector w
derived in each iteration is used for computing the similarity in the subsequent
iteration. In addition to the similarity function, we slightly modified the objec-
tive function to account for similarity instead of distance. Our adapted I-Relief
algorithm accepts as input the data set Dbin and a kernel width γ together with
a stopping parameter θ. As stated in [15,16], the convergence rate of I-Relief
is fully controlled by the choice of γ. Once convergence is reached, the weight
vector w representing the score of each feature will be returned.

4 Experiments

We implemented the able2rank algorithm (with slight modification: (1) is used
to account for our similarity measure (2)), including the pre-processing and nor-
malization of the data, as described in [2]. The implementation of the feature
selection methods follows the description in the previous section. For I-Relief,
the stopping parameter was set to θ = 10−8, and the algorithm was run for ker-
nel width γ ∈ {0.1, 0.3, 0.5, 1, 3, 5}. The final feature weights were then obtained
by averaging the resulting feature weights per attribute. Likewise, in Relief-F,
feature weights were averaged over parameters K ∈ {1, 5, 10, 15}. The perfor-
mances of candidate subsets Sk in step S2 of our approach (cf. Sect. 3) were
estimated on the basis of a two-fold cross validation (repeated 5 times) on the
training data.

We used the same data sets as in [1]: Bundesliga (B), Decathlon (D), Foot-
ballers (F), Hotels (H), University Rankings (U), Volleyball (V). In addition, we
1 Actually, we do not produce a ranking of all features, but include only those features

whose scores are positive.
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Table 1. Results (real data) in terms of loss dRL on the test data.

Dtrain → Dtest Full Forward Relief-F I-Relief Correlation

B1 → B2 .031 ± .009(5) .017 ± .006(4) .012 ± .006(1) .012 ± .006(1) .012 ± .006(1)

B2 → B1 .013 ± .000(1) .013 ± .000(1) .013 ± .000(1) .014 ± .007(4) .014 ± .007(4)

Average .022 (3.00) .015 (2.50) .012 (1.00) .013 (2.50) .013 (2.50)

D1 → D2 .063 ± .000(1) .169 ± .001(5) .063 ± .000(1) .063 ± .000(1) .063 ± .000(1)

D1 → D3 .079 ± .003(1) .139 ± .008(5) .079 ± .003(1) .079 ± .003(1) .079 ± .003(1)

D1 → D4 .111 ± .008(1) .154 ± .006(5) .111 ± .008(1) .111 ± .008(1) .111 ± .008(1)

D2 → D1 .091 ± .001(1) .150 ± .001(5) .103 ± .001(4) .091 ± .001(1) .091 ± .001(1)

D2 → D3 .083 ± .006(2) .096 ± .006(5) .055 ± .006(1) .083 ± .006(2) .083 ± .006(2)

D2 → D4 .151 ± .004(2) .186 ± .007(5) .125 ± .007(1) .151 ± .004(2) .151 ± .004(2)

D3 → D1 .140 ± .001(1) .213 ± .001(4) .227 ± .001(5) .140 ± .001(1) .197 ± .001(3)

D3 → D2 .117 ± .001(1) .165 ± .001(4) .167 ± .001(5) .117 ± .001(1) .162 ± .000(3)

D3 → D4 .165 ± .004(2) .174 ± .005(4) .163 ± .007(1) .165 ± .004(2) .179 ± .008(5)

D4 → D1 .164 ± .001(1) .191 ± .001(5) .175 ± .001(4) .173 ± .001(3) .164 ± .001(1)

D4 → D2 .156 ± .001(1) .180 ± .001(4) .194 ± .001(5) .167 ± .001(3) .156 ± .001(1)

D4 → D3 .122 ± .010(2) .117 ± .007(1) .128 ± .005(4) .147 ± .008(5) .122 ± .010(2)

Average .120 (1.33) .161 (4.33) .133 (2.75) .124 (1.92) .130 (1.92)

F3 → F4 .162 ± .002(4) .156 ± .002(3) .139 ± .002(1) .166 ± .003(5) .143 ± .002(2)

F4 → F3 .156 ± .002(3) .154 ± .002(2) .165 ± .002(5) .156 ± .002(3) .152 ± .003(1)

Average .159 (3.50) .155 (2.50) .152 (3.00) .161 (4.00) .147 (1.50)

FB1 → FB2 .043 ± .001(5) .031 ± .001(4) .011 ± .001(1) .014 ± .001(2) .014 ± .001(2)

FB2 → FB1 .050 ± .001(4) .052 ± .001(5) .013 ± .001(3) .012 ± .001(1) .012 ± .001(1)

Average .046 (4.50) .041 (4.50) .012 (2.00) .013 (1.50) .013 (1.50)

G1 → G2 .073 ± .006(1) .094 ± .015(5) .083 ± .011(2) .083 ± .011(2) .083 ± .011(2)

G1 → G3 .019 ± .003(1) .023 ± .005(5) .019 ± .006(1) .019 ± .006(1) .019 ± .006(1)

G2 → G1 .047 ± .007(3) .034 ± .008(1) .043 ± .007(2) .047 ± .007(3) .047 ± .007(3)

G2 → G3 .029 ± .002(2) .023 ± .004(1) .029 ± .002(2) .029 ± .002(2) .029 ± .002(2)

G3 → G1 .048 ± .006(5) .038 ± .006(1) .041 ± .010(2) .041 ± .010(2) .041 ± .010(2)

G3 → G2 .078 ± .006(2) .074 ± .003(1) .084 ± .016(3) .084 ± .016(3) .084 ± .016(3)

Average .049 (2.33) .048 (2.33) .050 (2.00) .050 (2.17) .050 (2.17)

H1 → H2 .060 ± .000(1) .062 ± .000(3) .065 ± .000(4) .061 ± .000(2) .067 ± .000(5)

H2 → H1 .101 ± .001(5) .100 ± .001(3) .096 ± .001(2) .100 ± .001(3) .095 ± .000(1)

Average .080 (3.00) .081 (3.00) .080 (3.00) .080 (2.50) .081 (3.00)

T1 → T2 .029 ± .004(5) .019 ± .005(4) .007 ± .003(1) .007 ± .003(1) .007 ± .003(1)

T2 → T1 .066 ± .005(5) .054 ± .004(4) .001 ± .001(2) .002 ± .001(3) .000 ± .000(1)

Average .048 (5.00) .036 (4.00) .004 (1.50) .004 (2.00) .004 (1.00)

P1 → P2 .021 ± .002(5) .019 ± .001(4) .006 ± .001(1) .006 ± .001(1) .006 ± .001(1)

P2 → P1 .018 ± .001(5) .012 ± .002(4) .004 ± .001(1) .004 ± .001(1) .004 ± .001(1)

Average .019 (5.00) .015 (4.00) .005 (1.00) .005 (1.00) .005 (1.00)

PK1 → PK2 .131 ± .010(1) .147 ± .013(3) .156 ± .016(4) .182 ± .024(5) .131 ± .010(1)

PK1 → PK3 .172 ± .018(1) .187 ± .023(3) .196 ± .024(4) .215 ± .038(5) .172 ± .018(1)

PK2 → PK1 .133 ± .009(1) .172 ± .019(5) .152 ± .012(4) .146 ± .010(3) .133 ± .009(1)

PK2 → PK3 .159 ± .019(1) .202 ± .033(5) .177 ± .023(4) .164 ± .025(3) .159 ± .019(1)

PK3 → PK1 .183 ± .014(1) .195 ± .015(3) .223 ± .022(4) .223 ± .022(4) .183 ± .014(1)

PK3 → PK2 .168 ± .014(1) .183 ± .015(3) .212 ± .022(4) .212 ± .022(4) .168 ± .014(1)

Average .158 (1.00) .181 (3.67) .186 (4.00) .190 (4.00) .158 (1.00)

U1 → U2 .078 ± .001(1) .102 ± .001(5) .092 ± .001(4) .078 ± .001(1) .078 ± .001(1)

U2 → U1 .058 ± .001(1) .066 ± .001(2) .067 ± .001(3) .077 ± .001(4) .077 ± .001(4)

Average .068 (1.00) .084 (3.50) .080 (3.50) .077 (2.50) .077 (2.50)

V1 → V2 .030 ± .000(1) .030 ± .000(1) .077 ± .015(4) .030 ± .000(1) .077 ± .015(4)

V2 → V1 .015 ± .000(1) .030 ± .000(3) .035 ± .007(4) .035 ± .007(4) .015 ± .000(1)

Average .022 (1.00) .030 (2.00) .056 (4.00) .032 (2.50) .046 (2.50)
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Table 2. Results (synthetic data) in terms of loss dRL on the test data.

Dtrain → Dtest Full Forward Relief-F I-Relief Correlation

AS1 → AS1 .040 ± .008(5) .036 ± .010(4) .010 ± .004(1) .010 ± .004(1) .010 ± .004(1)

AS2 → AS2 .036 ± .006(5) .028 ± .009(4) .007 ± .002(1) .007 ± .002(1) .007 ± .002(1)

AS3 → AS3 .048 ± .015(5) .044 ± .013(4) .009 ± .003(1) .009 ± .003(1) .009 ± .003(1)

AS4 → AS4 .037 ± .005(5) .036 ± .005(4) .007 ± .001(1) .007 ± .001(1) .007 ± .001(1)

Average .040 (5.00) .036 (4.00) .008 (1.00) .008 (1.00) .008 (1.00)

include FIFA WC goals statistics (G), Facebook Metrics (FB), NBA Teams and
Players (T, P), and Poker (PK). All data sets together with a description, as
well as the implementation of the presented algorithms, are publicly available2.

In our experiments, predictions were produced for certain data set Dtest

of the data, using other parts Dtrain as training data; an experiment of that
kind is denoted by Dtrain → Dtest. The averaged ranking loss together with
the standard deviation of the conducted experiments (repeated 20 times) are
summarized in Table 1, where the numbers in parentheses indicate the rank of
the achieved score in the respective problem. Moreover, the table shows average
ranks per problem domain. As can be seen, the relative performance of the
feature selection methods depends on the domain, and there is no clear winner.
Yet, feature selection as such turns out to be useful most of time, in the sense
that improvements over the use of all features (Full) can be achieved.

That being said, on some of the problem domains, the gains through feature
selection might not be as pronounced as one may expect. As one quite obvious
explanation, let us mention that most of the features in these data sets are
hand-picked, and hence supposedly relevant. A good example is the decathlon
data (D), in which features correspond to performances in the 10 disciplines.
Unsurprisingly, feature selection does not yield any improvements on this data,
simply because all the 10 features are important.

Therefore, we additionally conducted experiments with synthetic data, which
allows one to examine the effectiveness of the proposed feature selection algo-
rithms in a controlled fashion. One example is a data set we called Answer
Sheets3. In addition to 3 relevant attributes, this data is corrupted by noisy
(irrelevant) features of different type: 2 binary features in {0, 1}, 2 nominal in
{1, 2, 3, 4, 5}, and 3 integer features in {1, . . . , Q}. This process gives rise to data
sets AS1 (Q = 50) and AS2 (Q = 100). Further, we doubled the number of noisy
features (of each type) to produce data sets AS3 (Q = 50) and AS4 (Q = 100).

As can be seen in Table 2, the gains through feature selection are more sig-
nificant now. Indeed, the feature selection methods are producing almost perfect
results, and upon closer inspection, it turns out that they are almost always
selecting the right subset of relevant features. Similar results (omitted here due
to space restrictions) were obtained for other synthetic data sets.

2 https://github.com/mahmadif/able2rank.
3 The description is available at https://github.com/mahmadif/able2rank.

https://github.com/mahmadif/able2rank
https://github.com/mahmadif/able2rank
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5 Conclusion and Future Work

This paper elaborates on the problem of feature selection for analogy-based
learning to rank by adapting common feature selection techniques including
forward selection as a wrapper method, filter-techniques based on correlation,
and Relief-based approaches. The efficacy of these techniques are evaluated on
both synthetic and real-world data sets. The experimental results show that the
studied feature selection methods serve their purpose.

Going beyond the mere inclusion or exclusion of features, we plan to elaborate
on feature weighting and metric learning [19] for analogical preference learning in
future work, as well as general data embedding techniques. Specifically interest-
ing appears the idea of co-embedding [14], that is, the idea of embedding possibly
different types of objects in a common (Euclidean) space. This may provide a
means for realizing transfer learning, where source objects A and B are from
one domain, and target objects C and D from a possibly different domain.
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Abstract. In this paper, we propose three feature ranking scores (Sym-
bolic, Genie3, and Random Forest) for the task of semi-supervised clas-
sification. In this task, there are only a few labeled examples in a dataset
and many unlabeled. This is a highly relevant task, since it is increasingly
easy to obtain unlabeled examples, while obtaining labeled examples is
often an expensive and tedious task. Each of the proposed feature rank-
ing scores can be computed by using any of three approaches to learn-
ing predictive clustering tree ensembles (bagging, random forests, and
extra trees). We extensively evaluate the proposed scores on 8 bench-
mark datasets. The evaluation finds the most suitable ensemble method
for each of the scores, shows that taking into account unlabeled exam-
ples improves the quality of a feature ranking, and demonstrates that
the proposed feature ranking scores outperform a state-of-the-art semi-
supervised feature ranking method SEFR. Finally, we identify the best
performing pair of a feature ranking score and an ensemble method.

Keywords: Semi-supervised learning · Feature ranking · Ensembles

1 Introduction

A center task in machine learning is predictive modeling concerned with learning
a predictive model, from a given training dataset of values of features-target pairs
(x, y), where x = (x1, . . . , xF ). The learned predictive models can then be used
to predict target values for previously unseen values of features. In this paper,
we focus on the classification task, where the domain Y of the target y is a finite
set of discrete values. The task at hand is called binary classification if |Y| = 2,
and multi-class classification if |Y| > 2. In both cases, we refer to the target
values of y as labels or classes.

Typically, all the examples in the training set are labeled, i.e., have a known
value of y. In that case, we say that the learning is supervised. However, deter-
mining which class an example belongs to, might be very expensive or take too
much time in some domains (e.g., compound toxicity). Hence, there is a multi-
tude of datasets with only a handful of labeled examples and many unlabeled
c© Springer Nature Switzerland AG 2019
P. Kralj Novak et al. (Eds.): DS 2019, LNAI 11828, pp. 290–305, 2019.
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ones. To address this challenge, methods that can use the unlabeled data in the
learning phase have been developed [6,14]. These semi-supervised learning (SSL)
methods are applicable mostly when there are only a few labeled examples and
plenty of unlabeled data, which makes applying the supervised learning hard.

Another prominent task in machine learning is feature ranking where, the
goal is to discover to what extent each of the features xi, 1 ≤ i ≤ F is relevant
for the class y(x). Formally, given a dataset DTRAIN, the output of a feature
ranking algorithm is a list of feature importance scores importance(xi), where a
higher score corresponds to a higher relevance of the feature for the target values.
The task of feature ranking is typically seen as a data preprocessing step. We can
perform dimensionality reduction on the data to make the learning of a predictive
model faster or even at all feasible. This is done by discarding the features that
have lower importance than some threshold ϑ ∈ R. Lower dimensionality also
results in models that are easier to understand – this is particularly important
when a data scientist collaborates with a domain expert. Lately, much work is
being done in the field of explainable artificial intelligence. In the case of black
box models, such as neural networks and ensembles, feature ranking is the only
way to at least partially explain the obtained predictions.

A task that is related to feature ranking is feature selection. The goal of
feature selection is to identity a subset of the features that yield better (or at
least the same) predictive performance when used to learn predictive models (as
compared to learning a predictive model on the complete feature set). Note that
this is a task different from feature ranking: the former looks for the best subset,
while the latter focuses on ordering the features based on their relevance for the
target. Notwithstanding, as mentioned above, feature ranking can be used to
perform feature selection by applying a threshold on the importance scores.

We propose a method for SSL feature ranking, i.e., learning a feature ranking
for datasets with a handful of labeled examples and many unlabeled examples.
The proposed method is based on the ensemble learning paradigm [16]. It uses
tree-based methods for semi-supervised learning of classification trees [14].

We perform an empirical evaluation of the proposed method on 8 bench-
mark multi-class classification datasets. In the empirical evaluation, we set out
to investigate the influence of the combination of ensemble learning methods
and feature ranking scores, the number of labeled examples, and the number of
unlabeled examples. Moreover, we compare the performance of the variants of
the proposed method to the performance of their fully supervised counterparts
as well as to the performance of another competing method for semi-supervised
feature ranking based on ensemble learning [1].

The remainder of this paper is organized as follows. In Sect. 2, we review
the background and the related work. Next, in Sect. 3, we describe the proposed
method for feature ranking for semi-supervised classification. Furthermore, we
outline the design of the empirical evaluation of the proposed method in Sect. 4
and then we discuss the results of the evaluation in Sect. 5. Finally, we conclude
and provide directions for further work in Sect. 6.
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2 Background and Related Work

2.1 Related Work

There are three major groups of methods that address the SSL task. The simplest
option is to discard the unlabeled data, and then use an existing algorithm for
supervised learning. However, when the number of labeled examples is really low
(e.g., 10 or 20 examples), this approach has severely limited success.

The second group of methods performs self-training [17] where an algorithm
for supervised learning is first applied to the labeled examples in DTRAIN. Next,
the resulting model is used to predict the target values of the unlabeled examples,
and a heuristic score is used to assess the certainty/reliability of the predictions
of the models. The examples for which the algorithm is the most certain in its
predictions, keep their labels and the examples are added to the current set of
labeled examples. The cycle is iteratively repeated until a stopping criterion is
met (e.g., no more unlabelled examples or no more reliable predictions). At the
end, a model is learned on the final set of labeled examples.

The last class of SSL methods are algorithm-adaptation methods, where an
existing algorithm, e.g., for learning decision trees [3], is adapted so that it can
also take into account the unlabeled examples. In the case of decision trees, this
was done by adapting the heuristic that measures the impurity of the current
dataset [14], so that not only the target y is taken into account, but also the
features xi. Under the clustering assumption, i.e., the assumption that the class
values correspond to well-defined clusters of data [6], the last two approaches
are expected to be superior to the first solution.

Like supervised feature ranking methods, feature ranking methods for SSL
belong to three major groups [18]: filter methods, where no predictive model is
needed for feature ranking; embedded methods, where feature ranking is com-
puted directly from a predictive model; and wrapper methods, where a predictive
model is typically retrained more than once and the ranking is built iteratively.

Filter methods are typically the fastest, but can be myopic. Namely, they
do not take into consideration possible feature interactions and have limited
scope, e.g., the variance score [2] is applicable to datasets with numeric features
only. A representative of embedded methods is the SEFR feature ranking [1]
computed from an ensemble of decision trees: this is an SSL adaptation of the
random forest ranking [4], where the trees are learned in a self-training fashion.
A representative of the wrapper methods is the method for recursive feature
elimination with support vector machines (SVMs) [20]. At each iteration, an
SVM model is trained and thus a normal w is obtained. Features xi for which
the absolute value of components |wi| are the smallest are removed, and the
procedure is iteratively repeated until a complete ranking is obtained. For other
SSL feature ranking methods (which are mostly limited to feature selection of
numeric features), we refer the reader to a recent survey [18].
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2.2 Semi-supervised Predictive Clustering Trees

The proposed feature ranking method is based on ensembles of predictive clus-
tering trees (PCTs) for classification. The PCT framework views a decision tree
as a hierarchy of clusters, which are induced with the standard top-down induc-
tion process [5] described in Algorithm 1. The root of a PCT corresponds to a
cluster containing all data, which is recursively partitioned into subclusters while
moving down the tree. The leaves represent the clusters at the lowest level of the
tree hierarchy and each leaf is labeled with its cluster’s prototype (prediction).
PCTs generalize decision trees and can be used for a variety of learning tasks,
including clustering tasks, different types of structured output prediction tasks
[3,12], as well as SSL tasks [14]. The generalization is based on appropriately
adapting the heuristic for inducing PCTs and the prototype function to the given
structured output prediction task.

Algorithm 1 is used for learning PCTs. Its input is a set of examples E ⊆
DTRAIN, and its output is a tree. The heuristic h that is used for selecting the
best test at a node is the weighted impurity reduction of the subsets of E (lines
3 and 4), induced by the tests. By maximizing it (line 5 of Algorithm 2), the
algorithm is guided towards small trees with good predictive performance. If no
test reduces the impurity, a leaf is created and the prototype (e.g., average) of
the instances belonging to that leaf is computed.

Algorithm 1. PCT(E)
1: (t∗, h∗, P∗) = BestTest(E)
2: if t∗ �= none then
3: for each Ei ∈ P∗ do
4: treei = PCT(Ei)
5: return Node(t∗,

⋃
i{treei})

6: else
7: return Leaf (Prototype(E))

Algorithm 2. BestTest(E)
1: (t∗, h∗, P∗) = (none, 0, ∅)
2: for each test t do
3: P = partition induced by t on E
4: h = |E|impu(E) − ∑

Ei∈P |Ei|impu(Ei)
5: if h > h∗ then
6: (t∗, h∗, P∗) = (t, h, P)
7: return (t∗, h∗, P∗)

In the standard classification scenario, the impurity impu(E) of a data subset
E is defined as the Gini impurity of the class y, i.e., Gini(E, y) = 1 −

∑
c p2E(c),

where pE(c) is the relative frequency of the class value c in the subset E.
In the semi-supervised scenario, where some or most of the target values
are missing, the heuristic is adapted so that also impurity of the features
is taken into account. To this end, we first define the normalized version of
Gini , namely Gini ′(E, y) = Gini(E, y)/Gini(DTRAIN, y). Analogously, we intro-
duce the impurity measure for numeric features as the normalized variance
Var′(E, xi) = Var(E, xi)/Var(DTRAIN, xi). Finally, the impurity of a set E is
defined as impu(E) = w Gini ′(E, y) + (1 − w) · 1

F

∑F
i=1 impu(E, xi), where the

impu(E, xi) is calculated as Gini ′(E, xi) if xi is nominal and as Var′(E, xi) if
xi is numeric, and F is the number of features and the influence of Gini ′(E, y)
is controlled by the parameter w ∈ [0, 1], whose optimal value is set by internal
cross-validation. When computing the relative frequencies that are used in the
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Gini ′ score, only the examples with known values of the target y (or feature xi)
are taken into account. The prediction, i.e., the prototype in a leaf of a PCT, is
defined as the majority class value in the leaf.

2.3 Ensembles of PCTs

An ensemble is a set of base predictive models constructed with a given algo-
rithm. The prediction for a new example x is made by combining the predictions
of the models from the ensemble. In classification tasks, this is typically done by
voting, where the i-th base model either votes for the class value it predicts, or
computes the probabilities pi(c | x), for all class values c. In the first case, the
prediction of the ensemble is the class with the most votes. In the second case,
the prediction is the class with the highest sum

∑
i pi(c | x).

A necessary condition for an ensemble to be more accurate than its members,
is that the members are accurate and diverse models [9], i.e., that they make
different errors on new examples. However, we do not use the ensembles as
predictive models. Rather, we use them as a basis for computing feature ranking
scores. As it is evident from the scores’ definitions in Sect. 3 (Eqs. (1), (2) and
(3)), one can also compute the ranking from a single tree, but the variance
of feature importances decreases when the number of trees is higher. There are
several ways to introduce diversity among the PCTs in an ensemble. We describe
and make use of three of them.

Bagging and Random Forests. Instead of being learned from the original
dataset DTRAIN, each tree in the bagging/random forest ensemble is built from a
different bootstrap replicate B of the dataset DTRAIN, called bag. The examples
DTRAIN \B are called out-of-bag examples (OOB). Additionally, the line 2 of the
BestTest procedure (see Algorithm 2) is modified to change the feature set during
learning by introducing randomization in the test selection. More precisely, at
each node in a decision tree, a random subset of the features is taken, and the
best test is selected from the splits defined by these features. The number of the
retained features F ′ is given as a function of the total number of features F , e.g.,
�
√

F �, �F/4�, etc. We obtain the bagging procedure if we keep all the features,
and the random forest procedure otherwise.

Extra Tree Ensembles. As in random forests, we consider F ′ features in each
node, but we do not evaluate all potential tests that the features could yield.
Rather, we choose randomly only one test per feature. Among these F ′ tests, we
choose the best one. From the bias-variance point of view, the rationale behind the
Extra-Trees method is that the explicit randomization of the cut-point and feature
combined with ensemble averaging should be able to reduce variance more strongly
than the weaker randomization schemes used by other methods [7]. Note that orig-
inally, Extra-Tree ensembles use no bootstrapping. However, we introduced it due
to two main reasons: i) some preliminary experiments showed that it is beneficial
to do so from the predictive power point of view, and ii) the Random Forest score
(see Eq. (3)) requires OOB examples for its computation.
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3 Feature Ranking Scores for SSL Classification

We first propose and describe the Symbolic score. Then, we proceed explaining
the Genie3 [11] and the Random Forest scores [4]. To avoid confusion, Random
Forest score will be always in singular form and capitalized, whereas the ensem-
ble method random forests will be in plural form and not capitalized. In the
following, a tree is denoted by T , whereas N ∈ T denotes a node in a tree.
Trees form an ensemble E of size |E|. The set of all internal nodes of a tree T in
which the feature xi appears as part of a test is denoted as T (xi).

Symbolic Score. In the simplest version of the score, we count the occurrence
of a given feature in the tests in the internal nodes of the trees. Since the features
appearing closer to the root influence more examples and are intuitively more
important, we define the importance of the feature xi as

importanceSYMB(xi) =
1

|E|
∑

T ∈E

∑

N ∈T (xi)

|E(N )|/|DTRAIN|, (1)

so that the appearances of the feature xi are weighted by the number of examples
the corresponding node influences. The term 1/|DTRAIN| is just a scaling factor.
This is a parameter-less version of the previously defined Symbolic score [16],
where an appearance of a feature xi in node N was awarded αdepth(N ), where
the value of the α ∈ (0, 1] had to be chosen by the user.

Genie3 Score. The main motivation for this score is that splitting the current
subset E ⊆ DTRAIN, according to a test where an important feature appears,
should result in high impurity reduction. The Genie3 importance of the feature
xi is thus defined as

importanceGENIE3(xi) =
1

|E|
∑

T ∈E

∑

N ∈T (xi)

|E(N )|h∗(N ), (2)

where E(N ) is the set of examples that come to the node N , and h∗(N ) is
the value of the variance reduction function described in Algorithm 2. Greater
emphasis is again put on the features higher in the tree, where |E| is larger.

Random Forest (RF) Score. This score tests how much noising a given
feature decreases the predictive performance of the trees in the ensemble. The
greater the performance degradation, the more important the feature is.

Once a tree T is grown, the algorithm evaluates the performance of the
tree by using the corresponding OOBT examples. This results in the accuracy
a(OOBT ). Afterward, we randomly permute the values of feature xi in the set
OOBT and obtain the set OOBi

T with the corresponding accuracy a(OOBi
T ).
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The importance of the feature xi for the tree T is defined as the relative decrease
of accuracy after noising. The final Random Forest score of the feature is the
average of these values across all trees in the forest:

importanceRF(xi) =
1

|E|
∑

T ∈E

a(OOBT ) − a(OOBi
T )

a(OOBT )
. (3)

Note that a(OOBi
T ) = a(OOBT ) if the feature xi does not appear in T . This

can speed up the computation of importanceRF, but this feature ranking method
is still the most time consuming. While the time complexity of the first two is
negligible as compared to the one of growing the forest, this one has an additional
linear factor: the number of examples in the training set.

4 Experimental Design

In this section, we define the experimental questions, briefly describe the
datasets, define the evaluation procedure and describe which parameters of the
algorithms were used in the experiments. With the empirical evaluation, we set
out to answer the following four questions:

1. Which ensemble method suits a given feature ranking score the most?
2. Can our SSL-feature ranking scores make effective use of the unlabeled exam-

ples, especially when the number of labeled examples is small?
3. Do our SSL-feature ranking scores yield state-of-the-art feature rankings?
4. Which SSL-feature ranking score has the highest quality?

Before proceeding to the rest of the section, let us mention that the proposed
SSL feature ranking scores are implemented in the Clus software http://source.
ijs.si/ktclus/clus-public, and that all the datasets, the results are available at
http://source.ijs.si/mpetkovic/ssl-fr, together with our implementation of the
competing SEFR method [1].

We use 8 benchmark classification datasets from various domains: medicine
(Arrhythmia, Dis), science and technology (Gasdrift, Pageblocks, Phishing),
gaming (Chess, Tic-tac-toe) and economy (Bank). The main properties of the
datasets, i.e., the number of features, classes, and examples are given in Table 1.

Prior to performing any experiments, each dataset D was randomly split
into x = 10 stratified folds which resulted in the test sets DTESTi, 0 ≤ i < x.
In contrast to the cross-validation in the standard classification scenario where
DTRAINi = ∪j �=iDTESTj we first define the copy DTEST

�
i of DTESTi in which we

remove the labels (class values) of all but 	�/(x − 1)
 + ri randomly selected
examples, where 	·
 is the floor function, r is the reminder of � when divided by
x − 1, and ri = 1 if i < r and 0 otherwise. This assures that every training set
DTRAIN

�
i = ∪j �=iDTEST

�
i contains precisely � labeled examples. We make sure

that the implication �1 ≤ �2 ⇒ labeled examples of DTRAIN
�1
i are a subset of the

labeled examples in DTRAIN
�2
i holds.

http://source.ijs.si/ktclus/clus-public
http://source.ijs.si/ktclus/clus-public
http://source.ijs.si/mpetkovic/ssl-fr
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Table 1. Basic properties of the datasets in the experiments: number of nominal
and numeric features, number of examples, number of classes and the proportion of
examples belonging to the majority class.

Dataset Nominal Numeric Examples Classes Majority class [%]

Arrhythmia [15] 73 206 452 16 54

Bank [15] 9 7 4521 2 88

Chess [15] 36 0 3196 2 52

Dis [8] 22 6 3772 2 98

Gasdrift [15] 0 129 13910 6 22

Pageblocks [15] 0 10 5473 5 90

Phishing [15] 30 0 11055 2 56

Tic-tac-toe [15] 9 0 958 2 65

An SSL-ranking score is computed from DTRAIN
�
i and its standard-

classification counterpart is computed on the DTRAIN
�
i with the unlabeled exam-

ples removed. Afterward, both rankings are evaluated on DTEST
�
i . This is done

by using the kNN algorithm with k = 20 where weighted version of the standard
squared Euclidean distance is used. For two input vectors x1 in x2, the distance
d between them is defined as d(x1,x2) =

∑F
i=1 wid

2
i (x

1
i ,x

2
i ), where di is defined

as the absolute difference of the feature values scaled to the [0, 1]-interval, if xi

is numeric, and as 1[x1
i �= x2

i ] (1 is the indicator function), if xi is nominal.
We first define wi = max{importance(xi), 0}, since Random Forest ranking

can award a feature a negative score. In the degenerated case when the resulting
values all equal 0, we define wi = 1, for all features xi. The first step is necessary
to ignore the features that are of lower importance than a randomly generated
one would be. The second step is necessary to ensure d is well-defined.

The evaluation through kNN was chosen because of three main reasons. First,
this is a distance based method, hence, it can easily make use of the information
contained in the feature importances in the learning phase. Second, kNN is
simple: Its only parameter is the number of neighbors. In the prediction stage,
the neighbors’ contributions to the predicted value are equally weighted, so we
do not introduce additional parameters that would influence the performance.
Finally, if a feature ranking is meaningful, then when the feature importances are
used as weights in the calculation of the distances, kNN should produce better
predictions as compared to kNN without using these weights [19].

To assess the predictive performance, we first compute the sum M of the
x confusion matrices Mi that we obtain from the x-fold cross-validation, i.e.,
M =

∑x−1
i=0 Mi. We use the confusion matrix M to compute accuracy, Cohen’s κ,

F1 score and Matthew’s correlation coefficient as evaluation measures. The latter
three were used since they do not give misleading results in the case of skewed
class distribution. Due to space limitations, we will report only accuracy and
F1 score (considering Cohen’s κ, F1 score and Matthew’s correlation coefficient
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leads to the same conclusions as presented here). We compute 1-versus-other
macro-averaged versions of the F1 measure and Matthew’s coefficient (to also
consider multi-class classification problems). Note that defining the matrix M is
necessary, because averaging the scores over the folds is wrong, as the measures
are not additive.

We parametrize the used methods as follows. The number of trees in the
ensembles was set to 100. The number of features that are considered in each
internal node was set to

√
F for random forests and F for extra trees [7].

The optimal value of the parameter w for computing the ensembles of PCTs
was selected by 5-fold internal cross-validation. The considered values were
w ∈ {0, 0.1, 0.2, . . . , 0.9, 1}. The possible numbers of labeled examples � in the
training datasets were � ∈ {50, 100, 200, 350, 500} [13].

5 Results and Discussion

5.1 Most Appropriate Ensemble

We start our analysis by choosing the most appropriate ensemble for a given
feature ranking score. To this end, we fix the score (Symbolic, Genie3 or Random
Forest) and compute it from the three ensembles (random forest, bagging, and
extra trees), for all values of the number of labeled examples �. When we evaluate
these rankings on a given test set with a given evaluation measure m, we obtain
a curve consisting of points (�,m(�)), for every score-ensemble pair. The final
measure for the performance of an ensemble for a given score is the area under
the corresponding curve, denoted by auc. When computing the auc, we assume
that the points � are equidistant, which effectively puts more weight on the lower
values of �, where the SSL methods are the most applicable.

Thus, for every feature ranking score, dataset and evaluation measure, we
obtain curves that belong to the three ensemble methods, and rank them with
respect to the auc: the one with the highest auc is assigned rank 1. We then
average these ranks over the datasets and evaluation measures.

The summary of the comparison of the pairs (ensemble, score) is given in
Table 2. We can see that the differences among different ensemble methods are
not large which means that for a given score, all three ensemble methods are

Table 2. Average ranks of the feature rankings computed from a fixed feature ranking
score and varying ensemble method: random forests (RF), bagging and extra trees
(ET). The ranks are reported for SSL ensembles and supervised ensembles separately.

SSL ensembles Supervised ensembles

Score RF Bagging ET RF Bagging ET

Symbolic 1.86 2.07 2.07 1.93 1.95 2.11

Genie3 2.00 1.93 2.07 1.91 1.75 2.34

Random forest 2.07 1.82 2.11 1.98 1.89 2.14
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appropriate to some extent. This is also evident from the fact that no average
rank - except maybe that of supervised extra trees coupled with Genie3 score
(2.34) is close to the worst possible average rank of 3. However, note that ensem-
bles of extra trees always have the worst average rank, hence we decide only
between random forests and bagging. If we are interested only in the quality of a
ranking, then the following choices are made: for Symbolic score, random forests
are the most appropriate (in both the SSL and the supervised case), whereas
for the other two scores (Genie3 and Random Forest) the bagging method per-
forms best. We will stick to these choices throughout the rest of the paper. If the
time complexity of inducing the ranking is also taken into account, then random
forests would be preferred over bagging, at least in the case of the supervised
version of the Symbolic score, where the difference in average ranks is only 0.02,
but random forests rankings are computed

√
F -times faster.

Table 3. Differences between the auc of SSL feature rankings and their supervised
counterparts, measured in terms of accuracy and F1 measure of 20NN classifier. If
Δ > 0, the SSL feature ranking outperforms the supervised one.

Symbolic Genie3 Random forest

Dataset Δacc ΔF1 Δacc ΔF1 Δacc ΔF1

Arrhythmia 0.015 0.046 −0.010 0.012 0.004 0.031

Bank −0.030 0.058 −0.028 0.060 −0.039 0.057

Chess −0.153 −0.168 −0.152 −0.166 −0.091 −0.107

Dis −0.017 0.095 −0.022 0.113 −0.011 0.117

Gasdrift −0.237 −0.217 −0.267 −0.244 −0.262 −0.237

Pageblocks 0.017 0.202 0.018 0.228 0.017 0.190

Phishing −0.257 −0.300 −0.243 −0.288 −0.252 −0.297

Tic-tac-toe 0.110 0.201 0.105 0.191 0.142 0.265

5.2 Can Unlabeled Data Improve a Feature Ranking?

Here, we compare the quality of the SSL feature rankings to their supervised
counterparts in more depth. Since the latter use only labeled data, this shows
whether SSL feature rankings can make effective use of unlabeled data. We draw
the same curves as in the previous section and obtain three types of diagrams
as shown in Fig. 1. The Tic-tac-toe dataset (Figs. 1a and b) is a representative
dataset where SSL rankings outperform their supervised counterparts, for all
considered numbers of labeled examples �. Note that for 50 labeled examples, the
20NN model that uses the supervised rankings only achieves a default accuracy
(see Table 1), hence taking into account unlabeled examples clearly helps.

The next type of diagrams presented in Fig. 1c and d shows the curves for
the Arrhythmia dataset. This dataset is the only one where the curves of the
SSL and supervised rankings intersect: for the lower number of labeled examples
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Fig. 1. Comparison of the SSL feature ranking with the supervised feature rankings
on the Tic-tac-toe, Arrhythmia and Gasdrift datasets, in terms of accuracy and F1

measure of the 20NN classifier. The legend in (f) applies to all subfigures.

(up to 200), the SSL feature rankings outperform their supervised counterparts,
which again shows the usefulness of the unlabeled examples. Adding more labeled
examples (at least 350), boosts the performance of supervised rankings more and
they achieve better performance in this case. Sometimes, taking into account
the unlabeled examples does not help, as shown in the diagrams of the last type
whose representative, the Gasdrift dataset, is presented in Figs. 1e and f.

To explain this, we test the validity of the clustering assumption. Recall
that, in general, SSL should be the most effective when the clusters in the data
are in concordance with the values of the target variable y. To check this, we
compute the k-means clustering of a dataset D , where the parameter k is set to
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the number of class values. We compare the resulting partition of the D to that
induced by the class labels y(x), in terms of the Adjusted Rand Index (ARI)
[10], which equals 1 when the partitions are equal and 0 if the partitions are
random. The whole procedure is repeated 10 times and in the end, we compute
the median of the ARI scores.

It turns out that the median ARI score for the Gasdrift dataset is quite low
(2.19·10−2), whereas the Tic-tac-toe dataset has high ARI score (7.00·10−1). For
the other datasets, we do not show the graphs, but only the differences between
the auc values between the SSL and the supervised version of every ranking score.
They are given in the Table 3. We will focus mainly on the columns that belong
to the F1 measure results, since some of the datasets (Bank, Dis, Pageblocks) are
very imbalanced. We see that results are consistent for all three feature ranking
scores: SSL rankings outperform their supervised versions in 5 out of 8 cases. The
remaining three include the datasets Gasdrift (discussed above), Phishing and
Chess. The Phishing dataset has an ARI score of −7.16 · 10−5, which effectively
means that class labels are randomly distributed among the clusters; Thus, the
better performance of the supervised rankings comes as no surprise. The last
one is the Chess dataset which has an ARI score of 2.20 · 10−1.

5.3 Are the Proposed Methods State-of-the-Art?

To answer this question, we compare our SSL feature rankings to the SEFR
ranking. We follow the structure of the previous section and first show the graphs
for the datasets Tic-tac-toe, Arrhythmia and Gasdrift in Fig. 2.

Figure 2a and b depict the quality of the feature rankings computed from
the Tic-tac-toe dataset, in terms of the accuracy and F1 measure respectively.
We observe that the differences between SSL and SEFR rankings are not as
remarkable as those between the SSL and the supervised rankings. However,
all SSL rankings still consistently outperform the SEFR ranking, except for the
Random Forest ranking computed from 50 labeled examples.

Similar results are obtained for the Arrhythmia dataset as shown if Fig. 2c
and d. Again, the differences are in favor of the SSL rankings - in this case,
without exceptions. From these two graphs, we can also deduce that adding more
labeled examples does not necessarily help: the quality of rankings (except for
the Genie3 rankings, shown in green) does not monotonically increase and the F1

scores of the 20NN classifiers that use the Random Forest, Symbolic and SERF
importance scores computed from 500 labeled examples are even slightly lower
than the F1 scores of the same rankings computed from 50 labeled examples.
The Gasdrift dataset is the one of the eight datasets for which the differences
are the smallest, as shown in Fig. 2e and f. The quality of the rankings here
increases as more labeled examples are provided. However, the differences equal
approximately 0.2 percentage points, as evident from Table 4.

The same table also reveals that typically, the Symbolic, Genie3 and Random
Forest rankings outperform the SEFR rankings, since the large majority of the
Δ values in the table are positive. In terms of F1 score, Random Forest and
Symbolic rankings outperform the SEFR ranking in 7 out of 8 cases, and Genie3



302 M. Petković et al.

ranking outperforms it in 6 out of 8 cases. The numbers for accuracy are similar,
so we can rightly conclude that our rankings exhibit state-of-the-art performance.

5.4 Which Ranking Score Is the Best?

The answers to the previous two experimental questions are pretty clear. How-
ever, determining the best ranking is a bit harder. The average ranks (over all
datasets and evaluation measures) of the Genie3, Random Forest and Symbolic
scores are 1.90, 2.03 and 2.06 respectively, so Genie3 score performs best on
average, but at the same time, it is ranked first only five times. Random Forest
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Fig. 2. Comparison of the SSL and SEFR feature rankings on the Tic-tac-toe, Arrhyth-
mia and Gasdrift datasets, in terms of accuracy and F1 measure of the 20NN classifier.
The legend in (f) applies to all subfigures.
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Table 4. Differences between the auc of SSL feature rankings and SEFR feature rank-
ings, measured in terms of accuracy and F1 measure, of 20NN classifier. If Δ > 0, the
SSL feature ranking outperforms the SEFR one.

Symbolic Genie3 Random forest

Dataset Δacc ΔF1 Δacc ΔF1 Δacc ΔF1

Arrhythmia 2.9 · 10−2 6.1 · 10−2 2.9 · 10−2 7.1 · 10−2 2.1 · 10−2 5.4 · 10−2

Bank 6.0 · 10−3 6.9 · 10−3 8.5 · 10−3 1.1 · 10−2 −3.4 · 10−3 6.1 · 10−3

Chess −2.4 · 10−2 −2.6 · 10−2 −8.6 · 10−4 −2.8 · 10−3 6.3 · 10−3 2.4 · 10−3

Dis −8.9 · 10−3 1.3 · 10−2 −1.4 · 10−2 3.1 · 10−2 −2.6 · 10−3 3.5 · 10−2

Gasdrift 2.5 · 10−3 3.7 · 10−3 −1.6 · 10−3 −1.7 · 10−3 2.6 · 10−3 5.2 · 10−3

Pageblocks 8.5 · 10−4 1.2 · 10−2 2.5 · 10−3 4.0 · 10−2 −8.0 · 10−4 −5.1 · 10−3

Phishing 1.4 · 10−2 1.7 · 10−2 7.9 · 10−3 9.7 · 10−3 5.4 · 10−3 6.4 · 10−3

Tic-tac-toe 1.7 · 10−2 2.2 · 10−2 1.5 · 10−2 1.9 · 10−2 1.8 · 10−2 2.2 · 10−2

score is ranked first most frequently (15 times), but is also ranked last most
frequently (16 times). The distribution of the Symbolic ranking is the closest to
the uniform one (it is ranked 1st, 2nd and 3rd 12-times, 11-times, and 9-times
respectively) and has the worst average (2.06).

Since all the feature ranking scores offer state-of-the-art performance, we may
conclude that they are approximately equally good, so we can again make a deci-
sion based on the second criterion: computational complexity. Recall that ran-
dom forests were the most appropriate method for the Symbolic score, whereas
bagging was the most suitable for Genie3 and Random Forest score, which means
that Symbolic rankings are computed

√
F -times faster than the Genie3 rankings.

The Random Forest rankings demand even more time than Genie3 rankings, due
to the permutations of feature values and evaluating each tree of the ensemble on
the corresponding out-of-bag examples multiple times, as explained in Sect. 3.

6 Conclusions

In this paper, we propose three feature ranking scores (Symbolic, Genie3 and
Random Forest). Each can be computed from three different ensembles (bag-
ging, random forests and extremely randomized trees) of predictive-clustering
trees (PCTs), which were adapted to the semi-supervised classification task. We
evaluate the obtained feature rankings on 8 benchmark classification datasets.
We first determine the most suitable ensemble for each of the scores. For the
Symbolic score, these are random forests, whereas for the Genie3 and Random
Forest score, this is bagging.

Next, we show that using unlabeled data leads to improvements in the rank-
ing since the proposed semi-supervised feature rankings mostly outperform their
supervised analogs, which use only labeled data. We analyzed the datasets where
this does not hold by checking the validity of the clustering assumption of
SSL and show that most probably the assumption is not valid in these cases.
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After that, we compare our feature ranking scores to the SEFR feature ranking
method and empirically show that we consistently outperform this state-of-the-
art baseline with every proposed feature ranking score. Finally, we compare the
proposed scores among each other and conclude that they are all equally good.
We suggest using the Symbolic score because it has the best (lowest) time com-
plexity.

We will continue our work on this topic in three directions. We first plan
to extend the number of the benchmark datasets and then to define and evalu-
ate rankings that are obtained from gradient boosting ensembles. Next, we will
extend the approach towards regression and more complex predictive modeling
tasks including structured output prediction. Finally, we will work to circumvent
the use of the internal cross-validation for determining the best value of w in the
PCT heuristic by computing the ARI score instead.
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14. Levatić, J., Ceci, M., Kocev, D., Džeroski, S.: Semi-supervised classification trees.

J. Intell. Inf. Syst. 49(3), 461–486 (2017)

https://dl.acm.org/citation.cfm?id=525960
https://www.openml.org/d/40713


Ensemble-Based Feature Ranking for Semi-supervised Classification 305

15. Lichman, M.: UCI machine learning repository (2013). http://archive.ics.uci.edu/
ml

16. Petković, M., Kocev, D., Džeroski, S.: Feature ranking for multi-target regression.
Mach. Learn. J. (2019, accepted)

17. Raina, R., Battle, A., Lee, H., Packer, B., Ng, A.Y.: Self-taught learning: trans-
fer learning from unlabeled data. In: 24th International Conference on Machine
Learning, pp. 759–766. ACM (2007)

18. Sheikhpour, R., Sarram, M., Gharaghani, S., Chahooki, M.: A survey on semi-
supervised feature selection methods. Pattern Recognit. 64((C)), 141–185 (2017)

19. Wettschereck, D.: A Study of Distance Based Algorithms. Ph.D. thesis, Oregon
State University, Corvallis, OR (1994)

20. Xu, Z., King, I., Lyu, M.R.T., Jin, R.: Discriminative semi-supervised feature selec-
tion via manifold regularization. Trans. Neural Netw. 21(7), 1033–1047 (2010)

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml


Variance-Based Feature Importance
in Neural Networks
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Abstract. This paper proposes a new method to measure the relative
importance of features in Artificial Neural Networks (ANN) models. Its
underlying principle assumes that the more important a feature is, the
more the weights, connected to the respective input neuron, will change
during the training of the model. To capture this behavior, a running vari-
ance of every weight connected to the input layer is measured during train-
ing. For that, an adaptation of Welford’s online algorithm for computing
the online variance is proposed. When the training is finished, for each
input, the variances of the weights are combined with the final weights to
obtain the measure of relative importance for each feature. This method
was tested with shallow and deep neural network architectures on several
well-known classification and regression problems. The results obtained
confirmthat this approach ismakingmeaningfulmeasurements.Moreover,
results showed that the importance scores are highly correlated with the
variable importance method from Random Forests (RF).

1 Introduction

Effectively measuring the relevance of features in Artificial Neural Networks
(ANN) can foster its usage in new domains where some interpretability is
required. Current studies show that there has been some effort to bring more
interpretability to Artificial Neural Networks in the recent years [3,5]. However,
despite the various approaches available in the literature, there is a lack of simple,
and yet reliable, variable importance approaches for ANN.

The classic and most simple architecture of a feed-forward neural network is
composed by one input layer, one or more hidden layers and one output layer.
These layers are connected by weights and each is composed of a certain number
of neurons. Each neuron in the input layer represents one independent variable,
or feature, from the data. These neurons connect to the first hidden layer, which
in turn connects either to the next hidden layer (and so on) or to the output
layer. The neurons in this output layer represent the target variable.

During the training of ANN, the weights (which connect the neurons) are
constantly being changed for better fitting the data. This process occurs for
every batch of data, and it lasts until all the epochs are finished. Once this
process is finished, it is natural to assume that, the higher the absolute values of
the weights, the more important a variable would be [2]. However, on the other
c© Springer Nature Switzerland AG 2019
P. Kralj Novak et al. (Eds.): DS 2019, LNAI 11828, pp. 306–315, 2019.
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hand, we also know that regularization techniques force the weights to become
smaller (e.g., L1 and L2). Besides, the choice of the initialization of these weights
can also interfere with their final absolute value.

In this paper, a very simple method is proposed to measure the relative fea-
ture importance (or variable importance) of ANN models. Its underlying prin-
ciple assumes that the more important a feature is, the more the weights, con-
nected to the respective input neuron, will change during the training of the
model. This means that, it expects bigger changes in the weights connected to
more relevant variables, independently from their absolute value. Under this
assumption, by measuring the total variance of the weights connected to each
input node, one should be able to measure its relative importance.

Since the weights are being changed at every batch and neural networks could
easily take hundreds of epochs to be trained, it is not practical to store all the
values for later computing its variance. For this reason, the running variance of
each weight that is connected to the input layer is used instead. For that, an
adapted version of Welford’s online algorithm [9] is proposed. This algorithm
updates the mean and variance of the weights, connected to the input layer, at
an user defined step (e.g., per batch or per epoch).

Finally, the variances from all the weights connected to a feature are com-
bined into a single value, which are then used for assessing their relative impor-
tance. This contrasts with most of the approaches available in the literature,
because the variable importance is not measured on the absolute values of the
weights of the network, but on their variance during the training.

Some well-known regression and classification datasets were used to test the
proposed approach, which included one artificial dataset. Empirical results pre-
sented in this paper, using shallow and deep ANN, show that this approach holds
promise and can be used to effectively assess the relative importance of variables
in different datasets.

2 Variable Importance in FNN

Most approaches assess the feature importance based on the final weights of
the trained neural networks [2,4,5]. One of the most well-known was proposed
in 1991 by Garson [2] and it is still being used [3,8]. It basically consist in
adding up the absolute values of the weights between each input node and the
response variables. In other words, all the weights connecting a given input
node, including the hidden layers, to a specific response variable will contribute
to measure feature importance. Finally, the total score of the input nodes is
scaled relatively to all other inputs.

However, we know that during the training phase, the weights of a neural
network are being modified. These updates of the weight are repeated until the
model reaches its final state. Therefore, we propose to measure the variance of
these weights in order to get the relative variable importance based for ANN.

In [6], the authors observed that the difference between quartiles of the dis-
tributions seemed to be related with their relative importance. In this work,
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a similar approach is taken, however the focus is in the variance instead of the
interquartile range.

Considering the size of current ANN and the high number of epochs to train
them, storing the values of the all the weights to compute the variance would be
computationally expensive. However, a method proposed by Welford in 1962 [9]
(See Sect. 2.1) allows one to compute and update the variance as the measure-
ments are given, one at a time. This has the advantage that, the values do not
need to be saved to compute the variance in the end.

A simple adaptation of Welford’s online variance, proposed here, makes this
approach much simpler to implement. It is similar to the method in [9], except
that this was adapted to deal with matrices. These matrices represent the weights
connecting the input layer with the first hidden layer.

2.1 Welford’s Online Variance

The variance of a sample of size n is defined as:

S2
n =

SSn

n − 1
=

n∑

i=1

(xi − xn)2

n − 1
(1)

where the corrected sum of squares SSn is:

SSn =
n∑

i=1

(xi − xn)2 (2)

and the mean, xn, is defined as:

xn =
n∑

i=1

xi

n
(3)

However, we can write the corrected sum of squares SSn as:

SSn = SSn−1 +
(
n − 1
n

)
(xn − xn−1)

2

This way, if we replace this in Eq. 1, we can update the variance of a sample,
originally with size n−1, by adding one more measurement to the sample, xn [9].
This can be represented as:

V ar (xn) =
SSn−1

n − 1
+

(xn − xn−1)
n

(4)

where n represents the total number of updates. This computes the online vari-
ance of the weights (also known as running variance).
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2.2 Online Variance of the Weights

Let us define a dataset D = {〈vi〉}, i = 1, . . . , z with z instances, where vi
is a vector containing the values vji , j = 1, . . . ,m of m independent variables,
{A1, . . . ,Am}, describing instance i.

To represent the weights between layers in ANN, we define wa,b as the weight
connecting node a to node b. As mentioned before, m represents the number of
input variables and q the number of neurons in the first hidden layer. Now we can
represent the Variance-based feature Importance of Artificial Neural Networks
(VIANN) score of the weights as:

VIANN (As) =
q∑

k=1

V ar (ws,k) × |ws,k| (5)

where t represents the total number of updates and ws,k the weights of the first
hidden layer connected to the input As. This means that the final score will
depend on both the final weights and the variance of the weights during the
training.

We will use the variance as in Eq. 5, to score the importance of the features.
The assumption is that, the more the wa,b varies in the training phase, the
higher the relevance of the nodes a to the prediction. When using VIANN we
need to define at which steps of the training we update the variance. Several
options can be considered, per iteration (after every batch), per epoch or with
an user defined interval. For simplicity, in this work we update the variance of
the weights at each epoch.

3 Experimental Setup and Results

In this section we explain how we setep the experiments and describe the archi-
tecture of the neural networks tested. We also present the results obtained by the
proposed approach and compare with the most used algorithm to measure fea-
ture importance in Neural Networks, the Garson’s algorithm. We also describe
the datasets which were selected for this study.

3.1 Experimental Setup

In this experimental setup, many parameters could have been modified and stud-
ied. However, as proof of concept, we tried to make some simple and reasonable
choices for the design of the architectures and its parameters.

Since we are testing both regression and classification tasks, the neural net-
works were built in such a way that the last layer (the output layer) can change
to classification or regression mode. When the task is classification, the last layer
will have the same number of neurons as the number of classes and an activa-
tion function softmax. The loss, in this case is categorical cross-entropy. On the
other hand, when the task is regression, the last layer has one neuron and the
activation is linear. The loss function in this case is the Mean Squared Error.
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Besides that, two types of activation functions are tested in the remaining
layers. One neural network has a linear activation function (NN1) and the other
has the RELU (NN2). Both NN1 and NN2 have 3 hidden layer, one with 50
neurons, other with 100 and the last hidden layer with 50. Besides NN1 and
NN2, we also tested the approach in a deeper neural network, DeepNN. The
dimensions of the three neural networks are:

NN1: input, 50, 100, 50, output
NN2: input, 50, 100, 50, output
DeepNN: input, 500, 1024, 2048, 4096, 2048, 1024, 500, output

We note that the input and output layers are adapted according to the size of
the number of features and number of classes per dataset, respectively.

In previous experiments, we observed that the final accuracy of the model,
strongly affects the scoring of the most relevant features. This means that, if the
accuracy is low, the importance scores tend to be misleading. For this reason, a
simple procedure was used to find a more appropriate number of training epochs
per dataset. An early stopping function monitored the validation accuracy in the
classification datasets during training. When the validation accuracy is >95%
the training stops. The maximum number of epochs was set to 1000 and the
minimum to 5. In the regression datasets, the number of epochs was fixed to 100
epochs.

The optimizer used in the experiments was set to the default parameters
of the Stochastic Gradient Descent (SGD) optimizer from the python package
Keras. Due to the different dataset sizes, the batch size was adapted for each
dataset. It was defined as the rounded number obtained from the division of the
number of instances in the dataset by 7.

We compare the obtained scores of the variables with other approaches such
as Random Forests (RF) [1] and Garson’s algorithm (GA) [2]1. We also measured
the loss of the models when each feature was removed (replaced with zeros)
which is the same as the Leave-One-Feature-Out (LOFO) approach. Then, the
features, which after being removed, resulted in the highest loss, are considered
more important. Finally, to compare the orders between the different techniques,
we use the Kendall’s tau correlation coefficient.

3.2 Datasets

In the experiments several classification and regression datasets from the scikit
learn python package [7] were used (Table 1). These particular datasets were
chosen to illustrate the effectiveness of this approach. All the features of the
dataset were normalized to zero mean and standard deviation 1.

1 All the results presented in this paper can be replicated using the python file in
https://github.com/rebelosa/feature-importance-neural-networks.

https://github.com/rebelosa/feature-importance-neural-networks
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Table 1. Datasets used in the experiments

Name #Features #Instances Type #Classes

Breast cancer 30 569 Class 2

Digits 64 1797 Class 10

Iris 4 150 Class 3

Wine 13 178 Class 3

Boston 12 506 Regr. -

Diabetes 10 442 Regr. -

3.3 Testing the Feature Importance

In this experimental part, we compare the ranking of the features obtained
with VIANN, for NN1 and NN2. As previously mentioned, there are several
approaches to measure the relative variable importance in datasets. Besides
comparing with the RF variable importance measure, we also compare with
the Leave-One-Feature-Out (LOFO) approach. By measuring the loss difference
after removing each variable, we can sort the variables by the ones which have
a greater impact.

The presented in Table 2 show the Kendall tau correlation between the dif-
ferent variable rankings when using the neural network with linear activation
function, NN1. We can see that VIANN obtains a higher correlation than the
Garson technique, as compared with the LOFO. Besides, the relative order of
the variables seems to fluctuate much more when obtained with the Garson
approach.

Table 2. Kendall tau correlation between the different variable importance techniques
using the NN1 (linear activation function)

Dataset VIANN-LOFO VIANN-RF Garson-LOFO Garson-VIANN

Breast cancer 0.43 0.85 0.17 0.20

Digits 0.96 0.66 0.90 0.87

Iris 0.99 0.88 0.73 0.62

Wine 0.93 0.64 0.91 0.85

Boston 0.95 0.79 0.84 0.80

Diabetes 0.86 0.68 0.85 0.79

In Table 3 we observe a very similar behavior of the one observed in Table 2.
In this case the neural network NN2 is exactly the same as before, except that
it has a RELU activation function instead of linear. In general, we observe that
the correlation VIANN-LOFO is worst when using the RELU, specially for the
classification datasets.
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Table 3. Kendall tau correlation between the variable importance technique VIANN
and other approaches with the NN2 (RELU activation function)

Dataset VIANN-LOFO VIANN-RF Garson-LOFO Garson-VIANN

Breast cancer 0.78 0.76 0.43 0.61

Digits 0.94 0.76 0.92 0.84

Iris 0.92 0.87 0.97 0.81

Wine 0.88 0.50 0.95 0.93

Boston 0.96 0.81 0.76 0.60

Diabetes 0.98 0.90 0.64 0.60

Fig. 1. Plot of the feature importance scores obtained with the NN2 using VIANN (x
axis) and LOFO (y axis) in the Digits dataset.

In Fig. 1 we can see how the LOFO and VIANN relate in terms of feature
importance scores. It seams that the variance of the weights combined with the
final weights has a linear relation with the increase in the loss of the model.

3.4 Deep Neural Network

Finally, despite the small size of the dataset, we wanted to test the approach
in the deep learning context. For this reason, we used a deeper network, which
we refer as DeepNN. The results obtained are presented in Table 4. In this case,
we observe that VIANN is still better at giving a more meaningful score of the
variables. The exception is the Wine dataset where the correlation is not so high.

We observe in Fig. 2, how the scores of VIANN with the DeppNN are related
with the variable importance scores of RF. Even though the two models have
different biases, the importance of the variables is only slightly changed, which
intuitively makes sense.
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Table 4. Kendall tau correlation between the variable importance technique VIANN
and other approaches with the DeepNN (RELU activation function)

Dataset VIANN-LOFO VIANN-RF Garson-LOFO Garson-VIANN

Breast cancer 0.60 0.45 0.22 0.37

Digits 0.83 0.80 0.60 0.46

Iris 0.90 0.98 0.73 0.49

Wine 0.41 0.43 0.74 0.51

Boston 0.76 0.86 0.76 0.79

Diabetes 0.86 0.88 0.64 0.80

Fig. 2. Plot of the feature importance scores obtained with the DeepNN using VIANN
(x axis) and RF (y axis) in the Digits dataset.

In general, we observe that the feature importance scores are better than
the Garson’s technique, which shows that VIANN has potential as a measure
of importance of features in shallow and deep networks. Even considering that
different features can be more or less important for different models, it does
not seem likely that the features will have completely distinct relevance for each
model. Therefore, we believe that VIANN is measuring some phenomenon that
is closely related with the importance of the features.

3.5 Evolution of Weights During Training

Since the motivation was to use the variance to measure the feature importance,
we wanted to understand if the behavior of the weights of the most relevant fea-
tures was actually changing more than the others. Therefore, in this experiment
we trained the NN2 and captured the weights in every iteration between the
input layer and the first hidden layer during the training phase.
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The result can be seen in Fig. 3, where the subplots are sorted by the relative
importance of the respective inputs (higher to lower), obtained with the LOFO
approach. One pattern that can be observed, is that, in fact, the weights seem to
change more in the first inputs (e.g. input 12,0 and 9). On the other hand, the
weights which affect less the loss, are mostly constant during the entire training.
Besides that, the absolute value of the weights seems to also be higher in more
important features. These observations support the motivation of this paper
(Eq. 5).

Fig. 3. Evolution of the weights (coloured lines) of the NN2, per iteration, between the
input layer and the first hidden layer trained in the Wine dataset (x-axis: iterations;
y-axis: weights)

4 Conclusions

In this work we compare the performance of a feature importance technique
which is based on the variance of the weights during the training of neural
networks. We compare our results with one of the most widely used variable
importance techniques in ANN, Garson’s algorithm. The results showed that
this approach is more reliable in identifying the order of the variables which
have a greater influence in the loss. In comparison to Garson’s method it has
the advantage that it does not require that the first and last hidden layers have
the same number of neurons.

We also observed that, when the validation accuracy is low, the scores of
the features can be misleading. Some tests, which are not reported in this paper,
indicated that without proper regularization techniques, the variable importance
scores also do not make sense.

Considering the results obtained, this approach holds promise to effectively
measure the relevance of features (or even just any neuron). That is, the simplic-
ity of VIANN makes it straightforward to measure the relevance of every node
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and not only the input layer. Moreover, it can be easily extended to other neural
network layers, such as recurrent or convolutional.

Since this work is only a preliminary study, it does not provide a comprehen-
sive overview of feature importance for ANN. However, as future work we would
like to study if VIANN can be used to obtain the importance of the variables on
distinct ANN architectures. A thorough experimental study should be made in
the future to fully understand the advantages and limitations of this approach.

Acknowledgments. I gratefully acknowledge the support of NVIDIA Corporation
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Abstract. In this work we deal with the problem of detecting and
explaining exceptional behaving values in categorical datasets. As a first
main contribution we provide the notion of frequency occurrence which
can be thought as a form of Kernel Density Estimation applied to the
domain of frequency values. As a second contribution, we define an out-
lierness measure for categorical values that, leveraging the cdf of the den-
sity described above, decides if the frequency of a certain value is rare
if compared to the frequencies associated with the other values. This
measure is able to simultaneously identify two kinds of anomalies called
lower outliers and upper outliers, namely exceptionally low or high fre-
quent values. The experiments highlight that the method is scalable and
able to identify anomalies of different nature from traditional techniques.

Keywords: Outliers · Categorical attributes · Outlier explanation

1 Introduction

Outlier detection is a well known discovery problem. Outliers arise due to
mechanical faults, fraudulent behaviour, human errors, instrument error or sim-
ply through natural deviations in populations.

As outliers are interesting because they are suspected of not being generated
by the same mechanisms as the rest of the data, it is important to justify why
detected outliers are generated by some other mechanisms. However, the border
between data normality and abnormality is often not clear cut, consequently,
while some outlier detection methods assign to each object in the input data set
a label of either “normal” or “outlier”, in this paper we describe a method able
to single out anomalous values occurring within the dataset.

We deal with categorical data and, specifically, we take the perspective of
perceiving an attribute value as anomalous if its frequency occurrence is excep-
tionally typical or un-typical within the distribution of frequencies occurrences
of any other attribute value. However, within the categorical scenario the process
of comparing frequencies poses different challenges. Indeed, if we take the point
of view that the data at hand is the result of a sampling procedure in which
data values are associated with some pre-defined occurrence probabilities, then
the fact that a certain categorical value is observed exactly f times is a matter

c© Springer Nature Switzerland AG 2019
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of chance rather than being a hard property of that value. This has led us to the
definition of the concept of soft frequency occurrence which, intuitively, consists
in the estimate of the density associated with frequency occurrences. We obtain
this measure by specializing the classical Kernel Density Estimation technique
to the domain of frequency values.

As a second contribution, we leverage the cumulated frequency distribution
of the above density estimate to decide if the frequency of a certain value is rare
when compared to the frequencies associated with the other values. In partic-
ular, we are able to identify two kind of anomalies, namely lower outliers and
upper outliers. A lower outlier is a value whose frequency is low while, typi-
cally, the dataset objects assume a few similar values, namely the frequencies of
the other values are high. An upper outlier is a value whose frequency is high
while, typically, the dataset objects assume almost distinct values, namely the
frequencies of the other values are low. Both scenarios can be singled out by one
unified outlierness measure; this peculiarity clearly differentiates our proposal
from almost all the existing measures of outlierness.

Despite values can show exceptional behaviour with respect to the whole pop-
ulation, it should be noted that very often a value emerges as exceptional only
when we restrict our attention to a subset of the whole population. Thus, our
technique is designed to output the so-called explanation-property pairs (E, p),
where E, called explanation, denotes a condition used to determine the target
subpopulation and p, called property, represents an attribute pa and a value
pv such that pv is exceptionally frequent or infrequent within the subpopula-
tion selected by the explanation E. This allows us to provide an interpretable
explanation for the abnormal values discovered. The output of the algorithm
corresponds to the so-called explanation-property pairs.

As a further difference, our technique is knowledge-centric as the search space
we visit is formed by explanation-property pairs and the outliers we provide can
be seen as a product of the knowledge mined. This is clearly different from
traditional outlier detection approaches which are object-centric.

The rest of the work is organised as follows. Section 2 discusses work
related with the present one. Section 3 introduces the frequency occurrence func-
tion. Section 4 describes the outlierness function for ranking categorical values.
Section 5 describes experimental results.

2 Related Works

Categorical outlier detection has witnessed some interest from literature, how-
ever the identification of both features and subpopulations which characterise
anomalies has not been studied in depth, in fact, there is little literature about
detecting anomalous properties, and/or related outlier objects, equipped with
explanations.

Moreover, to the best of our knowledge, no technique is able to natively detect
upper outliers, while our measure of outlierness based on density estimation
of frequency occurrences is completely novel. Most of the traditional outlier
detection methods have been basically explored in the context of numerical data,
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among them there are distance-based methods [4], density-based methods [5],
and many others [6].

Dealing with anomalies in categorical data is still evolving. The fundamental
challenge in solving this problem in presence of categorical values is the difficulty
in defining a suitable similarity measure over them. So, different strategies have
been proposed to face with the problem above.

In [7] some methods are presented to map categorical data on numerical data
together with a framework for categorical data analysis using a rich set of tech-
niques that are usually applicable to continuous data. However, the effectiveness
of these techniques is hardly related to the choice of the mapping. The ROAD
algorithm [15], applies the classical density-based approach on categorical data.
The algorithm exploits both densities and distances. In particular, the Hamming
distance is employed to compute cluster-based outliers and the density, evalu-
ated as the mean frequency of the values, to compute frequency-based outliers.
Both measures present some limitations: as for Hamming distance, outliers with
few exceptional attributes are not captured, as for densities, they are not com-
pared with expected values and then attributes associated with distinct values,
as primary keys, can affect results. Ruled-based methods borrow the concept of
frequent item-set from association rule mining, as done in [12]. The algorithm
uses the concept of Frequent Item-sets Mining (FIM): it first extracts patterns,
or sets of items (categorical values), that co-occur frequently in the dataset and
then assigns an outlier score to each data point based on the number of frequent
sets it contains. Thus, outliers are likely to be points that contain relatively few
frequent patterns (item-sets). According to this approach, however, outliers are
points that do not contain frequent patterns and not points containing infrequent
patterns and anomalies due to exceptionally high frequencies are not taken into
account. Information-theoretic measures, such as the entropy, are used in [10] to
measure the disorder of a dataset with the outliers removed: a dataset that con-
tains many outliers supposedly has a great amount of mess, so removing outliers
will lead to a dataset that is less disordered. However, this measure has to be
intended as a global measure involving simultaneously all the attributes, so it is
neither able to detect outliers in sub-populations nor to identify outliers char-
acterised by one (or few) outlying attributes. Moreover, computing the measure
on a fixed dataset is a hard problem. The methods proposed in [9] computes an
outlier factor on the basis of the ratio between the probability of co-occurrence
of two sets of attributes and the product between the probabilities of occurrence
of the two sets taken separately. Thus, authors are interested in properties con-
sisting in at least two attributes and do not address subpopulations. Recently
[14] proposed a novel coupled unsupervised outlier detection method CBRW.
It estimates the outlierness of each feature value which can either detect out-
liers directly or determine feature selection for subsequent outlier detection. The
value is computed by comparing the frequency of each value with the most fre-
quent value (the mode). However, this is just a measure of deviation, explanations
are not provided and, by definition, upper outliers cannot be detected.
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A problem associated with outlier detection, but less explored in literature,
is that of outlier explanation [2], which consists in finding features that can jus-
tify the outlierness of an object. [1,2] propose a technique for categorical and
numerical domains respectively that, given in input one single object known to
be outlier, provides features justifying its anomaly and subpopulations where its
exceptionality is evident. A generalisation is proposed in [3] where a set, required
to be small, of outliers is provided in input. The work [11] provides intentional
knowledge by finding the subspaces that better explain why the object is an
outlier, that are those where objects score the largest scores as distance-based
outliers. However, the above measure is monotonic with respect to the subset
inclusion relationship: if an object is an outlier in a subspace, then it will be
an outlier in all its supersets. Although meaningful when dealing with homo-
geneous numerical attributes, this kind of monotonicity may not be in general
suitable for categorical attributes, where often objects exhibit outlierness only in
characterising subspaces. [8] use spectral embeddings to detect subspaces where
anomalous objects achieve high outlier scores and normal objects keep the same
distances from each other. [13] instead proposes a technique to explain outliers
based on the building of a binary classifier to separate inliers from outliers based
on subspace explorations. However, these methods are neither designed for cat-
egorical data nor to exploit subspaces to select subpopulations as is natural in
our scenario.

3 Frequency Occurrence

In this section we give some preliminary definitions and introduce the notation
employed throughout the paper.

A dataset D on a set of categorical attributes A is a set of objects o assuming
values on the attributes in A. By o[a] we denote the value of o on the attribute
a ∈ A. D[a] denotes the multiset {o[a] | o ∈ D}.

A condition C is a set of pairs (ai, vi) where each ai is an attribute and each
vi ∈ D[ai]. A singleton condition is said to be atomic. By DC we denote the new
dataset {o ∈ D | o[ai] = vi,∀(ai, vi) ∈ C)}.

Definition 1 (Frequency distribution). A frequency distribution H is a mul-
tiset of the form H = {f

(1)
1 , . . . , f

(w1)
1 , . . . , f

(1)
n , . . . , f

(wn)
n } where each f

(j)
i ∈ N

is a distinct frequency, f
(j)
i = f

(k)
i = fi for each 1 ≤ j, k ≤ wi, and wi denotes

the number of occurrences of the frequency fi. By N(H) (or simply N whenever
H is clear from the context) we denote w1 · f1 + . . . + wn · fn.

For the sake of simplicity, we will refer to a frequency distribution as a set
H = {f1, f2, . . . , fn} and to the number of occurrences wi of fi as w(fi). To ease
the writing of expressions, we also assume that the dummy frequency f0 = 0 with
w0 = 0 is always implicitly part of any frequency distribution.

Given a multiset V , the frequency fV
v of the value v ∈ V is the number of

occurrences of v in V .
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The frequency distribution of the dataset D on the attribute a is the multiset
HD

a = {f
D[a]
v | v ∈ D[a]}. Note that N(HD

a ) = |D|.
Theorem 1. Let H = {f1, . . . , fn} be a frequency distribution. Then, n ≤√

N(H).

Proof. Since N(H) = w1 · f1 + w2 · f2 + · · · + wn · fn, n is maximized when (i)
f1 = 1, (ii) ∀i, wi = 1, and (iii) ∀i > 1, fi+1 = fi + 1. Thus, the maximum n is
such that 1 + 2 + · · · + n = N(H) and, since 1 + 2 + · · · + n = n(n+1)

2 , it follows
that n · (n + 1) = 2 · N(H) and, then, that n = O

(√
N(H)

)
.

From the above theorem, it immediately follows that the number of distinct
frequencies in HD is at most

√|D|.
Now we define the notion of frequency occurrence as a tool for quantifying

how frequent is a certain frequency.

Definition 2 (Hard frequency occurrence). Given a frequency distribution
H, the frequency occurrence FH(fi) of fi, also denoted by F(fi) whenever H is
clear from the context, is the product wi · fi.

The above definition allows us to associate with each distinct value in D[a]
a score that is related not only to its frequency in the dataset but also to how
many other values have its same frequency.

A major drawback of the previous definition is that close frequency values
do not interact with each other and, as a consequence, small variations of the
frequency distribution may cause sensible variations in the frequency occurrence
values. E.g., consider the case in which the frequencies fi = 49, wi = 1 and
fi+1 = 51, wi+1 = 1 are replaced with f ′

i = 50, w′
i = 2. While in the former case

F(fi) = 49 and F(fi+1) = 51, in the latter case we have that F(f ′
i) = 100 that

is about twice the frequency occurrence associated with fi and fi+1. Intuitively,
we do not desire a similar small variation in the frequency distribution to impact
so largely on the outcome of the measure. Indeed, if we take the point of view
that the data at hand is the result of a sampling procedure in which data values
are associated with some pre-defined occurrence probabilities, then the fact that
a certain categorical value is observed exactly f times is a matter of chance,
rather than being an hard property of that value.

Thus, now we refine the previous definition of frequency occurrence in order
to cope with the scenario depicted above. Specifically, to overcome the mentioned
drawback, we need to force close frequency values to influence each other in
order to jointly contribute to the frequency occurrence value. With this aim,
we inspired to Kernel Density Estimation (KDE) methods to design an ad-hoc
density estimation procedure.

First of all, we point out that we are working in a discrete domain composed of
frequency values, a peculiarity that differentiates it from the standard framework
of KDE. We start by illustrating the proposed density estimation procedure.

A (discrete) kernel function Kfi
with parameter fi is a probability mass

function having the property that supf≥0 Kfi
(f) = Kfi

(fi).
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Given an interval I = [fl, fu] of frequencies, a frequency fi, and a kernel func-
tion K, the volume of Kfi

in I, denoted as VI(Kfi
), is given by

∑fu

f=fl
Kfi

(f).
The following expression

F(f) =
∑

ϕ∈I(f)

{
n∑

i=1

wi · fi · Kfi
(ϕ)

}

.

where I(f) represents an interval of frequencies centred in f , provides the density
estimate of the frequency occurrence of the frequency f .

Since Kfi
(·) is a probability mass function, the frequency fi provides a con-

tribution to the frequency occurrence of f corresponding to the portion of the
volume of Kfi

which is contained in I(f), that is VI(f)(Kfi
). Hence, if the interval

I(f) contains the entire domain of Kfi
then fi provides its maximal contribution

wi · fi. Frequencies fi whose domain do not intersect I(f) do not contribute to
the frequency occurrence of f at all.

The above definition needs to properly calibrate the width I(f) of the interval
to be centred in f . To eliminate the dependence of the formulation from an
arbitrary interval, we resort to the following alternative formulation in which
frequencies ϕ are not constrained to belong to the interval I(f). However, since
the generic kernel Kfi

(·) could be arbitrarily far from the frequency of interest
f , now its contribution has to be properly weighted

F(f) =
∑

ϕ≥0

{
n∑

i=1

[
wi · fi · Kfi

(ϕ) · Pr[Xfi
= f ]

Pr[Xfi
= fi]

]}

.

Let Xfi
denote the random variable distributed according to Kfi

and, hence,
having fi as the value that is most likely to be observed. The ratio Pr[Xfi

=f ]

Pr[Xfi
=fi]

≤
1 represents a weight factor for the kernel Kfi

(·) which is maximum, in that
evaluates to 1, for f = fi. Hence, the closer the kernel Kfi

(·) to the frequency
of interest f , the larger its contribution to the frequency occurrence of f . Since
the above probabilities can be directly obtained from the associated kernel, it
can be rewritten as follows

F(f) =
∑

ϕ≥0

{
n∑

i=1

[
wi · fi · Kfi

(ϕ) · Kfi
(f)

Kfi
(fi)

]}

. (1)

Equation (1) can be rewritten as

F(f) =
n∑

i=1

⎡

⎣wi · fi · Kfi
(f)

Kf (f)
·
∑

ϕ≥0

Kfi
(ϕ)

⎤

⎦ .

Since Kfi
(·) is a probability mass function, the summation over the domain of

all its values is equal to 1, thus, the above expression can be finally simplified in

F(f) =
n∑

i=1

[
wi · fi · Kfi

(f)
Kfi

(fi)

]
. (2)
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Since F represents a notion of density function associated with frequency
occurrences, it is preferable that its volume evaluated in the frequencies H =
{f1, . . . , fn} evaluates to N(H). This leads to the following final form of the
frequency occurrence function.

Definition 3 (Soft occurrence function). Given a frequency distribution H,
the frequency occurrence FH(fi) of fi, also denoted by F(fi) whenever H is clear
from the context, is given by the following expression

F(f) =
N(H)
NF (H)

·
n∑

i=1

[
wi · fi · K̂fi

(f)
]
, (3)

where

K̂fi
(f) =

Kfi
(f)

Kfi
(fi)

and NF (H) =
n∑

j=1

{
n∑

i=1

[
wi · fi · K̂fi

(fj)
]}

.

Theorem 2. Let D be a dataset and let HD = {f1, . . . , fn}. Then, the cost of
computing the set of frequency occurrences {FHD (f1), . . . ,FHD (fn)} is O(|D| ·
CK), where CK represents the cost of evaluating K̂fi

(·).
Proof. Consider Eq. (3). The cost of evaluating this Equation for a given f
involves the computation of a summation of n terms, with n equals to the num-
ber of different frequencies. Due Theorem 1 n = O

(√|D|
)
. Since we have

to evaluate Eq. (3) for any distinct f in the dataset, the Equation has to be
computed for n times. Then, since each evaluation costs Ck, the overall cost is
O

(√|D| · √|D| · Ck

)
= O(|D| · Ck).

As for the kernel selection, interestingly we can take advantage of the pecu-
liarity of the frequency domain to base our estimation on a very natural ker-
nel definition. Indeed, as kernel Kfi

(·) we will exploit the binomial distribution
binopdf(f ;n, p) with parameter n, denoting the number of independent trials,
equal to N(H), and parameter p, denoting the success probability, equal to
p = fi/N(H).

Now we take into account the cost of computing the term K̂fi
(f) when Kfi

(·)
is the binomial kernel.

Theorem 3. Given a dataset D and two frequencies fi and fj in HD, the cost
of computing K̂fi

(fj) is O(1) with a pre-processing O(|D|).

4 Categorical Outlierness

In this section we introduce the concept of outlierness and discuss about the
measure we have designed to discover outlier properties in categorical datasets.
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Definition 4 (Cumulated frequency distribution). Given a frequency dis-
tribution H = {f1, . . . , fn}, the associated cumulated frequency distribution H is

H(f) =
∑

fj≤f

FH(fj).

In the following, we refer to the value H(fi) also as to Hi.

The idea behind the measure we will discuss in the following is that an object
in a categorical dataset can be considered an outlier with respect to an attribute
if the frequency of the value assumed by this object on such an attribute is rare
if compared to the frequencies associated with the other values assumed on the
same attribute by the other objects of the dataset.

We are interested in two relevant kinds of anomalies referring to two different
scenarios.

Lower Outlier. An object o is anomalous since for a given attribute a the value
that o assumes in a is rare (its frequency is low) while, typically, the dataset
objects assume a few similar values, namely the frequencies of the other values
are high.

Upper Outlier. An object o is anomalous since for a given attribute a the
value that o assumes in a is usual (its frequency is high) while, typically, the
dataset objects assume almost distinct values, namely the frequencies of the
other values are low.

In order to discover outliers, we exploit the cumulated frequency distribution
associated with the dataset. With this aim, we use the area above and below the
curve of the cumulated frequency distribution to quantify the degree of anomaly
associated with a certain frequency. Intuitively, the larger the area above the
portion of the curve included from a certain frequency fi to the maximum fre-
quency fmax, and the more fi differs from frequencies that are greater than fi.
At the same time, the larger the area below the portion of the curve included
from the minimum frequency fmin and a certain frequency fi, and the more fi

differs from frequencies that are smaller than fi.
You can evaluate the contribution given by the area above the cumulated

frequency distribution curve to the outlierness of a certain frequency fi, using
the following expression:

A↑(fi) =
∑

j>i

(fj − fj−1) · (Hn − Hj−1) . (4)

The lower outlier score out↓(fi) is given by the the normalised area

out↓(fi) = A↑(fi)/A↑
max(fi), (5)

obtained by dividing the area A↑(fi) by

A↑
max(fi) = (A↑(f0) − A↑(fi)) + (fn − fi) · (Hn − Hi−1) (6)
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Fig. 1. Outlierness computation example.

corresponding to the area above the cumulated frequency histogram up to the
frequency fi, represented by the term (A↑(f0)−A↑(fi)), plus an upper bound to
the area above the cumulated frequency histogram starting from fi, represented
by the term (fn − fi) · (Hn − Hi−1). Notice that the former term is minimised
for fi → 1, while the latter term tends to A↑(fi) for fn → ∞ and, hence, in this
case out↓(fi) tends to its maximum value 1.

The second scenario we are interested in aims to highlight the upper outliers,
namely those objects that, for a given attribute, assume a value whose frequency
is high, while typically, the dataset objects assume distinct values, that is the
frequencies of the other values are low.

In order to discover such a kind of anomaly we take into account the area
below the cumulated frequency distribution, starting from the lowest frequency
up to the target frequency fi. The bigger this area, the more this frequency can
be highlighted as anomalous.

The contribution of the frequency fi is computed as

A↓(fi) =
∑

j≤i

(fj − fj−1) · Hj−1. (7)

The upper outlier score out↑(fi) is given by the the normalised area

out↑(fi) = A↓(fi)/A↓
max(fi), (8)

obtained by dividing the area A↓(fi) by the term

A↓
max(fi) = (fi − 1) · Hi (9)

representing an upper bound to the area below the cumulated frequency his-
togram up to the frequency fi. Notice that A↓(fi) tends to A↓

max(fi) for fi−1 → 1
and Hi → Hi−1, or equivalently F(fi) � F(fi−1), so in this case out↑(fi) tends
to its maximum value 1.
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The outlierness, or abnormality score, associated with the frequency fi is a
combined measure of the above two normalised areas:

out(fi) =
W ↑

i · out↑(fi) + W ↓
i · out↓(fi)

W ↑
i · φ(out↑(fi)) + W ↓

i · φ(out↓(fi))
(10)

Specifically, the (global) outlierness score of fi is the weighted mean of the
upper and lower outliernesses associated with fi, with weights W ↑

i = Hi and
W ↓

i = (Hn − Hi−1), respectively. Note that Hi represents the fraction of the
frequencies having value less or equal than fi, while (Hn − Hi−1) represents
the fraction of the frequencies having value greater or equal than fi. Thus, the
two weights provide the relative importance of the two contributions in terms
of the fraction of the data population used to compute each of them. As for the
function φ(x), it evaluates to 0 if x = 0, and to 1 otherwise. Thus, it serves the
purpose of ignoring the weight associated with the lower or upper outlierness if
it evaluates to 0 and, otherwise, of taking it into account in its entirety.

In order to clarify areas employed for outlierness computation, consider the
following example. Consider a single attribute dataset whose associated set of
distinct frequencies is {f1 = 1, f2 = 2, f3 = 3, f4 = 4, f5 = 5, f6 = 6} and the set
of weights is {w1 = 3, w2 = 2, w3 = 1, w4 = 2, w5 = 1, , w6 = 2}. Assume that we
want to compute the outlierness associated with the frequency f3 = 3. Figures 1a
and b represent the areas exploited to compute such outlierness. On the left the
area A↓

i together with the area used for normalisation, Amax
↓ , is reported, while,

on the right, the area A↑
i together with the area used for normalisation, Amax

↑ ,
is reported.

If W ↓
i > W ↑

i we say that the global score is of an upper score. Conversely if
W ↑

i ≤ W ↓
i we say that the global score is a lower score.

We will use the notation outH(·) whenever it is needed to highlight the
frequency distribution H used to compute the outlierness. The outlierness
outa(v,D) of the value v ∈ D[a] with respect to the attribute a in the dataset
D, is given by outHD[a](fHD[a]

v ).
Exceptional values v for an attribute a, are those associated with large values

of outlierness outa(v,D). Thus, we are interested in detecting such exceptional
values. However, it must be pointed out that very often a value emerges as
exceptional for a certain attribute only when we restrict our attention to a subset
of the whole population. This intuition leads to the definition of the notion of
explanation-property pair.

Definition 5. An explanation-property pair (E, p), or simply pair for the sake
of conciseness, consists of condition E, also called explanation, and of an atomic
condition p = {(pa, pv)}, also called property. By pa (pv, resp.) we denote the
attribute (value, resp.) involved in the atomic condition p.

Given a pair π = (E, p), Dπ denotes the set of objects DE∪{p}. The out-
lierness out(π) of an explanation-property pair π = (E, p) is the outlierness
outpa

(pv,DE) of the value pv with respect the attribute pa in the dataset DE .
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Fig. 2. Scalability analysis.

We implemented an algorithm that receives in input a dataset D and a depth
parameter δ ≥ 1, and returns all the pairs (E, p) among those composed of at
most δ atomic conditions, that is such that |E| ≤ δ. The algorithm analyzes
all possible explanations of length less or equal than δ according to a depth-
first strategy. This strategy allows a very efficient selection of sub-populations
exploiting an approach similar to the one described in [2].

5 Experimental Results

First of all, to study the applicability of our method to real datasets, we have
tested its scalability by varying the number of objects, the number of attributes,
and the depth parameter. Then, to clarify the different nature of our anomalies
with those returned by other outlier detection methods, we compared our method
with traditional distance-based and density-based outlier detection approaches
and with a method tailored for categorical data. Finally, we discussed knowledge
mined by means of our approach.

In the experiments we used the following dataset from the UCI ML Repos-
itory: Zoo (n = 101 objects and m = 18 attributes), Mushrooms (n = 8,124
objects and m = 22 attributes),

Scalability. Figure 2 shows the scalability analysis of our method on the Mush-
rooms dataset. In the experiment reported in Fig. 2a, we varied the number
of objects n in {500, 1000, 2000, 5000, 8000} and the number of attributes m in
{7, 14, 22} , while the depth parameter has been held fixed to δ = 3. The dashed
lines represent the trend of the linear growth estimated exploiting regression.
This estimation confirms that the algorithm scales linearly with respect to the
dataset size. As for the number of attributes, as expected for a given number of
objects, the execution time increases due to the growth of the associated search
space. On the full dataset the execution time is very contained as it amounts to
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about 2 min. In the experiment reported in Fig. 2b, we varied both the number
of objects n and the depth parameter δ in {1, 2, 3, 4}, while considering the full
feature space. Also in this case the linear growth is represented by the dashed
lines, and similar considerations can be drawn.

Comparison with outlier detection methods. We compare our method with two
of the main categories of outliers:

(i) distance-based approaches, that are used to discover global outliers, i.e.
objects showing abnormal behaviour when compared with the whole dataset
population; (ii) density-based approaches, which are able to single out local out-
liers, i.e. objects showing abnormal behaviour when compared with a certain
subset of the data with their neighbourhood.

As distance-based definition, we use the average KNN score, representing the
average distance from the k-nearest neighbours of the object. As density-based,
we use Local Outlier Factor or LOF [5]. Both methods employ the Hamming
distance. Moreover, we compare our method with the ROAD algorithm [15] that
exploits both distances and densities, namely it establishes two independent
rankings: (i) each data object is assigned to a frequency score and objects with
low scores are considered as outliers (Type-1 outliers); (ii) the k-mode clustering
is performed in order to isolate those objects that are far from big clusters (i.e.
clusters containing at least α% of the whole dataset) according to Hamming
distance (Type-2 outliers). The goal of these experiments is to highlight that we
are able to detected anomalies of different nature and to provide evidence that
our method is knowledge-centric, since it concentrates on anomalous values, as
opposed to classical methods which instead are object-centric.

To compare the approaches, we ranked the dataset objects o by assigning to
each of them the largest outlierness of a pair π such that o ∈ Dπ. We deter-
mined our top–10 outliers by selecting the objects associated with the largest
outliernesses. Then we selected these objects, containing values deemed to be
exceptional by our method, with the purpose of verifying how they are ranked
by popular object-centric techniques. Hence, we computed their outlier scores
according to the KNN, LOF and ROAD definitions.

All the chosen competitors require an input parameter k, representing the
number of k nearest-neighbors or the number of clusters to be taken into account.
Since selecting the right value of k is a challenging task we computed the KNN,
LOF and ROAD outlier scores for all the possible values of k and determined
the ranking positions associated with our top–10 outliers. Particularly, all the
integers from 1 to the number of objects n have been considered for KNN while
30 log-space values between 1 and n have been considered for LOF due to its
higher temporal cost. For ROAD algorithm, we stopped at the value of k such
that at least a big cluster is obtained and use the frequency score to rank those
objects having the same distance from their nearest big cluster.

Figures 3 and 4, report the box-plots for k varying in [1, n] of the KNN,
LOF and ROAD Type-2 outliers rankings associated with our top–10 outliers.
Plots on the top concern lower outliers, while plots on the bottom concern upper
outliers. From these plots it can be seen that the median ranking associated with
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Fig. 3. Comparison with KNN, LOF and ROAD on Zoo.

our outliers can be far away from the top and also that, within the whole ranking
distribution, the same outlier can be ranked in very different positions. In general,
it seems that lower outliers are likely to be ranked better than upper outliers
by our competitors, and this witnesses for the peculiar nature of upper outliers.
On the Zoo dataset there is no apparent correlation between our outliers and
KNN, LOF and ROAD outliers. On the Mushrooms dataset some of our lower
outliers are, on the average, ranked very high also by the other algorithms. Some
of them are almost always top outliers for all methods (see the top 1st, 2nd, 5th,
and 7th outliers) thus witnessing that these outliers have both global and local
nature. However, most of our outliers are not detected by these techniques.

Before concluding this comparison, it must be pointed out that the best
rankings associated with the selected objects are obtained for very different
values of the parameter k. Since, the output of the KNN, LOF and ROAD
methods are determined for a selected value of k, it is very unlike that, even
in presence of some agreement between our top outliers and local and global
outliers, they are simultaneously ranked in high positions for the same provided
value of k.
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Fig. 4. Comparison with KNN, LOF and ROAD on Mushrooms.

Knowledge mined. In this section we discuss about the experiments conduced
on Zoo dataset in order to highlight the kind of knowledge our technique is able
to find out. Information provided by the top-10 lower top pairs is summarized
below:

– Among non-acquatic animals, the clam is the only one that breathes;
– The platypus lays eggs although it provides milk;
– Among predators without feathers, the ladybird is the only airborne;
– The stingray is a catsize animal, but it is venomous;
– Among catsized animals, the octopus is the only invertebrate;
– Among airborne and providing milk animal, the calf is a domestic one;
– The crab is a four-legs animal and it is the only invertebrate;
– Among vertebrate breathing animals, the pitviper is among the very few ven-

omous ones.

Instead, mining upper top pairs, we find out that the dataset contains the
frog twice, the former is venomous and the latter is no-venomous. However, the
animal names are like primary keys for the dataset, so having the same name
twice can be pointed out as an anomalous behavior. Our technique is able to
highlight such a situation. Finally, upper outliers highlight some curiosities about
the animal world including the following:
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– Among breathing not catsized predators the most frequent are not flying birds;
– Among no-feathers no-toothed animals most have six legs;
– Among no-flying breathing catsized animals, the most frequent are mammals;
– Most gastropods have no legs;
– Most breathing, venomous animals have six legs;
– Most no-flying acquatic no-toothed have four legs;
– Most no-toothed have two legs.

6 Conclusions

In this work we have provided a contribution to single out and explain anoma-
lous values in categorical domains. We perceive frequencies of attribute values
as samples of a distribution whose density has to be estimated. This lead to
the notion of frequency occurrence we exploit to build our definition of outlier:
an attribute value is suspected to be an outlier if its frequency occurrence is
exceptionally typical or un-typical within the distribution of frequencies occur-
rences of any other attribute value. As a second contribution, our technique is
able to provide interpretable explanations for the abnormal values discovered.
Thus, the outliers we provide can be seen as a product of the knowledge mined,
making the approach knowledge-centric rather than object-centric. The perfor-
mances have been evaluated on some popular benchmark categorical datasets
and a comparative view has been proposed.
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Abstract. Graphs can conveniently model complex multi-relational character-
istics. For making sense of such data, effective interpretable methods for their
exploration are crucial, in order to provide insights that cover the relevant ana-
lytical questions and are understandable to humans. This paper presents a frame-
work for human-centered exploration of attributed graphs on complex, i.e., large
and heterogeneous event logs. The proposed approach is based on specific graph
modeling, graph summarization and local pattern mining methods. We demon-
strate promising results in the context of a real-world industrial dataset.

1 Introduction

The analysis of complex event logs, i.e., large amounts of log data collected from
heterogeneous sources, is a challenging problem. For that, modeling the log data as
attributed graphs is a promising direction, due to the powerful analysis and mining
methods that are enabled by graphs capturing complex multi-relational data and infor-
mation. Event logs, for example, provide time-stamped information of different events
in a (complex) system, which can be enriched with further information, e.g., attributes
describing properties of the respective events in a graph, leading to well-structured
(feature-rich) graphs [1].

This paper provides a framework for human-centered exploration on graphs con-
structed from complex event log data, proposing methods for graph modeling, graph
summarization and local pattern mining [2]. With that, we specifically tackle the prob-
lem of providing interpretable graph structures and patterns, allowing to reduce the
complexity of the data, in order to obtain interesting patterns that are understandable
to the user. In a mixed-initiative approach, the methods are applied by the user and
provide support in order to model the graph and detect interesting patterns, which can
be refined in an iterative approach – guided by the user. In particular, the user can
also include background knowledge, constraints, and specific queries on the modeled
complex event log graph, for exploration, filtering, refinement. The ultimate goal is the
extraction of interesting insights and knowledge for computational sensemaking [3],
and to aid in decision support for process diagnostics and optimization.
c© Springer Nature Switzerland AG 2019
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Our contributions are summarized as follows:

1. We present the proposed framework for human-centered exploration and its compo-
nents, in particular graph summarization and local pattern mining methods.

2. Furthermore, we describe the modeling of a complex event log graph from respec-
tive event log data, using Markov Chain modeling and network science methods.

3. Finally, we provide a case study using a real-world industrial dataset demonstrating
the application of the proposed framework, and present promising results in that
context.

The rest of the paper is structured as follows: Sect. 2 discusses related work. After
that, Sect. 3 presents the proposed framework for human-centered exploration of com-
plex event log graphs. Next, Sect. 4 describes a case study using real-world industrial
data and discusses promising results. Finally, Sect. 5 concludes with a summary and
interesting directions for future work.

2 Related Work

Below, we first describe related work on the analysis and mining of event logs, before
we outline graph summarization techniques.

2.1 Mining Event Logs

One prominent option for mining event logs is enabled by process mining approaches,
which try to discover the process model of log data [4], i.e., aiming at the discovery of
business process related events in a sequential event log. The assumption is that event
logs contain fingerprints of business processes, which can be identified by sequence
analysis. One task of process mining is conformance checking [5], which has been
introduced to check the matching of an existing business process model with a segmen-
tation of the log entries. Since event logs are inherently sequential, it is possible, e.g.,
to find the Petri-Net model that represents the structure of the events [6,7]. The results
can then be used to improve the performance of processes, also considering declarative
approaches [8,9] for including domain knowledge besides the given activity log. Based
on the findings of standard process mining, also fault detection and anomaly detec-
tion can be implemented using log analysis [10]. Fault detection consists of creating
a database of faulty message patterns. If an event (or a sequence of events) matches
a pattern, the log system can take appropriate action. Anomaly detection then aims at
building a model of the normal log behavior in order to detect unexpected behavior [10].
However, here the challenge is the specification and learning of normal behavior.

In contrast to the approaches discussed above, we do not focus on business process
mining for obtaining structures of the business process. In contrast, we focus on flexible
exploration of the data in a human-centered approach, which enables the inclusion of
domain knowledge for the exploration, including constraints, queries, and expectations
of the user. Furthermore, the standard approaches discussed above do not focus on dif-
ferent levels of analysis, which is enabled in our proposed framework through graph
summarization and refinement. One further important focus is to provide an under-
standable and interpretable summary on the event log data. With that, and the automatic
exploration methods, fault detection and anomaly detection can then be implemented.
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2.2 Graph Summarization

Graph summarization speeds up the analysis of a graph by creating a lossy but con-
cise representation of the graph [11]. Approaches include grouping-based methods,
simplification-based methods, compression-based methods and influence based meth-
ods [12]. One of the most popular grouping-based methods is generating a supergraph,
where nodes are recursively aggregated into supernodes and edges are aggregated into
compressed or virtual nodes [13]. Simplification-based graph summarization consists
of removing less important nodes or edges, which results in a sparsified graph. In com-
parison with supergraphs, a summary now consists of a subset of the original set of
nodes and edges, e.g., [14]. However, there is no consensus so far, on what a graph
summary should look like. It is always application dependent and can serve countless
different goals: preserving the answers to graph queries, finding different graphs struc-
tures, merging nodes into supernodes and merging edges into superedges [12]. In [15]
we have presented initial results on graph summarization using sequential pattern min-
ing and sequence clustering focussing on simple graphs only. Here, we extend on that
by considering graph clustering on attributed graphs.

Therefore, in contrast to typical approaches for graph summarization, the frame-
work proposed in this paper enables a combination of approaches on attributed graphs.
In a human-centered process, the respective graph modeling can be adapted and refined
to the most suitable level of abstraction and information corresponding to the graph.

2.3 Local Pattern Mining on Attributed Graphs

In general, attributed (or labeled) graphs as rich graph representations enable
approaches that specifically exploit the descriptive information of the labels assigned
to nodes and/or edges of the graph. Exemplary approaches include density-based meth-
ods [16], distance-based methods [17], entropy-based methods [18], model-based meth-
ods [19], seed-centric methods [20] and finally (local) pattern mining approaches [21–
24]. Local pattern mining, e.g., [25–27] has many flavors. Those typically are based
in considering the support set of any pattern, i.e., the set of the covered objects, e.g.,
transactions, sequences, or nodes in the context of graph mining. The goal then is to
enumerate the set of all patterns that satisfy some constraint, e.g., a minimal support in
terms of the number of covered objects, or their (topological) connectivity.

In the field of complex networks, a popular approach consists of extracting a core
subgraph from the network, i.e., some essential part of the graph whose nodes satisfy
a local property. The k-core definition was first proposed in [28]. It requires all nodes
in the core subgraph to have a degree of at least k. Furthermore, as an extension of
the closed pattern mining methodology on attributed graphs, [29] proposed a generic
method to enumerate the set of core closed patterns. The MinerLSD algorithm (which
is included in our proposed framework) extends that, and adds efficient pruning using
the local modularity of the pattern core subgraphs [2].

In contrast to the approaches and method mentioned above, our proposed framework
does not primarily rely on an automatic approach. It includes the MinerLSD algorithm,
as an efficient method for local pattern mining on attributed graphs, and extends it
towards mining of complex event log graphs. However, pattern mining is then combined
with graph summarization and refinement, in a human-centered approach.
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3 Human-Centered Exploration Framework

In the following, we first provide an overview on the framework for human-centered
exploration of complex event log graphs. After that, we provide some necessary back-
ground on graphs and patterns. Next, we discuss the central components in detail, i.e.,
modeling and summarizing a complex event log graph, as well as local pattern min-
ing. In particular, we describe the adaptations of specific methods used for mining and
analysis.

3.1 Overview

A schematic view on the framework is given in Fig. 1. The aim of the overall process
is to explore the complex event data, and to obtain interesting patterns that indicate
respective sequential/graph structures. As we will describe in the case study in Sect. 4 in
detail, one example of an interesting (sequence) pattern is an unexpected sequence, i.e.,
one which is rare but not random, to be used for process diagnostics and optimization.

For the process, first the complex event log data is transformed into an attributed
graph, where edges connect log events, and properties of the events given in the event
log are used for the labeling of the nodes. In addition, for the modeling we can include
further properties from network science, in order to provide additional features for
labeling the nodes. This is included in an iterative process, where the user can refine
and enrich the model. The result is an attributed complex event log graph. Complemen-
tary, graph summarization is performed such that the attributed graph can be presented
and inspected at the appropriate level of detail, also facilitating the subsequent mining
and analysis steps. As the next step, local pattern mining for detecting interesting graph
structures is applied on the attributed graph. These graph structures, i.e., graph patterns
inducing subgraphs on the attributed graph, are also assessed and refined by the user in
an iterative process. Here, queries, constraints and domain knowledge of the user can be
included. Finally, as a result of the framework, the detected subgraph structures as well
as the corresponding sequences extracted from the respective subgraphs are utilized for
applications such as fault/anomaly detection and process optimization.

Complex Event Log

Attributed
Graph

Sequential/ 
Graph

Structures

Graph
Patterns

Queries,
Constraints,

Domain Knowledge

Analyze & Refine Analyze & Refine

Complex Event Patterns

Model,
Enrich,

Summarize

MinerLSD

Queries

Fig. 1. Overview on the proposed framework: The complex event log is transformed into an
attributed graph, which is modeled, enriched and summarized by the user as needed in an iter-
ative approach. Here, already simple queries can be answered. After that, either query-driven
or mixed-initiative pattern mining is performed for obtaining graph patterns, leading to sequen-
tial/graph structures which are then analyzed and refined.
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3.2 Background: Graphs and Patterns

A graph G = (V,E) is an ordered pair, consisting of a finite set V containing the
vertices (or nodes), and a set E of edges (or connections) between the vertices, with
n := |V |, m := |E|. A weighted graph is a graph G = (V,E) together with a function
w : E → R

+ that assigns a positive weight to each edge. For the adjacency matrix
A ∈ R

n×n with n = |V | holds Aij = 1 (Aij = w(i, j)) iff (i, j) ∈ E for i, j ∈ V ,
assuming a bijection from 1, . . . , n to V . A path v0 →G vn of length n in a graph G is
a sequence v0, . . . , vn of nodes with n ≥ 1 and (vi, vi+1) ∈ E for i = 0, . . . , n − 1. A
shortest path between nodes u and v is a path u →G v of minimal length.

We distinguish different topological properties of a node, including local (degree,
clustering coefficient) and global properties (pagerank and centrality measures), as indi-
cators of how important a node is [30,31].

– The degree deg(i) of a node i in a graph is the number of connections it has to other
nodes, i.e., deg(i) := |{j |Aij = 1}| . For a directed graph, we further consider the
indegree din and outdegree dout distinguishing between incoming/outgoing edges.

– In a weighted graph, we complement the degree of a node i by its strength s(i) =∑
j Aij , i.e., the sum of the weights of the attached edges.

– The clustering coefficient (or transitivity) [32] for a vertex v ∈ V in a graph G =
(V,E) is defined as the fraction of possible links among v’s neighbors which are
contained in E. It quantifies how densely the neighborhood of a node is connected.

– For ranking nodes, the PageRank [31] algorithm can be applied. For an m × m
column stochastic adjacency matrixA and damping factorα, and uniform preference
vector p := (1/m, . . . , 1/m), the global PageRank vector w =: PR is given as the
fixpoint of the following equation: w = αAw + (1 − α)p .

– The betweenness centrality bet measures the number of shortest paths of all node
pairs that go through a specific node. bet(v) =

∑
s �=v �=t∈V

σst(v)
σst

. Hereby, σst

denotes the number of shortest paths between s and t and σst(v) is the number of
shortest paths between s and t passing through v. Thus, a vertex has a high between-
ness centrality if it can be found on many shortest paths between other vertex pairs.

– The closeness centrality clos considers the length of these shortest paths. Then, the
shorter its shortest path length to all other reachable nodes, the higher a vertex ranks:
clos(v) = 1∑

t∈V \v dG(v,t) . dG(v, t) denotes hereby the geodesic distance (shortest

path) between the vertices v and t.
– The eigenvector centrality eig of a node is an important measure of its influence,
similar to the pagerank measure. Intuitively, a node is central, if it has many cen-
tral neighbors. The eigenvector centrality eig(v) of node v is defined as eig(v) =
λ

∑
{u,v}∈E eig(u) , where λ ∈ R is a constant.

An attributed graph G = (V,E) includes a set of items I , and a dataset D describ-
ing vertices as itemsets. Each vertex v ∈ V is described by an itemset D(v) taken from
the set of items I . Then, for mining local patterns, we want to enumerate all (maximal)
vertex subsets W in G such that there exists an itemset q which is a subset of all item-
sets D(v), v ∈ W . Furthermore, we can also require W to satisfy some graph related
constraints. So, in standard terminology, q is a pattern that occurs in all element of W ;
this is also called the support set or extension ext(q) of q.
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3.3 Graph Modeling of Complex Event Log Data

An event log L consists of a set of tuples l = {m, t, P}, where m ∈ M is an event
message or type, t is a timestamp, enabling a temporal ordering, and P is a set of
attributes or properties of the event type m. For convenience, we assume that these
properties can be modeled as an itemset, taken from a set of items I , such that P (m) ⊆
I , for event type m. The set M contains all possible event types. Given such an event
log L, we create an attributed (directed and weighted) graph as follows:

1. Since we are interested in the connections and sequence of the events, we model all
event types m ∈ M that occur in L as nodes of the graph.

2. Furthermore, we create an edge e = (u, v) connecting nodes u ∈ M and v ∈ M if
the event type v occurs directly after event type u in the event log L. Therefore, we
can simply traverse the event log with a window of size 2, considering the respec-
tive pairs of event types, and create according edges in the graph. The result is a
directed multigraph, i.e., multiple edges can occur between the contained nodes.
From that, we can directly obtain a weighted directed simple graph, by aggregating
all (directed) edges between the nodes, calculating the weight by the number of the
respective aggregated edges between two nodes.

3. For labeling the nodes, for each node u we consider the union of all attribute (item)
sets A, which occur in a log event l = (u, t, A) for any t.

In addition to the node properties P as given above, we can also utilize those using
topological properties of the nodes as outlined above in Sect. 3.2, i.e., degree, strength,
transitivity, pagerank, betweenness centrality, closeness centrality, and eigenvector cen-
trality. Then, we add according (categorical) labels to P based on the respective mea-
sures, applying appropriate binning on the numeric values. These properties are impor-
tant to both consider the topological connectivity, as well as add information given the
edges/transition. Weighted versions of these properties add information for the nodes,
based on the weights of the incident edges.

In the case of a simple directed weighted graph, we add an additional modeling per-
spective. Since we model the graph G according to the sequence of log events L, we
can also take a sequential interpretation (according to the first order Markov property).
We can then directly consider the resulting adjacency matrix A of G as a transition
matrix, from a first order Markov Chain modeling perspective, if normalized accord-
ingly. Thus, if we row normalize the transition counts as discussed above, then these
correspond to event traversal probabilities from one event to another event, represented
by the respective individual nodes.

It is important to note, that the graph modeling options introduced in this framework
are quite flexible, since they already allow to view the event log graph from several per-
spectives: First of all, the attributes of the nodes denote their properties, where the given
nodal properties can be extended and enriched using local and global topological fea-
tures. In addition, regarding the edges we can consider the pure multigraph, analyzing
the edges individually, or take an aggregated view on the simple graph, or a first-order
Markov chain perspective, for which we calculate the transition probabilities accord-
ing to the aggregated counts. From the latter, then also the probability of a sequence
of nodes can be estimated by simple multiplication of the respective (transition) edges’
weights.
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3.4 Graph Summarization

For the graph summarization step, we have several options, to inspect the graph at
different levels of detail. Below, we discuss graph contraction and community detection.
In general, a summary S of an input graph G = (V,E) consists of the following:

– A partition of the nodes V into parts {V1, . . . , Vk}, such that Vi ⊆ V and Vi∩Vj = ∅,
for i, j ∈ {1, . . . , k} and i �= j. A supernode is a group of nodes Vi of summary S.

– For each of those supernodes Vi ∈ V , the summary S describes the number of
edges that are within the nodes in the supernode.

– For every pair of supernodes Vi, Vj ∈ V, the summary S gives the number of edges
across the two supernodes.

Graph Contraction. One popular method to summarize a graph is graph contraction.
Graph contraction itself can work on nodes and/or edges, resulting in node contraction
and edge contraction.

– The node contraction of a pair of vertices Vi and Vj of a graph produces a new graph
in which the two nodes Vi and Vj are replaced by a new node V , such that V is
adjacent to the union of the original node. An example of this procedure can be seen
in Fig. 2.

– Edge contraction is a procedure that removes an edge from a graph while also merg-
ing the two nodes that it originally joined.

In our framework different node and/or edge contraction mechanisms are possible.
In the context of this paper, we applied HDBSCAN [33] – a hierarchical clustering
algorithm that builds upon DBSCAN [34], allowing clusters of any arbitrary shape to
be detected. HDBSCAN is applied on the respective event sequences (using a TF-IDF
similarity measure, e.g., [35]), in order to group the event types. Utilizing the hierarchi-
cal clustering, the domain expert is integrated by inspecting, assessing, and labeling the
respective clusters.
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Fig. 2. Left: The path from node 5 to node 2 always has to cross node 1 and 7. A supernode-
generating algorithm merges these two nodes into one supernode. In addition, there is a cluster
of nodes in the top right corner (nodes 3, 6 and 8). Right: Nodes 3, 6 and 8 got merged into the
supernode (3,6,8), nodes 1 and 7 got merged into the supernode (1,7).
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For the exploration of complex log event graphs, according aggregation operators
need to be defined when either nodes and or edges are contracted. Regarding the node
properties, e.g., the union or intersection can be considered, while the topological prop-
erties can be recomputed in the contracted graph. Regarding the weights of the con-
tracted edges, the aggregation is not necessarily straight-forward. While, in principle,
the edge weights could also be summed up for count data, the resulting interpretation
needs to take the semantics of the aggregation pattern into account. For the Markov
Chain modeling, the transitions can in principle be recomputed considering transitions
between sets of nodes. However, for the respective interpretation it is always important
to link the contracted supernode to the detail nodal structure of its contained sub-nodes.

Community Detection. Another method to generate supernodes is community detec-
tion; in general, its aim is to find the optimal communities with more nodes and edges
inside the community compared to nodes and edges that link to nodes in the rest of
the graph. Figure 3 shows an example with three supernodes, one for each community.
For community detection, there are very many potential algorithms, e.g., [36,37]. In
the context of this paper, we focus on descriptive community detection, which allows to
utilize attributive information of the nodes. A prominent algorithm, i.e., the COMODO
algorithm [24] can be emulated by our local pattern mining method MinerLSD, when
only considering the Modularity metric for assessing local communities. Furthermore,
also partitioning approaches, like the GAMER algorithm [23] can be applied.
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Fig. 3. Example of applying community detection for node contraction. The graph is compressed
into a graph consisting of three nodes only, corresponding to the respective communities.

Analysis and Refinement. Using graph summarization, the user can inspect the graph
at different levels of detail, in order to detect densely connected areas, important hot-
spots regarding the transitions and event log sequences. For interactive exploration,
visualization is an important tool, such that e.g., also a drill down and roll up between
different (hierarchical) aggregation levels is supported. In the proposed framework, this
is a central step supporting the human-centered approach. Then, the domain specialist
can also easily judge to merge clusters or keep them split. The complex event log graph
can then be provided to the local pattern mining step, at the appropriate level of detail.
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3.5 Local Pattern Mining on Attributed Graphs Using MinerLSD

Pattern mining on attributed graphs specifically aims at a description-oriented view, by
including patterns on attributes, but also considering the topological structure. Here, we
focus on such “nuggets in the data” [38] with an interpretable description.

TheMinerLSD algorithm focuses both on local pattern mining using the local mod-
ularity metric [24], as well as graph abstraction that reduces graphs to k-core sub-
graphs [39]. In order to prevent the typical pattern explosion in (naive) pattern mining,
MinerLSD employs closed patterns, cf. [2]. Below, we summarize the algorithm, and
refer to [2] for a detailed discussion. As input parameters, MinerLSD requires a graph
G = (V,E), a set of items I , a datasetD describing vertices as itemsets (as also discussed
above) and a core operator p, e.g., focusing on k-cores. p depends onG and to any image
p(X) = W we associate the core subgraph C whose vertex set is V(C) = W . As fur-
ther parameters, MinerLSD considers the corresponding value k as well as a frequency
threshold s (defaulting to 0) and a local modularity threshold lm . The algorithm outputs
the frequent pairs (c,W ) where c is a core closed pattern and W = p ◦ ext(c) its asso-
ciated (k-)core. It is important to note, that in the enumeration step MinerLSD ensures
that each pair (c,W ) is enumerated (at most) once. For pattern selection and ranking,
MinerLSD applies the local modularity quality functionMODL(W ). For a subgraphW ,

MODL(W ) =
mW

m
−

∑

u,v∈W

d(u)d(v)
4m2

=
1
m

⎛

⎝mW −
∑

u,v∈W

d(u)d(v)
4m

⎞

⎠ ,

where mW denotes the number of edges within the subgraph W , m denotes the total
number of edges, and d(u) denotes the degree of node u.

For analyzing complex log event graphs using MinerLSD, we can then also utilize
the directed version of theMODLmeasure for ranking the patterns (see [24] for details):

MODLD(W ) =
1
m

∑

u,v∈W

(

Au,v − din(u)dout(v)
m

)

=
mW

m
−

∑

u,v∈C

din(u)dout(v)
m2

,

where din and dout denote the indegree and outdegree of a node, respectively.
Intuitively, MODL and MODLD provide the prominent property of assigning a

higher ranking to larger (core) subgraphs under consideration, if these are considerably
more densely connected than expected by chance. This focuses pattern exploration on
the statistically most unusual subgraphs. In addition, applying k-core constraints helps
due to its focus on denser subgraphs, as also theoretically analyzed in [40] for k-cores.
In addition, the local modularity neglects the importance of a minimal support thresh-
old which is typically applied in pattern mining, since it directly includes the size of the
pattern as a criterion. This enables a very efficient pattern mining approach, given either
a suitable threshold for the local modularity, or by targeting the top-k patterns. Further-
more, we can easily extract sequences from the (directed) subgraph regarding specific
queries, and compute transition probabilities of those sequences. Moreover, using Min-
erLSD for explorative pattern mining, we can also utilize other core operators besides
k-cores, e.g., triangles, or hubs and authorities. These core operators specify specific
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graph structures of interest, e.g., densely connected sets of events, as well as impor-
tant events according to incoming/outgoing edges. We refer to [29,41] for a detailed
discussion.

4 Case Study

The applied dataset was provided by ABB in anonymized version, providing a real-
world event log of an industrial process. Information on the first few rows of the dataset
is shown in Table 1. Besides the time the event happened, the set of attributes that
describe an event are a message number, the message category and severity, the title
of an event, the description that provides more information, and the location of the
event (performed by a robot, which is in a cell or robots and that lies in a line of cells).
The total number of events that were available in the dataset was about 4 million, cap-
turing about 1.5 years of activity monitoring of about 200 robots. For preprocessing, we
concatenated titles and message numbers into an event type. To generate nodes from the
event log, these event types were used as nodes and the transitions between them were
considered as edges, as discussed above in Sect. 3.3, also enriching the graph with the
topological attributes.

Table 1. Example: Events of the real-world complex event log dataset used in this paper.

Event_timestamp Message Title Description Line Cell Robot

2014-6-3 12:29:37 10011 Motors ON State Motor on . . . 13 2 48

2014-6-3 12:29:33 10012 Safety Guard Stop State Entering guard state . . . 13 2 48

2014-6-3 12:29:36 10010 Motors OFF State Motor off . . . 13 2 7

2014-6-3 12:29:39 20205 Auto Stop Open Entering auto stop . . . 13 2 48

4.1 Graph Summarization and Visual Analysis

In our case study, the graph summarization process was applied on the modeled
attributed graph. The original graph had 234 nodes (individual message values) and
about 4 million edges (events). The nodes in the log data increased from 234 to 486
when the event type was created, concatenating title, see Table 2) of the event to the
message number, in the data preprocessing phase, since that distinguished between dif-
ferent event subtypes with the same message number. Edge contraction, applying the
HDBSCAN algorithm [15,33] resulted in a considerable reduction in the number of
edges. Furthermore, when aggregating edges into a simple graph and also applying
node contraction using core-pattern mining (using the MinerLSD algorithm with differ-
ent k-core sizes) we further observe considerable reductions in complexity. Please note,
that especially for the k-core contraction, the size of the graph can be flexibly tuned by
utilizing adequate constraints (cf., Table 2).
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Table 2. Results in each stage of the graph summarization process.

Metric Original
graph

Preprocessed
multigraph

Edge contracted
multigraph

Edge aggregated
simple graph

Pattern-driven node
contracted graph

#Nodes 234 486 499 499 1352, 121

#Edges 3,975,765 1,609,363 627,127 8,876 k = 10, 23 (k-core)

It is important to note that each operation on the graph retains the ability to perform
queries on the event log data. For examining the last two days in the event log, for exam-
ple, a total of 5067 events were executed, for which there was a collision event in the
factory, and a factory restart, resulting in a significant downtime of the factory. So, what
caused these downtimes in the factory? Using the graph model, it is possible to calculate
all the paths to such events, in particular, to the event ‘20205:AutoStopOpen’. Details
are visualized in Fig. 4. Furthermore, using the attributed graph, we can also make sense
of the context, e.g., relating to the involved production cells/lines and robots.

Fig. 4. Example graph focussing on the last two days of the event log, with all paths to the event
‘20205:AutoStopOpen’ (center). A node/edge has a larger width if it occurs more often.

4.2 Query-Driven Analysis and Mixed-Initiative Pattern Mining

Query-Driven Analysis. The summarized graph provides the means for considerable
reductions in complexity. Then, also specific queries of the user can be answered,
e.g., regarding (expected) sequences in the graph. Calculating the Markov Chain
probabilities from the transitions between the events, the probability of the expected
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sequences – according to domain knowledge – can then be checked. For exam-
ple, the 10230:Backupstepready, 10231:Backupstepready and 10232:Backupstepready
events form a sequence with three events that should always occur together (the
order can vary). The sequence probabilities are shown in Table 3. The most com-
mon order in the event log was 10230 → 10231 → 10232. Another example is the
(10271:CyclicBrakeCheckStarted → 10270:CyclicBrakeCheckDone) sequence, which
should only occur in this order. However, both (10271 → 10270) and (10270 → 10271)
are likely to appear. Such interesting observations then point to more detailed investi-
gation of the event log.

Table 3. Examples of expected sequences according to domain knowledge.

Sequence Probability

10230:Backupstepready → 10231:Backupstepready → 10232:Backupstepready 0.0000377

10232:Backupstepready → 10230:Backupstepready → 10231:Backupstepready 0.0000270

10231:Backupstepready → 10232:Backupstepready → 10230:Backupstepready 0.0000216

10271:CyclidBrakeCheckStarted → 10270:CyclidBrakeCheckDone 0.0056

10270:CyclicBrakeCheckDone → 10271:CyclicBrakeCheckStarted 0.0042

Mixed-Initiative Analysis Using Local Pattern Mining. By applying the local pat-
tern mining method implemented using MinerLSD, interesting subgraphs of the com-
plex event log graph can be identified, for example, regarding minimal size (support)
constraints, minimal (clustering) quality according to the local modularity measure, or
focussing on specific graph structures, e.g., on k-cores (indicating densely connected
events) or hubs and authorities, which correspond to specific central events that mostly
serve as predecessor or sucessor events towards other events in a sequence. In the fol-
lowing, we provide some examples of interesting patterns that were discovered on the
graph enriched with the topological attributes, focusing on the edge aggregated simple
graph representation. We applied no strong core constraints, only focussing on 1-cores
which require connectedness of the graph pattern. Then, specific interesting sequences
were extracted from the pattern. One simple example is (80002:UserDefinedEvent13’
→’80002:UserDefinedEvent3), which was, however, quite surprising for the domain
specialist; this indicates that “waiting for subsystem tool A” causes an “error in tool B”,
which was unexpected and instigated further analysis.

For the graph pattern (“Warning”, “cell6”, “line20”) which indicates warning condi-
tions occurring in production lines 6 and 20, Table 4 shows some interesting sequences
extracted from the pattern. Here, specifically sequences 1–3 indicate problems and
their respective (root) causes, i.e., a misconfiguration of signal values of the robot or
overload of the main computer, respectively. Sequences 4–5 are of a different type:
Those occurred during maintenance and troubleshooting, and are interesting patterns
for optimizing diagnostics. However, when looking at faults and anomalies during nor-
mal production they do not need to be considered further, and can be marked as such,
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Table 4. Examples of sequences detected using local pattern mining, and their according proba-
bility: Sequences 1–3 indicate problems and causes which can be targeted for process optimiza-
tion. Sequences 4–5 occurred during maintenance and troubleshooting.

Sequence Prob.

71414:Concurrentchangesofsignalvalue → 80002:UserDefinedEvent3 6e-7

71414:Concurrentchangesofsignalvalue → 80002:UserDefinedEvent4 6e-7

20314:Enable2supervisionfault → 40538:MaxTimeExpired → 80002:UserDefinedEvent3 2e-9

20481:SCOVRactive → 40538:MaxTimeExpired → 80002:UserDefinedEvent3 2e-8

20481:SCOVRactive → 40538:MaxTimeExpired → 80002:UserDefinedEvent4 7e-9

to be added to the available domain knowledge. Overall, the domain specialist consid-
ered the detected patterns highly interesting, for which the iterative process on pattern
mining and refinement was essential in order to arrive at interesting and relevant pat-
terns and sequences. For example, a detailed analysis of the last day of the event log
for ‘80002:UserDefinedEvent3’ is shown in Fig. 5, visualizing the paths (focusing on
length 2) leading to that event.

Fig. 5. Detail graph focussing on the event ‘80002:UserDefinedEvent3’ (last day of the event
log).



348 M. Atzmueller et al.

5 Conclusions

In this paper, we presented a framework for human-centered exploration of complex
event logs, utilizing attributed graph modeling, graph summarization, and local pattern
mining. In a real-world case study, we showed the implementation and application of the
proposed framework, and presented promising results. Those indicate, that attributed
graph modeling and graph summarization on complex event log data can be applied to
effectively reduce the data complexity and has the potential to answer specific queries.
Furthermore, using local pattern mining we can identify interesting graph patterns and
sequential structures, yielding important and interesting insights, e.g., for process opti-
mization and diagnostics. With the human-in-the-loop iterative feedback and refinement
cycles are enabled, to include background knowledge and to adapt constraints. In the
case study, context information provided by the domain expert was crucial in order to
check the quality of the obtained patterns. Altogether, graph-based modeling allows
explicit and detailed workflows to be visualized. Second, the adaptability of the graph
based modeling is a strength of the method. Third, query-driven analysis and mixed-
initiative mining of graph patterns and sequential structures complement each other
well.

For future work, we aim to apply the framework on further datasets and domains.
Furthermore, we aim to extend the framework towards model-based approaches, in
order to capture richer constraints in the pattern mining and refinement cycles.
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Abstract. Real-world datasets are often characterised by outliers,
points far from the majority of the points, which might negatively influ-
ence modelling of the data. In data analysis it is hence important to use
methods that are robust to outliers. In this paper we develop a robust
regression method for finding the largest subset in the data that can
be approximated using a sparse linear model to a given precision. We
show that the problem is NP-hard and hard to approximate. We present
an efficient algorithm, termed slise, to find solutions to the problem.
Our method extends current state-of-the-art robust regression methods,
especially in terms of scalability on large datasets. Furthermore, we show
that our method can be used to yield interpretable explanations for indi-
vidual decisions by opaque, black box, classifiers. Our approach solves
shortcomings in other recent explanation methods by not requiring sam-
pling of new data points and by being usable without modifications across
various data domains. We demonstrate our method using both synthetic
and real-world regression and classification problems.

1 Introduction and Related Work

In analyses of real-world data we often encounter outliers, i.e., points which
are far from the majority of the other data points. Such points are problematic
as they may negatively influence modelling of the data. This is observed in,
e.g., ordinary least-squares regression where already a single data point may
lead to arbitrarily large errors [11]. It is hence important to use robust methods
that effectively ignore the effect of outliers. A number of approaches have been
proposed for robust regression, see, e.g., [27] for a review. Our proposed method
is most closely related to Least Trimmed Squares (lts) [2,26,28] that finds a
subset of size k minimising the sum of the squared residuals in this subset, in
contrast to methods that de-emphasise [33] or penalise [20,30,34] outliers.

In this paper we present a sparse robust regression method that outperforms
many of the existing state-of-the-art robust regression methods in terms of scal-
ability on large datasets, termed slise (Sparse LInear Subset Explanations).

c© The Author(s) 2019
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Fig. 1. Robust regression.

Table 1. Classifier probabilities
for high income.

Education
Age Low High

Young 0.07 0.31
Old 0.22 0.61

Specifically, we consider finding the largest subset of data items that can be rep-
resented by a linear model to a given accuracy. Hence, there is an important
difference between our method and lts: with lts the size of the subset is fixed
and specified a priori. Furthermore, the linear models obtained from slise are
sparse, meaning that the model coefficients are easier to interpret, especially for
datasets with many attributes.

Example 1: Robust Regression. Figure 1 shows a dataset containing outliers in
the top left corner. Here ordinary least-squares regression (ols) finds the wrong
model due to the influence of these outliers. In contrast, slise finds the largest
subset of points that can be approximated by a (sparse) linear model, yielding
high robustness by ignoring the outliers.

Interestingly, it turns out that our robust regression method can also be used
to explain individual decisions by opaque (black box) machine learning models:
e.g., why does a classifier predict that an image contains the digit 2? The need
for interpretability stems from the fact that high accuracy is not always suffi-
cient; we must understand how the model works. This is important in safety-
critical real-world applications, e.g., in medicine [6], but also in science, such as
in physics when classifying particle jets [18]. In terms of explanations we con-
sider post-hoc interpretation of opaque models, i.e., understanding predictions
from already existing models, in contrast to creating models directly aiming for
interpretability (e.g., super-sparse linear integer models [32] or decision sets [19]).
In general, model explanations can be divided into global explanations (for the
entire model), e.g., [1,10,16,17], and local explanations (for a single classification
instances), e.g., [5,13,21,25]. Here we are interested in the latter. For a survey
of explanations see, e.g., [15].

To explain an instance, we need to find a (simple and interpretable) model
that matches the black box model locally in the neighbourhood of the instance
whose classification we want to explain. Defining this neighbourhood is impor-
tant but non-trivial (for discussion, see, e.g., [14,24]). The two central questions
are: (i) how do we find the local model and (ii) how do we define the neighbour-
hood? Our approach solves these two problems at the same time by finding the
largest subset of data items such that the residuals of a linear model passing
through the instance we want to explain are minimised.

Example 2: Explanations. Consider a simple toy dataset of persons with the
attributes age ∈ {0, 1} and education ∈ {0, 1}, where 0 denotes low age and
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education and 1 high age and education, respectively. Assume that the dataset
consists mostly of people with high education, if we for example are studying
factors affecting salaries within the faculty of a university department. Now, we
are given a classifier that outputs the probability of high income (vs. low income),
given these two attributes. Our task is to find the most important attribute
used by the classifier when estimating the income level of an old professor in
the dataset. Looking only at the class probabilities, shown in Table 1, it appears
that education is the most significant attribute, and this is indeed what, e.g.,
the state-of-the art local explanation method lime [25] finds. We, however, argue
that this explanation is misleading: our toy data set contains very few instances
of persons with low education, and therefore knowing the education level does
not really give any information about the class. We argue that in this dataset
age is a better determinant of high income, and this is found by slise.

The above example shows the importance of the interaction between the
model and the data. The model in Table 1 is actually a simple logistic regres-
sion1. Hence, even if the model is simple, a complex structure in the data can
make interpretation non-trivial. lime found the simple logistic regression model,
whereas we found the behaviour of the model in the dataset. This distinction is
significant because it suggests that you cannot always cleanly separate the model
from the data. An example of this is conservation laws in physical systems. Accu-
rate data will never violate such laws, which is something the model can rely
on. Without adhering to the data during the explanation you may therefore find
explanations that violate the laws of physics. slise satisfies such constraints
automatically by observing how the classifier performs in the dataset, instead
of randomly sampling (possibly non-physical) points around the item of interest
(as in, e.g., [5,13,21,25]). Another advantage is that we do not need to define
a neighbourhood of a data item, which is especially important in cases where
modelling the distance is difficult, such as with images.

Contributions. We develop a novel robust regression method with applications to
local explanations of opaque machine learning models. We consider the problem
of finding the largest subset that can be approximated by a sparse linear model
which is NP-hard and hard to approximate (Theorem 1) and present an approxi-
mative algorithm for solving it (Algorithm 1). We demonstrate empirically using
synthetic and real-world datasets that slise outperforms state-of-the-art robust
regression methods and yields sensible explanations for classifiers.

Organisation. In Sect. 2 we formalise our problem for both robust regression and
local explanations, and show its complexity. We then discuss practical numeric
optimisation in Sect. 3. The algorithm is presented in Sect. 4, followed by the
empirical evaluation in Sect. 5. We end with the conclusions in Sect. 6.

2 Problem Definition

Our goal is to develop a linear regression method with applications to both
(i) robust global linear regression model and (ii) providing a local linear regression
1 Probability of high income is given by p = σ(−2.53 + 1.73 · education + 1.26 · age).
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model of the decision surface of an opaque model in the vicinity of a particular
data item. In the second case the simple linear model thus provides an explana-
tion for the (typically more) complex decision surface of the opaque model.

Let (X,Y ), where X ∈ R
n×d and Y ∈ R

n, be a dataset consisting of n pairs
{(xi, yi)}n

i=1 where we denote the ith d-dimensional item (row) in X by xi (the
predictor) and similarly the ith element in Y by yi (the response). Furthermore
let ε be the largest tolerable error and λ be a regularisation coefficient. We now
state the main problem in this paper:

Problem 1. Given X ∈ R
n×d, Y ∈ R

n, and non-negative ε, λ ∈ R, find the
regression coefficients α ∈ R

d minimising the loss function

Loss(ε, λ,X, Y, α) =
∑n

i=1
H(ε2 − r2i )

(
r2i /n − ε2

)
+ λ‖α‖1, (1)

where the residual errors are given by ri = yi − αᵀxi, H(·) is the Heaviside
step function satisfying H(u) = 1 if u ≥ 0 and H(u) = 0 otherwise, and ‖α‖1 =∑d

i=1 |αi| denotes the L1-norm. If necessary, X can be augmented with a column
of all ones to accommodate the intercept term of the model.

Alternatively, the Lagrangian term λ‖α‖1 in Eq. (1) can be replaced by a con-
straint ‖αi‖1 ≤ t for some t. Note that Problem 1 is a combinatorial problem in
disguise, where we try to find a maximal subset S, as can be seen by rewriting
Eq. (1) as (using the shorthand [n] = {1, . . . , n})

Loss(ε, λ,X, Y, α) =
∑

i∈S

(
r2i /n − ε2

)
+ λ‖α‖1 where S = {i ∈ [n] | r2i ≤ ε2}.

(2)
The loss function of Eq. (1) (and Eq. (2)) thus consists of three parts; the
maximisation of subset size

∑
i∈S ε2 = |S|ε2, the minimisation of the residuals∑

i∈S r2i /n ≤ ε2, and the lasso-regularisation λ‖α‖1. The main goal is to max-
imise the subset and this is reflected in the loss function, since any decrease of
the subset size has an equal or greater impact on the loss than all the residuals
combined. At the limit of ε → ∞, it follows that S = [n] and Problem 1 is
equivalent to lasso [31]. We now state the following theorem concerning the
complexity of Problem 1.

Theorem 1. Problem 1 is NP-hard and hard to approximate.

Proof. We prove the theorem by a reduction to the maximum satisfying linear
subsystem problem [4, Problem MP10], which is known to be NP-hard. In max-
imum satisfying linear subsystem we are given the system Xα = y, where
X ∈ Z

n×m and y ∈ Z
n and we want to find α ∈ Q

m such that as many equations
as possible are satisfied. This is equivalent to Problem 1 with ε = 0 and λ = 0.
Also, the problem is not approximable within nγ for some γ > 0 [3]. �	

Local Explanations. To provide a local explanation for a data item (xk, yk) where
k ∈ [n], we use an additional constraint requiring that the regression plane
passes through this item, i.e., we add the constraint rk = 0 to Problem 1. This
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constraint is easily met by centring the data on the item (xk, yk) to be explained:
yi → yi − yk and xi → xi − xk for all i ∈ [n], in which case rk = 0 and any
potential intercept is zero. Hence, it suffices to consider Problem 1 both when
finding the best global regression model and when providing a local explanation
for a data item.

In practice, we employ the following procedure to generate local explanations
for classifiers. If a classifier outputs class probabilities P ∈ R

n we transform them
to linear values using the logit transformation yi = log(pi/(1 − pi)), yielding a
vector Y ∈ R

n. This new vector Y −yk is what we use for finding the explanation.
Now, the local linear model, α from Problem 1, and the subset, S from

Eq. (2), constitute the explanation for the data item of interest. Note that the
linear model is comparable to the linear model obtained using standard logistic
regression, i.e., we approximate the black box classifier by a logistic regression
in the vicinity of the point of interest.

3 Numeric Approximation

We cannot effectively solve the optimisation problem in Problem 1 in the general
case. Instead, we relax the problem by replacing the Heaviside function with a
sigmoid function σ and a continuous and differentiable rectifier function φ(u) ≈
min (0, u). This allows us to compute the gradient and find α by minimising

β-Loss(ε, λ,X, Y, α) =
∑n

i=1
σ(β(ε2 − r2i ))φ

(
r2i /n − ε2

)
+ λ‖α‖1, (3)

where the parameter β determines the steepness of the sigmoid and the rectifier
function φ is parametrised by a small constant ω > 0 such that φ(u) = u for
u < −ω, φ(u) = −(u2/ω + ω)/2 for −ω ≤ u ≤ 0, and φ(u) = −ω/2 for 0 < u.
It is easy to see that Eq. (3) is a smoothed variant of Eq. (1) and that the two
become equal when β → ∞ and ω → 0+.

We perform this minimisation using graduated optimisation, where the idea
is to iteratively solve a difficult optimisation problem by progressively increasing
the complexity [23]. A natural parametrisation for the complexity of our problem
is via the β parameter. We start from β = 0 which corresponds to a convex
optimisation problem equivalent to lasso, and gradually increase the value of β
towards ∞ which corresponds to the Heaviside solution of Eq. (1). At each step,
we use the previous optimal value of α as a starting point for minimisation of Eq.
(3). It is important that the optima of the consecutive solutions with increasing
values of β are close enough, which is why we derive an approximation ratio
between the solutions with different values of β. We observe that our problem
can be rewritten as a maximisation of −β-Loss(ε, λ,X, Y, α). The choice of β
does not affect the L1-norm and we omit it for simplicity (λ = 0).

Theorem 2. Given ε, β1, β2 > 0, such that β1 ≤ β2, and the functions fj(r) =
−σ(βj(ε2 −r2))φ(r2/n−ε2), and Gj(α) =

∑n
i=1 fj(ri) where ri = yi −αᵀxi and

j ∈ {1, 2}. For α1 = argmaxα G1(α) and α2 = argmaxα G2(α) the inequality
G2(α2) ≤ KG2(α1) always holds, where K = G1(α1)/ (G2(α1)minr f1(r)/f2(r))
is the approximation ratio.
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Parameters: (1) Dataset X ∈ R
n×d, Y ∈ R

n, (2) error tolerance ε,
(3) regularisation coefficient λ, (4) sigmoid steepness βmax,
(5) target approximation ratio rmax

1 Function SLISE(X, Y , ε, λ, βmax, rmax)
2 α ← OrdinaryLeastSquares(X, Y ) and β ← 0
3 while β < βmax do
4 α ← OWL-QN(β-Loss, ε, λ, X, Y , α)
5 β ← β′ such that AppoximationRatio(X, Y , ε, β, β′, α) = rmax

6 α ← OWL-QN(β-Loss, ε, λ, X, Y , α)
Result: α

Algorithm 1: The slise algorithm.

Proof. Let us first argue the non-negativity of f1 and f2. The inequalities
σ(z) > 0 and φ(z) < 0 hold for all z ∈ R, thus fj(r) > 0. Now, by definition,
G1(α2) ≤ G1(α1). We denote r∗

i = yi − αᵀ
2xi and k = minr f1(r)/f2(r), which

allows us the rewrite and approximate:

G1(α2) =
∑n

i=1
f1(r∗

i ) =
∑n

i=1
f2(r∗

i )f1(r
∗
i )/f2(r∗

i ) ≥ kG2(α2).

Then G2(α2) ≤ G1(α2)/k ≤ G1(α1)/k ≤ G2(α1)G1(α1)/(kG2(α1)), and the
inequality from the theorem holds. �

We use Theorem 2 to choose the sequence of β values (β1 = 0, β1, . . . , βl =
βmax) so that at each step the approximation ratio as defined by K stays within
a bound specified by the parameter rmax in Algorithm 1.

4 The slise Algorithm

In this section we describe an approximate numeric algorithm Algorithm 1
(slise) for solving Problem 1. As a starting point for the regression coefficients α
we use the solution obtained from an ordinary least squares regression (ols) on
the full dataset (Algorithm 1, line 2). We now perform graduated optimisation
(lines 3–5) in which we gradually increase the value of β from 0 to βmax. At each
iteration, we find the model α using the current value of β, such that β-Loss in
Eq. (3) is minimised (line 4). To perform this optimisation we use owl-qn [29],
which is a quasi-Newton optimisation method with built-in L1-regularisation.
We then increase β gradually (line 5) such that the approximation ratio K in
Theorem 2 equals rmax.

The time complexity of slise is affected by the three main parts of the algo-
rithm; the loss function, owl-qn, and graduated optimisation. The evaluation
of the loss function has a complexity of O(nd), due to the multiplication between
the linear model α and the data-matrix X. owl-qn has a complexity of O(dpo),
where pp is the number of iterations. Graduated optimisation is also an itera-
tive method O(dpg), but it only adds the approximation ratio calculation O(nd)
(which is not dominant). Combining these complexities yields a complexity of
O(nd2p) for slise, where p = po + pg is the total number of iterations.
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Table 2. The datasets. The synthetic dataset can be generated to the desired size.

emnist imdb Physics Synthetic

Items 40 000 25 000 260 000 n

Dimensions 784 1000 5 d

Type Image Text Tabular -
Classifier cnn lr, svm nn -

5 Experiments

slise has applications in both robust regression and for explaining black box
models, and the experiments are hence divided into two parts. In the first part
(Sect. 5.1) we consider slise as a robust regression method and demonstrate that
(i) slise scales better on high-dimensional datasets than competing methods, (ii)
slise is very robust to noise, and (iii) the solution found using slise is optimal.
In the second part (Sect. 5.2) we use slise to explain predictions from opaque
models. The experiments were run using R (v. 3.5.1) on a high-performance
cluster [12] (4 cores from an Intel Xeon E5-2680 2.4GHz with 16Gb RAM).
slise and the code to run the experiments is released as open source and is
available from http://www.github.com/edahelsinki/slise.

Datasets. We use real (emnist [9], imdb [22], Physics [8]) and synthetic datasets
in our experiments (properties given in Table 2). Synthetic datasets are generated
as follows. The data matrix X ∈ R

n×d is created by sampling from a normal
distribution with zero mean and unit variance. The response vector Y ∈ R

n is
created by yi ← aᵀxi (plus some normal noise with zero mean and 0.05 variance),
where a ∈ R

d is one of nine linear models drawn from a uniform distribution
between −1 and 1. Each model creates 10% of the Y -values, except one that
creates 20% of the Y -values. This larger chunk should enable robust regression
methods to find the corresponding model.

Pre-processing. It is important both for robust regression and for local explana-
tions to ensure that the magnitude of the coefficients in α are comparable, since
sparsity is enforced by L1-penalisation of the elements in α. Hence, we normalize
the Physics datasets dimension-wise by subtracting the mean and dividing by
the standard deviation. For emnist the data items are 28 × 28 images and we
scale the pixel values to the range [−1, 1]. Some of the pixels have the same
value for all images (i.e., the corners) so these pixels were removed and the
images flattened to vectors of length 672. And for the text data in imdb we form
a bag-of-words model using the 1000 most common words after case normal-
isation, removal of stop words and punctuation, and stemming. The obtained
word frequencies are divided by the most frequent word in each review to adjust
for different review lengths, yielding real-valued vectors of length 1000. The Y -
values for all datasets are scaled to approximately be within [−0.5, 0.5] based
on the 5th and 95th quantiles.

http://www.github.com/edahelsinki/slise
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Table 3. Properties of regression methods. RR stands for robust regression.

Algorithm Robust Sparse R-Package Description

slise Yes Yes RR with variable-size subsets

fast-lts [28] Yes No robustbase RR with fixed-size (50%) subsets

sparse-lts [2] Yes Yes robustHD Sparse lts solutions

mm-estimator [34] Yes No MASS Maximum likelihood-based RR

mm-lasso [30] Yes Yes pense Sparse mm-estimator solutions

lad-lasso [33] Maybe Yes MTE Combines lad (Least Absolute
Deviation) and a lasso penalty

lasso [31] Yes No glmnet ols with a L1-norm

Classifiers. We use four high-performing classifiers; a convolutional neural net-
work (cnn), a normal neural network (nn), a logistic regression (lr), and a sup-
port vector machine (svm), see Table 2. The classifiers are used to obtain class
probabilities pi of the given data instances. As described in Sect. 2 we transform
pi:s into linear values using the logit transformation yi = log(pi/(1 − pi)).

Default Parameters. The two most important parameters for slise are the error
tolerance ε and the sparsity λ. These, however, depend on the use-case and
dataset and must be manually adjusted. The default is to use λ = 0 (no spar-
sity) and ε = 0.1 (10 % error tolerance due to the scaling mentioned above).
The parameter βmax must only be large enough to make the sigmoid function
essentially equivalent to a Heaviside function. As a default we use βmax = 30/ε2.
The division by ε2 is used to counteract the effects the choice of ε has on the
shape of the sigmoid. The maximum approximation ratio rmax is used to control
the step size for the graduated optimisation. We used rmax = 1.2, which for our
datasets provided good speed without sacrificing accuracy.

5.1 Robust Regression Experiments

We compare slise to five state-of-the-art robust regression methods (Table 3,
lasso is included as a baseline). All algorithms have been used with default set-
tings. Not all methods support sparsity, and when they do, finding an equivalent
regularisation parameter λ is difficult. Hence, unless otherwise noted, all sparse
methods are used with almost no sparsity (λ = 10−6).

Scalability. We first investigate the scalability of the methods. Most of the meth-
ods have similar theoretical complexities of O(nd2) or O(nd2p), but for the iter-
ative methods the number of iterations p might vary. We empirically determine
the running time on synthetically generated datasets with (i) n ∈ {500, 1 000,
5 000, 10 000, 50 000, 100 000} items and d = 100 dimensions, and (ii) d ∈ {10,
50, 100, 500, 1 000} dimensions and n = 10 000 items. The methods that support
sparsity have been used with different levels of sparsity (λ ∈ {0, 0.01, 0.1, 0.5})
and the mean running times are presented. We use a cutoff-time of 10min.
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Fig. 2. Running times in seconds. Left: Varying the number of samples with fixed
d = 100. Right: Varying the number of dimensions with fixed n =10 000. The cutoff
time of 600 s is shown using a dashed horizontal line at t = 600.

The results are shown in Fig. 2. We observe that slise scales very well in com-
parison to the other robust regression methods. In Fig. 2 (left) slise outperforms
all methods except fast-lts, which uses subsampling to keep the running time
fixed for varying sizes of n. In Fig. 2 (right) we see that slise consistently out-
performs the other robust regression methods for all d > 10 and it is the only
robust regression method that allows us to obtain results even for a massive
10 000 × 1 000 dataset in less than 100 s (the other robust regression algorithms
did not yield results within the cutoff time).

Robustness. Next we compare the methods’ robustness to noise. We start with
a dataset D in which a fraction δ of data items are corrupted by replacing the
response variable with random noise (uniformly distributed between min(Y ) and
max(Y )), yielding a corrupted dataset Dδ. The regression functions are learned
from Dδ, after which the total sum of the residuals are determined in the clean
data D. If a method is robust to noise the residuals in the clean data will be
small, since the noise from the training data is ignored by the model. The results,
using the Physics data, are shown in Fig. 3 (left). Due to the varying subset
size slise is able to reach higher noise fractions before breaking down than lts.
Note that at high noise fractions all methods are expected to break down.

Optimality. Finally, we demonstrate that the solution found using slise opti-
mises the loss of Eq. (1). The slise algorithm is designed to find the largest subset
such that the residuals are upper-bounded by ε. To investigate if the model found
using slise is optimal, we determine a regression model (i.e., obtain a coefficient
vector α) using each algorithm. We then calculate the value of the loss-function
in Eq. (1) for each model with varying values of ε. The results, using Synthetic
data with n = 1 000 and d = 30, are shown in Fig. 3 (right). All loss-values have
been normalised with respect to the lasso model at the corresponding value of
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Fig. 3. Left: Robustness of slise to noise. The x-axis shows the fraction of noise and
the y-axis the sum of the residuals. Small residuals indicate a robust method. Right:
Optimality of slise. Negative loss-values are shown, normalised with respect to the
corresponding loss for lasso. Higher values are better.

ε and the curve for lasso hence appears constant. slise consistently has the
smallest loss in the region around ε = 0.1, as expected.

5.2 Local Explanation Experiments

Text Classification. We first compare slise to lime [25], which also provides
explanations in terms of sparse linear models. We use the imdb dataset and
explain a logistic regression model. lime was used with default parameters and
the number of features was set to 8. slise was also used with default parameters,
except using λ = 0.75 to yield a sparsity comparable to lime. The results are
shown Fig. 4. The lime-explanation surprisingly shows that the word street is
important. Street indeed has a positive coefficient in the global model, but the
word is quite rare, only occurring in 2.6% of all reviews. slise, in contrast, takes
this into account and focuses on the words great, fun, and enjoy. The results
for both algorithms are practically unchanged when all reviews with the word
street are removed from the test dataset, i.e., lime emphasises this word even
though it is not a meaningful discriminator for this dataset.

Figure 5 shows a second text example with an ambiguous phrase (not bad).
The classification is incorrect (negative), since the svm cannot take the interac-
tion between the words not and bad into account. The explanation from slise
reveals this by giving negative weights to the words wasn’t and bad.

Image Classification. We now demonstrate how slise can be used to explain
the classification of a digit from emnist, the 2 shown in Fig. 6a. We use slise
with default parameters, except using a sparsity of λ = 2, and a dataset with
50% images of the digit 2 and 50% images of other digits (0, 1, 3–9).



SLISE 361

Fig. 4. Comparing lime (top) and slise (bottom) with a logistic regression on the
imdb dataset. Parts without any weight from either model are left out for brevity.

Fig. 5. slise explaining how the svm does not model not bad as a positive phrase.

Approximation as Explanation. The linear model α approximates the opaque
function (here a cnn) in the region around the item being explained. The model
weights allow us to deduce features that are important for the classification.
Figure 6b shows a saliency map in terms of the weight vector α. Each pixel
corresponds to a coefficient in the α-vector and the colour of the pixel indicates
its importance in distinguishing a digit 2 from other digits. Purple denotes a pixel
supporting positive classification of a 2, and orange a pixel not supporting a 2.
More saturated colours correspond to more important weights. We see that the
long horizontal line at the bottom is important in identifying 2s, as this feature
is missing in other digits. Also, the empty space in the middle-left separates 2s
from other digits (i.e., if there is data here the digit is unlikely a 2).

Figure 6c shows the class probability distributions for the test dataset and
the found subset S. To deduce which features in α that distinguish one class
(e.g., 2s from the other digits) we must ensure that the found subset S contains
items from both classes (as here in Fig. 6c), otherwise, the projection is to a
linear subspace where the class probability is unchanged. During our empirical
evaluation of the emnist dataset this did not happen.

Subset as Explanation. Unlike many other explanation methods the subset found
by slise consists of real samples. This makes the subset interesting to examine.
Figure 7a shows six digits from the subset and how the linear model interacts
with them. We see why the 1 is less likely to be a 2 than the 8 (0.043 vs 0.188).
Another interesting question is for which digits the approximation is not valid,
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Fig. 6. (a) The digit being explained. (b) Salience map showing the regression weights
of the linear model found using slise. The instance being explained is overlaid in the
image. Purple colour indicates a weight supporting positive classification of a 2, and
orange colour indicates a weight not in support of classifying the item as a 2. (c) Class
probability distributions for the full dataset and for the found subset S.

in other words which digits are outside the subset. Figure 7b shows a scatter-
plot of the dataset used to find an explanation for the 2 (shown on a black
background). The data items in the subset S lie within the corridor marked
with dashed green lines. The top right contains digits to which both slise and
the classifier assign high likelihoods of being 2s. The bottom left contains digits
unlike 2s. The data items in the top left and bottom right contain items for
which the local slise model is not valid and they are not part of the subset. We
see that Z-like 2s and L-like 6s are particularly ill-suited for this approximation.

Modifying the Subset Size. The subset size controls the locality of explanations.
Large subsets lead to more general explanations, while small subsets may cause
overfitting on features specific to the subset. Figure 7d shows a progression of
explanations for a 2 (similar to Fig. 6b) in order of decreasing subset size (from
ε = 0.64 to ε = 0.02). We observe that these explanations emphasise slightly
different regions due to the change in locality (and hence in the model). Note
that ε → ∞ is equivalent to logistic regression through the item being explained.

Modifying the Dataset. The dataset used to find the explanation can be modified
in order to answer specific questions. E.g., restricting the dataset to only 2s and
3s allows investigation of what separates a 2 from a 3. This is shown in Fig. 7c.
We see that 3s are distinguished by their middle horizontal stroke and the 2s by
the bottom horizontal strokes (“split” due to the bottom curve of 3s).

Classification of Particle Jets. Some datasets adhere to a strict generating
model, this is the case for, e.g., the Physics dataset, which contains particle
jets extracted from simulated proton-proton collision events [8]. Here the laws of
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Fig. 7. Exploring how slise’s model interacts with other digits than the one being
explained (a and b), how varying the parameters affects the explanation (d), and how
modifying the dataset can answer specific questions (c).

physics must not be violated, and slise automatically adheres to this constraint
by only using real data to construct the explanation. In Table 4 we use slise
to explain a classification made by a neural network. The classification task in
question is to decide whether the initiating particle of the jet was a quark or a
gluon. The total energy of the jet is on average distributed differently among its
constituents depending on the jet’s origin [7]. Here, the slise explanation shows
the importance of the energy distribution variable QG_ptD.
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Table 4. slise explanation for why an example in the Physics dataset is a quark jet.

Pt Girth QG_ptD QG_axis2 QG_mult

Jet 1196 0.020 0.935 0.002 16
α 0.01 −0.05 0.18 −0.02 0

6 Conclusions

This paper introduced the slise algorithm, which can be used both for robust
regression and to explain classifier predictions. slise extends existing robust
regression methods, especially in terms of scalability, important in modern data
analysis. In contrast to other methods, slise finds a subset of variable size,
adjustable in terms of the error tolerance ε. slise also yields sparse solutions.

slise yields meaningful and interpretable explanations for classifier decisions
and can be used without modification for various types of data and without the
need to evaluate the classifier outside the data set. This simplicity is important as
it provides consistent operation across data domains. It is important to take the
data distribution into account, and if the data has a strict generating model it
is also crucial not to perturb the data. The local explanations provided by slise
take the interaction between the model and the distribution of the data into
account, which means that even simple global models might have non-trivial local
explanations. Future work includes investigating various initialisation schemes
for slise (currently an ols solution is used).
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Abstract. Being able to model correlations between labels is considered crucial
in multi-label classification. Rule-based models enable to expose such depen-
dencies, e.g., implications, subsumptions, or exclusions, in an interpretable and
human-comprehensible manner. Albeit the number of possible label combinations
increases exponentially with the number of available labels, it has been shown that
rules with multiple labels in their heads, which are a natural form to model local
label dependencies, can be induced efficiently by exploiting certain properties of
rule evaluation measures and pruning the label search space accordingly. How-
ever, experiments have revealed that multi-label heads are unlikely to be learned
by existing methods due to their restrictiveness. To overcome this limitation, we
propose a plug-in approach that relaxes the search space pruning used by existing
methods in order to introduce a bias towards larger multi-label heads resulting in
more expressive rules. We further demonstrate the effectiveness of our approach
empirically and show that it does not come with drawbacks in terms of training
time or predictive performance.

Keywords: Multi-label classification · Rule learning · Label dependencies

1 Introduction

As many real world problems require to assign a set of labels, rather than a single class,
to instances, multi-label classification (MLC) has become an established topic in the
recent machine learning literature. For example, text documents are often related to
multiple subjects and media, such as images or music, can usually be associated with
several tags at the same time (see [14] for an overview).

Rule-based methods are a well-researched approach to solve classification prob-
lems. Due to their interpretability, the use of rule learning algorithms in MLC has
recently been proposed as an alternative to complex statistical methods such as support
vector machines or artificial neural networks (see e.g. [6,8]). Rules provide a natural
and simple representation of a learned model and can easily be understood, analyzed,
and modified by human domain experts. Especially in safety-critical domains, such as
medicine, power systems, or financial markets, the interpretability of machine learning
models is an important requirement to be able to prevent malfunctions and unexpected
behavior.
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Rules do not only reveal patterns and regularities hidden in the data, but are also
able to make global or local correlations between labels explicit [9]. Exploiting such
correlations is considered crucial in MLC and it is commonly accepted that approaches
that are able to take label dependencies into account can be expected to achieve bet-
ter predictive results [5,9,14]. Existing multi-label rule learning approaches are able to
exploit label correlations by inducing label-dependent rules, i.e., rules that may contain
label conditions in their bodies [9]. In addition, rules with multi-label heads provide the
ability to model local dependencies between labels by including multiple label assign-
ments in their heads [12]. This enables to model co-occurrences—a frequent pattern
in multi-label data—, as well as other types of interdependencies between labels, in a
natural and compact form.

Motivation and Goals. The induction of multi-label heads is particularly challenging
as the number of label combinations that can potentially be included in a head increases
exponentially with the number of available labels. To mitigate the computational com-
plexity that comes with a search for multi-label heads, certain properties of commonly
used multi-label evaluation measures—namely anti-monotonicity and decomposabil-
ity—have successfully been exploited for pruning the search space. Although this
enables to efficiently induce multi-label heads in theory, experiments have revealed that
such patterns are unlikely to be learned in practice [12]. This is due to the restrictiveness
of existing methods that assess the quality of potential heads solely in terms of the used
evaluation function. These functions tend to prefer single-label predictions to rules with
multi-label heads, because the quality of the individual label assignments contained in
such a head usually varies. For example, if two rules with the same body but different
single-label heads reach a heuristic value of 0.89 and 0.88, respectively, predicting both
labels usually results in a performance decline compared to the value 0.89—typically a
value between 0.89 and 0.88. However, opting for the multi-label head would arguably
be a good choice: First, the resulting rule would have greater coverage. Second, it eval-
uates to a heuristic value only slightly worse than that of the best single-label rule.

In this work, we present a relaxed pruning strategy to overcome the bias towards
single-label predictions. We further argue that strict upper bounds in terms of computa-
tional complexity can still be guaranteed when relaxing the search for multi-label heads.
As our empirical studies reveal, the training process even tends to terminate earlier due
to the increased coverage of the induced rules. The experiments also show that the use
of relaxed pruning results in more compact models that reach predictive results com-
parable to those of existing approaches. Moreover, we discuss whether our approach
discovers more label dependencies, which is a major goal of our method.

Structure of This Work. We start with an introduction to the problem domain and
a recapitulation of previous work in Sect. 2. As the main contribution of this work, in
Sects. 3 and 4, we present a plug-in approach that relaxes the search space pruning used
by existing methods in order to introduce a bias towards the induction of larger multi-
label heads. To illustrate the effects of our extension, we present an empirical analysis
focusing on the predictive performance, model characteristics and run-time efficiency
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of the proposed method in Sect. 5. Finally, we provide an overview of related work in
Sect. 6 before we conclude by summarizing our results in Sect. 7.

2 Preliminaries

In contrast to binary or multi-class classification, in MLC an instance can be associ-
ated with several labels λi out of a predefined label space L = {λ1, . . . , λn}. The task
is to learn a classifier function g (.) that maps an instance x to a predicted label vec-
tor ŷ = (ŷ1, . . . , ŷn) = {0, 1}n, where each prediction ŷi specifies the presence (1)
or absence (0) of the corresponding label λi. An instance xj consists of attribute-value
pairs given as a vector xj = (v1, . . . , vl) ∈ D = A1×· · ·×Al, where Ai is a numeric or
nominal attribute. We handle MLC as a supervised learning problem in which the classi-
fier function g (.) is induced from labeled training data T = {(x1,y1) , . . . , (xm,ym)},
containing tuples of training instances xj and true label vectors yj .

2.1 Multi-label Classification Rules

We are concerned with the induction of conjunctive, propositional rules r : Ŷ ← B.
On the one hand, the body B of such a rule contains an arbitrary number of conditions
that compare an attribute-value vi of an instance to a constant by using equality (nom-
inal attributes) or inequality (numerical attributes) operators. If an instance satisfies all
conditions in the body of a rule r, it is said to be covered by r. On the other hand, the
head Ŷ consists of one (single-label head) or several (multi-label head) label assign-
ments ŷi = {0, 1} that specify whether the label λi should be predicted as present (1) or
absent (0) for the covered instances. Multi-label heads enable to model local dependen-
cies, such as co-occurrences or exclusions, that hold for the instance subspace covered
by the rule’s body.

In general, the head Ŷ of a rule may have different semantics in a multi-label setting.
We consider the predictions provided by an individual rule to be partial, because we
believe that this particular strategy has several conceptual and practical advantages.
When using partial predictions, each rule only predicts the presence or absence of a
subset of the available labels and leaves the prediction of the remaining ones to other
rules.

2.2 Bipartition Evaluation Functions

To evaluate the quality of multi-label predictions, we use bipartition evaluation func-
tions δ : N2×2 → R that are based on comparing the difference between true label
vectors (ground truth) and predicted labels (cf. [14]). Such a function maps a two-
dimensional (label) confusion matrix C to a heuristic value h ∈ [0, 1]. A confusion
matrix consists of the number of true positive (TP), false positive (FP), true negative
(TN), and false negative (FN) labels predicted by a rule or classifier.
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Let the variables yj
i and ŷj

i denote the absence (0) or presence (1) of the label λi

of instance xj according to the ground truth or a prediction, respectively. Given these
variables, we calculate the atomic confusion matrix Cj

i for the respective label λi and
instance xj as

Cj
i =

(
TPj

i FPj
i

FNj
i TNj

i

)
=

(
yj

i ŷ
j
i (1 − yj

i )ŷ
j
i

(1 − yj
i )(1 − ŷj

i ) yj
i (1 − ŷj

i )

)
(1)

Note that, in accordance with [12], we assess TP, FP, TN, and FN differently to
evaluate candidate rules during training. To ensure that absent and present labels have
the same impact on the performance of a rule, we always count correctly predicted
labels as TP and incorrect predictions as FP. Labels for which no prediction is made
are counted as TN if they are absent, or as FN if they are present.

When evaluating multi-label predictions which have been made for m instances and
n labels it is necessary to aggregate the resulting m · n atomic confusion matrices. We
restrict ourselves to micro- and (label-based) macro-averaging, which are defined as

δ (C) = δ
(∑

i

∑
j
Cj

i

)
and δ (C) = avgi

(
δ
(∑

j
Cj

i

))
(2)

where the
∑

operator denotes the cell-wise addition of atomic confusion matrices Cj
i ,

corresponding to label λi and instance xj , and avgi calculates the mean of the heuristic
values obtained for each label λi.

2.3 Multi-label Rule Learning Heuristics

In the following, we present the bipartition evaluation functions—also referred to as
heuristics—that are used in this work to assess the quality of candidate rules in terms
of a heuristic value h. According to these heuristics, rules with a greater heuristic value
are preferred to those with smaller values.

Among the heuristics we use in this work is Hamming accuracy (HA). It measures
the percentage of correctly predicted labels among all labels and can be computed using
micro and macro-averaging with the same final result.

δhamm (C) :=
TP+ TN

TP+ FP+ TN+ FN
(3)

Moreover, we use the F-measure (FM) to evaluate candidate rules. It calculates as
the (weighted) harmonic mean of precision and recall. If β < 1, precision has a greater
impact. If β > 1, the F-measure becomes more recall-oriented.

δF (C) :=

(
1 + β2

) · TP
(1 + β2) · TP+ β2 · FN+ FP

with β ∈ [0,+∞] (4)

2.4 Pruning the Search for Multi-label Heads

We rely on the multi-label rule learning algorithm proposed by Rapp et al. [12] to
learn rule-based models. It uses a separate-and-conquer strategy, where new rules are
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induced iteratively. Whenever a new rule is learned, the covered instances are removed
from the training data set if enough of their labels are predicted by already induced rules
(“separate” step). Afterwards, the next rule is induced from the remaining instances and
labels (“conquer” step). The training process continues until only few training instances
are left. To classify an instance, the rules contained in the model are applied in the order
of their induction. If a rule covers the given instance, the labels in its head are applied
unless they were already predicted by a previous rule.

To learn new rules, the algorithm performs a top-down greedy search, starting with
the most general rule. By adding additional conditions to the rule’s body it is suc-
cessively specialized, resulting in fewer instances being covered. For each candidate
rule, a corresponding single- or multi-label head, that models the labels of the covered
instances as accurately as possible, must be found.

To find a suitable (multi-label) head for a given body, potential label combinations
are evaluated with respect to a certain heuristic δ using a breadth-first search. Instead of
performing an exhaustive search through the label space, which is unfeasible in prac-
tice due to its exponential complexity, the search is pruned by leaving out unpromising
label combinations as illustrated in Fig. 1. To prune the search for multi-label heads,
while still being able to find the best solution, Rapp et al. [12] exploit certain prop-
erties of multi-label evaluation measures—namely anti-monotonicity and decompos-
ability. In this work, we focus on the latter for two reasons: First, decomposability
is a stronger criterion compared to anti-monotonicity. It enables to prune the search
space more extensively and comes with linear costs, i.e., the best multi-label head can
be inferred from considering each label separately. Second, most common multi-label
evaluation measures have been proved to be decomposable, including the ones used in
this work (cf. Sect. 2.3). The definition of decomposability is given below.

Definition 1 (Decomposability, cf. [12]). A multi-label evaluation function δ is
decomposable if the following conditions are met:

i) If the multi-label head rule Ŷ ← B contains a label attribute ŷi ∈ Ŷ for which the
corresponding single-label head rule ŷi ← B does not reach hmax, the multi-label
head rule cannot reach that performance either (and vice versa).

∃i
(
ŷi ∈ Ŷ ∧ h(ŷi ← B) < hmax

)
⇐⇒ h(Ŷ ← B) < hmax

ii) If all single label head rules ŷi ← B which correspond to the label attributes of
the multi-label head Ŷ reach hmax, the multi-label head rule Ŷ ← B reaches that
performance as well (and vice versa).

h(ŷi ← B) = hmax , ∀ŷi

(
ŷi ∈ Ŷ

)
⇐⇒ h(Ŷ ← B) = hmax

According to Definition 1, we can safely prune the search space by restricting the
evaluation to all possible single-label heads for a given body. To construct the best
multi-label head, the highest heuristic value among all single-label heads is determined
and those achieving the highest value are combined, while the others are discarded.
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3 Dynamic Weighting of Rules Using Relaxation Lift Functions

The pruning strategy described in Sect. 2.4 completely neglects combinations of labels
with similar, but not equal, heuristic values. As illustrated by the example given in
Sect. 1, when pruning according to decomposability, single-label heads with marginally
greater heuristic values are preferred to multi-label heads rated slightly worse. Relaxed
pruning aims at tolerating minor declines in terms of a rule’s heuristic value in favor
of greater coverage. By relaxing the pruning constraints, and hence introducing a bias
towards multi-label heads, more expressive rules are expected to be learned.

The main challenge of introducing such a bias revolves around two questions: First,
the desired degree of the bias is unclear, i.e., how much of a decline in the heuristic value
is tolerable. Second, the ideal number of labels in the head is unknown—especially if
rules may also predict the absence of labels. As both factors highly depend on the data
set at hand, providing any recommendations is difficult. Moreover, the training time
potentially suffers from relaxed pruning, as more label combinations are taken into
account.

∅

{ŷ1}
h = ĥ = 2

3

{ŷ1, ŷ2}
h = 2

3

ĥ = 11
15

{ŷ1, ŷ2, ŷ3}
h = 5

9

ĥ = 23
36

{ŷ1, ŷ2, ŷ3, ŷ4}
h = 5
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ĥ = 119
240

{ŷ1, ŷ2, ŷ4}
h = 4

9

{ŷ1, ŷ3}
h = 1

2

{ŷ1, ŷ3, ŷ4}
h = 1

3

{ŷ1, ŷ4}
h = 1

3

{ŷ2}
h = ĥ = 2

3

{ŷ2, ŷ3}
h = 1

2

{ŷ2, ŷ3, ŷ4}
h = 1

3

{ŷ2, ŷ4}
h = 1

3

{ŷ3}
h = ĥ = 1

3

{ŷ3, ŷ4}
h = 1

6

{ŷ4}
h = ĥ = 0

λ1 λ2 λ3 λ4

Not covered
Y1 0 1 1 0
Y2 1 1 1 1
Y3 0 0 1 0

Covered
Y4 0 1 1 0
Y5 1 1 0 0
Y6 1 0 0 0

Fig. 1. Search for the best (relaxed) multi-label head given the labels λ1, λ2, λ3, and λ4. The
instances corresponding to the label sets Y4, Y5, and Y6 are assumed to be covered, whereas
those of Y1, Y2, and Y3 are not. The dashed line indicates label combinations that can be pruned
with relaxed pruning, the solid line corresponds to standard decomposability (cf. [12], Fig. 1).

3.1 Lifting the Heuristic Values of Rules

We introduce a bias towards multi-label heads by multiplying the heuristic value h of a
rule with a dynamic weight l ∈ R, which we refer to as a relaxation lift. To prefer larger
multi-label heads l must increase with the number of labels in the head. The relaxation
lift, which we will simply refer to as lift in the remainder of this work, therefore specifies
the decline in a rule’s heuristic value that is acceptable in favor of predicting more
labels.
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To specify a relaxation lift for every number of labels x ∈ [1, n] possibly contained
in a head, we use relaxation lift functions ρ : R+ → R mapping a given number of
labels x to a relaxation lift l. Although the function is only applied to natural numbers,
defining ρ in terms of real numbers facilitates the definition.

Given a rule r : H ← B and a lift function ρ, the lifted heuristic value of the rule
can be calculated as

ĥ = h · ρ (x) (5)

Table 1. Example of calculating the lifted
heuristic value by multiplying the normal
heuristic value and the relaxation lift.

|H| h ρ(|H|) ĥ

1 0.70 1.00 0.70 · 1.00 = 0.7000

2 0.67 1.07 0.67 · 1.07 = 0.7169

3 0.63 1.12 0.63 · 1.12 = 0.7056

Fig. 2. The KLN and peak relaxation lift functions.

where x = |H| corresponds to the number of labels in the rule’s head and h is the
(normal) heuristic value of the rule as calculated using a certain evaluation function (cf.
Sect. 2.3). An example of how to calculate lifted heuristic values ĥ is given in Table 1.
These values are meant to be used as a replacement of the (normal) heuristic values h
when searching for multi-label heads (cf. Sect. 2.4 and Fig. 1).

3.2 Relaxation Lift Functions

The proposed framework for relaxed pruning flexibly allows to utilize different relax-
ation lift functions with varying characteristics and effects on the rule induction process.
In the following, we discuss two different types of functions used in this work. A visu-
alization of these functions is given in Fig. 2.

KLN Relaxation Lift Function. This simple lift function calculates as the natural
logarithm of the number of labels x, multiplied by a user-customizable parameter k ≥ 0.
Adding an offset of 1 to the calculated lift ensures that l = 1 in case of single-label
heads.

ρKLN (x) = 1 + k · ln(x) (6)

The extent of the lift increases with greater values for the parameter k. Due to the
natural logarithm, the function becomes less steep as the number of labels increases.
This is necessary to prevent the selection of heads with a very large number of labels.
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Peak Relaxation Lift Function. This function also aims at preventing too many labels
from being included in the head. With increasing number of labels 1, . . . ,m, where
m is a configurable parameter referred to as the peak, the lift becomes greater, then
decreases. This enables to introduce a bias towards heads with a specific number of
labels, as they are lifted more than others. Given the peak m, the desired lift at the
peak lmax, the total number of available labels n, and a parameter c that determines the
curvature, the peak lift function is defined as follows. Note that c = 1 corresponds to a
linear gradient.

ρpeak (x) =

{
fm,1 (x) if x ≤ m

fm,n (x) otherwise
(7)

fa,b (x) = 1 +
(

x − b

a − b

) 1
c

· (lmax − 1) (8)

The advantage of the peak lift function is its efficiency, as more extensive pruning
can be performed when using small values for the peak m. Compared to the KLN lift
function, it is less susceptible to including too many labels in the heads. Moreover,
the peak lift function can be adapted more flexibly via the parameters m, lmax, and c.
However, as these parameters tend to have a significant impact on the learned model,
this flexibility comes with a greater risk of misconfiguration.

4 Relaxed Pruning of the Label Search Space

As we assess the quality of potential heads in terms of their lifted heuristic value ĥ,
rather than h, it is necessary to adjust the search through the label space. In the follow-
ing, we show that strictly pruning according to decomposability, as suggested in [12],
does not yield the best head in terms of ĥ. Hence, we propose relaxed pruning as an
alternative and discuss the necessary changes in detail. We also provide an example that
illustrates our approach.

Suboptimal Pruning. When pruning according to decomposability, the best (multi-
label) head is obtained by combining all single-label heads that reach the best heuristic
value (cf. Fig. 1). By giving a simple counter-example, we show that this is not possi-
ble when searching for the head with the highest lifted heuristic value. Consider two
heads {ŷ1} and {ŷ2} with (macro-averaged) heuristic values 0.8 and 0.75, respectively.
As we do not lift single-label heads, the lifted and normal heuristic values are identi-
cal. Exclusively employing decomposability for finding the best performing lifted head
results in the head {ŷ1}, because combining both heads yields a lower value 0.775.
However, assuming the lift for two labels is 1.1, the lifted heuristic value evaluates to
ĥ = 0.775 · 1.1 = 0.8525. Consequently, combining both heads results in a higher
lifted heuristic value in such case. As a result, we conclude that the search space prun-
ing suggested by Rapp et al. [12] is not suited to find the best head in terms of its lifted
heuristic value ĥ.



Efficient Discovery of Expressive Multi-label Rules Using Relaxed Pruning 375

Relaxed Pruning for Macro-averaged Measures. We adjust the algorithm described
in Sect. 2.4 based on two observations: First, the best lifted head of length k results
from applying the lift to the head with the highest normal heuristic value of length k.
As all heads of length k are multiplied with the same lift, a head of length k with a
worse heuristic value cannot possibly achieve a higher lifted heuristic value. Thus, we
obtain the best lifted head of a certain length by finding the best unlifted head. Second,
in case of decomposable evaluation measures that are computed via label-based macro-
averaging, such as Hamming accuracy and macro-averaged F-measure (cf. Sects. 2.2
and 2.3), we can guarantee that the best unlifted head of length k results from combining
the k best single-label heads.

The basic structure of our procedure is illustrated in Algorithm 1. Similar to prun-
ing according to decomposability, we need to evaluate all single-label heads on the
training set for a given rule body and evaluation function (cf. solid line in Fig. 1). In
accordance with our observations, we start with an empty head and successively add
the best remaining single-label head (cf. REFINECANDIDATE in Algorithm 1). Using
this strategy, we obtain the best unlifted multi-label head for each head length. We can
then apply the lift in order to get the lifted heuristic value. During this process, we keep
track of the head with the best lifted heuristic value ĥbest. When using a decomposable
evaluation measure, including Hamming accuracy, we do not need to re-evaluate any
multi-label heads on the training data but can calculate their normal heuristic value as
the average of the single-label heads’ heuristic values.

Algorithm 1. Search for the multi-label head with the greatest lifted heuristic value.
1: procedure FINDBESTHEAD(∅ ← B)
2: S := sort({ŷ ← B : ŷ ∈ Ŷ }) � sorted single label heads
3: c := ∅ ← B; cbest := c � current candidate and best lifted candidate
4: for i = 1, . . . , n do � for all head lengths
5: c = REFINECANDIDATE(S, c) � add best remaining label to head
6: c.ĥ ← c.h · ρ(i) � lift heuristic value
7: if c.ĥ ≥ cbest.ĥ then � update best lifted head
8: cbest = c
9: if PRUNABLE(cbest, c) then � check boundary

10: return cbest � return rule if TP ≥ FP
11: end for
12: return cbest � return rule if TP ≥ FP
13: end procedure

Instead of generating each possible multi-label head, we calculate an upper bound
ĥupper of the lifted heuristic value that could still be achieved by larger multi-label heads.
For this, we multiply the normal heuristic value hk of the current head with length k
by the highest remaining lift, i.e., ĥupper = hk · maxk<i≤n ρ(i). If ĥupper < ĥbest, we
can prune as the highest performance cannot be achieved by longer heads (cf. PRUN-
ABLE in Algorithm 1). This results from the fact that the normal heuristic value can-
not increase by adding more single-label heads as we start with the best. Thus, upper
bounds maxk<i≤n ρ(i) of the lift and the heuristic value hk are multiplied in order to
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obtain an upper bound ĥupper for the lifted heuristic value. This approach still guaran-
tees finding the best performing lifted head for macro-averaged heuristics, i.e., also for
the measures we are particularly interested in this work, namely macro F-measure and
Hamming accuracy.

(Approximate) Relaxed Pruning for Decomposable Measures. Even though micro-
averaged evaluation measures, such as the micro-averaged F-measure, are often decom-
posable, combining the best k single-label heads does not necessarily result in the best
unlifted head of length k in such case. This is, because the labels are not weighted
equally as it is the case for macro-averaged measures. As a consequence, we cannot
guarantee to find the best lifted head. Instead, we consider the introduced strategy for
finding the best head of length k as an approximation. According to our experiments,
this approximation seems to work well in practice—most likely because we relax the
search for optimal heuristic values anyway.

Complexity. Compared to the original algorithm as described in Sect. 2.4, the use of
relaxed pruning does not require any additional evaluations of rules on the training
instances. The number of evaluations on the training instances is proportional to the
number of labels n (multiplied by the number of training instances m)—the same as for
the original approach. However, in the worst case, it additionally requires to construct
and evaluate n − 1 multi-label heads (cf. outer left path in Fig. 1). However, as these
heads can be evaluated based on the confusion matrices of the corresponding single-
label heads, these additional steps are computationally cheap and do not require any
additional evaluation on the training instances.

Example. In this example, we illustrate the pruning procedure. Suppose we use the
KLN lift function with k = 0.14 for the example depicted in Fig. 1. Then ρ(2) = 1.1,
ρ(3) = 1.15 and ρ(4) = 1.19. As mentioned, we follow the outer left path. For the head
{ŷ1} the lifted heuristic value and the maximum lifted value evaluate to ĥ = 2

3 = ĥbest

and ĥupper = 2
3 · 1.19 = 0.793.1 Because ĥupper ≥ ĥbest, we cannot prune at this point.

For the head {ŷ1, ŷ2}, ĥupper stays the same, but the lifted heuristic value evaluates to
ĥ = 2

3 · 1.1 = 0.733 = ĥbest. As ĥupper ≥ ĥbest, we still need to check the head

{ŷ1, ŷ2, ŷ3}, for which we calculate ĥ = 5
9 · 1.15 = 0.639 and ĥupper = 5

9 · 1.19 =
0.661. As the pruning criterion ĥupper < ĥbest holds, we terminate the search and return
the best head. The dashed line in Fig. 1 indicates which heads need to be examined
when using relaxed pruning. Note that the best lifted and unlifted head are the same in
this example.

Fixing the Head. During the rule refinement process rules are specialized by adding
additional conditions to the body. When searching for a new (multi-label) head each
time a rule has been modified, as suggested in [12], previously found heads are often dis-
carded in favor of single-label heads with lower coverage but a higher (lifted) heuristic

1 We round to three decimal places.
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value. However, keeping the original head and modifying the body accordingly might
result in a better rule. To address this problem, we fix the head during the rule refinement
process, i.e., we keep the original head instead of searching for a new head each time
the body is modified. As a positive side effect of this modification the time required for
building a model usually decreases as it is not necessary to frequently search for new
heads.

Fig. 3. Sensitivity analysis for the KLN lift function on
FLAGS.

Fig. 4. Time comparison.

Constraints on Rules. In addition to fixing the head, as discussed in the previous
section, we require each rule to predict at least as many TP as FP, which effectively
imposes a lower bound on the quality of the rules. In preliminary experiments, we found
this constraint to be helpful to prevent suboptimal label predictions from being included
in the heads for the sake of increasing its lift.

Moreover, we require each label assignment in a head to result in at least one TP.
This prevents label assignments that do not affect the (normal) heuristic value of a rule,
but would result in a higher lift, from being added to a head. For example, such situa-
tion might occur if a label is already predicted for all training instances by previously
induced rules.

5 Evaluation

In this section, we demonstrate the effectiveness of our approach empirically. For our
analysis, we consider the predictive performance, the model characteristics, as well as
the training time, and give examples of multi-label rules learned by our method.

Experimental Setup. We tested our method using relaxed pruning on seven multi-
label data sets and compared it to the approach by Rapp et al. [12] using the same
configuration.2 To isolate the influence relaxed pruning has on the learned models, we

2 We used the data sets BIRDS, FLAGS, CAL500, EMOTIONS, MEDICAL, SCENE and YEAST from
http://mulan.sf.net/datasets-mlc.html. The source code and data sets are publicly available at
https://github.com/keelm/SeCo-MLC/tree/relaxed-pruning.

http://mulan.sf.net/datasets-mlc.html
https://github.com/keelm/SeCo-MLC/tree/relaxed-pruning
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transferred our additions to fix the heads and impose constraints on the learned rules
as discussed earlier. For every data set and every target performance measure (HA,
macro- and micro-averaged FM with β = 0.5, as suggested by [12]), we determined
the best lift setting from a number of candidates using five-fold cross-validation on the
training set. If two lift settings achieved the same performance, we chose the one with
a higher lift as it will typically result in a more compact model. After evaluating all
candidates, we trained a model using the best setting and validated it on the test set.
We denote the ability to learn rules that predict the presence and absence of labels as +
and −, respectively. Further, we abbreviate micro-averaging (mic or micro) and macro-
averaging (mac or macro). Subset accuracy (SA) measures the percentage of perfectly
classified examples.

Sensitivity Analysis andModel Characteristics. Figure 3 depicts the number of rules
and the average number of labels in their heads, depending on the extent of the lift that
results from using the KLN lift function and macro-averaged FM. As expected, greater
lifts tend to result in larger heads and fewer rules. This is, because rules that predict
several labels, rather than a single one, have greater coverage. As a consequence, fewer
rules are required to cover the entire training data. However, if the lift is too high, very
generic rules, which predict the majority class label and are unable to model the training
data accurately, are learned.

Table 2. Model characteristics for BIRDS. For each heuris-
tic the left and right column shows the values for the nor-
mal and relaxed pruning approach, respectively.

Number of Mic FM+ Mic F+− Mac F+ Mac F+− HA+ HA+
−

Rules 140 140 132 92 140 129 132 113 162 136 58 23

Conditions 219 213 184 146 220 199 184 175 254 204 58 29

Label conditions 7 4 1 2 7 3 1 1 3 0 1 0

Multi-label heads 1 5 0 22 1 8 0 14 1 30 0 12

Labels per

multi-label head

2.0 2.0 - 2.59 2.0 2.0 - 2.57 2.0 2.1 - 17.0

Table 3. Number of
wins/losses/ties of relaxed
pruning.

Heuristic HA Mic FM Mac FM SA

HA+ 2/4/1 1/5/1 2/4/1 0/4/3

HA+
− 5/1/1 4/2/1 2/4/1 5/0/2

Mic FM+ 3/3/1 3/3/1 3/3/1 3/2/2

Mic FM+
− 3/1/3 1/3/3 1/3/3 2/2/3

Mac FM+ 1/5/1 1/5/1 3/3/1 2/3/2

Mac FM+
− 2/1/4 2/1/4 2/1/4 2/1/4

Moreover, we observe that the average number of conditions in the bodies decreases
with higher lifts. As we induce rules with larger multi-label heads, we would have
expected label conditions to be used more frequently. Surprisingly, the percentage of
label conditions approaches zero even for a moderate lift. For the peak lift function,
the overall trend is identical. However, the maximum number of labels in the head is
typically limited.

In addition to the sensitivity analysis, we list some characteristics of models learned
during the evaluation in Table 2. We can observe similar phenomena as in the sensitivity
analysis. The model characteristics, however, show that our observations also seem to
hold for the best lift setting.
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Computational Costs. As shown in Fig. 4, we compare the training times of our
method to the baseline by Rapp et al. [12] using the same configuration. The horizontal
axis corresponds to the times required by the baseline to build the models. The vertical
axis denotes the relative speedup (or slowdown) that results from using relaxed pruning.
Although it potentially evaluates more heads, our method is faster in most of the cases.
Typically, a speedup between 10% and 25% can be observed. As we isolate relaxed
pruning from the other changes, the speedup most likely results from fewer rules being
learned due to their increased coverage as discussed above. Furthermore, we observe
that the average number of conditions per rule decreases when using relaxed pruning,
i.e., fewer refinement candidates must be taken into account.

Predictive Performance. Table 3 lists the number of wins and losses of the compared
approaches. We conclude that relaxed pruning results in a predictive performance that
is comparable to that of the baseline, despite learning more compact models. More pre-
cisely, we observe a decline in performance when using HA+ or macro FM+ as the
objective for inducing the heads, but using macro FM+

− or, in particular, HA+
− results

in an improvement. For micro FM+, the performance is quite similar, despite miss-
ing the guarantees discussed in Sect. 4. Regarding an overall comparison between all
approaches and heuristics, we can observe that learning the absence and presence of
labels and seeking for relaxed Hamming accuracy (HA R+

−) ranks highest in average
among the 12 approaches w.r.t. Hamming accuracy, but also for subset accuracy, which
no approach dedicatedly addresses. In contrast, for micro and macro F-measure, the
best performing models are obtained by using relaxed pruning together with the micro
F-measure and only predicting the presence of labels (Mic FM R+). This reflects the
focus of the F-measure on positive labels compared to HA. In conclusion, relaxing the
pruning constraints and deliberately preferring rules with a worse heuristic value in
favor of coverage and expressiveness does not seem to have a negative effect on the
predictive performance of the models and even results in improvements in some cases.

As mentioned earlier, we determined the best lift settings on the training data. In
the majority of the cases, the peak lift function is preferred to the KLN lift function.
Due to the variety of possible parameter settings, the peak lift function is more difficult
to tune. We observe a trend towards lifts clearly greater than 1. We assume that the
parameter for specifying the lift mainly depends on the average number of labels per
instance. Moreover, it may also be relevant whether the absence of labels is predicted
by the rules in addition to the relevance of labels, as we expect that a greater peak might
be beneficial in such case.

Exemplary Rules. In Fig. 5 we show exemplary rules as induced with and without
the use of relaxed pruning. It can be seen that multi-label heads and label conditions are
both suited to model label dependencies. Depending on the model, these different repre-
sentations may even be equivalent in meaning (cf. first row). Whereas the use of relaxed
pruning seems to result in fewer label conditions being learned, it often results in sig-
nificantly more multi-label heads. This makes a quantitative analysis of the number of
label dependencies discovered by the respective approaches more difficult. Neverthe-
less, our results suggest that relaxed pruning helps to model label dependencies in the
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form of multi-label heads. Such heads often provide a more compact representation of
the discovered correlations. In contrast to label conditions, rules with multi-label heads
provide useful information on their own. They do not require to take the order of the
rules into account and must not be interpreted in the context of other rules. Due to these
advantages, we argue that multi-label heads are easier to understand in many cases.

6 Related Work

Most approaches to multi-label rule learning found in the literature are based on associ-
ation rule (AR) discovery. Alternatively, a few approaches use evolutionary algorithms
or classifier systems for evolving multi-label classification rules [1–3]. Inducing rules
with several labels in the head is usually implemented as a post-processing step. For
example, [13] and similarly [7] induce single-label association rules that are merged
to create multi-label rules. By using a separate-and-conquer strategy the step of induc-
ing descriptive but often redundant models of the data is omitted. Instead, classification
rules that aimed at providing accurate predictions are learned directly [9].

Most of the approaches mentioned above are restricted to expressing a certain type
of relationship since labels are only allowed in the heads of the rules. Approaches that
also use labels as antecedents are often restricted to global label dependencies, such as
the approaches by [4,10,11] that use the relationships discovered by AR mining on the
label matrix for refining the predictions of multi-label classifiers.

Fig. 5. Selected learned normal (left) and relaxed (right) pruning rules regarding a specific label.
We show (TP, FP) and absence of label x as x. Top down: YEAST (macro FM+) twice, FLAGS

(micro FM+
−) and BIRDS (macro FM+

−). We abstract specific conditions and only represent
attribute names, but indicate different values. For BIRDS we abbreviate Red-breasted Nuthatch
(RBN), Black-headed Grosbeak (BHG), MacGillivray’s Warbler (MGW) and audio-ssd (ssd).
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7 Conclusions

In this work, we demonstrated the effectiveness of introducing a bias towards rules with
larger multi-label heads. By deliberately preferring rules with a worse heuristic value,
we are capable of learning more compact models with more expressive rules that are
explicitly tailored to exploit label dependencies. In addition, we argued that strict upper
bounds in terms of computational complexity still hold when using relaxed pruning and
our experiments revealed that training time even tends to decrease due to the increased
coverage of the induced rules. In general, we are able to achieve comparable predictive
performance—observing gains in performance for 3 out of 6 tested objectives.
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Abstract. Existing approaches for detecting anomalous events in time-
evolving networks usually focus on detecting events involving the major-
ity of the nodes, which affect the overall structure of the network. Since
events involving just a small subset of nodes usually do not affect the
overall structure of the network, they are more difficult to spot. In this
context, tensor decomposition based methods usually beat other tech-
niques in detecting global events, but fail at spotting localized event
patterns. We tackle this problem by replacing the batch decomposi-
tion with a sliding window decomposition, which is further mined in
an unsupervised way using statistical tools. Via experimental results in
one synthetic and four real-world networks, we show the potential of the
proposed method in the detection and specification of local events.

Keywords: Time-evolving social networks · Tensor decomposition ·
Event detection

1 Introduction

In time-evolving social networks such as computer communications or phone
calls, the detection of anomalous events is of great interest. For example, in
an IP traffic network, the identification of an unexpected densification of the
network is usually associated with malicious activities. Moreover, in phone call
networks, the densification of a subnetwork may represent the organization of
an event/meeting.

Given these networks, how to spot these anomalous/unexpected behaviors
defines the scope of event detection in time-evolving networks. The events may
occur at a global level, involving the majority of the nodes in the network (as it
is the case of an email sent to all employees making an announcement); or at a
local level involving just a subset of nodes. Currently, the existing methods for
tackling this problem fail in (at least) one of the following features: (i) detecting
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the nodes associated with the anomaly and (ii) capturing local anomalies. There-
fore, our aim in this work is to develop a method encompassing these features.
Given the multi-dimensional nature of time-evolving networks and the success
in mining such networks using tensor decomposition (TD) [13], we exploit TD
in a sliding window mode and then apply statistical tools to spot which of the
communication patterns found correspond to events.

Our contributions are as follows:

– We propose a framework to spot irregular behaviors in time-evolving net-
works. Our method combines tensor decomposition with statistical tools to
achieve an unsupervised method that (i) spots anomalies at local and global
levels and (ii) identifies the sources of anomaly.

– We analyze the detection results provided by our method in one synthetic
and four real-world networks and show its usefulness in spotting both local
and global anomalies.

Our work is organized in the standard way.

2 Related Work

A wide range of strategies has been considered for the problem of event detection
on time-evolving networks [1,15]. The most common approach to this problem
consists of measuring the (dis)similarity between consecutive network states.
In these approaches, when a significant similarity decrease is observed, such
instant is flagged as anomalous. The metric value is used to obtain an anomaly
score according to which the timestamp is ranked (top ranks are expected to
be associated with events). The main difference between these methodologies is
the (dis)similarity measure considered (ranging from the graph edit distance
and its variations [9] to statistics on node and egonet features [2]). In [17],
the authors combine some of the existing approaches to form an ensemble of
anomaly detectors, thus achieving more accurate results. This type of approach
allows us to detect global anomalies by spotting the time in which a global event
was observed, however, generally, they do not spot local events nor provide
information on the nodes involved in the event, on the contrary to our approach.

Given the multi-dimensional nature of time-evolving networks, the problem
of event detection has also been addressed by matrix and tensor decomposition.
The idea generally is to measure the anomalous level of a given timestamp based
on the reconstruction error [11]. In other words, given the original network rep-
resentation and its approximation, timestamps in which the reconstruction error
is high suggest that an unexpected event occurred. The reconstruction error
approach is applied in a batch mode, in which all the timestamps are available
and consequently it is not suitable for real-time detection (while our method is).
Additionally, in some works [13], TD is used to extract the patterns and the
events are detected by analyzing the latent space. The major limitation of this
strategy is that it is not automatic/unsupervised as it requires further analy-
sis of the decomposition results. Moreover, Fanaee-T and Gama [7] proposed a
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hybrid TD model along with multivariate statistics to detect events from evolv-
ing traffic networks. Although their approach is automatic, it detects events only
in the global scale and it is not developed for detection and specification of local
patterns.

Contrary to the existing approaches, we process the networks using a sliding
window, thus capturing more local dynamics of the network and events that
occurred during a short time period and involved just a subset of the nodes in
the network. We also mine the latent space provided by TD in each window, so
that we are able to find the sources of the anomalous events, a feature which is
not usually provided in other detectors.

3 Background

3.1 Tensors

Multi-dimensional numerical arrays are known as tensors. A M -order tensor
refers to an array of M dimensions: X ∈ R

N1×N2×...×NM . The size of the tensor
is given by N1 × N2 × . . . × NM . The density of a tensor refers to the rate of non-
zero entries in it. X (i1, i2, . . . , iM ) denotes the value of the entry (i1, i2, . . . , iM )
in the tensor. Similarly to matrices, there are decomposition methods for tensors.
In this work we consider the well-known CANDECOMP/PARAFAC (CP) [10].
Given a 3-order tensor, X ∈ R

N1×N2×N3 , the goal of CP is to find R (factor)
vectors ar ∈ R

N1 , br ∈ R
N2 , cr ∈ R

N3 , where 1 ≤ r ≤ R, such that:

X ≈
R∑

r=1

ar ◦ br ◦ cr (1)

The vectors associated with each mode may be arranged into factor matrices,
which are obtained as follows: A = [a1|a2| . . . |aR] ∈ R

N1×R,B = [b1|b2| . . .
|bR] ∈ R

N2×R and C = [c1|c2| . . . |cR] ∈ R
N3×R.

There are multiple algorithms to fit the CP model. Nonetheless, since net-
works are usually sparse, we consider Alternating Poisson Regression (CP-APR)
[3], a non-negative decomposition algorithm designed to model sparse count data.

4 Problem Addressed

Let G denote a time-evolving network, described by the sequence of its adjacency
matrices {At

G}L
1 , over time period 1 to L. Moreover, let G′ denote a subgraph

formed by a subset of interacting entities in the network; st
G′ denotes the density

of subgraph G′ (that is, the portion of existing edges among all possible edges)
at time t and

Δt1,t2
G′ = st2

G′ − st1
G′ ,

denotes the difference in the density of subgraph G′ between time instants t2
and t1. Then, we are interested in detecting interaction peaks in G′, for varying
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subgraphs G′. Formally, a timestamp τ is dubbed as an interaction peak of nodes
in subgraph G′ if, for δ > 0, [15]:

Δt,τ
G′ > δ,∀t �= τ , (2)

that is, instant τ is flagged as event if it satisfies (2). Moreover, it is dubbed as
global if subgraph G′ includes almost all nodes in the network or as local if it
includes only a small subset of nodes.

5 Proposed Method

In this work, a network is modeled as a tensor of type entities× entities× time
corresponding to the sequence of adjacency matrices over time. The network
is processed using a sliding window W of length L, which corresponds to the
number of timestamps in the window. Briefly, given a network time window W,
our method consists of three stages defined as follows.

1. Decomposition of the tensor window
We decompose W using R components (using CP-APR): W ≈ ∑R

r=1 ar ◦br ◦
tr, with ar,br, tr ≥ 0. ar and br are associated with entities dimensions and tr

is associated with the time dimension. Each concept r, defined by {ar,br, tr},
induces a subgraph G′

r formed by the nodes so that
{

nodesar
= {i : ar(i) > 0}

nodesbr = {i : br(i) > 0} ; (3)

(we refer to these nodes as the active nodes in concept r). Their time activity is
described by tr, as shown in Fig. 1.

2. Identification of the anomaly candidates
Since each tr may be interpreted as a communication/activity vector then

an abrupt peak may be interpreted as an outlier in this vector. In this work,
given a numerical vector x ∈ R

N , we consider the standard classification of the
ith element of x, x(i), as outlier [5]. In more detail, x(i) is dubbed as (high)
outlier value if x(i) > Q3 + 1.5IQR. Additionally, if

x(i) > Q3 + 3IQR (4)

x(i) is dubbed as extreme outlier, for Q1 denoting the first quartile, Q3 denoting
the third quartile and IQR = Q3 − Q1. Thus, we search for isolated values that
satisfy (4) in tr. If an isolated extreme outlier is found then it satisfies (2) for
some δ and component r is flagged as being associated with an extreme peak.
We illustrate the process in Fig. 1.

3. Event Characterization and Verification
The goal of this stage is to discard the anomaly candidates that do not repre-

sent an irregular/unexpected pattern. To achieve our aim, we construct the graph
induced from the anomaly candidate and quantify its presence in the remaining
timestamps. In more detail, the anomaly candidate r induces a graph which is
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Fig. 1. Illustrative example of the pattern finding via TD and anomaly candidate
identification in a given time window W: candidates are the TD concepts for which the
time factor vector has an isolated extreme outlier.

obtained as follows: from (3) we obtain the active nodes in mode 1 (nodesar
) and

the active nodes in mode 2 (nodesbr ), then the anomaly candidate is a subgraph
Ĝ′

r = (V ′
r , E′

r), where V ′
r = nodesar

∪ nodesbr and the edges are obtained from
the TD approximation, that is, as AĜ(nodesar

, nodesbr ) where (i) the indexes
(nodesar

, nodesbr ) correspond to the rows and columns associated with nodes
in nodesar

and nodesbr , respectively, and (ii) AĜ = ar ◦ br ◦ tr(τ), for the
anomalous instant τ . Additionally, since we are looking for dense subgraphs, we
discard the nodes in the anomaly candidate induced subgraph that are associ-
ated with few links in the original subnetwork. The goal is to remove nodes from
the anomaly candidate pattern that do not provide much information. Finally, to
assess the abnormality of the pattern, we consider three statistics on the graph
induced by the set of nodes V ′

r in the original network window: (i) the density
(per timestamp) of the induced subgraph in the original network; (ii) the average
weighted node degree (per timestamp); (iii) the level of presence of the anomaly
candidate in the original network (per timestamp). We quantify this as the rate
of edges in the anomaly candidate subgraph Ĝ′

r which are also present in the
original network at each timestamp. By measuring these statistics, we obtain
three vectors of length L. The anomaly candidate is flagged as an event if for
all those three vectors the anomalous instant τ exhibits a high value, being an
isolated outlier (that is, satisfying (4)). If this criteria is not met then it means
that the level of abnormality of the candidate is low and therefore the pattern
does not correspond to an event.

Ensemble. The proposed methodology has two main parameters: the number
of components to be used in TD and the window length. Since selecting these
parameters a priori may not be straightforward, we propose the usage of an
ensemble of these models by varying these parameters. In other words, for a
given set of number of components {Ri}N

i=1 and a set of window lengths {Li}M
i=1,

we generate a model Mij for each combination of the number components Ri
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Table 1. Datasets Summary.

Dataset Type Size

synth Synthetic network 500 × 500 × 60

stockmarket Stock market network 30 × 30 × 42

challengenet Computer communication network 125 × 125 × 1304

enron E-mail exchange network 184 × 184 × 44

manufacturing E-mail exchange network 167 × 167 × 272

and window length Lj . Given the set of models, we define a schema to combine
their results. Our strategy is based on two assumptions: (i) if the same event is
detected by a large number of models than it is expected to model a relevant
anomaly; (ii) given two events that were detected by the same number of mod-
els, then the events involving a larger number of nodes are less expected (that
is, more abnormal). Thus, we assign scores based on the number of models that
detected each anomaly: events that were detected by a larger number of models
are associated with the top ranks. Given two events that were detected by the
same number of models, we rank them based on the number of nodes partici-
pating in the anomaly: events involving a higher number of nodes are considered
more anomalous. We note that these models may be run in parallel.

6 Experiments

6.1 Datasets

In this work we considered one synthetic network (synth) and four real-world
time-evolving networks: stockmarket [4], challengenet [16], enron [14] and
manufactoring [12], summarized in Table 1. In the weighted networks (all but
stockmarket), we applied a logarithmic scale to the edge weights.

synth, stockmarket and challengenet datasets were used to validate our
work while the remaining two datasets were used as case studies.

synth was generated using (1) (with R = 3) by combining the node factor
matrices extracted from a sampled subnetwork of the real-world co-authorship
network DBLP [6] with an artificial temporal factor matrix (modeling a periodical
cosine, a linear trend and a white noise vector with 60 elements each). Then three
local anomalies were injected into the network by replacing three subgraphs with
less than 10 nodes with a dense subgraph extracted from a different network
(InfectiousPatterns [8]).

In stockmarket, according to the analysis provided in [4], which is also sup-
ported by the known economic situation, there are two major events (at times-
tamps 24 and 30).

The challengenet was characterized by three events: abrupt node increase
at instants 376, 377 and 1126. Nonetheless, in order to enrich this network,
we injected anomalies by increasing at least 10× the degree of one node at
timestamps 500 and 612 and by injecting a clique subgraph at timestamp 1053.



Evolving Social Networks Analysis via Tensor Decompositions 391

6.2 Design of Experiments

We process each dataset using a sliding window with no overlap and apply
the detection procedure to each time window. In our ensemble, we considered
window lengths according to the time granularity of the datasets, we used: 5, 10
and 15 timestamps for synth; 8, 10 and 12 timestamps for stockmarket (where
each timestamp represents a period of 6 months); 9, 18 and 36 timestamps for
challengenet (since each timestamp represents a 10 min period); 8, 12 and
16 weeks in enron; and, finally, 7, 14 and 21 timestamps for manufactoring.
Regarding the number of components, we used 15, 25, 35, 50 and 75 in all
datasets.

6.3 Baselines

We considered two baselines: the TD reconstruction error (TDRE) [11] and the
recent work of Rayana et al. [17], SELECTV. Regarding TDRE, in order to
make a fair comparison, we also considered an ensemble of models with different
number of components. The timestamps were ranked based on the reconstruc-
tion error and the ranking results of the multiple models were averaged. In
SELECTV, for each ensemble we considered the time-series of one of three node
features: weighted degree (w), unweighted degree (uw) and number of triangles
in the node egonet (t). Thus, the method SELECTVw refers to the application
of a SELECTV ensemble to the time-series of weighted degree. Likewise for the
remaining features.

6.4 Evaluation Metrics

Since our method does not provide scores to all the timestamps, we considered
the top-k precision as evaluation metric. This metric consists of the rate of true
events within the top-k anomaly scores, where k is the number of true events.

6.5 Results

Synth. According to the precision results (Table 2), our approach was able to
spot the three injected local anomalies, while TDRE was able to spot one event
and SELECTV failed at detecting all the known events. We analyzed the top-3
ranked events flagged by the baselines and verified that 2 of such instants, 9 and
12, corresponded to the interaction peaks of the network (and therefore, may
be regarded as global events, which resulted from the usage of a white noise
factor). Our method also flagged instants 9 and 12 as anomalous, however, a
lower anomaly score was assigned to them and therefore they did not appear in
the top-3 scores.

Stock Market. By analyzing Table 2, we observed that the two known anoma-
lies were successfully detected by SELECTV and our method. It is noteworthy
that the events in the network involved more than 75% of the nodes and there-
fore may be regarded as global. Nonetheless, TDRE was not able to spot the
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events. Such performance may be justified by the volatility of the network (the
network is constantly changing and TD - in batch mode - failed to capture such
changes, thus resulting in high reconstruction error for several timestamps, not
necessarily associated with irregular behaviors).

Challenge Network. Based on Table 2, we observed that our method detected
all events in challengenet. TDRE was able to spot the event at time 376
but failed to spot the remaining events. SELECTV failed mainly at detecting
the event at time 500. We believe the methods had failed to detect anomalous
behavior at time 500 due to its local character - at time 500 we increased the
degree of node 6 substantially but, as it was not a very active node in the
network, this increase may have remained unnoticed to the baseline detectors.

Regarding the anomaly characterization, we verified that the nodes which
were the anomaly sources always exhibited a high activity level in one of the
nodes modes, thus allowing its identification.

Table 2. Top-k precision in the validation networks.

TDRE SELECTVw SELECTVuw SELECTVt Our approach

synth 0,33 0,00 0,00 0,00 1,00

stockmarket 0,00 1,00 1,00 1,00 1,00

challengenet 0,17 0,67 0,83 0,83 1,00

Case Study 1: Enron. Our method flagged as anomalous the instants 84,
90, 104, 107, 120, 125, 126, 127, 129, 144 and 145. We analyzed each of the
detected anomalies and corresponding flagged individuals and verified that the
subgraphs associated with the anomalous nodes had at least 20× more edges at
the time of the anomaly than the average number of edges across all timestamps.
Moreover, we verified that all the events detected by our method represented
topological irregular behaviors either at a local level (such as weeks 90 and 125,
whose events corresponded to the interaction peak of a subgraph containing
less than 5 employees) or at a global level (such as weeks 104 and 120, whose
events involved the majority of the employees). When applying TDRE, we also
spotted instants 107 and 145 (which are global events, involving all employees).
SELECTV flagged 7 instants in common with our approach (mainly the events
involving all employees). We analyzed the other events flagged by these methods
but we were not able to spot considerable irregularities in terms of node activity
peaks.

Case Study 2: Manufacturing. On the contrary to the previous datasets, the
number of events detected considerably increased as we increased the number
of components in the manufactoring. This is expected since, as we increase the
number of components, we are able to spot more local patterns (with a smaller
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number of participants). Thus, these results suggest that an anomalous event in
this network should be a pattern with a large number of participants. Therefore,
we restricted our analysis to the most relevant anomalies by considering only the
top 12 ranked events. We verified that each of the events corresponded to the
interaction peak between a given node and a subset of nodes. We also measured
the number of edges in the subgraphs associated with the anomalies detected
and verified that at the time of the anomaly (τ), the number of edges was at
least 20× larger than the average number of edges across all timestamps. It is
noteworthy that none of the events detected by our method were also flagged by
TDRE. Once more, we believe that this is due to the different network dynamics
over time which are not modeled by TD when considering a batch mode. With
respect to the SELECTV, there were 5 instants (among the top-12 ranked) which
were flagged by both SELECTV and our approach. Regarding the other events
detected by SELECTV, we verified that they revealed global anomalies (which
were also detectable when tracking the density of the network over time).

General Observations. Our analysis showed that the events detected by our
method in the datasets under study corresponded to structural irregularities -
usually, node degree substantial increase or subgraph densification. In some cases
the event was global, involving the majority of the nodes in the network (as it
occurred in stockmarket, in which our method performed as good or better
than the baselines). In other cases, the event involved just a small subset of
nodes in the network, a scenario in which our method advantages were especially
notorious: our method detected anomalies not easily detected when considering
a global view of the network as in TDRE. We recall that in synth network
the events involved just a small number of nodes and our method was the one
exhibiting the best performance. Finally, our method was able to identify the
anomaly participants in the networks under study.

7 Conclusions

In this work we present a new formulation of TD models for the detection and
specification of both global and local events in time-evolving social networks. Our
approach (i) is automatic, (ii) benefits from ensemble learning, thus providing a
better coverage; and (iii) spots the nodes associated with the irregular behavior.
We applied our method to one synthetic and four real-world datasets and showed
that the events flagged by our approach were always associated with irregularities
in the interaction patterns. In particular, our method was able to spot local
irregularities, on the contrary to its competitors. A future work direction we
are interested in resides in extending this framework to perform also change
detection, thus empowering the applications and analysis power of our method.
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Abstract. Pattern-based change detectors (PBCDs) are non-parametric
unsupervised change detection methods that are based on observed
changes in sets of frequent patterns over time. In this paper we study
PBCDs for dynamic networks; that is, graphs that change over time, rep-
resented as a stream of snapshots. Accurate PBCDs rely on exhaustively
mining sets of patterns on which a change detection step is performed.
Exhaustive mining, however, has worst case exponential time complex-
ity, rendering this class of algorithms inefficient in practice. Therefore, in
this paper we propose non-exhaustive PBCDs for dynamic networks. The
algorithm we propose prunes the search space following a beam-search
approach. The results obtained on real-world and synthetic dynamic net-
works, show that this approach is surprisingly effective in both increasing
the efficiency of the mining step as in achieving higher detection accuracy,
compared with state-of-the-art approaches.

Keywords: Change detection · Pattern mining

1 Introduction

Change detection in dynamic networks is the task of finding time points in which
the behavior of the observed network begins to change from the ordinary situa-
tion. Once identified, the points provide temporal indications on the obsolescence
of previously trained models, which should be adapted to new data. The prob-
lem, also known as concept drift detection [3], affects both supervised and unsu-
pervised techniques and therefore is one of the most important problems in the
analysis of data that are characterized by a temporal component. For example, in
the supervised setting the detection is performed by controlling a quality measure
of a previously learned model on new data (e.g. using the misclassification rate [3]).
Whereas, in the unsupervised setting, it takes into account how new data deviate
from the ordinary data distribution [6]. In both cases, if a significant peak on some
appropriate measures is observed, then a change is detected and some actions are
performed to update the model by considering new data.
c© Springer Nature Switzerland AG 2019
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One of the main challenges in change detection is that of detecting changes
in an efficient and accurate manner. In the specific case of dynamic networks,
existing approaches may fail to address both challenges because of the inher-
ent complexity of the data [1]. In fact, (i) many approaches are designed for
time series and categorical data and not for network-based data, and (ii) many
network-based approaches are time consuming, and hence not scalable in both
network size and number of graph snapshots. Moreover, the lack of a ground
truth able to establish which data represents a change favors the adoption of
unsupervised change detection methods.

Recently, non-parametric unsupervised change detection methods relying on
frequent patterns have been proposed for transactional data [6,8] and dynamic
networks [9]. Such methods are pattern-based change detectors (PBCDs here-
after) in which the change is sought on a descriptive model of the data, rather
than on the data itself. More precisely, the quality measure tracked by PBCDs
for detecting changes is the dissimilarity between sets of patterns (e.g. binary
Jaccard measure [9], Levenshtein measure [6]) discovered before and after the
arrival of new transactions. In PBCDs, the complete set of frequent patterns is
mined upon the arrival of new transactions (mining step), before measuring the
quality measure (detection step).

Typically, the mining step relies on exhaustive algorithms leading to com-
plete pattern mining. The main intuition for this solution is that completeness
is desirable to accurately model the data. However, in practical cases, only a
small portion of patterns is likely to be relevant for the detection. Furthermore,
exhaustive pattern mining may represent the major obstacle for any PBCD that
needs to timely react to incoming data. Our main claim is, therefore, that it
is possible to relax the completeness property and it is possible to adopt non-
exhaustive mining methods in change detection without loosing in accuracy.
Simultaneously, this relaxation can improve the efficiency of the mining step
and allow the PBCD system to quickly react. To the best of our knowledge, the
StreamKRIMP algorithm [8] is the only PBCD adopting a non-exhaustive min-
ing method, which is based on the MDL principle. However, StreamKRIMP is
designed for transactional data streams and not for dynamic networks. Moreover,
few other attempts can be retraced in pattern-based anomaly detection methods
[5] and subgroup discovery [10], where the search space is pruned according to
heuristic evaluations. An alternative line of research for reducing the patterns
in PBCDs is that of exhaustively mining condensed sets of patterns which are
representative of all the possible patterns. In particular, both non-derivable pat-
terns [7] and Δ-closed patterns [11] have been proposed for anomaly detection
and change detection, respectively. However, in such approaches, condensed sets
of patterns are discovered by exhaustive mining procedures, and hence they do
not provide solutions to the computational issues of PBCDs.

By taking into account the aforementioned reasons, this paper extends the
PBCD methodology originally proposed in KARMA [9], based on exhaustive
frequent connected subgraph mining, with non-exhaustive mining algorithms.
In particular, we customize the general architecture inherited by the KARMA
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algorithm with improved mining step and detection step, then we perform an
extensive study to select the most accurate and the most efficient PBCDs. Exper-
iments show that the proposed approaches improve the efficiency and the detec-
tion accuracy with respect to their exhaustive counterpart, on both real world
and synthetic dynamic networks.

2 Background

Let N be the set of nodes, L be the set of edge labels, and I = N × N × L
the alphabet of all the possible labeled edges, on which a lexicographic order
≥ is defined. A dynamic network is represented as the time-ordered stream of
graph snapshots D = 〈G1, G2, . . . , Gn〉. Each snapshot Gi ⊆ I is a set of edges
denoting a directed graph observed in ti, which allows self-loops and multiple
edges with different labels. Gi is uniquely identified by id i. Let G be a directed
graph, a connected subgraph S ⊆ G is a directed graph such that for any pair of
nodes (in S) there exists a path connecting them. Then, a subtree S ⊆ G is a
connected subgraph in which every node (in S) is connected to a unique parent
node, except for the root node.

The data representation fits with the one adopted in transactional data min-
ing, allowing the mining of frequent patterns by adapting traditional frequent
itemset mining algorithms. In this perspective a snapshot Gtid ∈ D is a trans-
action uniquely identified by tid, whose items are labeled edges from I. While
a pattern P ⊆ I, with length |P |, can be seen as a word P = 〈i1 . . . in〉 of n
lexicographic sorted items, with prefix S = 〈i1 . . . in−1〉 and suffix in. The tidset
of P in the network D is defined as tidset(P,D) = {tid | ∃Gtid ∈ D∧P ⊆ Gtid},
while the support of P in D is sup(P,D) = |tidset(P,D)|

|D| . P is frequent in D if
sup(P,D) > α, where α ∈ [0, 1].

In PBCDs designed for network data, we deem as interesting two types of pat-
terns: (i) frequent connected subgraphs (FCSs) and, (ii) frequent subtrees (FSs).
Both FCSs and FSs are mined from snapshots belonging to time windows. A win-
dow W = [ti, tj ], with ti < tj , is the sequence of snapshots {Gi, . . . , Gj} ⊆ D.
Consequently, the width |W | = j − i + 1 is equal to the number of snapshots
collected in W . For our convenience we term FW the set of all the FCSs (FSs)
in the window W .

2.1 Problem Statement

Let D = 〈G1, G2, . . . , Gn〉 a dynamic network, α ∈ [0, 1] be the minimum support
threshold, β ∈ [0, 1] the minimum change threshold. Then, pattern-based change
detection finds pairs of windows W = [tb, te] and W ′ = [t′b, t

′
e], where tb ≤ t′b ≤

te+1 and te < t′e, satisfying d(FW , FW ′) > β, where (i) FW and FW ′ are the sets
of patterns discovered on W and W ′ according to α, and (ii) d(FW , FW ′) ∈ [0, 1]
is a dissimilarity measure between sets of patterns. In this perspective, changes
correspond to significant variations in the set of patterns discovered on two
windows, which denote stable features exhibited by the graph snapshots.
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3 Architecture of a PBCD

The aforementioned change detection problem can be solved by various compu-
tational solutions. In this section we provide the general architecture of a PBCD
for network data, by generalizing the algorithm KARMA proposed in [9].

In general, a PBCD forms a two-step approach in which: (i) a pattern mining
algorithm extracts the set of patterns observed from the incoming data, and (ii)
the amount of change is quantified by adopting a dissimilarity measure defined
between sets of patterns. Practically speaking, a PBCD is an iterative algorithm
that consumes data coming from a data source, in our case a dynamic network,
and produces quantitative measures of changes. In particular, the KARMA algo-
rithm is a PBCDs based on exhaustive mining of FCSs, whose general workflow
can be seen in Fig. 1. The algorithm iteratively consumes blocks Π of graph
snapshots coming from D (Step 2) by using two successive landmark windows
W and W ′ (Step 3). This way, it mines the complete sets of FCSs, FW and FW ′ ,
necessary to the detection step (Steps 4–5). The window grows (W = W ′, Step
8) with new graph snapshots, and the associated set of FCSs is kept updated
(Step 9) until the Tanimoto coefficient d(FW , FW ′) exceeds β and a change is
detected. In that case, the algorithm drops the content of the window by retain-
ing only the last block of transactions (W = Π, Steps 6–7). Then, the analysis
restarts. The KARMA algorithm offers a general architecture for building cus-
tom PBCD, which is made of 4 components: (i) the window model (Fig. 1, Steps
3, 8 and 6), (ii) the feature space (FCSs or FSs), (iii) the mining step (Fig. 1,
Steps 4, 9 and 7), and (iv) the detection step (Fig. 1, Step 5). In the following
sections we will focus on both the mining step and the detection step, also by
commenting their contribution to the efficiency of the PBCD strategy.

Fig. 1. The KARMA algorithm workflow

Here, we briefly discuss the choice of an appropriate time window model of a
PBCD. We deem as interesting 3 models: the landmark model, the sliding model
and the mixed model. They differ in the way they consume the incoming block
Π of graph snapshot. In its original version, KARMA uses the landmark model.
Here, Π is added to the window W , forming the successive window W ′ = W ∪Π
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(Fig. 1, Step 3). In this model, the window grows until a change is detected and
when a change is detected, old data are discarded. In the sliding model, the
detection is performed on two successive windows W and Π of fixed size. The
windows are non overlapping and they always slides forward, both in case of
change detected and not detected (W = Π). Therefore, old data are always
discarded. In the mixed model, the detection is performed on W and Π, as in
the sliding model. However, as in the landmark model, Π is added to W , forming
W ′ = W ∪ Π until a change is detected. In that case, old data are discarded.

4 Exhaustive and Non-exhaustive Mining in PBCDs

The main difference between exhaustive and non-exhaustive PBCDs lies in the
exhaustiveness of the mining step used to discover the patterns, which is the
major bottleneck of any exhaustive PBCD approach. In fact, the discovery of an
exponentially large number of patterns affects the efficiency of both the mining
and detection step, hence rendering this class of algorithms not efficient in prac-
tice. The main objective of this paper is to reduce the computational complexity
of exhaustive approaches by adopting non-exhaustive ones. In particular, we pro-
pose a mining algorithm able to prune the search space of patterns following a
beam-search approach.

Being based on beam-search, the proposed approach relies on a parameter k
which controls the beam size of the mining step when traversing the search space
of patterns, that is a lattice L = (2I ,⊆) ordered by the generality relation ⊆,
conveniently represented in a SE-Tree data structure. Since an exhaustive search
can be achieved with non-exhaustive procedures by setting k = |I|, we refer to
Algorithm 1 in both cases. In particular, the algorithm implements a pattern-
growth approach for mining patterns FW in a time window W , and it is initially
called with empty prefix ∅. An important remark is that exhaustive PBCDs
rely on complete pattern sets, discovered by the exhaustive mining procedure,
as the feature sets for the detection problem. On the contrary, non-exhaustive
PBCDs rely only on limited pattern sets discovered by the non-exhaustive mining
procedure.

4.1 Exhaustive FCSs and FSs Mining

The mining procedure (Algorithm 1) takes 4 input parameters, that is the content
of the window W , the minimum support threshold α, the beam-size k, and the
pattern prefix (initially equals to ∅). The algorithm exhaustively traverses the
search space of FCSs and FSs by setting k = |I|, following a recursive DFS
approach. In particular, it is able to (i) build patterns with a pattern-growth
approach in which items are appended as suffix to a pattern prefix, and (ii)
evaluate the supports through tidset intersection. The result is the complete set
of the frequent patterns FW in W according to α.

The procedure considers the window W as an i-conditional database of trans-
actions in which every item j ≤ i has been removed, as done in [4]. At the begin-
ning of each recursive call, Line 2 initializes the set F [P ] of frequent patterns on
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Algorithm 1: Mining procedure based on beam search
Output: F[P] the set of frequent patterns having prefix P

1 minePatterns (W, α, k, P )
2 F [P ] = ∅, Items = ∅, Beam = ∅
3 for (i, tidset) occurring in W do

4 if
|tidset|

|W | ≥ α then

5 if isV alid(P ∪ {i}) then
6 F [P ] = F [P ] ∪ (P ∪ {i})
7 end
8 Items = Items ∪ {i}
9 end

10 end
11 Beam = topKSortedBySupport(Items, k)
12 for all i occurring in Beam do
13 W i = ∅
14 for j occurring in Beam | j > i do
15 C = tidset(i, W ) ∩ tidset(j, W )

16 W i = W i ∪ {(j, C)}
17 end
18 if isV alid(P ∪ {i}) then
19 F [P ∪ {i}] = minePatterns(W i, α, k, P ∪ {i})
20 F [P ] = F [P ] ∪ F [P ∪ {i}]
21 end

22 end
23 return F [P ]

prefix P as empty. Then, Lines 3–10 exploit the vertical layout of W , and test
the supports against the threshold α. The FCS (FS) P ∪ {i} is built by append-
ing the item i to the prefix P only when allowed by the predicate isV alid (Line
4), which checks whether P ∪ {i} is a connected subgraph (when mining FCSs)
or a subtree (when mining FSs), respectively. Lastly, they are added to the set
F [P ]. The algorithm adds the suffix i of any pattern discovered to Items.

Line 11 selects only the most promising subset of k patterns, according
to their support. In practice, this line is irrelevant in exhaustive mining as it
will always select all the patterns, since k = |I|. Then, lines 12–22 build the
i-conditional databases on which to perform recursive calls. In particular, the
algorithm iterates over each item i in Beam, and Line 13 initialize the associated
i-conditional database W i as empty. Lines 14–17, iterate on items j from Beam
such that j > i. This way, Line 15 computes the tidset C as the set intersec-
tion between the tidsets of i and j in the database W , respectively. Then, C
is the tidset of j in the newly created i-conditional database W i. The mining
procedure is recursively called at Line 19 for mining the set F [P ∪ {i}] of FCSs
(or FSs) with valid prefix P ∪ {i}, according to the pattern language. This way,
subgraphs which are not connected (or do not represent trees) are pruned at
Line 18. Finally, the patterns in F [P ∪{i}] are added to F [P ], which is returned
as the final result.

The exhaustive mining of FCSs and FSs requires time proportional to O(2|I|)
in the worst case scenario, in line with that of traditional frequent itemset min-
ing. Moreover, due to the constraints imposed by the pattern language, the
number of FCSs and FSs is in practice much lower than the number of itemsets,
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FSs < FCSs < 2|I|. However, the mining time is still exponential in the number
of edges |I|, thus resulting inefficient.

4.2 Non-exhaustive FCSs and FSs Mining

The non-exhaustive mining is achieved by pruning the search space of FCSs and
FSs according to some heuristic criteria. In particular, when calling Procedure
1 with k < |I|, the intermediate selection step (Line 11) selects only the most
promising subset of k patterns to further advance the process (Lines 12–22). As
in traditional beam search-based algorithms, frequent patterns in a recursive call
are evaluated by means of a heuristic evaluation function and sorted in increasing
order. Then, only the first top-k of them are further considered.

Many heuristic evaluation functions can be used to select the most promising
subset of patterns, among them we adopt the support of patterns. In particular,
Line 11 sorts the patterns in F [P ] according to their support, then only k of
them with the greatest support are kept to further advance the process, while
the remaining ones are ignored. However, since the sorting is performed between
patterns having same length, the evaluation based on the support is consistent
with the evaluation based on the area.

Proof. Let S be a pattern, and W be a window. Then, the support sup(S,W ) =
|tidset(S,W )|

|W | and the area area(S,W ) = |S| · |tidset(S,W )| are linearly propor-
tional to |tidset(S,W )| with two constant factors 1

|W | and |S|.
The area of the FCS (or FS) S in the window W , area(S,W ), is an interest-

ingness measure adopted in tile mining [4]. In our case, it is used to restrict the
search space by considering only the most interesting patterns at each recur-
sion step. This simple, yet effective approach allows us to significantly prune
the search space when mining the limited sets FW and FW ′ . In particular, the
mining is more focused towards patterns covering large portions of the window,
tiles from a transactional database point of view [4], and hence more interesting.

The non-exhaustive mining procedure is more efficient than the exhaustive
one, requiring time proportional to O(2k) in the worst-case scenario. In fact, the
algorithm restricts the attention on only k items from I in the base recursion
step, with k � |I|.

5 Detecting Changes on Pattern Sets

Once the complete or limited pattern sets, FW and FW ′ , have been discovered
by either the exhaustive or non-exhaustive procedure, respectively, the detection
step can be executed and the dissimilarity score β = d(FW , FW ′) computed.
We recall that d(FW , FW ′) is a binary dissimilarity measure defined on sets of
patterns. For our convenience we define it as operating on the vector encoding
w and w′ of FW and FW ′ , respectively.
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Fig. 2. Example of binary (top) and real-valued (bottom) vector encoding of FW and
FW ′ . Dashed circles denote infrequent patterns with α = 0.5.

5.1 Detecting Changes on Complete Pattern Sets

When detecting changes on complete pattern sets, the encoding is built by enu-
merating the patterns in FW ∪ FW ′ . More specifically, w (w′) is a vector of size
n = |FW ∪FW ′ |, where the i-th element is a weight associated to the i-th pattern
in the enumeration of FW ∪FW ′ with respect to W (or W ′, respectively). Then,
a change is detected if the dissimilarity score exceeds the minimum threshold β,
that is when d(FW , FW ′) > β.

In the case of KARMA, as shown in Fig. 2, w and w′ are binary vectors
indicating whether each FCS from the enumeration is frequent or not in W
and W ′, respectively. Then the algorithm computes the Tanimoto coefficient
d(FW , FW ′) = 1 − w·w′

‖w‖2+‖w′‖2−w·w′ . By doing so, KARMA quantifies the frac-
tion of FCSs which have crossed the minimum support threshold, thus indicating
a relevant change in the underlying graph data distribution. However, this solu-
tion does not take into account the FCSs not crossing the minimum support
threshold, although exhibiting a potentially significant support spread.

To overcome this limitation, an alternative approach also shown in Fig. 2 is
to build the vector encoding as real-valued vectors of supports in W and W ′,
respectively. Then, it is possible to compute the weighted Jaccard dissimilarity
d(FW , FW ′) = 1 −

∑
i min(wi,w

′
i)∑

i max(wi,w′
i)

. We deem this measure as relevant because
relates the dissimilarity to the absolute growth-rate [2] of each pattern S, defined
as GR(S,W,W ′) = |sup(S,W )− sup(S,W ′)|. The absolute growth-rate is a con-
trast measure adopted in emerging pattern mining to discover contrast patterns
between two datasets [2].

Proof. Given the analytic formulations for max(a, b) = 1
2 (a + b + |a − b|) and

min(a, b) = 1
2 (a + b − |a − b|), and the vector encoding w and w′ of FW and

FW ′ . The weighted Jaccard dissimilarity can be rewritten as d(FW , FW ′) =
1 −

∑
i min(wi,w

′
i)∑

i max(wi,w′
i)

= 1 −
∑

i wi+w′
i−GR(Si,W,W ′)

∑
i wi+w′

i+GR(Si,W,W ′) .

In exhaustive PBCDs the number of patterns grows exponentially in the num-
ber of items. Therefore, regardless from the measure d(FW , FW ′) adopted, the
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Fig. 3. Example of limited sets of frequent patterns FW (left) and FW ′ (right) discov-
ered with k = 2 and α = 0.1. Dashed circles denote pruned non-interesting patterns.

detection step on complete pattern sets requires an amount of time proportional
to the number of patterns in the enumeration.

5.2 Detecting Changes on Limited Pattern Sets

Non-exhaustive PBCDs detect changes in the same way exhaustive PBCDs do,
that is by computing the score d(FW , FW ′) in terms of the Tanimoto coeffi-
cient or the unweighted Jaccard dissimilarity, and testing it against the mini-
mum change threshold β. Although the detection approach remains the same,
a subtle difference in the meaning of the detection is present. In fact, while
the dissimilarity measures adopted on complete pattern sets quantify how much
the supports of FCSs (FSs) change between W and W ′, they do not consider
the interestingness of patterns on W and W ′, respectively, as intended by the
non-exhaustive mining algorithm.

Non-exhaustive mining based on the interestingness prunes the search space
of patterns in two different ways for W and W ′, respectively. Thus restricting
the search only to the most interesting FCSs and FSs, while discarding the less
interesting ones (Fig. 3). By doing this, the detection relies on a considerably
low number of patterns, hence resulting more efficient, while losing information
associated to patterns which have been pruned. This affects the construction
of the vector encoding w and w′, which is built according to the enumeration
FW ∪ FW ′ consisting of a reduced number of patterns. The example reported
in Fig. 3 depicts a scenario in which every pattern is frequent in both W and
W ′, although with different supports, thus determining different interestingness.
Any information related to the patterns “ac” and “abc” is lost, as they are not
present in the enumeration of FW ∪ FW ′ , and therefore they do not contribute
to the change.

Therefore, the detection step becomes non-exhaustive itself, by focusing the
detection only on the most interesting frequent patterns. In particular, as the
number of patterns discovered by the non-exhaustive mining procedure grows
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exponentially with the parameter k � |I|, the detection step requires in practice
much smaller time than that required on complete pattern sets.

6 Computational Complexity

In this section we study the computational complexity of PBCDs in the worst-
case scenario. In particular, the analysis takes into account the influence of the
feature space, the mining step, the detection step and the window model. Given
the dynamic network D = 〈G1, G2, . . . , Gn〉 where I denotes the possible labeled
edges observed over the time, and |Π| the size of blocks, then every PBCD
built according to the architecture in Fig. 1 consumes exactly e = n

|Π| blocks
of transactions, thus requiring O(e) iterations. The time complexity O(a + b)
required during every iteration depends on the cost a of the mining step, and
the cost b of the detection step.

The mining step requires time complexity a = O(2c) · d in the worst case
scenario. O(2c) denotes the number of patterns discovered according to the fea-
ture space and to the exhaustiveness of the mining step. In the exhaustive set-
ting, all the edges (c = |I|) are considered to discover O(2|I|) patterns. Since
FSs < FCSs < 2|I|, we refer to O(2|I|) as the maximum number of patterns
discovered in the worst-case scenario. However, it reduces to O(2k) in the non-
exhaustive setting (c = k), where k � |I|. The term d denotes a multiplicative
factor describing the amount of work spent by the algorithm in tidset intersec-
tions, which depends on the time window model adopted. In the case of landmark
and mixed model it is O(|W | + |Π|), while in the case of the sliding model it is
O(|Π|). As for the detection step, the computation of the d(FW , FW ′) requires
time complexity O(b) proportional to the enumeration of patterns |FW ∪ FW ′ |,
which is O(2|I|) in exhaustive setting, and O(2k) in the non-exhaustive one.

Then, the computational complexity in the worst case scenario of exhaustive
PBCDs is O(e·(d2|I|+2|I|)), while for non-exhaustive PBCDs is O(e·(d2k +2k)).
Therefore, it is exponential in |I| and k, with k � |I|, respectively.

7 Experimental Results

The experiments are organized alongside different perspectives concerning both
synthetic and real-world dynamic networks. In particular, we answer the fol-
lowing research question: (Q1) What is the best PBCD in terms of efficiency
and accuracy when tuning the minimum change threshold β on synthetic net-
works? (Q2) How much the parameter k affects the efficiency and the accuracy
of non-exhaustive PBCD on synthetic networks? (Q3) How much the parameter
k affects the efficiency of non-exhaustive PBCD on real-world networks?

For experiments on synthetic networks, we generated 40 networks, 20 with
frequent drifts and 20 with rare drifts. Every network consists of 200 hourly
blocks made of 120 graph snapshots, one observed every 30 s, for a total amount
of 24000 snapshots. Each hourly block is built by randomly choosing with
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Table 1. Most accurate (top) and most efficient (bottom) PBCD when tuning β.

PBCD

component

Most accurate PBCD @ β

0.10 0.20 0.30 0.40 0.50 0.60

choice p-val. choice p-val. choice p-val. choice p-val. choice p-val. choice p-val.

Features

(fcs/fs)

fs 0.0025 fs 0.0001 fs 0.0001 fs 0.0317 fs 0.2357 fs 0.6816

Mining

(ex/nex)

nex 0.0001 nex 0.0001 nex 0.0001 nex 0.0828 nex 0.4657 nex 0.7154

Detection

(tan/wj)

tan 0.3618 wj 0.0001 wj 0.0001 wj 0.0001 wj 0.0001 wj 0.1004

Windows

(lan/sli/mix)

lan 0.0001 mix 0.0001 mix 0.0001 mix 0.0001 mix 0.0001 mix 0.0001

PBCD

component

Most efficient PBCD @ β

0.10 0.20 0.30 0.40 0.50 0.60

choice p-val. choice p-val. choice p-val. choice p-val. choice p-val. choice p-val.

Features

(fcs/fs)

fs 0.0001 fs 0.0001 fs 0.0001 fs 0.0001 fs 0.0001 fs 0.0001

Mining

(ex/nex)

nex 0.0001 nex 0.0001 nex 0.0001 nex 0.0001 nex 0.0001 nex 0.0001

Detection

(tan/wj)

tan 0.0001 tan 0.0001 tan 0.0001 tan 0.0001 tan 0.0079 tan 0.3618

Windows

(lan/sli/mix)

sli 0.0001 sli 0.0001 sli 0.0001 sli 0.0001 sli 0.0001 sli 0.0001

replacement (i) one out of 10 different generative models in the case of fre-
quent drifts, and (ii) one out of 2 different generative models in the case of rare
drifts. As a consequence, it is more likely that two consecutive hourly blocks are
built according to different generative models, thus denoting a change, in the
dataset with frequent drifts than in the one with rare drifts. Every generative
model builds a first snapshot made of 50 nodes by adopting a random scale-
free network generator, which is then replicated for the remaining snapshots of
the block. Every graph snapshot of a block is then perturbed by adding new
edges and removing existing ones with a probability equals to 2%. A random
perturbation is required to test the false alarm rate of the two approaches.

7.1 Q1: The Most Accurate and Most Efficient PBCD When
Tuning β

In this paper, we discussed various components of PBCDs, that is (i) 2 mining
steps (exhaustive and non-exhaustive), (ii) 2 feature spaces (FCSs and FSs),
(iii) 2 detection steps (with the Tanimoto dissimilarity score and the weighted
Jaccard score), and (iv) 3 time window models (landmark, sliding and mixed).
These components can be combined to form 24 possible PBCDs, and hence
determining variants of the original KARMA algorithm. Here, we evaluate which
one performs statistically better, by measuring the efficiency (running times) and
the change detection accuracy (Accuracy). We executed the 24 variants on 40
randomly generated synthetic networks, by tuning β 6 times (resulting in 5760
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Table 2. Running times of PBCD-1 and PBCD-2, when tuning k, against KARMA
and StreamKRIMP on synthetic data (α = 0.5, β = 0.20, |Π| = 15).

Dataset Running times (s) @ k

PBCD-1 PBCD-2 KARMA KRIMP

5 10 15 20 25 30 5 10 15 20 25 30

freq-

drifts-1

6.016 8.536 12.913 16.156 19.234 23.745 3.881 5.612 6.194 7.870 9.091 10.372 60.763 86.130

freq-

drifts-2

6.022 9.518 12.284 15.758 19,270 23.084 4.147 5.083 6.522 7.826 9.141 10.182 55.982 77.138

freq-

drifts-3

6.689 8.882 12.603 15.710 19.653 22.988 3.195 4.497 6.463 7.667 9.818 10.599 58.137 76.750

freq-

drifts-4

6.107 9.739 12.792 17.029 20.976 23.980 3.778 4.529 6.712 8.129 9.800 10.419 78.240 23.213

rare-

drifts-1

7.438 12.578 18.358 24.582 29.271 35.250 3.341 4.709 5.854 7.556 9.005 10.034 1775.234 109.816

rare-

drifts-2

7.302 12.326 17.549 23.911 29.702 33.339 4.182 5.156 6.435 7.563 8.928 10.365 1971.625 112.303

rare-

drifts-3

7.181 12.696 18.259 25.245 29.642 35.035 3.933 5.132 6.228 7.236 8.608 10.102 1971.367 109.395

rare-

drifts-4

7.273 12.159 17.901 23.821 28.416 31.260 4.059 4.306 6.452 7.488 9.072 10.559 2026.794 116.141

executions) and fixing the value of k to 20 items. Then, we selected the most
accurate and the most efficient PBCD (Table 1) by using (i) a Wilcoxon post-
hoc test when deciding about the feature space, the mining strategy and the
detection step, and (ii) a Nemenyi-Friedman post-hoc test when deciding about
the best time-windows model, both at significance level α = 0.05.

As for the accuracy, the results show that FSs are more appropriate features
than FCSs. Furthermore, the PBCDs equipped with non-exhaustive mining step
always outperforms exhaustive ones. The Tanimoto measure, as originally used
by the KARMA algorithm, outperforms the weighted Jaccard measure for low
values of β. From this set of experiments it is clear that the factors that impact
the most on the PBCDs accuracy are the change detection measure and the
time windows model. In particular, it is strongly evident that a mixed model
outperforms the landmark model, which is preferred only when β = 0.10.

As for the efficiency, the very low p-values indicate a strong evidence that
non-exhaustive PBCD based on FSs and the Tanimoto distance in the slid-
ing model, outperforms every other PBCD approach. In particular, this is an
expected result since: (i) the mining of FSs is less time consuming than FCSs,
(ii) a non-exhaustive mining strategy is more efficient than exhaustive one.

An aspect worth to be considered is that the original KARMA algorithm
(FCSs + EX + Tanimoto + Landmark) is never selected as the best PBCD.
In this perspective the adoption of a new feature set, the FSs, jointly with a
non-exhaustive mining step generally improves the detection accuracy and the
efficiency. However, the test suggests that the landmark model adopted by the
KARMA algorithm is a bad choice leading to poor accuracy and efficiency. While
the Tanimoto coefficient leads to poor detection accuracy.
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7.2 Q2: Efficiency and Accuracy of Non-exhaustive PBCDs on
Synthetic Networks

We report the results of a comparative evaluation in which we compare the
running time (Table 2), the accuracy and the false alarm rate (Table 3) of two
non-exhaustive PBCDs against the KARMA [9] and the StreamKRIMP [8] state-
of-the-art PBCDs. In particular, StreamKRIMP treats the network as a data
stream of labeled edges, and adopts a compression-based mining step. We select
two non-exhaustive PBCDs emerged in the last section and test their perfor-
mances on 8 synthetic networks, when tuning the parameter k. In particular, we
chose the most efficient PBCD and the most accurate PBCD when β = 0.2.
We denote them as PBCD-1 (FSs + NEX + Weighted Jaccard + Mixed),
and PBCD-2 (FSs + NEX + Tanimoto + Sliding), respectively. The results
in Tables 2 and 3 shows increasing efficiency and accuracy for decreasing values
of k.

Results in Table 2 show an improved efficiency for both PBCD-1 and PBCD-2
with respect to KARMA and StreamKRIMP. This is an expected result, also
confirmed by the statistical significance test in Sect. 7.1, because non-exhaustive
mining of FSs is more efficient than (i) the exhaustive mining of FCSs performed
by the KARMA algorithm, and (ii) the non-exhaustive mining of itemsets per-
formed by StreamKRIMP. In particular, the running times of both PBCD-1
and PBCD-2 increases with k, as high values of k lead to the discovery of an
increasing number of patterns. Moreover, the results show that PBCD-2 is more

Table 3. Accuracy and false alarm rate of PBCD-1 and PBCD-2, when tuning k,
against KARMA and StreamKRIMP on synthetic data (α = 0.5, β = 0.20, |Π| = 15).

Dataset Accuracy @ k

PBCD-1 PBCD-2 KARMA KRIMP

5 10 15 20 25 30 5 10 15 20 25 30

freq-drifts-1 1.0 1.0 0.987 0.987 0.967 0.957 1.0 1.0 0.918 0.891 0.824 0.751 0.8041 0.9299

freq-drifts-2 1.0 1.0 0.991 0.991 0.965 0.952 1.0 1.0 0.916 0.889 0.819 0.735 0.7985 0.9105

freq-drifts-3 1.0 1.0 0.988 0.988 0.958 0.948 1.0 1.0 0.918 0.888 0.819 0.755 0.7960 0.9155

freq-drifts-4 1.0 1.0 0.987 0.987 0.963 0.952 1.0 1.0 0.936 0.907 0.831 0.757 0.7860 0.923

rare-drifts-1 1.0 1.0 1.0 1.0 1.0 0.971 1.0 1.0 0.816 0.816 0.691 0.598 0.9362 1.0

rare-drifts-2 1.0 1.0 1.0 1.0 1.0 0.967 1.0 1.0 0.799 0.799 0.674 0.571 0.9399 1.0

rare-drifts-3 1.0 1.0 1.0 1.0 1.0 0.969 1.0 1.0 0.816 0.816 0.691 0.599 0.9368 1.0

rare-drifts-4 1.0 1.0 1.0 1.0 1.0 0.965 1.0 1.0 0.799 0.799 0.674 0.576 0.9293 1.0

Dataset False alarm rate @ k

PBCD-1 PBCD-2 KARMA KRIMP

5 10 15 20 25 30 5 10 15 20 25 30

freq-drifts-1 0 0 0.014 0.014 0.036 0.048 0 0 0.092 0.123 0.197 0.279 0.1099 0.0399

freq-drifts-2 0 0 0.011 0.0105 0.039 0.053 0 0 0.095 0.125 0.204 0.297 0.1131 0.0513

freq-drifts-3 0 0 0.013 0.0134 0.047 0.058 0 0 0.092 0.126 0.203 0.275 0.1146 0.0478

freq-drifts-4 0 0 0.015 0.0148 0.042 0.054 0 0 0.072 0.105 0.190 0.273 0.1205 0.0437

rare-drifts-1 0 0 0 0 0 0.0312 0 0 0.195 0.195 0.328 0.427 0.0073 0

rare-drifts-2 0 0 0 0 0 0.032 0 0 0.214 0.214 0.347 0.457 0 0

rare-drifts-3 0 0 0 0 0 0.0326 0 0 0.196 0.196 0.329 0.427 0.0027 0

rare-drifts-4 0 0 0 0 0 0.0377 0 0 0.216 0.216 0.351 0.456 0.0013 0
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efficient than PBCD-1, as the sliding window model leads to increasing efficiency
with respect to the mixed model. This is explained by the forgetful nature of the
sliding window, in which old graph snapshots are immediately discarded with the
arrival of a new block of snapshots. In this way, the mining step requires reduced
computational efforts, as patterns are mined from reduced sets of transactions.
Thus intersecting small tidsets when computing the support of each pattern.

As for the accuracy (Table 3), both PBCD-1 and PBCD-2 are optimal change
detection solutions, for the considered synthetic networks, for low values of k (k =
5 and k = 10, respectively). Moreover, the results show a decreasing tendency
in the accuracy of both PBCD-1 and PBCD-2. In particular, PBCD-1 always
outperforms KARMA and StreamKRIMP (except for k = 30), while this is
not the case of PBCD-2. These are expected results, again confirmed by the
significance test in Sect. 7.1, as the non-exhaustive mining of FSs with a detection
step based on the weighted Jaccard dissimilarity takes into account the absolute
growth-rate and the interestingness of patterns. This is not the case of PBCD-2,
in which the Tanimoto coefficient computed in the sliding window setting, on
large sets of patterns, exhibits higher false positive rates. For high values of k,
the mining step discover patterns representing behavior local to the snapshots
collected in two successive sliding windows of equal size. Thus, injecting noisy
features in the detection step. We note that (i) PBCD-1 exhibits moderately
lower false alarm rates than PBCD-2, also outperforming KARMA for high
values of k, and StreamKRIMP for low values of k, and (ii) PBCD-2 outperforms
KARMA and StreamKRIMP for low values of k only.

Table 4. Running times of PBCD-1 and PBCD-2, when tuning k, against KARMA
on real-world networks (β = 0.20, |Π| = 10% of each dataset).

Dataset Running times (s) @ k

PBCD-1 PBCD-2 KARMA

5 10 15 20 25 30 5 10 15 20 25 30

mawi 6.769 9.68 1.919 14.886 17.554 18.847 5.169 6.17 6.82 7.977 8.547 8.736 86.493

noaa 14.794 16.513 18.068 19.935 19.603 23.217 15.164 16.35 17.18 19.061 20.533 20.263 65.697

nodobo 1.72 1.525 2.11 2.915 3.728 4.371 1.825 1.582 1.822 2.587 3.276 3.988 35.253

keds 0.955 0.924 0.873 0.946 1.109 1.034 0.979 0.892 0.795 0.982 1.075 1.014 1.108

wikitalks 83.846 78.454 80.182 77.904 81.605 79.131 77.128 76.77 76.021 80.45 77.299 75.876 94.914

We conclude that both the accuracy and the efficiency of non-exhaustive
PBCDs benefits from the limited pattern sets which have been discovered. In
particular, the combination of a mixed window model with the weighted Jaccard
dissimilarity leads to accurate detection, while the combination of sliding win-
dows and the Tanimoto coefficient leads to efficient detection, while improving
the detection accuracy for very low values of k. From this perspective, the two
approaches offers two efficient alternatives to the KARMA algorithm, in which
the running times can be greatly reduced (up to two orders of magnitude in this
set of experiments).
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7.3 Q3: Efficiency of Non-exhaustive PBCDs on Real-World
Networks

We also provide a practical idea of the efficiency on real-world networks by
reporting the results of a comparative evaluation (Table 4) between PBCD-1,
PBCD-2 and KARMA on 5 real-world networks, when tuning k. More specifi-
cally, we used the same networks adopted in [9]: the keds, mawi, noaa, nodobo
and the wikitalks dataset. To guarantee a fair comparison, we fixed the value
β = 0.20 in each experiment. However, since the networks span different peri-
ods, we independently fixed the size of block |Π| to the 10% of each dataset,
this guaranteed 100 iterations of each PBCD on every dataset. The minimum
support α has been fixed to 0.05 for keds, nodobo and mawi, 0.20 for noaa, and
0.40 for wikitalks. From the obtained results it is evident that both PBCD-1
and PBCD-2 are always more efficient than KARMA for all the values of k.
Furthermore, as observed on synthetic networks in Sect. 7.2 and as confirmed in
Sect. 7.1, PBCD-2 continues to be more efficient than PBCD-1. The increasing
tendency of the running times with k is verified in the mawi, noaa and nodobo
datasets.

8 Conclusions

In this paper, we have collected several improvements contributing to the effi-
ciency and the accuracy of traditional PBCDs. This have been possible by inher-
iting the general PBCD schema from the KARMA algorithm, and extending it.
Specifically, we have relaxed the exhaustiveness of the PBCDs mining step with
a non-exhaustive mining strategy, inspired by beam search algorithms. The effect
is that the mining algorithm discovers now limited sets of patterns by pruning
the search space according to the interestingness of patterns. Moreover, we pro-
posed an extended detection step which takes into account the growth-rate of
the discovered patterns. Ultimately, we have conducted an extensive exploratory
evaluation on both real and synthetic networks.

The experiments have shed some lights on the most accurate and on the most
efficient PBCDs among the possible approaches. Furthermore, they have shown
that non-exhaustive PBCDs are more efficient than exhaustive PBCDs, while
achieving comparable levels of accuracy. Future directions of research involve
the evaluation of the performances when adopting more sophisticated feature
spaces, for example by considering graph embedding.
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11. Trabold, D., Horváth, T.: Mining strongly closed itemsets from data streams. In:
Yamamoto, A., Kida, T., Uno, T., Kuboyama, T. (eds.) DS 2017. LNCS (LNAI),
vol. 10558, pp. 251–266. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-67786-6 18

https://doi.org/10.1007/978-3-540-28645-5_29
https://doi.org/10.1007/978-3-319-67786-6_18
https://doi.org/10.1007/978-3-319-67786-6_18


A Combinatorial Multi-Armed Bandit
Based Method for Dynamic Consensus
Community Detection in Temporal

Networks

Domenico Mandaglio and Andrea Tagarelli(B)

Department of Computer Engineering, Modeling, Electronics, and Systems
Engineering (DIMES), University of Calabria, Rende, Italy

d.mandaglio@dimes.unical.it, andrea.tagarelli@unical.it

Abstract. Community detection in temporal networks is an active field
of research, which can be leveraged for several strategic decisions, includ-
ing enhanced group-recommendation, user behavior prediction, and evo-
lution of user interaction patterns in relation to real-world events. Recent
research has shown that combinatorial multi-armed bandit (CMAB) is a
suitable methodology to address the problem of dynamic consensus com-
munity detection (DCCD), i.e., to compute a single community structure
that is conceived to be representative of the knowledge available from
community structures observed at the different time steps.

In this paper, we propose a CMAB-based method, called CreDENCE,
to solve the DCCD problem. Unlike existing approaches, our algorithm
is designed to provide a solution, i.e., dynamic consensus community
structure, that embeds both long-term changes in the community for-
mation and newly observed community structures. Experimental evalu-
ation based on publicly available real-world and ground-truth-oriented
synthetic networks, with different structure and evolution rate, has con-
firmed the meaningfulness and key benefits of the proposed method, also
against competitors based on evolutionary or consensus approaches.

1 Introduction

Community detection and evolution in temporal networks has been largely stud-
ied in the last few years, mainly focusing on graph-based unsupervised learning
paradigms (e.g., [3,8,10,24]). Nonetheless, detecting and tracking the evolution
of the change events that occur in the communities remains challenging [5], which
is partly due to the uncertainty and dynamicity underlying the different types
(e.g., birth/death, growth/decay, merge/split) and evolution rates of structural
changes in time-evolving network systems.

In this regard, we have recently explored the opportunity of adopting the
multi-armed bandit (MAB) paradigm, which is conceived to learn how to per-
form actions in an uncertain environment [17]. Indeed, in the problem under
consideration, the uncertainty is inherent to the temporal network system and
c© Springer Nature Switzerland AG 2019
P. Kralj Novak et al. (Eds.): DS 2019, LNAI 11828, pp. 412–427, 2019.
https://doi.org/10.1007/978-3-030-33778-0_31
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the structural changes of its communities, while actions correspond to node
assignments to communities. Moreover, each action is associated with a notion
of “reward” that determines how much benefit is gained by (a set of) node
assignments to communities. Within this view, MAB methods are well-suited
to model the exploitation-exploration trade-off [13,21], i.e., balancing between
making decisions that yield high current rewards or making decisions that sacri-
fice current gains with the prospect of better future rewards. Moreover, to deal
with choosing a set of actions, i.e., a set of community assignments that consti-
tute a whole community-structure, a particular extension of MAB problems is
needed, which is called combinatorial multi-armed bandit (CMAB) [4,7].

In this work, we focus on the dynamic consensus community detection
(DCCD) problem, that is, given a sequence of temporal snapshots of a time-
evolving network, we want to compute a single community structure to be rep-
resentative of the knowledge available from community structures detected in
the different snapshot networks. Remarkably, unlike in consensus community
detection [14,22], the knowledge on the community structures from which a con-
sensus must to be inferred is not available at a given initial time, but it evolves
over time along with the associated temporal network. In this respect, here we
follow the directions outlined in [17] for the CMAB-based DCCD problem, and
propose a fully defined instantiation of the algorithmic scheme.

Note that existing approaches to related problems involving a notion of com-
munity representative in temporal networks [6,12] may suffer from restrictions
on the network model, such as fixed set of nodes and number of communities for
each snapshot of the temporal network [12], or on selected types of community
dynamics [6]. By contrast, our proposed approach does not incur such issues.

Our contributions can be summarized as follows:

• We develop CreDENCE – CMAB-based Dynamic ConsENsus Community
DEtection method. To achieve the exploration-exploitation trade-off, our
algorithm is designed to balance over time between the need for embedding
long-term changes observed in the community formation and the need for
capturing short-term effects and newly observed community structures. More-
over, CreDENCE is conceived to be versatile in terms of the static community
detection approach used to identify the communities at each snapshot, and
robust in terms of a number of parameters that control the CMAB-learning
rate, temporal smoothness factors, and the node-relocation bias.

• We provide insights into technical as well as computational complexity aspects
of CreDENCE; upon this, we propose an enhancement of CreDENCE to ensure
its linear complexity in the size of the temporal network.

• Our experimental evaluation was conducted using 5 real-world networks and
ground-truth-oriented synthetically generated networks, including compari-
son with 3 competing methods. Results have provided useful indications about
the quality of the consensus solutions obtained by CreDENCE, which is able
to cope with temporal networks having different evolution rates.
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2 Problem Statement

We are given a set V of entities (e.g., users in a social environment) and a tempo-
ral network G as a series of graphs over discrete time steps (G1, G2, . . . , Gt, . . .),
where Gt = 〈Vt, Et〉 is the graph at time t, with set of nodes Vt and set of undi-
rected edges Et. We denote with G≤t a series of graphs observed until time t.
Each node in Vt corresponds to a specific instance from the set Vt ⊆ V of entities
that occur at time t. The snapshot graphs can share different subsets of entities.

Given any Gt, we denote with C(t) a community structure for Gt, which is
a set of non-overlapping communities, and is assumed to be unrelated to any
other C(t′) (t′ �= t), both in terms of number of communities and set of entities
involved. Let E≤t = {C(1), . . . , C(t)} be a dynamic ensemble at time t, i.e., a
set of community structures associated to the snapshot graphs. We consider the
following problem:

Problem 1 (Dynamic Consensus Community Detection (DCCD)).
Given a temporal graph sequence G≤t and associated dynamic ensemble E≤t,
for any time t ≥ 1 compute a community structure, called dynamic consensus
community structure and denoted as C∗

≤t, which is designed to encompass the
information from G≤t to be representative of the knowledge available in E≤t.

Given G≤t and E≤t, the dynamic consensus being discovered over time can be
represented as a matrix M we call dynamic co-association (or consensus)
matrix (DCM). Its size is initially Vt × Vt with t = 1, and at a generic time
t is |V| × |V|. The (i, j)-th entry of M, denoted as mij , stores the probability
of co-association for entities vi, vj ∈ V, i.e., the probability that vi and vj are
assigned to the same community, in the observed timespan.

Given the incremental nature of Problem 1, unlike in conventional consensus
community detection [14,22], we want to avoid (re)computation of the consensus
from scratch at any time t. We also do not want to depend on any mechanism
of tracking of the evolution of communities [5]. More importantly, the dynamic
consensus community structure should be able to embed long-term changes in
the community formation as well as to capture short-term effects and newly
observed community structures. To address Problem 1, in [17] we proposed a
CMAB-based methodology, whose principles are recalled in the next section.

2.1 Dynamic Consensus Community Detection as a CMAB
Problem

Review of CMAB. We are given m base arms, where each arm i is associated
with a set of random variables {Xi,t |1 ≤ i ≤ m, t ≥ 1}, where Xi,t ∈ [0, 1]
indicates the random outcome of triggering, or playing, the i-th arm in the t-th
round. The random variables {Xi,t|t ≥ 1} of the i-th arm are independent and
identically distributed. Moreover, in a non-stationary context, those variables
may change [9]. Variables of different arms may not be independent.

At each round t, a superarm (a set of base arms) A is chosen and the outcomes
of the random variables Xi,t, for all ai ∈ A, are revealed. Moreover, the base arms
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belonging to A may probabilistically trigger other base arms not in A [4,7], thus
revealing their associated outcomes. Playing a superarm A at round t gives a
reward Rt(A) modeled as a random variable, which is a function of the outcomes
of the triggered base arms. The objective of a CMAB method is to select at
each round t the superarm A that maximizes the expected reward E[Rt(A)],
in order to maximize the cumulative expected reward over all rounds. At each
round, the bandit may decide to choose the superarm with the highest expected
reward (exploitation) or to select a superarm discarding information from earlier
rounds (exploration) with the aim of discovering the benefit from adopting some
previously unexplored arm(s) [4,7].

Adaptation to DCCD. In our context, each pair of entities 〈vi, vj〉 in G≤t is a
base arm and it is hypothetically associated with an unknown distribution (with
unknown mean μij) for the probabilities of co-association over time, whose mean
estimate is the entry mij in DCM. Each observation of a community structure of
a snapshot network can be considered as a sample from such distributions. More-
over, since the network and community structures can vary, the co-association
distributions may also change their mean over time, thus the DCCD setting
is non-stationary. Including a base arm 〈vi, vj〉 in a superarm corresponds to
“assign vi and vj to the same community at a given time”. If we denote with c

(t)
i

the community of vi at round t, a superarm A at round t is a set of pairs 〈vi, vj〉
such that c

(t)
i = c

(t)
j .

According to the framework in [17], playing a superarm A at each round t
consists of stochastic optimization that considers node relocations to neighbor
communities. The stochastic nature of the process depends on both the random
order with which we consider the node relocations and on the fact that, accord-
ing to the optimization of a quality criterion, an improvement due to relocation
is accepted with a certain probability. Intuitively, this allows us to account for
uncertainty in the long-term overall quality improvement of the consensus due
to local relocations at a given time; for instance, it is unknown if the relation
that explains two users share the same community at a given time could become
meaningless in subsequent times. After playing a superarm A, the rewards asso-
ciated to the entity pairs (base arms) corresponding to the status of communities
after the relocation phase, are revealed; these pairs include both the nodes that
did not move from their community and the arms 〈vi, vj〉 triggered with the
accepted relocations, i.e., such that node vi was moved to the community of vj .
For the base arms that were neither selected nor triggered (i.e., pairs of nodes
that were not in the same community before and after the relocation phase),
we assume an implicit reward of zero that corresponds to the observation of
the “no-coassociation” event. (This is in line with the possibility in CMAB of
enabling the probabilistic triggering of all base arms.)

The reward of a superarm corresponds to the quality of the community struc-
ture at the end of the relocation phase, which is a non-linear function of the base
arms’ rewards. More specifically, we resort to modularity as quality criterion for
a community structure. Let Xt

ij be the reward associated to the base arm corre-
sponding to node pair 〈vi, vj〉 at time step t. The reward of the played superarm
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A (leading to a consensus structure C∗
≤t after the stochastic relocation of nodes)

can be defined in terms of the base arms’ rewards as follows:

Rt(A) =
1

d(V [1..t])

∑

i,j

t∑

�=1

βt−�
(
Al

ij − k�
ik

�
j

d(V [1..t])

)
δ(Xt

ij) (1)

where k�
i is the degree of vi in the �-th snapshot, Al

ij is the (i, j)-th entry of
the adjacency matrix of the �-th snapshot graph, d(V [1..t]) is the total degree
of the multiplex graph including snapshots from the first one to the t-th (i.e.,
d(V [1..t]) =

∑t
�=1

∑
v∈V�

d(v)), β ∈ (0, 1), and δ(Xt
ij) = 1 if Xt

ij > 0, 0 otherwise.
The stochastic nature of the above defined reward is determined by the random
variables Xt

ij . In Sect. 3.2, we will define a generalization of the above reward
equation that allows us to focus on selected snapshots of the networks.

3 The CreDENCE Method

To solve the dynamic consensus community detection problem, we develop a
CMAB-based method called CreDENCE – CMAB-based Dynamic ConsENsus
Community DEtection, which is sketched in Algorithm 1.

Initially, the dynamic consensus matrix M is set as an identity matrix (Line
1), which reflects that no information has been processed yet, and hence each
entity-node has co-association with itself only. At each round t, the algorithm
chooses to perform either exploration or exploitation, according to a given ban-
dit strategy (B). Intuitively, in the exploitation phase, we seed an oracle (i.e.,
a conventional method for community detection) with the mean estimates of
co-association of the current DCM to infer the communities in the new snapshot
graph observed at time t; by contrast, in the exploration phase, the new com-
munities are identified using the t-th graph only. In either phase, the community
structure generated at time t is finally used to produce a superarm that will
correspond to the dynamic consensus community structure up to t (C∗

≤t).
Besides the involvement of a conventional community detection method A

and a bandit strategy B to control the exploration-exploitation trade-off, we
introduce a few parameters to ensure robustness in the algorithmic scheme of
CreDENCE: (i) the learning rate α for the update of the mean estimates (i.e.,
mij entries), (ii) the relocation bias λ, and (iii) the temporal smoothness factor
β and window size ω to control the amount of past knowledge for the step
of node-relocations. Nonetheless, some of these parameters are interrelated, or
reasonable values can be chosen as default.

Another remark on CreDENCE concerns its incremental nature: whenever a
new step of evolution is observed, say at T+1, the last-update status of the DCM
matrix along with G≤T+1 will become the input for a further CMAB round.

3.1 Finding Communities

At each round t, CreDENCE invokes a community detection method A. This is
just required to deal with (static) simple graphs. While in the exploration phase



A Combinatorial Multi-Armed Bandit Based Method 417

Algorithm 1. CMAB-based Dynamic ConsENsus Community DEtection
(CreDENCE)
Input: Temporal graph sequence G≤T (T ≥ 1), (static) community detection method

A, bandit strategy B, learning rate α ∈ (0, 1), relocation bias λ ∈ [0, 1], temporal
smoothness β ∈ (0, 1), temporal window width ω ≥ 1.

Output: Dynamic consensus community structure C∗
≤T .

1: M ← I|V1|×|V1|
2: for t = 1 to T do
3: if B decides for Exploration then
4: C(t) ← findCommunities(Gt, A)
5: else {Exploitation}
6: GM ← buildDCMGraph(M)
7: CM ← partitionDCMGraph(GM, A)
8: C(t) ← inferCommunities(Gt, CM)
9: end if

10: C∗
≤t ← project(C(t), G≤t)

11: C∗
≤t ← evalRelocations(G≤t, C∗

≤t, λ, β, ω) {Using Eq. (3)}
12: M ← updateDCM(M, C∗

≤t, α) {Using Eq. (4)}
13: end for
14: return C∗

≤T

it directly applies to the snapshot graph Gt (Line 4), to handle the exploitation
phase, the method should also be able to deal with weighted graphs: in this case,
A is executed on the graph GM (Line 7), which is built from the current DCM
matrix in such a way that the edge weights in GM correspond to the entries
of M (Line 6). Next, from the obtained partitioning CM of GM (Line 7), the
knowledge about the community memberships of entity nodes in CM is used to
infer a community structure C(t) on Gt (Line 8). Each community in C(t) will
have node set corresponding to exactly one community in CM, and edge set
consistent with the topology of Gt. Any entity v that newly appears in Gt (i.e.,
v ∈ Vt ∧ v /∈ Vt′ , ∀t′ < t) and is disconnected will form a community in its own.

It should be noted that, although any method can in principle be used as A,
our preferred choice is towards efficient, modularity-optimization-based methods,
such as [1]. This is motivated for consistency with our choice of using (multi-
plex) modularity as quality criterion in the (consensus) community structure
refinement, as discussed next in Sect. 3.2.

3.2 Generating the Dynamic Consensus Community Structure

The dynamic consensus community structure C∗
≤t, for each t, is generated in

two steps. The first step (Line 10) corresponds to a simple projection of the
community memberships from C(t) onto G≤t. The second step (Line 11) corre-
sponds to stochastic refinement of the candidate C∗

≤t obtained at the previous
step. This stochastic refinement is performed through local search optimization,
which is designed to relocate some nodes from their assigned community in C∗

≤t

to a neighboring one by acting greedily w.r.t. a quality criterion.
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As previously anticipated, one appropriate choice refers to modularity. How-
ever, to account for the multiplexity of G≤t as well as the dynamic aspects, we
modify the definition of modularity to include the temporal window by which
the modularity context is set. The reason behind this choice is twofold: (i) to
focus on a limited number of latest snapshots of the network, and (ii) to reduce
the computational burden in the local search optimization.

Given C∗
≤t, temporal-window width ω and temporal smoothness factor β,

we denote with d(V [t−ω+1..t]) the total degree of the multiplex graph including
snapshots from the (t−ω+1)-th to the t-th and, for any community c, d�(c) and
dint� (c) are the total degree and the internal degree of c, respectively, measured
w.r.t. edges of the �-th snapshot network only. We define the (ω, β)-multiplex
modularity of C∗

≤t as follows:

Q(C∗
≤t, ω, β) =

1
d(V [t−ω+1..t])

∑

c∈C∗
≤t

t−ω+1∑

�=t

βt−�

(
dint� (c) − (d�(c))2

d(V [t−ω+1..t])

)
(2)

As previously mentioned, the meaning of β is to smooth the contribution of
earlier snapshots in the computation of the quality of the dynamic consensus,
i.e., lower values of β will penalize older snapshots. It is worth noting that β
may take a role that is opposite to that of the learning rate α in Algorithm 1.
Therefore, by default, we set β = 1 − α.

The local search optimization, at any time t, evaluates the possible improve-
ment in terms of modularity due to the relocation of nodes vi that lay on the
boundary of their assigned communities towards one of the communities that
at time t contain nodes linked to vi. By denoting with ci the initial community
of a boundary node vi, and simplifying the modularity notation with function
symbol Q, the modularity variation, denoted as ΔQi, corresponding to moving
vi to a neighbor community is as follows:

ΔQi = Q(ci \ {vi}) − Q(ci) + max
cj∈NC

(t)
i

(Q(cj ∪ {vi}) − Q(cj)) (3)

where NC
(t)
i is the set of neighbor communities for node vi at time t. If ΔQi > 0,

then there is a single chance to accept the relocation of vi to cj with probability
1 − λe−λΔQi , with λ ∈ [0, 1] to control the bias towards relocations.

3.3 Updating the Dynamic Consensus

The DCM-update scheme in Algorithm 1 (Lines 12) follows a standard principle
in reinforcement learning, whereby as the agent explores further, it is capa-
ble of updating its current estimate according to a general scheme of the form
newEstimate ← oldEstimate+α(target−oldEstimate), which intuitively con-
sists in moving the current estimate in the direction of a “target” value, with
slope α. In our setting, we want to control the update of co-associations by sub-
tracting a quantity α of resource from the co-associations of each node, at time
t, and redistributing this quantity among the nodes in c

(t)
i , for each vi. This
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redistribution corresponds to the reward of a single co-association, i.e., given vi,
the reward of assigning any vj to the same community of vi. Upon this, given
α ∈ [0, 1] and any (i, j)-th entry of M, we define the update equation as:

m
(t+1)
ij = m

(t)
ij + α

(
1

|c(t)i |
[vj ∈ c

(t)
i ] − m

(t)
ij

)
=

α

|c(t)i |
[vj ∈ c

(t)
i ] + (1 − α)m(t)

ij (4)

where [x ∈ X] denotes the Iverson-bracket notation for the indicator function.

Properties of the Update Equation. It should be noted that the reward
1/|c(t)i | produces the effect of making it stronger the co-association between nodes
belonging to smaller communities. This is consistent with a major finding in a
recent study proposed in [11] whereby co-memberships of nodes in larger com-
munities are statistically less significant (than in smaller ones), because members
in such communities have limited influence upon each other in the network. A
further reason to favor co-associations in smaller communities is to compensate
for a typical bias relating to a tendency of producing large communities (e.g.,
resolution limit in modularity-optimization based methods).

Another property of the update rule in Eq. (4) is the exponential smoothing
of earlier actions, with constant α [21], i.e., the update scheme leads to weight
recently obtained rewards more heavily than earlier ones, and the reward of a
past co-association between two nodes decreases exponentially in time.

Proposition 1. Equation (4) ensures that the rewards of past co-association
between any two nodes vi, vj decreases by a factor (1 − α)t−s, with s ≤ t.

Proof. Let us assume that nodes vi, vj are assigned to the same community
and remain therein over time. By repeated substitutions, we derive that:

m
(t+1)
ij =

α

|c(t)i |
+ (1 − α)m(t)

ij =
α

|c(t)i |
+

(
1 − α

)[
α

|c(t−1)
i |

+
(
1 − α

)
m

(t−1)
ij

]

=
α

|c(t)i |
+

(1 − α)α

|c(t−1)
i |

+ (1 − α)2m(t−1)
ij

=
α

|c(t)i |
+

(1 − α)α

|c(t−1)
i |

+ ... +
(1 − α)t−1α

|c(1)i |
+ (1 − α)tm(1)

ij

= (1 − α)tm(1)
ij +

t∑

s=1

(1 − α)t−s α

|c(s)i |
.

Also, it can easily be shown that Eq. (4) ensures that M is a stochastic
matrix.

3.4 Speeding up CreDENCE

The time complexity of the basic version of CreDENCE is determined by the
update operations on M given by Eq. (4) and by the community detection step.
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As concerns the update step, we first observe that the relocation of nodes can be
executed in O(|Vt| + ω|Et|) = O(|V| + ω|Et|), since for each node we look at its
neighbor communities, which are bounded by the degree of the node. Evaluating
the modularity improvement (Eq. (3)) is O(ω), provided that ω indexes are
maintained to store the degree of communities for each of the last ω time steps,
and to store the number of links of v with nodes in community c at time t, for
each node v, time t and community c. Therefore, since we constrain the number
of relocation trials to be of the order of the number of nodes, the overall time
cost of relocation of nodes is O(|V|+ω|Et|). However, the update of M involves
a number of entries that is at least equal to

∑
ci∈C(t) |ci|2. This could lead to a

cost that becomes quadratic in the number of entities as soon as some of the
communities have size of the order of V. Moreover, the spatial complexity of
CreDENCE is determined by the number of non-zero entries of M, which again
could be quadratic in the number of entities.

As discussed above, maintaining and updating the DCM matrix represents
a computational bottleneck of CreDENCE. By definition, M can easily become
dense, yet noisy, since many co-associations may be weak (e.g., outdated co-
associations), thus corresponding to poorly significant consensus memberships.
One way to alleviate this issue is to prune the matrix by zeroing those entries
that are below a predefined threshold; in practice, this will unlikely be enough
to solve the issue. Rather, we notice that it is more appropriate to introduce
a constraint of linkage between nodes when evaluating Eq. (4): this is not only
consistent with the requirement of having as high density as possible within a
(consensus) community (as studied in [22]), but it will also impact on making
M sparser. However, one drawback would be the loss of symmetry in M.

We hence propose a modification to the update equation that both integrates
the linkage constraint and preserves the stochasticity property of the matrix:

m
(t+1)
ij =

α

|c(t)i ∩ N
(t)
i |

[vj ∈ c
(t)
i ∩ N

(t)
i ] + (1 − α)m(t)

ij , (5)

where N
(t)
i denotes the set of neighbors of vi in Gt. The entry mij now is meant

to store the strength of co-association of vi conditionally to the topological link
with vj . Moreover, the graph representation of M becomes directed: to keep the
scheme presented in Algorithm 1, we simply modify the definition of the con-
sensus graph GM so that the weight of an edge (vi, vj) is set to max{mij ,mji}.
This allows us to preserve the importance of a co-association between any two
entities when finding a community structure in GM.

We incorporate the above modifications into Algorithm 1 to obtain an
enhanced, efficient version of CreDENCE. It can be noticed that the time com-
plexity of CreDENCE now becomes O(T × (|V| + |E≤T |)), while the spatial cost
is determined by the size of M, i.e., O(|E≤T |), with E≤T =

⋃T
t=1 Et.

4 Evaluation Methodology

Data. We used 5 real-world, publicly available temporal networks: Epinions [18],
Facebook [23], Wiki-Conflict [2], Wiki-Elections [15], YouTube [19]. Table 1
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Table 1. Main characteristics of our evaluation data. Mean ± standard deviation
values refer to all snapshots in a network.

reports statistics for each evaluation network. Note that with terms ‘static’,
‘hapax’, and ‘dynamic’ we mean nodes/edges that are present in all snapshots,
present in only one snapshot, and present in multiple, not necessarily contigu-
ous snapshots, respectively. Also, symbols e+t and e−

t refer to the fraction of new
edges and disappeared edges, respectively, when transitioning from the t−1-th to
the t-th snapshot; analogously for nodes corresponding to symbols v+

t , v−
t . Note

also that, while the friendship-based networks (i.e., Facebook and YouTube)
evolve very smoothly, the other selected networks undergo to drastic changes
in terms of disappearing/appearing edges and nodes. Preprocessing of the net-
works and statistics about the temporal width resolution are available at http://
people.dimes.unical.it/andreatagarelli/cmab-dccd.

We also used synthetic networks generated through RDyn [20], which is
designed to handle community dynamics and change events (merge/split). RDyn
adopts the notion of stable iteration to mimic ground-truth communities; in
particular, when a community structure reaches a minimum quality (i.e., conduc-
tance), then it is recognized as ground-truth. We believe that the latter property
of RDyn is important since it fills a lack in the literature about the unavailability
of ground-truth data for (large) time-evolving multilayer networks.

Competing Methods. We conducted a comparative evaluation of CreDENCE
with the following three methods, which are also based on modularity optimiza-
tion and do not require an input number of communities:

– DynLouvain [10]: it applies Louvain method [1] to a condensed network based
on the topology of the snapshot at current time t and community structure
at time t − 1.

– EvoAutoLeaders [8]: this is an evolutionary method based on a notion of com-
munity as a set of follower nodes congregating close to a potential leader (i.e.,
the most central node in the community).

– M-EMCD∗ [16]: this is a parameter-free enhanced version of the consensus-
based method in [22], which filters noisy co-associations via marginal

http://people.dimes.unical.it/andreatagarelli/cmab-dccd
http://people.dimes.unical.it/andreatagarelli/cmab-dccd
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likelihood filter and optimize the multilayer modularity of the consensus w.r.t.
a static ensemble of community structures.

Evaluation Settings. We varied the learning rate α in {0.15, 0.5, 0.85}∪{α∗},
where α∗ is an adaptive learning rate set to the fraction of times a base arms is
used, and the temporal-window width ω from 2 to 10; however, unless otherwise
specified, we used the setting ω = 2, β = 1 − α to emphasize the importance of
few, more recent snapshots. We set the relocation bias λ to 0, i.e., a relocation is
accepted if it leads to an improvement in modularity (Eq. (3)). To reduce sensi-
tivity issues due to the randomness in the exploration-exploitation interleaving,
we averaged the CreDENCE performance scores over 100 runs.

To detect communities from each snapshot (i.e., A in Algorithm 1), we
used the classic Louvain method [1]. This choice is not only consistent with
our modularity-optimization-based relocation phase, but also with the choice of
static algorithm in most approaches for dynamic community detection [5].

As for the bandit strategy B, we resorted to ε-greedy, i.e., with a small prob-
ability ε we take an exploration step, otherwise (i.e., with probability 1 − ε)
an exploitation step. We set ε = 0.1, which revealed to lead to a performance
stability trade-off for networks having different evolution rates.

5 Results

Impact of Learning Rate. As shown in Fig. 1, the number of detected con-
sensus communities generally increases for higher values of α, because this more
quickly leads to lose memory of past co-associations, thus causing proliferation
of communities in the consensus solution. Moreover, on the networks having
high rate of structural change, the trends for the various settings of α tend to
deviate in correspondence of the time steps associated with most change events;
by contrast, in the networks characterized by a smooth evolution (i.e., Facebook
and YouTube), the consensus sizes are very similar while varying α.

Figure 1 also shows multilayer modularity [22] results by varying α. Lower val-
ues of α generally lead to higher modularity except for Facebook and YouTube
networks. This is explained since, in networks having high rate of structural
change, a lower learning rate helps remember past co-associations, thus informa-
tion about older snapshots. Moreover, in such networks we observe a decreasing
trend in modularity since the consensus must embed an increasing number of
snapshots, each very different from the others (cf. Table 1). By contrast, for Face-
book and YouTube, a high learning rate reveals to be beneficial to discovering
consensus communities with higher modularity.

We also measured the Strehl and Ghosh’s NMI between the dynamic con-
sensus and the community structure of snapshot, for each time step (Fig. 1).
As expected, the two structures are more similar (i.e., higher NMI values) as
α increases, which implies weighting more the current snapshot in the consen-
sus generation. Analogous remarks were drawn for the average cumulative NMI,
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which is computed at each t by averaging the NMI between the dynamic con-
sensus at t and the community structures over all snapshots at any time t′ ≤ t.

Impact of Temporal-Window Width. Higher values of ω will lead to better
modularity performance, which is explained since the criterion function opti-
mized in the relocation phase becomes closer to the measured modularity as ω
increases. We indeed observed modularity improvements up to 0.04 (at any time

(a) Epinions

(b) Facebook

(c) Wiki-Conflict

(d) YouTube

Fig. 1. Size of the dynamic consensus by CreDENCE (left), multilayer modularity of
the CreDENCE solutions (mid), and NMI between the CreDENCE consensus community
structure and the snapshot’s community structure, at each t (right).
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Fig. 2. Multilayer modularity and NMI by varying exploration-step probability ε, on
Epinions (left), Facebook (mid), and Wiki-Conflict (right).

Fig. 3. Time performance on RDyn synthetic networks.

step) already for ω = 4, while negligible increments occurred as ω > 4. Gener-
ally, no evident differences were observed in terms of NMI and consensus size,
which indicates relative robustness of CreDENCE with variation in ω. Results
can be found at http://people.dimes.unical.it/andreatagarelli/cmab-dccd.

Impact of the Exploration Step Probability. The default setting ε = 0.1
revealed to lead to a suitable trade-off for our networks, which have different
evolution rates. In fact, as shown in Fig. 2, with α = 0.5 and default setting for
the other parameters, higher values for the exploration probability lead to more
“unstable” results since more exploration steps are performed, thus information
derived from a newly observed snaphot impact more on the consensus update.
This is particularly evident in networks with high rate of structural changes,
such as Epinions and Wiki-Conflict. On the contrary, for networks with a smooth
evolution (e.g., Facebook), a higher number of exploration steps is beneficial in
terms of modularity and NMI.

Efficiency Evaluation. To assess the scalability of CreDENCE, we used
RDyn [20] to generate different synthetic networks by varying the number of

http://people.dimes.unical.it/andreatagarelli/cmab-dccd
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Fig. 4. Competitors vs. Cre-
DENCE on RDyn: modularity
(top), NMI (bottom).

Table 2. Increment percentages of CreDENCE
w.r.t. DynLouvain and M-EMCD∗. Values corre-
spond to the increment percentages averaged over
all snapshots in a network, using the average best-
performing α.

DynLouvain M-EMCD∗

Modularity NMI Modularity NMI

Epinions 1789.0% −2.2% 13.9% 37.6%

Facebook 3.5% 9.4% 60.0% 37.5%

Wiki-Conflict >1.0E+05% −1.8% −6.8% 37.6%

Wiki-Election 660.5% −2.1% 32.0% 58.5%

YouTube −0.1% 8.4% 21.1% 11.6%

RDyn 2.0% 24.97% 103.22% 81.1%

snapshots and community events.1 Figure 3 reports the execution times for dif-
ferent settings of α, over a temporal network with 1K entities and 1K time steps.

We observe that, for different change rate of community events (Fig. 3(a)–
(b)), CreDENCE always scales linearly with the number of considered timesteps,
which is consistent with our complexity analysis (cf. Sect. 3.4). Also, the execu-
tion time is generally higher for the adaptive learning rate α∗ as well as for lower
values of α (i.e., as the past co-associations are preserved longer), thus making
the DCM matrix denser and more costly to process. Figure 3(c) shows the exe-
cution times of our method with α = 0.85, on three synthetic networks with
10, 30, 50 community events, respectively. As expected, the higher the evolution
rate, the higher the execution time; nonetheless, CreDENCE again shows to scale
linearly with the size of the network.

Comparison with Competing Methods. Table 2 and Fig. 4 compare Cre-
DENCE with the other methods. Concerning modularity results, our method
outperforms both DynLouvain and M-EMCD∗, where performance gains vs. the
former (resp. latter) are outstanding for networks with high (resp. low) rate of
structural change. NMI by CreDENCE is always significantly higher than the
competitors’ ones, especially against M-EMCD∗; one exception is represented
by a gap of just 2% w.r.t. DynLouvain for three networks with high evolution
rate. Moreover, we emphasize that CreDENCE also outperforms the evolution-
ary EvoAutoLeaders, as long as the competitor results were available—indeed, it
incurred in processing-time issues (tens hours) in all networks but the smallest
ones, i.e., Wiki-Election and RDyn.

1 Experiments were carried out on a Linux (Mint 18) machine with 2.6 GHz Intel Core
i7-4720HQ processor and 16 GB ram.
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6 Conclusion

In this paper, we proposed CreDENCE, a CMAB-based method for the problem
of dynamic consensus community detection in temporal networks. Experimental
evidence on real and synthetic networks has shown the meaningfulness of the
consensus solutions produced by CreDENCE, also revealing its unique ability of
dealing with temporal networks that can have different evolution rate.

We plan to further investigate on the impact of different bandit strategies
(e.g., UCB, Thompson sampling), and on learning our model parameters to best
fit the community structure and evolution in a given temporal network.
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Abstract. We address a problem of efficiently estimating value of a centrality
measure for a node in a large network, and propose a sampling-based framework
in which only a small number of nodes that are randomly selected are used to
estimate the measure. The error estimator we derived is an unbiased estimator
of the approximation error defined as the expectation of the difference between
the true and the estimated values of the centrality. We experimentally evaluate
the fundamental performance of the proposed framework using the closeness and
betweenness centralities on six real world networks from different domains, and
show that it allows us to estimate the approximation error more tightly and more
precisely than the standard error estimator traditionally used based on i.i.d. sam-
pling, i.e., with the confidence level of 95% for a small number of sampling, say
20% of the total number of nodes.

Keywords: Error estimation · Resampling · Node centrality · Complex network

1 Introduction

One common approach to analyze a large complex network is investigating its charac-
teristics through a measure called centrality [2,5,8,11,25]. Various kinds of centralities
are used according to what we want to know. For example, if our goal is to know the
topological characteristics of a network, degree, closeness, and betweenness centrali-
ties [8] can be used. If it is to know the importance of nodes that constitute a network,
HITS [6] and PageRank [5] centralities are often used. Influence degree centrality [12]
is another one to measure the importance of nodes.

The size of network keeps increasing and, thus, it is becoming pressingly important
that we are able to efficiently compute these centrality values. If a centrality measure
c© Springer Nature Switzerland AG 2019
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is based not only on local structure around a target node, e.g., its neighboring nodes,
but also on global structure of a network, e.g., paths between arbitrary node pairs, its
computation becomes harder as the size of the network increases. Thus, it is crucial to
reduce the computational cost of such centralities for large networks. Typical examples
are the closeness and the betweenness centralities which we consider in this paper.

In order to efficiently compute such centralities for large networks, Ohara et al. [17,
18] have proposed a resampling-based framework for estimating node centrality, and
performed gap analysis for detecting nodes with high centrality in this framework, espe-
cially focusing on social networks. However, in order to estimate resampling errors by
their methods, the true standard deviations of node centralities are assumed to be avail-
able although, in fact, we are not able to know them in advance. In this paper, we
substantially improve this resampling-based framework by deriving an unbiased esti-
mator for these resampling errors without assuming such true statistics. In our exper-
iments which employ six complex networks: the same three social networks used by
Ohara et al. [17,18], and other three types of networks, i.e., information, spatial, and
cognitive networks, we demonstrate that our proposed estimator has desirable proper-
ties and better performances in comparison to a standard estimator based on the i.i.d.
(identically independent distribution) assumption, which is widely employed in stan-
dard machine learning problems.

The paper is organized as follows. Section 2 describes related work. Section 3 gives
the formal definitions of both the resampling-based framework that we propose and
the traditional bound of approximation error. Section 4 explains the closeness and the
betweenness centralities we used to evaluate our framework and presents how to esti-
mate their approximation error. Section 5 reports experimental results for these central-
ities on six real world networks. Section 6 concludes this paper and addresses the future
work.

2 Related Work

Sampling is a practical approach and often used when analyzing a large network. Many
kinds of sampling methods have been investigated and proposed so far [9,14,15]. In
addition, much efforts have been devoted to evaluate sampling methods (e.g. [24]) by
using a variety of benchmark networks (e.g. [1]). Non-uniform sampling techniques
give different probabilities of sampling to different nodes, e.g., higher probabilities to
specific nodes with high-degree. Similarly, results by traversal/walk-based sampling are
biased towards high-degree nodes. In our problem setting the goal is to accurately esti-
mate centralities of an original network and thus uniform sampling that selects nodes of
a given network uniformly at random is essential because biased samples might skew
centrality values that are derived from a resulting network. This motivates us to pro-
pose the framework that ensures the accuracy of the approximations of centrality values
under uniform sampling. Although we use a simple random sampling here, our frame-
work can adopt a more sophisticated technique such as MH-sampling [9] in so far as it
falls under uniform sampling. In this sense, our framework can be regarded as a generic
method that is applicable to any uniform sampling technique.

For these sampling techniques, we want to know the necessary number of sampling
times, as a bound, in order to guarantee the performance of estimation results. For
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instance, in case of betweenness centrality, Brandes and Pich [4] advocated a bound
based on Chernoff-Hoeffding inequality [7,10], and Riondato and Kornaropoulos [22]
derived a bound based on the VC (Vapnik-Chervonenkis) dimension [23]. However,
these criteria might have an intrinsic limitation for precisely evaluating the estimation
error because their framework assumes that infinite samples are obtainable under the
i.i.d. setting. In fact, the number of samples used for estimating centralities are typically
limited to some finite number. Here we should note that another resampling framework
proposed by Ohara et al. [20] in which the problem domain is information diffusion is
substantially different from this work because the number of samples can be infinitely
large and i.i.d. assumption has to be made.

3 Resampling-Based Estimation Framework

For a given set of objects S whose number of elements is L = |S |, and a function
f which calculates some associated value of each object, we first consider a general
problem of estimating the mean μ of the set of all values { f (s) | s ∈ S } from only its
arbitrary subset of partial values { f (t) | t ∈ T ⊂ S }. For a subset T whose number of
elements is N = |T |, we denote its partial mean by μ(T ) = (1/N)

∑
t∈T f (t). Below, we

formally derive an expected estimation error RE(N) of the squared difference between μ
and μ(T ), with respect to the number of elements N. Hereafter, RE(N) is simply referred
to as resampling error.

Now, let T ⊂ 2S be a family of subsets of S whose number of elements is N, that
is, |T | = N for T ∈ T . Then, we can compute the resampling error RE(N) as follows:

RE(N) =
〈
(μ − μ(T ))2

〉
=

〈⎛
⎜⎜⎜⎜⎜⎝μ −

1
N

∑

t∈T
f (t)

⎞
⎟⎟⎟⎟⎟⎠

2〉

=

(
L
N

)−1 1
N2

∑

T∈T

⎛
⎜⎜⎜⎜⎜⎝

∑

t∈T
( f (t) − μ)

⎞
⎟⎟⎟⎟⎟⎠

2

=

(
L
N

)−1 1
N2

⎛
⎜⎜⎜⎜⎜⎜⎝

(
L − 1
N − 1

)∑

s∈S
( f (s) − μ)2 +

(
L − 2
N − 2

)∑

s∈S

∑

t∈S ,t�s
( f (s) − μ)( f (t) − μ)

⎞
⎟⎟⎟⎟⎟⎟⎠

=

(
L
N

)−1 1
N2

⎛
⎜⎜⎜⎜⎜⎜⎝

((
L − 1
N − 1

)

−
(
L − 2
N − 2

))∑

s∈S
( f (s) − μ)2 +

(
L − 2
N − 2

) ⎛
⎜⎜⎜⎜⎜⎝

∑

s∈S
( f (s) − μ)

⎞
⎟⎟⎟⎟⎟⎠

2⎞⎟⎟⎟⎟⎟⎟⎠

=
L − N

(L − 1)Nσ
2. (1)

Here the variance σ2 is given by σ2 = (1/L)
∑

s∈S ( f (s) − μ)2. Evidently, we cannot
directly compute RE(N) from only a given subset T because we are assuming that
|S | = L is too large to compute σ2. Otherwise, sampling is not needed.

For a given subset T ∈ T with size N, we denote its partial variance by σ2(T ) =
(1/N)

∑
t∈T ( f (t) − μ(T ))2. Then, in order to estimate RE(N) from T , we propose an

estimator defined by

REE(T ) =
L − N

L(N − 1)σ
2(T ) =

L − N
LN(N − 1)

∑

t∈T
( f (t) − μ(T ))2, (2)

For this estimator REE(T ), we obtain the following Theorem 1.
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Theorem 1. REE(T ) is an unbiased estimator of RE(N).

Proof. We first note the following equality holds:
〈
1
N

∑

t∈T
( f (t) − μ)2

〉

=

(
L
N

)−1 1
N

(
L − 1
N − 1

)∑

s∈S
( f (s) − μ)2 = σ2.

Then, by using the following expected value of σ2(T ),

〈
σ2(T )

〉
=

〈
1
N

∑

t∈T
( f (t) − μ)2 − (μ − μ(T ))2

〉

= σ2 − RE(N) = L(N − 1)
(L − 1)Nσ

2,

we obtain

〈REE(T )〉 = L − N
L(N − 1)

〈
σ2(T )

〉
=

L − N
(L − 1)Nσ

2 = RE(N).

��

Hereafter, REE(T ) is referred to as resampling error estimator.
In this paper we consider a huge network consisting of millions of nodes as a collec-

tion of a large number of objects, and propose a framework in which we use the partial
mean as an approximate solution with an adequate confidence level using the above
estimation formula, Eq. (2). More specifically, we can expect that for a given subset
T with size N, and its partial mean μ(T ), the probability that |μ(T ) − μ| is larger than
2×
√
REE(T ), is less than 5%. This is because the estimated error by Eq. (2) is regarded

as the variance with respect to the number of elements N. Hereafter this framework is
referred to as the resampling estimation framework.

In order to confirm the effectiveness of the proposed resampling estimation frame-
work, we also consider a standard approach based on the i.i.d. (independently identical
distribution) assumption for comparison purpose. More specifically, for a given subset
T with size N, we assume that each element t ∈ T is independently selected according
to some distribution p(T ) =

∏
t∈T p(t). Here, we assume the simplest empirical distri-

bution p(t) = 1/L. Then, by expressing elements of T as T = {t1, · · · , tN}, we obtain the
following estimation formula for the expected error:

S E(N) =
〈
(μ − μ(T ))2

〉
=

1
LN

∑

t1∈S
· · ·
∑

tN∈S

1
N2

⎛
⎜⎜⎜⎜⎜⎝

N∑

n=1

( f (tn) − μ)
⎞
⎟⎟⎟⎟⎟⎠

2

=
1
LN

∑

t1∈S
· · ·
∑

tN∈S

1
N2

⎛
⎜⎜⎜⎜⎜⎜⎝

N∑

n=1

( f (tn) − μ)2 +
N∑

n=1

N∑

m=1,m�n

( f (tn) − μ)( f (tm) − μ)
⎞
⎟⎟⎟⎟⎟⎟⎠

=
1
N
σ2, (3)

Hereafter, S E(N) is referred to as standard error. The difference between Eqs. (1)
and (3) is only their coefficients. We note that RE(N) = ((L − N)/(L − 1))S E(N),
RE(L) = 0 and S E(L) � 0. Moreover, by using the following estimator,

S EE(T ) =
1

N − 1σ
2(T ) =

1
N(N − 1)

∑

t∈T
( f (t) − μ(T ))2, (4)
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we can easily prove that S EE(T ) is an unbiased estimator of S E(N). Here note that
REE(T ) = (1 − (N/L))S EE(T ), REE(S ) = 0 and S EE(S ) � 0. For more details, we
empirically compare these resampling error estimator REE(T ) and standard error esti-
mator S EE(T ) through experiments on node centrality calculation of different networks
as described below.

4 Application to Node Centrality Estimation

We investigate our proposed resampling framework on node centrality estimation of a
network represented by a directed graph G = (V, E), where V and E (⊂ V × V) are the
sets of all the nodes and the links in the network, respectively. When there is a link (u, v)
from node u to node v, u is called a parent node of v and v is called a child node of u. For
any node v ∈ V , let A(u) and B(v) respectively denote the set of all child nodes of u and
the set of all parent nodes of v in G, i.e., A(u) = {v ∈ V; (u, v) ∈ E} and B(v) = {u ∈ V;
(u, v) ∈ E}. For readers’ convenience, by following the paper by Ohara et al. [17], we
describe the methods for computing centrality values in our proposed framework.

4.1 Closeness Centrality Estimation

The closeness clsG(u) of a node u on a graph G is defined as

clsG(u) =
1

(|V | − 1)
∑

v∈V,v�u

1
splG(u, v)

, (5)

where splG(u, v) stands for the shortest path length from u to v inG. Namely, the close-
ness of a node u becomes high when a large number of nodes are reachable from u
within relatively short path lengths. Here note that we set splG(u, v) = ∞ when node
v is not reachable from node u on G. Thus, in order to naturally cope with this infinite
path length, we employ the inverse of the harmonic average as shown in Eq. (5).

The burning algorithm [16] is a standard technique for computing clsG(u) of each
node u ∈ V . More specifically, after initializing a node subset X0 to X0 ← {u}, and path
length d to d ← 0, this algorithm repeatedly calculates a set Xd+1 of newly reachable
nodes from Xd and set d ← d + 1 unless Xd is empty. Here, newly reachable nodes
from Xd−1 is defined by Xd = (

⋃
v∈Xd−1 A(v)) \ (

⋃
c<d Xc). Then the shortest path length

of node v ∈ Xd from u is obtained as splG(u, v) = d. Here recall that splG(u, v) = ∞ if v
is not reachable from u. Since the computational complexity of computing clsG(u) for
each node u ∈ V become O(|E|), it takes a large amount of computation time for a huge
networks consisting of millions of nodes.

Now, we present a method for computing clsG(u) of each node u ∈ V under our
resampling estimation framework. The method first constructs the reverse network of
G = (V, E) by reversing the direction of each link from (u, v) to (v, u). Namely, the
reverse network is defined by H = (V, F) and F = {(v, u) | (u, v) ∈ E}. Then, by using
the burning algorithm starting from node v over the reverse network, we can calculate
each shortest path length from v to u as splH(v, u). Clearly, splH(v, u) is the shortest
path length from node u to v, i.e., splG(u, v). Namely, for each node u ∈ V , by setting
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S u = V \ {u} and fu(v) = splH(v, u), we can calculate partial mean from an arbitrary
subset T ⊂ S u. Here note that, due to the nature of the burning algorithm from v to the
other arbitrary node u ∈ V , we can obtain each partial mean μu(T ) = (1/|T |)∑v∈T fu(v)
simultaneously for every node u ∈ V .

4.2 Betweenness Centrality Estimation

The betweenness btwG(u) of a node u on a graph G is defined as

btwG(u) =
1

(|V | − 1)(|V | − 2)
∑

v∈V,v�u

⎛
⎜⎜⎜⎜⎜⎜⎝

∑

w∈V,w�u,w�v

nspG(v,w; u)
nspG(v,w)

⎞
⎟⎟⎟⎟⎟⎟⎠ , (6)

where nspG(v,w) is the number of the shortest paths from v to w inG and nspG(v,w; u)
is the number of the shortest paths from v to w in G that pass through node u. Namely,
the betweenness of a node u becomes high when a large number of shortest paths
between two nodes pass through node u. Here note that although clsG(u) and clsH(u)
are not generally equal, since any node pair (v,w) is examined in Eq. (6) we can easily
see that btwG(u) = btwH(u).

The Brandes algorithm [3] is a standard technique for computing btwG(u) of each
node u ∈ V . The algorithm utilizes a series of node subsets (X0, · · · , XD) produced
by the burning algorithm described in Sect. 4.1 starting from node v ∈ V , where D
stands for the maximum burning step. Then, after setting nspG(v,w) ← 1 for w ∈ X1,
the algorithm in turn computes nspG(v,w) ←

∑
x∈B(w)∩Xd−1 nspG(v, x) for w ∈ Xd from

d = 2 to D. Next, we define the following betweenness btwG(u; v) of node u, which
restricts its starting node to v,

btwG(u; v) =
∑

w∈V,w�u,w�v

nspG(v,w; u)
nspG(v,w)

. (7)

Then, after setting btwG(u; v) ← 0 for u ∈ XD, the algorithm in turn computes
btwG(u; v) ←

∑
x∈A(u)∩Xd+1

(nspG(v, u)/nspG(v, x))(1 + btwG(x; v)) for u ∈ Xd from
d = D − 1 to 1. Finally, by computing and summing btwG(u; v) by changing the start-
ing node v, we can obtain the betweenness btwG(u) of each node u ∈ V . Again, the
computational complexity of computing btwG(u) for each node u ∈ V becomes O(|E|).

Now, we present a method based on the Brandes algorithm for computing btwG(u)
of each node u ∈ V under our resampling estimation framework. Namely, for each node
u ∈ V , by setting S u = V \ {u} and fu(v) = btwG(u; v)/(|V | − 2), we can calculate partial
mean from an arbitrary subset T ⊂ S u. Again note that, due to the nature of the Brandes
algorithm, we can obtain such partial mean simultaneously for all nodes u ∈ V .

5 Experiments

To experimentally evaluate our framework and methods in the previous sections, we
employed six datasets of real networks, which were referred to as “Ameblo”, “Cosme”,
“Enron”, “Citation”, “Road”, and “Word”, where the first three social networks were
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Fig. 1. Results for “closeness centrality value vs. standard deviation”

also employed in the previous study [17], while the rest were newly added as the other
types of complex networks, i.e., information, spatial, and cognitive networks. Here the
first four networks are directed, and the rest are undirected. Below we summarize some
details of these networks.

The Ameblo network is a reader network extracted from a Japanese blog service site
“Ameba”1, which has 56, 604 nodes (persons) and 734, 737 directed links. The Cosme
network is a fan-link network extracted from a Japanese word-of-mouth communication
site for cosmetics, “@cosme”2, which has 45, 024 nodes (persons) and 351, 299 directed
links. The Enron network is a communication network derived from the Enron Email
Dataset [13], which has 19, 603 nodes (persons) and 210, 950 directed links. The Cita-
tion network is a high-energy physics citation network from the e-print arXiv obtained
from SNAP (Stanford Network Analysis Project)3, which has 34, 546 nodes (papers)
and 421, 578 directed links. The Road network [19] is an urban street network of Wash-
ington D.C. extracted from OSM (OpenStreetMap) data “Metro Extracts”4, which has
114, 758 nodes (junctions) and 128, 746 undirected links. The Word network [21] is
a word association network that was retrieved and converted from the University of
South Florida word association norms5, which has 7, 207 nodes (words) and 31, 784
undirected links.

1 http://www.ameba.jp/.
2 http://www.cosme.net/.
3 https://snap.stanford.edu/.
4 https://mapzen.com/data/metro-extracts/.
5 http://w3.usf.edu/FreeAssociation/.

http://www.ameba.jp/
http://www.cosme.net/
https://snap.stanford.edu/
https://mapzen.com/data/metro-extracts/
http://w3.usf.edu/FreeAssociation/
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Fig. 2. Results for “betweenness centrality value vs. standard deviation”

5.1 Statistical Analysis

For each of the six real networks, G = (V, E), we first computed the value of the close-
ness centrality clsG(u) and betweenness centrality btwG(u) of each node u ∈ V by means
of the algorithms presented in Sects. 4.1 and 4.2, respectively. In addition, we investi-
gated their standard deviations given by

σcls(u) =

√√
1

|V | − 1
∑

v∈V,v�u

(
1

splG(u, v)
− clsG(u)

)2

for the closeness centrality, and

σbtw(u) =

√√
1

|V | − 1
∑

v∈V,v�u

(
btwG(u; v)
|V | − 2 − btwG(u)

)2

for the betweenness centrality. Figure 1 shows the results for closeness centrality, where
Figs. 1(a) to (f) plot the pair (clsG(u), σclc(u)) for the Ameblo, Cosme, Enron, Citation,
Road and Word networks. Similarly, Fig. 2 shows the results for betweenness central-
ity, where Figs. 2(a) to (f) plot the pair (btwG(u), σbtw(u)) for the same six networks. In
each figure, the horizontal and vertical axes indicate the values of corresponding cen-
trality, clsG(u) or btwG(u), computed by all samples, and its standard deviation, σcls(u)
or σbtw(u), respectively.

We can observe that there exists positive correlation between the centrality value of
each node and its standard deviation. This tendency can be found more clearly in the
results for the closeness centrality, and we can observe almost line-like shapes except
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Fig. 3. Fluctuation of the estimated value of the closeness centrality as a function of the coverage
for the node with the largest true centrality value by showing the results of five independent trials.
(Color figure online)

for the Road network, which has relatively large variances around middle range of the
closeness centrality values. In contrast, in case of the betweenness centrality, we can
observe relatively similar results for all the networks.

Next, we evaluated the fundamental performance of the resampling error RE(N),
i.e., how tightly and accurately it estimates the approximation error, using the closeness
and betweenness centralities on the six networks. To this end, we considered a problem
of estimating μ, the true value of a centrality measure for node u in network G(V, E)
using a set of partial values { fu(v) | v ∈ T ⊂ V} generated by sampling N nodes from
V , where μ stands for either clsG(u) or btwG(u) and fu(v) stands for either splH(v, u) or
btwG(u; v). More specifically, we empirically investigated whether or not the estimation
μ(T ) − μ, the difference between the mean derived from T and true ones, falls within
the range of ±2 ×

√
RE(N). In addition, we considered the range of ±2 ×

√
S E(N) for

comparison.
Figures 3 and 4 show the results for the closeness and betweenness centralities,

respectively. In this experiment, we considered the top nodes in each network that
respectively have the largest true values of the corresponding centrality in Figs. 1 and 2.
Here note that we can obtained almost the same results for the other rank nodes. In each
figure, the horizontal axis “coverage” means the ratio of the number of sampled nodes
N to the total number of nodes L, i.e., N/L, in each network, while the vertical axis
means the difference from the true centrality value, and how the estimated value fluc-
tuates as a function of the coverage is depicted. We conducted five independent trials



Resampling-Based Framework for Estimating Node Centrality 437

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5
x 10

−3

coverage (N/L)

di
ffe

re
nc

e 
va

lu
e

 

 
µ(T ) − µ

±2
√

SE(N )
±2

√
RE(N )

(a) Ameblo

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1
x 10

−3

coverage (N/L)

di
ffe

re
nc

e 
va

lu
e

 

 
µ(T ) − µ

±2
√

SE(N )
±2

√
RE(N )

(b) Cosme

0 0.2 0.4 0.6 0.8 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

−3

coverage (N/L)

di
ffe

re
nc

e 
va

lu
e

 

 
µ(T ) − µ

±2
√

SE(N )
±2

√
RE(N )

(c) Enron

0 0.2 0.4 0.6 0.8 1
−5

0

5
x 10

−3

coverage (N/L)

di
ffe

re
nc

e 
va

lu
e

 

 
µ(T ) − µ

±2
√

SE(N )
±2

√
RE(N )

(d) Citation

0 0.2 0.4 0.6 0.8 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

−3

coverage (N/L)

di
ffe

re
nc

e 
va

lu
e

 

 
µ(T ) − µ

±2
√

SE(N )
±2

√
RE(N )

(e) Road

0 0.2 0.4 0.6 0.8 1
−5

0

5
x 10

−3

coverage (N/L)

di
ffe

re
nc

e 
va

lu
e

 

 
µ(T ) − µ

±2
√

SE(N )
±2

√
RE(N )

(f) Word

Fig. 4. Fluctuation of the estimated value of the betweenness centrality as a function of the cover-
age for the node with the largest true centrality value by showing the results of five independent
trials. (Color figure online)

for each of the top node in each network, and plotted estimated values μ(T ) − μ for a
given coverage N/L with green jagged lines. The red and blue lines show the ranges of
±2 ×

√
RE(N) and ±2 ×

√
S E(N), respectively.

From these results, we can confirm that the boundary determined by RE(N) esti-
mates the approximation error more tightly and converges to 0.0 as the coverage
approaches 1.0, while the boundary by S E(N) is looser and does not converge to 0.0
even if the coverage becomes 1.0. Furthermore, in most cases, the estimated value falls
within the range of 2 ×

√
RE(N) for every network regardless of the centrality used.

From these results, we can say that the resampling error RE(N) provides us with a bet-
ter error bound with the confidence level of 95% compared to the standard error S E(N).
Namely, it was shown that we can obtain quite similar results not only for social net-
works, but also for the other types of complex networks.

5.2 Results

For each set of partial values generated from T consisting of N sampled nodes, we
quantitatively evaluated the difference between the resampling error RE(N) and our
proposed unbiased estimator REE(T ). Figures 5 and 6 show the results for the close-
ness and betweenness centralities, respectively, for our six networks, where each result
is shown in Figs. 5(a) to (f) and Figs. 6(a) to (f). In this experiment, we used five inde-
pendent trials for each of the top node in each network depicted in Figs. 3 and 4. In each
figure, the horizontal axis also means the sample coverage, while the vertical axis means
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Fig. 5. Estimation precision of RE(N) by REE(T ) for the closeness centrality by showing the
results of five independent trials. (Color figure online)

the difference measure by
√
REE(T )−

√
RE(N). Here we added

√
S EE(T )−

√
RE(N)

for comparison purpose, where the red and blue lines show
√
REE(T ) −

√
RE(N) and√

S EE(T ) −
√
RE(N), respectively.

From these results, we can observe that the difference fluctuates when the value of
coverage is less than 0.2 in both cases of REE(T ) and S EE(T ), but for a larger coverage
it becomes remarkably stable and almost equal to 0.0 in the case of REE(T ), while it
increases as the value of coverage becomes larger in the case of S EE(T ). This tendency
is common to every network regardless of the centrality used. These results show that
the proposed resampling error estimator REE(T ) can precisely estimate the resampling
error RE(N) if the coverage is larger than a certain threshold, say 0.2, while the standard
error estimator S EE(T ) tends to overestimate the resampling error RE(N).

Next, we quantitatively evaluated the empirical performance computed by

〈|
√
REE(T ) − |μ(T ) − μ||〉 = 1

R

R∑

r=1

|
√
REE(Tr) − |μ(Tr) − μ||,

where Tr means a randomly generated set of nodes with sample size N to calculate par-
tial values, and we set R to R = 1, 000. Figures 7 and 8 show the results for the closeness
and betweenness centralities, respectively, for our six networks. In each figure, the hor-
izontal axis also means the sample coverage N/L, while the vertical axis means the
differences computed by 〈|

√
REE(T ) − |μ(T ) − μ||〉. We also added the following for

comparison purpose,
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Fig. 6. Estimation precision of RE(N) by REE(T ) for the betweenness centrality by showing the
results of five independent trials. (Color figure online)
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Fig. 7. Empirical convergence property of REE(T ) for the closeness centrality. (Color figure
online)
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Fig. 8. Empirical convergence property of REE(T ) for the betweenness centrality. (Color figure
online)

〈|
√
S EE(T ) − |μ(T ) − μ||〉 = 1

R

R∑

r=1

|
√
S EE(Tr) − |μ(Tr) − μ||,

where the red and blue lines show 〈|
√
REE(T )−|μ(T )−μ||〉 and 〈|

√
S EE(T )−|μ(T )−μ||〉,

respectively.
As expected, for a larger coverage, we can observe that REE(T ) rapidly decreases

to 0.0, but S EE(T ) even slightly increases. Here we should note that these convergence
properties are surprisingly similar for all the six network regardless of the types of the
networks and the centrality used. Consequently, we can say that the resampling error
estimator REE(T ) we proposed is more promising than the standard error estimator
S EE(T ) in this kind of estimation problem, and can give a tighter and more precise
estimate of the resampling error RE(N) with high confidence level than the standard
error does.

6 Conclusion

We addressed a problem of estimating the value of a centrality measure for a node in a
network. Centrality measure plays an important role in network analysis since it char-
acterizes nodes in a network and its values indicate the importance of nodes in certain
aspects. Thus, it is crucially important to be able to efficiently calculate the value of a
centrality measure for each node for a network of large size. Its computation could be
intractable for such centrality measures that require use of a global network structure
for their computation. We have to rely on a sampling-based approach to deal with the



Resampling-Based Framework for Estimating Node Centrality 441

scalability problem, in which we approximate the true value of a centrality from only a
small number of nodes that are randomly selected from the whole network. Sampling
must be uniform for our problem to avoid distorted results. What is important is that
we ensure the accuracy of the approximations without knowing the truth. The proposed
resampling-based framework can evaluate the approximation error of the estimated val-
ues of a centrality measure for each node. We proved that the proposed error estimator is
an unbiased estimator of the approximation error which is defined as the expectation of
the difference between the unknown true and the estimated values of the centrality. We
have conducted extensive experiments on six real world networks varying the coverage
ratio of nodes to be sampled, and compared the performance with the standard error
based on i.i.d. sampling known in statistics using two representative centrality mea-
sures, the closeness and betweenness centralities, both of which need a global structure
for their computation. The six networks come from different domains, i.e., social, infor-
mation, spatial and cognitive, each with different topological characteristics. We empir-
ically confirmed that the proposed framework enables us to estimate the approximation
error more tightly and more precisely with the confidence level of 95% even for a set of
sampled nodes whose coverage is small, say 0.2, than using the standard error estimate.
It is noted that the framework we proposed is not specific to computation of centrality
measures. Indeed, it is very generic and applicable to any other estimation problems
that require aggregation of many (but a finite number of) primitive computations. We
believe that the conclusion obtained in this paper can generalize but we have yet to
test out the proposed framework in a broader setting and also in many more different
domains, too.
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entific Research (C) (No. 17K00314).
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Abstract. Critical health events represent a relevant cause of mortality
in intensive care units of hospitals, and their timely prediction has been
gaining increasing attention. This problem is an instance of the more
general predictive task of early anomaly detection in time series data.
One of the most common approaches to solve this problem is to use
standard classification methods. In this paper we propose a novel method
that uses a layered learning architecture to solve early anomaly detection
problems. One key contribution of our work is the idea of pre-conditional
events, which denote arbitrary but computable relaxed versions of the
event of interest. We leverage this idea to break the original problem
into two layers, which we hypothesize are easier to solve. Focusing on
critical health episodes, the results suggest that the proposed approach
is advantageous relative to state of the art approaches for early anomaly
detection. Although we focus on a particular case study, the proposed
method is generalizable to other domains.

Keywords: Time series · Early anomaly detection · Healthcare ·
Layered learning

1 Introduction

Healthcare is one of the domains which has witnessed a significant growth in the
application of machine learning approaches [1]. For instance, intensive care units
(ICUs) evolved considerably in recent years due to technological advances such
as the widespread adoption of bio-sensors [16]. This lead to new opportunities
for predictive modelling in clinical medicine. One of these opportunities is the
early detection of critical health episodes (CHE), such as acute hypotensive
episode [8] (AHE) or tachycardia episode [7] (TE) prediction problems. CHEs
such as these remain a significant mortality risk factors in ICUs [8], and their
timely anticipation is fundamental for improving healthcare.

AHE or TE prediction can be regarded as a particular instance of early
anomaly detection in time series data. Fawcett and Provost designated this kind
c© Springer Nature Switzerland AG 2019
P. Kralj Novak et al. (Eds.): DS 2019, LNAI 11828, pp. 445–459, 2019.
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of prediction tasks as activity monitoring [5]. Essentially, the goal behind these
problems is to issue accurate and timely alarms about interesting future events
requiring action.

One of the most common ways to address early anomaly detection problems
is to view them as conditional probability estimation problems [5,19]. Stan-
dard supervised learning classification methods can be used for that purpose.
The idea is to approximate a function f that maps a set of input observations
X = (x1, x2, . . . , xn) to a binary variable y, which represents whether an anomaly
occurs or not. In the case of CHE prediction, the predictor variables (X) sum-
marize the recent physiological signals of a patient assigned to the ICU, while
the target (y) represents whether or not there is an impending event in the near
future.

In many domains of application, the anomaly or event of interest is defined
according to some rule derived from the data by professionals. For example in
healthcare, CHEs are often defined as events where the value of some physiolog-
ical signal exceeds a pre-defined threshold. Similar approaches for formalizing
anomalies can be found in predictive maintenance [14], or wind power predic-
tion [6]. In these scenarios we can also define pre-conditional events, which are
arbitrary but computable relaxed versions of the event of interest. These pre-
conditional events occur simultaneously with the anomaly one is trying to model,
but are more frequent and, in principle, a good indication for these. To be more
precise, a pre-conditional event (i) represents a less extreme version of the anoma-
lies we are trying to detect (main events); and (ii) occurs simultaneously with
anomalies (i.e. there can not be an anomaly without a pre-conditional event).
This concept is illustrated in the right side of Fig. 1 as a Venn diagram for classes.

Data Space

Main  
Events

Data Space

Main 
Events 

Pre- 
conditional  

Events

Normal  
Activity

Normal  
Activity

Fig. 1. Venn diagram for the classes in an early anomaly detection problem. The main
event represents a small part of the data space; pre-conditional events are more frequent
and include the occurrence of the main events.

Our working hypothesis in this paper is that modelling these pre-conditional
events can be advantageous to capture the actual events of interest. To achieve
this we adopt a layered learning methodology [17]. Layered learning denotes a
learning approach in which a predictive task is split into two or more layers
(simpler predictive tasks) where the learning process within a layer affects the
learning process of the next layer.

We propose a layered learning method to address early anomaly detection
problems by splitting the predictive task in two layers (c.f. right side of Fig. 1).



Layered Learning for Early Anomaly Detection 447

We first model pre-conditional events relative to normal activity. A subsequent
model is applied to distinguish pre-conditional events from the actual anomalies.
Effectively, the first layer affects the learning process of the second layer by
decreasing the scope of its data space. Since the model in the second layer is
created to distinguish the events of interest from pre-conditional events, it does
not train on observations of what is designated as normal activity.

We apply the proposed approach to tackle the problem of CHE prediction.
In the experiments, the layered learning model shows a better predictive per-
formance relative to state of the art approaches, including a direct classification
approach (without layered learning, see the left side of Fig. 1). In short, the
contributions of this paper are:

– the idea of pre-conditional events in time series;
– a general layered learning approach to the early detection of events in time

series data;
– the application of the proposed approach to AHE and TE prediction.

All work and results presented in the paper are reproducible. The data is
publicly available [16], and the code for the methods can be found at https://
github.com/vcerqueira/layered learning time series.

2 Early Anomaly Detection in Time Series

Let E = {E1, . . . , E|E|} denote a set of time series. For example, E may represent
a set of patients being monitored at the ICU of an hospital. Each time series E ∈
E can be represented as a set of subsequences E = {e1, e2, . . . , ei, . . . , et−1, et},
where ei represents the i-th subsequence. A subsequence denotes a tuple ei =
(ti,Xi, yi), where ti denotes the time stamp that marks the beginning of the
subsequence, Xi ∈ X represents the input (predictor) variables, which summarize
the recent past dynamics of the time series; and yi ∈ Y denotes the target
variable, which is a binary value (yi ∈ {0, 1},∀ i ∈ {1, . . . , t}) that represents
whether or not there is an impending anomaly or event of interest in the near
future of the respective time series. How near in the future is typically a domain-
dependent parameter.

ei time span

Observation  
Window

Warning  
Window

Target  
Window

ti
time

Fig. 2. Splitting a subsequence ei into observation window, warning window, and tar-
get window. The features Xi are computed during the observation window, while the
outcome yi is determined in the target window.

https://github.com/vcerqueira/layered_learning_time_series
https://github.com/vcerqueira/layered_learning_time_series
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Fig. 3. The physiological signal of patients are monitored over time. Each subsequence,
denoted by the shaded areas, is split in an OW, a WW, and a TW.

For each subsequence ei we construct the feature-target pair (Xi, yi) as fol-
lows. As illustrated in Fig. 2, each subsequence has three associated windows:
(i) the target window (TW), which is used to determine the value of yi; (ii)
an observation window (OW), which is the period available for computing the
values of Xi; and (iii) a warning window (WW), which is the lead time necessary
for a prediction to be useful. For instance, in clinical medicine physicians need
some time after an alarm is launched, for example to decide the most appropriate
treatment. The sizes of these windows are domain-dependent. In principle, the
problem will be easier as the OW is closer to the TW, that is, a smaller WW is
required [12,20].

2.1 Event Prediction in ICUs

In this paper we focus on a particular instance of early anomaly detection prob-
lems: CHE prediction in ICUs, namely AHE and TE. Ghosh et al. [8] state
that prolonged hypotension leads to a critical health damage, from cellular dys-
function to severe injuries in multiple organs. In turn, sustained tachycardia
significantly increases the risk of stroke or cardiac arrest.

Patients assigned to the ICU are typically monitored constantly, with bio-
sensors capturing several physiological signals, such as heart rate, or mean arte-
rial blood pressure. This is illustrated in Fig. 3, where the data of a patient is
depicted. A subsequence for CHE prediction is given as example in the shaded
area of the graphic.

Acute Hypotensive Episodes. Hypotension episodes denote a prolonged
drop in the blood pressure. More formally, AHE is an event defined as “a 30-min
window having at least 90% of its mean arterial blood pressure (MAP) values
below 60 mmHg [millimeters of mercury]” [12,19]. In this context, the target
variable value is computed as follows:
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yi =

{
1, if an AHE happens in TWi,

0, otherwise.

In other words, we consider that the i -th subsequence represents an anomaly if
its TW represents an AHE (c.f. Fig. 3). Since AHEs are rare, the target vector
y is dominated by the negative class (i.e. y = 0), where a patient shows a
normotensive status. For the target window of 30 min, we consider an OW and
a WW of 60 min each. These values are typically used in the literature of AHE
prediction models [8].

Tachycardia Episodes. Tachycardia denotes a high heart rate (HR). Gener-
ally, an HR over 100 beats per minute (bpm) under a resting state is considered
as tachycardia. In order to consider a more robust definition for the purpose
of discovering tachycardia episodes we follow a similar intuition to AHEs. We
define TE as “a 30-min window having at least 90% of its HR values above 100
bpm”. The respective target variable is computed as follows:

yi =

{
1, if an TE happens in TWi,

0, otherwise.

TEs are defined similarly to AHEs. Moreover, TEs also denote rare events since
ICU patients usually show a HR below 100 bpm. We consider identical window
sizes (OW, WW, TW) for both problems.

2.2 Discriminating Approaches to Early Anomaly Detection

Naturally, one of the most common approaches to solve the problem defined
previously is to view it as a conditional probability estimation problem and use
standard supervised learning classification methods [5,19]. The idea is to build
a model f : X → Y, which can be used to predict the target values associated
with unseen feature attributes. In other words, f is a discriminating model that
explicitly distinguishes normal activity from anomalous activity (c.f. left side
Fig. 1).

Notwithstanding the widespread of this approach, early anomaly detection
problems often comprise complex target variables whose definition is derived
from the data. In such cases, it is possible to decompose the target variable into
partial and less complex concepts, which may be easier to model. In this context,
our working hypothesis is that we can leverage a layered learning approach to
model these partial concepts, and obtain an overall better model for capturing
the actual events of interest.

3 Layered Learning for Early Anomaly Detection

3.1 Layered Learning

Layered learning is designed for predictive tasks whose mapping from inputs to
outputs is complex. In essence, layered learning consists in breaking a predictive



450 V. Cerqueira et al.

task into several layers. The approach assumes that the problem addressed in
each layer is simpler than the original one. As Stone and Veloso explain, “the key
defining characteristic of layered learning is that each layer directly affects the
learning of the next” [17]. This effect can occur in several ways. For example, by
affecting the set of training examples, or by providing features used for learning
the original concept.

3.2 Pre-conditional Events

The definition of an anomalous event in time series data is in many cases deter-
mined according to some rule derived from the data. As an example from the
healthcare domain presented in the previous section, an AHE is defined as a per-
centage of numeric values within a time interval which are below some thresh-
old (c.f. Sect. 2.1). TEs are defined in a similar manner. This type of approach
for defining anomalous events is also common in other domains. For example in
predictive maintenance [14], where numerical information from sensor readings
is transformed into a class label which denotes whether or not an observation is
anomalous. Or wind ramp detection, where a ramp event is a rare occurrence that
denotes a large percentage change in wind power in a short time interval [6].

Since these anomalous events are defined according to the value of an under-
lying variable we can also define pre-conditional events: relaxed versions of the
actual events of interest, but which are more frequent. A more precise definition
can be given as follows. A pre-conditional event is an arbitrary but computable
event that is expected to simultaneously occur with the main event taking place.
If the main event occurs, the pre-conditional event must occur, but the latter
can occur without the main event.

An example can be provided using the case study of AHE prediction. In
Sect. 2.1, we defined the main event (AHE) as “a 30-min window having at
least 90% of its mean arterial blood pressure (MAP) values below 60 mmHg”.
A possible pre-conditional event for this scenario could be “a 30-min window
having at least 45% of its mean arterial blood pressure (MAP) values below
60 mmHg”. In summary, pre-conditional events should have the following two
characteristics: (i) pre-conditional events should have a higher relative frequency
than the main events; and (ii) pre-conditional events always happen when the
main events happen. The inverse is not a necessary condition.

3.3 Our Approach

We can leverage the idea of pre-conditional events and use a layered learning
strategy to tackle early anomaly detection problems in time series data. Our
idea is to decompose the main predictive task into two layers, each denoting a
predictive subtask. Pre-conditional events are modelled in the first layer, while
the main events are modelled in the subsequent one.

The intuition behind this idea is given in Fig. 1. The figure presents two
Venn diagrams for classes. Focusing on the left-hand side, the anomalies or main
events (e.g. AHE) represent a small part of the data space. This is one of the
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issues that makes them difficult to model. In the typical classification approach
main events are directly modelled with respect to normal activity.

Our idea is represented on the right-hand side. An initial pre-conditional
concept is considered, which is more common than the main target concept,
while also including it. The higher relative frequency of the pre-conditional events
with respect to the main events helps to mitigate the problem of having an
imbalanced distribution, which is the case in early anomaly detection tasks.
This phenomenon can compromise the performance of learning algorithms [9].
In effect, we first model the pre-conditional events with respect to the normal
activity. These pre-conditional events are, in principle, easier to learn relative to
the main concept as they are more frequent and thus the classification algorithms
will not suffer so much from an imbalanced distribution. Afterwards, the main
target events are modelled with respect to the pre-conditional events, which is
also a less imbalanced distribution than the original on the left diagram.

Pre-conditional Events Sub-task. Let S denote a pre-conditional event. The
target variable when modelling these events is defined as:

yS
i =

{
1 if S happens,
0 otherwise.

(1)

For this task a subsequence eS
i is a tuple eS

i = (ti,Xi, y
S
i ). The difference to

the original set of subsequences E is the target variable, which replaces y with
yS . Finally, the goal of this first predictive task is to build a function fS that
maps the input variables X to the output yS .

Main Events Sub-task. Provided that we solve the pre-conditional events
sub-task, in order to predict impending main events the remaining problem is
to find out whether or not, when S happens, the main event also happens.

Let F be defined as the occurrence: “given S, there is an impending main
event in the target window of the current subsequence”. Effectively, the target
variable for this task is defined as follows:

Given yS = 1, yF
i =

{
1 if a main event happens in TWi,

0 otherwise.
(2)

The target variable for this subtask (yF ) is formalized in Eq. 2. Given that the
class of yS is positive (which means that there is an impending pre-conditional
event), the class of yF is positive if a main event also happens in that same
target window, or negative otherwise.

The goal of this second predictive task is to build a function fF , which maps
X to yF . Formally, a subsequence eF

i is represented by eF
i = (ti,Xi, y

F
i ). In this

scenario however, the set of available subsequences E is considerably less than in
the pre-conditional sub-task because only the subsequences for which yS equals 1
are accounted for. Effectively, this aspect represents how the learning in the pre-
conditional events sub-task affects the learning on the main events sub-task, i.e.,
by influencing the data examples used for training. In the main events sub-task,
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a predictive model is concerned with the distinction between pre-conditional
events and main events. Essentially, it assumes that the distinction between
normal activity and pre-conditional events is carried out by the previous layer.
Given this independence, the training of the two layers can occur in parallel.

Forecasting Impending Anomalies. To make predictions about impending
events of interest we combine the models fS with fF with a function g : X×X → Y.

g(Xi) = fS(Xi) · fF (Xi) (3)

Essentially, according to Eq. 3 the function g predicts that there is an impending
main event in a given subsequence ei according to the multiplication of the
outcome predicted by both fS and fF .

3.4 Application of Layered Learning to CHE Prediction

As mentioned before (c.f. Sect. 2.1) an AHE is defined as a 30-min time period
where 90% of the blood pressure values are below 60 mmHg. We propose to relax
this threshold and define the pre-conditional event S as follows. We define SAHE

to represent “a 30-min window having at least 45% of its mean arterial blood
pressure values below 60 mmHg”.

The event S is consistent with the two above-mentioned characteristics: the
frequency of S across the database is considerably higher than an AHE – note
that the blood pressure level can drop below 60 mmHg for some time period
without being considered as an hypotensive episode. Consequently, the occur-
rence S is simultaneous to the occurrence of an AHE (if 90% of the values are
below 60 mmHg, so are 45%).

We apply the same reasoning to the TE prediction task. In Sect. 2.1, we
defined a TE as “a 30-min window having at least 90% of its HR values above
100 bpm”. In order to define STE we again relaxate the percentage threshold as
follows. STE is defined as “a 30-min window having at least 45% of its HR values
above 100 bpm”. In both situations, the value of 45% was chosen arbitrarily. We
attempted to make the pre-conditional events much more frequent relative to
the main events. Nevertheless, this parameter can be optimized.

4 Empirical Evaluation

4.1 Case Study: MIMIC II

In the experiments we used the database Multi-parameter Intelligent Monitor-
ing for Intensive Care (MIMIC) II [16], which is a benchmark for a number of
predictive tasks in healthcare, including CHE prediction.

As inclusion criteria of patients and general database pre-processing steps,
we follow Lee and Mark closely [12]. For example, the sampling frequency of the
physiological data of each patient in the database is one minute. Moreover, the
following physiological signals are collected: heart rate (HR), systolic blood pres-
sure (SBP), diastolic blood pressure (DBP), and mean arterial blood pressure
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(MAP). As described in Sect. 2.1, the TW size is 30 min. For each TW, there is
a 60-min OW and a 60-min WW. For a comprehensive read regarding the data
compilation we refer to the work by Lee and Mark [12]. Considering this setup,
the number of patients is 1,072, leading to a data size of 1,975,936 subsequences.
71,035 of those events represent an AHE (about 3.5%). In turn, 13.6% of the
subsequences represent a TE.

Regarding feature engineering, we follow previous work in the literature
[11,19]. Using the observation window of each subsequence of each physiolog-
ical signal, the feature engineering process was carried out using statistical,
cross-correlation, and wavelet functions. The statistical metrics include skew-
ness, kurtosis, slope, median, minimum, maximum, variance, mean, standard
deviation, and inter-quartile range. For each observation window we also com-
pute the cross-correlation of each pair of signals at lag 0. We also carry a wavelet
transformation to capture the relative energies in different spectral bands.

4.2 Experimental Design

The experiments were designed to compare the proposed layered learning app-
roach to state of the art methods for early anomaly detection. To estimate the
predictive performance of each method we used a 5 × 10-fold cross-validation,
in which folds are split by patient. To be more precise, in each iteration of the
cross-validation procedure, one fold of the set of patients E is used for validation,
another fold of different patients is used for testing, and the remaining patients
are used for training the predictive model. The set of time series E only com-
prises a temporal dependency within each patient, and we assume the data across
patients to be independent. In this context, the application of cross-validation in
this setting is valid. Finally, the subsequences of the patients chosen for training
are concatenated together to fit the predictive model.

The goal behind early anomaly detection problems is not to classify each
subsequence as positive or negative [5]. Instead, the main goal is to detect, in a
timely manner, when there is an impending anomalous event. In this context,
we follow Weiss and Hirsh [20] regarding the evaluation metrics. Specifically, two
measures are computed: Event Recall (ER), and Reduced Precision (RP). These
two metrics follow the same intuition of the widely used Recall and Precision
metrics, but are tailored for time-dependent data.

Let T denote the total number of events of interest in a test data set, and let
T̂m represent the total number of those events correctly predicted by a model
m. The ER for model m is given by the following equation:

ERm =
T̂m

T
(4)

ER differs from the classical recall metric because a single correct prediction
within an observation window leading to an event is enough to consider that
event correctly anticipated. As Fawcett and Provost put it, “alarming earlier
may be more beneficial, but after the first alarm, a second alarm on the same
event may add no value” [5].
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Fig. 4. Left: A sequence of consecutive false alarms – the first alarm is useful, but the
subsequent ones may add no information; right: false alarms (denoted as vertical bars)
over a time interval – there are 6 false positives, but only two discounted false positives.

The classical precision metric measures the percentage of positive predictions
that are correct. Similarly to recall, in a time-dependent domain the classical
precision may be misleading because multiple predictions on the same event are
counted multiple times. This idea is intuited in Fig. 4 (left). This graphic shows
a subsequence in which predictions are being produced over time. Starting from
time ti, four false alarms are triggered. Performance evaluation should take the
first wrong prediction into account as a false positive. However, the subsequent
false alarms (as shown in the left side of Fig. 4) are not meaningful since they
add no information – assuming some action is taken after the first alarm.

RP overcomes this problem by considering a prediction to be active for some
time period. Specifically, in this work we consider a time interval with the same
size as the observation window. Notwithstanding, this is usually a domain depen-
dent parameter. Effectively, the RP metric replaces the number of false positives
with the number of discounted false positives – the number of non-overlapping
observation periods associated with a false prediction. This idea is illustrated in
Fig. 4 (right), where each vertical bar in the time line denotes an issued false
alarm. There are a total of 6 false positives, but, if taking into account the
time interval a prediction is active, there are only two discounted false posi-
tives (DFP). Finally, RP also considers the number of target events correctly
identified (T̂m), instead of the number of correct predictions (true positives).
In effect, RP for model m is given by the following equation:

RPm =
T̂m

T̂m + DFPm

(5)

4.3 Learning Algorithm and State of the Art Methods

In the experiments we tested different predictive models, namely a random forest,
a support vector machine, a deep feed-forward neural network, and an extreme
gradient boosting model [3]. We only show the results of the latter in these
experiments, since it provides a better performance than the remaining methods
for both AHE prediction and TE prediction.

The classifiers used in the experiments output a probability. The decision
threshold is optimized following previous work in the literature of AHE pre-
diction [12,19], which recommends selecting the threshold that maximizes the
average of classical recall and specificity (true negative rate).
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We compare the proposed layered learning approach (henceforth denoted as
LL) with the following four methods:

CL a standard classification method that does not apply a layered learning
approach and directly models the events of interest with respect to normal
activity (c.f. Fig. 1) – in order to cope with the class imbalance problem this
approach includes a random under-sampling of the majority class;

IF the Isolation Forest [13] method, which is a state of the art model-based
approach to anomaly detection;

RG We include a regression-based alternative both for AHE prediction and TE
prediction [12,15]. We apply a multi-step forecasting model to predict the
future values of MAP (for AHEs) and HR (for TEs). Regarding the former,
and following up on the definition of an AHE (Sect. 2.1), an alarm for an
AHE is triggered if 90% of the forecasted values for the MAP variable are
below 60 mmHg [15]. Likewise, an alarm for an TE is triggered if 90% of the
forecasted values for the HR variable are above 100 bpm. The multi-step
forecasting model follows a direct approach [18];

AH While there is an increasing number of machine learning applications in
healthcare, many of the currently deployed systems still rely on simple ad-
hoc rules to support the decision making process of professionals. Taking
AHE prediction as an example, a simple rule is to trigger an alarm if the
MAP of a patient drops below 60 mmHg in a given time step. A similar
approach can be used for TE prediction, where an alarm is launched if the
HR variable exceeds 100 bpm.

4.4 Results

Table 1 presents the average results, and respective standard deviation, for each
method across the 50 folds (5 × 10-fold cross-validation). We analyse the signifi-
cance of the results according to the Bayesian correlated t-test [2] (Figs. 5 and 6).
In the Bayesian correlated t-test we consider the region of practical equivalence
to be the interval [−0.01, 0.01]. In other words, two methods are practically
equivalent if their difference in performance is below 0.01.

Table 1. Average of results for the CHE prediction problem across the 50 folds

AHE TE

Method ER RP ER RP

AH 0.625± 0.05 0.129± 0.02 0.749± 0.05 0.204± 0.02

CL 0.794± 0.05 0.095± 0.01 0.909± 0.03 0.135± 0.02

IF 0.700± 0.18 0.035± 0.01 0.756± 0.31 0.051± 0.01

LL 0.830± 0.05 0.090± 0.01 0.925± 0.02 0.140± 0.01

RG 0.250± 0.06 0.205± 0.04 0.646± 0.04 0.195± 0.02

In terms of ER, on average the proposed method LL captures 83% of AHEs
and 92.5% of TEs. These values are significantly better relative to the remaining
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methods, including CL which is the typical approach to solve these predictive
tasks. Maximizing ER in this particular domain of application is important,
because the events of interest are disruptive. Regarding RP, overall the value
of this metric is generally low for all methods, which suggests an high number
of DFP. In relative terms, AH and RG show the best results on this metric. The
proposed approach (LL) shows a comparable RP with CL. Expectedly, there is
a trade-off between ER and RP: greater ER leads to lower RP, and vice-versa.
Notwithstanding, relative to CL, LL is able to significantly improve ER while
keeping a comparable (i.e., within the region of practical equivalence) RP. While
LL shows a significantly worse RP relative to AH and RG, it compensates with a
considerably better ER. In comparison with IF, LL is significantly better in both
metrics.

4.5 Discussion

In the experiments above we showed the competitiveness of the proposed method
for early anomaly detection in a case study from the healthcare domain. The
main challenge behind layered learning is the assumption that the task decom-
position is a domain-dependent function. This can be regarded as an oppor-
tunity for domain experts to embed their domain expertise in predictive mod-
els. Notwithstanding, nowadays there is an increasing interest for end-to-end
automated machine learning technologies, and a manual decomposition can be
regarded as a bottleneck. In this context, future work includes the study of an
automated methodology for identifying or learning the pre-conditional events
from the data.

Although we focus on CHE prediction problems, our ideas for layered learning
can be generally applied to other early anomaly detection problems, for example
problems with complex targets, which can be decomposed into partial, simpler
targets. While the task decomposition is dependent on the domain, we describe
some guidelines which can facilitate its implementation.
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Fig. 5. Comparing CL with LL with a Bayesian correlated t-test for ER and RP metrics
(AHE prediction)
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Fig. 6. Comparing CL with LL with a Bayesian correlated t-test for ER and RP metrics
(TE prediction)

5 Related Work

5.1 Early Anomaly Detection and CHE Prediction

According to Fawcett and Provost [5], there are two classes of methods for activ-
ity monitoring: profiling methods, and discriminating methods. In a profiling
strategy a model is constructed using only the normal activity of the data,
without reference to abnormal cases. Consequently, an alarm is triggered if the
current activity deviates significantly from the normal activity. On the other
hand, a discriminating method constructs a model about anomalies with respect
to the normal activity, handling the problem as a classification one. A system
then uses a model to examine the time series and look for anomalies. We focus
on the latter strategy, which is the one followed by the proposed layered learning
method for early anomaly detection. Notwithstanding, we compare our approach
to IF, which is a method that follows the profiling strategy.

Like other early anomaly detection problems, the typical approach to tackle
CHE prediction problems is to use standard classification methods. This is the
case of Lee and Mark, which use a feed-forward neural network as predictive algo-
rithm [12]. Tsur et al. follow a similar approach, and also propose an enhanced
feature extraction approach before applying an extreme gradient boosting algo-
rithm [19]. In turn, Rocha et al. propose a regression approach (RG) by forecast-
ing future values of blood pressure [15]. In their approach, alarms for impending
AHE are launched according to a deterministic function which receives as input
the numeric predictions. TE prediction also is a relevant task. For example,
Forkan et al. [7] propose a predictive model for detecting several health condi-
tions, including tachycardia and hypotension.

5.2 Layered Learning

Layered learning was proposed by Stone and Veloso, and was specifically
designed for scenarios with a complex mapping from inputs to outputs [17].
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In particular, they applied this approach to improve several processes in robotic
soccer. Decroos et al. [4] apply a similar approach for predicting goal events in
soccer matches. Instead of directly modelling such events, they first model goal
attempts as what we call in this paper as a surrogate task. Layered learning
is part of the family of hierarchical models. To our knowledge, this is the first
time such an approach is applied to early anomaly detection using the idea of
pre-conditional events.

6 Final Remarks

In this paper we developed a layered learning approach for the early detection
of anomalies in time series data. We create an initial model that is designed
to distinguish normal activity from a relaxed version of anomalous behavior
(pre-conditional events). A subsequent model is created to distinguish such pre-
conditional events from the actual events of interest.

We have focused on predicting critical health conditions in ICUs. Compared
to standard classification, which is a common solution to this type of predictive
tasks, the proposed model is able to capture significantly more anomalous events
with a comparable number of false alarms.

Future work includes: (i) a better understanding of how layered learning
works, how to tune its parameters; (ii) its application to tackle other early
anomaly detection problems; (iii) automatic identification of pre-conditional
events– we are studying the usage of subgroup discovery [10] to this effect.

Acknowledgements. Vitor Cerqueira is supported by a FCT PhD research grant
(SFRH/BD/135705/2018).
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Abstract. In data streams new classes can appear over time due to
changes in the data statistical distribution. Consequently, models can
become outdated, which requires the use of incremental learning algo-
rithms capable of detecting and learning the changes over time. However,
when a single classification model is used for novelty detection, there is
a risk that its bias may not be suitable for new data distributions. A
solution could be the combination of several models into an ensemble.
Besides, because models can only be updated when labeled data arrives,
we propose two unsupervised ensemble approaches: one combining clus-
tering partitions using the same clustering technique; and other using
different clustering techniques. We compare the performance of the pro-
posed methods with well known novelty detection algorithms. The meth-
ods were tested on datasets commonly used in the novelty detection lit-
erature. The experimental results show that proposed ensembles have
competitive performance for novelty detection in data streams.

Keywords: Novelty detection · Ensembles · Clustering · Data streams

1 Introduction

In many real world scenarios, data continuously arrives at a high rate in a non
stationary way, named data streams. As new data arrives, models previously
induced can become outdated [6], causing predictive loss. In addition, due to the
great amount of data generated, it is impossible to store it in the main memory,
requiring the elimination of previous outdated data and online processing of
incoming data [4]. In data streams, three types of changes can be found in the
literature: concept drift [6], recurring concepts [2] and novel concepts [4]. Concept
drift refers to changes in the statistical properties of the concept, such, i.e., a
change in the stochastic process generating the data [6]. Recurring concepts are
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a special type of concept drift in which concepts that appeared in the past may
recur in the future [2]. Novelty concepts are patterns that were not present during
the training of a classification model [4], which appear in the data stream.

Novelty detection is a machine learning task based on the identification of
new concepts [5]. Several state of the art approaches [12] consider novelty detec-
tion as a binary classification task, composed by normal and abnormal classes.
However, more recent approaches address novelty detection as a multi-class clas-
sification task [4]. The abnormal classes can be also named as not normal [12],
anomaly [10] or novel/new [4] classes. We follow the notation from [4]. In the
latter, normal concepts are a set of classes used to train the classification model
and novelty concepts are the new classes that emerge over time.

In this work, we propose an ensemble of clustering partitions for novelty
detection in data streams. We consider one ensemble obtained by a combina-
tion of different hyperparameter setting of the CluStream algorithm [1], referred
as Homogeneous ensemble Clustering for data Streams (HoCluS). We also con-
sider another ensemble with different clustering techniques, referred as Heteroge-
neous ensemble Clustering for data Streams (HeCluS). Each clustering technique
can independently create and update a pre-defined number of partitions as new
data arrive. This approach allows the use of clustering techniques with different
bias, in order to obtain more robust classification models. In order to compare
the performance of the different approaches, we implemented the two proposed
methods in MINAS (MultI-class learNing Algorithm for data Streams) [4], a
single classifier novelty detection algorithm for data streams. We conducted a
set of experiments using datasets commonly referred in the novelty detection
literature.

This paper is organized as follows. In Sect. 2 we present related work on
novelty detection in data streams. In Sect. 3 we describe the proposed approaches
and how they are incorporated into the MINAS algorithm. Section 4 presents
the experiments performed. Finally, we conclude and discuss future research in
Sect. 5.

2 Related Work

Several machine learning approaches have addressed novelty detection in data
streams. Following, we describe the principal approaches according to two
aspects: (i) number of classification models and (ii) strategy to update the clas-
sification model.

Considering the first aspect, we can divide the existing approaches in: sin-
gle classification model or ensemble of models. Most of the single classification
approaches use a kNN classification model based on a clustering approach [12].
This type of model can forget old clusters, insert new clusters and update the
existing ones. Even though it is computationally less costly to train and update
a single classification model, it may not be the most suitable to all time periods
of a stream.

In contrast, other works focus on ensemble models. Ensemble classification for
novelty detection in data streams are usually formed by combining classification
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models induced by the same algorithm [11]. In most approaches, the update
of the ensemble consists of replacing the worst accurate model by a new one,
obtained from the last labeled data chunk. However a disadvantage is that the
ensemble in some cases has to wait for a long period before the labels are known.
During this waiting period the predictive performance of the ensemble could
decrease drastically.

Considering the second, the update strategy, these strategies are: supervised
or unsupervised ; according to presence/absence of labeled instances. Supervised
approaches assume that the true label of all instances will eventually be available
to update the model. Some examples of models using supervised learning are
decision trees [11] and kNN [8].

On the other hand, unsupervised learning approaches assume that the true
label will not be available. Therefore, they need to update the classification
model without external feedback [5]. In general, they use the k -means algorithm
to extract clusters to represent the current classes. As a result, they have some
limitations: find only hyper-spherical clusters, have a fixed number of clusters
and are sensitive to outliers.

3 Ensemble Clustering for Data Streams

The idea of Ensemble Clustering for Data Streams is similar to the general
concept of combining classification models to construct an ensemble [13]. For
that reason, it can be used to find the most suitable partition for a dataset. In
this work, because we are constructing an ensemble of clustering, we are dividing
the process in: the generation of a set of partitions and their combination into
an ensemble of clustering.

Formally a data stream Dtr is a potentially infinite sequence of instances
arriving in a time tr, tr ∈ {1, ...,∞}. Where, each instance, X, contains d dimen-
sions denoted by Xtr = (X1, ...,Xd) and a target class ytr. A data stream can
be represented as [4,7]: Dtr = {(X1, y1), (X2, y2), ..., (Xtr, ytr)}.

Novelty detection in data streams can be divided in two phases: the offline
and the online phase. Assuming that in the offline phase a dataset has m classes.
Then, Y Nor = {y1, y2, ..., ym} represents the set of Normal Classes. These class
labels and the corresponding data samples are used to build the initial classifica-
tion model. When during the online phase a novel class with label ym+1 emerges,
a novelty detection approach needs to detect this new class (concept) as quickly
as possible and update the classification model accordingly.

3.1 The MINAS Algorithm

To test the proposed approaches, we implemented HoClus and HeCluS into the
algorithm MINAS. The algorithm MINAS, in the offline phase, has a single model
built with labeled data from the normal classes. This phase happens only once
at the initial stage. The dataset with the labeled instances is split into subsets
of data, each one containing data from one class in Y Nor. Then, a clustering



Ensemble Clustering for Novelty Detection in Data Streams 463

algorithm is applied on each subset to create a partition for each class. A cluster
Cj is defined by a centroid cj , a radius rj and a class label y. The radius of
a cluster is the Euclidean distance between the centroid and the farthest data
point in that cluster [11].

In the online phase the model calculates the Euclidean distance between
each instance and the centroids of the clusters from the normal classes. If the
smallest distance is less then the radius of the closest cluster, then the instance
gets the label from that cluster. Otherwise, the instance is labeled as Unknown
and stored in a buffer for future analysis. When the buffer is full of instances
labeled as Unknown, a clustering algorithm is applied to obtain new clusters.
A cluster is considered as concept drift if the distance between its centroid and
the centroid from the nearest cluster from the normal class is bellow a given
threshold. Otherwise, the cluster is considered a novelty. The instances that are
not similar to any cluster, the outliers, are removed. Finally, the buffer is empty
and this process is repeated every time the buffer is full.

3.2 Ensemble Clustering Applied to MINAS Algorithm

In this section we will explain how the two Ensemble Clustering for Data Streams
were embedded in the MINAS algorithm. Both offline and online phase use
two steps to build the ensemble of partitions: generation and combination. In
the generation step, a user defined number of P partitions from N clustering
techniques is generated, from the dataset Dtr. The output is an ensemble, LN ,
containing P × N clustering partitions.

Given the ensemble LN , we need to verify which clusters, from different
partitions, are similar. For that the consensus function computes the Euclidean
distance between the centroids of each cluster from the different partitions. If
the distance between them is smaller than the sum of their radius, then those
clusters will share the same label.

In the combination step, to use the partitions as an ensemble, it is necessary
that similar clusters from different partitions have the same label. A cluster Cj

with centroid cj is similar to a cluster Ck if the Euclidean distance between them
is less than the sum of their radius: EuclideanDistance(cj , ck) < (rj + rk).

In the offline phase, as in MINAS (See Sect. 3.1), the labeled instances are
separated by labels in subsets. For each subset an Ensemble Clustering Generator
is applied and P partitions from N clustering techniques are generated. In Fig. 1,
the figures in gray represent MINAS algorithm. The ones with dashed lines
indicate the parts that were adapted with the proposed method. Finally, the
colored figures represent the steps of the Ensemble Clustering for Data Streams.

In the online phase, Fig. 2, the ensemble of clusters, blue diamond figure,
using the majority vote of partitions, decides if a new instance is classified as
normal or as Unknown. The instances classified as Unknown are stored in a buffer
for future analysis. When the buffer reaches a given size W , new partitions are
generated. This represented in Fig. 2 by circles/ellipses represent clusters and
each color a label. After that, a consensus function, blue rectangle, is applied to
combine all the clusters. The latter, will maintain only the clusters more similar
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to other clusters from different partitions. Finally, these clusters are considered
as novelties and then they are incorporated into the ensemble.

We define Homogeneous ensemble Clustering for data Streams (HoCluS) as
an ensemble clustering obtained by the combination of P partitions from the
same algorithm. In this work we will use the algorithm for clustering in data
streams CluStream [1]. CluStream is based on the k -means algorithm. Because of
the random initialization phase of k -means, different partitions can be obtained.
Because of that, an ensemble of CluStream partitions can be more robust for
novelty detection than a single partition of CluStream.

We define a Heterogeneous Ensemble Clustering for data Streams (HeCluS)
as the combination of P partitions from N different clustering techniques. In this
work, our HeCluS has one model induced by each one of the following clustering
algorithms for data streams: CluStream [1], DenStream [3] and ClusTree [9]. The
main motivation to use DenStream, is because it is a stream clustering algorithm
that is able to find clusters with arbitrary shape. Besides, it can also handle
outliers [3]. On the other hand, we also use the ClusTree algorithm which also
has a different bias from the other two. ClusTree builds clusters in a hierarchical
data structure and can automatically set a number of clusters with arbitrary
shape.

4 Experimental Setup and Results

We present in this section the experiments carried out for this study. We start
by describing the datasets, then 2 we detail the experiment setup and finally we
discuss the results.
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The experiments were performed with synthetic and real datasets, both com-
monly used in novelty detection studies [1,3,5,11]. The synthetic datasets are:
MOA, SynD, 1CDT, UG 2C 2D and Gear. The MOA dataset [4] has concept
drift, appearance of new classes, recurrence and disappearance of existing classes.
The clusters in this dataset are shaped as normally distributed hyper-spheres.
The SynD [11] does not contain new classes, but does include concept drift.
Finally, 1CDT, UG 2C 2D and Gear are non stationary datasets1. In these
datasets a single novelty occurs and concept drifts happen every 400 instances
in 1CDT, 1000 instances in UG 2C 2D and 2000 instances in Gear. We also use
two real datasets, Forest Cover and KDD-CUP’99 NetWork Intrusion2. The
KDD dataset was used by [1] and [3].

We assume that the instances in the training data are the normal classes and
new classes can appear during the online phase. In the offline phase, all meth-
ods are initialized with a batch of labeled data representing 10% of the data.
We represent the results for each dataset with a confusion matrix (e.g. Table 1),
which contains the percentage of: correctly classified classes (in gray), misclas-
sified classes (in white), novelties detected (in gray) and Unknown instances (in
white). The Unknown is the percentage of instances that the model was not able
to classify. The sum of each column of the matrix should be 1. However, since
we represent the average of 30 runs, the sum might not actually be 1. When-
ever an instance is labelled as Unknown, it is considered as a classification error
and counts as a false negative, which is a different approach adopted by [5]. For
this reason, a high percentage of instances labelled as Unknown, will force the
recall to be lower. This will make the comparison of the models more fair. The
F-Measure is the weighted harmonic mean of precision and recall [5].

For datasets with more than two classes we used graphics to analyse the
predictive performance of MINAS, HoCluS and HeCluS over time. We computed
the F-Measure and Unknown every 10.000 instances. The algorithms CLAM,
MINER and SAND, are not used in this analysis due difficulties to obtain the
information necessary to calculate the F-Measure over time.

4.1 Results

We compare the predictive performance of HoCluS and HeCluS with the original
MINAS and with three other supervised novelty detection methods: Miner [11],
CLAM [2] and SAND [8]. For simplicity, we use the default hyper-parameters
of the existing algorithms. In Gear dataset C1 and C2 are normal classes, both
with concept drift. In Table 1 we can observe that the unsupervised method
HeCluS has the highest F-Measure. Moreover, this was the only unsupervised
method that does not misclassified C2 as a novelty. This can be due to the
fact that HeCluS is able to build models with non-spherical clusters, which can
better represent the classes of this dataset. We note that HoCluS and MINAS
misclassify some instances as novelties, however this is less evident with HoCluS

1 https://www.sites.google.com/site/nonstationaryarchive/.
2 http://archive.ics.uci.edu/ml/index.php.

https://www.sites.google.com/site/nonstationaryarchive/
http://archive.ics.uci.edu/ml/index.php
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Table 1. Confusion matrix for gear dataset

Supervised Unsupervised
SAND CLAM MINER MINAS HoCluS HeCluS
C1 C2 C1 C2 C1 C2 C1 C2 C1 C2 C1 C2

C 1 1.00 0.00 1.00 0.25 0.97 0.04 0.82 0.03 0.88 0.06 0.94 0.06
C 2 0.00 0.00 0.00 0.00 0.03 0.96 0.08 0.90 0.06 0.86 0.06 0.94
Novelty 0.00 0.57 0.00 0.00 0.00 0.00 0.10 0.07 0.02 0.03 0.00 0.00
Unknown 0.00 0.43 0.00 0.75 0.00 0.00 0.00 0.00 0.04 0.03 0.02 0.03
F-Measure 0.50 0.80 0.98 0.92 0.93 0.97

than with MINAS. In terms of the supervised methods, MINER has the best
F-Measure with few misclassification. However, SAND and CLAM misclassify
the majority data from C2 as Unknown or as C1. SAND classifies the drifts from
C2 as novelties and CLAM does not learn from the Unknown.

In the SynD dataset C1 and C2 are the normal classes and both have con-
cept drift. We observe, Table 2, that the methods show a similar behavior on
the Gear dataset. In the group of unsupervised methods, HeCluS and HoCluS
obtained a slightly better performance than MINAS. Considering the supervised
methods, SAND, CLAM and MINER learn part of the concept drifts. SAND has
F-Measure 0.77, however it has the highest percentage of Unknown. CLAM does
not considered any instance as Unknown, but has more classification errors.
MINER had the highest score and does not classify any instance as Unknown.

Table 2. Confusion matrix for Synd dataset

Supervised Unsupervised
SAND CLAM MINER MINAS HoCluS HeCluS
C1 C2 C1 C2 C1 C2 C1 C2 C1 C2 C1 C2

C 1 0.64 0.00 0.50 0.45 0.88 0.18 0.63 0.34 0.66 0.31 0.69 0.34
C 2 0.00 0.60 0.50 0.55 0.12 0.82 0.37 0.66 0.30 0.70 0.32 0.65
Novelty 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Unknown 0.36 0.40 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.00 0.00
F-Measure 0.77 0.69 0.92 0.76 0.78 0.79

The 1CDT dataset, Table 3, has a normal class (C1) and a new class (C2)
with concept drift. With this dataset we can evaluate the performance of the
models with regard to novel concept detection in the online phase. We note
that MINAS, HoCluS and HeCluS even during the online phase, they are not
informed of the true class of the novelties detected. Because of that, even though
they detect C2 as a novel class, their predictions are only represented as novelty.
All models correctly classify most data from C1. On the other hand, in terms of
the novel class, C2, they have different predictive performance. In terms of unsu-
pervised approaches, HeCluS does not distinguish very well the normal concept,
C1, from the novel concept, C2. On the other hand, HoCluS and MINAS, never
misclassified C1 as C2. However, both have the highest percentage of Unknown.
In terms of supervised approaches, SAND presents the lowest F-Measure because
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misclassifies most data from C2 as C1. SAND gives a confidence score for each
model depending on their previous performance. Because of that the models rep-
resenting the normal class have higher score than the novelty. This might explain
the high percentage of misclassification of C2. The methods CLAM and MINER
show high performance for C2, combining the percentage of correct classification
and novelty.

Table 3. Confusion matrix for 1CDT dataset

Supervised Unsupervised
SAND CLAM MINER MINAS HoCluS HeCluS
C1 C2 C1 C2 C1 C2 C1 C2 C1 C2 C1 C2

C 1 1.00 0.84 1.00 0.00 1.00 0.00 0.94 0.00 0.94 0.00 1.00 0.20
C 2 0.00 0.03 0.00 0.73 0.00 0.71 0.00 0.00 0.09 0.00 0.00 0.00
Novelty 0.00 0.11 0.00 0.27 0.00 0.27 0.04 0.87 0.00 0.87 0.00 0.75
Unknown 0.00 0.02 0.00 0.00 0.00 0.02 0.06 0.12 0.00 0.13 0.00 0.06
F-Measure 0.62 0.92 0.99 0.95 0.95 0.93

In the Forest Cover dataset, we have 3 normal classes and 5 novel classes.
We can observe in Fig. 3(a) that HeCluS has the highest F-Measure over time
and it is more stable. In terms of Unknown data, Fig. 3(b), HoCluS and MINAS
have higher percentage of data classified as Unknown than HeCluS, specially
from time 20 to 40. In terms of F-Measure, SAND has performance of 0.32 due
confusion between the normal and novel classes. Possibly this happens because
of the confidence factor, a hyperparamenter, that tends to privilege majority
classes, which is the case for the classes from the normal class. CLAM had per-
formance of 0.72 because it was able to detect most of the novel classes. Finally,
MINER 0.59 detected a high number of class, but misclassify the novelties as
the normal classes.
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Fig. 3. F-measure and Unknown for forest cover dataset

In the KDD dataset we consider 18 normal classes and 5 novel classes. All
methods start in time 0 with a low F-Measure, Fig. 4(a). During the time 15
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to 30, HeCluS has better performance and is more stable, but after that period
shows great instability. MINAS and HoCluS have less instability, but with low
performance and periods with not correctly classify classes. HoCluS and MINAS
have higher Unknown data, Fig. 4(b). However, the low F-Measure and Unknown
show that MINAS and HoCluS misclassify the classes. In terms of the final F-
Measure, SAND has performance of 0.27, CLAM 0.32 and MINER 0.30.

(a) F-Measure (b) Unknown

Fig. 4. F-measure and unknown for KDD99 dataset

The MOA dataset has 2 normal classes and 2 novel classes. The normal
classes have concept drifts from time 0 to 90 and from time 30 to 55 they overlap.
The first new class emerge at time 35 and second new class emerge after time
75. In Fig. 5(a), we can see that HeCluS is better and more stable than HoCluS
and MINAS. In terms of performance, HoCluS is not different then MINAS.
However, observing the peaks in Fig. 5(b), we can see that HeCluS updated less
times that HoCluS and MINAS. In that case, MINAS needed to update more
times than HoCluS. In terms of F-Measure, SAND had performance of 0.88,
CLAM 0.44 and MINER 0.90.
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Fig. 5. F-measure and Unknown for MOA dataset

The UG 2C 2D dataset has a normal class and a new class, both with con-
cept drift and overlap. Analysing the unsupervised methods in Table 4, HeCluS
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classifies all data as C1 and does not learn the new class. HoCluS has slightly
higher F-Measure than MINAS, both methods misclassify great percentage of
C2 and C1, however they learn the new class. For the supervised methods, SAND
and MINER also misclassify C2 as C1. MINER misclassify more C1 as C2 than
the others methods. CLAM presents the best performance because does not
misclassifies C2 as C1.

Table 4. Confusion matrix for UG 2C 2D dataset

Supervised Unsupervised
SAND CLAM MINER MINAS HoCluS HeCluS
C1 C2 C1 C2 C1 C2 C1 C2 C1 C2 C1 C2

C 1 0.71 0.50 1.00 0.02 0.50 0.58 0.42 0.45 0.45 0.50 1.00 1.00
C 2 0.10 0.07 0.00 0.70 0.46 0.37 0.00 0.00 0.00 0.00 0.00 0.00
Novelty 0.28 0.44 0.00 0.00 0.01 0.01 0.51 0.46 0.50 0.43 0.00 0.00
Unknown 0.01 0.06 0.00 0.28 0.03 0.04 0.07 0.09 0.05 0.07 0.00 0.00
F-Measure 0.72 0.91 0.60 0.43 0.45 0.50

5 Conclusions

In this work we proposed the methods HeCluS and HoCluS for detection of
novelties and concept drift in data streams. These ensembles combine several
partitions from one or more clustering techniques. This allows the use of clus-
tering techniques with different bias at the same time, in order to obtain more
robust classification models.

In the experiment with the datasets with only concept drift, we demon-
strated that HoCluS and HeCluS are competitive with state of the art super-
vised methods. Observing the performance of HoCluS and HeCluS over time, we
conclude that HeCluS has lower percentage of Unknown instances. This shows
that HeCluS takes more risks in the classification decision than HoCluS. Because
of that HeCluS was better in most datasets. On the other hand, this behavior
also gives the model less chances to be updated.

The use of ensembles with different clustering techniques is a promising strat-
egy, because the inductive bias of each classification model can be more suitable
for a given data stream or only for during certain periods in the same data
stream. The experiments showed that during the online phase, the performance
of all tested algorithms were affected by the changes in the data distribution.
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Abstract. Discovering regularities in source code is of great interest to
software engineers, both in academia and in industry, as regularities can
provide useful information to help in a variety of tasks such as code com-
prehension, code refactoring, and fault localisation. However, traditional
pattern mining algorithms often find too many patterns of little use and
hence are not suitable for discovering useful regularities. In this paper
we propose FREQTALS, a new algorithm for mining patterns in source
code based on the FREQT tree mining algorithm. First, we introduce
several constraints that effectively enable us to find more useful patterns;
then, we show how to efficiently include them in FREQT. To illustrate
the usefulness of the constraints we carried out a case study in collabora-
tion with software engineers, where we identified a number of interesting
patterns in a repository of Java code.

Keywords: Pattern mining · Frequent tree mining · Source code
regularities

1 Introduction

During software development, many design and coding conventions get encoded
in program source code, either explicitly or implicitly, through regularities such
as API usage protocols, design patterns, coding idioms or conventions. Being able
to discover such source code regularities in software systems is of great interest to
software engineers, to help understanding, analysing, transforming, improving,
maintaining or evolving a particular system, or to improve best practices for the
development of new systems.

A data type of particular interest in the context of source code is the Abstract
Syntax Tree (AST). ASTs capture not only the textual content, but also the
structure of the code. However, to analyse these trees, algorithms capable of
operating on tree structures are needed. Frequent tree mining algorithms [1,2]
support this task. However, they typically find large numbers of patterns.
This makes their output often useless in practice to software engineers. Several
c© Springer Nature Switzerland AG 2019
P. Kralj Novak et al. (Eds.): DS 2019, LNAI 11828, pp. 471–480, 2019.
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solutions to this problem have been proposed, ranging from constraint-based
pattern mining approaches and condensed representations, to statistically moti-
vated pattern set mining approaches [3]. Among these, constraint-based data
mining approaches are of particular interest, as they allow developers to specify
easy to interpret constraints on the patterns to include in the output of the algo-
rithm, and are guaranteed to find all patterns satisfying the constraints, contrary
to sampling based approaches [4].

However, applying constraint-based data mining and condensed representa-
tions on the ASTs of software repositories is not straightforward. While frequent
pattern mining has been studied extensively in the frequent tree mining litera-
ture, constraint-based tree mining algorithms did not receive a similar attention.

In this paper, we therefore propose a novel constraint-based tree mining algo-
rithm, specifically designed for the analysis of software repositories. It combines
two ideas: (i) maximal frequent subtree mining to ensure that a condensed rep-
resentation of only large patterns is found, (ii) constraint-based data mining, in
which additional constraints are imposed on the patterns to be found. Our app-
roach is based on the addition of a number of novel constraints to the FREQT
algorithm [5], combined with a new approach to find maximal subtrees.

In collaboration with software engineers we analysed in detail the quality of
the patterns found. The results show (i) a significant reduction of the execution
time and number of discovered patterns with respect to the original FREQT
algorithm, (ii) that many of the discovered patterns highlight relevant code reg-
ularities, (iii) that some of the patterns found are significantly larger than the
simpler coding idioms found in earlier studies [4].

The paper is organised as follows. Section 2 introduces frequent subtree min-
ing and FREQT. Section 3 presents the key ideas of our solution, which is imple-
mented by the FREQTALS algorithm described in Sect. 4. In Sect. 5 we conduct
a case study to validate FREQTALS. Section 6 overviews related literature on
pattern mining of semi-structured data and pattern mining applied to software.
Section 7 concludes the paper.

2 Background

2.1 Frequent Subtree Mining

Abstract Syntax Trees are labelled, ordered, and rooted trees; they are produced
by programming language parsers. We adopt a previously studied definition [1,5]
for ordered trees T = (V,E, λ,Σ); V = {1, 2, . . . , n} is the set of node identifiers;
E ⊆ V × V is the set of edges; λ : V �→ Σ is a function that associates labels to
nodes of V ; Σ is the set of allowed labels. We assume the nodes are identified
using contiguous integers listed in the order of a depth-first, left-to-right traversal
of the tree; node n is called the rightmost node of the tree. The shortest path
from node 1 to node n is its rightmost path.

Given two trees T1 = (V1, E1, λ1, Σ) and T2 = (V2, E2, λ2, Σ), T2 is an
induced subtree of T1 (T1 � T2) if there is an injective function f : V2 �→ V1 such
that: (1) edges are preserved: for all (v, v′) ∈ E2: (f(v), f(v′)) ∈ E1; (2) labels
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are preserved: for all v ∈ V2: λ2(v) = λ1(f(v)); (3) order is preserved: if v1 < v2
for a pair of nodes in V2, then f(v1) < f(v2).

The support of a pattern tree is the number of trees in a database in which
the pattern occurs. Frequent subtree mining is the problem of finding all pat-
terns of which the support is higher than a given minimum support threshold.
These patterns satisfy the minimum support constraint, which we will refer to
as constraint C0 in this paper.

The number of frequent subtree patterns can become large, in particular
for small minimum support thresholds. To deal with this issue, one solution is
to mine condensed representations [1,2] and maximal frequent subtrees. Let Tc

denote the set of all patterns that satisfy C0. We can define the problem of
finding maximal frequent subtrees as the problem of finding all patterns not
dominated by other patterns:

max(Tc) = {T ∈ Tc | � ∃T ′ ∈ Tc : T ′ 	 T}.

2.2 FREQT

FREQT was designed to mine frequent patterns from labelled ordered trees [5].
It searches for patterns using a depth-first search, where it grows patterns using
rightmost path extension. The idea is to add new nodes only to the right of the
rightmost path of a pattern. Hence, a pattern is created by adding its nodes in
the order of a depth-first, left-to-right traversal.

Algorithm 1: FREQT
1 FP = ∅
2 C ←− findLabels()
3 prune(C)
4 for each c ∈ C do
5 add (FP, c)
6 expand(c)

7 output(FP)

Algorithm 2: expand proce-
dure
1 function expand(f):
2 C ←− findCandidates(f)
3 prune (C)
4 for each c ∈ C do
5 add (FP, c)
6 expand(c)

The structure of the depth-first search algorithm is described in Algorithms 1
and 2. By default FREQT only uses minimum support (C0) and maximum size
(referred to as C1) constraints in the prune function. Anti-monotonic constraints
are used to effectively reduce the size of the search space. A constraint is anti-
monotonic iff for all pairs of patterns with T1 � T2, if T2 does not satisfy the
constraint, then T1 does not satisfy the constraint either. In addition, to avoid
undesirable patterns from being added to the set FP, a minimum size constraint
(referred to as C2) is used in the add function.

Algorithms for finding only maximal frequent subtrees exist [1,2]; they usu-
ally reduce the search space by checking all extensions for all occurrences of a
pattern. This is problematic for trees with a large fanout, such as ASTs.
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3 Maximal Constraint-Based Frequent Subtree Mining

In this section, we will show how the AST representation allow us to impose
additional meaningful constraints on patterns. There are two important ideas
underlying these constraints.

First, given that programming languages are typically well-structured, parts
of the data have a very predictable structure. Patterns that either reflect only
this predictable structure, or that only include part of it, are not useful. For
instance, by definition of the Java programming language, a node with label
InfixExpression always has the same three children, leftOperand, operator
and rightOperand. Clearly, a pattern composed of these four nodes is a fre-
quent pattern but it is not interesting, as it is a consequence of the language
and not the particular source code that is being mined. Patterns including the
InfixExpression label, but not its three children, are not meaningful either, as
by definition, these child nodes must be present.

Second, small fragments of ASTs are hard to interpret. In practice, we found
that many software engineers find easier to interpret a code fragment if it is
sufficiently large, allowing to put a pattern in its context. In terms of the patterns
that we find, this means that our patterns need to satisfy minimum size criteria.

To find a small set of patterns which are sufficiently large and correctly reflect
interesting program structures we propose the following constraints.

Constraints on Labels. To limit the number of patterns considered, the use of
labels is a straightforward solution. The key benefit of label-based constraints is
that they are easy to configure by software engineers. We consider the following
constraints:

C3. Limit the set of labels allowed to occur in the root of patterns;
C4. Provide labels forbidden from occurring in the pattern;
C5. Limit the number of siblings in a pattern that can have the same label.

Constraints on Leafs. It is desirable that patterns not only represent the
structure of the language, but also provide program-specific information. As such
specific information can be found in the leaf nodes of ASTs in the database, we
add this constraint:

C6. All leaf nodes in a pattern must have a label that is included in Σleaf, where
Σleaf is the set of labels that occur in the leafs of the trees in the database.

Constraint on Obligatory Children. Given a node, some of its children can
be mandatory because they reflect a specific programming language construct
(e.g., the InfixExpression shown before). To avoid unnecessarily small pat-
terns, we first need to characterise which labels are structural. We consider a
label to be structural iff:

– in each of its occurrences, no two children have the same label;
– for all pairs of occurrences of the label, the order of the common child labels

is the same.
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For every label a ∈ Σ, we define its obligatory child labels g(a) as the set of
child labels common to all its occurrences. We added the follow constraint on
obligatory child labels:

C7. Let L be the structural labels in D. For all nodes with a label a ∈ L, we
require that its set of children includes nodes with all obligatory labels g(a).
Note that in combination with the leaf constraint, this constraint enforces that
all structural nodes have leaf nodes as descendant.

Maximal Subtree Mining. We wish to ensure that the patterns found are
as large as possible, while also being nonredundant. We propose to solve this
using the following new idea: in a first phase, we find all patterns under the
earlier mentioned constraints, combined with a maximum size constraint. This
constraint limits the size of the search space. Subsequently, we grow the pat-
terns found under these constrains as large as possible, and return the maximal
patterns among these large patterns.

More formally, let Tcm be the set of subtrees identified using constraints
C0–C7, including a maximum size constraint and let Tc be the set of trees that
satisfies constraints C0–C7, without maximum size constraint. Let occ(T ) be the
root occurrences of a particular tree. Let C(T ) = {T ′ ∈ Tc | occ(T ) = occ(T ′)}.
Then we wish to find: max(∪T∈Tcm

C(T )).

4 The FREQTALS Tree Mining Algorithm

In this section, we present FREQTALS, an extension of the FREQT algorithm
that takes into account the novel ideas described in Sect. 3.

Constraints C3–C5 are all anti-monotonic in the following sense: if a tree does
not satisfy the constraint, any supertree with the same root will not satisfy it
either. To deal with such constraints we modified the prune function: extensions
that do not satisfy the constraints are not added as candidates.

Constraints C6 and C7 are harder to implement, as these constraints are not
anti-monotonic. For instance, when we start the search process, the pattern will
certainly not contain leaf labels; they will only be added later. However, FREQT
grows patterns only by adding nodes to the right of the rightmost path. This
enables us to deal with C6 and C7 as follows.

For C6, we know that the only leaf that we can still add a child to, is the
rightmost node. Hence, if any leaf other than the rightmost node has a label not
in the set of permitted leaf labels Σleaf, the search process will not be able to
resolve this violation. Hence, in prune we add a condition that any tree in which
a leaf other than the rightmost node has a label not in Σleaf is pruned.

For C7, we exploit that obligatory child nodes of a structural node must
occur in a specific order. Consider a structural label with three obligatory child
labels σ1, σ2, σ3. If a pattern already includes σ1 and σ3, the algorithm will not
be able to add σ2. In prune we add a condition so that any tree with such a
situation is pruned.
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Algorithm 3: FREQTALS algorithm
input : D, constraints C0–C7.
output: MP.
/* Step 1: mine subtrees under constraints C0-C7 using FREQT with

/*snoitcnufenurPdnaddAdeifidom

1 FP = FREQT(D)
/*seertbusehtpuorg:2petS*/

2 ROM ←− groupRootOccurrence(FP)
/* Step 3: find the maximal subtrees under constraints C2-C7 */

3 MP = ∅
4 for each r ∈ ROM do
5 c ←− root label of r
6 mineMaximalSubtrees(c, r,MP)

7 output(MP)

Maximal Subtree Mining. The most näıve algorithm to find maximal pat-
terns would be one in which we grow a maximal pattern for each pattern sat-
isfying the earlier constraints. While correct, this algorithm would also be time
consuming. Algorithm 3 shows an outline of FREQTALS, which solves the prob-
lem more efficiently, while finding the same set of patterns. It has three phases:

1. search frequent subtrees under constraints C0–C7;
2. group frequent subtrees by root occurrences;
3. for each set of root occurrences identified, run a search process (without C0

and C1) to identify the maximal subtrees having these root occurrences.

Delving into more detail, in Line 1 we call the FREQT algorithm, using the
modified add and prune functions. Furthermore, we add an optimisation so that
any tree having a frequent extension, will not be put in FP.

In Line 2 we group the root occurrences. Essentially, for all frequent patterns
found, we first compute the set: RO = {occ(T ) |T ∈ FP}. Note that multiple
trees in FP may have the same occ(T ). Hence, this set is smaller than the
original set of patterns. Subsequently, we only keep those sets of root identifiers
that are minimal: ROM = {r ∈ RO | � ∃r′ ∈ RO : r′ ⊂ r}. This optimisation
does not affect our results. The key idea is that a pattern appearing in the larger
set of occurrences, will also appear in the smaller set of occurrences.

Subsequently, in line 6 we start a search for maximal patterns for each set of
root occurrences r ∈ ROM. Here, for reasons of simplicity we made the choice
to use a modified version of FREQT:

– we start the search with the root label appearing in the root occurrences r;
– the root occurrences considered during the search are only those in r, even if

the root label has more occurrences in the original data;
– instead of using the minimum support constraint, we impose the constraint

that the patterns searched for appear in all the given root occurrences;
– we do not apply a maximum size constraint;
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Table 1. FREQTALS configuration for CheckStyle

Constraint Variable Value

C0 Minimum Support Threshold 5

C1 Maximum # of Leaves 4

C2 Minimum # of Leaves 2

C3 Root Labels TypeDeclaration, Block

C4 Black List Labels Javadoc, Modifiers, Annotations, ...

C5 Maximum # of Similar Siblings 10

– for each pattern that is generated, we check whether it should be included in
MP and we update MP accordingly.

Note that patterns considered by mineMaximalSubtrees may have more occur-
rences in the original data. This is not harmful, as any such pattern will still
be maximal and frequent. The key idea is that running FREQT on a smaller
set of root occurrences, with a constraint that does not allow to lose any root
occurrence, makes the search more efficient.

5 Empirical Evaluation

To evaluate FREQTALS, we carried out an empirical study on source code
written in Java. We analysed the results from a qualitative (Sect. 5.1) and a
quantitative (Sect. 5.2) point of view. More specifically, we analyse Checkstyle,
a well-documented static code analysis tool for Java that was selected from the
the Qualitas Corpus [6].

Table 1 reports how we configured the algorithm for our evaluation. A mini-
mum support threshold of 5 was chosen as for lower values the number of pat-
terns exploded. We also focused only on AST sub-trees with root nodes of type
TypeDeclaration (i.e., a Java method definition) or Block (i.e., a Java method
body), because we were interested in the program logic.

5.1 Qualitative Analysis

The main purpose of our qualitative analysis is to determine whether the patterns
identified by our algorithm are indeed useful.

With the given configuration, FREQTALS found 147 patterns that we man-
ually analysed. To illustrate the characteristics of the patterns mined by FRE-
QTALS, below we provide a detailed analysis of some of the patterns shown in
Fig. 1. The Checkstyle tool implements several design patterns such as the
Visitor. Thus, some combinations of abstract methods are reused among many
different classes (e.g., getDefaultTokens() and visitToken()) and it is not
surprising that our algorithm discovers many patterns with this pair of meth-
ods. Overall, 83 out of 147 mined patterns contained this pair. Pattern 34 shows
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Fig. 1. Examples of patterns found in Checkstyle

an example of such a design pattern instance that contains 4 reused methods:
getDefaultTokens, getRequiredTokens, visitToken, and leaveToken. Pat-
tern 27 shows a recurrent code snippet that checks every node of a given AST.
Pattern 9 is an interesting example of a code structure that checks for different
types of AST objects. This structure is quite frequent in Checkstyle since it
allows developers to customise the framework to write their own kinds of source
code checks. Pattern 140 is also a typical code idiom recurring in Checkstyle.

5.2 Quantitative Analysis

We limit our quantitative comparison between FREQT and FREQTALS to
Checkstyle, the dataset already considered in Sect. 5.1. We set C0 to 8, while
keeping the same values, shown in Table 1, for the other settings. It is worth not-
ing that for a more fair comparison, FREQT was modified to add a constraint

Fig. 2. Comparisons of three setups
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on the minimum and maximum number of leaves. FREQTALS discovered 1,288
frequent patterns in 23 s, while the original FREQT did not finish within the
search budget (i.e., 60 min); it found 717,859 patterns within these 60 min.

To evaluate the different steps of FREQTALS, we executed it in three setups:
the first applies constraints C0–C7; the second filters the results obtained by the
first to keep only the maximal frequent patterns; the third applies all the con-
straints (except C0 and C1) combined with maximal subtree mining. We ran
these three setups on entire Checkstyle project. Similar to previous experi-
ment, C0 was set to 8, and other settings were kept the same as shown in Table 1.
Figure 2 shows the results. Note that to compare the results more easily we used
a logarithmic scale for the plots in this Figure. In the first plot, we observe
that the number of patterns discovered by the third setup is much smaller, as
intended. Similarly, in the second plot, we see that the maximum size of the
patterns mined by the third setup is larger, as desired. Nevertheless, there is no
free lunch, as in the third plot we can observe that the third setup is more time
consuming.

6 Related Work

This section discusses related work concerning pattern mining of (i) general
semi-structured data and (ii) source code regularities and idioms.

Pattern Mining of Semi-structured Data. Extensive, but rather old liter-
ature exists on frequent tree mining algorithms [1,2]. Such algorithms can be
categorised according to their input data, type of output patterns, and the app-
roach taken for mapping patterns to data. Only algorithms designed for ordered,
rooted trees, using an induced subtree relation are relevant to this work. The
most well-known such algorithm is FREQT [5]. A benefit of FREQT is that it
is a conceptually simple algorithm in which it is easy to add constraints. How-
ever, a major problem of frequent tree mining algorithms is that the number of
output patterns is often very large. To tackle this problem, maximal frequent
tree mining algorithms, i.e., CMTreeMiner [1], were developed. However, none
of these algorithms operate on ordered trees. In recent years few new algorithms
have been proposed, due to a lack of applications of such algorithms. Our work
addresses this weakness by showing how pattern mining algorithms can indeed
find useful patterns, as validated by software engineers. A notable exception is
an algorithm that operates on attributed trees [7]. Our trees are not attributed,
and hence we could not apply this algorithm.

Mining Software Patterns. There is an extensive literature on applying min-
ing algorithms to software artefacts in general. Early examples include applica-
tions of formal concept analysis [8] and of association rule mining [9] for discovering
design regularities. Narrowing down to the discovery of source code regularities,
Allamanis et al. [4] describe an approach that mines for code idioms in a corpus of
idiomatic code using non-parametric Bayesian methods. Similar approaches, like
Bhatia et al. [10] mine for idioms using recurrent neural networks, aiming to correct
incorrect uses of coding idioms. An advantage of FREQTALS is that the criteria



480 H. S. Pham et al.

used to include patterns in the output of the algorithm remain easy to understand,
even for experts without background in statistics.

7 Conclusion and Future Work

In this paper, we proposed the FREQTALS algorithm, an extension of FREQT
that combines maximal frequent subtree mining and constraint-based data mining
to mine structural source code regularities. Experimental results show that (i) a
significant reduction of the execution time and the number of discovered patterns
with respect to the original frequent tree mining algorithm, (ii) that many of
the discovered patterns highlight relevant code regularities, (iii) that some of
the patterns found are significantly larger than expected. However, choosing
appropriate configurations for a programming language is a difficult task. We
envision to replicate our empirical evaluation on a larger set of systems and to
define new guidelines to help software engineers in configuring our algorithm.

Acknowledgments. This work was conducted in the context of an industry-
university research project between UCLouvain, Vrije Universiteit Brussel and Rain-
code Labs, funded by the Belgian Innoviris TeamUp project INTiMALS (2017-TEAM-
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Abstract. Chatbots have been used in business contexts as a new way
of communicating with customers. They use natural language to inter-
act with the customers, whether while offering products and services,
or in the support of a specific task. In this context, an important and
challenging task is to assess the effectiveness of the machine-to-human
interaction, according to business’ goals. Although several analytic tools
have been proposed to analyze the user interactions with chatbot sys-
tems, to the best of our knowledge they do not consider user-defined
criteria, focusing on metrics of engagement and retention of the system
as a whole. For this reason, we propose the KnowBots tool, which can be
used to discover relevant patterns in the dialogues of chatbots, by consid-
ering specific business goals. Given the non-trivial structure of dialogues
and the possibly large number of conversational records, we combined
sequential pattern mining and subgroup discovery techniques to identify
patterns of usage. Moreover, a friendly user-interface was developed to
present the results and to allow their detailed analysis. Thus, it may
serve as an alternative decision support tool for business or any entity
that makes use of this type of interactions with their clients.

Keywords: Chatbot analytics · Chatbot analysis · Logs analysis ·
Sequence mining · Subgroup discovery

1 Introduction

Chatbots have been used in a variety of contexts by providing a natural language
interface with an increasingly sophisticated design [14]. Their use in business con-
texts, as a way of communicating with customers, is becoming more common
nowadays [15]. They have been used to address several tasks, like assistance in
banking [1], customer service [3], educational tutoring [11,13], language learn-
ing [9] and online sales [10], to name a few.

Regarding the development of chatbot systems, the analytics dimension aims
to monitor chatbot usage [13]. Developers can create their custom control-panel
c© Springer Nature Switzerland AG 2019
P. Kralj Novak et al. (Eds.): DS 2019, LNAI 11828, pp. 481–492, 2019.
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or use a generic analytic tool that tracks the users’ interactions and get metrics
of them. Thus, analytics tools are valuable instruments for assessing the quality
of the chatbot system and, ultimately, users’ behavior.

Although many chatbot analytics tools have been developed, they focus on
metrics of engagement and retention of the system as a whole. Their use can help
chatbot maintainers to understand the behavior of users as well as to discover
bottlenecks in the system. However, they cannot be used to explore behaviors
in terms of goals, business criteria and unusual patterns, which are the aim of
the KnowBots tool.

A category of chatbot systems uses rules to guide the conversation flow. Thus,
business criteria can be defined in terms of reaching specific goals described by
particular rule(s), whereas unusual patterns are characterized by usage patterns
that deviate from the others regarding the attainment of business goals. It is
performed by combining sequential pattern mining [6] and subgroup discovery
[8] techniques. The former identifies the frequent subsequences and the latter
filters the most relevant of them by a quality measure, which is defined according
to business’ interests. KnowBots also has a friendly user-interface to present the
results and to allow their detailed analysis.

The KnowBots is the main contribution of this paper. To the best of our
knowledge, the analytics dimension of the chatbots have not been explored sci-
entifically, which is justified for the lack of references on this matter. On the
other hand, many commercial tools are available to support the analysis of the
chatbot interactions. They explore concepts from data mining, machine learning
and information visualization domains.

The remaining sections of the paper are organized as follows: Sect. 2 formally
defines the main concepts used in this work. Section 3 summarizes the main ana-
lytics tool available currently. Section 4 details the KnowBots tools, presenting
their architecture and main features. Section 5 presents the exploratory analysis
conducted, describing and discussing the obtained results. The paper ends with
Sect. 6, that summarizes the relevant findings and future work directions.

2 Background

This section briefly presents the concepts that this study is based on. It covers
chatbot systems, sequential pattern mining and subgroup discovery.

2.1 Chatbot System

Chatbot systems are computer programs designed to use natural language to
interact with users, simulating a human conversation [15]. With the popular-
ization of instant messages services and smartphones, chatbot systems started
to be explored together with them [13]. Thereby, chatbot has received a lot of
attention as a research topic, given the growing number of scientific publications
about the subject. Also, it has been used as a business solution, whether in the
prospection of new customers [2,10], in the service of these [1,3] or as internal
services for employees [16,17].
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A chatbot system can be designed using programed script and/or Natu-
ral Language Processing (NLP) approach [13]. The former follows a rule-based
paradigm, thus it has a limited conversational scope. The latter uses artificial
intelligence concepts to simulate a human-based behavior, which supposedly cov-
ers a broad conversational scope.

The KnowBots supports the analysis of the rule-based chatbot interaction,
which can be defined as a set of state machines. For this work’s purpose, a chatbot
system is a triple (S, r1, δ) where S = {r1, . . . , rn} is a set of n rules ri; r1 is
the starting point of the chat; and, δ = {(r1, r2), . . . , (ri, rj) | ri, rj ∈ S} is
a set of connected pairs of rules, which define the paths of conversation. Figure 1
illustrates the representation of a simple chatbot rules, they define the input,
output and decision points. In this example, S = {r1, . . . , r9} and δ = {(r1, r2),
(r2, r3), (r3, r4), (r4, r5), (r5, r6), (r5, r8), (r6, r7), (r8, r9), (r9, r7)}. Business’
goals may be defined by the nodes r3, r4 and r9, for instance.

Fig. 1. Illustrative representation of chatbot rules.

2.2 Sequential Pattern Mining

Sequential pattern mining is a data mining field that aims to analyze frequent
subsequences in a database of sequences [12]. A sequence α = 〈α1 → α2 . . . →
αq〉 is an ordered set of events, where each event αi is a non-empty and non-
sorted collection of items (i1, . . . , id). A subsequence of α is a sequence β =
〈β1 → β2 . . . → βk〉, such that there are integers i1 < i2 < . . . < ik in which
β1 ⊆ αi1 , β2 ⊆ αi2 , . . . , βk ⊆ αik . A subsequence observed repeatedly in the set
of sequences with a minimum support threshold is a frequent subsequence, here
named pattern.

The representation of a chatbot session, a conversation between a user and
the bot, can be defined in terms of the rules triggered during the chat. Without
loss of generality, an event is a single rule αi ∈ S and a sequence is a chain of
rules. For instance, α = 〈r1 → r2 → r3 → r4〉 is a valid sequence for the
chatbot system that uses the rules defined in Fig. 1. In this case, the user left
the conversation without completing the interaction with the bot, considering
that the rule r7 defines the endpoint of the system.

Over the years, many sequential pattern mining algorithms have been devel-
oped. They produce the same outputs but differ in terms of search strategy and
data representation, which impact their computational performance [5]. Thus,
we arbitrarily choose the CM-SPAN algorithm [6] that is able to customize the
minimum and maximum length of the subsequences; mandatory items; and, the
size limit of the gap between events.
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2.3 Subgroup Discovery

Subgroup discovery algorithms extract interesting relationships between objects
considering a particular property or variable [8]. Patterns represent subgroups
of the population that have some characteristics in common but differ from the
rest when the distribution of a target of interest is observed [4].

For such, it uses quality measures to extract and evaluate the patterns. They
can capture the complexity, generality, precision and interest of the subgroups [8].
Specific quality measures can be used to explore particular characteristics of
the task, like the chatbot sequences associated with the business criteria, for
instance. In this context, business criteria can be defined in terms of the achieve-
ment of some rules during the conversation. For instance, hypothetically assum-
ing that in Fig. 1 the rule r9 collects the user’s e-mail. By achieving this rule
during the conversation, a user meets a business goal.

When the set of rules is complex enough to have many paths of conversation,
some paths can be more deterministic to the achievement of the goal than oth-
ers. An uncommon pattern is a set of events (in this case, a conversation path),
whose probability of achieving the goals is notably distinct from the other pat-
terns. Given that, the users’ answers determine the path of conversation and the
chatbot design may influence the answers, the uncommon patterns are valuable
information to the development team. The uncommon patterns can reveal users’
behaviors that were not expected when the system was developed, for instance.

3 Chatbot Analytic Tools

The scientific literature concerning chatbot analytics is still incipient. A system-
atic research was conducted using four academic digital libraries: ACM Digital
Library, IEEE Explore, Science Direct and Scopus; the query was constructed
using the keywords: chatbot + analytics, chatbot + “log analysis”, chatbot + “log
visualization”; only a few and unrelated studies were obtained.

On the other hand, there are commercial tools that provide support for the
analysis of chatbots dialogues. Table 1 presents such tools and summarizes their
main features. The features include the ability to reproduce past dialogues (C);
a dashboard with usage metrics (D); analysis of the flow and dropout (FD); text
analysis with natural language processing (NLP); sentiment analysis (SA); and,
filtering and query functionalities (Q).

The most common feature is the conversation, which is present in all tools,
followed by the dashboard. The flow/dropout and query features are present
in three of them. In specific, only the Chatbase and Dashbot tools use NLP to
identify the users’ “intent” in the dialogues. Also, only Dashbot and Jani are
able to map the input dialogues in sentiments, offering a qualitative and sensitive
information for developers and maintainers.

From the features presented in Table 1, the KnowBots support only the FD
analysis. However, by exploring the concept of uncommon pattern for a given
user-criteria, it explores a new paradigm when compared with the other analytic
tools.
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Table 1. List of chatbot analytics tools

Name Main features URL

BotAnalytics C-D-FD-Q http://botanalytics.co

Botlytics C-Q http://www.botlytics.co

BotMetrics C-D http://bot-metrics.com

Chatbase C-D-FD-NLP http://chatbase.com

Dashbot C-D-FD-NLP-SA-Q http://www.dashbot.io

Janis C-D-SA http://www.janis.ai

Features: C - Conversation; D - Dashboard; FD - Flow/Dropout;
NLP - Natural Language Processing; SA - Sentiment
Analysis; Q - Query.

4 KnowBots

KnowBots provides an easy analysis of the usage logs given user-defined criteria.
It allows a simple identification of patterns in conversations that increase or
decrease the likelihood of achieving specific goals. Thereby, allowing chatbot
maintainers to make decisions about the chatbots rules and oversee the resulting
effects.

4.1 System Architecture

KnowBots is composed of two components: a batch system and a web interface.
The former finds frequent patterns and sorts them by a score of relevance, accord-
ing to user-defined criteria. The latter presents the results with an interactive
user interface to handle the findings. Figure 2 illustrates KnowBots pipeline.

The batch system can be triggered interactively or in a background mode.
With regards to the chatbot system, currently only rule-based technologies are
supported, however, using the concept of intent and NLP algorithms, the Know-
Bots can be extended to support other types of chatbot systems.

As the KnowBots is a standalone application, it does not require a web
server or additional environment customization. However, the web module is
only a layer of presentation, which restricts the possibilities of interaction with
the user. In future versions, by integrating the tool with a web server, it can be
extended with new features like supporting multiple chatbot versions simulta-
neously, dashboards, query and filters dynamically. Nevertheless, we emphasize
that the innovative aspect of the KnowBots tool is the discovery of uncommon
patterns considering business criteria.

Next subsections detail both components: the batch system and the web
interface.

http://botanalytics.co
http://www.botlytics.co
http://bot-metrics.com
http://chatbase.com
http://www.dashbot.io
http://www.janis.ai
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Fig. 2. KnowBots pipeline.

4.2 Batch System

The batch system receives three input files: a JSON containing the chatbot rules;
an XML describing the business goals; and, a CSV containing the usage logs.

The chat rules consist of a directed graph, where the nodes are the interac-
tions and the edges represent the possible paths of the conversation, as presented
in Fig. 1. It is defined in a JSON file containing the following structure:

A goal can be defined by specific nodes, thus when a user reaches them during
a conversation, the respective goal is achieved. Multiple goals can be defined, and
each one of them may be associated with a single or multiple nodes. The following
structure is used to define the goals:
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The usage logs are the collected dialogues of the users with the chatbot
system. Unlike the other systems, KnowBots does not use the dialogue content,
but the path followed during a conversation. The CSV file with the usage log
contains the following columns:

Session: A session identifier. A session begins when a user enters in the
chatbot system and ends when the user leaves the chat.
Timestamp: Date and time the event occurred.
Chat version: The version of the chatbot system.
From: The previous rule identifier.
To: The current rule identifier.

To identify the most frequent patterns, the CM-SPAM algorithm [6] pro-
vided by the SPMF tool [7] is used. The usage logs are mapped as sequences of
items, as described in Subsect. 2.2. We set the size of the subsequences between
2 and 3, and discarded all the frequent patterns that do not have a decision
node as part of the subsequence. It will result in patterns that are the smallest
possible, containing a fork, which represents users’ decision. Such decisions were
taken to reduce the number of patterns found by the CM-SPAM, however other
hyperparameters’ values could be used instead.

The KnowBots tool uses a quality measure to compute a score of interest
for each frequent subsequence identified in the previous step. This approach can
capture the users’ behavior patterns that deviate from the norm, considering the
use of a particular chatbot system and the business criteria. The main advantage
of using subgroup discovery is that one can score the sequence patterns based on
how unusual the patterns are in terms of a particular target (the goal). As the
final result, one should expect to obtain unusual (yet interesting) behaviors from
the given usage logs of users. The unusualness is both in terms of increasing the
chance of reaching the goal and decreasing it.

Let p(A) be the probability of the users to go through the rule A; p(A | B) be
the conditional probability of the users to go through the rule A given that they
went through the rule B; r∗ be the rule of interest in terms of business goals;
α = 〈α1 → α2 . . . → αk〉 be a frequent subsequence, where αi ∈ S and α1 is
the event of the pattern. The quality measure is defined according to Eq. 1:

QM = |c1 | ∗ c2 ∗ p(α), (1)
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where c1 = p(r∗ | α) − p(r∗ | α1) indicates the improvement (or reduction) that
following the pattern represent to achieve the goal, and c2 = p(α1 | r∗)−p(α | r∗)
captures how unusual the pattern is for the goal. The third criteria is the support
of the pattern.

It is worth highlighting that this framework is extensible concerning the
frequent patterns and the subgroup discovery steps. In the former, the patterns
could explore other kinds of user-information such as gender, geographic region,
operational system and web browser, for instance. In the latter, different quality
measures could be used, focusing on distinct characteristics of the chatbot rules.

4.3 User Interface

The web interface works as a presentation layer of the results previously com-
puted. By using interactive resources, the chatbot maintainer can explore the
relevant patterns as illustrated in Fig. 3. The circle indicates the pattern, while
the triangle indicates the node related to the business goal. Text templates and
probabilities are used to describe the reasons why each pattern is relevant as
illustrated in the Pattern detail window.

The tool also has an interface for the analysis of the flow/dropout. It uses
a scale of colors to indicate the main paths and the critical dropout points.
Additionally, it is possible to visualize the number of session conversations that
achieved the goal by going through a specific point.

5 Exploratory Analysis

We illustrate the potential of KnowBots by analyzing the usage logs of a real-
world chatbot system that provides advice on technical courses for unemployed
people. The chat has 87 rule nodes, where 32 of them are decision ones. A single
business goal is considered: “user provides email address”, which is obtained at
the end of the dialogue. The shortest path of conversation to reach this goal will
go through 8 decision points, whereas the longest would have more than 15 of
them.

After the summarization of the obtained results, a discussion about them
including the strengths and limitations of the tool is conducted.

5.1 Results

Overall, 24 relevant patterns were identified from the 3266 sessions analyzed.
Table 2 presents the top 10 of them. The column Rules contains the rules id;
columns c1, c2 and Support are the components defined in Eq. 1; the quality
measure result is presented in column QM. Particularly in c1 column, the bold
values highlight the negative scores, which indicate patterns that decreased the
probability of achieving the goal.

The first pattern is illustrated in Fig. 3. It says: “users who did not provide
their home address rightly showed a lower probability in providing their e-mail
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Fig. 3. KnowBots interface with details of a relevant pattern.

Table 2. Top 10 relevant patterns identified for the KnowBots tool.

Ranking Rules c1 (pp.) c2 (pp.) Support (%) QM

1 31-32 −19.1 74.5 11.7 0.1665

2 74-75 −26.9 88.0 4.6 0.1089

3 29-30 −48.1 98.2 2.1 0.0992

4 35-36-48 14.6 87.8 3.0 0.0385

5 74-77-78 14.0 13.0 19.6 0.0357

6 38-39-50 12.2 69.4 3.5 0.0296

7 44-45-46 −23.8 22.7 4.3 0.0232

8 39-40-47 18.9 70.4 1.5 0.0200

9 41-42-61 15.7 46.7 2.7 0.0198

10 29-31-35 8.9 7.5 27.3 0.0182

than the ones who did”. Precisely, the probability of users to give their email
decreases in 19.13 pp. when they did not provide their home address correctly.
It represents 25.54% of sessions that achieved the goal and it was observed
in 11.73% of the sessions. Using this information, the chatbot maintainers can
explore alternatives such as the relaxation of the validation rules and/or change
the order of the dialogues, for instance.

Some obvious patterns were also found, which helped the validation of the
tool and increased the confidence in the results. For instance, before asking
for the email, the bot asks if the user desires to receive a newsletter about
new courses. It is reasonable to assume that the users who answer “no” for the
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newsletter would be more resistant in providing their email in the next step
(second pattern in Table 2). The probability of providing the email decreased in
almost 27 pp. for those who answered “no” to the newsletter. In this case, the
KnowBots quantified the impact of this problem making it measurable.

In summary, 4 out of 10 patterns indicate that attaining them reduces the
probability to achieve the goal. They may represent possible issues in the chatbot
design. The other 6 patterns indicate that the probability of achieving the goal is
increased by following them. A positive example is the 4th pattern, it is related
to 3% of the sessions and increases the probability to achieve the goal in almost
15 pp. when compared with other alternatives. Only users with a background
in business domain follow this path, however the main hypothesis to explain it
is the order in which the different domains are presented to the user. The fact
that it is the first option among several domains may be a relevant factor to
the observed users’ behavior. Alternatively, different versions could use different
sequences to compare the alternatives.

In practice, the analysis of these patterns brought new insights to the devel-
opers as well as a better understanding of users’ behavior. The other feature
available in the KnowBots tool is the flow/dropout analysis. Using it, we real-
ized that 7 rules were not achieved by any of the sessions. They are related to
the validation of the zip code address and they are close to the first fork in the
path of conversation. Furthermore, iteratively the dropout was analyzed and the
following results were observed: 2 rules are related to more than 20% of the ses-
sions’ dropout; 7 rules are related to more than 5%; and, 16 rules are related to
at least 1%. Some of these rules validate the users’ input, which shows that when
the bot asks for the same input repeatedly, the users leave the conversation.

5.2 Discussion

In this exploratory analysis, the KnowBots was able to identify interesting pat-
terns concerning the business goal investigated. Some results were not expected
for the chatbot developers, whereas others were quantified using objective crite-
ria. The analysis of the identified patterns can be used to guide the investigation
of the chatbot system, mainly when business goals are taking into account.

The use of language templates to describe the patterns simplified the under-
standing of the metrics according to the business stakeholders. In comparison
with the other tools, they have not employed natural language to present results.
Although we did not perform a usability test with the KnowBots users, they were
able to use the tool and perform the proposed tasks easily.

Regarding the patterns, other characteristics could be employed to represent
the sequences. In addition to the rules, each event can describe details of the
user context like operational system and browser; temporal information like the
day of week and period of the day; and also, personal information like gender
and age, for instance. Such features would increase qualitatively the pattern
analysis. Even though they were not used in this study, due to the lack of such
information in the available transactional records, the CM-SPAM algorithm sup-
ports intrinsically the use of this data. We plan to explore this feature in further
studies.



KnowBots: Discovering Relevant Patterns in Chatbot Dialogues 491

Analogously, the quality measure could also be modified to capture other
perspectives of the problem. For instance, the criteria c2 and the support (Eq. 1)
are inversely proportional, such that while one increases, the other decreases,
and vice-versa. In practice, they are important because the user can choose not
to provide the email. In other scenarios, only one of these criteria could be
employed, for instance.

In summary, the proposed approach showed to be able to detect possible
chatbot problems. The KnowBots is the result of a real-world demand, given the
lack of tools that are able to support business criteria in the usage log analysis.
To the best of our knowledge, it is the first chatbot analytics tool to address this
problem.

6 Conclusion

This work presented the KnowBots, a tool for mining and visualization of chat-
bot usage logs analysis. It finds unusual and relevant patterns by combining
sequence mining and subgroup discovery techniques. Specifically, the tool pro-
vides useful information concerning users behavior in terms of business goals.
It is a descriptive machine learning task that aims to minimize the efforts of
chatbot maintainers in the analysis of the chatbot systems.

Despite the rapid growth of chatbot-related technologies, the investigation
of analytics tools is still subtly addressed in the literature. In further studies,
we plan to explore new attributes in the sequences like temporal data, profile
information and user context. Additionally, by supporting multiple versions of
the same chatbot system, the KnowBots can be a validation and decision-support
tool.
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13. Pereira, J., Dı́az, Ó.: Chatbot dimensions that matter: lessons from the trenches.
In: Mikkonen, T., Klamma, R., Hernández, J. (eds.) ICWE 2018. LNCS, vol. 10845,
pp. 129–135. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91662-0 9
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Abstract. The goal of anomaly detection is to identify examples that
deviate from normal or expected behavior. We tackle this problem for
images. We consider a two-phase approach. First, using normal exam-
ples, a convolutional autoencoder (CAE) is trained to extract a low-
dimensional representation of the images. Here, we propose a novel archi-
tectural choice when designing the CAE, an Inception-like CAE. It com-
bines convolutional filters of different kernel sizes and it uses a Global
Average Pooling (GAP) operation to extract the representations from the
CAE’s bottleneck layer. Second, we employ a distanced-based anomaly
detector in the low-dimensional space of the learned representation for
the images. However, instead of computing the exact distance, we com-
pute an approximate distance using product quantization. This alleviates
the high memory and prediction time costs of distance-based anomaly
detectors. We compare our proposed approach to a number of baselines
and state-of-the-art methods on four image datasets, and we find that
our approach resulted in improved predictive performance.

Keywords: Anomaly detection · Deep learning · Computer vision

1 Introduction

The goal of anomaly detection [5,37] is to identify examples that deviate from
what is normal or expected. We tackle this problem for images which is relevant
for applications such as visual quality inspection in manufacturing [13], surveil-
lance [32,33], biomedical applications [35,39], self-driving cars [7], or robots
[4,22]. This has motivated significant interest in this problem in recent years.

The classic approach to anomaly detection is to treat it as an unsupervised
problem (e.g., [2,23]) or one-class problem [25,36]. Recently, there has been a
surge of interest in applying deep learning to anomaly detection, particularly in
the context of images (e.g., [11,25,26,31]). In this line of work, one strategy is
to use (convolutional) autoencoders, which is typically done in one of two ways.
First, it is possible to directly use the autoencoder as an anomaly detector. This
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can be done by using an example’s reconstruction error as the anomaly score
(e.g., [40]). Second, the autoencoder can be used to learn a new low-dimensional
representation of the data after which a classical anomaly detection approach is
applied on top of this learned representation (e.g., [1,42]).

In this paper, we take the one-class approach and follow the second strategy
for the problem of detecting anomalous images. We begin by training a convo-
lutional autoencoder (CAE) on only normal images. Here our contribution is to
propose a novel CAE architecture. It is inspired by the Inception classification
model [34] that combines convolutional filters of different kernel sizes. Once the
CAE is trained, we use a Global Average Pooling (GAP) operation to extract
the low-dimensional representation from the CAE’s bottleneck layer. In contrast,
existing approaches directly use the bottleneck layer’s output. Using the GAP
operation is motivated by its successes in reducing overfitting in classification
CNN models [21], and extracting image representations from the hidden layers
of pretrained classification models for image captioning [38].

At test time, we use a classic nearest-neighbor distanced-based anomaly
detector [23] in the learned low-dimensional representation space. Here our con-
tribution is to compute an approximate distance using product quantization [16],
which improves the runtime performance and memory footprint of this approach
compared to using the exact distance. Empirically, we compare our proposed
approach to a number of existing approaches on four standard datasets used for
benchmarking anomaly detection models for images. We find that our approach
generally achieves better predictive performance.

2 Background and Related Work

This work draws on ideas from anomaly detection both in general and for images,
deep learning, and fast nearest neighbors. We now review each of these areas.

2.1 Anomaly Detection

For a variety of reasons (e.g., what is anomalous changes over time or expense),
it is often difficult to obtain labels for examples belonging to the anomaly class.
Therefore, anomaly detection is often approached from an unsupervised [2,23]
or one-class perspective [36].

In order to identify anomalies, unsupervised approaches typically assume that
anomalous examples are rarer and different in some respect than normal exam-
ples. One standard approach is to assume that anomalies are far away from nor-
mal examples or that they lie in a low-density region of the instance-space [2,23].
A common approach [23] that uses this intuition is based on k-nearest neighbors.
This algorithm produces a ranking of how anomalous each example is by com-
puting an example’s distance to its kth nearest neighbor in the data set. Despite
its simplicity, this approach seems to work very well empirically [3].

The idea underlying one-class-based anomaly detection is that the training
data only contains normal examples. Under this assumption, the training phase
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attempts to learn a model of what constitutes normal behavior. Then, at test
time, examples that do not conform to the model of normal are considered to
be anomalous. One way to do this is to use a one-class SVM [36].

2.2 Deep Learning for Anomaly Detection

Autoencoders are the most prevalent deep learning methods used for anomaly
detection. An autoencoder (AE) is a multi-layer neural network that is trained
such that the output layer is able to reproduce its input. An AE has a bottleneck
layer with a lower dimension than the input layer and hence allows learning a
low-dimensional representation (encoding) of the input data.

AEs are used for anomaly detection in images in two ways. First, an AE
can be directly used as an anomaly detector. Here, a typical way to assign an
anomaly score for a test example is to apply the AE and calculate the example’s
reconstruction error (e.g., the mean squared error between the example and the
AE’s output [28,40]). Second, an AE can be used as part of a two-step process:
(1) train an AE on the training data; and (2) learn a standard (shallow) anomaly
detector on the transformed training data [1,42]. We follow this strategy.

Deep approaches to anomaly detection for image data often use a convolu-
tional autoencoder (CAE) which include convolutional layers in the AE architec-
ture [24,31]. Another line of work uses Generative Adversarial Networks (GAN)
for this task [8,27,29]. This two-step process is also used to make the density
estimation task easier by learning low-dimensional representations.

Recently, there have been attempts to design fully end-to-end deep models
for anomaly detection. Deep Support Vector Data Description (Deep SVDD)
[25] is trained using an anomaly detection based objective that minimizes the
volume of a hypersphere enclosing the data representations. Deep Autoencoding
Gaussian Mixture Model (DAGMM) [45] uses the representation layer of a deep
autoencoder in order to estimate the parameters of a Gaussian mixture model,
by jointly optimizing parameters of the autoencoder and the mixture model.

Deep Structured Energy Based Model (DSEBM) [43] belongs to the group
of the energy-based models, a powerful tool for density estimation. The energy-
based models make a specific parameterization of the negative log probability,
which is called the energy, and then compute the density with a proper normal-
ization. In DSEBM, the energy function is a deep neural network.

Another method [11] uses a data augmentation, and generates new training
examples by applying a number of geometric transformations to each training
example. Then, a multi-class neural network is trained to discriminate among the
original images, and all of the geometric transformations applied to the images.
Given a test image, the same transformations are applied to it and the prediction
is made based on the network’s softmax activation statistics.

2.3 Fast Nearest Neighbors Search

A notable potential issue with nearest-neighbors-based approaches is that find-
ing the nearest neighbor at test time can be very computationally expensive,
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particularly for large training sets or high-dimensional examples. Consequently,
there has been substantial interest in developing efficient approaches for per-
forming this search either exactly (e.g., using a kd-tree or other index structure)
or approximately [10,16].

One prominent recent approach is product quantization [16]. This approach
works by compressing the training data by partitioning the features used to
describe the training example into m equal width groups. It then learns a code
book for each partition. Typically, this is done by running k-means clustering
on each partition which only considers the features assigned to that partition.
Then the values of all features in the partition are replaced by a single c-bit
code representing the cluster id that the example is assigned to in the current
partition. Hence each example is represented by m c-bit code words.

At test time, finding a test example’s nearest neighbor using the (squared) L2
distance can be done efficiently by using table look-ups and addition. For a test
example, a look up table is constructed for each partition that stores the squared
L2 distance to each of the k = 2c cluster centroids in that partition. Then the
approximate distance to each training example is computed using these look up
tables and the nearest example is returned.

Locality-sensitive hashing improves efficiency by using hashing to identify a
limited number of likely candidate nearest neighbors. Then, a test example is
only compared to those examples. Hence, the approximation comes from the fact
that not all training examples are considered as the possible nearest neighbor.
People have investigated incorporating hashing-based techniques into distance-
based anomaly detection systems [12,30,44].

3 Our Approach

At a high-level, our approach has two steps: extracting a low dimensional image
representation and assigning a distance based anomaly score.

Extracting a Low-Dimensional Image Representation. Given a training set of
normal image examples, an Inception-like convolutional autoencoder (Inception-
CAE) is trained that minimizes the mean squared reconstruction error on the
training data. Once the InceptionCAE is trained, the GAP operation is applied
on its bottleneck layer to extract a low-dimensional image representation vector.

Assigning a Distance-Based Anomaly Score. An distance-based anomaly score
is assigned using the learned representation vectors for the images. First, the
trained InceptionCAE model is used to convert all training images to the learned
low-dimensional representation. Second, it converts a given test image into the
same space and assigns an anomaly score by computing the quantized Euclidean
distance between the test image and its nearest neighbor in this space.
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3.1 Inception-Like Convolutional Autoencoder

When using a CAE in a two-step anomaly detection approach, the detec-
tor’s predictive performance clearly depends on the quality of the learned
low-dimensional representation. In supervised image classification, sophisticated
deep architectures such as Inception (GoogleNet) [34], Residual Networks [14]
or DenseNet [15], have yielded considerable performance gains over a basic CNN
architecture. Hence, we expect that adapting these techniques to the CAE setting
could improve the quality of the CAE’s learned low-dimensional representation.

Inspired by the Inception architecture, we design an Inception-like CAE
architecture that combines convolutional filters of different kernel sizes. The
main unit of this architecture is an Inception-like layer shown in Fig. 1, where it
combines outputs from 1×1, 3×3 and 5×5 convolutions as well as a maximum
pooling operation.

Fig. 1. Inception-like layer.

Table 1 outlines the details of our Inception-like CAE architecture. We make
our architecture as similar as possible to the baseline CAE architecture [25]
and it has the same number of layers and the same number of convolutional
filters in each layer to enable a fair comparison. Here, Inception(n) denotes the
Inception-like layer with n1 = n2 = n3 = n4 = n. Each convolution operation is
followed by Batch Normalization and a Leaky ReLU activation, except the last
layer which has a Sigmoid activation.

Beside the architectural change of introducing the Inception-like layer into a
CAE, another subtlety in our approach is how we extract the low-dimensional
image representation from the CAE. Existing approaches extract a learned image
representation simply by using the output of the CAE’s bottleneck layer. Conse-
quently, the CAE architecture must be designed such that the bottleneck layer
matches the desired dimension of the learned image representation. Our app-
roach extracts the learned image representation by applying a Global Average
Pooling (GAP) operation to the output of the CAE’s bottleneck layer. The GAP
operation on a tensor of the dimension a× b× c results in a vector of the dimen-
sion 1 × c, where each component is an average value over the tensor slice of
the dimension a × b that corresponds to this component. Hence, using the GAP
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operation as an extractor permits using a wider bottleneck layer than existing
CAE’s architectures do.

Our intuition behind this architectural choice is that having a wider bottle-
neck will permit retaining some information that a narrower bottleneck would
filter. Thus, the GAP operation on this wider bottleneck would yield a better
learned representation. Though the use of GAP is not a novel in deep learning
architectures, our contribution is to study its use in conjunction with an CAE
for extracting image representations.

The Inception-like CAE is trained on the normal training images, where the
objective is to minimize the mean squared error between the input and the
output. Applying the GAP operation on the trained network’s bottleneck yields
a 128-dimensional learned image representation. Note that the GAP operation
allows having a wider bottleneck layer in our Inception-like CAE architecture
than in the baseline CAE architecture (4 × 4 × 128 versus 1 × 128).

Our experiments show that each of our two architectural choices in designing
our CAE contribute to improved anomaly detection performance.

Table 1. Inception-like CAE.

InceptionCAE Output dimension

Input Layer 32 × 32 × nchannels

Inception (8). MaxPooling(2,2) 16 × 16 × 32

Inception(16). MaxPooling(2,2) 8 × 8 × 64

Inception(32). MaxPooling(2,2) 4 × 4 × 128

Inception(16). Upsampling(2,2) 16 × 16 × 64

Inception (8). Upsampling(2,2) 32 × 32 × 32

Convolution2D(nchannels) 32 × 32 × nchannels

3.2 Approximated Distance-Based Anomaly Detection

We assign an anomaly score to a test example by operating on the extracted
images representations and not on the raw data itself. Specifically, a test exam-
ple’s anomaly score is the quantized (squared) Euclidean distance in the learned
representation space to its nearest neighbor in the training data. The primary
advantage of using product quantization instead of the exact distance is that it
is substantially faster to compute (at the expense of being an approximation).

Hashing-based solutions have been extensively explored to speed-up distance-
based neighbor approaches. While extensively used in nearest-neighbor search,
product quantization has received little attention within anomaly detection. One
advantage of quantization over a hashing based solution is that it still compares a
test example to each training example, it just does so in an approximate manner.

Quantization may provide another benefit when the training data only con-
tains normal examples: its approximation may enforce some regularization on
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the training data. That is, by mapping each partition of the example to a pro-
totype it may smooth out some variation and make the examples look more
“normal,” which is beneficial if true. In some cases, we observe empirically that
the quantization does indeed improve performance.

4 Experimental Results

Our empirical evaluation addresses the following questions:

Q1 How does our proposed approach compare to existing anomaly detection
techniques for images?
Q2 What is the effect of using product quantization to approximate the
distance calculation on performance?
Q3 What is the effect of using the distance-based nearest neighbors approach
to assign an anomaly score compared to using an example’s reconstruction
error?
Q4 How sensitive is the performance of our approach to changes in the quan-
tization parameters?

To address these questions, we compare our proposed approach to a number
of shallow and deep baselines on four standard benchmark datasets. Next, we
describe the approaches, data, methodology and results in greater detail.

4.1 Methods Compared

The main empirical comparison considers the following methods.

Raw NN-QED: This shallow approach corresponds to applying the classic
kNN-based anomaly detection [23] on the raw image data, except that it uses
an approximate distance measure. It assigns an anomaly score to a test exam-
ple as the quantized squared Euclidean distance (QED) to the test example’s
nearest neighbor in the raw training images.
DeepSVDD: This method is a deep extension of the support vector data
description method [25]. We use the same baseline CAE architecture for all
the datasets as the one used for a CIFAR-10 dataset in the respective paper.
DSEBM: This method is a deep extension of energy based models [43], where
we adjust a neural network to correspond to the baseline CAE architecture
used in Deep SVDD in order to have a fair comparison.
CAE OCSVM: This method trains an CAE with the same baseline architec-
ture as in DeepSVDD. Then the learned image data representations obtained
from the output of the CAE’s bottleneck layer are used as the input to
OCSVM.
CAE NN-QED: This method trains an CAE with the same baseline archi-
tecture as in DeepSVDD. A test example’s anomaly score is calculated as the
quantized squared Euclidean distance in the CAE’s learned representation
space to its nearest neighbor in the training set.
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InceptionCAE NN-QED: This is our approach. It uses our proposed Incep-
tionCAE architecture outlined in Sect. 3.1. A test example’s anomaly score
is calculated as the quantized squared Euclidean distance in the Inception-
CAE’s learned representation space to its nearest neighbor in the training
set.

4.2 Datasets

Our experiments use four common benchmark datasets for both deep learning
and anomaly detection approaches. MNIST [20] and Fashion MNIST [41] con-
tains ten classes and have fixed train-test splits with the training set containing
60,000 examples (6,000 examples for each class) and the test set 10,000 examples
(1,000 for each class). CIFAR10 has ten class, while in CIFAR100 we consider
the 20 super-classes [19]. Both have fixed train-test splits with the training set
containing 50,000 examples and the test set 10,000 examples. All the datasets
are completely labeled which enables computing standard evaluation metrics.

Table 2. Average AUC-ROC and its standard deviation for state-of-the-art deep base-
lines and our approach on the MNIST and Fashion MNIST datasets.

Dataset Normal
class

DSEBM CAE
OCSVM

DeepSVDD InceptionCAE
NN-QED

MNIST 0 94.9± 4.0 95.4± 0.8 99.1± 0.1 98.7± 0.3

1 98.7± 0.1 97.4± 0.3 99.7± 0.0 99.7± 0.0

2 69.0± 11.5 77.6± 3.3 95.4± 0.3 96.7± 0.7

3 80.2± 9.7 88.6± 1.6 95.1± 0.5 95.2± 0.4

4 83.3± 9.1 83.6± 1.8 95.9± 0.5 95.0± 0.5

5 67.4± 6.8 71.3± 1.8 92.1± 0.5 95.2± 0.5

6 85.6± 5.9 90.1± 1.6 98.5± 0.1 98.3± 0.2

7 90.4± 2.1 87.2± 0.8 96.2± 0.4 97.0± 0.3

8 72.1± 7.3 86.5± 1.6 95.7± 0.4 96.2± 0.2

9 86.8± 2.9 87.3± 1.0 97.7± 0.1 97.0± 0.2

Average 82.8± 12.3 86.5± 7.5 96.6± 2.1 96.9± 1.6

Fashion MNIST 0 89.2± 0.1 88.0± 0.4 98.8± 0.2 92.4± 0.4

1 97.4± 0.1 97.3± 0.2 99.7± 0.0 98.8± 0.1

2 86.0± 0.3 85.5± 0.8 93.5± 1.4 90.0± 0.6

3 90.5± 0.1 90.0± 0.5 94.9± 0.3 95.0± 0.3

4 88.5± 0.3 88.5± 0.5 95.1± 0.6 92.0± 0.4

5 82.4± 9.2 87.2± 0.7 90.4± 0.8 93.4± 0.3

6 77.7± 1.5 78.8± 0.7 98.0± 0.2 85.5± 0.4

7 98.1± 0.1 97.7± 0.1 96.0± 0.2 98.6± 0.1

8 78.8± 6.8 85.8± 1.4 95.4± 0.4 95.1± 0.4

9 96.0± 2.7 98.0± 0.2 97.6± 0.2 97.7± 0.2

Average 88.5± 7.9 89.7± 6.0 95.9± 3.8 93.9± 3.9
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Following past work on anomaly detection [11,25], we denote the images of
one class as normal, while images for all other classes are considered anomalous.
The training phase only uses images from the normal class. At test time, test
images of all classes are used.

4.3 Parameters and Implementations

For all the CAE architectures, we employ the same training procedure as in Ruff
et al. [25], with a two-phase learning rate schedule (searching + fine-tuning) with
initial learning rate ν = 10−4, and subsequently ν = 10−5. We train 100 + 50
epochs for MNIST and Fashion MNIST, and 250 + 100 epochs for CIFAR-10
and CIFAR-100. Leaky ReLU activations use a leakiness of α = 0.1. We use
a batch size of 200 and set the weight decay hyperparameter λ = 10−6, and
we use an Adam optimization procedure [18]. For CIFAR-10 and CIFAR-100,
both the CAE-GAP and InceptionCAE architectures are trained without the
GAP layer, but the GAP operation on the bottleneck layer is used at predic-
tion time to extract the image representation. For MNIST and Fashion MNIST,
the GAP layer must be included during training to ensure that the bottleneck
layer is narrower than the input layer. We implemented the CAEs in the Keras
framework [6].

We use the Facebook AI Similarity Search (FAISS) library [17] for computing
the quantized Euclidean distance using the parameters m = 32 and c = 4. We
show the effects of these parameters in Subsect. 4.4.

The OCSVM implementation uses the default parameters of Python sklearn
library, with radial basis function kernel with γ = 1/nfeatures and ν = 0.5.

Because we use an identical train-test split, we simply report the AUC-ROCs
for prior results for DeepSVDD on CIFAR-10 from the paper. For DeepSVDD,
we re-run the experiments for the other datasets using the authors’ software in
order to use the same CAE baseline architecture. Our code is available online.1

4.4 Results

We compare the approaches with respect to their predictive performance,
where we report the average area under the receiver operator characteris-
tic curve (AUC-ROC) which is a standard performance metric in anomaly
detection [9,11,25]. For the methods that use a non-deterministic algorithm
(CAE/InceptionCAE NN-QED, CAE OCSVM, DeepSVDD, DSEBM), we train
10 models (with different random seeds) and report the average AUC-ROC and
its standard deviation over these 10 models for each considered normal class.

Results for Q1
Tables 2 and 3 show detailed AUC-ROC scores for state-of-the-art deep baselines
and our method. On average, our approach outperforms the deep baselines for all
the considered datasets except on Fashion MNIST. Looking at the 50 individual

1 https://github.com/natasasdj/anomalyDetection.

https://github.com/natasasdj/anomalyDetection
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tasks, our InceptionCAE NN-QED method beats DeepSVDD 32 times, DSEBM
48 times, and CAE OCSVM 48 times. The bigger wins come on the more complex
CIFAR datasets.

Table 4 shows how much benefit comes from using our proposed Inception-like
CAE architecture with the GAP operation to extract a low-dimensional image
representation, compared to using the raw image data or the baseline CAE

Table 3. Average AUC-ROC its standard deviation for state-of-the-art deep baselines
and our proposed approach on the CIFAR-10 and CIFAR-100 datasets.

Dataset Normal
Class

DSEBM CAE
OCSVM

DeepSVDD InceptionCAE
NN-QED

CIFAR 10 0 64.1± 1.5 62.4± 0.9 61.7± 4.1 66.7± 1.3

1 50.1± 5.1 44.4± 1.0 65.9± 2.1 71.3± 1.3

2 61.5± 0.8 64.2± 0.3 50.8± 0.8 66.8± 0.6

3 51.2± 3.0 50.7± 0.8 59.1± 1.4 64.1± 0.9

4 73.2± 0.5 74.8± 0.2 60.9± 1.1 72.3± 0.8

5 54.6± 2.8 50.9± 0.5 65.7± 2.5 65.3± 0.9

6 68.2± 1.1 72.4± 0.3 67.7± 2.6 76.4± 0.8

7 52.8± 1.3 51.0± 0.7 67.3± 0.9 63.7± 0.7

8 73.7± 1.9 67.0± 1.6 75.9± 1.2 76.9± 0.6

9 63.9± 5.9 50.8± 2.5 73.1± 1.2 72.5± 1.0

Average 61.3± 8.9 58.9± 10.1 64.8± 7.2 69.6± 4.8

CIFAR 100 0 63.8± 0.4 63.6± 1.2 57.4± 2.4 66.0± 1.5

1 48.4± 0.9 51.4± 0.7 63.0± 1.2 60.1± 1.5

2 63.6± 7.6 54.5± 1.0 70.0± 3.2 59.2± 3.1

3 50.4± 3.2 48.4± 0.8 55.8± 2.5 58.7± 0.5

4 57.3± 9.6 49.9± 1.3 69.0± 1.9 60.9± 1.9

5 44.4± 3.3 45.3± 1.4 51.0± 2.0 54.2± 1.3

6 53.3± 5.2 53.1± 1.6 59.9± 3.3 63.7± 1.4

7 53.4± 1.3 58.8± 0.6 53.0± 1.2 66.1± 1.3

8 66.9± 0.3 67.8± 0.5 51.6± 3.2 74.8± 0.4

9 72.7± 4.0 70.1± 1.2 72.9± 1.5 78.3± 0.7

10 76.2± 3.4 76.7± 0.6 81.5± 1.9 80.4± 0.9

11 62.2± 1.2 59.7± 0.6 53.6± 0.7 68.3± 0.6

12 66.9± 0.4 68.2± 0.3 50.6± 1.2 75.6± 0.7

13 53.1± 0.7 60.6± 0.4 44.0± 1.2 61.0± 0.9

14 44.7± 0.7 47.1± 1.1 57.2± 1.1 64.3± 0.7

15 56.6± 0.2 59.7± 0.3 47.7± 0.9 66.3± 0.4

16 63.1± 0.4 66.0± 0.4 54.3± 0.8 72.0± 0.5

17 73.5± 3.6 69.4± 1.1 74.7± 2.0 75.9± 0.7

18 55.6± 2.2 54.5± 0.8 52.1± 1.7 67.4± 0.8

19 57.3± 1.6 54.7± 1.0 57.9± 1.8 65.8± 0.6

Average 59.2± 9.3 59.0± 8.6 58.9± 9.9 67.0± 7.1
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Table 4. Average AUC-ROC and its standard deviation for Raw NN-QED, CAE
NN-QED (the baseline CAE architecture), and InceptionCAE NN-QED (our proposed
approach). The AUC-ROC is averaged over treating each of the ten classes as the
normal class.

Dataset Raw NN-QED CAE NN-QED InceptionCAE NN-QED

MNIST 94.7± 3.8 96.4± 2.4 96.9± 1.6

Fashion MNIST 91.4± 4.9 91.6± 4.1 93.9± 3.9

CIFAR-10 59.6± 11.5 60.6± 11.6 69.6± 4.8

CIFAR-100 60.2± 9.2 62.1± 7.9 67.0± 7.1

architecture. On the simpler datasets such as MNIST and Fashion MNIST, both
the raw image data and the baseline CAE achieve relatively high AUC-ROCs,
but still perform worse than our method. However, on the more complex CIFAR-
10 and CIFAR-100 datasets, using our more sophisticated approach to learn a
low-dimensional representation of the images results in larger improvements in
the average AUC-ROCs.

Results for Q2
To evaluate the effect of using product quantization on the predictive perfor-
mance, we consider computing the exact (squared) Euclidean distance instead
of computing the approximate quantized Euclidean distance. Again, the quan-
tization is done with the parameters of m = 32 and c = 4. Table 5 shows the
AUC-ROC for our method using the exact Euclidean distance (variants denoted
EED) and quantized Euclidean distance (variants denoted QED) for two rep-
resentative datasets: Fashion MNIST and CIFAR10. Interestingly, in aggregate
using the approximate quantized Euclidean distance slightly improves the predic-
tive performance. Depending on which class is considered normal, there are slight
differences in performance between EED and QED: sometimes EED results in a
higher AUC-ROC and other times QED does. Using QED to assign the anomaly
score is about four times faster than using EED.

Table 5. The effect of using exact Euclidean distance (variants denoted EED) versus
quantized Euclidean distance (variants denoted QED) on predictive performance as
measured by AUC-ROC. The AUC-ROC is averaged over treating each of the ten
classes as the normal class and the ten models learned for each class.

Dataset InceptionCAE NN-EED InceptionCAE NN-QED

Fashion MNIST 93.2± 4.1 93.9± 3.9

CIFAR-10 68.3± 5.7 69.6± 4.8
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Results for Q3
To further investigate where the gains of our approach come from, we explore
the effect of the method for assigning an anomaly score on the predictive per-
formance. We compare using the nearest neighbors approach with the quantized
Euclidean distance (NN-QED) to using a test image’s reconstruction error (RE)
as has been done in past work (e.g., [28,40]).

Table 6 shows the results on the Fashion MNIST and CIFAR10 datasets for
the baseline CAE and our Inception-like CAE architectures with both methods
for computing an anomaly score. We see that using the distance-based approach
results in much better performance than using the reconstruction error. Hence,
it is probably worth further exploring using distance-based approaches on top
of a bottleneck layer.

Table 6. Average AUC-ROC when using the reconstruction error (RE) versus the
nearest-neighbors approach with quantized Euclidean distance (NN-QED) for assigning
the anomaly score. The AUC-ROC is averaged over treating each of the ten classes as
the normal class and the ten models learned for each class.

RE NN-QED

Fashion MNIST CAE 82.3± 10.9 91.6± 4.2

InceptionCAE 88.1± 6.5 93.9± 3.9

FCIFAR-10 CAE 56.7± 13.3 60.6± 11.6

InceptionCAE 55.3± 14.3 69.6± 4.8

Results for Q4
To explore how the quantization parameters affect predictive and runtime per-
formance, we try all combinations of parameters m ∈ {1, 2, 4, 8, 16, 32, 64, 128}
and c ∈ {1, 2, 3, 4, 5, 6, 7, 8}. We omit the reduction in memory footprint of using
product quantization as the memory tradeoffs are well understood and easily
derivable based on the values m and c (see [16]).

Figure 2a shows how the average AUC-ROC (averaged over both treating
each class as the normal one and the ten models learned for each class) depends
on these parameters for our InceptionCAE NN-QED method on the Fashion
MNIST dataset. We see that using values of c < 3 has a significant negative
effect on the results. The value of m has less of an impact as for a fixed c the
average AUC-ROC only varies within a small range regardless of m’s value. Until
m = 64, the AUC-ROC increases with m.

Figure 2b shows how the QED search runtime depends on these parameters.
We see that for m ≤ 32 the QED run-time is significantly smaller than the one
for the exact distance search, and for these values of m the QED runtime varies
only within a small range with the parameters change.



Fast Distance-Based Anomaly Detection in Images 505

(a) Average AUC-ROC. (b) Prediction time in seconds for the
10, 000 test images.

Fig. 2. Effect of the quantization parameters m and c on (a) the average AUC-ROC
and (b) the prediction time for the test images in seconds for InceptionCAE NN-QED
on the CIFAR-10 dataset. The point “exact” represents computing the exact Euclidean
distance (i.e., no product quantization).

5 Conclusion

This paper explored anomaly detection in the context of images. We proposed
a novel convolutional auto-encoder architecture to learn a low-dimensional rep-
resentation of the images. Our architecture had two innovations: the use an
Inception-like layer and the application of a GAP operation. Then we assigned an
anomaly score to images using a nearest neighbors approach in the learned rep-
resentation space. Our contribution was to use product quantization to improve
run time performance of this step. We performed an extensive experimental
comparison to both state-of-the-art deep and shallow baselines on four standard
datasets. We found that our method resulted in improved predictive perfor-
mance.
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Abstract. Learning from multiple time-series over an unbounded time-
frame has received less attention despite the key applications (such as
video analysis, home-assisted) generating this data. Inspired by never-
ending approaches, this paper presents an algorithm to continuously
learn from multiple high-dimensional un-regulated time-series, in a
framework based on ensembles which with respect to drift level devel-
ops over time in order to reflect the latest concepts. Here, we explicitly
look into video surveillance problem as one of the main sources of high-
dimensional data in daily life and extensive experiments are conducted
on multiple datasets, that demonstrate the advantages of the proposed
framework in terms of accuracy and complexity over several baseline
approaches.

Keywords: Long-term learning · Data streams · Ensembles

1 Introduction

With the advent of distributed sensor networks in many real world problems such
as ambient assisted living, medial diagnosis, and video surveillance making sense
of an ever-increasing amount of data is a growing challenge. It is expected that
using time-series learning techniques leads to effective and hands-on solutions for
such scenarios. In this paper, long-term learning from multiple high-dimensional
time-series is approached using an active ensemble-based strategy. Inspired by
active approaches1, our ensemble based framework is able to track the environ-
ment changes using a change detection test. Exploiting a teacher in the learning
loop, which referred as “active learning” in the literature, is one of the new
trends for learning from complex environments (e.g. weakly labeled). Inspired
by these two groups of methods, we proposed our active ensemble-based strat-
egy for long-term learning which posses two main characteristics: (1) perform a
1 The term “active approaches” was first coined in [6] for one of the two main groups of
learning methods in non-stationary environments that rely on an explicit detection
of the change in the data distribution to activate an adaptation mechanism, as a
counterpart of passive approaches which continuously update the model over time
without requiring an explicit detection of the change.

c© Springer Nature Switzerland AG 2019
P. Kralj Novak et al. (Eds.): DS 2019, LNAI 11828, pp. 511–521, 2019.
https://doi.org/10.1007/978-3-030-33778-0_38
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change detection test to activate an adaptation procedure. (2) collaborate with
an oracle (teacher) to stay on track. As a use case, we focus on learning from mul-
tiple video streams as one of the most common and challenging high-dimensional
time-series generated in various real-world problems.

Running Example. Consider a network of video cameras employed to monitor
a large area. A central issue here is the tracking and recognition of individuals
of interest across multiple cameras. These individuals must be recognized when
leaving the Field of View (FoV) of one camera and re-identified when entering
the FoV of another camera, which is known as person re-identification (ReID)
in the literature. ReID is a challenging and widely studied problem in video
analysis field [13,16] and it underpins many crucial applications such as long-
term multi-camera tracking [9], behaviour analysis, and security monitoring. In
such environments, the underlying distribution of data changes over time either
due to illumination changes, dynamic background, changes in camera angle, and
etc. Thus, recognition models need to be continually updated to represent the
latest concepts. Moreover, when new objects enter the scene new models need
to be trained for the novel classes. The problem gets further complex when the
system is faced with unbounded streams of data [1]. When entering the scene,
the object will enter the coverage area of at least one of the cameras. As objects
move around and cross the Field of View (FoV) of multiple cameras, it is more
than likely to have multiple unregulated streams, potentially overlapping in time
for the same individual object. The surveillance system will have to track that
object from the first moment it was captured by a camera and across all cameras
whose fields of view overlap the object’s path.

Problem Formulation. Learning in such scenario can be characterized as
follows: Let υ be a set of unregulated time-series υi. Streams are potentially
subject to concept drift as well as concept evolution. Each observation x within
each stream is in a d-dimensional space, x ∈ Rd. Recording is not limited to a
bounded period. An effective and appropriate one-pass algorithm to fit in our
scenario is required to: (a) learn from multiple unregulated streams; (b) handle
multi (possibly high)-dimensional data; (c) handle concept drift; (d) accommo-
date new classes; (e) deal with massive amount of unlabelled data; (f) be of
limited complexity, which is the of the main contributions of this paper.

Main Contributions. We propose Intelligent Never Ending Visual Information
Learning (InteLL), a novel framework which is designed for long-term learning
from multiple un-regulated time-series and here is applied for long-term tracking
of previously unseen objects over multiple cameras (Sect. 2). The active approach
is based on a change detection strategy that triggers adaptation with respect to
the level of drift, by updating or building a classifier. The adaptation process is
achieved through the merging of two Gaussian Mixture Models (GMMs) into a
single one, which has not been addressed before (See Sect. 2).
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Fig. 1. Block diagram of InteLL framework

The codes is made publicly available2. The rest of the paper is organized as
follows. In Sect. 2 we introduce InteLL our novel framework for Intelligent Never
Ending Learning. In Section 3 we discuss the experimental methodology to assess
the performance of the proposed approach, and the main results we obtained.
An overview of related work on never-ending learning is presented in Sect. 4.
Finally, we draw conclusions and discuss directions of future work in Sect. 5.

2 InteLL: Intelligent Long-Term Learning from Multiple
Time-Series

In this section, the Intelligent Long-term Learning from time-series (InteLL)
framework is presented. InteLL is specifically designed for long-term learning
from non-stationary environments in which no labelled data is available but the
learning algorithm is able to interactively query teachers to label meticulously
chosen observations. Figure 1 shows a high-level sketch of INTELL framework.

Batch Representation. We adopt the localised average histogram as the
appearance feature of a video fragment because of its simplicity and effectiveness.

Batch Label Assignment. Once the features of batches of RoIs (υ∗m
t,f )

at time slot t become available, the framework starts computing the scores
S(υ∗m

t |Ck,Ht−1) for every batch. The scores are obtained from the likelihood
ratio test of the batch data obtained by the individual class model Ck and the
Universal Background Models (as detailed in Sect. 2). The composite model Ht

is an ensemble of Micro ensembles MEj
t , j = 1, ...,Kt, where Kt is the number

of classes observed until time t. Each MEj
t includes models hj

t that has been
trained on incoming batches of the jth class since it initially appeared until the
current time [15]. The prediction output by the composite model MEj

t for a
given batch of ROIs (υ∗m

t ) is

S(Ck|υ∗m
t ,MEj

t ) =
t∑

�=1

W t
� Sj

� (Ck|υ∗m
t ) (1)

where Sj
� (.) is the score output by hj

�(.) , and W t
� denotes the weight assigned

to model hj
� , adjusted for time t of the last action to give more credit to

2 https://github.com/SamanehKh77/InteLL.git.

https://github.com/SamanehKh77/InteLL.git
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the more recent knowledge. Once batch scores for different classes have been
obtained, an uncertainty measure is extracted to evaluate how accurate the
ensemble decision is. One of the simplest and most commonly used criterion
relies on the probability of the most probable class, defining the confidence level
as maxCk

S(Ck|υ∗m
t ,Ht−1).

On-line learning from time-evolving environments, where labelled data is
scarce, may suffer if labelling errors accumulate. To mitigate this issue, the sys-
tem is designed to exploit active learning strategies. Based on the type of the
oracle (teacher) available, these strategies request two groups of teachers to label
the data. Strong teacher that is usually but not always is human and assumed
to give unambiguous but expensive labels, while weak teachers provide tenta-
tive but less expensive labels. Most, but not all weak teachers are assumed to
be classification algorithms. InteLL provides the opportunity to take advantage
of both groups. The ensemble, H, participates in learning as a weak teacher.
Additionally, in order to reduce the number of the queries, the label assign-
ment for novel classes is automated. If the scores associated to all observed
classes (S(Cj |υ∗m

t ,Ht−1), j = 1, ..., k) are significantly low (below a predeter-
mined threshold), it is very unlikely that this class has been observed before and
it is considered novel. A new label (ÿ) is automatically assigned to this/these
batch(es). Having decided that the batch data belongs to an existing class, one
needs to decide which teacher to invoke; either strong teacher (i.e. operator)
or weak teacher (i.e. ensemble H). If the decision made by H is not reliable
enough, i.e. if maxCk

S(Ck|υ∗m
t ,Ht−1) < T1, a strong teacher labelling (in this

case by an operator) is requested (y), otherwise we invoke the weak teacher and
ŷ = arg maxCk

S(υ∗m
t |Ck,Ht−1) is assigned to the batch.

Data Modelling. The batches predicted to belong to the same class are used
to generate the class model hj

t by tuning the UBM parameters in a maximum a
posteriori (MAP) sense at every time slot. The training process of the UBM is
performed by fitting a k-mixture GMM to the set of feature vectors extracted
from a pool of streams of disjoint individuals that is representative of the com-
plete set of potentially observable ‘objects’. adaptation process consists of two
main estimation steps. First, for each component of the UBM, a set of sufficient
statistics is computed from a set of M class specific feature vectors. Each UBM
component is then adapted using the newly computed sufficient statistics, and
considering diagonal covariance matrices.

Intelligent Ensemble Generator. The key contribution of this paper is to
propose an incremental learning algorithm for never-ending scenarios where the
system can learn continually 24/7 from wide-area surveillance networks. The
advantage of ensembles-based algorithms in tackling these problems is the ability
to accumulate and aggregate knowledge in the form of learned models [18].

In our framework we consider multiple micro-ensembles that evolve over time
either by training new classifiers (in case of abrupt drift) or updating existing
classifiers (for gradual drifts) without sacrificing the performance. It is expected
that the proposed algorithm has high potential to identify recurrent drift, as it
employs change detection strategies at the learner level in order to (re-)identify
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concept drift thereby provoking a favourable yet less involved response. Once
the batch(es), υ∗m

t , in time slot t are classified as class “m” (either by invok-
ing teachers or automatically), the framework trains a model hj

t . The similarity
scores dm

tj are computed between all the models available in the correspond-
ing micro-ensemble MEj

(t−1) and the newly trained model hj
t . Once similarity

scores are obtained, all the models are searched to find the one with minimum
distance with the recent one. If dm

tk = min dm
tj , j = 1, ...,K (K is the num-

ber of models inside mth micro-ensemble) is high enough (above a predefined
threshold, (T ′), the model is seen as distinct, and is added to the ensemble,
otherwise the closest pair is merged into a single model (ĥm

t ). The highest time-
based credit will be assigned to either ĥm

t or hm
t as the most recent model.

Hence, we need a notion of similarity between models as well as a strategy for
updating the learners. The Kullback-Leibler divergence is a natural similarity
measure between two distributions. Although it cannot be analytically computed
for GMMs, an efficient and accurate approximation of KL-divergence for GMMs
is proposed in [8]. Assume h(x) =

∑n
i=1 αihi(x) and h′(x) =

∑m
k=1 βkh′

k(x)
are two Gaussian Mixture densities whose KL-divergence we want to compute.
Generally, the KL-divergence between two GMMs can be approximated by:
KL(h ‖ h′) ≈ ∑n

i=1 αiminm
k=1KL(hi ‖ h′

k) The approximation is based on a
matching function between each element of h and an element of h′ that is the
most similar to it. Various methods including the Hungarian algorithm have
been employed to find corresponding components.

Since, in GMM-UBM, the GMMs are obtained from a maximum a poste-
riori adaptation of a universal background model, the both densities have the
same number of components and there is a well justified correspondence between
components, the KL-divergence can be approximated as:

KL(h ‖ h′) =
∑

i

αiKL(hi ‖ h′
i) (2)

where the KL-divergence between components hi(μ1, Σ1) and h′
i(μ2, Σ2) can be

formulated as:KL(hi ‖ h′
i) = 1

2 (log |Σ2|
|Σ1| + Tr(Σ−1

2 Σ1) + (μ1 − μ2)T Σ−1
2 (μ1 −

μ2) − d)
Finally, the distance between two distributions h and h′ is computed as:

dhh′ =
KL(h ‖ h′) + KL(h′ ‖ h)

2
(3)

Updating a Concept. The problem of updating GMM has mostly appeared
in situations where: (1) a Gaussian mixture is fitted but the mixture components
are not separated enough [11], (2) a non-stationary environment the model is
not representative as time passes and the Gaussian mixture model needs to be
updated to track environment change [14]. These algorithms mainly focus on
updating a GMM, by either merging or splitting the components, while combin-
ing two GMMs is a less explored area. Here We propose a method that incre-
mentally merges GMMs without the necessity of retaining all data points, which
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has not been addressed before. Given two GMMs learned from two sets of obser-
vations f(x) and g(x) with n′ and n′′ points:3 f(x) =

∑M
i=1 fi(x′

i, π
′
i, μ

′
i, Σ

′
i),

and g(x′′) =
∑M

j=1 gj(xj
′′, πj

′′, μj
′′, Σj

′′), where each component is represented
by its weight (π), mean (μ), and covariance (Σ). First, the corresponding com-
ponents in different GMMs are found (finding the closest component from two
or multiple GMMs). The ith component of f(x) corresponds to jth component
of g(x), that can be merged and form the kth component of

m(x) =
M∑

j=1

mk(xk, πk, μk, Σk) (4)

Note that the number of points in jth component is expected to be equal to the
product of the component weight (π̈j) and the total number of points in the
GMMs (n̈). Using the definition of mean, variance and prior we derive:

πk =
n′π′

j + n′′π′′
j

n′ + n′′ (5)

μk =
∑

xk

n
=

∑
x′

i +
∑

x′′
j

n′μ′
i + n′′μ′′

j

=
n′π′μ′

i + n′′π′′
j μ′′

j

n′π′
i + n′′π′′

j

(6)

Σk = E(xk
2) − E2(xk) =

n′π′(Σi + μ′
iμ

′T
i ) + n′′π′′

j (Σ′′
j + μ′′

j μ′′T
j )

n′π′
i + n′′π′′

j

− μkμk
T (7)

which are weights, mean, and covariance of the new model, respectively.

3 Experimental Methodology and Results

Experiments were conducted on public indoor (seven scenarios of CAVIAR4,
SAIVT-Softbio [3]) as well as outdoor (PETS) datasets. Table 1 presents a qual-
itative look at the characteristics of the datasets applied in the experiments.
Given an image (RoI), the Improved Fisher Vector (IFV) [7] υ is obtained by
extracting a dense collection of patches and corresponding local image features
(herein, SIFT) from the image at multiple scales. To avoid the curse of dimension-
ality, Principle Component Analysis (PCA) is applied to the full set of features
as a pre-processing step. The number of features in each stream is reduced to 200
dimensions. To evaluate the system, each dataset is divided into 3 disjoint sub-
sets (different individuals). The first subset is used to train UBMs. The second
set is used to calibrate all the parameters. The final portion is used to evaluate
the performance.

3 For the sake of simplicity, the method is proved by a pair of 2-component GMMs,
however the extension for multiple GMMs is quiet trivial.

4 http://homepages.inf.ed.ac.uk/rbf/CAVIAR/.

http://homepages.inf.ed.ac.uk/rbf/CAVIAR/
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Table 1. A quantitative look at datasets.
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Evaluation Criteria. Never-ending learning is a relatively new field, and differ-
ent problems in the literature are informed by different assumptions with respect
to the applications. Thus, there is not a single evaluation metric that everyone
agrees is the most reasonable metric for this problem. InteLL is designed to be
employed over longer time horizons in an interactive framework, and expected
to maintain a reasonable level of performance with controlled complexity. Hence
performance as a function of complexity seems to be an informative metric to
assess the framework. Never-ending learning are aimed to work over an unlimited
time frame. The framework should be able to coverage the knowledge accurately
while controlling the complexity.

– Complexity As an ensemble-based framework size of the ensemble in other
term the number of the models inside ensemble seems an intuitive notion of
complexity.

– Area Under the Learning Curve (ALC) Since, InteLL is an interactive frame-
work, accuracy itself does not seems the most informative measure. Herein,
the learning curve is the set of accuracy plotted as a function of their respec-
tive annotation effort, a. The ALC is obtained by:ALC =

∫ 1

0
f(a)da

Baseline Methods. The work closest in spirit to InteLL is [10], that proposed a
never-ending framework for one dimensional real value time series. Since, we deal
with multiple high-dimensional data streams, the framework is not applicable in
our scenario. The InteLL framework is compared with three baseline approaches:

– NEVIL.ubm [15] is an example of algorithms for learning from multiple
uneven streams in non-stationary environments where both concept drift and
concept evolution are present. The framework adds a new model as new data
is received. Thus, the complexity of the ensemble grows over time.

– Incremental UBM learning [17] performs a continuous adaptation of the model
once a new observation is received. A single GMM-UBM is incrementally
trained on incoming batches of jth class at t, hj

t .
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– The Active Add is based on change detection mechanisms. Once an abrupt
change is detected, a new classifier is built and added to the corresponding
micro-ensemble.

Results. The optimal batch size varies and is influenced by the characteristics of
the streams present in each dataset. However, in our experiments for a frame rate
of 25 fps we conducted all the experiments on one second-length TSs (up to 25
frame per batch). In this section, the InteLL is evaluated on the task of long-term
learning using the model-level assessment strategy. The system performance is
evaluated based on ALC versus the number of classifiers. Figure 2 illustrates
the performance of InteLL on various video clips. The ALC is presented as a
function of the number of classifiers. We observe that in 7 out of 10 datasets
(i.e. SAIVT, SAIVTT Nonover, Enter ExitCrossingPaths1, OneShopOneWait1,
OneStop Enter2, WalkBy Shop1front), the framework obtains comparable per-
formance by learning only 20% number of the maximum classifiers possible.
The average number of classifiers per person is 1.8 (21 models for 11 classes).
With only one exception (OneExitCrossingPath1) InteLL outperforms incremen-
tal learning (depicted as red). AA method (plotted as green line) provides the
lowest ALC confirming the importance of the updating procedure.

4 Related Work

Never-ending learning systems have been one of the latest interest in the field
of learning as they are able to learn many concepts “in a cumulative nature”.
The Never-Ending Language Learning (NELL) [4] research project has been the
inspiration of numerous researches to address the never-ending learning prob-
lem [2,5,10,12]. NEIL (Never Ending Image Learner) [5], was developed to auto-
matically extract visual knowledge from Internet data. NELTS was proposed
in [10] for long-term learning from single time-series. NOEL [19] was designed
for never-ending object learning in Robatics. Obviously, the techniques used by
research works are informed by different assumptions in respect with the appli-
cations and goals. With a few exceptions [19], most of the never-ending literature
has focused on coverage of knowledge, while our approach tries to cover knowl-
edge and accuracy as well as efficiency.

To the best of our knowledge, InteLL the first attempt to employ active
strategies to control the complexity of a passive method (here an ensemble) to
make it applicable for long-term learning of time-series in an online manner. The-
oretically there is no upper bound on the number of classes learnt by the system
(coverage of the knowledge). Furthermore, results demonstrate high ALC (accu-
racy) by only generating a quiet reasonable number of models inside each MCE
(efficiency). Given these, InteLL is the first step towards a practical constant
learner for many challenging real-world problems.
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(a) EnterExitCrossingPaths1 (b) Non-overlapped (c) OneLeaveShopReenter2

(d) OneLeaveShopReenter1 (e) OneStopEnter2 (f) OneShopOneWait1

(g) OneStopMoveEnter1 (h) SAVIOT (i) PETS

Fig. 2. ALC against number of classifiers generated in descending order of InteLL
against multiple baseline approaches on our set of real-world datasets. The signs
denote the results of AA, InteLL, NEVIL.ubm, and Incremental Learning, respectively.
(Color figure online)

5 Conclusion

We presented a learning setting yet unexplored in the literature but with wide
practical relevance, such as in long-term person re-identification over multiple
video cameras. Adaptive ensembles are developed over time with respect to drift
level, either by updating an existing model or adding a new learner to the ensem-
ble, in order to reflect the latest concepts appearing in the environment as well
as bound system complexity. However, long-term learning from multiple video
streams is assessed in the experimental part and favourable results on multiple
datasets indicate the effectiveness of this method, InteLL can be applied in any
multi-stream learning setting.

Utilizing domain adaptation approaches to provide an up-to-date knowledge,
as well as employing the framework in other domains including banking, insur-
ance, and home-assisted settings all constitute our future work.
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Abstract. Classical statistical models for time series forecasting most
often make a number of assumptions about the data at hand, therewith,
requiring intensive manual preprocessing steps prior to modeling. As a
consequence, it is very challenging to come up with a more generic fore-
casting framework. Extensive hyperparameter optimization and ensem-
ble architectures are common strategies to tackle this problem, how-
ever, this comes at the cost of high computational complexity. Instead
of optimizing hyperparameters by training multiple models, we propose
a method to estimate optimal hyperparameters directly from the char-
acteristics of the time series at hand. To that end, we use Convolutional
Neural Networks (CNNs) for time series forecasting and determine a part
of the network layout based on the time series’ Fourier coefficients. Our
approach significantly reduces the amount of required model configura-
tion time and shows competitive performance on time series data across
various domains. A comparison to popular, state of the art forecasting
algorithms reveals further improvements in runtime and practicability.

Keywords: Time series forecasting · Neural networks · Fourier
analysis

1 Introduction

In the age of connected sensors, devices, and services, temporal data is one
of the most widespread data types these days. Designing accurate forecasting
models typically involves lots of manual work, e.g. data preprocessing, parameter
tuning, and model selection. Since time series data comes in different shapes and
distributions, these manual steps are usually required for each new dataset.

In this work, we propose a time series forecasting framework based on CNNs
that makes no prior assumptions about data distribution and integrates all
required preprocessing steps. We demonstrate its predictive power on thirty data
series, where the approach outperforms all baselines in two-thirds of the cases
without the need to manually adapt any parameter across the different datasets.
In addition to this, we show significant improvements in runtime of the training
process, therewith, providing a very convenient forecasting method that is fast
and robust.
c© Springer Nature Switzerland AG 2019
P. Kralj Novak et al. (Eds.): DS 2019, LNAI 11828, pp. 522–532, 2019.
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Our approach combines the predictive power of CNNs with the time series
decomposition capabilities of Fourier analysis. Hyperparameter tuning is expen-
sive, because it requires training multiple models. In this paper, we follow a dif-
ferent approach and configure a neural network analytically. Our idea is based
on the assumption that the characteristics of a time series – more specifically:
its Fourier decomposition – can be used to determine a suitable network layout
for a CNN. Hence, we exploit the inherent structure of time series data in order
to parametrize the CNN used for forecasting.

Section 2 starts with existing approaches to time series forecasting, discussing
their assumptions and strengths. In Sect. 3, we provide a detailed explanation
of our contribution and its motivation. These ideas are applied to numerous
real world datasets in Sect. 4, demonstrating advantages and limitations. We
conclude and discuss future work in Sect. 5.

2 Related Work and Time Series Fundamentals

Due to the diverse occurrence of time series data in applications and databases,
its analysis has been an active research field for decades. Temporal data has the
interesting property that the current value is dependent on a number of past
values. In other words, observations are not independent of each other but can
be thought of as a function of their past values.

2.1 Autoregression and Smoothing

Autoregressive (AR) models are amongst the most popular approaches for time
series analysis and forecasting. AR models approximate a time series with a linear
combination of the most recent past values and their errors [4]. These models
perform particularly well if the assumption is met that the series is generated
by a linear process [1], however, this barely holds in practice.

Exponential Smoothing constitutes another relatively simple yet popular
approach to forecasting. Here, the series is smoothed by applying an exponential
window function. This implies the assignment of weights which decrease over
time.

2.2 Machine Learning

Forecasting as a Supervised Regression Problem. An advantageous prop-
erty of historical time series data is that transforming it to a supervised machine
learning task is easy. Past observations serve as explanatory features to the
respective future values that constitute the target variables. Unlike other super-
vised learning tasks (e.g. image recognition), time series data can be automati-
cally transformed to a supervised problem without the need for manual annota-
tion. This aspect is critical for the success of end-to-end forecasting frameworks
such as the one presented in this paper.
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Handled this way, the forecasting task follows the same process as any other
supervised machine learning challenge, i.e., hyperparameter optimization, eval-
uation, and model selection. This idea is also implemented in [23] in order to
train the base models required for ensemble learning.

Fig. 1. Transforming raw, univariate time series data to a supervised learning task

There are two common strategies of how to design a machine learning system
for multi-step time series forecasting, known as the direct and indirect methods.
Assuming a forecasting horizon h > 1, one can either train a dedicated model
for each future point 1, 2, ..., h (direct method), or only train a single model and
use its forecast as input for the succeeding future point in an iterated fashion
(indirect method). Since the direct approach requires the training of h individual
models it scales very poorly for longer horizons, leading to a low practicability
for actual applications. It was also shown that the performance is inferior to that
of the indirect method for AR models [9].

Artificial Neural Networks. [11] showed that an ANN with one hidden layer
is able to approximate a continuous function arbitrarily well, which makes ANNs
highly interesting for regression problems. The spike in popularity of ANNs
within the past decade led to significant developments for time series analy-
sis, especially with regard to recurrent neural networks (RNNs). As these mod-
els usually make no prior assumptions about data distribution, they have a
major advantage over more classical time series models described in the previ-
ous section. Intuitively speaking, RNNs can be thought of as standard feed for-
ward networks with loops in them. This sequential architecture enabled RNNs
to achieve new state of the art results on a variety of sequential tasks such as
machine translation [5,20] and time series forecasting [3,14,17]. Nevertheless,
RNNs tend to suffer from vanishing or exploding gradients in case of very long-
term dependencies in the data [2,18]. Long short-term memory (LSTM) cells
overcome this problem by the introduction of a gating mechanism that regulates
the information flow of the network [10]. This allows for more reliable modeling
of long-term dependencies, leading to a wide adoption of LSTMs for sequential
tasks.

Due to the sequential nature of RNNs, parallelization possibilities are limited
and training these models is computationally expensive. As a consequence, the
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application of convolutional neural networks (CNNs) to sequential problems has
been a very active field of study. CNNs rely on filtering mechanisms in order to
generate meaningful meta-features out of the raw input data. While primarily
used to analyze visual imagery [27] and audio [26], the application of CNNs to
sequential regression problems has shown competitive prediction performance at
significantly lower computational complexity [7].

2.3 Ensembles

An essential requirement for ensemble methods to be effective is that the base
learners are heterogeneous and make different errors at prediction time. [22]
presents strategies on diversity generation for ensemble models. [23] combines
several heterogeneous machine learning base models that are arbitrated by a
meta-learner to generate the final forecasts. [12,13] make use of local minima in
the LSTM training process by storing model snapshots every time the LSTM
converges to a local minimum. While ensemble models boost predictive perfor-
mance, training of multiple base learners leads to high computational costs.

3 Forecasting with CNNs

The general procedure to train a CNN forecasting model follows the steps
required for any regression problem, where the lags of the input series serve
as features and the respective future values as targets. Figure 1 depicts the split-
ting logic in the data preprocessing stage. The forecasting horizon h is usually
a given parameter that is defined by the problem at hand. More importantly,
the number of past lags to include as features must be large enough in order to
account for long-term relationships across the series.

3.1 A CNN Algorithm for Multi-Step Forecasting

While CNNs are best known for their powerful capabilities within the area of
image recognition, they are also widely used for more traditional regression prob-
lems. Hence, their structure allows the application to autoregressive tasks such
as time series forecasting. Contrary to RNNs, however, CNNs are not naturally
built for sequence processing. In order to generate sequence forecasts despite
its architecture, we apply the indirect forecasting method, following the logic
described before.

3.2 Enhancing Parameter Optimization with Fourier Analysis

The major challenge when dealing with ANNs is hyperparameter optimization.
As this is a data specific task, a robust forecasting framework greatly benefits
from efficient parameter optimization.

For the special case of time series data, we make use of its inherent structure
in order to enhance CNN parametrization. Since one of the key tasks of time
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series models is to correctly identify repeating patterns over time, it is essential
to parametrize models in a way that enables them to determine these structures.

Fourier analysis is a powerful and efficient tool that solves the problem of
determining autocorrelations [19]. We apply the fast Fourier transform (FFT)
[21] to the training data and use the decomposition of the series to extract the
strongest autocorrelations. As these frequencies determine the respective sizes
of the strongest patterns, we can configure the convolutional layers so that they
match those pattern lengths. Therefore, the CNN is directly tailored towards the
patterns that dominate the time series under study. More precisely, the proposed
method follows these steps to get from data input to forecasting:

1. z-standardize and transform the input data according to Fig. 1
2. Determine Fourier coefficients and top-2 autocorrelations
3. Define a 2-layer CNN and set the lengths of the convolution windows accord-

ing to the top periodicities inferred from the Fourier coefficients. The CNN
uses 96 filters, 50 past lags, a batch size of 16, a dropout rate of 20%, a learn-
ing rate of 10−4, the Adam [8] optimizer, 100 epochs and mean squared error
as loss function.

4. Train CNN and evaluate performance on the test set

4 Experimental Analysis

4.1 Baseline Models and Evaluation

In order to validate the performance of the proposed algorithm, we perform
forecasting experiments on 30 real world datasets.

Methods. The 10-steps ahead forecasting accuracy, measured in terms of root
mean squared error (RMSE), is compared to the following baseline methods (cf.
Sect. 2 for details):

– ARIMA, where model selection is based on a parameter grid opting for the
AIC (p = 1, 2, 3, q = 1, 2, 3, d = 1, 2)

– Exponential Smoothing (ES)
– Arbitrated ensembles (ArbEns) specified in [23]
– Fourier: continuing reconstructed Fourier signals to generate forecasts
– CNNs parametrized with common filter length selections {2, 8} opposed to

Fourier based parameter estimation (CNN-Std.)
– Standard 2-layer LSTM architecture as described in [13] (LSTM-Std.)
– LSTM with the same architecture as the previous one, trained using the

Snapshot Ensemble approach from [13] (LSTM-Snap)
– Our proposed method, combining CNNs and Fourier analysis (CNN-Fou)

An implementation, written mostly in Python, is available on GitHub1. For
arbitrated ensembles, the tsensembler library written in R is used since the
authors released it in that language.
1 https://github.com/saschakrs/CNN-Fou, accessed April 6, 2019.

https://github.com/saschakrs/CNN-Fou
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Data. The datasets listed in Table 1 are used for model training and validation.
These time series originate from various domains such as air quality measure-
ments and energy loadings. We also report the frequencies, mean values and
standard deviations for each series. Furthermore, the length of each series is
normalized such that all datasets have between 2.974 and 2.995 observations,
making the results comparable.

In this analysis, we focus on the univariate case, i.e., forecasting the target
variable based on its own past values. Prior to modeling, all data is standardized
according to a z-transformation, i.e., Y = Y −μ

σ . Note that mean μ and standard
deviation σ are determined based on only the training set as the holdout data
points are unknown in a real scenario. For each approach and dataset, the most
recent 10% of the series are used as test data in a windowing fashion. Every model
is evaluated based on its ability to provide accurate 10-step ahead forecasts.

Evaluation. The results are summarized in Table 2. For each method and
dataset we report the forecast RMSE for the 10% holdout data sample.

In addition, we provide the runtimes for model training in Fig. 2. The neural
networks were trained on a NVIDIA Tesla K80 GPU and an Intel i7-6820HQ
CPU was used for all other models as these don’t profit from GPU usage.

The key value of our method lies in its robustness across different datasets
without the need to manually incorporate domain knowledge. This implies that
we leave all training architectures and parameters constant for each series (except
for the Fourier coefficients that are learned for each dataset). Therefore, the

Fig. 2. Average model runtime across 30 datasets
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Table 1. Overview of datasets

i Domain Frequency μ σ

1 Water consumption indicators in Porto [23] 30min 1.75 1.38

2 Water consumption indicators in Porto 30min 1079.03 271.90

3 Water consumption indicators in Porto 30min 10.08 7.03

4 Solar radiation [23] Hour 930.72 289.03

5 Solar radiation Hour 112.46 86.14

6 Solar radiation Hour 912.74 279.47

7 Solar radiation Hour 84.25 45.84

8 Various air quality measurements [25] Hour 1593.23 366.28

9 Various air quality measurements Hour 948.45 380.95

10 Various air quality measurements Hour 20.29 7.89

11 Various air quality measurements Hour 43.41 17.38

12 Various air quality measurements Hour 1.00 0.30

13 Various air quality measurements Hour 15.96 44.31

14 Various air quality measurements Hour 27.82 35.80

15 Various air quality measurements Hour 202.37 287.44

16 Various air quality measurements Hour 84.96 122.25

17 Various air quality measurements Hour 72.77 105.03

18 Various air quality measurements Hour 58.06 29.89

19 Various air quality measurements Hour 40.35 16.90

20 Various air quality measurements Hour 33.42 18.81

21 Energy loads such as electricity or gas [23] Hour 1.67 0.74

22 Energy loads such as electricity or gas Hour 67.83 153.33

23 Energy loads such as electricity or gas Hour 2.15 0.46

24 Energy loads such as electricity or gas Hour 256.11 40.23

25 Energy loads such as electricity or gas Hour 1021.64 203.35

26 Exchange rates [24] Day 208.32 82.10

27 Rainfall in Melbourne [24] Day 522.93 87.65

28 Mean river flow [24] Day 456.74 105.85

29 Number of births in Quebec [24] Day 23.01 10.68

30 Mean wave height [24] Hour 4.49 3.16

proposed method constitutes a framework for automated end-to-end time series
forecasting that does not require additional, manual processing steps prior to
modeling and forecasting.
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Table 2. RMSE for 30 different datasets, 10-steps ahead forecasting

i ARIMA ES ArbEns Fourier CNN-Std LSTM-Std LSTM-Snap CNN-Fou

1 0.60 1.12 0.50 1.04 0.51 0.88 0.51 0.38**

2 0.65 0.93 0.37 0.99 0.52 0.45 0.21* 0.25

3 0.69 1.22 0.51 1.15 0.54 0.67 0.41 0.39*

4 0.60 1.09 0.43 1.09 0.41 0.53 0.36 0.31**

5 0.86 1.45 0.53** 1.54 0.95 0.74 0.58 0.59

6 0.47 0.89 0.42 0.93 0.40 0.59 0.30 0.30

7 0.77 1.48 0.57 1.11 0.67 0.81 0.47 0.45

8 0.54 1.17 0.42 0.71 0.45 0.57 0.48 0.30**

9 0.95 1.90 0.67 1.34 0.40** 0.77 0.55 0.55

10 0.51 0.83 0.27 0.52 0.38 0.31 0.30 0.27

11 0.39 0.83 0.33 0.46 0.25 0.41 0.37 0.21*

12 0.73 1.34 0.62 1.35 0.48* 0.91 0.56 0.50

13 1.29 1.29 1.31 1.59 1.08 1.66 1.01** 1.19

14 0.56 0.41 0.29 0.69 0.29 0.37 0.28 0.27

15 0.46 1.87 0.40 0.50 0.56 0.42 0.45 0.40*

16 0.65 1.04 0.65 0.81 0.78 0.94 0.46** 0.53

17 0.63 1.01 0.63 1.09 0.72 1.13 0.50* 0.51

18 0.74 1.16 0.27 1.37 0.40 0.30 0.31 0.26**

19 0.94 1.06 0.44 1.41 0.51 0.69 0.43 0.32**

20 0.86 0.86 0.71 1.19 0.86 0.86 0.42** 0.59

21 1.16 1.33 0.49 1.45 0.51 0.55 0.42 0.37**

22 0.11 0.02 0.03 0.12 0.03 0.05 0.03 0.03

23 1.05 0.27 0.07 1.46 0.06 0.13 0.06 0.05

24 0.76 1.16 0.57 1.19 0.37 0.78 0.44 0.45

25 0.74 1.06 0.23 0.90 0.34 0.38 0.21 0.18*

26 0.55 1.01 0.27 0.79 0.38 0.30 0.19 0.15*

27 0.52 1.59 0.37 0.63 0.44 0.51 0.26 0.25

28 0.39 1.69 0.34 0.59 0.44 0.43 0.22 0.22

29 0.52 1.06 0.44 0.70 0.23* 0.80 0.33 0.32

30 0.72 0.61 0.63 1.19 0.62 0.91 0.73 0.55*

Avg 0.68 1.09 0.46 1.00 0.49 0.63 0.40 0.37

4.2 Results

The results in Table 2 show that the proposed approach yields superior perfor-
mance in 20 of 30 cases. We apply the Diebold-Mariano test [15] in order to
evaluate whether the top performing model has a significantly different fore-
casting accuracy than the next best method. The null hypothesis states that
the forecasting accuracy of the two methods are not different. One star (*) or
two stars (**) indicate a p-value of less than 0.05 or 0.01, respectively. We can
observe that:
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– In two-thirds of all cases, the Fourier-integrated CNN is superior or equal to
all baseline methods with an average performance gain of 10.25% compared
to the next best method (Snapshot Ensembles).

– Traditional models such as ARIMA, exponential smoothing and simple
Fourier forecasting show poor performance compared to advanced methods.

– In terms of runtime, modern CNN implementations benefit heavily from
strong parallelization on GPUs. Here, LSTMs suffer from their sequential
nature that makes them harder to train efficiently. Compared to the training
of LSTMs, CNNs are faster by a factor of 4.

– While arbitrated ensembles are amongst the top performers for each dataset,
they are computationally expensive since a number of base learners must be
trained in order for ensembles to be effective.

– Result significance differs depending on the dataset. This is due to varying
problem complexity between datasets.

5 Conclusions

We presented an end-to-end time series forecasting framework based on CNNs
and Fourier analysis which is more computationally efficient and accurate than
existing approaches. We made use of the natural structure of time series data
in order to capture repeating patterns effectively. It was shown that Fourier
analysis can be used to enhance CNN parametrization and improve forecasting
performance without the need to adapt the setup for new datasets. The method
was compared to various state of the art forecasting methods and generated the
most accurate results in the majority of thirty use cases.

While this work focused on the univariate case, its extension to the multi-
variate scenario will be part of our future research. The basic methodology will
be the same, however, the additional amount of features requires more efficient
preprocessing and modeling strategies. Apart from that, it is worth investigating
the effects when scaling the framework to larger datasets, especially in terms of
CNN architecture.
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Abstract. In machine learning applications in the energy sector, it is
often necessary to have both highly accurate predictions and information
about the probabilities of certain scenarios to occur. We address this chal-
lenge by integrating and combining long short-term memory networks
(LSTMs) and online density estimation into a real-time data streaming
architecture of an energy trader. The online density estimation is done in
the MiDEO framework, which estimates joint densities of data streams
based on ensembles of chains of Hoeffding trees. One attractive feature of
the solution is that queries can be sent to the here-called forecast-based
point density estimators (FPDE) to derive information from a compact
representation of two data streams, leading to a new perspective to the
problem. The experiments indicate promising application possibilities of
FPDE, including but not limited to the estimation of uncertainties, early
model evaluation and the simulation of alternative scenarios.

Keywords: Density estimation · Data stream · Energy consumption

1 Introduction

In recent years, Machine Learning (ML) and Data Mining (DM) algorithms have
become increasingly popular in the energy sector. The popularity of such algo-
rithms is to a large extent due to the increasing computational power of CPUs
and GPUs, making ML and DM algorithms reliable tools to find patterns in data,
make highly accurate predictions in real-time settings and optimize processes.
Many big companies have embedded those methods into their production sys-
tems (e.g. Uber [1], Amazon [2] or Facebook [3]), but there are still many small
and medium-sized enterprises (SMEs) in the energy sector, where ML and DM
algorithms can simplify processes and deliver more accurate solutions, but are
not part of the infrastructure yet.

This paper presents the current status of an on-going project with an energy
trader. The main goal is the integration of long short-term memory networks
(LSTMs) and MiDEO [4], a framework to estimate joint densities of data
streams, into the real-time production system of the energy trader. Our system
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shall not only be capable of automating model handling processes (e.g., hyper-
parameter optimization, model training, model evaluation and model selection),
but we also propose and apply a new way of combining LSTMs with MiDEO.

The main contributions of this paper are: (i) The paper proposes a combi-
nation of neural networks for time series forecasting (LSTMs) and online den-
sity estimators (EDO, i.e., estimation of densities online [4]), to overcome the
limitations of either approach. LSTMs give accurate predictions, but lack the
possibility to estimate the uncertainty of their output, and density estimators
can estimate uncertainty, but are not designed to give accurate predictions. Cou-
pling a density estimator that works in an online manner with an LSTM has the
advantage of being able to extract uncertainty information from LSTMs (i.e.,
LSTM forecasts) quickly. This is a practical option that has not been considered
so far. Employing EDO for this task has the advantage that arbitrary inference
tasks can be supported on the basis of the density estimate, which is currently
not possible for general neural network architectures. (ii) Technically, the inte-
gration is achieved by the processing of two input streams, one being the stream
of actual values and one being the stream of forecasts. (iii) The approach has
been developed for the prediction of energy consumption, where approaches so
far have used either neural networks or density estimation. (iv) We test the
framework regarding the sensitivity to hyperparameters, showing the strengths
as well as the weaknesses, and compare to the performance of LSTMs alone and
of other density estimators. Daily-based scoring functions for conditioned point
density estimation are developed as part of the evaluation.

2 Related Work

Predicting energy consumption is an important topic with global relevance. A
lot of work has been done to address the challenge on different levels, let it be for
individual households, buildings, countries or SMEs. Concerning the energy con-
sumption of individual households, Berriel et al. [5] studied deep fully connected,
convolutional and LSTM networks, Alobaidi et al. [6] proposed an ensemble-
based artificial neural network (ANN) framework and Kong et al. [7] presented
another LSTM based framework.

Zhao and Magoulès [8] published a review paper on the prediction of building
energy consumption, including engineering, statistical and artificial intelligence
methods. In a more recent review, Deb et al. [9] analyze different ML forecasting
techniques and hybrid models.

Other work addresses the challenge of predicting the energy consumption of
certain countries. For example, Kaytez et al. [10] analyze least squares support
vector machines, multi linear regression models and ANNs to predict the energy
consumption of Turkey; or in 2015, Dedinec et al. [11] used deep belief networks
to forecast the energy load in Macedonia.

While the above approaches mostly focus on various types of neural networks
for predicting energy consumption, the latter has also been pursued by applying
density estimation methods. Arora and Taylor [12] use conditional kernel den-
sity estimation approaches to predict electricity smart meter data, and Hong
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and Fan [13] provide a review of different probabilistic electric load forecasting
methodologies, techniques and evaluation methods.

All the mentioned work mostly focuses on the prediction of energy consump-
tion on distinct levels using different approaches, solely trying to achieve the
lowest prediction errors. In contrast, we employ a probabilistic approach to not
only estimate the distribution of either the forecasts or the energy consumption,
but to calculate a probabilistic stream of point densities comprising the informa-
tion of both actual consumption and forecast. Based on this approach, statistical,
ML or DM methods can be applied to retrieve more information from the out-
put stream. Moreover, the output is represented in terms of the log-likelihood
(LL). This has the advantage that neither the measurement of the true energy
consumption nor the unit of the true measurements is revealed. Consequently,
the calculated densities can be anonymously shared with other companies or
customers, e.g. for data analyses purposes.

3 Methodologies

In this section, MiDEO is shortly introduced, which is the framework where EDO
is implemented, followed by a formal definition of online density estimation to
help understanding the FPDE approach. Afterwards, we explain FPDE, give
some use cases to point out the diversity of possible applications and conclude
with some scoring functions for the evaluation of the point densities.

3.1 MiDEO

EDO is an ensemble of online density estimators, which uses classifier chains
of Hoeffding trees to model dependencies among features. We choose EDO as
our online density estimator because it is competitive with other density estima-
tors [4], can handle mixed types of variables, enables inference tasks, trains fast,
and allows to address privacy issues. As EDO is implemented in the framework
MiDEO1, this is the framework to be coupled with LSTMs. In the following, we
give a formal definition of online density estimation based on Geilke et al. [4],
which will be further used to describe FPDE and the scoring functions.

Online Density Estimation. Let X be a random variable, values(X) a set
of possible outcomes of X and [a, b] an interval with a, b ∈ values(X). We call
X a continuous random variable if it can take on any value in the range of
[a, b]. The joint density f over random variables X1, ...,Xm is a non-negative
Lebesgue-integrable function f(X1, ...,Xm), such that

Pr(X1 ∈ [a1, b1], ...,Xm ∈ [am, bm]) :=
∫ b1

a1

...

∫ bm

am

f(x1, ..., xm)dx1...dxm. (1)

1 https://github.com/kramerlab/mideo.

https://github.com/kramerlab/mideo
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Let x be an instance of f , denoting an assignment of random variables
X1 = v1, ...,Xm = vm, such that vi ∈ values(Xi) for 1 ≤ i ≤ m. If the
joint density is conditioned on some random variables Y1, ..., Yl, then we write
f(X1, ...,Xm|Y1, ...Yl), where we call X1, ...,Xm the target (random) variables.

Definition 1. Let F := {fi(X1, ...,Xm|Y1, ..., Yl)|1 ≤ i ≤ k ∈ N} be a set
of joint densities. A data stream of f ∈ F , denoted as stream(f), is a possibly
infinite sequence of instances x1, x2, ... that are drawn according to the probability
distribution induced by f , where stream(f)[1 : N ] := {x1, x2, ..., xN}. A data
stream over F , denoted as stream(F ), is a possibly infinite sequence of instances
stream(F ) := stream(fj1)[1 : Nj1 ] ◦ stream(fj2)[1 : Nj2 ] ◦ ..., where fji ∈ F and
ji, Nji ∈ N.

Definition 2. Let F := {fi(X1, ...,Xm|Y1, ..., Yl)|1 ≤ i ≤ k ∈ N} be a set of
joint densities and stream(F ) be a data stream over F . An algorithm is called
online density estimator, if

1. it receives this sequence instance by instance,
2. it has a limited amount of memory, and,
3. after receiving an instance xi, it produces a density estimate f̂i.

The estimation of the density of a data stream by an online density estimator
is called online density estimation.

3.2 Forecast-Based Point Density Estimation

Dealing with streaming data incorporates the difficulty of not knowing how the
energy consumption forecasts of an LSTM perform in advance. Furthermore, it
might be desirable to not only have point forecasts, but to retrieve additional
information from the forecasts and the true data. Therefore, we suggest to use
a density estimator, e.g. EDO [4], to obtain a condensed representation of the
forecast and consumption patterns. In the following, we provide a formal expla-
nation.

Let y1, y2, ... be a possibly infinite sequence of instances, where yi ∈ R,∀i ∈ N.
Having a time window of size l, a prediction range k and a prediction inter-
val of size m, with l, k,m ∈ N, let yt−l+1 , yt−l+2 , ..., yt0 denote the input to a
trained LSTM at time point t0. Then the output of the LSTM, formalized as
(ŷtk , ŷtk+1 , ..., ŷtk+m−1), represents the forecasts for the specified prediction inter-
val. Our focus lies on point density estimates, hence, the conditioned forecast-
based density is calculated by EDO for each of the point forecasts:

f̂(ŷj |yt−d+1 , yt−d+2 , ..., yt0),∀j ∈ [tk, ..., tk+m−1], (2)

where ŷj and yi stand for the variable assignment of the target variable Ŷj and
the random variables Yi. Figure 1 shows an example where the FPDE estimates
the point densities of the LSTM forecasts based on a time window of the true
consumption in the range from t−3 to t0. According to Eq. 2 it follows
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t−3 t−2 t−1 t0 t1 · · · t60 · · · t155

prediction origin

historical data unknown true values

t̂60
· · · t̂155

LSTM forecasts

Fig. 1. The prediction origin t0 represents the time point until which the energy con-
sumption data is available, where the true consumption starting from t1 is unknown.
The prediction interval for the LSTM is from 60 to 155 time steps ahead of t0.

f̂(ŷj |yt−3 , yt−2 , yt−1 , yt0),∀j ∈ [t̂60, ..., t̂155]. (3)

Note, the time window d of historical data in Eq. 2 can differ from the time
window l of the LSTM, because LSTMs need larger time windows to recognize
patterns in the data, whereas density estimators output lower probabilities the
more variables are used. Latter can lead to LL-values of −∞ (see Sect. 4).

Use Cases. The main purpose of the FPDE-approach is the combination of
the LSTM’s prediction strength and the inference possibilities with MiDEO.

Alternative scenarios are useful if the energy consumption was influenced
by exceptional events or if incidents shall be simulated which are not present
in the true data. In case of LSTMs, adapting the training set requires new
model training which can be time-consuming based on the complexity of the
model and the data. In contrast, MiDEO achieves to train density estimators in
approximately 5 s on a dataset with 35000 instances × 65 features.

Furthermore, FPDE delivers a new condensed data stream incorporating the
information of true consumption and LSTM forecasts. This output prevents any
conclusion regarding the unit of the data (kWh or MWh). Hence, the new data
can be shared for further statistical analyses without revealing the ground truth.

Finally, MiDEO can not only be used to estimate the joint probability of
LSTM forecasts over time intervals like hours or days, but also the marginal
probability of point forecasts. In the remainder of this paper, we will focus on
the latter aspect, as it is rarely considered, although it has its own advantages.

3.3 Scoring Functions

To compare the results obtained by varying the hyperparameters of EDO and the
time windows of historical data, we introduce scoring functions which represent
the relative changes in the point densities, once for relative changes within days
and once for relative changes between days. We consider relative changes because
absolute values lead to misinterpretations, especially because the densities get
lower if the time window of the true consumption is increased.
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Definition 3. Let f be a point density, d ∈ N a time window, t0 the prediction
origin and a, b ∈ N a lower and an upper bound for some time interval [ta, tb].
We define the mean relative change of densities within a day as

mrcintra(f, a, b, d, t0) :=
1

b − a

b−1∑
i=a

f(ŷti+1 |yt−d
, yt−d+1 , ..., yt0)

f(ŷti |yt−d
, yt−d+1 , ..., yt0)

. (4)

The mrcintra averaged over all days of a data set D with a prediction interval
of size m, representing the measurements of a whole day, is

mrcDintra(f,m, d, t0) =
1
n

n−1∑
i=0

mrcintra(f, i ∗ m, (i + 1) ∗ m − 1, d, ti∗m) − 1, (5)

where n = |D|
m . We subtract 1 for an easier interpretation of the result.

Analogously, if we want to calculate the mean relative change of densities
between days, denoted as mrcinter, then we use Eq. 4 and set b = a + 1, where
a stands for the last measurement of a day. It follows

mrcinter(f, a, d, t0) :=
f(ŷta+1 |yt−d

, yt−d+1 , ..., yt0)
f(ŷta |yt−d

, yt−d+1 , ..., yt0)
. (6)

Hence, the average mrcinter between all days of data D is given by

mrcDinter(f,m, d, t0) =
1

n − 1

n−2∑
i=0

mrcinter(f, (i + 1) ∗ m − 1, d, ti∗m) − 1. (7)

4 Experimental Setup

The section starts with a short description of the real-world data and the trading
type used for the training and forecasting with LSTM and FPDE. Afterwards,
experiments with different parameterizations are conducted, followed by an eval-
uation of the results and a comparison with other methods.

4.1 Data Description and Day-Ahead Market

The available real-world data contains information about the energy consump-
tion of a firm location from 2015 to 2016. The instances are measured quarter-
hourly in kWh, resulting in 96 measurements per day and 70176 records in total.

In the electricity market there are currently two trading types on the
exchange EPEX SPOT in Europe, namely the intraday trading and the day-
ahead (DA) trading, whereas in the latter case the electricity is traded until
12 noon for the consecutive day. Traders have to ensure that their forecasts
are timely available, which is a non-trivial challenge due to possible delays of
incoming information about energy production and consumption. Therefore, the
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LSTM forecasts of the energy consumption for the provided company location
are created at 9:00 o’clock for the consecutive day, giving a buffer of 3 h to handle
exceptional situations. Hence, the prediction origin t0 is at 9:00 o’clock and the
prediction interval ranges from 60 to 155 time steps ahead, representing the con-
secutive day from 0:00 o’clock to 23:45. This type of forecasting will be denoted
as DA-trade and is illustrated in Fig. 1.

4.2 Experiments

The point probabilistic condensed representation f(X|Y1, ...Yl) combines infor-
mation about historical data by the variables Yi and LSTM forecasts by the
target variable X. In the following experiments the influence of different time
window lengths and hyperparameter values using FPDE with offline training
and online forecasting, based on the DA-trade, is analyzed.

Offline Training with DA-Based Forecasting. The LSTM network used in
this paper was trained for 300 epochs, batch size 1 and a time window of 3 days.
Using the stochastic gradient descent as optimizer and the mean absolute error
as loss function, experiments have shown that a shallow network structure with
one hidden layer and 10 LSTM blocks was sufficient to capture the patterns of
the data, achieving a mean absolute percentage error (MAPE) of 2.7% on the
test data. Note that hyperparameter optimization and experiments with deeper
network structures have been performed, but will not be presented here, as it is
not the focus of this paper.

In the current case, FPDE takes a time window of size d = 4, where the point
densities are estimated for a prediction range k = 60 and a prediction interval
length m = 96 (see Eq. 3). Training was performed on the data from 2015.

The observation of monthly distributions for the year 2016, as illustrated in
Fig. 2, is one way to help interpreting the point densities. Figure 2(a) represents
the distribution of the forecasts based on the true energy consumption. The scat-
tering during April and August is smaller than in the remaining months which,
combined with the higher probabilities, indicates that the distribution is similar
to the previous year. March is striking as it has the greatest scattering, explain-
able by the course of the energy consumption reaching ranges rarely observed
before. This is only exceeded by December, where new minima were measured
in 2016 such that many FPDEs are marked as outliers.

Taking Fig. 2(b) into consideration, a correlation between estimated densi-
ties and errors can be seen, with a negative correlation regarding the medians.
Although the scattering of the error bars influences the scattering of the density
bars, the latter is also influenced by the true consumption. This explains why
distant outliers occur in the densities regarding December although they are
not present in the errors. Nevertheless, it is remarkable that the errors can only
be computed as soon as the true consumption being predicted becomes avail-
able, whereas the estimated point densities of the FPDE are available as soon as
the forecasts are made. This correlation indicates that a first evaluation of the
forecasts might be performed, without even knowing the true consumption.
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(a) (b)

Fig. 2. Monthly representation of (a) the estimated point densities of the LSTM fore-
casts and (b) the absolute errors of the LSTM forecasts. k is an anonymization factor.

To examine the influence of the hyperparameters [4], experiments are con-
ducted with 20, 40 or 100 bins; a maximum of 5000, 10000 or 15000 kernels;
and ensembles of 1, 5 or 8 classifier chains. The most noticeable results are
summarized in Table 1. First, we consider the mrcDintra. Using 20 bins, 10k–15k
kernels, and ensembles with at least 5 classifier chains makes the density esti-
mator more prone to decreases in the forecasts and leads, on average, to larger
relative decreases than increases in the density. On the other hand, if only one
classifier chain, 5k kernels and 40 or 100 bins are used, then the highest mean rel-
ative changes can be observed. The latter can be explained by the vulnerability
of a single classifier chain, hence, this result has to be handled with caution.

Concerning the mrcDinter, which is strongly influenced by the true consump-
tion, the bins have the greatest impact on the changes, followed by the ensemble
size. The influence of the kernels is comparably small. The more bins and the
greater the ensemble size, the larger the mean relative change between days.

In the previous experiments the density was conditioned on four random
variables representing an hour of a day, which, based on given conditions, might
not be representative. In the next experiment, we condition the densities on
larger time windows of the true consumption, i.e. on 4, 8, 16, 32 and 64 random
variables. Keeping the number of bins, kernels and ensemble size fixed, we obtain
the results shown in Table 2. If the density is conditioned on an increasing number
of random variables, then the mrcDintra has, on average, greater relative decreases
than increases and gets smoother, as the changes are smaller than in the case
of 4 or 8 random variables. The reason is that larger time windows make the
density estimates less prone to strong fluctuations. Furthermore, the mrcDinter
increases until the time window size 16, followed by a decrease for greater sizes.
Finally, conditioning the FPDE on too many variables is not a good choice.
First, the relative changes get too small, possibly leading to a loss of information,
and second, the density estimator calculates the distribution over a great range
of possible value combinations. The latter can lead to LLs of −∞ for value
assignments not represented in the training set.
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Table 1. Mean relative density changes
for different parameters.

Bins Kernels Ensemble mrcDintra mrcDinter

20 10k 8 −2.90e-06 +1.87e-03

20 15k 8 −2.90e-06 +1.87e-03

40 5k 1 +2.62e-05 +3.33e-03

100 5k 1 +3.24e-05 +3.57e-03

100 10k 8 +6.64e-06 +3.89e-03

Table 2. Mean relative density changes
for different time windows.

Time window mrcDintra mrcDinter

4 −1.08e-06 +1.80e-03

8 +1.30e-06 +2.32e-03

16 −7.61e-07 +3.80e-03

32 −4.71e-07 +2.96e-03

64 −5.67e-07 +0.81e-03

Table 3. Average log-likelihoods and mean difference between point-wise density esti-
mates of forecasts and true power consumption

Model kernel bandwidth LLprg LLpower |f̂(ŷ) − f̂(y)|
FPDE −40.36 −40.65 0.292

KDE Gaussian 10 −539.54 −610.01 196.857

KDE Gaussian 20 −155.85 −170.90 47.698

KDE Gaussian 100 −39.16 −40.09 2.159

KDE Gaussian 200 −37.19 −37.58 0.888

KDE exponential 10 −47.91 −49.79 4.544

KDE exponential 20 −39.98 −41.04 2.420

KDE exponential 100 −36.83 −37.18 0.768

KDE exponential 200 −37.99 −38.23 0.469

Model Evaluation. In order to evaluate the results of the FPDE, a comparison
with different kernel density estimators (KDEs) is performed, as it is shown in
Table 3. The comparison includes the average LLs as well as the mean absolute
difference between the density estimates. As we work with point densities, the
estimated density curve of the true consumption forms the optimal curve we
want to approximate. Hence, the smaller the mean difference between the density
estimates, the better. The result of the FPDE is achieved quite fast and the mean
difference error was in all of our experiments below 1. In case of the KDEs, an
exhausting search for the optimal hyperparameters has to be performed, until
the mean difference errors get close to the error 0.292 of the FPDE.

Finally, the advantage of the FPDE lies in the fast approximation of the true
density curve, whereas with other methods exhaustive parameter searches have
to be conducted until a good approximation can be found.
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5 Conclusion and Future Work

We proposed a novel way to compactly represent the distributions of two time
series, i.e. the energy consumption of a company and the respective forecasts
according to the DA-trade. We have shown that it is possible to combine
MiDEO with LSTMs and furthermore, these methods can be integrated into real-
time streaming architectures of companies. The performed experiments showed
promising results and indicate several application areas for the FPDE approach.

In the future, ensembles of LSTMs with MiDEO on top could be developed, in
order to create more accurate energy consumption forecasts. Besides the aspect
of hyperparameter optimization and a tighter coupling of either approach, data
preprocessing is another relevant topic. The application of time-dependent fad-
ing factors or the integration of weather forecasts might improve the results
and deliver further valuable information. Finally, other trading types and daily
segmentations than DA-trade and 15-min intervals can be investigated.
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