
Sergei N. Pozdniakov
Valentina Dagienė (Eds.)

LN
CS

 1
19

13

12th International Conference on Informatics in Schools:
Situation, Evolution, and Perspectives, ISSEP 2019
Larnaca, Cyprus, November 18–20, 2019
Proceedings

Informatics in Schools
New Ideas in School Informatics

Lecture Notes in Computer Science 11913

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-8816-2693

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Sergei N. Pozdniakov • Valentina Dagienė (Eds.)

Informatics in Schools
New Ideas in School Informatics

12th International Conference on Informatics in Schools:
Situation, Evolution, and Perspectives, ISSEP 2019
Larnaca, Cyprus, November 18–20, 2019
Proceedings

123

Editors
Sergei N. Pozdniakov
Saint Petersburg Electrotechnical University
Saint Petersburg, Russia

Valentina Dagienė
Data Science Institute
Vilnius University
Vilnius, Lithuania

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-33758-2 ISBN 978-3-030-33759-9 (eBook)
https://doi.org/10.1007/978-3-030-33759-9

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2019, corrected publication 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-33759-9

Preface

This volume contains the papers presented at the 12th International Conference on
Informatics in Schools: Situation, Evolution, and Perspectives (ISSEP 2019). The
conference was held at the University of Cyprus, November 18–20, 2019.

ISSEP is a forum for researchers and practitioners in the area of informatics
education, in both primary and secondary schools (K12 education). It provides an
opportunity for educators to reach the goals and objectives of this subject based on its
curricula and various teaching/learning paradigms and topics, possible connections to
everyday life, and various ways of establishing informatics education in schools.

This conference also has a focus on teaching/learning materials, various forms of
assessment, traditional and innovative educational research designs, the contribution of
informatics to the preparation of individuals for the 21st century, motivating compe-
titions, and projects and activities supporting informatics education in schools.
The ISSEP series started in 2005 in Klagenfurt, with subsequent meetings held in
Vilnius (2006), Torun (2008), Zurich (2010), Bratislava (2011), Oldenburg (2013),
Istanbul (2014), Ljubljana (2015), Münster (2016), Helsinki (2017), and St. Petersburg
(2018). This 12th ISSEP conference was hosted by the University of Cyprus.

The conference received 55 submissions. Each submission was reviewed by up to
four Program Committee members and evaluated on its quality, originality, and
relevance to the conference. Overall, the Program Committee wrote 116 reviews and 90
reviews were prepared by external reviewers. The committee selected 23 papers for
inclusion in the LNCS proceedings, leading to an acceptance rate of 40%. The decision
process was made electronically using the EasyChair conference management system.

As at previous ISSEP conferences, much attention in the articles is devoted to the
training of informatics teachers and to the teaching of informatics at different levels of
school education. At the same time, increasing attention to the primary level should be
noted. A feature of ISSEP 2019 is the interest of school education in contemporary
computer science ideas that were previously studied only at universities: big data,
machine learning, artificial intelligence, cybersecurity, and others.

We would like to thank all the authors who responded to the call for papers, the
members of the Program Committee, the external reviewers, and last but not least the
members of the Organizing Committee and Prof. George A. Papadopoulos – general
and organizing chair of the local Organizing Committee.

September 2019 Sergei Pozdniakov
Valentina Dagienė

Organization

General and Organizing Chair

George A. Papadopoulos University of Cyprus, Cyprus (george(at)cs.ucy.ac.cy)

Steering Committee

Andreas Bollin University of Klagenfurt, Austria
Valentina Dagiere Vilnius University, Lithuania
Yasemin Gulbahar Ankara University, Turkey
Juraj Hromkovič Swiss Federal Institute of Technology Zurich,

Switzerland
Ivan Kalas Comenius University, Slovakia
George A. Papadopoulos University of Cyprus, Cyprus
Sergei Pozdniakov Saint Petersburg Electrotechnical University, Russia

Program Committee Chair

Sergei Pozdniakov Saint Petersburg Electrotechnical University, Russia

Program Committee

Erik Barendsen Radboud University Nijmegen and Open Universiteit,
The Netherlands

Andrej Brodnik University of Ljubljana, Slovenia
Christian Datzko SVIA-SSIE-SSII, Switzerland
Ira Diethelm Oldenburg University, Germany
Michalis Giannakos Norwegian University of Science and Technology,

Norway
Bruria Haberman Holon Institute of Technology, Israel
Peter Hubwieser Technical University Munich, Germany
Petri Ihantola Tampere University of Technology, Finland
Mile Jovanov Ss. Cyril and Methodius University, Macedonia
Dennis Komm Pedagogical University Chur, Switzerland
Mark Laanpere Tallinn University, Estonia
Peter Micheuz University Klagenfurt and Gymnasium Völkermarkt,

Austria
Mattia Monga Università degli Studi di Milano, Italy
Ralf Romeike University Erlangen (FAU), Germany
Giovanni Serafini Swiss Federal Institute of Technology Zurich,

Switzerland
Maciej M. Syslo Nicolaus Copernicus University, Poland

http://cs.ucy.ac.cy

Additional Reviewers

Veljko Aleksić
Grillenberger Andreas
Cristian Bernareggi
Hans-Joachim Böckenhauer
Sona Ceretkova
Sébastien Combéfis
Andrew Paul Csizmadia
Vladimiras Dolgopolovas
Fabian Frei
Walter Gander
Daina Gudoniene
Bruria Haberman
Urs Hauser
Djordje Herceg
Metodija Janceski
Tatjana Jevsikova
Mile Jovanov
Filiz Kalelioglu
Peter Larsson

Inggriani Liem
Violetta Lonati
Dario Malchiodi
Anna Morpurgo
Mārtiņš Opmanis
Tauno Palts
Arnold Pears
Serena Pedrocchi
Rein Prank
Mareen Przybylla
Noa Ragonis
Ana Isabel
Frances Rosamond
Jacqueline Staub
Xinogalos Stelios
Seiichi Tani
Nicole Trachsler
Ausra Urbaityte
Peter Waker

viii Organization

Contents

Teacher Education in Informatics

Empowering the Teachers with the NAPOJ - A Grassroots Movement
Towards Computing Teachers Community of Practice 3

Andrej Brodnik and Matija Lokar

An Exploration of Teachers’ Perspective About the Learning
of Iteration-Control Constructs . 15

Emanuele Scapin and Claudio Mirolo

What Are Computer Science Educators Interested In?
The Case of SIGCSE Conferences . 28

Ragonis Noa and Orit Hazzan

Holistic STEAM Education Through Computational Thinking:
A Perspective on Training Future Teachers . 41

Arnold Pears, Erik Barendsen, Valentina Dagienė,
Vladimiras Dolgopolovas, and Eglė Jasutė

Informatics Education in School: A Multi-Year Large-Scale Study
on Female Participation and Teachers’ Beliefs . 53

Enrico Nardelli and Isabella Corradini

Inquiry-Based Learning in Computer Science Classroom 68
Zuzana Tkáčová, Ľubomír Šnajder, and Ján Guniš

Primary Education in Informatics

Introducing Informatics in Primary Education: Curriculum
and Teachers’ Perspectives . 83

Valentina Dagienė, Tatjana Jevsikova, and Gabrielė Stupurienė

Observing Abstraction in Young Children Solving Algorithmic Tasks 95
Hylke H. Faber, Josina I. Koning, Menno D. M. Wierdsma,
Henderien W. Steenbeek, and Erik Barendsen

Implementing a Reverse Debugger for Logo. 107
Renato Menta, Serena Pedrocchi, Jacqueline Staub,
and Dominic Weibel

Contemporary Computer Science Ideas in School Informatics

Unplugged Activities in the Context of AI . 123
Annabel Lindner, Stefan Seegerer, and Ralf Romeike

Machine Learning Unplugged - Development and Evaluation
of a Workshop About Machine Learning . 136

Elisaweta Ossovski and Michael Brinkmeier

About Classes and Trees: Introducing Secondary School Students
to Aspects of Data Mining . 147

Andreas Grillenberger and Ralf Romeike

Cybersecurity Within the Curricula of Informatics:
The Estonian Perspective . 159

Birgy Lorenz, Kaido Kikkas, Tiia Sõmer, and Edmund Laugasson

Teaching Informatics: From High School to University Level

Person-Thing-Orientation and the Choice of Computer Science Courses
in High School . 175

Jascha Kemper and Michael Brinkmeier

Wandering Micro:bits in the Public Education of Hungary 189
Andor Abonyi-Tóth and Zsuzsa Pluhár

Introduction to Computational Thinking for University Students 200
Zsuzsa Pluhár and Hajnalka Torma

Enhancing Student Engagement in Multidisciplinary Groups
in Higher Education . 210

Michael Opoku Agyeman, Haiping Cui, and Shirley Bennett

Contests, Competitions and Games in Informatics

Situated Learning with Bebras Tasklets . 225
Carlo Bellettini, Violetta Lonati, Mattia Monga, Anna Morpurgo,
and Martina Palazzolo

The Genesis of a Bebras Task . 240
Christian Datzko

From Bebras Tasks to Lesson Plans – Graph Data Structures 256
Lucia Budinská and Karolína Mayerová

CITY: A Game to Raise Girls’ Awareness About Information Technology. . . 268
Evelyn Saxegaard and Monica Divitini

x Contents

Computer Science Problem Solving in the Escape Game “Room-X” 281
Alexander Hacke

PrivaCity: A Chatbot Game to Raise Privacy Awareness Among Teenagers . . . 293
Erlend Berger, Torjus H. Sæthre, and Monica Divitini

Correction to: Introducing Informatics in Primary Education:
Curriculum and Teachers’ Perspectives . C1

Valentina Dagienė, Tatjana Jevsikova, and Gabrielė Stupurienė

Author Index . 305

Contents xi

Teacher Education in Informatics

Empowering the Teachers
with the NAPOJ - A Grassroots

Movement Towards Computing Teachers
Community of Practice

Andrej Brodnik1,2(B) and Matija Lokar3

1 Faculty of Computer and Information Science, University of Ljubljana,
Ljubljana, Slovenia

Andrej.Brodnik@fri.uni-lj.si
2 Faculty of Mathematics, Natural Sciences and Information Technologies,

University of Primorska, Koper, Slovenia
3 Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia

Matija.Lokar@fmf.uni-lj.si

Abstract. Computing is a relatively new area in high school education,
not only in Slovenia but worldwide. Therefore, there is lack of qualified
Computing teachers. However, even the existing ones often feel isolated
and consequently insecure. The latter often stems from lack of trust in
their own teaching practices. These feeling can be alleviated through
participation in a Community of practice (CoP).

The article describes activities taken in a project NAPOJ to form an
active community of practice for Slovene Computing teachers. NAPOJ
started as a grassroots movement in a group of high school teachers and
few higher education teachers involved in various activities (in-service
teacher training, programming competitions, ...). The main goal of the
project NAPOJ is to involve teachers in an active building of their com-
petencies and improve cooperation among them, such as exchange of
study materials, and good practices.

We started building the community by gathering the necessary mate-
rials and tools for teaching programming, an area where the idea of nec-
essary cooperation occurred. Three systems that teachers use in teaching
were connected: e-textbook, web classroom and a system for automated
testing of program correctness. In the second year, we added physical
computing as a motivational element. In the ongoing third year, the
main emphasis is on supporting the programming competition prepara-
tions and on the exchange of good practice examples among teachers.
The core activity is the formation of the community portal and regu-
lar monthly video conferences where certain, mostly didactic, topics in
Computing are discussed.

Keywords: Community of practice · Computer Science teaching ·
Computing teaching · Motivation · Teaching programming

c© Springer Nature Switzerland AG 2019
S. N. Pozdniakov and V. Dagienė (Eds.): ISSEP 2019, LNCS 11913, pp. 3–14, 2019.
https://doi.org/10.1007/978-3-030-33759-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33759-9_1&domain=pdf
http://orcid.org/0000-0001-9773-0664
http://orcid.org/0000-0003-0407-9177
https://doi.org/10.1007/978-3-030-33759-9_1

4 A. Brodnik and M. Lokar

1 Introduction

Computing education is a relatively new area in high schools, not only in Slove-
nia but worldwide. Therefore, we are faced with many challenges regarding the
method of teaching itself. Brodnik et al. [25] state that in Slovenia Computing is
a compulsory subject in only one year in high school and an elective subject in
the other three years, which differs a lot from the current practice elsewhere in
Europe and the World-wide. Fortunately, the curriculum is very open and covers
all four years, which gives the teachers a freedom when it comes to deciding on
the selection of topics. This openness permits changes towards a better quality of
Computing education [22,29]. Furthermore, we can observe a common awareness
that a significant part of Computing lessons should be the teaching of program-
ming skills. In particular as programming (not coding) is considered a natural
technique to teach Computational Thinking. This confirms also an overview of
contemporary recommendations for curricula (like CSTA in [16], IEEE in [19],
the current UK curriculum in [17]), which shows the importance of basic com-
puter programming skills in contemporary education. In Slovenia this awareness
is evident in the new e-textbook for the subject [2,22] and certain changes in
the Matura exam [1].

However, changing the emphasis from one part of the curriculum (digital
literacy) to another (core concepts of Computing) and changing methods of
teaching, required and expected substantial changes. The changes raised certain
amount of resistance and disagreement among the teachers. A large amount of
literature in this field shows [14,15,23,26,27,31] one of the possible methods
to overcome the initial teachers’ reluctance is to establish a strong and active
community of practice. The article reports on the attempted establishment of
such a community in Slovenia.

2 Learning Communities

As reported by Barber and Mourshed in [6] investment in the teachers is the
key factor that determines the rise in the quality of the education system. The
aforementioned authors state: “The quality of an education system cannot exceed
the quality of its teachers.”

Computing teachers frequently feel lonely in their field ([23]), which often
goes hand in hand with the lack of trust in their own teaching practices. This
is confirmed by Sentance and Humphreys in [26]. Establishing communities of
practice can help the teachers to overcome this feeling of loneliness.

The Wenger-Trayners in [31] define a learning community as “... a group
of people who share common academic goals and passions, and achieve self-
improvement in the field through activity in the group”. Beside the common
academic interest, an important ingredient of a learning community is the fact,
that the members are active practitioners who share experiences, stories, tools,
and ways of addressing problems. Thus Fincher and Tenenberg in [28] and in
[18] report on Disciplinary Commons project, within which a group of Com-
puting teachers meet monthly and share study materials, teaching experiences

Empowering the Teachers with the NAPOJ 5

and document their teaching practice. Ni and his co-authors in [23] report on
how a self-organized local group of teachers proved to be a successful attempt at
establishing a high school Computing teachers’ community of practice. One of
the most important results of the project was that practically all of the teachers
reported that they felt community affiliation. The affiliation made it possible
for the teachers to assess their work appropriately and to gain self-confidence
as Computing teachers. A very successful community was founded within the
Computing at School (CAS) movement in Great Britain. The CAS movement
does not only take care of the learning community, but also provides support
for the community, which is at the core of activity of the whole movement. CAS
actually functions as the cover learning community that unites and directs the
activities of a whole bunch of local communities of practice. The local commu-
nities mostly formed individually as a reflection of the needs of a local group
of Computing teachers. As Sentence and Humphreys report in [26], the CAS
project focuses on formation of local communities of practice and thus supports
the teachers trying to implement the new curriculum into the lessons.

Therefore, the large and most importantly continuous growth of the num-
ber of members of the communities as reported by Berry in [8] should not be
considered particularly surprising.

3 NAPOJ Project

For the project aimed at achieving better cooperation among computing teach-
ers, especially concerning the exchange of study materials and teaching expe-
riences, we were assigned funds within the Google CS4HS1 call. Consequently,
teachers had all their expenses for participation covered. Initially we concen-
trated on Gymnasium2 high school teachers, but later expanded to all high school
Computing teachers. Furthermore, as also primary school teachers of elective
Computing subjects showed interest, we included them in the project as well.

The project was called NAPOJ in Slovene which translates to English as
potion3. Because the main ingredient of the project was preparation of materials
that could be used in teaching programming, we included in the project the
textbook, a Moodle classroom, and a system for checking the correctness of
programs. This also reflected in the logo in Fig. 1.

1 Computer Science for High School.
2 In Slovenia children enter primary school at age 6. The primary school has 9 grades

and high school has 4 grades. Gymnasium is vaguely said a general high school
offering students (aged 15–18) extension of the knowledge gained in primary schools.
Upon its completion students undertake state wide external examination (Matura),
which allows them to enrol into any type of tertiary education course.

3 NAPOJ in Slovene stands for N ačrtovanje poučevanja Algoritmov in Programiranja
ter OrganizaciJa skupnosti , which translates in English as Planning of Teaching
Algorithms and Programming, and Organization of the Community.

6 A. Brodnik and M. Lokar

3.1 Goals

In the preceeding analysis we noticed the teachers felt they lacked the knowledge
and confidence to teach beginners programming. Therefore the main goal of the
first year of the NAPOJ project was to establish an active community of practice
for Computing teachers and as a secondary goal to equip teachers with the
necessary material and tools for teaching of programming basics. In the project
we tried to show teachers that active participation in learning communities can
give them the confidence and improve their knowledge they felt they lacked.

Fig. 1. The NAPOJ project logo reflecting the potion ingredients from left: system for
checking the correctness of programs tomo, textbook, a Moodle classroom SiO.

For this purpose three steps were performed. First, different study materials
for teaching programming were connected. Next, we choose a group of master
teachers (more on that in Sect. 3.2) and held a four day workshop for them.
During the workshop we developed a set of study materials that could be used
in class during programming lessons. The main goal of this step was to show that
joint development and exchange of study materials can be a lot more effective
than relying on own resources. Finally, master teachers held a series of regional
workshops. These workshops disseminated the material and notion of CoP and
tried to serve the needs of the local communities, and to establish stronger ties
among the teachers within individual region.

3.2 Master Teachers

The first target group when establishing CoP were all teachers of Informatics.
According to different authors [18,23,26,28] and partly following the model used
in the 1995 project [7] called Računalnǐsko opismenjevanje (eng. Computing
Literacy), we used the Master teachers model discussed in [13,27].

Master teachers are teachers who are experts in the field of teaching Com-
puting, and have a wish and ability to convey their knowledge to other teachers.
The model focuses on the transfer of knowledge at local and personal levels
within a particular field. Master teachers educate other teachers in their local

Empowering the Teachers with the NAPOJ 7

environment and provide support for the local teacher community. This is also
cost-effective as everything is happening locally. What is even more important
such localized operation fosters personal contact among the participants.

A study by Boylan and Willis in [9] shows that the Master teachers model
plays an important role in the process of introducing Computing at all levels of
education in England following the reform of a new curriculum [17].

According to [9] in recognizing and choosing master teachers it is very impor-
tant to achieve a level of certain diversity among the master teachers on profes-
sional, age, and personal levels. Of course, that is rather harder in Slovenia due
to the small number of Computing teachers, than in England.

As reported in [25] there are approximately 140 teachers of subject Infor-
matics (Computing) in high schools. As the coordinators of the project were
for several years engaged in various activities such as professional development,
organization of Computing competitions, various country wide projects on Com-
puting education, national committee on Matura exam in Informatics, etc., they
were aware of Computing teachers individual competencies and their previous
activities. Furthermore, we wanted to achieve a good regional coverage as well.
Consequently, we divided Slovenia into four regions each having an approxi-
mately the same number of gymnasia. Initially we invited 30 teachers and 26
of them attended the first one-day workshop. Although we focused on gymna-
sia teachers, following [9] regarding diversity of community members, we also
involved some other high schools teachers as Master teacher candidates. Some
primary school teachers joined as well. This proved as a big asset in the planned
expansion of the community over the primary school teachers. During the work-
shop they were presented with a number of tasks, mostly connected with the
preparation of learning resources to be accopmlished during summer months.

Based on candidates activities and the quality of their work during the sum-
mer and satisfying regional coverage, the final group of 14 candidates was chosen
to become master teachers. Ratio 1:10 (1 master teacher on 10 teachers of Infor-
matics) seemed appropriate. As the chosen group clearly diverged in their effort,
no additional crirteria for selection was necessary. The chosen teachers attended
the 4-day workshop at the end of the Summer. All their expenses were covered
and their effort was recongized through their professional developement and pro-
fessional seniority.

3.3 Materials and Tools

The Slovenian education space saw the emergence of several web services that
can be used for teaching Computing and for programming courses. The first
one important for the project NAPOJ is an interactive e-textbook [2] jointly
published by all Slovenian Computer Science faculties. It is a group effort of
several authors and used de facto an official textbook for Computing in high
schools. More on the e-textbook and on the reasons for its creation in [21].

The second one is the web service tomo [20,24,30], a tool for teaching and
learning programming. It was developed by the University of Ljubljana, Faculty
of Mathematics and Physics. tomo allows on one side the learner to get an

8 A. Brodnik and M. Lokar

instant feedback about the correctness of programming exercise, and on the
other hand permits teacher to monitor his/her progress. The service proved to
be an effective tool in lab programming exercises.

Both services were augmented by Moodle LMS, providing the system for
accessing and exchanging the material, for spreading information and for pro-
viding tools necessary for communication within the CoP. We prepared a Moo-
dle classroom called NAPOJ in SIO (Slovensko izobraz̆evalno omrez̆je, Slovenian
Education Network), which is already known and used by the Slovenian teachers.
The Moodle clasroom is organized based on educational units, and each of them
includes several lesson plans, a link to the related chapter in the e-textbook, and
a link to an appropriate exercises in the tomo system.

Next, at the end of August the chosen 14 master teachers attended a work-
shop. Besides building CoP, the main purpose of the workshop was to prepare
lesson plans for the educational units: Basic concepts of programming, Writing
independent programs and if statements, Loops, Tables, Functions, and Strings.
These units are only a smaller part of an e-textbook [2] and are related to
programming. The other chapters follow mostly the standards in [16]. Each edu-
cational unit in SIO also contains a forum for the discussion on teaching of
the unit. Unfortunately, forums have not yet fully taken off, which shows that
building an active CoP will require still more effort.

Besides links to e-textbook and tomo each educational unit also contains a
sample lesson plan, which participants are encouraged to supplement with their
own lesson plans. The inclusion of lesson plans permits also teachers with a lower
self confidence in topic to go to the class and teach it.

Unfortunately, the analysis of the website activity shows that it has not
really been widely accepted among the Computing teachers. An analysis in the
form of an interview has shown that Computing teachers do not feel community
affiliation yet. Among the reasons for this, teachers mostly mention fear to share
their own lesson plans. Statements such as “what if there is something wrong in
my lesson plan”, or “I believe that my lesson plans are not good enough” show
that more attention must be given to the establishment of community itself and
to the spreading the awareness that cooperation and joint effort on the material
contribute to personal development, as well as to the progress in teaching of
Computing.

Following the August workshop master teachers themselves organized work-
shops in their local communities. The topics followed the ones previously encoun-
tered by the master teachers with a total participation of 51 teachers of Com-
puting. During the first workshop, the participants were presented the tools
(e-textbook, tomo and the web classroom) and introduced the lesson plans. In
the second workshop, that followed a two- or three-week period, during which
the participants taught with the help of the prepared lesson plans, they evalu-
ated the tools mostly considering a student motivation. Most regional workshop
participants believed that this manner of teaching significantly contributes to the
better knowledge of the students. The ready-made lesson plans help the teachers
to overcome their reluctance to teach programming.

Empowering the Teachers with the NAPOJ 9

The dissemination of the environment was semi-successful. Indeed, the teach-
ers started more boldly teaching programming, but the there was no significant
response back to the community.

4 NAPOJ2

The successful completion of the NAPOJ project prompted us to re-apply for
the Google call, that is for the 2017/18 period. The project itself was prepared
in collaboration with Zavod 404 [33], that supplied the necessary experience and
skills, and contributed to the workshops.

4.1 Goals

The main goals to foster CoP and to aid teaching programming remained the
same with a move toward students. Reflecting the evaluation of project NAPOJ
this time we targeted the motivational issue at the students at programming
lectures. We wanted to increase student motivation by using physical computing.
Consequently we wanted to equip teachers with the necessary environment and
material they can use at lectures on programming.

Similarly as at NAPOJ we prepared a Moodle classroom with sample lesson
plans. The lecture plan included the same educational units as at NAPOJ, but
adapted for the physical computing. Finally, in collaboration with Zavod 404
we prepared RaspberyPi kits that included RaspberyPi, protoboard, necessary
connection cables and a selection of actuators and sensors. Zavod 404 made
kits available to schools at non profit price. The choice to go with RaspberyPi
and not by Arduino or some other smaller processor was made because one can
natively programme it in Python which was also the programming language of
the original e-textbook.

4.2 Activities

General framework of activities followed the same pattern: August workshop for
master teachers, where the material was prepared, followed by regional work-
shops organized by master teachers. However, there were two changes made.
First the in the regional workshops the teachers were asked to bring also a few
students. The reason for this was that application of teaching can be done more
directly. The second difference was that at the end a general presentation of
accomplished projects was offered by Zavod 404 at a local Maker Faire.

At the August workshop a number of materials were developed, some of which
were put into a new e-textbook [5]. It consists of two parts. The first one brings
instructions on how to put together the RaspberyPi kit that computer becomes
operational. The second part brings a number of activities and suggestions for
projects. Each of them is tied to the educational units mentioned in Sect. 3.3 (see
columns in Fig. 2). Consequently teacher can enrich individual educational unit
by a physical computing project. Of course, in the e-classroom the educational

10 A. Brodnik and M. Lokar

Fig. 2. Part of the projects list (partially translated).

units offered a possibility of extenting the list of projects and/or preparing one’s
own lesson plan.

Because in the NAPOJ2 at the regional workshops were also contributing
the students (including some from primary school), Computing teachers were
informed in advance about the material on physical Computing. The teachers
were also invited to prepare projects that would then be upgraded and presented
at regional workshops. This provided the regional workshops with an interesting
mix of different experiences and knowledge in the field of programming physical
systems. We enhanced it with two separate hands-on lectures for beginners and
for advanced students. There were 4 regional workshops and with a participation
of approximately 30 at each one.

The final evaluation showed that students like the teachers the notion of
physical computing. However the teachers mentioned the complications with
setting up the environment every hour. The problem might be overcome by
using pre-assembled environment.

5 NAPOJ3

In the third year the project NAPOJ got a new source of support, the EU Social
Funds financed SKOZ project (Sredǐsče Karierne Orientacije Zahod, Centre of
Career Orientation West). The main goal of the national SKOZ project is to
support specially talented students. Consequently the project was extended into
this direction. The extension also required a broader consortium, which included
all Computer Science faculties in Slovenia, Zavod 404 and ACM Slovenia.

Empowering the Teachers with the NAPOJ 11

5.1 Goals

The goals of the project represent three pillars with a common basis. The
basis represents CoP, while the pillars are: competetive programming, research
projects, and, the one related to this paper, support of curricular and extracur-
ricular activities. The competitive programming activities were coordinated by
former successful participants of international olympiads, while for the research
projects were designated research assistants from the Computer Science faculties.

Further, in the previous years we learned, that teachers in schools would
appreciate additional help not only in material and resources, but also in teaching
help. As NAPOJ3 is to be run for two years we made for the first year a plan
to proceed with work with (master) teachers in CoP, while at the same time try
to involve university students as a help in teaching activities. Therefore we set
up two goals, to foster CoP through a series of regular monthly web-conference
meetings, and for the newcoming students start adapting the material that they
can use in class. In the second year we want to bring both groups together.

5.2 Activities

The foremost concern was how to achieve a substantial growth in the number of
active members of CoP. The well-established model of the August workshop with
master teachers was followed this year, too. The workshop included presentations
of different sources of materials and information regarding the teaching of Com-
puting. Thus certain blogs on Computing didactic were presented, along with a
selection of portals containing materials, examples of active communities, and
important conferences and magazines on Computing didactic. The main purpose
of these presentations was that teachers realize that cooperation is vital, even
when the discovery of materials and following information about the field are
concerned. The core part of the workshops therefore consisted of presentations
of some articles, read and prepared by master teachers in pairs. This serves
as the basis for the activities in the following year. The core activity during
the year were regular monthly web conferences run using ARNES VOX system.
During the conferences teachers presented interesting articles (like at the August
workshop) and report about good materials and useful information.

Besides concern for upholding the CoP in the August workshop the third set
of material for teaching programming was presented. In previous years the chosen
programming language was Python. This is reasonable decision in particular if
the students had any Computing education in primary school. Since this is not
the case in Slovenia and to decrease the cognitive load [32], we prepared a new set.
It is based on e-textbook Slikovno programiranje (Visual programming) [3] which
follows the same sequence of educational units as it is used [2] (cf. Sect. 3.3). It
replaces Python with Blockly. To support the automatic correctness verification
we adapted the French system Algorea. The new system is called Pĭsek (Chicklet)
and is available at http://pisek.acm.si/. The system is used in a similar way as
tomo service for Python.

http://pisek.acm.si/

12 A. Brodnik and M. Lokar

Since the project is not over yet here are only some preliminary figures. In
the competitive programming pillar 26 students participated. Unfortunatelly no
student worked on a research project. Further, there were 8 web-conferences
attracting 29 participants vast majority of which were Computing teachers –
this represents approximately one fifth of community. Extracurricular activities
were organized on 11 schools with approximate participation of 100 students.

6 Conclusion

Slovenia needs an active CoP of Computing teachers to substantially improve
the quality of teaching (cf. CAS in Great Britain, CS4All in the USA, and
others). Unfortunately, the first two years of the project have shown, that even
the master teachers require a lot of encouragement to actively participate while
other teachers are even harder to motivate to cooperate. This seems to be general
trend we noted also in a well established CoP of mathematics teachers.

To overcome the difficulties we started to perform activities more regulary
and there seems to be some progress. However, there is still a lot of room for
improvement, especially considering well established communities like Comput-
ing at school in Great Britain (https://community.computingatschool.org.uk/).
Nonetheless, beside the web meetings in person meetings are reported also to be
of big importance in establishing communities [14,15,18,23,26–28].

For the future development of CoP we have to carefully consider [9] that
analyzes the status of CoP in UK. The report presents a number of impor-
tant suggestions and approaches to establish a solid and sustainable Computing
teachers community. Cambridge et al. in [12] present an interesting diagram of
development of CoP over the time (see Fig. 3). Slovenian Computing teachers
CoP is currently at a Launch phase, and it is of utmost importance not follow
the direction indicated by the red dashed line. Undoubtedly, the coordinators of
the project have an important support role in this, but the key role to establish
a sustainable CoP have teachers themselves with their master teachers. This is
the essence of a grassroots movement.

Fig. 3. Development of the community (adapted from [12]).

https://community.computingatschool.org.uk/

Empowering the Teachers with the NAPOJ 13

Acknowledgements. The NAPOJ and NAPOJ2 projects were financially supported
by Google within Computer Science for High School. NAPOJ3 project was partly
included in the SKOZ project. The work was also partially supported by the Slovenian
Research Agency programme P2-0359 Pervasive computing.

References

1. Anželj, G., et al.: PIK: Predmetni izpitni katalog za splošno maturo 2017 - infor-
matika (2017). http://www.ric.si/mma/2017M-INF-2017/2015083113004713

2. Anželj, G., et al.: Računalnǐstvo in informatika v2.12; E-učbenik za informatiko v
gimnaziji (2018). https://lusy.fri.uni-lj.si/ucbenik/book/index.html

3. Anželj, G., Brank, J., Brodnik, A., Fürst, L., Lokar, M.: Slikovno programiranje;
E- učbenik za uvod v programiranje (2018). https://lusy.fri.uni-lj.si/ucbenik/prog/
index.html

4. Anželj, G., Brodnik, A., Lokar, M.: NAPOJ - proti aktivni skupnosti učiteljev
računalnǐskih predmetov. Vzgoja in izobraževanje v informacijski družbi - VIVID
2017 : zbornik referatov. VIVID, Ljubljana (2018)

5. Anželj, G., Brodnik, A., Capuder, R., Lokar, M.: Malina in piton. E- učbenik
za uvod v fizično računalnǐstvo (2018). https://lusy.fri.uni-lj.si/ucbenik/rpi/index.
html

6. Barber, M., Mourshed, M.: How the World’s Best-Performing Schools Systems
Come Out on Top. McKinsey Company, New York (2007)

7. Batagelj, V., Rajkovič, V.: Namen, cilji in smernice programa Računalnǐsko opis-
menjevanje - RO (1995). http://www.educa.fmf.uni-lj.si/ro/izomre/novice/doc/
vizija.htm

8. Berry, M.: A Cohernet Computing curriculum? (2018). http://bit.ly/csta2018
9. Boylan, M., Willis, B.: Independent Study of Computing At School Master

Teacher programme. Sheffield Hallam University, Centre for Education and Inclu-
sion Research (2017). https://www.computingatschool.org.uk/data/uploads/noe/
cas-master-teacher-report-sheffield-hallam.pdf

10. Brodnik, A., Capuder, R., Lokar, M.: NAPOJ-3 - MU: Gradnja skupnosti (2018).
https://moodle.lusy.fri.uni-lj.si/course/view.php?id=59

11. Brodnik, A., Lokar, M., Mori, N.: Activation of computer science teachers in Slove-
nia. In: Tatnall, A., Webb, M. (eds.) WCCE 2017. IAICT, vol. 515, pp. 658–662.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-74310-3 67

12. Cambridge, D., Kaplan, S., Suter, V.: Communities of practice design guide, step-
by-step guide for designing and cultivating communities of practice in higher
education (2005). https://library.educause.edu/resources/2005/1/community-of-
practice-design-guide-a-stepbystep-guide-for-designing-cultivating-communities-
of-practice-in-higher-education

13. CAS Master Teachers. Network of Excellence Computer Science Teaching (2018)
14. Chalmers, L., Keown, P.: Communities of practice and professional development.

Int. J. Lifelong Educ. 25(2), 139–156 (2006)
15. Corso, M., Giacobbe, A.: Building communities of practice that work: a case study

based research. In: The Sixth European Conference on Organizational Knowledge,
Learning, and Capabilities. Bentley College, Waltham (2005)

16. CSTA: CSTA K-12 Computer Science Standards (2017)
17. Department of Education, Gov.UK: National curriculum in England: Computing

programmes of study (2013)

http://www.ric.si/mma/2017M-INF-2017/2015083113004713
https://lusy.fri.uni-lj.si/ucbenik/book/index.html
https://lusy.fri.uni-lj.si/ucbenik/prog/index.html
https://lusy.fri.uni-lj.si/ucbenik/prog/index.html
https://lusy.fri.uni-lj.si/ucbenik/rpi/index.html
https://lusy.fri.uni-lj.si/ucbenik/rpi/index.html
http://www.educa.fmf.uni-lj.si/ro/izomre/novice/doc/vizija.htm
http://www.educa.fmf.uni-lj.si/ro/izomre/novice/doc/vizija.htm
http://bit.ly/csta2018
https://www.computingatschool.org.uk/data/uploads/noe/cas- master-teacher-report-sheffield-hallam.pdf
https://www.computingatschool.org.uk/data/uploads/noe/cas- master-teacher-report-sheffield-hallam.pdf
https://moodle.lusy.fri.uni-lj.si/course/view.php?id=59
https://doi.org/10.1007/978-3-319-74310-3_67
https://library.educause.edu/resources/2005/1/community- of-practice-design-guide-a-stepbystep-guide-for-designing-cultivating-communities- of-practice-in-higher-education
https://library.educause.edu/resources/2005/1/community- of-practice-design-guide-a-stepbystep-guide-for-designing-cultivating-communities- of-practice-in-higher-education
https://library.educause.edu/resources/2005/1/community- of-practice-design-guide-a-stepbystep-guide-for-designing-cultivating-communities- of-practice-in-higher-education

14 A. Brodnik and M. Lokar

18. Fincher, S., Tenenberg, J.: Warren’s question. In: Proceedings of the Third Inter-
national Computing Education Research Workshop, pp. 51–60. ACM (2007)

19. IEEE Curriculum and Accreditation Committee: IEEE Professional Educational
Activities Board. Curriculum and Accreditation Committee (2013). https://www.
computer.org/cms/peb/docs/CS2013-final-report.pdf

20. Jerše, G., Lokar, M.: Uporaba sistema za avtomatsko preverjanje nalog Projekt
Tomo pri učenju programiranja. Vzgoja in izobraževanje v informacijski družbi -
VIVID 2017 : zbornik referatov. Ljubljana (2018)

21. Mori, N., Lokar, M.: A new interactive computer science textbook in Slovenia. In:
Brodnik, A., Tort, F. (eds.) ISSEP 2016. LNCS, vol. 9973, pp. 167–178. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-46747-4 14

22. Mori, N., Brodnik, A., Lokar, M.: Development of CS curriculum for secondary
schools through changes in external examination and textbooks. In: Proceedings
of the IFIP TC3 Joint Conference Stakeholders and Information Technology in
Education. Guimares: University of Minho (2016). http://saite2016.dsi.uminho.
pt/wp-content/uploads/2016/06/Book-of-Abstracts.pdf

23. Ni, L., Guzdial, M., Tew, A. E., Morrison, B., Galanos, R.: Building a community
to support HS CS teachers: the disciplinary commons for Computing educators.
Proceedings of the 42nd ACM technical symposium on Computer Science education
(SIGCSE 11), pp. 553–558. ACM (2011)

24. Pretnar, M., Lokar, M.: A low overhead automated service for teaching program-
ming. In: Proceedings of the 15th Koli Calling International Conference on Com-
puting Education Research. Koli, Finland: Proceedings of the 15th Koli Calling
Conference on Computing Education Research (2015). https://doi.org/10.1145/
2828959.2828964

25. RINOS: Snovalci digitalne prihodnosti ali le uporabniki? https://fri.uni-lj.si/sl/
novice/novica/uporabniki-ali-snovalci-digitalne-prihodnosti (2018)

26. Sentance, S., Humphreys, S.: Online vs face-to-face engagement of computing
teachers for their professional development needs. In: Brodnik, A., Vahrenhold, J.
(eds.) ISSEP 2015. LNCS, vol. 9378, pp. 69–81. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-25396-1 7

27. Sentance, S., Humphreys, S., Dorling, M.: The network of teaching excellence in
CS and master teachers. In: Proceedings of the 9th Workshop in Primary and
Secondary Computing Education, pp. 80–88. ACM (2014)

28. Tenenberg, J., Fincher, S.: Opening the door of the computer science classroom: the
disciplinary commons. In: Proceedings of the 38th SIGCSE Technical Symposium
on Computer Science Education, pp. 514–518. ACM (2007)

29. Tomažin, M., Brodnik, A.: Učni cilji pouka računalnǐstva v osnovni šoli - slovenski
in ACM K12 kurikulum. Organizacija: revija za management, informatiko in kadre,
A173–A178 (2007)

30. UL FMF: Projekt Tomo. Projekt Tomo (2010–2019). https://www.projekt-tomo.
si

31. Wenger-Trayner, E., Wenger-Trayner, B.: Introduction to Communities of Practice.
A Brief Overview of the Concept and Its Uses. Wenger-Trayner, Grass Valley (2015)

32. Wilson, G. (ed.): Teaching Tech Together - Cognitive Load. (Lulu.com) (2018).
http://teachtogether.tech/en/load/

33. Zavod 404: Mladinski tehnološko-raziskovalni center (2018). https://404.si/

https://www.computer.org/cms/peb/docs/CS2013-final-report.pdf
https://www.computer.org/cms/peb/docs/CS2013-final-report.pdf
https://doi.org/10.1007/978-3-319-46747-4_14
http://saite2016.dsi.uminho.pt/wp- content/uploads/2016/06/Book-of-Abstracts.pdf
http://saite2016.dsi.uminho.pt/wp- content/uploads/2016/06/Book-of-Abstracts.pdf
https://doi.org/10.1145/2828959.2828964
https://doi.org/10.1145/2828959.2828964
https://fri.uni-lj.si/sl/novice/novica/uporabniki-ali-snovalci-digitalne-prihodnosti
https://fri.uni-lj.si/sl/novice/novica/uporabniki-ali-snovalci-digitalne-prihodnosti
https://doi.org/10.1007/978-3-319-25396-1_7
https://doi.org/10.1007/978-3-319-25396-1_7
https://www.projekt-tomo.si
https://www.projekt-tomo.si
http://teachtogether.tech/en/load/
https://404.si/

An Exploration of Teachers’ Perspective
About the Learning of Iteration-Control

Constructs

Emanuele Scapin and Claudio Mirolo(B)

University of Udine, Udine 33100, Italy
scapin.emanuele@spes.uniud.it, claudio.mirolo@uniud.it

Abstract. A number of studies report about students’ difficulties with
basic flow-control constructs, and specifically with iteration. Although
such issues are less explored in the context of pre-tertiary education,
this seems to be especially the case for high-school programming learn-
ing, where the difficulties concern both the “mechanical” features of
the notional machine as well as the logical aspects connected with the
constructs, ranging from the implications of loop conditions to a more
abstract grasp of the underlying algorithms.

As part of a project whose long-run goal is identifying methodological
tools to improve the learning of iteration constructs, we interviewed 20
experienced upper secondary teachers of introductory programming in
different kinds of schools from a large area in the North-East of Italy.
In addition, a sample of 164 students from the same schools answered a
survey which included both questions on their subjective perception of
difficulty and simple tasks probing their understanding of iteration.

The interviews were mainly aimed at ascertaining teachers’ beliefs
about major sources of issues for basic programming concepts and their
approach to the teaching and learning of iteration constructs. Each inter-
view was conducted according to a grid of 20 questions, informed by
related frameworks to characterize teachers’ pedagogical content knowl-
edge and to design concept inventories. In essence, data from teachers
and students confirm that iteration is a central programming concept
and indicate that the treatment of conditions and nested constructs are
major sources of students’ difficulties with iteration.

Keywords: Informatics education · Programming learning · High
school · Teacher interviews · Iteration constructs · Novice programmers

1 Introduction

Students appear to struggle with programming, as witnessed, e.g., by the high
drop out rates in tertiary education, which are a well known issue for Computer
Science [10,12]. This may be ascribed to different causes, such as a lack of prob-
lem solving skills, or the peculiar study method required to learn programming;

c© Springer Nature Switzerland AG 2019
S. N. Pozdniakov and V. Dagienė (Eds.): ISSEP 2019, LNCS 11913, pp. 15–27, 2019.
https://doi.org/10.1007/978-3-030-33759-9_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33759-9_2&domain=pdf
http://orcid.org/0000-0001-8384-8231
http://orcid.org/0000-0002-1462-8304
https://doi.org/10.1007/978-3-030-33759-9_2

16 E. Scapin and C. Mirolo

indeed, according to some educators, programming requires “not a single, but a
set of skills” [9,10].

Several works report about students’ difficulties with basic flow-control con-
structs, and specifically with iteration. Kaczmarczyk et al. [11], for instance,
identified “a number of misconceptions all related to an inability to properly
understand the process of while loop functioning” and Cherenkova et al. [5]
found that “students have significant trouble with conditionals and loops, with
loops being particularly challenging”. These issues are still little explored for
pre-tertiary education, but at least anecdotal evidence seems to suggest that
high-school students’ difficulties range from the “mechanical” features of the
underlying computation model to the more abstract aspects in connection with
the algorithmic function of a construct.

For these reasons, we are working on a project aimed at identifying method-
ological tools to enhance a comprehensive understanding of the iteration con-
structs, the main steps being:

1. Interviewing a pilot sample of instructors about their approach to the teach-
ing of iteration and their perception of students difficulties;

2. Collecting information about students’ perception on the topic through a
short survey;

3. Based on the outcome of steps 1 and 2, designing a survey to collect related
information and good practices from a larger sample of teachers;

4. Figuring out some methodological approach to the teaching of iteration and
building a catalogue of significant program examples to support students’
learning;

5. Experimenting the instructional strategies in class to investigate on their
effectiveness.

The methodological tools implied by step 4 should be intended to improve
students’ level of abstraction while dealing with programming constructs, rather
than to focus on a stepwise analysis of how the code works (tools of the latter
type are more widespread, see e.g. the paragraphs on program visualization in
[15]). Source of inspiration in this respect may be the pedagogical work that
elaborate on the concept of loop invariant [1,7,21].

Within this framework, the first two steps outlined above are the subject of
this paper. More specifically, we conducted face-to-face interviews of 20 experi-
enced upper secondary teachers of introductory programming in different kinds
of high schools. The interviews were meant to ascertain teachers’ thoughts about
basic programming concepts, the importance they attach to the understanding
of iteration within their curricula, as well as their strategies to teach iteration, to
assess the learning of this concept and to enhance students’ awareness and moti-
vation. In addition, we administered a survey to a varied sample of 164 students
from the same schools, in order to know also their viewpoint on the matter and
to relate it to the perspective of their teachers. The student survey included both

An Exploration of Teachers’ Perspective 17

questions on their subjective perception and tiny problems addressing different
features of the application of iteration constructs.1

The rest of the paper is organized as follows. In Sect. 2 we outline the back-
ground of this work. The Sects. 3 and 4 are about the methodology and the
outcome of our investigation. Finally, in Sect. 5 we discuss the results and some
future perspective.

2 Background

As mentioned before, the long-term objectives of our work are motivated by the
crucial role of iteration in the learning of programming, an issue that has been
investigated by several authors, e.g. [5,6,11].

In order to accomplish the tasks involved in steps 1 and 2, we had to devise
a protocol to interview the teachers as well as a survey for their students. Inter-
viewing teachers or students have become a popular way of data-collection in
STEM fields, in particular in mathematics and physics education.

As far as teachers’ instructional experience and practice are concerned, the
usual reference framework is that of Pedagogical Content Knowledge (PCK),
originally proposed by Shulman [20] to characterize the “blending of content
and pedagogy into an understanding of how particular aspects of subject matter
are organized, adapted, and represented for instruction”. In this respect, the
Content Representation (CoRe) format is an instrument to investigate teachers’
PCK of a specific topic [13,16] through 8 standard questions, which are meant
to capture teachers’ knowledge about key ideas in connection with the topic.
Although this approach has been mainly applied in science education research,
there have also been a few attempts to exploit it to investigate on the teaching
of programming [2,3,18].

If, on the one hand, the information from teachers could be collected through
long and carefully conducted face-to-face interviews, on the other hand for the
students we needed a short survey with sharp closed-ended questions, so that
they did not get bored while answering them. Thus, to get insight on their
subjective perception of “learning difficulties”, we decided to provide a few lists
of concepts among which to choose (plus an open “other” field).

To identify small sets of basic programming-related concepts we have drawn
from some “validating” work on Concept Inventories for computer science [8,19]
and introductory programming [4], as well as from the review analysis in [14].
The list in [4], for instance, covers the following concepts: function parameter
use and scope; variables, identifiers, and scope; recursion; iteration; structures;
pointers; Boolean expressions; syntax vs. conceptual understanding.

Finally, as to the “tiny” problems included in the questionnaire administered
to the students, we chose to test the three learning dimensions addressed in [17],
namely the understanding of the computation model underlying iteration, the
ability to establish relations between the components of a loop and the statement
1 Complete English versions of the interview questions and of the student survey are

available online at: nid.dimi.uniud.it/additional material/iteration project.html.

http://nid.dimi.uniud.it/additional_material/iteration_project.html

18 E. Scapin and C. Mirolo

of a problem, the ability to interpret the program structures in connection with
iteration constructs.

1. Course organization (5 questions)
programming languages, key programming concepts, related lesson plan, how much
time for each concept, extra-computing prerequisites
2. Introductory programming in general (6 questions)
2.1. teaching Are the tasks assigned to students simple variations of those dealt

with in class? Or do they cover unfamiliar situations as well?
What are your more frequent suggestions to students for improv-
ing their programming performance?

2.2. learning What is the major learning obstacle that students face before
being introduced to object-oriented programming?

2.3. assessment How do you assess a working solution if it is inefficient, or convo-
luted, or somehow at odds with what you expected?
While trying to achieve the assigned tasks, do you expect your
students to apply the models introduced in class? Or do you also
appreciate “creative” solutions?
Are the different solutions by students compared in class? How?

3. Focus on iteration (5 questions)
3.1. teaching Can you show some of your favorite examples to make students

learn how to apply the iteration constructs?
In your teaching, do you cover the mappings between different
iteration constructs (for, while, do-while/repeat-until)?

3.2. learning In your experience, to what extent can students master the ter-
mination condition of a loop?
Which features of the iteration constructs are usually understood
by (most) students, and which are more difficult to them?

3.3. assessment How do you usually assess an incorrect termination condition?
And oversights about the first or last iteration?

4. General educational issues (3 questions)
strategies to motivate students, manage different learning styles, deal with students’
criticisms
5. Other thoughts (1 question)
Any other issues you deem important to consider about the teaching/learning of
programming?

Fig. 1. Structure of the teacher interview protocol.

3 Methodology

3.1 Instruments

To begin with, the structure of the interview protocol, partly inspired by the
approaches to eliciting the PCK presented in the literature, is outlined in Fig. 1,
where the most significant questions are reported verbatim. A set of questions

An Exploration of Teachers’ Perspective 19

(point 1) is aimed at framing iteration within the general context of introduc-
tory programming and the related prerequisites. Other questions (2) attempt to
ascertain how central is the learning of iteration in the teacher’s perspective, but
without mentioning this topic explicitly (the wording of question 2.2 being meant
to prevent discussion of issues arising with object-orientation, when covered in an
introductory course). Then, the focus moves specifically to the teaching, learning
and assessment of iteration (3). Some questions about more general educational
issues (4) and a final open question (5) to collect further ideas not covered in
the previous points conclude the interview session.

The survey addressed to students includes 11 questions, three of which ask to
solve tiny problems by analyzing either small flow charts or short code fragments
based on iteration. The main features of the questionnaire are shown in Fig. 2.
Here there is not enough room to be more specific about the assigned problems,
which will be discussed in more depth elsewhere, but we can note that they
are quite simple and address the three learning dimensions mentioned above:
the ability to grasp the connections between a loop’s component (specifically, its
condition) and the statement of a problem (3.1), the mastery of the “mechanics”
of iteration (3.2), a more comprehensive understanding of the combination of
program structures (3.3). Of course, the three small tasks were not meant to
assess students’ mastery of iteration, but just to get some insight about the
alignment between subjectively perceived and actual difficulties.

1. Course organization (3 questions)
favorite programming languages, poor understanding of mathematical/logic prereq-
uisites, accordance of the subject with personal expectations
2. Introductory programming in general (3 questions)
Do you think it would be needed to spend more time on some programming concepts?
Which ones? (range of options or open “other” field)
Which kind of errors has been most penalizing for your grading? (open question)
Are you usually successful in solving unfamiliar programming problems? (Likert scale
of 4 levels)
3. Focus on iteration (1 question and 3 tiny problems)
What do you find most difficult when trying to use a loop? (range of options)
Problem 3.1: Given the statement of a simple problem being solved, choose the
correct loop condition in a flow chart. (4 options available)
Problem 3.2: Given a while loop with a composed condition and a nested condi-
tional, determine the number of iterations for a given input. (6 options)
Problem 3.3: Given 5 code fragments involving nested construct with simple con-
ditions, identify the functionally equivalent ones.
4. Other thoughts (1 question)
Do you have any suggestion to make learning informatics more interesting?

Fig. 2. Structure of the student survey.

20 E. Scapin and C. Mirolo

3.2 Data Collection

We conducted accurate face-to-face interviews with 20 experienced high school
teachers of informatics, working in 10 technical institutes and lyceums from
a large area in the North-East of Italy. Each such session lasted one to two
hours and was audio-recorded and (partly) transcribed with the interviewee’s
agreement. The survey was administered to 164 students attending classes on
introductory programming in the same schools, mostly at the end their third or
second year, depending on the kind of school.

Fig. 3. Key programming concepts for teachers and their difficulty in the students’ and
teachers’ perception. The absence of a visible bar means 0%.

4 Results

To present the main results of our investigation we follow the general structure
outlined in Fig. 1 and, for the most part, mirrored in Fig. 2.

Course Organization. The most significant insight from this general section
of the interviews is the (weighted) list of key concepts identified by the teachers.
In the chart of Fig. 3, where tightly related concepts have been aggregated, the
percentage of teachers indicating concepts in a certain area is represented by
the length of dark-red bars. In the same chart, the “weights” of concepts are
contrasted to their perceived difficulty for students and teachers, which pertain
to the second section of the interviews and of the survey (see Figs. 1 and 2),
and will be discussed later. What emerges clearly from the data in Fig. 3 is
that almost all the teachers mention precisely control flow and iteration among
the most important concepts of introductory programming—the second most
popular choice being variables and assignment.

As to the adopted (by teachers) vs. the favorite (by student) programming
languages there is a fairly high correlation, with C, C++ and C# at the top of
the ranking, the only difference being the slightly higher popularity of Python

An Exploration of Teachers’ Perspective 21

and Java among students. It may also be worth remarking that several teachers
introduce different programming languages and other design languages, such as
flow charts, to analyze the control constructs.

Another general issue of relevance here concerns the extra-computing prereq-
uisites. Large percentages of both teachers and students refer to the mathemat-
ical/logic background as well as to text comprehension2 as critical—although
often insufficiently developed—to the practice of programming. Interestingly,
more than one third of the students mentions specifically De Morgan’s formu-
las as poorly understood. Moreover, and quite surprisingly, about one fourth of
them revealed to have faced problems with geometry, probably because of its
connections with particularly motivating problem domains.

Introductory Programming in General. By looking again at Fig. 3, we
can see the concepts that the students perceive (light-blue bars) and the teach-
ers think of (orange bars) as serious learning obstacles. The chart should be
self-explanatory. However, it can be observed that teachers are likely to under-
estimate the difficulties faced by some students with flow-control constructs;
moreover, they do not seem to pay much attention on the understanding of
recursion, perhaps because they presume it is hardly within the grips of most
pupils. On the other hand, beside indicating a few of the key concepts taught,
several interviewees emphasize the high-level thinking skills of abstraction and
generalization (bottom bar).

Apart from recursion, according to the students the hardest concepts are
arrays, data structures and subroutines, i.e. precisely the last topics introduced
by their teachers, shortly before the end of a school year. Among the sugges-
tions to the students, about half of the teachers give prominence to the use of
“paper and pencil” to clarify ideas before starting to work with a computer. In
the words of a teacher: “read the text carefully, then analyze the problem and
check a preliminary solution with paper and pencil”. In addition, students are
often encouraged to compare their programs with those of their peers. Most of
the teachers assign also unfamiliar tasks, when their students have reached a
sufficient degree of mastery of programming basics—tasks which more than 60%
of the students feel nevertheless quite confident to achieve and which can provide
further motivation to particularly brilliant learners.

As to the assessment, it emerged that the penalty for inefficient solutions can
amount up to 20–25% of the marks, whereas the instructors tend to be less strict
about programming style, so giving prominence to the fact that a program can
work properly.

Focus on Iteration. Figure 4 reports the collected data about the major
sources of difficulties with iteration. To some extent, teachers and students agree
on indicating the complexity of loop conditions (in terms of use of logical con-
nectives) and the treatment of the exit condition as problematic. However, they

2 Text comprehension is an issue for 42% of the teachers and 27% of the students.

22 E. Scapin and C. Mirolo

seem to have contrasting views as to the other aspects addressed. On the one
hand, a number of teachers point out students’ misuse of iteration constructs, in
particular while vs. do-while and the overuse of for loops in situations where it is
not an appropriate choice. On the other hand, students give far more prominence
to dealing with nested iterations—42% of them report this being the major issue
with iteration.

Fig. 4. Major difficulty with iteration in the teachers’ and students’ perception. Missing
bars mean no available related option for students, 0% for teachers.

Now it is also interesting to compare students’ (and teachers’) perception of
difficulty with their actual performance on the three questions that required an
analysis of small programs based on iteration constructs. In a first task the stu-
dents had to read carefully the statement of a very simple problem and identify
the correct condition in a flow chart by simply choosing among four options, the
only difference being the relational operator in the loop condition: “<”, “≤”,
“=” and “>”. Less than 40% of the students provided the correct answer (≤),
whereas about as many chose one of the two seriously wrong options (= or >).

The second task asked to determine the number of iterations of a short code
fragment for a given input. The loop was characterized by a composite condition
(using two ands) and a nested if-else. In this case, about 60% of the students
identified the right answer (3 iterations). Finally, in the third task the students
had to recognize functionally equivalent programs from a set of 5 items involv-
ing nested constructs (if and while) with simple conditions. Clearly, this task
required a more comprehensive understanding of the effect of combining flow-
control structures, and only less than 20% of the students were able to achieve it
successfully. In particular, it appears that students’ perception of difficulty with
nested constructs is consistent with the actual state of affairs.

According to their teachers, students tend to avoid using Boolean operators
to build efficient conditions. An interviewee argued that “for loops are easier
to students than while loops, since it is not necessary to figure out a suitable
condition”. To overcome these difficulties, several teachers insist on carrying out

An Exploration of Teachers’ Perspective 23

preliminary analysis steps based on flow-chart representations, so that students
can clarify their ideas and understand the implied concepts in more depth. Also
“tracing the program execution with paper and pencil may be helpful to student,
but similar tasks are only rarely done”; indeed, the program code is “less effective
than a flow chart” to visualize what is going on when a program is run. Inciden-
tally, although loop conditions and the related border computations (first and
last repetition) play a crucial role in the understanding of iteration, in general
the teachers take into consideration a varied range of factors to assess students’
programs (unless the focus of the assignment is precisely on the loop condition),
depending also on the connections with the examples worked out in class.

When asked about the examples they commonly presented in class to explain
iteration, the teachers mentioned the tasks listed below, the most popular ones
being those related to elementary mathematics:

sum/average of a number sequence power function

counting odd/even num. in a sequence factorial function

min/max values of a sequence Euclid’s GCD algorithm

input data control (do-while) math number sequence

first n multiples of a number number base conversion

iteration over an array pictures drawing with chars

nth element of a sequence drawing a polygons

Unexpectedly, although all the interviewees said that they present the main
forms of loop constructs—for, while, do-while—and treat their similarities and
differences by showing appropriate examples, few teachers are also explicit about
the mappings between such control structures, e.g. how to transform a for or a
do-while loop into a while and conversely. One teacher, however, attempts to
emphasize the role and power of iteration by discussing the universality of three
basic control structures, as captured by Böhm-Jacopini’s theorem.

General Educational Issues. From the interviews, it emerges that the teach-
ers try to motivate their students by proposing interesting real world problems
or the implementation of computer games and other graphics applications that
are meaningful to them. Often, a driving factor to increase students’ engagement
with learning is their teacher’s enthusiasm, e.g. while bringing to school the chal-
lenges faced in her/his professional experience. The educational objective is that
students can make sense of the importance of mastering particular concepts and
acquiring particular skills.

Other Thoughts. As seen from the outline in Fig. 1, each interviewee was asked
for further possible ideas or suggestions she/he deems important to consider
about the teaching and learning of programming. Here are the main points raised
by the teachers, that go far beyond the scope of our present work:

24 E. Scapin and C. Mirolo

– Lack of alignment between informatics and mathematics topics. A possible
explanation of students’ difficulties with the application of mathematical and
logic concepts is that informatics and mathematics are not well integrated
in the standard high-school curricula, recently subjected to reform. In other
words, some of the mathematical topics may be covered either too early or
too late to be effective when they are required to learn programming.

– Robotics environments. In order to enhance students’ engagement, some
schools have developed robotics laboratories. These usually successful expe-
riences may also be proposed at earlier instruction levels, so that high-school
students will be more familiar with informatics and programming concepts.

– Object-first approach. Some teachers are considering whether the learning of
programming could be improved by starting from the beginning with the
object-oriented paradigm.

5 Discussion

Once established that iteration is among the few most central concepts for novice
programmers, a claim on which all the interviewed teachers appear to agree, the
first question to ask is if students’ difficulties with loop constructs are really a
major issue in the learning of programming. By considering this concept only
from a general point of view, based on the teachers’ and students’ perception
it is so only to some extent, whereas other programming concepts are seen as
more challenging—see Fig. 3. However, when we address the learning of specific
features, such as the treatment of loop conditions or nested constructs, a different
perspective emerges: students are not yet comfortable with these aspects.

As a matter of fact, students are aware of this, as the chart in Fig. 4 shows, but
their difficulties are also confirmed by the performance in the three programming-
related tasks included in the survey, briefly outlined in the previous section.
This is perhaps not too surprising, in light of the fact that most of the program
examples they usually see in connection with iteration are quite straightforward
(see the list in Sect. 4) and tend to induce the use of stereotypical patterns. Thus,
to help students work with nontrivial loop conditions and neat combinations of
flow-control constructs, it can be desirable to develop a catalogue of significant
examples presenting more varied and interesting structures. In a similar spirit, it
may be helpful to investigate the role of iteration in the larger programming tasks
in which the students engage (e.g. to solve “real world” problems, to implement
computer games, etc.).

As recognized by several interviewees (see again Fig. 3), it is likely that the
major issues depend on students’ difficulties to take a more abstract, compre-
hensive perspective when dealing with programs. A possible way, identified by
the teachers, to induce students to develop their abstraction skills is to contrast
their tendency to approach a task by trial-and-error and require them to analyze
the problem with paper and pencil. Another possibility is to demand that stu-
dents organize their programs into several functions and procedures to introduce
meaningful levels of abstraction. In addition, it could be interesting to envisage

An Exploration of Teachers’ Perspective 25

and to explore the effectiveness of methodological tools inspired by the notion
of loop invariant, see e.g. the pedagogical work in [7,21], suitably adapted to fit
less formal learning styles [1].

A final issue, emerged from the interviews, concerns the alignment between
the learning of mathematical and logic prerequisites, which are part of the math-
ematics syllabus, and the learning of programming. Clearly, this issue should be
addressed as part of the national education policies. However, at present what
teachers can do is to strengthen the interdisciplinary work between colleagues
teaching mathematics and informatics.

6 Conclusions

As part of a project aimed at identifying methodological tools to enhance a
comprehensive understanding of iteration, in this paper we have discussed the
outcome of the first two actions. More specifically, we have conducted face-to-face
interviews with a pilot group of high school teachers to know their perspectives
about the teaching and learning of introductory programming in general, as
well as of iteration in particular. In addition, we have administered a survey to a
sample of students to collect data both about their perception of these topics and
about their performance on three tiny tasks concerning the iteration constructs.

In essence, data from teachers and students confirm that iteration is a central
concept in the introductory courses and allow to identify the treatment of loop
conditions and of nested constructs as major sources of students’ difficulties with
loop constructs.

Based on the results of these initial steps, we are now planning to design a
survey to collect related information and good practices from a larger sample
of teachers. Then, we will attempt to develop methodological tools and related
material to enhance students’ understanding of iteration.

References

1. Astrachan, O.: Pictures as invariants. In: Proceedings of the Twenty-second
SIGCSE Technical Symposium on Computer Science Education, pp. 112–118.
SIGCSE 1991, ACM, New York (1991). https://doi.org/10.1145/107004.107026

2. Barendsen, E., et al.: Concepts in k-9 computer science education. In: Proceedings
of the 2015 ITiCSE on Working Group Reports, pp. 85–116. ITICSE-WGR 2015,
ACM, New York (2015). https://doi.org/10.1145/2858796.2858800

3. Buchholz, M., Saeli, M., Schulte, C.: Pck and reflection in computer science teacher
education. In: ACM International Conference Proceeding Series, 11 2013. https://
doi.org/10.1145/2532748.2532752

4. Caceffo, R., Wolfman, S., Booth, K.S., Azevedo, R.: Developing a computer science
concept inventory for introductory programming. In: Proceedings of the 47th ACM
Technical Symposium on Computing Science Education, SIGCSE 2016, pp. 364–
369. ACM, New York (2016). https://doi.org/10.1145/2839509.2844559

https://doi.org/10.1145/107004.107026
https://doi.org/10.1145/2858796.2858800
https://doi.org/10.1145/2532748.2532752
https://doi.org/10.1145/2532748.2532752
https://doi.org/10.1145/2839509.2844559

26 E. Scapin and C. Mirolo

5. Cherenkova, Y., Zingaro, D., Petersen, A.: Identifying challenging cs1 concepts in a
large problem dataset. In: Proceedings of the 45th ACM Technical Symposium on
Computer Science Education, SIGCSE 2014, pp. 695–700. ACM, New York (2014).
https://doi.org/10.1145/2538862.2538966

6. Fernández Alemán, J.L., Oufaska, Y.: Samtool, a tool for deducing and implement-
ing loop patterns. In: Proceedings of the Fifteenth Annual Conference on Innova-
tion and Technology in Computer Science Education, ITiCSE 2010, pp. 68–72.
ACM, New York (2010). https://doi.org/10.1145/1822090.1822111

7. Ginat, D.: Seeking or skipping regularities? Novice tendencies and the role of invari-
ants. Inf. Educ. 2, 211–222 (2003)

8. Goldman, K., et al.: Setting the scope of concept inventories for introductory com-
puting subjects. ACM Trans. Comput. Educ. 10(2), 5 (2010)

9. Gomes, A., Mendes, A.: Learning to program - difficulties and solutions. In: Inter-
national Conference on Engineering Education - ICEE, pp. 283–287, 01 2007

10. Jenkins, T.: On the difficulty of learning to program. In: Proceedings of the 3rd
Annual LTSN ICS Conference (2002). http://www.ics.ltsn.ac.uk/pub/conf2002/
tjenkins.pdf

11. Kaczmarczyk, L.C., Petrick, E.R., East, J.P., Herman, G.L.: Identifying student
misconceptions of programming. In: Proceedings of the 41st ACM Technical Sym-
posium on Computer Science Education, SIGCSE 2010, pp. 107–111. ACM, New
York (2010). https://doi.org/10.1145/1734263.1734299

12. Lewandowski, G., Gutschow, A., Mccartney, R., Sanders, K., Shinners-Kennedy,
D.: What novice programmers don’t know. In: Proceedings of the First Interna-
tional Workshop on Computing Education Research, ICER 2005, pp. 1–12. ACM
(2005)

13. Loughran, J., Mulhall, P., Berry, A.: Exploring pedagogical content knowledge in
science teacher education. Int. J. Sci. Educ. - INT J SCI EDUC 30, 1301–1320
(2008). https://doi.org/10.1080/09500690802187009

14. Luxton-Reilly, A., et al.: Developing assessments to determine mastery of program-
ming fundamentals. In: Proceedings of the 2017 ITiCSE Conference on Working
Group Reports, ITiCSE-WGR ’17, pp. 47–69. ACM, New York (2017). https://
doi.org/10.1145/3174781.3174784

15. Luxton-Reilly, A., et al.: Introductory programming: a systematic literature review.
In: Proceedings Companion of the 23rd Annual ACM Conference on Innovation
and Technology in Computer Science Education, ITiCSE 2018 Companion, pp.
55–106. ACM, New York (2018). https://doi.org/10.1145/3293881.3295779

16. Magnusson, S., Krajcik, J., Borko, H.: Nature, sources, and development of peda-
gogical content knowledge for science teaching. In: Gess-Newsome, J., Lederman,
N. (eds.) Examining Pedagogical Content Knowledge, Science & Technology Edu-
cation Library, vol. 6, pp. 95–132. Springer, Dordrecht (1999). https://doi.org/10.
1007/0-306-47217-1 4

17. Mirolo, C.: Is iteration really easier to learn than recursion for cs1 students? In: Pro-
ceedings of the Ninth Annual International Conference on International Computing
Education Research, ICER 2012, pp. 99–104. ACM, New York (2012). https://doi.
org/10.1145/2361276.2361296

18. Saeli, M., Perrenet, J., Jochems, W., Zwaneveld, B.: Teaching programming in
secondary school: a pedagogical content knowledge perspective. Inf. Educ. 10, 73–
88 (2011)

19. Schaffer, D.: An analysis of science concept inventories and diagnostic tests: com-
monalities and differences. In: Annual International Conference of the National
Association for Research in Science Teaching (2012)

https://doi.org/10.1145/2538862.2538966
https://doi.org/10.1145/1822090.1822111
http://www.ics.ltsn.ac.uk/pub/conf2002/tjenkins.pdf
http://www.ics.ltsn.ac.uk/pub/conf2002/tjenkins.pdf
https://doi.org/10.1145/1734263.1734299
https://doi.org/10.1080/09500690802187009
https://doi.org/10.1145/3174781.3174784
https://doi.org/10.1145/3174781.3174784
https://doi.org/10.1145/3293881.3295779
https://doi.org/10.1007/0-306-47217-1_4
https://doi.org/10.1007/0-306-47217-1_4
https://doi.org/10.1145/2361276.2361296
https://doi.org/10.1145/2361276.2361296

An Exploration of Teachers’ Perspective 27

20. Shulman, L.S.: Those who understand: knowledge growth in teaching. Educ. Res.
15(2), 4–14 (1986)

21. Tam, W.C.: Teaching loop invariants to beginners by examples. SIGCSE Bull.
24(1), 92–96 (1992). https://doi.org/10.1145/135250.134530

https://doi.org/10.1145/135250.134530

What Are Computer Science Educators
Interested In? The Case of SIGCSE

Conferences

Ragonis Noa1,2(&) and Orit Hazzan2

1 Beit Berl College, Beit Berl, Kfar Saba, Israel
noarag@beitberl.ac.il

2 Technion Israel Institute of Technology, Haifa, Israel
oritha@tx.technion.ac.il

Abstract. This paper explores the fields of interest of the computer science
education (CSE) community during the 12 years between 2006–2018 as
reflected in the professional content of SIGCSE conferences. For this purpose,
we investigated four SIGCSE conferences—2006, 2010, 2014, and 2018—and
identified main topics and themes addressed in the following three presentation
formats: papers, panels, and special sessions. We defined five content categories
derived from the different presentation content: teaching methods, curricula,
CSE research, recruitment and retention, and educators. The paper compares the
four conferences according to two main classifications (1) content categoriza-
tion, according to the above content categories we defined; and (2) the most
frequent keywords used by the authors to describe their work. These keywords
were divided into three themes: CS curricula, CS topics, and pedagogy. Our
analysis reveals that: (1) according to the content categorization, teaching
methods received the most attention from the SIGCSE community, with cur-
ricula coming in second, at a substantial distance; (2) according to keywords
categorization: (a) the most frequently used CS curricula keywords relate to
CS1, followed by, at a significant gap, CS0 and K-12, following by computa-
tional thinking and interdisciplinary studies; (b) it is difficult to identify the most
frequently used CS topics keywords (c) in relation to the pedagogy character-
istic, the most frequently used keywords are: assessment, active learning, and
team collaboration. In future work, we intend to check the consistency of the
current findings with other journals and conferences in which the CSE com-
munity publishes its work.

Keywords: Computer science educators � SIGCSE conferences �
Trends in computer science education � Teaching methods

1 Introduction

One of the challenges facing CS educators is coping with the rapid changes and
developments taking place in the discipline of CS, in the students’ interests and skills,
and in teaching, learning and evaluating new methods. To prepare future computer
scientists and software engineers for the largely unknown future work market, these

© Springer Nature Switzerland AG 2019
S. N. Pozdniakov and V. Dagienė (Eds.): ISSEP 2019, LNCS 11913, pp. 28–40, 2019.
https://doi.org/10.1007/978-3-030-33759-9_3

http://orcid.org/0000-0002-8163-0199
http://orcid.org/0000-0002-8627-0997
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33759-9_3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33759-9_3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33759-9_3&domain=pdf
https://doi.org/10.1007/978-3-030-33759-9_3

changes require CS educators, both in academia and in schools, to constantly adjust
their course syllabi as well as their teaching methods. This need is reflected, for
example, in the frequent requests posted to the SIGCSE mailing list, asking the
community for course materials and advice on integrating new teaching methods into
CS courses. Following are some random examples of such threads:

• Curriculum issues such as requests for learning materials for “preparing a basic
concurrency course” (Sheldon, M., 10th June 2014), rethinking the first taught
programming paradigm “functional programming in intro CS course” (Strout, S.,
17th Feb 2018), and advice for “building a cybersecurity lab” (Weiss, S., 6th Nov
2017);

• Integrating up-to-date technological approaches to teaching CS such as “Smart-
phones’ impact on student engagement and learning” (Hoffman. M.E., 10th Aug
2018), or about activating “MOOC on Software Engineering Essentials” (Bruegge,
B., Krusche, S. and Seitz, A. (17th Oct, 2017);

• Exploration of teaching approaches such as a question on how to “correctly show
dependence in UML with an abstract class” (Gates, E.A., 8th October 2017) and a
discussion on the question: “Can multiple choice (or similar) questions be accurate
and reliable as exam questions in CS1” (Vahid, F., 24th, July, 2018)1.

The interest of the CSE community with respect to the contribution of SIGCSE
papers over the years is expressed also in a special session held in 2010 conference
titled: “Recognizing the most influential CS education papers”. This special session
was devoted to the recognition of the most influential CS education papers of the 20th
century on the practice of CS education today. It served as a basis for the establishment
of criteria for an award or other recognition for influential contributions to CSE [6].

Based on this recognition, we asked ourselves: What changes have taken place in
CSE over the past 12 years, as reflected in the SIGCSE conferences? To exposure the
changes, we chose four, not continuous, at the same interval of four years conferences
and analyzed the topics of three presentation formats – papers, panels and special
sessions. In the paper we present the research background, the research framework, the
methods we used to analyze the data, and some of the main findings. We finalize with
short discussion and future research we intend to conduct.

2 Research Background

The discipline of CS has undergone changes, which in turn have affected CSE. Chi [4],
for instance, wrote: “The world has changed, and so should the computing science
curriculum as well” and, after exploring the concepts included in the Internet Operating
System [7], concluded: “How many universities can say that they have experts in all of
these areas? These topics are often only covered in CS departments as either advanced
topic courses, or, worse, not offered at all.”

1 The discussion is presented in ACM, SIGCSE-members: http://listserv.acm.org/scripts/wa-
ACMLPX.exe?A0=SIGCSE-MEMBERS.

What Are Computer Science Educators Interested In? 29

http://listserv.acm.org/scripts/wa-ACMLPX.exe%3fA0%3dSIGCSE-MEMBERS
http://listserv.acm.org/scripts/wa-ACMLPX.exe%3fA0%3dSIGCSE-MEMBERS

Such changes have caused CS departments to update their curricula. In Stanford,
for example, “the previous core curriculum, which had become monolithic and
inflexible, was pared in the re-design to just six core courses—three with a theoretical
focus and three with an emphasis on programming and systems. […] A number of
relevant courses from other departments including, for example, biology, psychology,
product design and studio art can be included as part of a student’s program in CS.”2

This trend is reflected also in the new SIGCSE category added to the Curriculum
Topics list: New Interdisciplinary Programs (CS + X). Furthermore, social media
elements have been largely introduced into CS curricula and pedagogy in recent years
(e.g., MOOCs, mobility, clouds, social networking, big data and more). These changes
are reflected at SIGCSE conferences as well: the big data issue was first addressed at
SIGCSE 2011 and MOOCs were first discussed a year later, at SIGCSE 2012.

Other ACM SIGs (Special Interest Groups) also refer to similar trends. For
example, by mining the ACM Digital Library, Guha, Steinhardt, Ishtiaque and Lagoze
[5] revealed evidence of transitions in the field of CS since the emergence of computer-
human interaction as a distinct sub-discipline. Their results suggest shifts in the field
due to broader social, economic, and political changes in computing research.

One way to explore changes in CS is by investigating the three versions of the CS
Computing Curricula published by ACM and IEEE in 2001 [1], 2008 [2], and 2013 [3].
Even a superficial analysis of the top-level knowledge areas addressed in those cur-
ricula (KAs) reveals changes in the field (Table 1, N is the number of KAs).

As Table 1 reveals, the 2001 and 2008 curricula are almost identical. More pro-
found differences are however exhibited between the first two curricula and the third
curriculum, in which two main changes are evident in several categories (rows high-
lighted in grey). First, the Programming Fundamentals knowledge area has been split in
2013 into Software Development Fundamentals and System Fundamentals and, sec-
ond, the knowledge area Net-Centric Computing, which appeared in both the 2001 and
2008 curricula, does not appear in the 2013 curriculum and, instead, four new KAs
have been introduced: Information Assurance and Security, Networking and Com-
munications, Platform-Based Development, and Parallel and Distributed Computing.
No new CS curriculum has been published since 2013, but other related curricula have
been updated and new curricula have been developed. For example, an updated cur-
riculum for Computer Engineering was published in 2016 (the previous and first one
was published in 2004), an updated curriculum for Software Engineering was pub-
lished in 2014 (the previous and first one was published in 2004), and a new curriculum
for Post-Secondary Degree Programs in Cybersecurity was published in 20173. Similar
updates were incorporated in the Information Technology and Information Systems

2 Period of Transition: Stanford computer science rethink core curriculum, https://engineering.
stanford.edu/press/period-transition-stanford-computer-science-rethinks-core-curriculum (June 14,
2012).

3 ACM>Education>Curricula Recommendations: https://www.acm.org/education/curricula-recommen-
dations.

30 R. Noa and O. Hazzan

https://engineering.stanford.edu/press/period-transition-stanford-computer-science-rethinks-core-curriculum
https://engineering.stanford.edu/press/period-transition-stanford-computer-science-rethinks-core-curriculum
https://www.acm.org/education/curricula-recommendations
https://www.acm.org/education/curricula-recommendations

curricula for bachelor and graduate degrees. The K-12 curricula standards4 were
developed in 2011 and updated in 2017.

3 Research Framework

3.1 Research Objective

Our research objective was to explore the changes that have taken place in CSE over
the past decade, as they are reflected in conferences, discussion groups, and journals, in
which CSE practitioners and researchers share their expertise and experience.

3.2 Research Questions

For the preliminary research stage, we posed the following question: What changes
have taken place in CSE over the past decade, as reflected in SIGCSE conferences?

Table 1. KAs in the 2001, 2008 and 2013 CS ACM and IEEE curricula

1002AKraeY
(N = 14)

2008
(N = 14)

2013
(N = 18)

Discrete Structures + + +
Programming Fundamentals + +
Software Development Fundamentals +
System Fundamentals +
Algorithms and Complexity + + +
Architecture and Organization + + +
Operating Systems + + +
Net-Centric Computing + +
Information Assurance and Security +
Networking and Communications +
Platform-based Development +
Parallel and Distributed Computing +
Programming Languages + + +
Human-Computer Interaction + + +
Graphics and Visual Computing + + +
Intelligent Systems + + +
Information Management + + +
Social and Professional Issues + + + Practice
Software Engineering + + +
Computational Science (CN) and Numerical
Methods (NM)

+ CN
+ NM

+ CN + CN

4 CSTA K-12 Standards: https://www.csteachers.org/page/standards https://www.csteachers.org/page/
standards.

What Are Computer Science Educators Interested In? 31

https://www.csteachers.org/page/standards
https://www.csteachers.org/page/standards
https://www.csteachers.org/page/standards

3.3 Data Collected

We analyzed three presentation formats—papers, panels, and special sessions—in-
cluded in the SIGCSE conference proceedings from four years: 2006, 2010, 2014 and
2018 (Table 2). Our assumption was that differences, if exist, will be more noticeable
in non-consecutive years. Hence, we chose to examine conferences at 4-year intervals.

The three presentation formats are characterized on the conference website as
follows:

• Papers describe an educational research project, classroom experience, teaching
technique, curricular initiative, or pedagogical tool.

• Panels present multiple perspectives on a specific topic.
• Special sessions include a seminar on a new topic, a committee report, or a forum

on curriculum issues.

For each item in each presentation category, we examined the following
characteristics:

• Session head (in which the papers were presented)
• Presentation title
• Categories and subject descriptors (in 2006, 2010, 2014)
• General terms (in 2006, 2010, 2014)
• CCS concepts (in 2018)
• Keywords

As can be seen, the format requirements from authors was changed. In the first three
conferences, authors were asked to include Categories subject descriptors, and General
terms, and at 2018, authors were asked to specify the CCS concepts. Due to this
inconsistency, we do not include these presentation characteristics in this paper.

The considerations for the data gathering and analysis are:

• Session heads: Session heads reflect the conference chairs’ perspective on the
conference topics and focal themes. Since the conference chairs give session titles
to help the audience choose sessions that might be of interest, the session heads add
information about the presentation content.

• General terms: We compared the General terms of the three first conferences but it
did not lead to any valuable conclusion. Hence, it is not presented.

• Categories and subject descriptors: Till the 2019 conference, most presentations
were classified as belonging to the K.3.2 - Computer and Information Science
Education category, hence, this data was found to be less useful for our investi-
gation of trends in CSE. In fact, the K.3.2 category was the category recommended
by the conferences guidelines. For example, the SIGCSE 2014 website5 specifically
states, “most submissions are likely to use category K.3.2 Computer and Infor-
mation Science Education”. Indeed, some presenters were satisfied to use the high-
level category, while others attributed several subcategories to their presentations.
Despite the guidelines, several presenters used alternative categorizations, which are

5 SIGCSE 2014 website: http://sigcse2014.sigcse.org/authors/format.php.

32 R. Noa and O. Hazzan

http://sigcse2014.sigcse.org/authors/format.php

also relevant for CSE (e.g., K.3.1 Computer Uses in Education: Collaborative
learning; Computer-assisted instruction; Computer-managed instruction; Distance
learning; or K.4 COMPUTERS AND SOCIETY: K.4.1 Public Policy Issues -
Ethics; or K.4.2 Social Issues - Handicapped persons/special needs). In 2019, a new
categorization system has been introduces - CCS CONCEPTS6. We guess it aimed
at solving the above problem, and, at the same time, to integrate the two previous
categories, General terms and Subject categories, into one classification.

• CCS categories: The new CCS categories tree of concepts is valuable and allows
more accurate and up-to-date characterization of the presentations. Nevertheless,
here as well, authors choose in different way. Some author mention only the concept
that appears as a leaf of a categorization tree, other stop at inner nodes, and some
describe complete paths. Therefore, comparative analysis may not be accurate.

• Keywords: Keywords express the presentations’ themes, as defined freely by the
authors. We initially assumed that this descriptor would best fit to compare and
follow the CSE community interests. We found, however, a huge variety of key-
words so that made it almost useless for statistically analyze, per-se. Further, not all
authors included keywords.

Base on those insights, we set the analysis criteria presented next.

3.4 Data Analysis

Considering the data provided for each presentation, and the restrictions regarding each
of the descriptors, we performed a two-way analysis of the data collected on each of the
three types of presentations (papers, panels, special sessions): Content analysis
(Sect. 3.4.1) and keyword analysis (Sect. 3.4.2).

The Content Analysis
Considering the session head in which the presentation was included, the presentation
title, and if needed, its abstract, we defined five content categories, specified below,
three of which have sub-categories. For each, we present examples of main original
content that was associated with it. Each paper was allocated to one category according
to its’ identified leading content.

Table 2. Number of papers, panels, and special sessions presented at SIGCSE 2006, 2010, 2014
and 2018

Type of presentation 2006 2010 2014 2018

Papers 107 103 105 162
Panels 14 12 14 19
Special Sessions 10 12 12 16
Total = 576 121 127 131 197

6 See The 2012 ACM Computing Classification System: https://www.acm.org/publications/class-2012.

What Are Computer Science Educators Interested In? 33

https://www.acm.org/publications/class-2012

Teaching Methods

• Computerized tools: lab-related topics, animation, visualization, computerized tools
that support learning processes, game programming.

• Active learning: all activities whose purpose is to promote student participation and
engagement.

• Evaluation: evaluation methods - exercises and tests, project evaluation, peer
evaluation, test design.

• Projects/peers: project development, project ideas, team formation, teamwork.
• Class organization: distance learning, working with teaching assistants, MOOCs.

Curricula

• K-12 curricula.
• Undergraduate curricula, including programming languages
• Interdisciplinary curricula.

CSE Research

• Including: conceptions, influence of teaching methods on student understanding,
comparison between teaching methods, and different research methods.

Recruitment and Retention

• Including issues related to gender and disabilities.

CS Educators

• K-12 educators.
• Undergraduate educators.

We distinguish papers on ‘Teaching Methods’ from ‘CSE Research’ by the fol-
lowing criteria: CSE research papers describe a methodological research, including data
collection tools and analysis; papers categorized as a Teaching Methods paper describe
a teaching experience, highlighting some pedagogical method, and whose emphasis is
not the research process.

The Keywords Analysis
After filtering keywords that add no relevant information for classification, such as CSE
or Computing, we divided the keywords into three sub-categories: CS curricula, such as,
CS1 and K-12; CS topics, such as, Cybersecurity and Logic Programming; and peda-
gogy, such as, Project-Based Learning, Automated Testing, and Gamification. When
authors did not specify keywords, we retrieved keywords from the presentation title.

4 Findings: Trends in CSE

4.1 Content Categorization

The content categorization is presented for each of the presentations studied—papers,
panels, and special sessions—with columns for each of the conferences (2006, 2010,
2014, 2018) and a Total column. The rows of Table 3, which presents the content

34 R. Noa and O. Hazzan

categories for papers, are sorted in descending order of the Total column. To compare
between the three types of presentations, this order is maintained also for the other two
types of presentations, even if the Total column suggests otherwise.

Papers Content Categorization
Table 3 presents the frequency in percentages for papers according to the content
categories (grey background) and sub-categories (white background) for each of the
four conferences. The percentages of the categories represent their frequency in each
conference, and as such, they express the degree of attention each category received in
the said conference. In the Total column, percentages are calculated with respect to
N = 477, which is the total number of papers presented in the four conferences.

Our main observations are that:

• Teaching methods: is the most frequently addressed issue in all conferences
although interest is seen to decrease from 2014 (53%) to 2018 (37%)

• Curricula: Similar attention is given to the category of Curricula in the four con-
ferences, but the focus shifted in 2018 and more attention was given to the K-12 and
Interdisciplinary sub-categories.

• CSE Research: Interest in CSE research decreased from 2006 (21%) to 2014 (9%)
and increased from 2014 (9%) to 2018 (15%).

• Recruitment and Retention: increased in 2014 and 2018;
• CS Educators: A noticeable change can be observed in 2018 (11%), after the

category of Educators received only little attention at the previous three confer-
ences. Specifically, in the K-* sub-category, in the 2006 and 2010 conferences, only
K-12 educators were addressed, whereas in 2018, two new populations of educators
were addressed K-8 and K-3.

Table 3. Relative frequency of the content categories of papers

Content categories/Sub-
categories

2006
N = 107

2010
N = 103

2014
N = 105

2018
N = 162

Total
N = 477

Teaching Methods 47% 47% 53% 37% 45%
Computerized tools 9% 20% 19% 9% 14%
Active learning 15% 12% 20% 7% 13%
Evaluation 8% 10% 6% 9% 8%
Projects/peers 8% 5% 5% 7% 6%
Class organization 6% 0% 4% 4% 4%
Curricula 22% 31% 27% 28% 27%
Undergraduate 8% 21% 21% 15% 16%
K-12 8% 7% 1% 5% 5%
Interdisciplinary 6% 3% 6% 9% 6%
CSE Research 21% 14% 9% 15% 15%
Recruitment and
Retention

6% 6% 11% 9% 8%

CS Educators 4% 2% 0% 11% 5%
K-12 4% 1% 0% 6% 3%
Undergraduate 0% 1% 0% 5% 2%

What Are Computer Science Educators Interested In? 35

Panels Content Categorization
Table 4 presents the relative frequency in percentages of panels according to the
refined content categorization. Due to the relatively small number of panels presented
at each conference, sub-categories are not specified.

As Table 4 indicates, the frequency order of content categories associated with the
panels is identical to that obtained for the papers (Table 3).

Special Sessions Content Categorization
Table 5 presents the relative frequency in percentages of special sessions according to
the refined content categorization. Due to the relatively small number of special ses-
sions presented at each conference, sub-categories are not specified.

As can be seen from Table 5, unlike papers and panels, Curricula received more
attention in special session than did Teaching Methods, the category that received the
highest attention in papers and panels.

Table 4. Relative frequency of the content categories of panels, in percentage

Content categories/Sub-
categories

2006
N=14

2010
N=12

2014
N=14

2018
N=19

Total
N=59

Teaching Methods 51% 42% 36% 32% 40%
Curricula 21% 33% 43% 42% 35%
CSE Research 21% 17% 0% 5% 10%
Recruitment and Retention 7% 8% 14% 11% 10%
CS Educators 0% 0% 7% 11% 5%

Table 5. Relative frequency of the content categories of special sessions, in percentage

Content categories/Sub-
categories

2006
N = 10

2010
N = 12

2014
N = 12

2018
N = 16

Total
N = 50

Teaching Methods 30% 26% 50% 19% 30%
Curricula 30% 33% 25% 50% 36%
CSE Research 10% 33% 8% 19% 18%
Recruitment and
Retention

30% 0% 17% 6% 12%

CS Educators 0% 8% 0% 6% 4%

36 R. Noa and O. Hazzan

4.2 Keyword Categorization

Keywords are defined freely by the authors and express their presentations’ themes. As
mentioned, we initially assumed that this descriptor would be found to be the best way
to compare and follow changes in the interests of the CSE community. Since we found
a huge variety of keywords7, this descriptor was deemed unsuitable for statistical
analysis; however, since keywords represent an important classification for authors, we
nevertheless divided the keywords into three categories: (1) CS curriculum, (2) CS
topics, and (3) pedagogy. This categorization appears to resonate the type of papers
specified in the SIGCSE 2019 submission site8: (1) Curriculum Topics, Computing
Topics and Education and Experience Topics.

Since the number of presentations in Panels and Special Sessions is relatively
small, and as mentioned, the variety of keywords is great, we combine the keywords of
all three presentation types together and present the number of appearances (and not
percentages as presented in the content categorization).

Keywords that Address the Type of Curriculum
Table 6 displays the frequencies of keywords that address types of curriculum. The first
line presents the frequency at which the global words curricula or curriculum was
mentioned and the other lines indicate the particular curriculum topic mentioned.

The undergraduate curricula (CS0, CS1, CS2 and Software Engineering) are pre-
sented first, with the highest frequency for CS1 curriculum in all three conferences. In
general, the frequencies of the undergraduate curricula are similar over the years, while
CS1 leads high above, and the advanced curricula (CS2, SE) are addressed less. The
STEM/ Interdisciplinary or Multidisciplinary curricula and the Computational Think-
ing curriculum come next and are discussed with respect to undergraduate programs
and high school programs. Then, curricula for different school ages are presented. The
increased interest in developing the young generation’s computational skills is reflected
clearly. This approach flourished followed Wing’s [8] first call in 2006 to develop
computational thinking skills within any discipline. CS in K-12 education is now an
integral content of the SIGCSE conferences, with recently added attention to middle
school and even to elementary school.

The bottom line of Table 6 presents the percentages of papers in each of the four
conferences, which address the curriculum category. These percentages (in between
37% to 54%; on average of 45%) express a relatively high interest in this category.

Keywords that Address CS Topics
Table 7 displays the frequencies of keywords that address CS topics. In this category,
the problem of multiple keywords without uniform representation is clearly expressed.
The table presents CS topics that appeared at least in one conference and at least four
times. These data do not allow retrieving any significant information and it warrants
further investigation.

7 This is correct also for the 2018 conference, in which more presentations were accepted.
8 https://sigcse2019.sigcse.org/authors/papers.html.

What Are Computer Science Educators Interested In? 37

https://sigcse2019.sigcse.org/authors/papers.html

The bottom line of Table 7 presents the percentages of papers in each of the four
conferences, which address the CS topics category. These percentages (in between 18%
to 23%; an average of 21%) reflect interest in this category which is only about half of
the interest expressed in relation to the curriculum category.

Table 6. Frequency of keywords that address the type of curriculum

Keywords 2006
N = 131

2010
N = 127

2014
N = 131

2018
N = 197

Total
N = 586

Curriculum/Curricula 16 18 14 16 64
CS0 8 8 5 3 24
CS1 13 15 16 17 61
CS2 4 3 3 5 15
Software Engineering 4 4 8 1 17
STEM/Interdisciplinary/Multidisciplinary 2 5 7 4 18
Computational Thinking 7 6 7 20
K-12 1 6 10 11 28
AP 3 3
K10 1 1
Middle School 2 2
Elementary/
Primary/K6

1 4 5

Percentage in the conference 37% 52% 54% 37% 44%

Table 7. Frequency of keywords that address CS topics

Keywords 2006
N = 131

2010
N = 127

2014
N = 131

2018
N = 197

Total
N = 586

Algorithms 5 3 3 8 19
Networks 4 5 1 4 14
Cybersecurity 1 2 8 11
Parallel 1 5 3 2 11
Object Oriented 4 5 1 10
Compilers 5 3 1 1 10
Data Structures 1 1 4 4 10
Web 3 4 1 1 9
Graphics 5 1 1 7
Python 1 1 4 1 7
Distributed 4 2 6
Functional 1 4 5
Percentage in the
conference

23% 22% 19% 18% 20%

38 R. Noa and O. Hazzan

Keywords that Address Pedagogical Aspects
Table 8 presents the frequency of the pedagogy-related keywords, sorted according to
total appearance in the four conferences.

The bottom line of Table 8 presents the percentages of papers in each of the four
conferences that address the pedagogical aspects category. These percentages (in
between 63% to 85%; on average of 74%) express extensive and wide interest in this
category. This remarkable interest is substantially higher than the interest expressed in
the other categories and hints that the SIGCSE conferences fulfill their aims.

Here are several main insights with respect to pedagogical aspects:

• A significant increase is noted in aspects related directly to teaching practices, in
particular, assessment, active learning, and collaborative learning. This resonates
the categorization by content categories in which Teaching Methods received the
highest attention.

• Focus is placed on collaborative learning, teamwork, and gender.
• A consistent increase is evident in aspects related to distance learning.

5 Discussion

The data analysis for the three types of presentations leads to several observations that
enable to realize the potential of the SIGCSE conferences:

• Although the objectives of the three kinds of presentations differ, the different
presentations address practically the same topics (and at, more or less, the same
related frequencies).

• The dominance of the content category Teaching Methods is noticeable, especially
compared with Curriculum.

Table 8. Frequency of keywords that address pedagogical aspects

Keywords 2006
N = 131

2010
N = 127

2014
N = 131

2018
N = 197

Total
N = 586

Assessment/Evaluation/Testing/Automated
Testing

9 13 19 36 77

Teaching/Instruction 6 17 9 29 61
Collaboration/Peer/Pair 8 18 9 25 60
Gender/Diversity/Minorities/Culture 15 13 13 19 60
Active learning 11 6 8 16 41
Research 11 8 7 9 35
Visualization 6 10 6 7 29
Project 8 5 8 7 28
Games 6 8 4 9 27
Distance Learning/Flipped Class/MOOC 2 3 8 10 23
Percentage in the conference 63% 80% 69% 85% 75%

What Are Computer Science Educators Interested In? 39

• Although teaching methods receive a great deal of attention, only a small proportion
of presentations address the CS educators themselves. Relevant topics that are
neglected are, for example, barriers educators face while assimilating new teaching
methods in different teaching settings (e.g., large university classes).

Following the exploration presented in this paper we intend to continue and analyze
other venues that focus on CSE (journals and other CSE conferences) and to check how
the topics addressed at the CSE conferences are related to trends in the discipline of CS
itself.

References

1. ACM and IEEE: Computing Curricula 2001 - Computer Science (2001). https://www.acm.
org/binaries/content/assets/education/curricula-recommendations/cc2001.pdf

2. ACM and IEEE: Computer Science Curriculum 2008: An Interim Revision of CS 2001
(2008). https://www.acm.org/binaries/content/assets/education/curricula-recommendations/
computerscience2008.pdf

3. ACM and IEEE: Computer Science Curricula 2013 Curriculum Guidelines for Undergraduate
Degree Programs in Computer Science (2013). https://www.acm.org/binaries/content/assets/
education/cs2013_web_final.pdf

4. Chi, E.H.: Time to rethink CS education: The (social) web changes everything!
BLOG@CACM (2010). http://cacm.acm.org/blogs/blog-cacm/82365-time-to-rethink-
computer-science-education-the-social-web-changes-everything/fulltext

5. Guha, S., Steinhardt, S., Ishtiaque S.A., Lagoze, C.: Following bibliometric footprints:
The ACM digital library and the evolution of CS. In: Proceedings of the 13th ACM/IEEE-CS
Joint Conference on Digital Libraries (JCDL 2013), pp. 139–142. ACM, New York (2013).
http://doi.acm.org/10.1145/2467696.2467

6. Kay, D.G., Bruce, K.B., Clancy, M., Dale, N., Guzdial, M., Roberts, E.: Recognizing the most
influential CS education papers. In: Proceedings of the 41st ACM Technical Symposium on
Computer Science Education (SIGCSE 2010), pp. 196–197. ACM, New York (2010). DOI:
https://doi.org/10.1145/1734263.1734331

7. O’Reilly, T.: The State of the Internet Operating System. Radar, Insight, Analysis, and
Research about Emerging Technologies. http://radar.oreilly.com/2010/03/state-of-internet-
operating-system.html

8. Wing, J.M.: Computational thinking. Commun. ACM 49(3), 33–35 (2006)

40 R. Noa and O. Hazzan

https://www.acm.org/binaries/content/assets/education/curricula-recommendations/cc2001.pdf
https://www.acm.org/binaries/content/assets/education/curricula-recommendations/cc2001.pdf
https://www.acm.org/binaries/content/assets/education/curricula-recommendations/computerscience2008.pdf
https://www.acm.org/binaries/content/assets/education/curricula-recommendations/computerscience2008.pdf
https://www.acm.org/binaries/content/assets/education/cs2013_web_final.pdf
https://www.acm.org/binaries/content/assets/education/cs2013_web_final.pdf
http://cacm.acm.org/blogs/blog-cacm/82365-time-to-rethink-computer-science-education-the-social-web-changes-everything/fulltext
http://cacm.acm.org/blogs/blog-cacm/82365-time-to-rethink-computer-science-education-the-social-web-changes-everything/fulltext
http://doi.acm.org/10.1145/2467696.2467
http://dx.doi.org/10.1145/1734263.1734331
http://radar.oreilly.com/2010/03/state-of-internet-operating-system.html
http://radar.oreilly.com/2010/03/state-of-internet-operating-system.html

Holistic STEAM Education Through
Computational Thinking: A Perspective

on Training Future Teachers

Arnold Pears1(B) , Erik Barendsen2 , Valentina Dagienė3 ,
Vladimiras Dolgopolovas3 , and Eglė Jasutė3

1 KTH Royal Institute of Technology, Stockholm, Sweden
pears@kth.se

2 Radboud University and Open University, Nijmegen, The Netherlands
e.barendsen@cs.ru.nl

3 University of Vilnius Institute of Educational Sciences, Vilnius, Lithuania
valentina.dagiene@mif.vu.lt

http://www.kth.se/larande, http://www.ru.nl/science/

http://www.vu.lt

Abstract. Computational thinking (CT) skills are argued to be vital
to preparing future generations of learners to be productive citizens in
our increasingly technologically sophisticated societies. However, teacher
education lags behind policy in many countries, and there is a palpa-
ble need for enhanced support for teacher education in CT. This paper
addresses this gap, establishing an intellectual framework with which
to explore the manner in which CT can be inculcated in compulsory
school students. Drawing on a deeper awareness of the broader societal
and cultural context of the activities we introduce a new approach to
designing teacher education. The novelty of our approach is that train-
ing computation thinking is framed as an integrative element rather than
as a separate study subject. This approach provides better articulation
between Engineering and Science oriented subjects and Arts, providing
supporting methods to develop the professional skills of student-teachers.

Keywords: Computational thinking · Integration · Culture ·
STEAM · Compulsory schooling · Teacher training

1 Introduction

In order to educate future generations, new generations of teachers require the
requisite skills and capability to scaffold learning in a societal context where
technology, and in particular automation and computation threaten to eliminate
many skilled professions [20]. By implication the tertiary education sector must
respond in terms of teacher education, and their structure, conduct and outcomes
to equip pupils with the new skill set required.

c© Springer Nature Switzerland AG 2019
S. N. Pozdniakov and V. Dagienė (Eds.): ISSEP 2019, LNCS 11913, pp. 41–52, 2019.
https://doi.org/10.1007/978-3-030-33759-9_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33759-9_4&domain=pdf
http://orcid.org/0000-0002-5184-4743
http://orcid.org/0000-0003-4684-4287
http://orcid.org/0000-0002-3955-4751
http://orcid.org/0000-0002-0416-8930
http://orcid.org/0000-0001-5183-9058
https://doi.org/10.1007/978-3-030-33759-9_4

42 A. Pears et al.

Responding to these challenges, the EU has announced new strategies and
requirements for European Higher Education (HE). One of the declared priorities
is “tackling future skills mismatches and promoting excellence in skills develop-
ment” [1]. The motivation for this statement is clear, first, there is a decrease
in interest and many “jobs are closely related to those areas that prepare stu-
dents for jobs where shortages exist or are emerging” [2]. The areas of science,
technology, engineering, (arts) and maths (STE(A)M), medical professions and
teaching are focus areas.

The European Centre for the Development of Vocational Training (CEDE-
FOP) avers that the most highly demanded professionals are: “ICT profession-
als; medical doctors; science, technology, engineering and mathematics (STEM)
professionals; nurses and midwives; and teachers” [1,2]. They also conclude that
“all students in advanced learning, irrespective of discipline, need to acquire
advanced transverse skills and key competences that will allow them to thrive”
[1]. These skills, in addition to high- level digital competencies [1,8,10,21] include
“numeracy, autonomy, critical thinking and a capacity for problem-solving” [1].

Computational models are central to a large fraction of modern scientific
research, and therefore are also central to research-driven education. Computa-
tional models arise in collaboration with other disciplines outside computing. In
these areas, in addition to the existing physical environment and specific content
laboratories, computing can provide an opportunity for digital experiments and
simulations. Then, in order to develop, implement, and study practical solutions
based on computational models that include both technical and social aspects,
students should have additional skills that allow them to develop or implement
solutions in a highly digitised educational environment, such as decomposition
and generalisation, and skills to design, create relevant algorithms, automate
and calculate. Many argue that computational skills, in particular Computa-
tional Thinking (CT), are central to every discipline and profession.

Despite the importance attributed to STEM subjects by strategists and
government documents [2], the need to motivate more people to study sub-
jects related to STEM remains, including the problem of “tackling the under-
representation of women, minorities and other under-represented groups in sci-
entific and technical subjects in HE and subsequently in related professions” [1].

The role of school teachers is crucial to addressing this problem in a sustain-
able manner. School teachers are person who can motivate their pupils to take
an interest in all subjects, including maths and sciences, and play an active role
in helping to shape their future choices. During his or her teaching activities,
the school teacher is a crucial agent, utilising knowledge, skills and competen-
cies to enhance the intellectual development of students. Consequently, the role
and responsibility of HE (especially in regard to the education of future teach-
ers) is to ensure that study programs are provided which develop the required
pedagogical models and competence.

This paper describes our recommendation for developing and contextualising
future STEM education in the context of the European discourse on higher edu-
cation and pre-service teacher education. Aligned with our previous discussion

Holistic STEAM Education Through Computational Thinking 43

we suggest special attention be given to Computational Thinking and to the
new demands placed on teachers. Our starting point is therefore to propose a
framework of curriculum improvements with respect to computational skills in
STEM teacher education in a manner that allows them to be contextualised into
the complex European curriculum landscape.

Our target group for this project are teachers for: preschool institutions
(kindergartens); primary school; middle and high school STEM and computer
science subjects; foreign languages, arts and humanities. The concrete objectives
are: (1) to improve the CT skills of prospective teachers, and (2) to foster the
teachers’ development of pedagogical content knowledge (PCK) related to the
teaching and training of various aspects of Computational Thinking (CT). We
recognise that it is impossible to provide a generic solution due to the different
curricula for teacher education in different countries. However, the goal of the
exercise is not to rewrite curricula, or propose new curricula, instead we focus on
providing modules that provide practical assistance to teachers and teacher edu-
cators. The role of these resources, and how they influence curricula in countries
beyond the scope of our initiative (our scope is primarily the Nordic and Baltic
countries). We offer the model we have developed as a source of inspiration for
others, and as an example of one approach to tackling this educational challenge.

2 Computational Thinking as an Integrating Skill

2.1 Research Perspective

Computational thinking and digital competence are closely related areas. The
DigComp framework of the European Union [21] provides guidance in the process
of identifying the necessary skills and competencies estimated to be required
of future citizens. Jeanette Wing [22,23] widely popularised and promoted the
central role of computational approaches. In this regard, a key aspect is the
ability to understand the opportunities and limitations which the high speed
computational capacity modern computers bring to the practice of all disciplines.

Here it is crucial to recognise that ideas of computation, and computability
are not what is new. Computation and computing have been practiced since
early times [18], and the ability to compute and automate has lead to large
scale social re-organisation, for instance the impact of automation as a primary
driver of the industrial revolution [7]. What is new is the rapidity with which
calculations can be performed. The speed of calculation possible with modern
computing machinery is unprecedented, and it is the application of this power,
with the associated implications for what that makes possible that is crucial to
the STEAM argument. But indeed, what is even more important, is what cannot
be done despite this capability for rapid computation.

There are many ways to conceptualize Computational Thinking. Common
aspects include Decomposition, abstraction, algorithms and automation, mod-
elling and simulation, data collection, data representation, data analysis, and
parallelisation. This skill set provides capabilities for designing content and con-
text specific models and simulations with (or without) computers.

44 A. Pears et al.

2.2 Scientific Literacy

The goal of science education is scientific literacy, therefore to teach scientific
inquiry is one of the most important aspects for STEAM education. This includes
(besides content specific skills) experimentation skills and argumentation skills.

Scientific thinking is understood as the ability to complete scientific inquiry
within a specific scientific content. Knowledge of the basics and details of the
content specific topics is important. In addition, students should acquire skills
for experimentation and data processing, as well as logical thinking and general-
isation skills. Creative thinking, as already mentioned, includes skills that allow
students to incorporate aspects related to the environment and context into the
model that they create and test during their project or problem based activities.

We treat Computational Thinking (CT) as an integrative skill within our
holistic STEM model. This position is arrived at based on the following argu-
ments. First, we wish to emphasise the primary role of computational models in
modern scientific research and, therefore, in research-oriented education. Such
computational models, in addition to the existing physical environment and
specific content laboratories, provide an opportunity for digital experiments and
simulations.

Subsequently it will be necessary to develop, implement, and study a series
of practical modules imbued with the core competences in aspects related to
the acquisition and development of CT skills. The process of such integration
with the existing curricula will provide solutions based on computational models
that include both technical and social aspects, [such that] students should have
additional skills that allow them to develop or implement solutions in a highly
digitised educational environment, such as decomposing and generalising skills
and skills to automate, algorithmize, calculate, and design.

2.3 STEAM Integration

As for science, engineering and technology, focusing exclusively on specific tech-
nical knowledge in isolation no longer provides learning advantages. Contextu-
alisation in terms of other disciplines emerges as important, and social contex-
tualisation as a major factor in achieving broader representation of minorities.
Revealing a “true” pragmatist approach, focused on the needs and expectations
of the community, modelling of complex social aspects is a must for modern
research and industry. Such requirements have a direct impact on modern STEM
education.

There is a need for context-oriented STEM content and teaching resources,
with a clear focus on the trans-disciplinary nature of emerging high level chal-
lenges. Indeed there are compelling calls to expand STEM to include aspects
of design and the arts. In Sweden the national curriculum calls for CT con-
tent to be integrated into existing school subjects such as “art and craft” and
Swedish language, as well as the more traditional targets, mathematics, physics
and technology. To address this situation a point of departure in design, and a
more holistic epistemology of STEM teaching embracing the Arts (STE(A)M)

Holistic STEAM Education Through Computational Thinking 45

is proposed [19]. In the outline we present below, this integration is the central
guiding principle.

To contextualise our effort further we consider the two main trends of devel-
opment of post-industrial society related to education and research. Foremost
digitisation, followed closely by the socialisation and contextualisation of knowl-
edge and experience. There is a movement back to our “socio-cultural origin” -
signified by a shift in popular perspective from industrial society with its clear
focus on people as potential employees, to a post-industrial understanding of the
complex interplay between the nature of people and society. These two directions
are intertwined fostering nowadays post-industrial society to become even more
complex to act, understand and model. Individuals are immersed in a kind of
broth with human, inhuman agents and organisations. In the course of its daily
activities, the industry must take into account the influence of the complexity
of these social and contextual factors, and in practice this means even higher
demands on employees related to skills and level of education [14].

Another argument for the integration is the failure of “automatic transfer”
in the original Papert approach. One of the key ideas in Papert’s (1980) classical
work on the programming language LOGO [13] is that by learning to program,
children would develop computational problem solving skills that they could
apply to other contexts. Results of empirical studies on this expected trans-
fer were mixed, however. Research suggests that sophisticated applications of
computational thinking skills to other subject matter does not come by itself,
but requires explicit instruction [16]. This is also confirmed by the work of
Palumbo [12] which explores the evidence surrounding how problem solving can
be supported by programming activities.

3 An Integrated CT Curriculum for Teacher Education

3.1 Content

There is a need to develop innovative educational approaches to practical
STEAM education that are based on Computational Thinking (CT) as related
to trans-disciplinary and holistic STEAM perspectives. We promote a prag-
matic approach to CT as to a set of tools, techniques and approaches which
enable a seamless transition from the early-aged child’s unplug activities to a
comprehensive modelling and computer simulation activities of K-12 and early
years’ university students. We put our research and implementation emphasis on
educational programs and curriculum enhancement for education of prospective
teachers focusing on CT and STEAM related aspects.

We propose an approach that promotes developing of skills related to the
contextual environment, such as communication, research ethics, social mod-
elling, politics and society, and include the development of emotional and cre-
ative thinking in addition to the skills of scientific thinking, mainly as related to
project-based and enquiry driven education.

We propose a multidimensional model of curriculum development: the lon-
gitudinal dimension (personal childhood intellectual development), the skills

46 A. Pears et al.

dimension (scientific thinking skills, CT skills, and contextual thinking skills),
the contextual dimension (community, society, communication, management,
entrepreneurship, culture, diversity, ethics).

Within this three dimensional curriculum CT is positioned as an integrative
skill set that links scientific and content- specific knowledge with contextual
thinking skills, adding context-specific modelling skills (developing of models
and simulations, including modelling of cyber-social systems).

The curricula philosophy emerges from the post scientific tendency to merge
scientific and technical knowledge with social and humanitarian knowledge. Here
we perceive contextual knowledge as the most valued, and adopt a pragmatist
approach to education in terms of sharing community values and solving actual
present-day problems. The adapted TPACK framework for CT and STEAM is
applied to develop specific curriculum modules in the latter part of the paper.

Students are given the opportunity to evaluate their designs from an eco-
nomic, environmental, political, and scientific point of view. In fact, the student
teacher should also be able to develop and test the contextual model using
assessment, evaluation, and communication.

3.2 Pedagogical Approaches

The evolution of school STEM pedagogy expands our scope beyond the tradi-
tional discipline specific STEM to tackle the complex challenge of embedding CT
and other scientific thinking habits and practices into language and arts and craft
subjects. Necessarily this integrated STEM must be seen as STE(A)M – that
is include (integrate) arts and humanities subjects with traditional STEM. Our
STEAM integration process is based on the development of models and/or sim-
ulations in curricula support modules (these could be computer/computational
models or other forms of models and simulations) that will provide an appropri-
ate grounding for students’ cognitive processes. In doing so we place an emphasis
on informatics (computer science) and/or CT.

Project based learning cycle (PBL) as related to STEAM includes practices
and activities to (Young, 2018): (1) identify the problem; (2) identify criteria
and constraints; (3) brainstorm possible solutions; (4) generate ideas; (5) explore
possibilities; (6) select an approach; (7) build a model or prototype (computer
model and/or simulation); (8) refine the design. Our approach leverages these
stages as a way to scaffold module design.

What are the main aspects of school STEAM education? (1) We must pro-
vide students with the instruments to creatively solve the problems they face in
their daily lives; (2) In the PBL cycle, students should be motivated to design
the investigation to find the best appropriate solution from issues raised from
the community; (3) the main principles for the curriculum: the situated problem,
creative design, emotional grounding; (4) an integrative approach and focus on
competences – scientific thinking, computational thinking, and contextual think-
ing; (5) systematic assessment.

Holistic STEAM Education Through Computational Thinking 47

The school (kindergarten) curriculum must comply with the earlier work of
Armstrong [4]: (A) cycles of child’s personal development; (B) a holistic longi-
tudinal model of a child’s personal development.

The holistic approach to design [3] involves increasing complexity – from
simple tasks to complex projects; as we do so we eliminate compartmentalisation
and sequencing of problem-solving tasks.

A context-based approach has been shown to be beneficial. In particular,
context-based teaching provides meaning, coherence and relevance to conceptual
subject matter. We develop a content based on real-world problems or tasks
related to children’s lives: the multidisciplinary nature of real-world problems
places new demand on teaching, requiring collaboration between teachers with
different content experiences and expertise.

4 Project: Developing Teacher Education on CT in
STEAM

4.1 Objectives

We aim to contribute to the professional development of STEAM teachers by
developing modules for teacher education in order to (1) improve CT skills of
prospective teachers and (2) to improve pedagogical skills and competencies of
prospective teachers based on the integrative multi-disciplinary model previously
advanced by Seery et al. [19].

4.2 Design Principles

How should this be achieved? There are many approaches that have shown
promise in engaging learners using an explorative/enquiry paradigm. We con-
sider here some variants of problem based learning (PBL), as well as Design
Based Learning (DBL) within the broader sphere of social-constructivist learn-
ing approaches.

The recommended assessment approach is based on a pragmatic methodol-
ogy which includes theoretical study, and models practical design cycles includ-
ing piloting and dissemination stages. As a final practical result, a number of
curriculum modules result, providing the basis for training prospective teach-
ers on various aspects of CT as related to STEAM project-based education for
preschool and school levels.

The proposed modules adopt several crucial criteria: (1) they are self- suf-
ficient, which allows them to be included in the existing university curriculum;
(2) they form part of the coherent CT curriculum for STEAM and related sub-
jects. Expected impact includes opportunities to improve current educational
programs for prospective teachers, and in the longer term, to improve European
STEM education by moving to interdisciplinary and pragmatic STE(A)M, thus
increasing teacher and pupil involvement and increasing motivation of currently
less represented groups in order to generate interest in professional careers in
the field of science and engineering.

48 A. Pears et al.

4.3 Methodology

The research and implementation process of the individual modules is structured
in four phases: (1) Development and Design Phase: Literature review and/or
research on existing practices, the development of a first draft of the intellectual
output and its publishing on the web site; (2) Review and Pilot Phase: Refine-
ment of the first draft based on peer review and feedback by experts as well
as feedback from the piloting of the module in teacher education programmes
responsible for the course of the training events. (3) Optimisation and Produc-
tion Phase: Development of an improved version of the intellectual output and
its publication on the research project web site. (4) Translation and Publishing
Phase: translation of intellectual outputs into languages of the research project
partner countries and national implementation of the outputs.

In the development of the modules we address the TPACK model, which
offers: (C) knowledge of the content includes knowledge of CT and aspects related
to STEAM and contextual modelling; (P) pedagogical knowledge includes knowl-
edge related to: (a) pedagogy of CT as a whole, (b) STEAM pedagogy, includ-
ing interdisciplinary, integrative and contextual aspects, (c) PBL pedagogy; (T)
technological knowledge should provide support for PBL and related modelling;
(CX) contextual knowledge, among others, includes knowledge of modern school
reform and European educational policy. A partial evaluation of the efficacy of
these modules and the integrated curriculum model can be conducted using the
teacher self-efficacy instrument of Nordén et al. [11].

4.4 Module Structure

The conceptual core is the development of 10 modules for integrating of com-
putational thinking (CT) into existing university trainee teachers’ education.
This implementation consists of learning resources which can be adapted, con-
textualised, and integrated into university teacher education covering science,
technology, engineering, arts and mathematics (STEAM).

The structure of the pool of resources (see Fig. 1) is designed to cover all
the main parts of the educational process. The output of the project is the
10 modules (O1–O10) described in Table 1. Output O1, along with outputs O2
and O9, provide the theoretical and methodological basis for all module devel-
opment. Outputs O8 and O10 focus on specific CT and STEAM educational
environments and aspects of instructional design. Other modules are subject
and level specific and focused on CT for STEAM and related subjects. At the
same time, each module is self-sufficient and includes supporting material in the
form of descriptions and instructions for the user. Each module will ultimately
be represented by its own web page on the research project website.

5 Implications

Fostering the application of CT in school subject areas suggests that the learning
objectives in existing subjects should be examined for future alignment with

Holistic STEAM Education Through Computational Thinking 49

Table 1. Module overview

Module Contents

O1 Framework for the development of the curriculum modules:
CT & STEAM for education of prospective school and
kindergarten teachers

O2 General Introduction of Computational Thinking: a basic
module suitable for all teachers

O3 CT for pre-school (kindergarten) prospective teachers:
specific features, approaches and practical solutions

O4 CT for primary education prospective teachers: specific
features, approaches and practical solutions

O5 CT for STEM prospective teachers: specific features,
approaches and practical solutions

O6 CT for languages, arts and humanities prospective
teachers: specific features, approaches and practical
solutions

O7 CT for languages, arts and humanities prospective
teachers: specific features, approaches and practical
solutions

O8 Educational environments for CT: design and aspects of
integration

O9 Using Constructivism, and Project and Challenge Driven
Pedagogy for learning Computational Thinking

O10 Technological, pedagogical and instructional design aspects
of teaching CT for STEAM

CT competences. This requires developing suitable operationalisations of CT
and investigating both generic linking principles and topic-specific connections
to CT. Concrete CT ‘hooks’ have been developed for specific STEM subject
matter, for example mathematics [9] and technology [5].

Most of the examples of embedding CT into an existing subject area involve
some form of algorithmic problem solving in that subject area, often combined
with the construction of digital artifacts such as computer programs or robot
as a technological solution to the problem. In some cases, however, it would
be preferable to use computational concepts to represent subject matter from
another STEM discipline such as physics, chemistry, biology or mathematics, in
order to better understand and explore fundamental principles.

An interesting example is the use of algorithms to model the concepts of
natural selection and protein synthesis in biology [15]. In the case of such sci-
entific phenomena algorithmic modelling can be utilised, and the phenomenon
explored using simulations, stimulating analysis, evaluation and reflection skills.
If the emergent properties differ from the expected, this ”suggests the rules, and
therefore the underlying understanding needs further refinement“ [17].

50 A. Pears et al.

Fig. 1. Contextualised curriculum model

Teaching and assessing development in computational thinking has become
one of the main issues in the field of modern education [3,6], and thus the
discourse has moved beyond the boundaries of computer science. There is a ten-
dency towards the integration of computational thinking skills into the skill set
of today’s learners regardless of their technical background. Therefore, to asso-
ciate these skills with such courses as programming/computer literacy/digital
competence might not be an effective or sustainable approach. However, as an
alternative we suggest that a search for the possible ways to integrate compu-
tational thinking skills into the current educational settings provides a more
constructive starting point.

Development of activities about computational thinking skills, and integra-
tion them into the curricula of various subject areas can be expected to help
learners to meet the requirements of the information age paradigm of education.
Teachers play a key role throughout this change because they are the ones who
will embed the skills that contribute to the development of computational think-
ing skills in addition to practice the integrated activities. The computational
thinking skills awareness of current teachers in the field of information technol-
ogy (or computer science) is currently questionable. Moreover, the relationship
between these skills and other subject areas are considerably weaker than is
desirable. Our modularised approach strengthen that relationship, enhancing
teacher education programs and providing support for curriculum revisions. It is
expected that computational thinking skills will become obligatory fundamental
skills, regardless of the subject areas of teachers. Moreover, the way teachers
transfer these skills into their field of practice can be listed as one of the crucial
teacher competencies in the near future. We believe that the approach we outline
above addresses some central elements of this challenge.

Holistic STEAM Education Through Computational Thinking 51

6 Summary

In this paper we provide an educational science and resource design perspective
on the challenge of integrating CT conceptual material into existing EU school
teacher education programmes.

The aim of the curriculum modules for CT and STEAM education is two-fold:
(1) to train pre-service teachers from various subject areas in order to develop
their computational thinking skills, and (2) to model CT processes and thought
structures to help integrate these skills into realistic educational scenarios. Our
target group includes pre-service teachers in the one of the following fields: com-
puter science, mathematics, science, foreign languages, craft, pre-school (kinder-
garten), and elementary education. Teacher education programs may naturally
exhibit differences in terms of curriculum structure, and they can be shaped
according to the local needs of countries. Any intervention designed for a sin-
gle country might produce unexpected results for another one. That’s why the
context of the particular country should be well-defined by local researchers and
thus the collaboration on a European scale developing the European dimension
and character of education can become meaningful. In this way, countries can
learn from each other’s experience. It is consequently of the utmost importance
that the pre-service teacher training interventions proposed here be tested and
implemented in different countries.

Summing up the initiative and the manner in which it contributes to a new
approach to STEAM teaching as an holistic pursuit we offer the following obser-
vations.

ELEMENTS OF INNOVATION include a pragmatic view on CT as on a
set of tools and techniques which allow contextual integration of educational
activities of school students of various levels of a STEM focused education. CT
approaches in education, in addition to traditional approach to computer science
and programming education, promote unplug activities, support project and
design-based activities.

EXPECTED IMPACT (A) framework - is on (1) university teachers – pro-
vide a contextual description and module development paradigm; (2) curriculum
developers – provide a framework for integration and adaptation of the devel-
oped. (B) research project web page – on all groups of interest and dissemination.

TRANSFER POTENTIAL is based on the universality of the structure,
which ensures the consistency and self-sufficiency of the curriculum and other
modules.

Acknowledgements. Some ideas in this paper are part of the outcomes of NordPlus
Higher Education project NPHE-2019/10157. The main modules will be developed
with the framework of the Erasmus+ project “Future Teachers Education: STEAM
and Computational Thinking”, 2019-1-LT01-KA203-060767.

References

1. EUR-Lex - 52017dc0247 - EN - EUR-Lex, https://eur-lex.europa.eu/legal-content/
EN/TXT/?uri=CELEX:52017DC0247

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52017DC0247
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52017DC0247

52 A. Pears et al.

2. Briefing note - The skills employers want!, April 2019
3. Angeli, C., et al.: A K-6 computational thinking curriculum framework: Implica-

tions for teacher knowledge. Educ. Technol. Soc. (2016)
4. Armstrong, T.: The Best Schools: How Human Development Research Should

Inform Educational Practice. Association for Supervision and Curriculum Devel-
opment, Alexandria (2006)

5. Atmatzidou, S., Demetriadis, S.: Advancing students’ computational thinking skills
through educational robotics: a study on age and gender relevant differences.
Robot. Auton. Syst. 75, 661–670 (2016)

6. Brennan, K., Resnick, M.: New frameworks for studying and assessing the devel-
opment of computational thinking. In: Proceedings of the 2012 Annual Meeting of
(2012)

7. Grier, D.A.: Human computers: the first pioneers of the information age. Endeavour
25(1), 28–32 (2001). https://doi.org/10.1016/S0160-9327(00)01338-7

8. Kluzer, S., et al.: DigComp into action, get inspired make it happen a user guide
to the European Digital Competence framework (2018)

9. Lu, J.J., Fletcher, G.H.: Thinking about computational thinking. ACM SIGCSE
Bull. 41(1), 260–264 (2009)

10. Mannila, L., Nordén, L., Pears, A.: Digital competence, teacher self-efficacy and
training needs. In: Proceedings of the 2018 ACM Conference on International Com-
puting Education Research, pp. 78–85. ACM (2018)

11. Nordén, L., Mannila, L., Pears, A.: Development of a self-efficacy scale for digital
competences in schools. In: IEEE/ASEE Frontiers in Education Conference (2017)

12. Palumbo, D.: Programming language/problem-solving research: a review of rele-
vant issues. Rev. Educ. Res. 60(1), 65–89 (1990)

13. Papert, S.: Mindstorms: Children, Computers, and Powerful Ideas. Basic Books
Inc., New York (1980)

14. Pears, A., Daniels, M.: Developing global teamwork skills: the runestone project.
In: Castro, M., Tovar, E., Auer, M.E. (eds.) IEEE EDUCON 2010 The Future of
Global Learning in Engineering Education (2010)

15. Peel, A., Friedrichsen, P.: Algorithms, abstractions, and iterations: teaching com-
putational thinking using protein synthesis translation. Am. Biol. Teach. 80(1),
21–28 (2018)

16. Perkins, D.N., Salomon, G.: Are cognitive skills context-bound? Educ. Res. 18(1),
16–25 (1989)

17. Robins, A.V., Fincher, S.A.: The Cambridge Handbook of Computing Education
Research. Cambridge Handbooks in Psychology. Cambridge University Press, Cam-
bridge (2019)

18. Robson, E., Stedall, J.: The Oxford Handbook of the History of Mathematics. OUP
Oxford, Oxford (2008). google-Books-ID: IieQDwAAQBAJ

19. Seery, N., Gumaelius, L., Pears, A.: Multidisciplinary teaching: the emergence of
an holistic STEM teacher. In: 2018 IEEE Frontiers in Education Conference (FIE),
pp. 1–6. IEEE (2018)

20. Tedre, M.: The Science of Computing: Shaping a Discipline. Taylor & Francis,
Boca Raton (2014)

21. Vuorikari, R., Punie, Y., Gomez, S.C., Van Den Brande, G., et al.: DigComp 2.0:
The Digital Competence Framework for Citizens, June 2016

22. Wing, J.M.: Computational thinking. Commun. ACM 49(3), 33–35 (2006)
23. Wing Jeannette, M.: Computational thinking and thinking about computing. Phi-

los. Trans. Roy. Soc. A: Math. Phys. Eng. Sci. 366(1881), 3717–3725 (2008).
https://doi.org/10.1098/rsta.2008.0118

https://doi.org/10.1016/S0160-9327(00)01338-7
https://doi.org/10.1098/rsta.2008.0118

Informatics Education in School:
A Multi-Year Large-Scale Study on
Female Participation and Teachers’

Beliefs

Enrico Nardelli1(B) and Isabella Corradini2

1 Università di Roma “Tor Vergata”, Rome, Italy
nardelli@mat.uniroma2.it

2 Themis Research Centre, Rome, Italy
isabellacorradini@themiscrime.com

Abstract. This paper describes the outcomes of a multi-year large-scale
study on Informatics education in school, involving an average of 3,600
teachers per school year of all school levels. The study has been conducted
in Italy, where - generally speaking - there is no compulsory informat-
ics education in school. Teachers have voluntarily enrolled in the “Pro-
gramma il Futuro” project, running since 2014, and have taught short
introductory courses in Informatics. Answering - anonymously - to mon-
itoring questionnaires, they have indicated whether girls or boys were
more interested in Informatics activities and whether girls or boys were
more effective.

Answers show that the difference between the number of teachers
thinking boys are more interested (or more effective) and the number
of those judging girls more interested (or more effective) has constantly
decreased over school years during the project. This variation in teach-
ers’ beliefs over school years - that we attribute to their involvement
in project activities - is important, since teachers’ beliefs are known to
influence students’ motivations, hence their future choices. Our opinion
is reinforced by the results of a differential analysis, in each school year,
between teachers repeating activities and those executing them for the
first time.

Moreover, the analysis of disaggregated data shows that the difference
between boys and girls relative to interest or effectiveness increases going
up in school level. Our results provide an empirical support to the belief
that it is important to start Informatics education early in school, before
gender stereotypes consolidate.

Keywords: Informatics education in school · Broadening
participation · Gender and diversity

c© Springer Nature Switzerland AG 2019
S. N. Pozdniakov and V. Dagienė (Eds.): ISSEP 2019, LNCS 11913, pp. 53–67, 2019.
https://doi.org/10.1007/978-3-030-33759-9_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33759-9_5&domain=pdf
https://doi.org/10.1007/978-3-030-33759-9_5

54 E. Nardelli and I. Corradini

1 Introduction

Many developed countries declare a shortage of workers well trained for comput-
ing related jobs [11,16]. This has become even more important in recent years,
given that computing occupations are a larger and larger share of jobs [8].

Moreover, the existing information technology workforce does not adequately
represent the diversity of society [10,21,38], largely due to the fact that too few
girls and minorities enroll in computing related discipline [9,26,40].

The introduction of compulsory Informatics1 education in schools and its
extension to all school levels has been proposed as one possible measure to
change this situation [6]. The rationale is that, by gaining since school a bet-
ter comprehension of the real nature of the discipline, students - and girls in
particular - can be more inclined to choose it for their university studies [28,39].

Related to this, it is also debated at which level of schools Informatics edu-
cation should be introduced (see [15] and [42] for an in depth discussion), since
some consider it an advanced discipline requiring students are mature enough to
grasp it well. On the other side, there are some highly reputed learned societies
who see it as fundamental as mathematics, hence advocate its introduction since
the first years of school [1,37]. This is what happened, for example, in UK, where
a computing curriculum became mandatory in 2014 for all levels of school.

In our study we investigated school teachers’ beliefs in Italy regarding the
interest and effectiveness of girls and boys towards Informatics. We think this
is an important factor to increase female participation in the CS field, since
teachers’ beliefs are known to affect students’ motivations, hence to influence
their future choices of the university degree course to attend.

In this paper “kindergarten” indicates the pre-school level, for students up to
5 years old; “primary” indicates the 5 first years of school, attended by students
aged between 6 and 10 (roughly, both endpoints included); “lower secondary”
indicates the 3 years of intermediate studies, attended between 11 and 13; finally,
“higher secondary” indicates the 5 last years of school, between 14 and 18. We
always use these labels with the above described meaning, since this is their
standard meaning in Italy.

2 Related Work

The introduction of Informatics education in school levels earlier than the higher
secondary one is largely debated issue [3,15,42]. Even a country like, e.g. Poland,
which has some form of compulsory Informatics education in higher secondary
schools since the 80s, has not had compulsory Informatics education for pri-
mary school until a few years ago [35]. Duncan et al. [15] discuss that the best
age for students to learn programming depends on many factors (cultural, envi-
ronmental, social, personal, and instrumental) and should be considered in a
multi-disciplinary context (e.g., psychology, pedagogy, mathematics, and lan-
guage). In any case, they conclude “it is clear from a variety of evidence that
1 We use interchangeably the terms Informatics and Computer Science (CS).

Informatics Education in School 55

some exposure to programming before about 12 years old is both worthwhile and
feasible”. Also Armoni and Gal-Ezer [3] agree this issue is a complex one and
“cannot be addressed without deep and thorough research”.

It is also important to consider that the choice of the subject a student will
study at the university and/or will do as a job is affected by many factors, beyond
the actual age of her exposition to the subject during school years. Research has
highlighted that students’ motivation is affected by individual factors, situational
ones, and how these interact [31,32]. Many studies support the conviction that
teachers’ beliefs affect student’s motivation [5,20,22]. For a successful Informat-
ics education uptake in K-12 it is therefore important to understand the actual
teachers’ viewpoint.

Moreover, social aspects cannot be neglected. In fact, negative stereotypes
about girl’s STEM abilities are transmitted to them by their teachers, shaping
their attitudes and undermining their performance and interest [19,34].

In addition, it is known that well-designed educational programs can increase
the participation of women to CS in college [17,23]. Research has highlighted
the importance of acting at K-12 level, where girls risk to be discouraged and
to lose interest in STEM careers [25], also under the influence of the stereotype
seeing a CS student as a socially awkward and technology focused male [7,
26] and of social and cultural biases [10]. Moreover, role-model in K-12 is an
important element [33], given its positive influence on girls’ confidence when
they are subject to negative stereotypes [27]. Finally, school performance in early
STEM courses influences future students’ choice of a major in the field [29].

By comparing female increasing participation efforts in computing to those
in other disciplines, Zagami et al. [44] argue that the presence of a compulsory
CS curriculum since early level of school might be the only measure able to
sustain female participation over periods such as adolescence, a stage where
students start making critical career choices [43]. The importance of acting since
primary schools on the improvement of CS image so as to fight misconceptions
and stereotypes and to increase female participation in computing has also been
discussed in [18].

3 Methods

3.1 Context

Our analysis has been done in the context of Italian “Programma il Futuro”
project2 (PiF, from now on) for Informatics education in schools: it is a coun-
trywide initiative which has been running since school year 2014–15 [12–14].
Italy does not generally have in place compulsory CS teaching in school, but
for some types of upper secondary school. In the past, Informatics education
has largely been focused on the operational aspects of using digital tools, like in
many other developed ones [41]. Therefore, while it is under debate the possi-
bility of introducing some form of compulsory Informatics education in schools,
voluntary initiatives have flourished.
2 https://programmailfuturo.it.

https://programmailfuturo.it

56 E. Nardelli and I. Corradini

PiF’s activities are grounded on both visual programming computer-based
exercises à la Scratch (accompanied by video tutorials and automatically evalu-
ated by the web platform supporting the project) and unplugged exercises on CS
fundamental principles in the style of CS Unplugged (for which detailed lesson
plans are made available). The teaching material is made available by Code.org
and fully adapted to Italian by our team.

3.2 Questionnaires

Teachers involved in PiF are more than 33,000 at the beginning of school year
2018–19 (the fifth for the project). They voluntarily enroll, are generally not
trained in CS, and usually teach a number of different subjects. A continuous
communication action is deployed to keep them active and motivated.

Teachers are asked to fill out monitoring questionnaires with demographic
and participation data. During each of the school years 2015–16 and 2016–17
they answered to two questionnaires (after three months and at the end) while
in 2017–18 only one (the first one).

The goal of PiF is to spread information and awareness about the scientific
nature of Informatics and not to investigate differences between boys and girls
in attitude or performances related to Informatics. Nevertheless two questions in
these surveys consider the possible imbalance between girls and boys in interest
and effectiveness while carrying out the activities:

Q1 In your classes, students more interested to project activities have been...
Q2 In your classes, students more effective in executing project activities have

been...

For both questions only one of the following answers can be chosen (they are
presented to teachers in random order):

– equally students of both sexes
– female students more than male ones
– male students more than female ones

Note that activities carried out in classes are the same for both male students
and female ones and are not elective, hence were attended by all female and
male students. Note also that during the first year of PiF (2014–15) these two
questions were not present in the pilot version of the monitoring questionnaire.

We are aware a better approach to the research question “At which school
level is it better to introduce informatics education so as to reduce the gender
gap?” would have been based on the measurement of the actual attitude or
performance of students. However, considering the wide spectrum of school levels
and the high number of project participants, it would have been a hugely complex
task.

3.3 Population and Sample Demographics

We provide here some demographic data, during the analyzed school years,
regarding both the population of teachers enrolled into PiF and the sample who

https://code.org/

Informatics Education in School 57

Table 1. Teachers’ sex distribution

2015–16 2016–17 2017–18

pop. sam. pop. sam. pop. sam.

female 11,552 3,050 22,869 3,936 28,576 2,017

male 2,740 704 4,365 707 5,135 405

Table 2. Teachers’ age distribution

2015–16 2016–17 2017–18

pop. sam. pop. sam. pop. sam.

to 30 89 * 191 31 214 13

31–40 1,617 * 2,853 487 3,154 204

41–50 5,547 * 10,217 1,924 12,033 906

51–60 5,782 * 11,140 1,930 14,096 1,112

61 up 1,257 * 2,833 271 4,214 187

*= this school year age was not asked

answered to the monitoring questionnaires. For those school years in which two
monitoring questionnaires were issued, data from the second one reported here
comes only from those teachers who did not answer the first one.

Table 1 shows how teachers are distributed according to their sex. In each
school year the sample is a significant representation of the population with
respect to sex, given that the average value3 of the sum of the squared differences
(ASSD) between values in the sample and their expected values4 is less than 1.1%
of the sample size in each school year. The percentage of women in the population
(from 81% to 85%) is very close the actual percentage of female teachers in Italy
(81%).

Table 2 shows how teachers are distributed according to their age. In each
school year the sample is a significant representation of the population, with an
ASSD value (computed as above) always less than 1.4%.

Table 3 shows how teachers are distributed according to the level of classes
they teach in. In each school year the sample is a significant representation of the
population also with respect to the school level, given the ASSD value (computed
as above) is, again, always less than 1.4%.

A few teachers in each school year preferred not to declare the level of classes
they teach in, hence the totals for the samples in Table 3 slightly differ from the
corresponding ones in Tables 1 and 2, without prejudice for the analysis.

Monitoring questionnaires from school year 2016–17 onwards also investi-
gated teachers’ job seniority, a datum that is not collected when they enroll into
PiF. Table 4 shows how they are distributed according to their teaching senior-
ity in years. For both school years the sample is made for more than 84% by
experienced teachers, which is a positive element in terms of the reliability of
their answers.

3 Computed as

√
Σi(si−ei)2

N
, where si is the actual value for the i-th class in the sample,

ei is the expected value (see next footnote) for the i-th class in the sample, and N
is the number of classes.

4 Expectation is computed as S · pi, where S is the size of the sample and pi is the
percentage of the i-th class in the population.

58 E. Nardelli and I. Corradini

Table 3. Teachers’ school level distribution

2015–16 2016–17 2017–18

popul. sample popul. sample popul. sample

Kindergarten 433 55 1,391 183 1,992 73

Primary 7,799 1,969 14,822 2,606 18,262 1,431

Lower Secondary 3,911 1,149 7,155 1,252 8,586 626

Higher Secondary 2,248 555 3,866 590 4,511 287

Table 4. Teachers’ seniority dis-
tribution

Years 2016–17 2017–18

up to 2 94 24

3 to 5 154 102

6 to 10 465 193

More than 10 3,930 2,103

Table 5. Classes and students
involved

2015–16 2016–17 2017–18

Classes 14,532 14,871 8,362

Students 272,529 297,272 153,697

We also asked teachers to report the overall number of classes they involved
in Informatics education activities of PiF and how many students there were in
their classes (see Table 5). We did not ask them the distribution per sex of their
students but we consider that the study is based on a reliable sample of Italy’s
students also with respect to their sex, given (i) education is mandatory in Italy
up to 16 years of age, (ii) teachers enrolled in PiF belong to all regions of Italy,
and (iii) the very large number of students involved.

4 Results and Discussion

We do not discuss kindergarten data given these teachers are less than 4% of
the sample size in each school year. Remember also that, for those school years
in which two monitoring questionnaires were issued, data from the second one
reported here comes only from those teachers who did not answer the first one.
In the following subsections we first report results aggregated by school year
(Subsect. 4.1.1), then results of the differential analysis (Subsect. 4.1.2) for each
school year between teachers repeating activities and those executing them for
the first time, and finally results aggregated by school level (Subsect. 4.1.3).

4.1 Aggregated Data

4.1.1 Results for School Years
Table 6 shows teachers answers to Q1 and Q2 in each school year. To make sense
out of these data we computed for each year an indicator, the interest gender
gap, that we defined as the difference, in that school year, between the number
of teachers who rated male students more interested to project activities than

Informatics Education in School 59

female ones and the number of those who rated female more interested than
boys (rows labeled respectively “M” and “F” in Table 6 and subsequent ones).
We analogously computed the indicator effectiveness gender gap. To make
these two indicators comparable across school years we normalized them, by
computing their ratio to the total number of teachers who answered in each
school year, and we present them in Fig. 1 as value per thousand teachers. As
you can see both indicators are decreasing as the school years pass, roughly in
the same constant way from a school year to the next.

Table 6. Answers to Q1 and Q2 for school years

Q1 - Interest Q2 - Effectiveness

2015–16 2016–17 2017–18 2015–16 2016–17 2017–18

Equally students of both sexes 3,223 3,987 2,133 2,885 3,639 1,976

Female students more 98 113 60 229 266 133

Male students more 352 348 151 559 543 235

Fig. 1. Gap indicators across school YEARS (values per thousand teachers)

It is a widespread stereotype that female students’ performances in science
and maths are worse than their male companions’ ones [7,10,25,27]. We do
not know how much this stereotype was spread in our population before the
beginning of PiF, but Fig. 1 shows the existence of a lower incidence of this
stereotype with the progress of project activities over the years.

We hypothesize the involvement of teachers in project activities is the pri-
mary factor causing the observed variation of indicators. We think the observed
phenomenon is relevant, since teachers answered anonymously to surveys, a con-
dition that more likely can lead people to provide answers expressing a biased
position [24,30]. We hence presume people answered honestly to our question-
naires. Moreover, if some remaining unconscious pressure not to express one’s
own gender bias had remained, its effect would only have reduced the size of
the two gender gap indicators. Finally, even if in Table 6 the share5 of teachers

5 Computed as F+M
E+F+M

.

60 E. Nardelli and I. Corradini

having reported a difference between male and female students is just around
10% (for Q1-Interest) and 18% (for Q2-Effectiveness) of the total, we think that
(i) given the overall number of answers this is a phenomenon which cannot be
ignored, and (ii) given the above discussion of uneasiness in declaring a biased
position the phenomenon’s size might be even larger.

4.1.2 Novice and Repeating Teachers
To better understand the significance of the observed phenomenon we also inves-
tigated whether teachers executing PiF activities for the first time (novice) and
those who were involved in previous years (repeating) had different beliefs. More
specifically, we re-computed the two gender gap indicators shown in Fig. 1 sep-
arately for novice and repeating teachers for each of the school years 2015–16
(77% of novice), 2016–17 (52%) and 2017–18 (20%). Remember PiF started in
2014–15.

As you can see in Fig. 2, for each school years both indicators have a lower
value for repeating teachers than for novice ones. In other words, in each school
year, repeating teachers consistently show a lower presence of the stereotype
that female students’ performances in science and maths are worse than their
male companions’ ones. In our view, this result confirms and strengthens the
observation made in Subsect. 4.1.1 of a lower incidence of the stereotype with
the progress of project activities.

Fig. 2. Differential analysis of gap indicators across school YEARS

Note that the figure shows that the falling trends of the two indicators is
present also for novice teachers who, by definition, cannot have been affected
by the repetition of the activities. To understand this we have to consider that
the increase in schools participation over the years is lower than the increase
in teachers participation. The yearly increase in the number of participating
teachers has been of 85% in 2016–17 and of 22% in 2017–18, while for schools it
has been of 32% and 9% respectively.

This means that, roughly, for each new school entering PiF (clearly with a
new teacher) there have been in the average almost two teachers entering the

Informatics Education in School 61

project in schools where their colleagues were already involved6. Therefore, a
large part of novice is made up by teachers who have entered PiF because of their
colleagues. Considering this element together with the concept of stereotypes as
social and cognitive activity [4,36], a possible motivation is that beliefs of novice
teachers have been affected by repeating teachers lowering their bias over the
years.

4.1.3 Results for School Levels
Table 7 shows teachers’ answers to Q1 and Q2 in each school level.

We computed again the two normalized indicators above described, this time
on the basis of the difference, for each school level, between the number of teach-
ers who rated male students more interested to project activities than female
ones and the number of those who rated girls more effective than boys. Normal-
ization was done with respect to the total number of teachers who answered in
each school level. The indicators, shown in Fig. 3, are again presented as values
for thousand teachers. As you can see both indicators are increasing going up
with school level. This shows the existence of a higher presence, going up with
school levels, of the stereotype considering girls worse than boys in science.

Table 7. Answers to Q1 and Q2 for school levels

Q1 - Interest Q2 - Effectiveness

Primary Lower
Secondary

Higher
Secondary

Primary Lower
Secondary

Higher
Secondary

E 5,606 2,596 1,137 5,603 2,353 1,084

F 99 93 79 296 232 100

M 301 338 212 647 442 248

Different approaches could be followed to fight this stereotype and possibly
many of them need to be integrated to be effective. The starting point is to
sensitize teachers in order to make them aware of the risks ensuing from the
stereotype. In addition, given the social and cognitive nature of the stereotype,
an early start of Informatics education in school would contribute to improve
the attitude of teachers and students towards CS. Our result therefore provides
an empirical support to those who advocate to start Informatics education in
schools since the early years in order to fight this stereotype.

Moreover, note in Fig. 3 the big jump of the interest gender gap from Primary
to Lower Secondary. While it is often said that middle school is the play-field
where to win girls’ interest to CS [2], we think this jump shows, instead, that
Informatics education needs to start in Primary.

6 The average number of teachers per school was 3.15 in school year 2015–16 and 4.95
in 2017–18.

62 E. Nardelli and I. Corradini

Fig. 3. Gap indicators across school LEVELS (values per thousand teachers)

Table 8. Answers to Q1 (Interest) for
school years disaggregated by level of
school

2015–16 2016–17 2017–18

P L H P L H P L H

E 1,821 960 442 2,440 1,080 467 1,345 556 232

F 31 40 27 42 36 35 26 17 17

M 117 149 86 124 136 88 60 53 38

E= equally students of both sexes
F= female students more
M= male students more

Table 9. Answers to Q2 (Effectiveness)
for school years disaggregated by level of
school

2015–16 2016–17 2017–18

P L H P L H P L H

E 1,606 865 414 2,214 983 442 1,243 505 228

F 100 90 39 127 96 43 69 46 18

M 263 194 102 265 173 105 119 75 41

On the other side, the larger jump of the effectiveness gender gap happens
from Lower Secondary to Higher Secondary, which is consistent with the fact that
the interest gap indicator tells girls have lost their interest in Lower Secondary.

An additional element contributing to the importance of the observed phe-
nomenon (beyond the fact that teachers answered anonymously) is that the CS
activities done in PiF were not elective for students but all students were exposed
to them.

4.2 Disaggregated Data

We analyzed data disaggregated by level of school and by year of school to inves-
tigate the robustness of our results also within each school year and each school
level (teachers provide their school level answering to the yearly questionnaires).
Table 8 (for Q1) and Table 9 (for Q2) show data for school years from Table 6
disaggregated by level of school.

We show in Table 10 (for Q1) and Table 11 (for Q2) data for school levels from
Table 7 disaggregated by year of school. Note that the sets of data in Tables 8
and 10 (resp. Tables 9 and 11) are the same sets of data, but presented with a
different organization, for a better clarity.

Again, to make sense of these disaggregated data we considered the two
normalized indicators previously described, but this time we computed them on

Informatics Education in School 63

Table 10. Answers to Q1 (Interest) for
school levels disaggregated by year of
school

Primary Lower sec. Higher sec.

Y1 Y2 Y3 Y1 Y2 Y3 Y1 Y2 Y3

E 1,821 2,440 1,345 960 1,080 556 442 467 232

F 31 42 26 40 36 17 27 35 17

M 117 124 60 149 136 53 86 88 38

Y1=2015–16 Y2=2016–17 Y3=2017–18

Table 11. Answers to Q2 (Effective-
ness) for school levels disaggregated by
year of school

Primary Lower sec. Higher sec.

Y1 Y2 Y3 Y1 Y2 Y3 Y1 Y2 Y3

E 1,606 2,214 1,243 865 983 505 414 442 228

F 100 127 69 90 96 46 39 43 18

M 263 265 119 194 173 75 102 105 41

the basis of disaggregated data shown in Tables 8, 9, 10 and 11. We now discuss
them separately for the two different presentations. In Subsect. 4.2.1 we discuss
indicators for the data disaggregated by year of school reported in Tables 10
and 11, and in Subsect. 4.2.2 indicators for the data disaggregated by level of
school reported in Tables 8 and 9.

4.2.1 Indicators Across School Years for Each School Level
In Fig. 4 we show the two indicators ordered by school year and grouped by
level of school. You can see that within each level of school both indicators are
decreasing as the school years pass, confirming the decrease seen in Fig. 1 for all
levels of school together. Therefore, data disaggregated by school year support
our interpretation at the aggregated level (Subsects. 4.1.1 and 4.1.2) that the
involvement of teachers in project activities has caused this decrease.

Fig. 4. Gap indicators disaggregated by school YEAR

4.2.2 Indicators Across School Levels for Each School Year
In Fig. 5 we show the two indicators ordered by school level and grouped by
year of school. Again, both indicators increase, within each school year, going
up with the level of school, confirming the increase shown in Fig. 3 for all years
of school together. They also confirm the existence of a larger jump for interest

64 E. Nardelli and I. Corradini

Fig. 5. Gap indicators disaggregated by school LEVEL

in the transition from Primary to Lower Secondary and for effectiveness in the
one from Lower Secondary to Upper Secondary.

Therefore, also data disaggregated by school year support our judgment com-
ing from the analysis at aggregate level in Subsect. 4.1.3 that Informatics edu-
cation needs to be introduced in schools as early as possible in order to improve
the attitude of teachers and students towards CS.

5 Conclusions

In this paper we describe the outcomes of a multi-year large-scale study con-
ducted in Italy, where there is no general compulsory Informatics education in
schools.

Teachers involved in this study (an average of 3,600 per year, belonging to
all levels of school), have voluntarily enrolled in the “Programma il Futuro”
project to teach introductory CS courses, grounded on both visual program-
ming computer-based exercises and unplugged content, with dedicated support
material.

Over the project years they have periodically filled monitoring questionnaires
which examined, among others, whether they considered male students more
interested or more effective than female students in carrying out project activi-
ties.

We introduced two indicators, called interest gender gap and effectiveness
gender gap, to measure the difference between the number of teachers considering
boys more interested (or more effective) than girls and the number of those rating
girls more interested (or more effective) than boys.

These indicators therefore gauge what teachers believe about interest and
effectiveness of female students relative to their male colleagues. This measure is
important, since teachers’ beliefs are known to influence students’ motivations,
hence their future choices. Answers were provided anonymously, a condition
that more likely can lead people to honestly provide answers expressing a biased
position.

Analysis by school year shows these gender gaps decrease as school years
pass, primarily caused - in our opinion - by the nature of project activities

Informatics Education in School 65

and the continuous involvement of teachers. Moreover, analyzing separately in
each school year the teachers involved for the first time and those repeating the
activities, smaller values of the two indicators are found in the latter groups,
reinforcing our interpretation.

When analyzed in the different levels of school (primary, lower secondary,
higher secondary) both indicators instead increase in passing from a school level
to the next higher up.

The two main outcomes are also supported by disaggregating data by both
school level and school year. Within each school level, the behavior of indicators
as school years pass confirms the trend measured for the aggregation of school
levels. A similar confirmation happens for the analysis across school years.

Our study therefore provides an empirical support to the importance of fight-
ing as early as possible the gender stereotype considering girls performing worse
in science than boys. Hence, it also supports the introduction of compulsory
CS school education as a way to increase the number of female graduates in
computing-related disciplines and ultimately a more diverse IT workforce.

Acknowledgements. We greatly thank teachers and students involved in “Pro-
gramma il Futuro” (coordinated by EN) and Code.org for their cooperation.

We acknowledge the financial support for school year 2018–19 of: Eni; Engineering;
SeeWeb; TIM. Other companies have financially supported PiF in previous school
years, see https://programmailfuturo.it/partner.

Rai Cultura, the culture department of Italian national public broadcasting com-
pany, is a media partner of the project since February 2017.

References

1. Académie des Sciences: L’enseignement de l’informatique en France: Il est urgent de
ne plus attendre, May 2013. http://www.academie-sciences.fr/pdf/rapport/rads
0513.pdf

2. Accenture: Cracking the gender code (2016). https://www.accenture.com/us-en/
cracking-the-gender-code

3. Armoni, M., Gal-Ezer, J.: Early computing education: Why? What? When? Who?
ACM Inroads 5(4), 54–59 (2014)

4. Augoustinos, M., Walker, I.: The construction of stereotypes within social psychol-
ogy: from social cognition to ideology. Theory Psychol. 8(5), 629–652 (1998)

5. Borg, M.: Key concepts in ELT: teachers’ beliefs. ELT J. 55(2), 186–188 (2001)
6. Caspersen, M.E., Gal-Ezer, J., McGettrick, A., Nardelli, E.: Informatics as a fun-

damental discipline for the 21st century. Commun. ACM 62(4), 58 (2019)
7. Cheryan, S., Plaut, V.C., Handron, C., Hudson, L.: The stereotypical computer

scientist: gendered media representations as a barrier to inclusion for women. Sex
Roles 69, 58–71 (2013)

8. Code.org: Computing occupations are now the #1 source of new wages in Amer-
ica (2016). https://blog.code.org/post/144206906013/computing-occupations-are-
now-the-1-source-of-new

9. Code.org: Diversity in computer science (2018). https://code.org/diversity
10. Cohoon, J.M., Aspray, W.: Women and Information Technology: Research on

Underrepresentation, vol. 1. The MIT Press, Cambridge (2006)

https://programmailfuturo.it/partner
http://www.academie-sciences.fr/pdf/rapport/rads_0513.pdf
http://www.academie-sciences.fr/pdf/rapport/rads_0513.pdf
https://www.accenture.com/us-en/cracking-the-gender-code
https://www.accenture.com/us-en/cracking-the-gender-code
https://blog.code.org/post/144206906013/computing-occupations-are-now-the-1-source-of-new
https://blog.code.org/post/144206906013/computing-occupations-are-now-the-1-source-of-new
https://code.org/diversity

66 E. Nardelli and I. Corradini

11. Computer Science Zone: The technology job gap (2015). https://www.
computersciencezone.org/technology-job-gap/

12. Corradini, I., Lodi, M., Nardelli, E.: Computational thinking in Italian schools:
quantitative data and teachers’ sentiment analysis after two years of “Programma
il Futuro” Project. In: ITiCSE 2017. ACM (2017)

13. Corradini, I., Lodi, M., Nardelli, E.: Conceptions and misconceptions about com-
putational thinking among Italian primary school teachers. In: ICER 2017 (2017)

14. Corradini, I., Lodi, M., Nardelli, E.: An investigation of Italian primary school
teachers’ view on coding and programming. In: Pozdniakov, S.N., Dagienė, V.
(eds.) ISSEP 2018. LNCS, vol. 11169, pp. 228–243. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-02750-6 18

15. Duncan, C., Bell, T., Tanimoto, S.: Should your 8-year-old learn coding? In: Pro-
ceedings WiPSCE 2014, pp. 60–69. ACM (2014)

16. European Commission: The digital skills and job coalition (2014). https://ec.
europa.eu/digital-single-market/en/digital-skills-jobs-coalition

17. Fisher, A., Margolis, J.: Unlocking the clubhouse: the Carnegie Mellon experience.
SIGCSE Bull. 34(2), 79–83 (2002)

18. Funke, A., Geldreich, K., Hubwieser, P.: Primary school teachers’ opinions about
early computer science education. In: 16th Koli Calling International Conference
on Computing Education Research, pp. 135–139 (2016)

19. Gunderson, E.A., Ramirez, G., Levine, S.C., Beilock, S.L.: The role of parents
and teachers in the development of gender related math attitudes. Sex Roles 66,
153–166 (2011)

20. Hardre, P.L., Sullivan, D.W.: Motivating adolescents: teachers’ beliefs, perceptions
and classroom practices. Teach. Dev. 13, 1–16 (2009)

21. Hill, C., Corbett, C., St. Rose, A. (eds.): Women and Information Technology:
Research on Underrepresentation. AAUW (2010)

22. Hornstra, L., Mansfield, C., Van der Veen, I., Peetsma, T., Volman, M.: Motiva-
tional teacher strategies: the role of beliefs and contextual factors. Learn. Environ.
Res. 18, 363–392 (2015)

23. Klawe, M.: Increasing female participation in computing: the Harvey Mudd college
story. Computer 46(3), 56–58 (2013)

24. Lensvelt-Mulders, G.: Surveying sensitive topics. In: de Leeuw, E., Hox, J., Dill-
man, D. (eds.) International Handbook of Survey Methodology, pp. 461–478.
Lawrence Erlbaum Associates, New York (2008)

25. Malcom-Piqueux, L.E., Malcom, S.M.: Engineering diversity: Fixing the educa-
tional system to promote equity. Bridge 43, 24–34 (2013)

26. Margolis, J., Fisher, A.: Unlocking the Clubhouse: Women in Computing. MIT
Press, Cambridge (2002)

27. Master, A., Cheryan, S., Meltzoff, A.N.: Reducing adolescent girls’ concerns about
stem stereotypes: when do female teachers matter? Revue internationale de psy-
chologie sociale 27(3–4), 79–102 (2014)

28. Medium: University computer science finally surpasses its 2003 peak! (2017).
https://medium.com/anybody-can-learn/university-computer-science-finally-
surpasses-its-2003-peak-ecefa4c8d77d

29. Miyake, A., Kost-Smith, L.E., Finkelstein, N.D., Pollock, S.J., Cohen, G.L., Ito,
T.A.: Reducing the gender achievement gap in college science: a classroom study
of values affirmation. Science 330, 1234–1237 (2010)

30. Ong, A., Weiss, D.: The impact of anonymity on responses to sensitive questions.
J. Appl. Soc. Psychol. 30(8), 1691–1708 (2000)

https://www.computersciencezone.org/technology-job-gap/
https://www.computersciencezone.org/technology-job-gap/
https://doi.org/10.1007/978-3-030-02750-6_18
https://doi.org/10.1007/978-3-030-02750-6_18
https://ec.europa.eu/digital-single-market/en/digital-skills-jobs-coalition
https://ec.europa.eu/digital-single-market/en/digital-skills-jobs-coalition
https://medium.com/anybody-can-learn/university-computer-science-finally-surpasses-its-2003-peak-ecefa4c8d77d
https://medium.com/anybody-can-learn/university-computer-science-finally-surpasses-its-2003-peak-ecefa4c8d77d

Informatics Education in School 67

31. Pintrich, P.: A motivational science perspective on the role of student motivation
in learning and teaching context. J. Educ. Psychol. 95(4), 667–686 (2003)

32. Ryan, R.M., Deci, E.L.: Intrinsic and extrinsic motivations: classic definitions and
new directions. Contemp. Educ. Psychol. 25(1), 54–67 (2000)

33. Sadik, O.: Encouraging women to become CS teachers. In: GenderIT, pp. 57–61
(2015)

34. Shapiro, J.R., Williams, A.M.: The role of stereotype threats in undermining girls’
and women’s performance and interest in STEM fields. Sex Roles 66, 175–183
(2011)

35. Sys�lo, M.M., Kwiatkowska, A.B.: Introducing a new computer science curriculum
for all school levels in Poland. In: Brodnik, A., Vahrenhold, J. (eds.) ISSEP 2015.
LNCS, vol. 9378, pp. 141–154. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-25396-1 13

36. Tajfel, G.: Human Groups and Social Categories. Studies in Social Psychology.
Cambridge University Press, Cambridge (1981)

37. The Royal Society: Shut down or restart? The way forward for computing in UK
schools, January 2012. https://royalsociety.org/∼/media/education/computing-
in-schools/2012-01-12-computing-in-schools.pdf

38. U.S. Equal Employment Opportunity Commission: Diversity in high tech (2016).
https://www.eeoc.gov/eeoc/statistics/reports/hightech/

39. US News: Study: Middle school is key to girls’ coding interest (2016). https://
www.usnews.com/news/data-mine/articles/2016-10-20/study-computer-science-
gender-gap-widens-despite-increase-in-jobs

40. Varma, R.: Why so few women enroll in computing? Gender and ethnic differences
in students’ perception. Comput. Sci. Educ. 20(4), 301–316 (2010)

41. Vuorikari, R., Punie, Y., Gomez, S.C., Van den Brande, G.: DigComp 2.0: The
Digital Competence Framework for Citizens. Luxembourg Publication Office of
the European Union. EUR 27948 EN (2016)

42. Webb, M., et al.: Computer science in k-12 school curricula of the 2lst century:
why, what and when? Educ. Inf. Technol. 22(2), 445–468 (2017)

43. Weisgram, E.S., Bigler, R.S.: The role of attitudes and intervention in high school
girls’ interest in computer science. J. Women Minor. Sci. Eng. 12, 325–336 (2006)

44. Zagami, J., Boden, M., Keane, T., Moreton, B., Schulz, K.: Girls and computing:
female participation in computing in schools. Aust. Educ. Comput. 30(2) (2015).
https://journal.acce.edu.au/index.php/AEC/article/view/79

https://doi.org/10.1007/978-3-319-25396-1_13
https://doi.org/10.1007/978-3-319-25396-1_13
https://royalsociety.org/~/media/education/computing-in-schools/2012-01-12-computing-in-schools.pdf
https://royalsociety.org/~/media/education/computing-in-schools/2012-01-12-computing-in-schools.pdf
https://www.eeoc.gov/eeoc/statistics/reports/hightech/
https://www.usnews.com/news/data-mine/articles/2016-10-20/study-computer-science-gender-gap-widens-despite-increase-in-jobs
https://www.usnews.com/news/data-mine/articles/2016-10-20/study-computer-science-gender-gap-widens-despite-increase-in-jobs
https://www.usnews.com/news/data-mine/articles/2016-10-20/study-computer-science-gender-gap-widens-despite-increase-in-jobs
https://journal.acce.edu.au/index.php/AEC/article/view/79

Inquiry-Based Learning in Computer
Science Classroom

Zuzana Tkáčová1,2(B) , L’ubomı́r Šnajder2 , and Ján Gunǐs2

1 Faculty of Science, Pavol Jozef Šafárik University in Košice, Košice, Slovakia
zuzana.tkacova@ukf.sk

2 Faculty of Education, Constantine the Philosopher University in Nitra, Nitra,
Slovakia

{zuzana.tkacova1,lubomir.snajder,jan.gunis}@upjs.sk,

Abstract. Inquiry-based learning in Slovak schools is still considered to
be an innovative approach to teaching based on the active exploration
of new knowledge by pupils themselves. It allows deeper involvement of
pupils in the learning process, encourages motivation and differentiation
with respect to individual learning preferences, creates space for pupils to
develop cooperation and communication skills. Inquiry is a natural cog-
nitive process for pupils, but its wider application is mostly in biology,
chemistry or physics classrooms, while computer science in Slovak schools
is still dominated by instructive teaching strategies. In the frame of the
National project IT Academy we have focused on different fields of the
computer science curriculum and we have implemented the 5E instruc-
tional model as an inquiry-based learning approach in 40 primary school
lessons and 40 secondary school lessons. We provide teachers with com-
plete lesson plans, including worksheets, supplementary work files and
materials, or reference materials. These educational materials are being
tested by teachers in Slovak schools. For both primary and secondary
school teachers, we organize also professional development courses on
innovative teaching strategies in the computer science classroom to make
it easier for them to implement these new classroom learning practices.
This paper presents the results of a survey on teachers’ perception, atti-
tudes, experiences, misconceptions and barriers to inquiry-based teaching
strategies in computer science classrooms as the classroom teacher plays
a key role in the successful implementation of these new learning strate-
gies. Our research investigates how different factors affect teachers when
considering the inquiry-based learning and its successful implementation
in computer science classrooms highlights two major underlying factors,
the teacher’s personal contribution factor and a factor representing a col-
lection of the teacher’s readiness and teaching skills, which are further
discussed.

Keywords: Inquiry-based learning · 5E Cycle · Active learning ·
Problem solving · Teaching methodology · Computer science teacher

c© Springer Nature Switzerland AG 2019
S. N. Pozdniakov and V. Dagienė (Eds.): ISSEP 2019, LNCS 11913, pp. 68–79, 2019.
https://doi.org/10.1007/978-3-030-33759-9_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33759-9_6&domain=pdf
http://orcid.org/0000-0002-9805-6242
http://orcid.org/0000-0002-8854-1009
http://orcid.org/0000-0002-6027-7453
https://doi.org/10.1007/978-3-030-33759-9_6

Inquiry-Based Learning in Computer Science Classroom 69

1 Introduction

The unprecedented development of technical sciences over the past decades has
brought the need to change the entire educational system so that its graduates
are able to actively integrate into a dynamically changing society and become
fully engaged in the labor market. We need to teach pupils to communicate, col-
laborate, make decisions, use information and formulate solutions to real world
problems [1]. From the point of view of the educational process, a suitable edu-
cational model is sought, which, in addition to acquiring new knowledge, would
also enable the fully-fledged development of the so-called soft skills. On the basis
of an analysis of the results of international and national initiatives in the Euro-
pean Union for science education [2], experts agree on the important role of
inquiry-based learning (IBL), which is based on a constructivist approach in
which the pupil constructs knowledge himself based on experience gained dur-
ing independent active activity [3]. The inquiry activities and the inquiry-based
approach are gradually applied also in the didactics of computer science [4–6],
although the lack of competence and readiness of teachers to implement IBL is
a problem to the wider application in everyday computer classroom teaching.

One of the extended models of IBL is the 5E Cycle instructional model, which
emphasizes constructivist principles and assessment of pupils’ prior knowledge
[3]. This model is far away from the traditional instructional approach that is still
widely spread in computer science classrooms. The goal of the 5E Cycle instruc-
tional model is to enable pupils to understand the new concept (i.e. educational
content) during a series of steps (Fig. 1) [7]. The first phase - ENGAGE - serves
to motivate pupils to explore the presented topic, activate prior knowledge, iden-
tify misconceptions and create a link between past and present pupils’ experi-
ences with a suitable problem or experiment. The second phase - EXPLORE
- is the main source of learning by pupils when they are actively discovering,
collecting data, implementing practical activities and looking for connections.
Pupils usually work in pairs or smaller groups, while the teacher acts as facilita-
tor and observer. Phase three - EXPLAIN - helps pupils clarify the concepts
they have examined. The teacher emphasizes the main findings by introducing
new concepts that the pupils will explain based on the experience of the previous
phase, and the teacher helps them formulate the results scientifically with the
right language. Stage four - ELABORATE - provides pupils with the oppor-
tunity to expand, deepen and apply creative knowledge in new situations. By
correctly setting up tasks and offering activities, differentiation is possible based
on individual needs or pupil preferences. The fifth phase - EVALUATE - devel-
ops pupils’ ability to assess, analyze and evaluate the results of their activities
and creates opportunities for the formative and summative assessment for the
teacher.

In the frame of the National project IT Academy [8] we have focused on
different fields of the computer science curriculum and we have implemented
the 5E Cycle instructional model as an inquiry-based learning approach in 40
primary school lessons and 40 secondary school lessons. These lessons cover pro-
gramming (in Scratch, MIT AppInventor and Python), physical computing and

70 Z. Tkáčová et al.

Fig. 1. The 5E Cycle instructional model

robotics (BBC Micro:bit, LEGO Mindstorms EV3, Raspberry Pi), artificial intel-
ligence, 3D modeling and printing, as well as unplugged activities on informa-
tion encoding and compression. We provide teachers with complete lesson plans,
including worksheets, supplementary work files and materials, or reference mate-
rials. These educational materials are being tested by teachers in Slovak schools.
For both primary and secondary school teachers, we organize also professional
development courses on innovative teaching strategies in the computer science
classroom to make it easier for them to implement these new classroom learning
practices. As the classroom teacher plays a key role in the successful implemen-
tation of these new learning strategies, as part of our long-term research, we
have decided to carry out a survey with teachers, participants in our training
courses, on teachers’ perception, attitudes, experiences, misconceptions and bar-
riers to inquiry-based teaching strategies in computer science classrooms. In the
following sections, we make a brief overview of the results of this survey.

2 Methodology

The primary objective of our research was to focus on the process of acceptance
of IBL by computer science teachers and exploring the factors influencing their
decision-making in the IBL implementation into their classrooms. We used a
questionnaire as a quantitative method of data collection and statistical analysis.
We added the following sections to our research question:

Q: How is IBL accepted by computer science teachers in terms of implemen-
tation into teaching practice?

– How do teachers perceive the benefits of IBL for computer science lessons?
– Which factors influence the process of implementation of IBL into computer

science teaching?

Inquiry-Based Learning in Computer Science Classroom 71

Our total population consists of 45 teachers, participants of our profes-
sional development courses. As for the sample, we involved all these teachers
who attended our courses (i.e. the convenience sampling was chosen), as the
IBL approach is still new in Slovakia and these teachers have already become
acquainted with it in our courses, we wanted to find out and analyze their
opinions and experiences. The sample covers both experienced, fully qualified
computer science teachers as participants of our specialized professional devel-
opment courses (44%) and less experienced computer science teachers undergo-
ing the initial training as a professional development course for teachers of other
subjects to become qualified as computer science teachers (56%) - after complet-
ing the course activities. In our sample, 18% of teachers had less than 10 years
teaching experience, 27% had 11–15 years of teaching experience and 55% have
been teaching for more than 15 years. These teachers were mostly women (75%).
Teachers were teaching at primary (55%) and secondary (45%) schools across
our country.

Questionnaire consisted of single and multiple choice and open-ended ques-
tions mapping following areas of interest:

– theoretical background, sources of information on IBL,
– individual perception of advantages/disadvantages/benefits/barriers and per-

sonal identification of the teacher with IBL,
– individual interest and practical experience with teaching IBL and creating

dedicated educational IBL materials,
– usability of IBL in computer science classrooms.

To further analyze the data, factor analysis [9–11] was used. This statistical data
mining method serves as a useful tool for investigating variable relationships for
complex concepts that are not easily measured directly by collapsing a large
number of variables into a few interpretable underlying factors and thus factor
analysis allows identification of the underlying factors that affect the results of
our questionnaire.

3 Results

A basic statistical analysis of participants’ responses for each of the areas of
interest as well as factor analysis to determine latent factors was performed.

3.1 Theoretical Background, Sources of Information on IBL

In this part of the questionnaire, we investigated two questions:
How do you assess your theoretical knowledge of IBL?
As our respondents have already received information about IBL from our

courses, 15% of them have said that so far they provide only the basic knowledge
of the topic, while up to 85% of respondents said they have a comprehensive
overview.

Where did you get the basic theoretical knowledge of IBL?

72 Z. Tkáčová et al.

For this open-ended question, most teachers said that our courses were the
main source of information for them. 18% of respondents reported self-study and
only 9% of respondents reported other educational activities and seminars.

3.2 Individual Perception of Benefits/Barriers and Personal
Identification of the Teacher with IBL

In this part of the questionnaire, we investigated five questions:
What are the most important benefits of IBL (from your point of view or

experience)?
In this open-ended question, teachers most often mentioned:

– the activity of pupils,
– the persistence of information,
– the interest in pupils,
– the joy of discovering and experimenting,
– the higher motivation,
– teamwork,
– creativity,
– autonomy of pupils in the learning process.

What are the most important barriers of IBL (from your point of view or
experience)?

In this open-ended question, teachers most often mentioned:

– the time-consuming activities during the lesson,
– the time required to prepare the teacher and to prepare teaching materials,
– problems with passive pupils,
– lack of pupils’ self-activity,
– lack of pupils’ responsibility,
– pupils’ reluctance,
– managing individual differences among pupils,
– lack of teaching tools,
– lack of methodological support.

For whom do you consider IBL being beneficial?
In this one-choice question (for all pupils, only for skilful/weaker pupils),

up to 67% of teachers perceive IBL as beneficial for all pupils, 33% perceive the
appropriateness of this method only for skilful pupils.

Who do you consider IBL more appropriate for?
As many as 87% of respondents consider IBL to be suitable for both upper

primary and secondary schools, 9% see the appropriateness of use only for upper
primary school pupils, 2% only for secondary school pupils and 2% do not see
this approach as suitable for upper primary or secondary schools.

How did you identify yourself with the 5E instructional cycle? On this issue,
53% of respondents said that they only partially identified themselves with the
5E Cycle, while 47% identified themselves completely. No respondent indicated
that he did https://www.overleaf.com/project/5d19071be536f305643e2b35not

https://www.overleaf.com/project/5d19071be536f305643e2b35not

Inquiry-Based Learning in Computer Science Classroom 73

identify with this approach at all. On this issue, no significant difference was
observed between the responses of primary or secondary school teachers. The
link between the degree of personal identification of the teacher with the 5E
Cycle and his perception of IBL being beneficial for all or only skilful pupils has
not been statistically confirmed.

3.3 Individual Interest and Practical Experience with Teaching IBL
and Creating Own Educational IBL Materials

In this part of the questionnaire, we investigated four single choice questions:
How do you assess your practical experience with using IBL teaching in your

own computer science classroom?
On this issue, up to 78% of teachers answered that they had already started

IBL teaching, while 22% said they had not yet taught IBL, but they are planning
to test it.

How do you assess your practical experience in creating your own IBL teach-
ing materials?

On this issue, 42% of teachers have confirmed that they have already created
several IBL teaching materials. Up to 53% of teachers haven’t created any IBL
teaching materials yet, but they would like to try it. Only 5% of teachers report
that they have not created any IBL teaching materials, nor are they planning.

What is your interest in teaching computer science using already developed
IBL teaching materials?

We can observe a high interest in our IBL teaching materials – up to 73% of
respondents are highly interested in teaching computer science using our already
developed IBL teaching materials. The remaining teachers (27%) demonstrate
only a moderate interest.

What is your interest in developing your own IBL teaching materials for
computer science lessons?

It is possible to observe a large decrease in the interest of teachers in creating
their own IBL teaching materials compared to using the already developed ones
– only 20% of teachers demonstrate their high interest and 60% demonstrate
moderate interest. There are 13% of teachers who have only a low interest in
developing their own materials and 7% show now interest at all.

3.4 Usability of IBL in Computer Science Classrooms

In this part of the questionnaire, we investigated two questions:
Do you consider IBL for the computer science classroom being useful?
As many as 62% of teachers consider IBL teaching to be useful often for

computer science classrooms, the remaining 38% find this approach only occa-
sionally applicable. To specify the areas of computer science curriculum suitable
for the use of the IBL approach from the perspective of teachers, we used the
next question in our questionnaire.

For which areas of computer science curriculum do you consider the IBL
teaching to be appropriate?

74 Z. Tkáčová et al.

Fig. 2. Factor pattern before rotation

In this open-ended question, up to 82% of respondents mentioned program-
ming as the main area for IBL use. 42% mentioned also the application software
for data processing to be a suitable topic for IBL implementation. 22% of teachers
consider the Internet and communication to be a suitable application area. 9%
of respondents say it is an approach that applies in almost all areas of computer
science curriculum.

3.5 Factor Analysis

For factor analysis, the results from questions focused on the following aspects
have been taken:

– theoretical background,
– personal identification with 5E Cycle,
– practical experience with IBL teaching,
– practical experience with development of IBL materials,
– interest in using of developed IBL materials,
– interest in development of own IBL materials,
– assessment on how IBL is useful for Computer Science,
– assessment on IBL benefits for pupils,
– assessment on appropriate IBL usage in schools,
– assessment on course type,
– length of teaching experience,
– sex,
– school type.

First, the correlation matrix was calculated (AppendixA). As we can see
from the correlation matrix, there is a partial correlation among the theoretical
background of the respondent, his/her practical experience with development of
IBL materials, assessment on how IBL is useful for Computer Science, personal
identification with 5E Cycle, interest in using of developed IBL materials and
interest in development of own IBL materials. Principal factor analysis was cho-
sen as extraction method. Factor pattern show 5 latent factors (Fig. 2). Then,
the Varimax rotation was used for the two most important factors (Fig. 3).

Inquiry-Based Learning in Computer Science Classroom 75

Fig. 3. Factor pattern after Varimax rotation

Fig. 4. Factor loadings (axes D1 and D2: 29,21%) after Varimax rotation

As demonstrated by the factor pattern after Varimax rotation (Fig. 3) and
the diagram of factor loadings (Fig. 4), two latent factors can be identified. D1
represents the personal contribution factor, i.e. teacher’s personal contribu-
tion to the IBL built on interest in development of their own IBL materials,
practical experience with development of IBL materials, personal identification
with the 5E Cycle, interest in using the developed IBL materials and assess-
ment on how IBL is useful for Computer Science. D2 represents the general

76 Z. Tkáčová et al.

background factor, i.e. teacher’s readiness and teaching skills built mostly
on theoretical background, length of teaching experience and IBL course type
taken.

4 Discussion and Conclusions

In a number of papers, e.g. [12,13], it has already been confirmed that teachers
have a positive attitude towards IBL - this work had been focused mainly on
science teachers. Our research also points out that computer science teachers
also see a promising tool in IBL to innovate their teaching. At the same time,
IBL has proven to bring a great benefit in promoting autonomy of pupils in
finding solutions before being shown them by the teacher. This aspect is also
appreciated by the teachers in our study.

Based on our teacher training experience (and the results of our research
have confirmed this) we can say that as teachers adopt the IBL approach, they
go through several levels:

Level 1: Teacher goes through IBL lessons as a pupil (during our courses we
start with IBL lessons where teachers learn as if they were pupils and then
analyze this approach in the form of reflection)
Level 2: Teacher is acquainted with the didactic fundamentals of the IBL
approach and then uses IBL materials (teacher is provided with methodolog-
ical support, our developed materials and methodologies)
Level 3: Teacher modifies/adapts IBL materials for himself/herself (at this
stage teacher has already accepted IBL as his/her own and begins to create
his/her educational materials by modifying other materials)
Level 4: Teacher creates and validates his/her own IBL materials (teacher is
already convinced of the importance of the IBL approach, has enough expe-
rience and is creative enough to start developing completely new educational
materials that other teachers may also use)

It is clear that only a part of the teachers from the particular level will
proceed to the next level due to the conservative nature of teachers and their
fixed mindsets, as well as the typical mistake of taking the initiative instead
of the pupils in the EXPLORE/EXPLAIN phase, remain a major problem,
which disrupted the inquiry-based character of teaching during lessons and led to
repeated unsatisfactory results and negative experiences for teachers and pupils.

In order to successfully implement IBL in the classroom, the teacher needs
to have a theoretical background in the field of IBL and, above all, to identify
internally with the ideas of the IBL approach. It turns out that the sequence
of the four previous stages (resulting from our approach) is very helpful. The
following considerations need to be considered [14]:

– the time-consuming nature of teaching (developing students’ research skills
requires more time, with the current broad requirements for computer science
curriculum in Slovakia, usually only a few IBL lessons can be taught in a year,
but elements of inquiry can be used in almost every lesson),

Inquiry-Based Learning in Computer Science Classroom 77

– a teacher with low knowledge of IBL and small experience with inquiry (a
teacher who does not use inquiry himself would only hardly be a role model
or a source of inspiration for the pupil to start the active inquiry),

– a teacher with unconvincing attitudes towards IBL approach in teaching
(he/she will not be interested in developing pupils’ inquiry skills, the pri-
ority still would be amount of knowledge),

– unusual, new topic (created IBL lessons can cover the curriculum at a different
depth or at a different level structure as in a traditionally elaborated topic,
which may discourage teachers accustomed to teaching their usual and proven
topics),

– the reluctance of teachers to study methodological materials (computer sci-
ence teacher is not accustomed to reading methodological materials because
there is lack of these materials in our country, so teacher would appreciate
rather completed worksheets, widgets, etc.),

– insufficient methodological support for the teacher (the teacher needs suf-
ficient textbooks, worksheets, widgets, work files, methodological materials,
training, discussion forums).

From the perspective of successful IBL implementation and its wider deploy-
ment in teaching, the teacher plays the crucial role. Therefore, in our National
project IT Academy - Education for the 21st Century we are intensively work-
ing in teacher training. The results of our survey have shown that the impact of
training on the attitudes and use of IBL in teaching is evident, especially with
regard to promoting student autonomy, creativity and teamwork, while teach-
ers need intensive methodological support and teaching materials for successful
deployment. However, as it turns out, teachers are more interested in getting
ready-made IBL materials than in developing their own IBL materials.

In our further research, we want to focus on both quantitative and qualita-
tive analysis of the work of teachers - participants of our course activities, in
order to assess their readiness and suitability for teaching as well as potentially
problematic elements in their content.

Acknowledgements. This article was created in the framework of the National
project IT Academy – Education for the 21st Century, ITMS: 312011F057, which is
supported by the European Social Fund and the European Regional Development Fund
in the framework of the Operational Programme Human Resources and in the frame
of project KEGA 029UKF-4/2018 Innovative Methods in Programming Education in
the University Education of Teachers and IT Professionals.

A Correlation matrix (Pearson(n))

78 Z. Tkáčová et al.

V
a
ri
a
b
le
s

T
h
e
o
re

ti
c
a
l

b
a
c
k
-

g
ro

u
n
d

P
e
rs
o
n
a
l

id
e
n
ti
fi
c
a
-

ti
o
n

w
it
h

5
E

P
ra

c
ti
c
a
l

e
x
p
e
ri
e
n
c
e

w
it
h

IB
L

te
a
c
h
in

g

P
ra

c
ti
c
a
l

e
x
p
e
ri
e
n
c
e

w
it
h

d
e
v
e
l-

o
p
m

e
n
t
o
f

IB
L

m
a
te

ri
a
ls

In
te

re
st

in

u
si
n
g

o
f

d
e
v
e
lo
p
e
d

IB
L

m
a
te

ri
a
ls

In
te

re
st

in

d
e
v
e
lo
p
-

m
e
n
t
o
f

o
w
n

IB
L

m
a
te

ri
a
ls

IB
L

is

u
se

fu
l
fo
r

C
o
m

p
u
te

r

S
c
ie
n
c
e

IB
L

b
e
n
e
fi
ts

fo
r
p
u
p
il
s

A
p
p
ro

p
ri
a
te

IB
L

u
sa

g
e

C
o
u
rs
e

ty
p
e

T
e
a
c
h
in

g

e
x
p
e
ri
-

e
n
c
e

S
e
x

S
c
h
o
o
l

ty
p
e

T
h
e
o
re

ti
c
a
l

b
a
c
k
g
ro

u
n
d

1
0
,2
7
9

0
,0
6
6

0
,0
6
9

0
,1
5
7

−
0
,0
3
7

0
,1
7
1

−
0
,0
4
3

0
,0
1
1

0
,2
6
0

0
,3
7
1

0
,1
0
1

0
,1
3
7

P
e
rs
o
n
a
l

id
e
n
ti
fi
c
a
ti
o
n

w
it
h

5
E

0
,2
7
9

1
0
,2
8
6

0
,3
9
7

0
,0
6
0

0
,2
5
4

0
,3
6
1

0
,0
9
4

0
,1
0
0

0
,1
4
9

0
,0
0
4

−
0
,1
1
7

−
0
,0
3
0

P
ra

c
ti
c
a
l

e
x
p
e
ri
e
n
c
e
w
it
h

IB
L

te
a
c
h
in

g

0
,0
6
6

0
,2
8
6

1
−
0
,0
2
1

0
,1
6
1

0
,0
9
2

0
,1
3
5

−
0
,0
3
8

0
,1
0
0

0
,2
6
3

0
,0
5
4

−
0
,0
6
9

0
,0
4
8

P
ra

c
ti
c
a
l

e
x
p
e
ri
e
n
c
e
w
it
h

d
e
v
e
lo
p
m

e
n
t
o
f

IB
L

m
a
te

ri
a
ls

0
,0
6
9

0
,3
9
7

−
0
,0
2
1

1
0
,4
0
0

0
,6
1
4

0
,2
7
6

−
0
,0
2
8

−
0
,0
8
0

−
0
,0
4
4

−
0
,1
2
3

−
0
,1
0
5

−
0
,0
4
4

In
te

re
st

in
u
si
n
g

o
f
d
e
v
e
lo
p
e
d

IB
L

m
a
te

ri
a
ls

0
,1
5
7

0
,0
6
0

0
,1
6
1

0
,4
0
0

1
0
,4
0
4

0
,4
6
3

0
,1
0
7

−
0
,0
8
5

0
,0
3
4

0
,1
6
6

−
0
,1
2
5

0
,1
3
5

In
te

re
st

in

d
e
v
e
lo
p
m

e
n
t
o
f

o
w
n

IB
L

m
a
te

ri
a
ls

−
0
,0
3
7

0
,2
5
4

0
,0
9
2

0
,6
1
4

0
,4
0
4

1
0
,4
6
7

−
0
,0
6
1

−
0
,0
3
2

−
0
,0
9
7

−
0
,0
3
2

−
0
,0
1
8

−
0
,0
3
9

IB
L

is
u
se

fu
l
fo
r

C
o
m

p
u
te

r
S
c
ie
n
c
e

0
,1
7
1

0
,3
6
1

0
,1
3
5

0
,2
7
6

0
,4
6
3

0
,4
6
7

1
0
,2
2
7

0
,0
9
4

0
,0
5
1

0
,0
2
5

−
0
,1
9
7

−
0
,0
4
1

IB
L

b
e
n
e
fi
ts

fo
r

p
u
p
il
s

−
0
,0
4
3

0
,0
9
4

−
0
,0
3
8

−
0
,0
2
8

0
,1
0
7

−
0
,0
6
1

0
,2
2
7

1
0
,1
3
2

0
,0
6
3

0
,2
8
6

−
0
,2
5
6

0
,1
5
8

A
p
p
ro

p
ri
a
te

IB
L

u
sa

g
e

0
,0
1
1

0
,1
0
0

0
,1
0
0

−
0
,0
8
0

−
0
,0
8
5

−
0
,0
3
2

0
,0
9
4

0
,1
3
2

1
0
,2
0
9

0
,2
2
5

−
0
,1
5
0

−
0
,2
9
3

C
o
u
rs
e
ty

p
e

0
,2
6
0

0
,1
4
9

0
,2
6
3

−
0
,0
4
4

0
,0
3
4

−
0
,0
9
7

0
,0
5
1

0
,0
6
3

0
,2
0
9

1
0
,3
1
7

−
0
,3
0
1

0
,0
1
0

T
e
a
c
h
in

g

e
x
p
e
ri
e
n
c
e

0
,3
7
1

0
,0
0
4

0
,0
5
4

−
0
,1
2
3

0
,1
6
6

−
0
,0
3
2

0
,0
2
5

0
,2
8
6

0
,2
2
5

0
,3
1
7

1
−
0
,2
1
2

0
,0
2
6

S
e
x

0
,1
0
1

−
0
,1
1
7

−
0
,0
6
9

−
0
,1
0
5

−
0
,1
2
5

−
0
,0
1
8

−
0
,1
9
7

−
0
,2
5
6

−
0
,1
5
0

−
0
,3
0
1

−
0
,2
1
2

1
0
,0
1
2

S
c
h
o
o
l
ty

p
e

0
,1
3
7

−
0
,0
3
0

0
,0
4
8

−
0
,0
4
4

0
,1
3
5

−
0
,0
3
9

−
0
,0
4
1

0
,1
5
8

−
0
,2
9
3

0
,0
1
0

0
,0
2
6

0
,0
1
2

1

Inquiry-Based Learning in Computer Science Classroom 79

References

1. Truesdell, P.: Engineering Essentials for STEM Instruction: How Do I Infuse Real-
World Problem Solving into Science, Technology, and Math? ASCD, Alexandria
(2014)

2. Rocard, M., Csermely, P., Jorde, D., Lenzen, D., Walberg-Henriksson, H.,
Hemmo, V.: Science Education NOW: A Renewed Pedagogy for the Future
of Europe. Office for Official Publications of the European Communities, Lux-
embourg (2007). http://ec.europa.eu/research/science-society/document library/
pdf 06/report-rocard-on-science-education en.pdf. ISBN 978-92-79-05659-8

3. Kireš, M., Ješková, Z., Ganajová, M., Kimáková, K.: Bádatělské aktivity v
pŕırodovednom vzdelávańı, časť A. ŠPÚ, Bratislava, SVK (2016). ISBN 978-80-
8118-155-9

4. Šnajder, Ľ., Gunǐs, J.: Inquiry based learning of selected computer sciences con-
cepts and principles. ICTE J. 1(1), 28–39 (2012). https://doi.org/10.1515/ijicte-
2012-0003

5. Vańıček, J.: Programming in scratch using inquiry-based approach. In: Brodnik,
A., Vahrenhold, J. (eds.) ISSEP 2015. LNCS, vol. 9378, pp. 82–93. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-25396-1 8

6. Gordon, N., Brayshaw, M.: Inquiry based learning in computer science teaching
in higher education. Innov. Teach. Learn. Inf. Comput. Sci. 7(1), 22–33 (2008).
https://doi.org/10.11120/ital.2008.07010022

7. Bybee, R.W., et al.: BSCS 5E instructional model: origins and effective-
ness. BSCS, Colorfado Springs (2006). http://bscs.org/sites/default/files/ media/
about/downloads/BSCS 5E Full Report.pdf

8. National project IT Academy - education for 21st century. http://itakademia.sk/
9. Han, J., Kamber, M., Pei, J.: Data Mining: Concepts and Techniques. Morgan

Kaufmann Publishers Inc., San Francisco (2011)
10. Larose, D.T., Larose, C.D.: Data Mining and Predictive Analytics. Wiley, Hoboken

(2015)
11. Chráska, M.: Metody pedagogického výzkumu. Grada, Praha (2007). ISBN 978-

80-247-1369-4
12. Ramnarain, U., Hlatswayo, M.: Teacher beliefs and attitudes about inquiry-based

learning in a rural school district in South Africa. S. Afr. J. Educ. 38(1), 1–10
(2018). https://doi.org/10.15700/saje.v38n1a1431. Art. # 1431

13. Dostál, J.: Inquiry-based instruction: concept, essence, importance and contri-
bution. Univerzita Palackého, Olomouc (2015). https://doi.org/10.5507/pdf.15.
24445076

14. Šnajder, Ľ., Gunǐs, J.: Bádatělsky orientované vyučovanie informatiky - priebežné
výsledky pedagogického výskumu. In: Brodenec, I., et al. (eds.) Proceedings of
conference DidInfo 2016, pp. 116–123. Matej Bel University, Faculty of Natural
Sciences in Banská Bystrica, Slovakia (2016). ISBN 978-80-557-1082-2

http://ec.europa.eu/research/science-society/document_library/pdf_06/report-rocard-on-science-education_en.pdf
http://ec.europa.eu/research/science-society/document_library/pdf_06/report-rocard-on-science-education_en.pdf
https://doi.org/10.1515/ijicte-2012-0003
https://doi.org/10.1515/ijicte-2012-0003
https://doi.org/10.1007/978-3-319-25396-1_8
https://doi.org/10.11120/ital.2008.07010022
http://bscs.org/sites/default/files/_media/about/downloads/BSCS_5E_Full_Report.pdf
http://bscs.org/sites/default/files/_media/about/downloads/BSCS_5E_Full_Report.pdf
http://itakademia.sk/
https://doi.org/10.15700/saje.v38n1a1431
https://doi.org/10.5507/pdf.15.24445076
https://doi.org/10.5507/pdf.15.24445076

Primary Education in Informatics

Introducing Informatics in Primary Education:
Curriculum and Teachers’ Perspectives

Valentina Dagienė1 , Tatjana Jevsikova2(&) ,
and Gabrielė Stupurienė2

1 Vilnius University Institute of Educational Sciences, Universiteto 9,
01513 Vilnius, Lithuania

valentina.dagiene@mif.vu.lt
2 Vilnius University Institute of Data Science and Digital Technologies,

Vilnius, Lithuania
{tatjana.jevsikova,gabriele.stupuriene}@mif.vu.lt

Abstract. Informatics and especially its nowadays leading part, computational
thinking, becomes an important and universal competence within the debate on
21st century skills and addresses the concepts and learning goals of Informatics
(Computing or Computer Science). There are initiatives appearing worldwide
that tend to include Informatics into early education. In this paper, we analyze
implementation of Informatics as well as developing computational thinking
competence on a primary school level. We survey the situation on Informatics in
primary education in different countries (52 countries included), discuss the
structure of draft curriculum for Informatics in primary education developed in
Lithuania, and study primary teachers’ readiness to integrate Informatics into
primary education.

Keywords: Computational thinking in primary school � Computing in primary
school � Informatics curriculum � Informatics in primary school � Primary
education

1 Introduction

Computational thinking has been actively promoted through K-12 curriculum as a part
of Informatics (Computing or Computer Science) subject or in an integrated way, as it
addresses the concepts and learning goals of Informatics. Interest to teaching Infor-
matics in primary school has increased during the last decade. Informatics education in
Europe report, released in 2016, provides a recommendation: “All students must have
access to ongoing education in Informatics in the school system. Informatics teaching
should preferably start in primary school…” [1]. Basing on the findings of this report,
an initiative of Informatics for all has been started and the strategy has been released [2]
which states: “With its capacity to precisely describe how information can be auto-
matically managed and processed, Informatics provides cognitive insights and a useful
common language for all subjects and professions” [2].

Computational thinking encompasses a set of concepts and thought processes from
Informatics that aid in formulating problems and their solutions in different fields. As
Jeannette Wing defined, “computational thinking represents a universally applicable

The original version of this chapter was revised: Second and third author’s affiliation has been
modified. The correction to this chapter is available at https://doi.org/10.1007/978-3-030-33759-9_24

© Springer Nature Switzerland AG 2019
S. N. Pozdniakov and V. Dagienė (Eds.): ISSEP 2019, LNCS 11913, pp. 83–94, 2019.
https://doi.org/10.1007/978-3-030-33759-9_7

http://orcid.org/0000-0002-3955-4751
http://orcid.org/0000-0002-6253-7941
http://orcid.org/0000-0001-5577-1054
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33759-9_7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33759-9_7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33759-9_7&domain=pdf
http://dx.doi.org/10.1007/978-3-030-33759-9_24
https://doi.org/10.1007/978-3-030-33759-9_7

attitude and skill set everyone, not just computer scientists, would be eager to learn and
use” [3]. It is considered as a universal skill for all and one of the important 21st
century skills. J. Wing later gave a more concrete definition, stating that computational
thinking involves solving problems, designing systems, and understanding human
behaviour, by drawing on the concepts of computational thinking [4]. It includes a
range of mental tools that reflect the breadth of the field of Informatics.

Unless we can notice the separation of terms Informatics and Digital Literacy in
e.g. [1, 2], some international initiatives, e.g. DigComp, include elements of Infor-
matics (programming) into the digital competence area “Digital content creation” [5].
Terms of Informatics, Computing and Computer Science, used in this paper, refer to
more or less the same thing, that is, the entire discipline.

“K-12 Computer Science framework”, released in 2016, defines the main concepts
that should be addressed in school Informatics education: computing systems, networks
and the Internet, data and analysis, algorithms and programming, impacts of Com-
puting [6]. Research on education in the early years has moved forward in the last few
decades, informed by an understanding of the multimodality of young children’s
learning, as well as socio-political changes that emphasize the need to respect young
children’s views. As a result, it has been increasingly important to encourage children
to reflect upon the world around them and to be engaged in real-world problems and
solutions [7]. Visual gaming environments and tangible interfaces provide tools to learn
Computing in early years [8], computer science unplugged activities [9] and Bebras
international challenge task activities [10] for primary school provide possibilities to
develop computational thinking without computer.

There are well known initiatives of Informatics implementation in primary edu-
cation. For example, the Australian Curriculum: Digital Technologies is a new national
subject within the Technologies learning area since 2016. The subject is mandatory
from Foundation (Kindergarten in New South Wales) to year 8, with elective offerings
following for year 9/10 students. The digital technologies curriculum includes funda-
mental ideas from the academic disciplines of Computer Science, information systems
and informatics [11]. Media arts, online safety are integrated correspondingly into arts
and health and physical education, while ICT is integrated across all subjects. The UK
introduced new subject of Computing in 2014 that replaced IT, and guide for primary
school teachers has been released [12]. The review of Informatics in K-12 education in
Australia, England, Estonia, Finland, New Zealand, Norway, Sweden, South Korea,
Poland and the USA provide information on initiatives, taking part in primary edu-
cation as for year 2016 [13].

However, when introducing Informatics in primary education, we face many chal-
lenges. As Hubwieser et al. (2014) conclude in their research on Informatics education
vision in primary and secondary education: (1) proper teacher education in substantial
extent and depth seems to be one of the most critical factors for the success of rigorous
Computer Science education on the one hand and also one of the hardest goals to
achieve on the other; (2) there is a convergence towards computational thinking as a core
idea of the K-12 curricula; (3) programming in one form or another, seems to be
absolutely necessary for a future-oriented Computer Science education [14].

This paper aims to look at the tendencies of Informatics education in primary
school, to analyze and share Lithuanian experience on introducing a primary school
Informatics curriculum and teacher preparation.

84 V. Dagienė et al.

Our main research questions we address in this paper are:

1. What is the up-to-date picture of introduction of Informatics in primary education in
various countries?

2. What are the general differences in big topics (areas) of primary Informatics edu-
cation curriculum?

3. How Lithuanian teachers are prepared for introduction of the new Informatics
curriculum on the national level?

In order to answer Research Question 1, we survey the situation on Informatics in
primary education in different countries (52 countries included) and present results of
quantitative analysis (Sect. 2), discuss the structure of draft curriculum for Informatics
in primary education developed in Lithuania (Sect. 3), and examinate primary teacher
readiness to integrate Informatics into primary education (Sect. 4). Finally, we present
a conclusion and discussion.

2 Informatics in Primary Education

2.1 Research Methodology and Respondents

In order to learn the most up-to-date information about the practice and situation of
introduction of Informatics in primary education in different countries, a study of expert
answers has been conducted during spring-summer period in 2019 instead of just
literature review. In total, 52 experts representing different countries took part in this
survey. It should be mentioned that requirements for the respondents (experts) of the
study were very high: an expert was the one involved in the creation of national
education system, curriculum and methodological material development in Informatics
(Computer Science area), knowing the situation on primary education level. If expert
could not answer all the questions by himself, the questions were redirected to another
expert. In addition, we asked to self-evaluate the level of confidence of expert’s
answers on the scale from 1 (low) to 5 (high). General confidence level is evaluated as
high (median: 5, mean: 4.6). List of countries, represented by experts, includes 34
countries of European region (Austria, Belarus, Belgium, Bosnia and Herzegovina,
Bulgaria, Croatia, Czechia, Denmark, Estonia, Finland, France, Germany, Greece,
Hungary, Iceland, Ireland, Italy, Latvia, Macedonia, Malta, Netherlands, Norway,
Poland, Portugal, Romania, Russia, Serbia, Slovakia, Slovenia, Spain, Sweden,
Switzerland, United Kingdom, Ukraine), and 18 non-European countries (Algeria,
Australia, Cyprus, Cuba, India, Indonesia, Iran, Japan, Malaysia, Palestine, Philippines,
Singapore, South Africa, South Korea, Thailand, Tunisia, Turkey, Uzbekistan).

The experts were asked the following questions:

• Students’ age group, corresponding to primary education in your country.
• Is (Informatics, Computing or Computer Science) taught in primary school in your

country? (Yes, as a separate subject; Yes, in an integrated way; No; Other).
• Is there a curriculum for the Informatics (Computing, Computer Science) in primary

education? (Yes; No; It is being developed at the moment).

Introducing Informatics in Primary Education 85

• If Informatics (Computing, Computer Science) is introduced in primary education,
in which grade does it starts? (Please write grade number, e.g. 1st).

• Is Informatics included into primary teacher education programs? (Yes; Yes, mostly
limited to common digital literacy; Yes, mostly limited to programming; No).

• If Informatics (Computing, Computer Science) is introduced in primary education,
please mark areas of competence that are addressed: (Please mark one or more of
the following answers that suite at least partly.) The six areas of primary Informatics
education that were included into the Lithuanian curriculum were listed with gen-
eral content explanation: Digital Content, Algorithms and Programming, Problem
solving, Data and Information, Virtual communication, Safety and Copyright (see
Sect. 3).

We posed the simplicity requirement for our questionnaire. However, experts could
not only select suggested option of answer, but add their free-text comments as well.
Most of respondents commented their answers due to the considerable differences
within the country, no possibility to select between answer option, actuality of the
problem, activities taking place in Informatics early education right now, etc. In this
paper, we concentrate more on quantitative aspects of the study. But due to the active
comments and information sharing by the experts, the study can be extended to
qualitative research, what is positioned as future work. The study aims at answering
Research Questions 1 and 2 of this paper (see Introduction).

2.2 Study Results and Discussion

It is important to know what students’ age different primary education systems
embrace. Age of students in primary education in surveyed countries ranges from 3 to
16. Most frequent lower and upper age boundaries are 6 and 11.

52% of surveyed countries (27 countries) have already introduced Informatics
curriculum for primary education (Fig. 1). 56% of European region countries and 44%
of surveyed non-European countries. There is no curriculum for Informatics in primary
education in 27% of all surveyed countries, and the curriculum is being developed at
the moment in 21% of all surveyed countries. Active development of new curriculum
can be noticed in the surveyed countries of European region (91% of all respondents
who stated that curriculum is under development).

Fig. 1. Existence of Informatics curriculum for primary education in the surveyed countries,
N = 52

86 V. Dagienė et al.

The majority of surveyed countries introduces Informatics in the first year of pri-
mary school (44%), 22% of respondent countries introduces Informatics in grade 3, the
same number (22%) in grade 5, and correspondingly 3% and 6% of countries introduce
in grade 2 and grade 6 (Fig. 2).

However, only 17 (33% out of all surveyed countries, or 46% out of countries with
Informatics in primary education) introduce Informatics in grades 1 or 2 (Australia,
Belarus, Bosnia and Herzegovina, Cuba, Denmark, Estonia, Greece, Indonesia, Nor-
way, Poland, Romania, Russia, Sweden, Switzerland, Thailand, UK, Ukraine). All
these countries (except for Thailand) reported to have/being developed Informatics
curriculum for primary school at the moment of survey.

The vast majority of surveyed countries (83%) teach Informatics elements in pri-
mary education. However, there are a lot of differences in the level of Informatics
implementation. Out of the countries who teach elements of Informatics, 26% have
either non-compulsory (elective) Informatics subject in primary education, or the level
of introduction of Informatics in primary education differs depending on the region,
school type (e.g. private), choice done by school, etc.

Out of respondent countries who either have curriculum or undergo curriculum
development process at the moment, 50% of countries introduce Informatics as a
separate subject in primary education (Fig. 3), that is called differently across the
countries, e.g. Computer modeling, ICT, Computing, Computer Science, Digital
Technologies, Media education, etc. 21% of countries include basics of Informatics in
primary education in an integrated way. Some countries introduce both as separate and
as integrated either due to pilot study taking part at the moment (e.g. in Denmark), due
to differences in school years (e.g. in Switzerland, for grade 1–2 the subject is inte-
grated, for grade 3–4 the subject is separated), or due to possibility to select on a school
level (e.g. Czechia).

Fig. 2. Starting grade (school year) of Informatics introduction in primary education, N = 37

Fig. 3. Informatics elements introduction in primary education (integrated or separate subject) in
the countries which have/develop Informatics curriculum, N = 38

Introducing Informatics in Primary Education 87

A key question in quality of Informatics teaching in primary education is teacher
training. In general (N = 52), 77% of surveyed countries have included elements of
Informatics into primary teacher education programs (data for one non-European
country is not available) (Fig. 4). 27% of countries include all main aspects of com-
putational thinking in primary teacher training programs (answer “Yes”). However,
almost in half of surveyed countries (46%) teacher training is mostly limited to digital
literacy. In 2 countries (4%, Finland and Czechia) primary teacher training in Infor-
matics mostly include programming.

It should be noticed that all countries who answered “Yes” to the question on
teacher training, have Informatics curriculum in primary education.

Training in primary teacher education programs is limited mostly to digital literacy,
dominates among all countries and even those who have introduced Informatics-related
curriculum in primary education, or such curriculum is being developed.

Three experts, representing countries with Informatics-related curriculum in pri-
mary education but without teacher training included into primary teacher training
programs, commented that it is planned to be introduced soon (Denmark), some pro-
grams do (Poland), or informatics teachers are teaching Informatics elements in pri-
mary education (Latvia).

Results on the main Informatics topics, being taught in primary education, are
discussed and compared in the next section. Informatics content areas for primary
education has been selected, corresponding to the curriculum main areas in the
Lithuanian curriculum being developed, in order to compare implementation across
countries.

3 Informatics Curriculum for Primary Education:
Prospective Framework in Lithuania

Lithuania has experienced more than 30-year way of teaching Informatics in schools.
Informatics in Lithuanian schools has been introduced as a compulsory subject since
1986. Since 1995, national exam in informatics has been introduced. The way of
teaching informatics has been changing from theoretical aspects of Informatics in the
first decade to more information technology-oriented subject in the second decade, and

Fig. 4. Informatics inclusion in primary teacher education programs (N = 52)

88 V. Dagienė et al.

during the last decade we are moving to computational thinking oriented skills
development. Since 2005, a compulsory subject, called Information Technology, has
been introduced in schools since grade 5 (first year of basic education). It should be
noticed that grade 5 in many countries at the moment of writing this paper is assigned
to primary education level.

In 2016, working group of education experts, including Informatics teachers and
primary school teachers, scientists, teacher trainers, educational policy-makers, busi-
ness sector representatives, has developed a draft version of informatics curriculum
framework for primary schools (grade 1–4). Lithuanian primary education typically
embraces ages 7–11, i.e. 4 grades (now we are in a transformation phase to ages 6–11).
As a result, six areas of Informatics have been identified [15] (Table 1).

Table 1. Lithuanian primary school informatics curriculum areas and basic skills

Area Essential skills

1. Digital content 1. Familiarize with digital content diversity
2. Use digital content to learn in various subjects
3. Create digital content, using various technologies
4. Evaluate and improve digital content

2. Algorithms and
programming

1. Understand an importance of algorithm and program for problem
solving
2. Perform actions of algorithm/program
3. Identify sequencing, branching, loop actions and express them by
commands, apply logical operations
4. Create and run programs using gamified programming tools and
environments
5. Test, debug and enhance programs

3. Problem solving 1. Identify problems occurring when using digital technologies
2. Creatively use digital technologies learning various subjects
3. Select and apply appropriate digital technologies to solve tasks
4. Evaluate own digital skills

4. Data and
information

1. Understand purpose and benefit of data and information
management by digital technologies
2. Search information purposefully using digital technologies
3. Collect, store, manage data
4. Discuss and evaluate information relevance and reliability

5. Virtual
communication

1. Understand purpose and importance of virtual communication
2. Communicate by the means of digital technologies
3. Collaborate by the means of digital technologies, share
found/created digital resources
4. Discuss and evaluate possibilities and risks of virtual
communication

6. Safety and
copyright

1. Perceive the necessity to protect digital devices from malicious
software
2. Protect personal data
3. Discuss copyright and piracy issues
4. Protect health while using digital technologies
5. Protect environment while using digital technologies

Introducing Informatics in Primary Education 89

Correspondence of the designed curriculum areas and skills to the DigComp
competence areas [5] can be found (Fig. 5). Probably the main difference is that
Algorithms and programming which are most promoting computational thinking skills
in Lithuanian curriculum is a separate area, while in “DigComp” it is included into
Digital content creation competence area.

During the countries survey, discussed in Sect. 2 of this paper, we asked experts
whether six areas of primary Informatics education are being developed in their pri-
mary education (each area had explanations on the content included into it). The reason
of selecting such areas was to compare to the Lithuanian curriculum. The results are
presented in Fig. 6.

All of the areas are addressed in most surveyed countries in primary Informatics
education. More often, Digital content (62%), Algorithms and programming (54%),
Safety and copyright (50%) are taught. Digital content and Algorithms and program-
ming are even taught in some countries that have not introduced Informatics
curriculum.

Fig. 5. Lithuanian prospective framework of Informatics curriculum area and DigComp
competence area mapping

Fig. 6. Informatics content areas in primary education in surveyed countries (N = 52)

90 V. Dagienė et al.

However, only 33% of surveyed countries start Informatics from grade 1 or 2. In
Lithuania, the Informatics is going to be introduced starting from grade 1 (before the
reform to start primary education from age 6, Informatics is introduced starting from
pre-school, i.e. one year before current grade 1). Out of these countries, 94% introduce
Digital content skills, 71% introduce Algorithms and programming, Problem solving,
Data and information Safety and copyright, 76% introduce Virtual communication
topics.

4 Primary School Teachers Readiness for Informatics
Curriculum Implementation

Introducing a new subject in primary education is a long process of discussions, pilot
implementations, sharing best practices, teacher training, etc. Therefore, in 2017
Ministry of education, science and sport in Lithuania has launched project called
“Informatics in primary schools”. The goal of this project was to become ready for
nation-wide Informatics implementation in primary schools. By competition means, 10
schools were selected, where primary teachers in school year 2017/2018 implemented
practically draft Informatics curriculum, provided suggestions to curriculum correction,
prepared various integrated activities to teach Informatics, closely collaborated with
researchers who consulted them. A year later, 90 more schools have been selected for
pilot implementation of Informatics curriculum. The finalized curriculum is planned to
be implemented in all schools since 2020. But before activities with 100 schools have
started, in the beginning of school year 2018/2019, a study [16] on teacher readiness to
implement the new Informatics curriculum in primary schools has been run.

4.1 Research Methodology and Respondents

The participants of this study were 1342 primary school teachers (this makes up about
21% of all primary teachers in Lithuania) working in primary schools of different
municipalities across all Lithuania (87% of all municipalities are covered).

The main research question of this study was “How Lithuanian teachers are pre-
pared for introduction of the new Informatics curriculum on the national level?” (this is
Research Question 3 of this paper).

The study has been run using internet-based questionnaire teachers had to fill in.
We aimed to determine whether the skills, indicated in the draft Informatics curriculum,
are already been addressed during regular primary school lessons (while Informatics is
not compulsory subject yet) and how often. Another aspect of the study has been
teachers’ competence to teach Informatics in primary schools according to the new
curriculum self-evaluation and comparison between those teachers who had digital
competence training during the past 3 years and who had not.

4.2 Results and Discussion

The teachers, participating in the study, indicated for each Informatics curriculum area
and its essential skill (see Table 1), how often do they include this skill into their

Introducing Informatics in Primary Education 91

regular lessons (almost every day, once or twice per week, one to three times per
month, two to three times per half a year, very rarely or never).

The format of this paper does not allows us to present the detailed results for each
curriculum area skills, therefore we generalize results by introducing numeric scale
from 5 to 1: 5 – almost every day, 4 – once or twice per week, 3 – one to three times per
month, 2 – two to three times per half a year, 1 – very rarely or never. Median values
has been counted for each curriculum area and general result has been derived (Fig. 7).

We see that for Digital content, Data and information and Virtual communication,
appropriate skill training during the lessons is done almost one to three times per
month. Approximately two or three times per half a year teachers include in their
lessons Problem solving and Safety and copyright skills development. Unless, there are
individual initiatives to develop Algorithms and programming skills, but generalized
national results show that these area skills are almost not included into regular lessons.

In order to know how primary school teachers self-evaluate their competence to
teach curriculum defined areas of Informatics, we asked them to use evaluation scale
point from 5 to 1 corresponding to their preparation (5 – very good, 4 – good, 3 –

moderate, 2 – weak, 1 – not prepared). The results (Fig. 8) show that teachers feel most

Fig. 7. Students’ Informatics skills development during the lessons (generalized results),
N = 1342

Fig. 8. Primary school teachers’ competence self-evaluation to teach Informatics skills,
N = 1342

92 V. Dagienė et al.

prepared to teach Data and information as well as Virtual communication skills, has
moderate preparation to teach Problem solving and Safety and Copyright skills. Less
prepared teachers are to teach Digital content. And almost not prepared to teach
Algorithms and programming.

We can also see the difference between self-evaluation of these teachers who had
had digital competence training during the last 3 years and who had not. The difference
per 1 scale point is seen in Digital content, Algorithms and programming, Data and
information, and Virtual communication areas.

5 Discussion and Conclusion

We face three main challenges when introducing Informatics in primary school:
(1) curriculum development; (2) teacher preparation; (3) research of implementation
process and what should be taught [1]. In this paper, we addressed all of them and
presented Lithuanian experience of Informatics introduction in primary school (grade
1–4).

Active participation of experts representing 52 countries in the study we run,
indicates the importance of the problem. In 21% of surveyed countries (91% of these
countries belong to the European region) Informatics for primary education curriculum
is under active development at the moment.

Collected data has shown that Informatics in one or another way is taught in the
majority of surveyed countries (83%) in primary education. However, there are a lot of
differences in the level of Informatics implementation. It is quite a challenging task to
compare implementation of Informatics in different countries due to the difference of
education system. For instance, only 17 out of 52 surveyed countries (33%) introduce
Informatics in grades 1 or 2. 19% of countries start teaching Informatics in grades 5 or
6 while in some countries (including Lithuania), grade 5 is a start of basic level of
secondary school.

At the moment of research, countries pay priority to separate subject of Informatics
in primary education rather than integrated. In Lithuania, we select integrated way of
teaching Informatics. The results have shown that still more attention should be payed
to primary teacher education. Training in primary teacher education programs, mostly
limited to digital literacy, dominates among all countries and even those who have
introduced an Informatics-related curriculum in primary education, or such a curricu-
lum is being developed. Ongoing initiatives and experience in Lithuania (Informatics
curriculum for primary school, pilot implementation in 10, then in 100 schools, col-
laboration with scientists, business representatives, teacher training activities and
research) can serve as one of the possible models for countries who are going to
implement Informatics in primary education.

Evaluation of teacher readiness to implement Informatics curriculum is an impor-
tant element in the transformation phase. If there are initiatives of integration of
Informatics elements into regular lessons nation-wide, even when there are no com-
pulsory Informatics subject, this is a good indicator for launching Informatics as a new
subject.

Introducing Informatics in Primary Education 93

The future steps of the research include qualitative analysis of experience of dif-
ference countries.

Acknowledgement. We would like to express gratitude to the all international experts who took
part in the survey on Informatics in primary education for active participation and collaboration.
We also thank Education Development Center of Lithuania for the support of the research on
primary teacher readiness to introduce Informatics in primary school.

References

1. Informatics Education in Europe: Are We All in the Same Boat. Report by The Committee
on European Computing Education (CECE) Jointly established by Informatics Europe &
ACM Europe (2016)

2. Informatics for All: The strategy. ACM Europe & Informatics Europe (2018). https://europe.
acm.org/binaries/content/assets/public-policy/acm-europe-ie-i4all-strategy-2018.pdf

3. Wing, J.M.: Computational thinking. Commun. ACM 49(3), 33–35 (2006)
4. Wing, J.M.: Computational Thinking: What and Why (2011). http://www.cs.cmu.edu/link/

researchnotebook-computational-thinking-what-and-why
5. European Commission: DigComp into Action. Get inspired, make it happen. A user quide to

the European digital competence framework. European Union (2018)
6. K–12 Computer Science Framework. ACM (2016). http://www.k12cs.org
7. Manches, A., Plowman, L.: Computing education in children’s early years: a call for debate.

Br. J. Educ. Technol. 48(1), 191–201 (2017)
8. Garneli, V., Giannakos, M., Chorianopoulos, K.: Computing Education in K-12 schools: a

review of the literature. In: IEEE Global Engineering Education Conference (EDUCON),
pp. 543–551 (2015)

9. CS Unplugged: Computer Science without Computer (2019). https://csunplugged.org/en/
10. Dagiene, V., Stupuriene, G.: Bebras – a sustainable community building model for the

concept based learning of informatics and computational thinking. Inform. Educ. 15(1),
25–44 (2016)

11. Australian Computing Academy: Coding and Computational Thinking. What is the
Evidence? https://education.nsw.gov.au

12. CAS: Computing in the National Curriculum. A Guide for Primary Teachers (2013)
13. Heintz, F., Mannila, L., Färnqvist, T.: A review of models for introducing computational

thinking, computer science and computing in K-12 education. In: 2016 IEEE Frontiers in
Education Conference (FIE) (2016)

14. Hubwieser, P., Armoni, M., Giannakos, M., Mittermeir, R.T.: Perspectives and visions of
computer science education in primary and secondary (K-12) schools. ACM Trans. Comput.
Educ. 14(2), Article 7 (2014)

15. Education Development Center: Lithuanian Informatics Curriculum Outline. Preschool and
Primary Education. Draft, 2019-06-30 (2019). https://informatika.ugdome.lt/lt/biblioteka/
dokumentai/. [In Lithuanian]

16. Jevsikova, T.: School Potential and Readiness to Implement an Integrated Informatics
Curriculum in Primary Education. Study Report. Education Development Center (2019).
https://informatika.ugdome.lt/lt/tyrimas/ [In Lithuanian]

94 V. Dagienė et al.

https://europe.acm.org/binaries/content/assets/public-policy/acm-europe-ie-i4all-strategy-2018.pdf
https://europe.acm.org/binaries/content/assets/public-policy/acm-europe-ie-i4all-strategy-2018.pdf
http://www.cs.cmu.edu/link/researchnotebook-computational-thinking-what-and-why
http://www.cs.cmu.edu/link/researchnotebook-computational-thinking-what-and-why
http://www.k12cs.org
https://csunplugged.org/en/
https://education.nsw.gov.au
https://informatika.ugdome.lt/lt/biblioteka/dokumentai/
https://informatika.ugdome.lt/lt/biblioteka/dokumentai/
https://informatika.ugdome.lt/lt/tyrimas/

Observing Abstraction in Young Children
Solving Algorithmic Tasks

Hylke H. Faber1(B) , Josina I. Koning1(B) , Menno D. M. Wierdsma1 ,
Henderien W. Steenbeek1 , and Erik Barendsen2,3

1 Hanze University of Applied Sciences, Groningen, Netherlands
{h.h.faber,j.i.koning}@pl.hanze.nl

2 Radboud University, Nijmegen, The Netherlands
3 Open University, Heerlen, The Netherlands

Abstract. Abstraction is considered an essential aspect of computa-
tional thinking. Primary schools are starting to include computational
thinking into the curriculum. However, in order to guide their support,
teachers need to know how to recognize abstraction. In this paper, we
present how we can observe abstraction in young children tasked with
solving an algorithmic assignment. In order to operationalize abstrac-
tion, we have used the layers of abstraction (LOA) model by Perrenet,
Groote and Kaasenbrood. This model was originally used in the field
of computer science and describes programming behavior at the level of
software development, but has since been extended for use in primary
education. We have operationalized this model for use with 5 to 6 year old
students tasked with programming an educational robot. Their behavior
has been related to each of the four layers of abstraction.

Students were individually instructed with programming Cubetto, an
educational robot, to reach a number of destinations, increasing in the
level of algorithmic complexity. We analyzed audio and video recordings
of the students interacting with Cubetto and a teacher. Verbal and non-
verbal behavior were categorized by two researchers and resulted in an
observation schema.

We conclude that our operationalization of the LOA model is promis-
ing for characterizing young students’ abstraction. Future research is
needed to operationalize abstraction for older primary school students.

Keywords: Computational thinking · Abstraction · Algorithmic
thinking · Educational robots

1 Introduction

The term computational thinking (CT for short) has gathered a lot of interest
in recent years. CT consists of a number of cognitive problem solving strategies
where concepts of computer science are utilized, sometimes resulting in a solution

H. Faber and J. I. Koning—These authors contributed equally to this paper.

c© Springer Nature Switzerland AG 2019
S. N. Pozdniakov and V. Dagienė (Eds.): ISSEP 2019, LNCS 11913, pp. 95–106, 2019.
https://doi.org/10.1007/978-3-030-33759-9_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33759-9_8&domain=pdf
http://orcid.org/0000-0002-4597-4648
http://orcid.org/0000-0003-3819-2063
http://orcid.org/0000-0001-7122-6048
http://orcid.org/0000-0001-6750-2142
http://orcid.org/0000-0003-4684-4287
https://doi.org/10.1007/978-3-030-33759-9_8

96 H. H. Faber et al.

that can be interpreted by an information processing agent [17]. For instance,
a computer might be able to solve certain aspects of a problem, assuming that
the problem has been formulated in such a way that it can be interpreted by a
computer. These cognitive strategies can be useful to solve problems outside the
field of computer science.

In recent years, primary schools have started introducing CT classes for their
students. However, as this is a relatively new field of study for primary educa-
tion, without a clearly set curriculum, many schools feel unsure of what to do.
After initially describing a possible learning trajectory in a series of lessons as
a guiding example [2,3,6], we realized not enough research has been done on
how young students develop CT. We believe that this is an essential first step in
creating a research-based CT curriculum. So, our focus shifted towards tackling
this problem.

As an institute for teacher education, we are interested in how teachers can
better support their students. As CT is now slowly beginning to be included in
the Dutch primary schools, we believe it is essential for teachers to foster CT
development in students. Therefore, teachers need to able to recognize abstrac-
tion in young students’ behavior. This paper presents our findings of develop-
ing an operationalization of abstraction. Furthermore, we discuss patterns in
abstraction that emerge when young students are tasked with an algorithmic
assignment. This represents a piece of the puzzle required for teachers to better
support students’ development of CT.

2 Background

While there exist many definitions of CT, abstraction is frequently mentioned
as being an essential aspect of CT [1,13,17]. The core of abstraction is to view
a situation at various levels of detail, all relating to the same situation and
indirectly affecting details on other levels of abstraction.

As abstraction refers to a cognitive process, it is difficult to operationalize
abstraction in terms of observable behavior. However, as it is an essential aspect
of CT, teachers need to be able to guide their support to foster students’ devel-
opment of abstraction. For this to occur, teachers need to know how they can
identify abstraction and how they can adapt their scaffolding process to guide
their support. Furthermore, recent work by Rijke and colleagues [12] indicates
that competence in abstraction, along with decomposition, increases with age
among primary school students. To support this developmental process, teachers
need to able to recognize how students use abstraction.

Recently, research has revealed interesting findings on the use of educa-
tional robots in primary school classrooms [9,14]. Work by Kalas and col-
leagues [5] explored computational task complexity in their formulation of a
two-dimensional grid, consisting of two dimensions: control and representation.
The dimension of control ranges from direct manipulation (directly moving a
physical robot or dragging a character in a programming environment) to com-
putational control (constructing a sequence of instructions that are executed at

Observing Abstraction in Young Children Solving Algorithmic Tasks 97

a later stage). The dimension of representation concerns the manner in which
a constructed sequence of instructions is presented to the programmer (ranging
from no representation, where the instructions are in no way represented, to
external plan, where the sequence is reflected outside the direct context of the
programmable entity). Within these two dimensions, various levels of abstrac-
tion can be identified. For instance, creating a sequence of instructions, instead
of physically pushing a robot across a grid map, implies a higher level of abstrac-
tion. Furthermore, a programming device that presents the instructions that are
being executed outside of the immediate context of the entity, allows students
to operate on a higher level of abstraction that a device that offers no such
representation.

While the aforementioned framework [5] can be used to characterize task
complexity, the layers of abstraction model [10,11] (LOA) describes abstraction
as a process of problem solving, in the field of computer science [4]. Each layer
of abstraction encompasses a different level of detail and focuses on different
aspects of the same situation. In order to gain insight in how student engage in
abstraction, the layers have to be operationalized to include observable behavior.

2.1 Layers of Abstraction

The original model by Perrenet and colleagues [10,11] has been used to describe
abstraction within the field of computer science. For this project, we aim to
operationalize the LOA model in the context of primary education. Recently,
both Statter and Armoni [13] and Waite and colleagues [16] have each presented
their LOA model for use within a K-5 educational context, based on the model
by Perrenet and colleagues (condensed from [16]):

– Problem: a verbal description of the problem, including requirements of the
specific task or assignment.

– Design: a detailed depiction of the solution, without any reference to the
specific programming language that is used to solve the problem.

– Code: a translation of the design; the code itself or a reference to the code,
in a vocabulary that is specific for the chosen programming language.

– Running the code: the running code or any reference to the output of the
code.

However, while this framework makes a distinction between the layers of
abstraction on a conceptual level, they offer no concrete observable behavior
that can be related to these layers of abstraction. In this study, we aim to oper-
ationalize abstraction, by formulating observable behavior that can be related
to the layers of abstraction.

Furthermore, we are interested in how students switch between abstraction
layers on a microgenetic timescale. Insight in this process can prove useful in
shaping teacher support [15]. For this project, we would like to uncover insight
in pattern of students’ abstraction.

98 H. H. Faber et al.

2.2 Research Question

Our research question for this study is as follows: How can abstraction be opera-
tionalized to characterize behavior of 5 to 6 year old students tasked with program-
ming an algorithmic task? An answer to this question results in an observation
schema for determining how students within this age group express abstraction
in their behavior when solving an algorithmic task.

3 Method

The research group consisted of 17 students, For this research, a moderately
sized primary school in a rural area was chosen, providing education to about
400 students. Here, CT currently is not part of the curriculum. We set out to
get a clear image on how students react when confronted with a programmable
robot for the first time. This will allow us to get a unbiased baseline view of their
behavior, without any previous formally taught programming experience. Our
research sample consisted of 17 students, 8 boys and 9 girls, at the 2nd grade
of primary school. The mean age of the students was 5 years and 5 months. A
licensed primary school teacher, different to the group’s regular teacher, tasked
the students with the different assignments and was present during the video
and audio recordings.

3.1 Educational Design

The educational context for this study was designed using lesson materials by
Koning and colleagues [6]. These materials are based on the picture book Hello
Ruby [8], where a young girl named Ruby goes on an adventure to collect gems
by solving computational problems. The original lesson materials by Koning and
colleagues [6] prescribe the use of Beebot, a specific educational robot. However,
considering Kalas’ grid of task complexity [5], Beebot only allows for direct drive,
without any relation to actual computational programming. Cubetto however,
a different educational robot, does allow for computational control, as well as
direct drive, and an external plan Therefore, for this research we chose to make
use of Cubetto.

Cubetto (https://www.primotoys.com) is a physical programmable robot
that can be used for early computing education. Cubetto can be programmed
by placing plastic colored coding blocks in the correct order in a remote con-
trol board. Each coding block can be identified by its unique shape and color:
‘move forward’ (green), ‘turn clockwise’ (red), ‘turn counterclockwise’ (yellow)
and ‘execute function’ (blue). By pressing the circular button on the right side
of the remote control board, the constructed code is sent wirelessly to the robot,
which starts executing the code immediately. Because the code is visible on the
remote control board, students can more clearly relate the outcome of the code
to their programming efforts. Furthermore, the constructed code is also clearly
visible to the teacher, which allows a teacher to trace any errors made in the
code.

https://www.primotoys.com

Observing Abstraction in Young Children Solving Algorithmic Tasks 99

Students were individually tasked with programming Cubetto to move on a
map of Ruby’s world, containing a gird of 15 cm x 15 cm squares. Depending
on the specific task, Cubetto has to move from a fixed starting position to
a destination. The complexity and required programming effort increases with
every assignment. For instance, the first tasks consists of Cubetto having to
move two squares in a straight line, which can be accomplished by only using
two ‘move forward’ blocks. Subsequent tasks involve turning Cubetto, requiring
the use of the ‘turn clockwise’ and ‘turn counterclockwise’ blocks. After a quick
briefing by the teacher, students were given their first assignment. Students
had a total of 30 min to complete all assignments, with most not finishing all
assignments within that time period. The teacher was instructed to limit their
support towards the students, as our aim was to capture the abstraction process
of students.

3.2 Data Collection

Students’ and teacher behavior was recorded using digital audio and video
recordings. Cameras were placed in such a way that both the map and the
remote control board were visible at all times.

3.3 Data Analysis

Constructing the Observation Schema. The two first authors jointly viewed
the recorded videos and consulted on the behavior that should be categorized
as indicative of abstraction. An initial observation schema containing definitions
of each of the four layers was created, along with sample behavior indicative of
each layer. Next, this schema was used by the first two authors to independently
analyze the same video observation, categorizing all behavior on a 10 s interval
to one of the four layers, with a fifth option being added, used to categorize
behavior that was not related to one of the four layers. Afterwards, differences in
categorization were discussed and the schema was refined, resulting in a definitive
observation schema. This was used to categorize another set of videos, comparing
results to calculate the inter-rater reliability by using Cohens kappa. Finally, the
definitive observation schema was used to perform pattern analysis, using video
data that was not analyzed previously. Table 1 presents an overview of how many
videos were used during each step of the process.

Table 1. Developing the observation schema

Research activity Number of videos analyzed

Initial analysis 11

Prototype observation schema 2

Definitive observation schema 2

Pattern analysis 4

100 H. H. Faber et al.

A short description of how we constructed will be presented in the next
chapter, as this concerns one of the results of this study.

Pattern Analysis. Next, after assigning behavior to one of the abstraction
layers, using the observation schema we previously created, we analyzed the
results to see in any emergent patterns could be identified. We expect that
such an analysis can provide insight in the progression of abstraction during an
algorithmic task performed by young students.

4 Results

Operationalization of the Model. After the introduction of the assignments
by the teacher, the students were instructed on the first assignment. This gave
us a chance to see how students explored the problem, at the problem layer.
Students frequently pointed to the destination that Cubetto has to move to in
order to complete the assignment. In some cases, students had vocalized the
solution that they have planned to program, either by thinking aloud or telling
the teacher about their intention. This led us to categorize their behavior at the
design layer. Frequently, this was accompanied with the student drawing out
a line, indicating the proposed route to reach the destination. Next, students
were frequently observed to grab the colored coding blocks and placing them in
the remote control board, allowing us to observe the code they constructed. This
constructed algorithm was the result of efforts t hat took place on the code layer.
After completing the algorithm, students pressed to button to send the code to
Cubetto. Observation data revealed that students frequently observed Cubetto
as it processed the code, at the execution layer. Moreover, students frequently
predicted the outcome of either part of their code, or their code in full, which
we also related to the execution layer.

The analysis of video recordings has resulted in the construction of an obser-
vation schema, containing definitions of the layers and samples of observable
behavior (see Table 2). Using the definitive observation schema as explained
above yielded a Cohens kappa of 0.74, indicating a substantial agreement.

Pattern Analysis. Graphing the layers of abstraction presents an overview of
the process of abstraction (see Fig. 1). This gives an indication of how a student
switches between the various layers, and how much time is spent on each layer
before switching to another layer. The gaps in the graph represent instance where
a student displayed behavior that was unrelated to the programming task. As
shown in Table 1, more analyses have been made, but the two graphs presented
here are indicative of the rest of the analyses, and give a good indication of how
students operate on each of the layers when solving the task.

The pattern analysis revealed that students did not spend much time at all on
the problem layer. After introducing a new assignment, students spend little time
on the problem layer, and quickly moved to the design layer to start formulating

Observing Abstraction in Young Children Solving Algorithmic Tasks 101

Table 2. Operationalization of the layers of abstraction model

Layer definition Sample behavior

Problem layer: behavior related to
understanding the task

– Pointing to the starting position of
Cubetto is indicative that the child
understands that Cubetto has to move
from that position to the required
destination

– Pointing to the required destination is
indicative that the child understands
where Cubetto has to go

– Searching for, finding and pointing to
the bridge that Cubetto has to cross
during the later assignments, indicated
that the student understands that this
symbolizes a new requirement for the
design

Design layer: behavior related to
designing a route for Cubetto,
describing it in human language
without using the coding blocks

– Pointing out the route Cubetto can
take on the map by drawing a line with a
finger indicates that the student has
designed a solution for the problem

– Counting the number of squares that
have to be moved by Cubetto indicates
that the child is more explicitly designing
a route

– Describing the route in terms of up,
down and forwards

Code layer: behavior related to
translating the designed route into a
sequence of coding blocks

– Grabbing a coding block and placing
the block in the remote control board

– Removing a coding block from the
remote control board

– Making adjustments to the sequence of
coding blocks after observing the
outcome of the code

Execution layer: behavior related to the
outcome of the translated code

– Pressing the button on the remote
control board, executing the code

– Carefully observing the behavior of
Cubetto

– Relating the outcome of the execution
to the predicted outcome

– Predicting the outcome of a section of
code by reasoning on how Cubetto would
interpret the code, without actually
executing the code

102 H. H. Faber et al.

Fig. 1. Overview of the process of abstraction of two students, showing how students
switch between layers over a timespan of 30 min. Green diamonds indicate when a new
assignment was introduced. Behavior unrelated to solving the task is not shown, hence
the gaps. (Color figure online)

a route (see Fig. 1). This could be related to the complexity of the understanding
the assignments. However, all assignments we offered during this project were
not difficult to understand: Cubetto has to move from a starting position to a
destination. While a concrete solution might prove difficult, the assignment in
itself was not very difficult to understand. Students therefore quickly moved on
to subsequent layers.

Students were frequently observed to shift back to either the code or design
layer, after observing the result of their code at the execution layer (see Fig. 1).
In the event of an unexpected or undesired outcome, such as Cubetto stopping
on a square adjacent to the destination, students switched back to the code layer
to adjust the code and run the code again, indicating a process of debugging.
In other cases, students decided that the route they chose had to be altered,
switching back to the design layer, indicating a redesign of the solution. We
believe both processes, debugging and redesign, can be explained using the LOA
model:

– Debugging: We view the process of debugging as occurring between the
code and execution layer. Students observe an outcome that is not expected.
Debugging requires an adaptation at the code level, before running the pro-
gram again to see whether the unwanted behavior persists. As such, debugging
is related to switching back to the code layer, immediately after the execution

Observing Abstraction in Young Children Solving Algorithmic Tasks 103

process ends. Students were observed to switch numerous times between code
and execution, most times adjusting only a single coding block.

– Redesign: In some cases, the outcome of the code infers that a redesign is
required. Students were observed to choose, for instance, a new route for
Cubetto, as the current design proved either too difficult or the student did
not have enough faith to continue working on the design. In these cases,
students switched back to the design layer and choose a different route for
Cubetto. As such, the process of redesign is related to switching back to the
design layer. Students were frequently unsure of the exact route that was
taken. For instance, in many cases, students who were already constructing a
sequence of coding blocks, switched back to the design layer to re-count the
number of steps that were required to reach the destination. This was usually
immediately followed by counting the number of coding block, indicating a
switch back to the code layer.

5 Conclusion and Discussion

Coming back to our research question, we conclude that we succeeded to char-
acterize abstraction in young students’ behavior. We have demonstrated how we
can use the layers of abstraction model to operationalize abstraction in observed
behavior by students tasked with programming Cubetto (see Table 2).

Furthermore, our pattern analysis has yielded insight on how students engage
in the process of abstraction over time, and what patterns emerge during that
time. For instance, it is interesting to observe processes that one would expect in
a more formal programming context, such as debugging and redesign, can also
be observed in young students’ programming behavior.

5.1 Cubetto

While Cubetto explicates the code that is being executed, the specific manner
in which the coding blocks have to be entered into the programming board
has, in some cases, led to a number of difficulties. The coding blocks have been
designed in such a way that the remote control board only accepts the blocks
when they are placed in their correct orientation. In some situations, this has
led to frustration among students. This finding is in accordance with the study
by Marinus and colleagues [9].

In some cases, students seemed to encounter difficulties, related to the shape
and layout of the remote control board. The programming board allows for 12
blocks to be entered, among 3 rows. These rows are connected via a groove
in the material of the board. At the end of the first row, where blocks have
to be entered left-to-right, the groove makes a turn and continues on the right
side of the second row. However, in some cases, observations led us to believe
that a student believed that this turn would also cause Cubetto to turn. Another
consequence of the second row of the remote control board being orientated right-
to-left, is that the green “move forward” blocks are pointed to the left, instead

104 H. H. Faber et al.

of to the right, as they did when they were entered on the first row. The same
effect has been observed with the directional blocks, as they point in different
directions when they are placed in the first or second row of the programming
board. These difficulties might have introduced a bias in the results, causing
students to spend more time in the code layer than was expected.

5.2 Layers of Abstraction

In the original model by Perrenet and colleagues, the distinction between the
code and design layer is based in part on the language that is used to describe the
suggested solution. At the design layer, the solution is described using human
readable language, without any reference to a programming language and the
specific limitations of a specific programming language are not considered. At
the code layer, the design is translated into a set of lines of code, specified to
the programming language chosen to fit the solution.

While the distinction between human and programming language is in their
case relatively clear, the same distinction is a lot harder to make in the con-
text of this study. For instance, students were frequently observed to count the
number of squares required to reach a certain destination. Initially, we related
this behavior to the design layer, as we had previously decided that behavior
on the code layer required interaction with the coding blocks, and this behavior
did not concern the coding blocks. Counting the coding blocks, however, was
related to the code layer, as that behavior did include interaction with the cod-
ing blocks. However, counting the squares could be considered a consequence
of using Cubetto as a means of completing the task, as programming Cubetto
requires knowledge of how many squares the robot has to move. Choosing a dif-
ferent educational robot, for instance, the Ozobot (https://ozobot.com/), would
require a different approach. Ozobot is able to follow a black line on a surface.
Therefore, the number of squares that needs to be crossed is irrelevant when
choosing Ozobot to reach the destination. This finding aligns to the guidelines
for teaching abstraction by Armoni [1] and observations Waite and colleagues
[16], who both stress the importance of the design layer. Our method, prescribing
the use of Cubetto beforehand, might have influenced students in their created
designs, causing them to consider properties of Cubetto already at the design
layer.

Subsequently, this finding initially led us to consider a split within the
design layer. We considered an abstract design layer and a concrete design layer.
An abstract design would be unrelated to the specific robot or programming
language used to complete the solution. The concrete design, however, would
describe the solution in human language, while also containing elements of the
specific robot or programming language. The behavior of counting the squares
on the map, as described above, would be considered an example of a con-
crete design, while a more global description of the route would be related to
the abstract design. However, given the nature of the task, where Cubetto was
pre-determined as the educational robot of choice, creating a design without

https://ozobot.com/

Observing Abstraction in Young Children Solving Algorithmic Tasks 105

considering the programming language of Cubetto would not make sense. For
this reason, we chose to not further pursue a split at the design layer.

The aforementioned limitation of the assignment, where use of Cubetto was
decided already at the start of the assignment, might have introduced a bias in
deciding which behavior is related to the design and code layer. In a follow-up
study, offering students a choice of robots or programming languages to complete
the assignment could allow for a better distinction between the design and code
layer.

Predicting the outcome of a section of code was considered a behavior related
to the execution layer. However, this could also be considered a form of tracing,
where a novice programmer determines the value of variables after execution [7].
According to Lister and colleagues, this operation does not imply abstraction,
and could be considered a form of preoperational reasoning.

Due to the small number of (different) coding blocks needed to complete
the tasks, it is difficult to determine whether a child is engaged in a process
of debugging, or simply programming using a trail-and-error tactic, by looking
solely at the constructed code. However, in these situations, verbal utterances
by the child, in most cases, convinced us that trail-and-error was a seldom used
tactic.

More research is required to further operationalize the LOA model for
describing abstraction behavior for students in all age groups in K-6 educa-
tion. Furthermore, we are interested to uncover how student behavior can be
related to the LOA model when presented with various programming languages
to choose from. As mentioned earlier, the two-dimensional grid by Kalas and
colleagues [5] presents an interesting perspective on abstraction, that could be
explored in further detail to relate task complexity to student abstraction. We
aim to uncover how knowledge of these models can aid teachers in supporting the
students. Furthermore, insight in emergent patterns of the sequence of abstrac-
tion layers, such as depicted in Fig. 1 might prove relevant for describing how
other variables, such as teacher support or task structure, can have an influence
on the development of abstraction. Finally, our ultimate goal is to uncover how
teachers can use the LOA model to guide their support. This, in turn, can aid
students in further developing their computational thinking abilities.

References

1. Armoni, M.: On teaching abstraction in computer science to novices. J. Comput.
Math. Sci. Teach. 32(3), 265–284 (2013)

2. Faber, H.H., van der Ven, J.S., Wierdsma, M.D.: Teaching computational thinking
to 8-year-olds through ScratchJr. In: Proceedings of the 2017 ACM Conference on
Innovation and Technology in Computer Science Education - ITiCSE 2017, p. 359.
ACM Press, New York (2017). https://doi.org/10.1145/3059009.3072986

3. Faber, H.H., Wierdsma, M.D.M., Doornbos, R.P., van der Ven, J.S., de Vette,
K.: Teaching computational thinking to primary school students via unplugged
programming lessons. J. Eur. Teach. Educ. Netw. 12, 13–24 (2017)

https://doi.org/10.1145/3059009.3072986

106 H. H. Faber et al.

4. Hazzan, O.: How students attempt to reduce abstraction in the learning of mathe-
matics and in the learning of computer science. Comput. Sci. Educ. 13(2), 95–122
(2003). https://doi.org/10.1076/csed.13.2.95.14202

5. Kalas, I., Blaho, A., Moravcik, M.: Exploring control in early computing education.
In: Pozdniakov, S.N., Dagienė, V. (eds.) ISSEP 2018. LNCS, vol. 11169, pp. 3–16.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02750-6 1

6. Koning, J.I., Faber, H.H., Wierdsma, M.D.M.: Introducing computational thinking
to 5 and 6 year old students in dutch primary schools. In: Proceedings of the 17th
Koli Calling Conference on Computing Education Research - Koli Calling 2017, pp.
189–190. ACM Press, New York (2017). https://doi.org/10.1145/3141880.3141908

7. Lister, R.: Concrete and other neo-Piagetian forms of reasoning in the novice pro-
grammer. In: Conferences in Research and Practice in Information Technology, p.
10 (2011)

8. Liukas, L.: Hello Ruby: Adventures in Coding. R. R. Donnelley & Sons Company,
Crawfordsville (2015)

9. Marinus, E., Powell, Z., Thornton, R., McArthur, G., Crain, S.: Unravelling the
Cognition of Coding in 3-to-6-year Olds: The development of an assessment tool
and the relation between coding ability and cognitive compiling of syntax in natural
language. In: Proceedings of the 2018 ACM Conference on International Comput-
ing Education Research - ICER 2018, Espoo, Finland, pp. 133–141. ACM Press
(2018). https://doi.org/10.1145/3230977.3230984

10. Perrenet, J., Groote, J.F., Kaasenbrood, E.: Exploring students’ understanding of
the concept of algorithm. ACM SIGCSE Bull. 37(3), 64 (2005). https://doi.org/
10.1145/1151954.1067467

11. Perrenet, J., Kaasenbrood, E.: Levels of abstraction in students’ understanding of
the concept of algorithm: the qualitative perspective. In: Proceedings of the 11th
Annual SIGCSE Conference on Innovation and Technology in Computer Science
Education - ITICSE 2006, Bologna, Italy, p. 270. ACM Press (2006). https://doi.
org/10.1145/1140124.1140196

12. Rijke, W.J., Bollen, L., Eysink, T.H.S., Tolboom, J.L.J.: Computational thinking
in primary school: an examination of abstraction and decomposition in different
age groups. Inform. Educ. 17(1), 77–92 (2018). https://doi.org/10.15388/infedu.
2018.05

13. Statter, D., Armoni, M.: Teaching abstract thinking in introduction to computer
science for 7th graders. In: Proceedings of the 11th Workshop in Primary and
Secondary Computing Education - WiPSCE 2016, pp. 80–83. ACM Press, New
York (2016). https://doi.org/10.1145/2978249.2978261

14. Swidan, A., Hermans, F.: Programming education to preschoolers: reflections and
observations from a field study. In: PPIG 2017 Proceedings, p. 10 (2017)

15. van der Steen, S., Steenbeek, H., den Hartigh, J., van Geert, P.: The link between
micro-development and long-term learning trajectories in science learning. Human
Development (in press)

16. Waite, J.L., Curzon, P., Marsh, W., Sentance, S., Hadwen-Bennett, A.: Abstraction
in action: K-5 teachers’ uses of levels of abstraction, particularly the design level,
in teaching programming. Int. J. Comput. Sci. Educ. Sch. 2(1) (2018). https://
doi.org/10.21585/ijcses.v2i1.23

17. Wing, J.M.: Computational thinking and thinking about computing. Philos. Trans.
Ser. A Math. Phys. Eng. Sci. 366(1881), 3717–3725 (2008). https://doi.org/10.
1098/rsta.2008.0118

https://doi.org/10.1076/csed.13.2.95.14202
https://doi.org/10.1007/978-3-030-02750-6_1
https://doi.org/10.1145/3141880.3141908
https://doi.org/10.1145/3230977.3230984
https://doi.org/10.1145/1151954.1067467
https://doi.org/10.1145/1151954.1067467
https://doi.org/10.1145/1140124.1140196
https://doi.org/10.1145/1140124.1140196
https://doi.org/10.15388/infedu.2018.05
https://doi.org/10.15388/infedu.2018.05
https://doi.org/10.1145/2978249.2978261
https://doi.org/10.21585/ijcses.v2i1.23
https://doi.org/10.21585/ijcses.v2i1.23
https://doi.org/10.1098/rsta.2008.0118
https://doi.org/10.1098/rsta.2008.0118

Implementing a Reverse Debugger
for Logo

Renato Menta1, Serena Pedrocchi1, Jacqueline Staub1,2(B),
and Dominic Weibel1

1 Department of Computer Science, ETH Zürich, Universitätstrasse 6,
8092 Zürich, Switzerland

{rmenta,doweibel}@student.ethz.ch,
{serena.pedrocchi,jacqueline.staub}@inf.ethz.ch

2 Pädagogische Hochschule Graubünden, Scalärastrasse 17, 7000 Chur, Switzerland

Abstract. Programming is a creative activity that teaches precision. In
Logo, novices write simple programs that draw geometric shapes onto a
screen. Logical flaws, however, cause unintended results and pose a major
challenge for young programmers who yet need to learn how to search for
errors in their code. We discuss the problems novices face when learning
to program in Logo. Furthermore, we present a reverse debugger for Logo
that enables programmers to step through their code in either direction.
Using a stack, previous program states can be retrieved on demand. Our
solution balances performance and memory consumption and hence can
be used to debug even long and complex programs.

1 Introduction

Programming is a form of learning that is constructive, enriches creativity and
teaches precision. Yet it is also strenuous and demanding at its very core: pro-
grammers are prone to committing numerous errors [13]. Learning how to cope
with errors makes up a vital part of a programmers’ competence [7]. In this
work, we discuss the struggles novices face when learning how to program in
Logo. Furthermore, we present a debugging tool that supports novices during
the process of tracing semantic errors.

1.1 Making Mistakes: A Matter of Attitude

Humans cannot help but make mistakes. In the context of programming, com-
puter science pioneer Ada Lovelace holds an exemplary attitude on this mat-
ter [15]: “I used once to regret these sort of errors, & to speak of time lost over
them. But I have materially altered my mind on this subject. I often gain more
from the discovery of a mistake of this sort, than from 10 acquisitions made at
once & without any kind of difficulty”. Today, 180 years after this statement was
made, much younger and less experienced pupils also learn programming and
are still confronted with their own weaknesses. We can only hope they adopt a
similar attitude to errors as Ada when they face issues in their programs.
c© Springer Nature Switzerland AG 2019
S. N. Pozdniakov and V. Dagienė (Eds.): ISSEP 2019, LNCS 11913, pp. 107–119, 2019.
https://doi.org/10.1007/978-3-030-33759-9_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33759-9_9&domain=pdf
https://doi.org/10.1007/978-3-030-33759-9_9

108 R. Menta et al.

1.2 The Rift Between Expectation and Outcome

By programming, pupils learn to express their ideas in a formal language. The
resulting programs are written with clear expectations of what should happen
when executed. Due to errors, however, a program may behave differently than
expected. Seeing how a program has a different outcome than expected often
has a shocking and somewhat alienating effect on novice programmers. In order
to fix their program, they need to learn how to debug. Seymour Papert said [23]:
“When you learn to program a computer you almost never get it right the first
time. Learning to be a master programmer is learning to become highly skilled at
isolating and correcting ‘bugs’. [...] The question to ask about the program is not
whether it is right or wrong but if it is fixable”. By learning how to fix incorrect
programs, pupils become self-sufficient programmers: without external guidance,
they write and refine programs with a specific purpose. Unfortunately, pupils’
reality often looks different.

Without proper guidance, pupils are lost when facing semantic errors: they
either start haphazardly tinkering with the code or they come to a full stop
and wait for external support [21,24]. In order to cope with semantic errors
autonomously, pupils need two fundamental skills: First, they need to be able
to locate issues in their code. To find the needle in the haystack, they have to
carefully trace the program logic one command at a time. Once an error has
been isolated, a second skill comes into play: finding and implementing a solu-
tion. While the latter depends on the programmer’s creativity, automatic tools
can easily support the error-localization process. Special debugging mechanisms
allow novices to trace their erroneous code more easily.

1.3 Semantic Errors vs. Syntactic Errors

Programming errors belong in one of two classes: syntactic or semantic errors.
Syntactic errors (for example due to typos) cause the computer to fail during
parsing and the program cannot be executed in the first place. These errors can
be automatically detected and reported [12]. Semantic errors, on the other hand,
are caused by flawed logic which computers cannot detect without knowing the
programmer’s intention. Programmers can write programs that parse correctly
and run, but result in incorrect and unintended outcome. In this paper, we focus
on the latter, semantic errors.

2 Background

Learning how to recover from semantic errors is an essential skill that is relevant
to all programmers, independent of age and level of expertise. For a long time,
various debugging tools and techniques have been developed for the professional
community. Some languages for novices (e.g. Python) come with good examples
of reverse debuggers. In the context of Logo, however, the potential of reverse
debugging as not been explored so far.

Implementing a Reverse Debugger for Logo 109

2.1 Debugging: A Glimpse Back in History

The concept of debugging has been around since the early days of program-
ming. Until Grace Hopper invented the first compiler in 1952, all instructions
had to be given in a low-level machine language which was quite susceptible to
errors. Code was hence usually first handwritten, line by line, on a standardized
coding sheet [1]. Only then was it translated to punch cards and finally fed to
the machine for execution. Along this way, various errors could have snuck in,
causing unexpected output. Robert Campbell remembers [26]: “We had to go
through the operation step by step, until we found something which wasn’t right”.
Using special “rollback” procedures, they tried to retrace the point at which the
execution started to differ from what they expected [5].

With the invention of CRT monitors and command-line debuggers, error
detection became significantly easier: programmers finally had the opportunity
to inspect memory values directly on the computer rather than having to infer
them on paper. In higher-level languages like COBOL and C, symbolic maps
were used to link variable names and memory addresses [14]. The corresponding
symbolic debuggers allowed programmers to dump and inspect memory by name.
Breakpoints [19], conditional breakpoints [10] and the concept of single-stepping
are used to inspect the program state at arbitrary points during execution. Origi-
nally, single-stepping was only possible in one direction (i.e., forward with regard
of execution), but with the invention of reverse debugging [3], programmers could
finally also step backwards through execution. Nowadays, debuggers are integral
parts of most IDEs and allow professionals to conveniently program and debug
in the same environment [9].

2.2 Debugging in Novice Programming Environments

Logical errors can occur in Logo just like in any other programming language.
Thanks to turtle graphics, however, programmers can understand and trace
their programs more easily: Incorrect implementations are characterized through
visual defects in the resulting picture. In order to locate the root of such errors,
programmers need to understand how their programs execute. The original Logo
documentation [11] offered a command specifically for this purpose: trace prints
all procedure invocations (input and output) that were called during execution.
The command allows programmers to see what happened during execution and
to perform error-analysis in a post-mortem fashion.

Since Logo was introduced, many new novice programming environments
popped up and tackle the topic of debugging in their own way. Scratch [27]
does not provide any notable debugging support any longer (the feature was
discontinued when switching from version 1.4 to 2.0). In contrast, Smalltalk’s
Pharo [6] debugger allows programmers to change their code while debugging
and the Python IDE Thonny [2] even offers reverse debugging. In the context of
Logo, some environments (e.g., Turtle Blocks [4] and Robo Blocks [25]) provide
debugging support through single-stepping, however, so far no Logo debugger
allows programmers to also step backward in time. We address this problem and
present a reverse debugger for XLogoOnline [18].

110 R. Menta et al.

3 Typical Challenges When Learning to Program

To set the scope of this work, we present three fundamental programming con-
cepts (i.e. sequential execution, repetition, and modularity) from our Logo cur-
riculum [16,17] and discuss what challenges pupils face at the early stages of
learning these concepts.

3.1 Sequences of Commands

Four basic movement and rotation commands (fd, bk, rt, lt) form the basis
of what we know as the Logo programming language. Programmers steer a tur-
tle on their screen, initially by executing single commands. This approach gives
programmers immediate visual feedback, which is a great advantage concern-
ing error handling. Novices often struggle with rotations since all Logo com-
mands are interpreted relative to the turtle’s perspective rather than the pro-
grammer’s. When executing individual commands, mixed up rotations can be
amended on-the-fly. They become a major hassle, however, once multiple com-
mands are stringed together to form longer programs. From that moment on,
novices need to learn how to sequentially trace their programs.

3.2 Repetition

Using repetition, pupils create shorter solutions that are less prone to copy-paste
errors. New struggles arise from the more complicated execution order and being
unaware of the program state:

1. Execution order: With repetition, execution order suddenly may be non-
sequential. For instance, repeat 4[fd 100 rt 90] jumps back to previously
executed instructions four times. The longer such a program and the more
looping constructs it has, the more difficult it is to read and trace.

2. Program state: When learning about repetition, children encounter the con-
cept of state. Knowing that the commands fd 100 rt 90 fd 100 draw one
step of a stair, we might expect repeat 5[fd 100 rt 90 fd 100] to draw
five steps. This, however, is not the case since the turtle’s orientation changes
between the first and second iteration of the loop. Logo’s state includes turtle
attributes (such as orientation and location) and pen attributes (such as color
and width).

3.3 Modular Program Design

Pupils learn to master complexity by extending the language with new custom
commands. Drawing a house, for instance, can be done by first defining a square
and a triangle method and using these as new building blocks. Tracing bugs in
such nested programs, however, poses serious challenges for novice programmers:
Errors can be hidden anywhere and so, children cannot help but meticulously
skim through all the layers of abstraction searching for the root cause of an

Implementing a Reverse Debugger for Logo 111

anomaly. The cognitive load involved is tremendous. We teach pupils to solve
problems bottom-up and systematically test every module before using it. Rather
than skimming through the whole stack and potentially counting hundreds or
thousands of commands (just think about how many strokes an entire flower
meadow might take), it suffices to trace the top-most layer of abstraction. With
this approach, children learn to master arbitrary levels of abstraction.

Learning to program brings challenges that exceed simple syntactic issues.
Every new concept makes tracing increasingly more difficult.

4 What Natural Coping Strategies Do Novices Use?

What approaches do children take when tackling algorithmic tasks? What typical
errors occur? How do novices try to recover from semantic mistakes? To answer
these questions, we observed pupils who tackled algorithmic tasks in Logo.

4.1 Setup

We conducted four Logo programming courses with primary school children aged
10 to 13. Each course took place at Swiss primary schools and lasted for twenty
lessons. At different stages during the course (beginning, middle, and end), we
handed out three algorithmic tasks, that the children were supposed to reproduce
(see Fig. 1). We collected and manually evaluated the children’s solutions and
all their intermediate results.

Fig. 1. The children’s task was to reproduce these three pictures in Logo.

4.2 Problem Decomposition: There Is No Single Correct Solution

Problem decomposition is the first step of the cognitive process a child goes
through when solving a task. Different programmers find different solutions
to the same problems. Even though all three tasks are rather small (it takes
just a handful of lines to draw them), the participants found surprisingly many
approaches that correctly solve the tasks. A square, for instance, is only com-
posed of four simple lines and yet, depending on the starting point and the order
of traversal, far more than just one or two solutions are possible. More complex
shapes yield an even more diverse solution space. We distilled numerous different
approaches from the children’s solutions and illustrate eight of the approaches
in Fig. 2.

112 R. Menta et al.

Fig. 2. Multiple ways exist to decompose a problem. In the above picture we show four
approaches for each task. The highlighted lines show different fundamental patterns
which all yield the same result when executed repeatedly.

4.3 Not Only Beginners Face Semantic Problems

Once pupils start programming, they inevitably face semantic errors. Three prob-
lems are typical among Logo programmers: (i) commands are used as black boxes
without fully being understood yet, (ii) rotations are confused due to an incon-
venient change of perspective, and (iii) novices neglect state invariants. The first
two dominate in the beginning but over time, they reduce and give way to the
third class of problems.

– Semantic black boxes: Most beginners use commands as black boxes and
only gain an understanding for the underlying semantics and mathematical
relations through experience. They learn that different programs can have
the same effect (e.g. rt 45 rt 45 and rt 54 rt 36 and rt 90 all have the
same global effect). Using inverse operations, they learn to undo unwanted
operations (e.g. rt 100 can be undone with lt 100).

– Clash of perspective: Logo commands are interpreted from the turtle’s
perspective rather than the programmer’s. Hence, novices need to put them-
selves into the turtle’s position, which is cognitively challenging. Clashing
perspectives have bewildering effects (e.g., rt and lt suddenly change their
semantic meaning). Children learn to help themselves by aligning their per-
spective with the turtle – first physically, then mentally.

– Managing complexity: Logo is a stateful language and all of its commands
have side effects on the turtle’s state or the pen’s state. Understanding Logo
semantics means understanding what effect each command has on the over-
all program state. Managing local changes, however, is not enough: due to
repeating programs, previously executed states may be revisited and pupils
need to trace how the state evolves over time. Loop invariants are conditions
that need to be upheld in every loop iteration (i.e. initial conditions that
are restored in every iteration). They are important when reasoning about
correctness and working towards modularity, however, novices often struggle
with loop invariants.

Implementing a Reverse Debugger for Logo 113

Fig. 3. Manual tracing

Due to several reasons, pupils write semantically
incorrect programs whose visual output does not fit
their expectations. To recover from these semantic
errors, programmers try to establish a connection
between each command and its corresponding visual
effect while retracing their code. The boy in Fig. 3,
for instance, is trying to locate a semantic error in his
code by simulating execution using pen and paper.
He closely follows each instruction on the screen
and draws the corresponding effect on paper. Several
attempts on the paper indicate that he is facing diffi-
culties while tracing.

4.4 Discussion – Challenges in Tracing

While debugging, pupils need to iterate through their code and retrace each
step. The main difficulty in tracing shifts from initially dealing with long and
unstructured programs to later managing non-sequential information flow and
complexity.

1. Sequence of commands: Programs formulated as sequences of commands
are read and executed sequentially (Fig. 4a). The more complex a drawing, the
longer its corresponding program. Long and unstructured programs, however,
are difficult to trace since inexperienced programmers are likely to lose track.

2. Repetition: Repetition reduces the descriptive length of any program fea-
turing recurring patterns (Fig. 4b). On the one hand, it takes fewer commands
to describe repeating patterns, on the other hand the cognitive work involved
in reading and tracing rises due to non-sequential information flow.

3. Modularity: By extending the language with new commands, pupils learn to
hide complexity behind meaningful names (Fig. 4c). More and more complex
programs can be written without increasing the cognitive complexity involved
in tracing: Custom commands can be used as if they were built-ins as long
as their functionality was tested beforehand.

Fig. 4. Challenges involved in tracing change over time: First, pupils lose themselves
in long and unstructured programs; later they struggle following non-sequential infor-
mation flow; Finally, they learn to hide complexity in sub-modules.

114 R. Menta et al.

5 Implementing a Reverse Debugger for Logo

In this section, we explain how we extended XLogoOnline with a reverse debug-
ger that allows novices to trace their program during execution and step through
their code forward and backward in time. We present our approach and explain
how it balances performance against memory consumption.

5.1 Logo’s Language Constructs

XLogoOnline is tailored for the Logo programming language and offers a number
of programming constructs: commands and control structures.

1. Commands serve as functional building blocks with observable effects: Built-
in commands (e.g. fd, rt, setpc) form the basic vocabulary which can be
extended with user-defined commands (e.g. square, triangle, house).

2. Control structures steer execution: They manipulate the order in which
commands are executed (e.g. repeat, if).

Programs can be written using only commands (e.g. fd 100 rt 90 fd 100
rt 90) or using a combination of commands and control structures (e.g. repeat
2[fd 100 rt 90]). Both programs yield the same result despite having different
representations.

5.2 Execution: From Raw Text to Visual Output

Logo source code is provided in written form. As raw text, it cannot be inter-
preted by the computer directly and first needs to be transformed to a more
structured intermediate representation. A syntax tree is a hierarchical represen-
tation that maps all syntactical elements (i.e. commands and control structures)
to nodes that can be traversed in a pre-order fashion (see Fig. 5). When visited,
each node triggers its characteristic effect.

Raw text + grammar Syntax tree

repeat 4 [fd 100 rt 90]

prog: cmd*
cmd: repeat | fd | rt
fd: 'fd' NUM
rt: 'rt' NUM
repeat: 'repeat' NUM block
block: '[' cmd* ']'‚
NUM: [0-9]+

Visual output
a b

Fig. 5. A syntax tree is created from text and results in visual output once visited.

Implementing a Reverse Debugger for Logo 115

5.3 Single Stepping: Understanding Program Execution

In professional environments, execution of is often hidden from programmers:
code magically produces some output while all intermediate steps remain a mys-
tery. Understanding how solutions emerge, however, is a crucial part in debug-
ging. Single stepping is a mechanism that visualizes all steps during execution
(i.e., programmers see how the result incrementally develops) and hence gives
programmers the opportunity to understand execution flow. We distinguish auto-
matic from manual stepping depending on whether the programmer has manual
control over execution or not.

– Automatic stepping. Execution can be visualized incrementally by imme-
diately flushing all effects as the computer traverses the syntax tree. In Logo,
any program execution can be visualized, yet different programs pose differ-
ent demands on execution speed: Small programs with few commands (e.g.
a square) execute within a fraction of a second. For execution to become
observable, a massive slowdown in execution speed is needed. Other pro-
grams execute thousands of instructions (e.g. repeat 360[repeat 360[fd
1 rt 1] rt 1]]) and execution takes considerably longer. In those cases,
a higher execution speed is more appropriate to not cause unwanted delay.
In summary, finding a universal execution speed (i.e. flush rate) that works
for any program is not easy. Hence, we allow programmers to pick a rate
according to their needs and change it dynamically on demand.

– Manual stepping. Once execution speed reaches zero, the turtle’s world
freezes in its current state. Conceptually, this is the moment when automatic
stepping turns into manual stepping, a mode that provides additional sup-
port in tracing. Programmers manually navigate from command to command
and inspect how the program state evolves along the way. When debugging,
programmers need to develop an understanding for how their program state
evolved into an undesired situation. For this, manual stepping is useful since
it assists programmers in tracing.

5.4 Reverse Debugging: Can We Go Back in Time?

Even experienced programmers frequently step too far when debugging and run
pass locations of interest. In reverse debugging, this problem is addressed by nav-
igating through execution backward in time. We discuss how different approaches
handle the trade-off between performance and memory consumption before pre-
senting our approach that balances among both metrics.

Approach 1: Rerunning. One possibility to simulate the behavior of reverse
debugging is to rerun the program from the start. With every step back, execu-
tion is re-initiated. All that needs to be stored is a single pointer to a node in
the syntax tree that is currently being investigated. Instead of running through
the entire program, we stop execution at whatever node the pointer currently
points at.

116 R. Menta et al.

Problem: One drawback of this solution is its poor scalability for long
and complex programs that consist of many commands. For instance, repeat
360[repeat 360[fd 1 rt 1] rt 1] consists of several hundred thousand
strokes. If taking one step back requires all of these instructions to be re-executed,
the programmer would have to wait too long.

Approach 2: Inversion. An alternative to re-running relies on reverting the
previously-executed instructions: we visit each node in the syntax tree in reverse
order and undo each command along the way. This idea cannot be implemented
for Logo in a purely mathematical way since some Logo instructions are inher-
ently irreversible. In addition, state information can get lost due to being over-
written.

– Insight 1: Not all commands are reversible. Commands like rt and
fd are reversible since they cause relative change (i.e. they perform additive
changes to location and orientation). Other commands like setxy, setpc, and
cs cause absolute change (i.e. they overwrite previous state) which makes
them irreversible in a purely mathematical sense.

– Insight 2: Reverse traversal is lossy. Logo’s irreversible commands over-
write information that cannot be retrieved later. For instance setpc blue
fd 100 setpc red bk 100 first draws a blue line which then is painted over
in red. To correctly undo bk 100, we need to know what pen color was used
before red, which is no longer known at that point. A stack allows us to solve
this problem: state information can be stored to allow for lossless reversal of
irreversible commands.

Approach 3: Snapshots. Using a stack, we can easily overcome the problem of
lost state information. By taking snapshots of the program state, we capture how
the program evolves over time. On demand, we can revert previously executed
commands without even causing much computational overhead: the correspond-
ing state can simply be retrieved from the stack. Each snapshot stores a copy of
(1) the canvas and (2) the turtle’s location and orientation.

Storing the entire bitmap of the canvas, however, consumes a significant
amount of memory. Depending on the screen resolution, a considerable amount
of information needs to be stored. For instance, during execution of the program
repeat 4[fd 100 rt 90] eight commands are traversed and all eight states in
between are stored on the stack (see Fig. 6). When executed on a screen with a
resolution of 1920 × 1080 pixels, we end up with a gigantic amount of over 16
million pixels that need to be saved in memory.

Fig. 6. All states that are traversed need to be stored on the stack

Implementing a Reverse Debugger for Logo 117

Memory consumption can be improved by changing the canvas’ internal rep-
resentation from bitmap to vector graphics. Rather than handling all pixels
individually, we store a textual description of all lines visible on the screen (see
Listing 1.1). Three attributes make up one line: a starting point (x1, y1), an end
point (x2, y2), and the corresponding color (stroke).

Listing 1.1. The last of eight snapshots taken when drawing a square

<svg height="1080" width="1920">

<line x1="0" y1="100" x2="0" y2="0" stroke="rgb(0,0,0)"/>

<line x1="0" y1="0" x2="100" y2="0" stroke="rgb(0,0,0)"/>

<line x1="100" y1="0" x2="100" y2="100" stroke="rgb(0,0,0)"/>

<line x1="100" y1="100" x2="0" y2="100" stroke="rgb(0,0,0)"/>

</svg>

Vector graphics use significantly less space than bitmaps: before, a fixed
large number of pixels had to be stored for each snapshot; now the size of each
snapshot depends only on the number of lines visible on the screen. Most tasks
in our curriculum (polygons, houses, etc.) use comparatively few lines and so
the overall memory savings can be as large as three to four orders of magnitude.
The overall reduction applies to each snapshot and so adds up to a memory
consumption that allows arbitrary Logo programs to be debugged.

6 Conclusion

Young programmers need to learn debugging – it is an essential skill for any
programmer since semantic errors can neither be prevented nor can a computer
detect them automatically (unless the programmer’s intention is known before-
hand). Our debugger supports children in tracing through erroneous programs
both forward and backward in time. By doing so, programmers get to observe
how their code is executed and thereby acquire a better understanding for the
notional machine underneath. Whether and how our debugger improves the
pupils’ understanding is subject to future research. Moreover, we will investigate
whether there is a gender-related difference between boys’ and girls’ debugging
behavior.

Our debugger has one limitation that is not critical for our target group
but might be relevant for others: we decided to treat both built-in and user-
defined commands as atomic operations. This decision fits our methodology
which requires pupils to test new modules before using them. Since all program
calls are considered atomic, we never step into them which, however, implies
that recursive method calls cannot be debugged. This is a limitation that may
be relevant for higher grades; on primary school level, it has only little impact
since we do not teach recursion.

References

1. ABC. Berkeley to U.S. naval proving ground, ebp, 27 May 1946

118 R. Menta et al.

2. Annamaa, A.: Introducing thonny, a python IDE for learning programming.
In: Proceedings of the 15th Koli Calling Conference on Computing Education
Research, Koli Calling 2015, pp. 117–121. ACM, New York (2015)

3. Balzer, R.M.: EXDAMS: extendable debugging and monitoring system. In: Pro-
ceedings of the May 14–16, 1969, Spring Joint Computer Conference, AFIPS 1969
(Spring), pp. 567–580. ACM, New York (1969)

4. Bender, W.: The sugar learning platform: affordances for computational thinking.
Revista de Educación a Distancia (54) (2017)

5. Beyer, K.W.: Grace Hopper and the Invention of the Information Age (2015)
6. Black, A.P., Nierstrasz, O., Ducasse, S., Pollet, D.: Pharo by example. Lulu.com

(2010)
7. Chmiel, R., Loui, M.C.: Debugging: from novice to expert. ACM SIGCSE Bull.

36, 17–21 (2004)
8. Cuneo, D.O.: Young children and turtle graphics programming: Generating and

debugging simple turtle programs. ERIC (1986)
9. Czyz, J.K., Jayaraman, B.: Declarative and visual debugging in eclipse. In: Pro-

ceedings of the 2007 OOPSLA Workshop on Eclipse Technology eXchange, pp.
31–35. ACM (2007)

10. Fairley, R.E.: Aladdin: assembly language assertion driven debugging interpreter.
IEEE Trans. Softw. Eng. 4, 426–428 (1979)

11. Feurzeig, W., et al.: Programming-languages as a conceptual framework for teach-
ing mathematics. Final report on the first fifteen months of the logo project (1969)

12. Forster, M., Hauser, U., Serafini, G., Staub, J.: Autonomous recovery from pro-
gramming errors made by primary school children. In: Pozdniakov, S.N., Dagienė,
V. (eds.) ISSEP 2018. LNCS, vol. 11169, pp. 17–29. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-02750-6 2

13. Gould, J.D.: Some psychological evidence on how people debug computer pro-
grams. Int. J. Man-Mach. Stud. 7(2), 151–182 (1975)

14. Hennessy, J.L.: Symbolic debugging of optimized code (1979)
15. Hollings, C.: The lovelace byron papers. Transcript of folios, pp. 1–179 (2015)
16. Hromkovič, J.: Einführung in die Programmierung mit LOGO, vol. 1, 3rd edn.

Springer, Wiesbaden (2014). https://doi.org/10.1007/978-3-658-04832-7
17. Hromkovič, J.: Einfach Informatik 5/6. Programmieren. Begleitband. Klett und

Balmer AG Baar (2019)
18. Hromkovič, J., Serafini, G., Staub, J.: XLogoOnline: a single-page, browser-based

programming environment for schools aiming at reducing cognitive load on pupils.
In: Dagiene, V., Hellas, A. (eds.) ISSEP 2017. LNCS, vol. 10696, pp. 219–231.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71483-7 18

19. Johnson, M.S.: Some requirements for architectural support of software debugging.
SIGPLAN Not. 17(4), 140–148 (1982)

20. Klahr, D., Carver, S.M.: Cognitive objectives in a logo debugging curriculum:
instruction, learning, and transfer. Cogn. Psychol. 20(3), 362–404 (1988)

21. Lister, R., et al.: A multi-national study of reading and tracing skills in novice
programmers. ACM SIGCSE Bull. 36, 119–150 (2004)

22. Lyon, G.: COBOL Instrumentation and Debugging: A Case Study, vol. 13. US
Department of Commerce, National Bureau of Standards (1978)

23. Papert, S.: Mindstorms: Children, Computers, and Powerful Ideas. Basic Books
Inc., New York (1980)

24. Perkins, D.N., Hancock, C., Hobbs, R., Martin, F., Simmons, R.: Conditions of
learning in novice programmers. J. Educ. Comput. Res. 2(1), 37–55 (1986)

https://doi.org/10.1007/978-3-030-02750-6_2
https://doi.org/10.1007/978-3-658-04832-7
https://doi.org/10.1007/978-3-319-71483-7_18

Implementing a Reverse Debugger for Logo 119

25. Sipitakiat, A., Nusen, N.: Robo-blocks: designing debugging abilities in a tangible
programming system for early primary school children. In: Proceedings of the 11th
International Conference on Interaction Design and Children, pp. 98–105. ACM
(2012)

26. Tropp, H.: Campbell, interview, 11 April 1972 (1972)
27. Scratch wiki. Single stepping in scratch 3.0, Status as of August 30, 2019

Contemporary Computer Science Ideas
in School Informatics

Unplugged Activities in the Context of AI

Annabel Lindner1(B), Stefan Seegerer1, and Ralf Romeike2

1 Computing Education Research Group, Friedrich-Alexander-Universität
Erlangen-Nürnberg, Erlangen, Germany

{annabel.lindner,stefan.seegerer}@fau.de
2 Computing Education Research Group, Freie Universität, Berlin, Germany

ralf.romeike@fu-berlin.de

Abstract. Due to its great importance in the media, the start-up
world and the political discussion, artificial intelligence (AI) is becom-
ing increasingly relevant as a topic for schools. Until now, approaches
to making AI tangible for students without actually programming an AI
system have been rare. To address this circumstance, a teaching sequence
of unplugged activities about AI has been developed and is presented. AI
Unplugged provides CS Unplugged activities that present the ideas and
concepts of computer science without using computers. The activities
shed light on important concepts of AI and make it possible to convey
the central ideas of artificial intelligence to the students. In addition,
they offer starting points for discussing social issues around AI. This
article describes the activities and their theoretical background, outlines
a possible course of instruction, and describes practical experiences with
AI Unplugged.

Keywords: Artificial intelligence · CS Unplugged · Machine learning ·
Teaching activities

1 Introduction

Probably no other computer science topic currently receives as much media
attention as artificial intelligence (AI). AI is used in many areas: we speak with
artificial intelligence systems like Siri, Cortana or Alexa, get “intelligent” prod-
uct recommendations when shopping online or read computer-generated texts.
More and more software products are advertised as AI-supported and govern-
ments are addressing the topic in strategy papers, e.g. [5]. This social significance
also makes the topic relevant for schools, especially when taking into consider-
ation that, e.g., according to a current survey, 65% of Britons have no or only
limited knowledge of AI [12]. However, due to the complexity of the topic, a
tool-based approach for mediating AI is, if at all, only suitable for older age
groups. Unplugged Activities can make it easier for teachers and students to
deal with the topic of AI and, therefore, can be used to introduce the topic even
to younger learners.

c© Springer Nature Switzerland AG 2019
S. N. Pozdniakov and V. Dagienė (Eds.): ISSEP 2019, LNCS 11913, pp. 123–135, 2019.
https://doi.org/10.1007/978-3-030-33759-9_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33759-9_10&domain=pdf
https://doi.org/10.1007/978-3-030-33759-9_10

124 A. Lindner et al.

2 Artificial Intelligence - Theoretical Background

Artificial intelligence has existed as a branch of computer science since 1956
[8], but its actual practical relevance has only come with the availability of
corresponding computing capacities. The term artificial intelligence represents,
above all, a comprehensive expression for different technologies and procedures,
in which classic topics of AI and “newer” approaches can be distinguished.
These two directions differ in the underlying paradigm. Especially in the field
of machine learning, a change from symbolic knowledge representation, as it
is applied in rule-based systems, to sub-symbolic knowledge representation has
taken place. Sub-symbolic knowledge representation is, e.g., used in neural net-
works and does not permit an explicit representation of the aspects the system
has learned [17].

The concept of machine learning is almost synonymous with these “newer”
approaches. It describes the ability of AI systems to derive patterns and under-
lying rules from large amounts of data. The result of this learning process is
a model that can be used for the successful processing of unknown data or
problems. A technology that allows such learning processes is artificial neural
networks. These networks consist of artificial neurons whose function is adapted
from biological neurons in the human brain. Within the network, artificial neu-
rons are connected to each other. They absorb information, process it and then
pass it on within the network.

With regard to the learning process of artificial systems, three basic types of
learning, which are used to train a model, can be distinguished. Supervised learn-
ing describes a process, where the expected result of an algorithm in response to
a particular input is already known. The algorithm’s actual output is compared
to this expectation and conclusions are drawn as to how the model needs to be
modified. Supervised learning mechanisms contrast with unsupervised learning,
in which the model changes independently based on the similarity of inputs.
This type of learning is especially used when no classified data for training the
AI system is available. Reinforcement learning is the third basic type of learning.
This method evaluates the reactions of a learning agent to certain input data.
Based on the evaluation received, the system adapts its responses. In modern AI
systems, these approaches often use a sub-symbolic representation of knowledge,
i.e. the knowledge acquired by the system is only implicitly represented, e.g. by
different edge weights in a neural network, and concrete solution patterns are not
visible. The central principle of symbolic AI, on the other hand, is the explicit
representation of knowledge and the application of logic. Typical topics of this
classic AI are search procedures, planning, knowledge representation (e.g. with
decision trees) and inference using logic [8].

3 Artificial Intelligence as a Topic in K-12

With the rising social relevance of artificial intelligence, which is primarily con-
nected to great progress in the field of machine learning, AI is now increasingly

Unplugged Activities in the Context of AI 125

discussed in educational contexts, for example in CS4All courses at universities
[20]. Furthermore, the topic is gaining importance in the design of school curric-
ula (e.g. [6] or [13]), and e.g. China has made AI a nationwide teaching content
in general schools [25]. In order to achieve standarized curricular contents, sug-
gestions for “Big Ideas” of artificial intelligence [22] have been made following
the Big Ideas of K12 Computer Science Education [2]. A concept by Kandlhofer
et al., which already starts teaching AI basics in kindergarten, also aims at the
underlying ideas and principles of AI and the development of AI Literacy [15].

Especially for traditional AI topics, a number of learning materials can
already be found. For example, computer science in context [16] offers a teaching
series about chatbots, which works with Weizenbaum’s ELIZA [24]. However,
sub-symbolic approaches are also adapted for teaching: Kahn et al. present a
concept that allows students to use different AI services in the programming
environment Snap! [14], and Google provides a collection of AI experiments
for learners1. Moreover, Machine Learning for Kids provides online demos in
which students can train classification models and then use them in Scratch2.
Additionally, there are approaches that use robots to teach AI topics3.

However, such initiatives often do not cover the field of artificial intelligence
extensively, but rather focus on smaller sub-areas (currently, a strong focus on
machine learning can be seen). Thus, there are only a few approaches that try to
convey the field of artificial intelligence in its breadth and with a comprehensive
teaching concept until now. Moreover, in many projects, a purely application-
oriented perspective is taken. Especially when complex technologies like neural
networks are discussed, the aspect of exploring the ideas behind AI technologies
is disregarded. However, the underlying concepts of artificial intelligence are
difficult to grasp in pure application situations, so that AI systems remain a
black box in such mediation concepts. Therefore, in order to foster sustainable
education about AI, teaching materials should additionally take a structural and
a socio-cultural perspective on AI as it is presented in the Dagstuhl triangle [4]
into account and focus on the underlying ideas and concepts of AI.

For this reason, the unplugged activities developed aim to make the underly-
ing concepts of artificial intelligence accessible without neglecting the breadth of
the field. At the same time, a strongly formalized, mathematical representation,
which would significantly complicate the access for students, is forgone.

4 AI Unplugged Activities

CS Unplugged provides a variety of activities that help learners of all ages under-
stand the ideas and concepts of computer science enactively and without using
computers. CS Unplugged activities have been employed in the context of com-
puter science education for over 30 years [1]. For example, such activities are used
to introduce students to programming in primary school [11], in extracurricular
1 https://experiments.withgoogle.com/.
2 https://machinelearningforkids.co.uk/.
3 e.g. Cozmo (https://www.anki.com/de-de/cozmo) or PopBots [23].

https://experiments.withgoogle.com/
https://machinelearningforkids.co.uk/
https://www.anki.com/de-de/cozmo

126 A. Lindner et al.

learning laboratories [9] or in adult education [10]. In the field of AI, there is
little Unplugged material available so far, although, due to the complexity and
versatility of the field, Unplugged activities are well suited for the topic.

According to Nishida et al. [18], Unplugged activities show certain distinctive
features that make them particularly suitable for learners. The following features
are listed:

– There is no direct use of computers in the activity.
– A game or challenge is the central element of the activity so that CS is

mediated playfully.
– The activity involves physical objects to foster kinaesthetic engagement.
– In the activity, students are encouraged to interact and discover big ideas of

certain CS topics on their own.
– The activity is easy to implement and no expensive materials are needed.
– Sharing and remixing activities is important for the Unplugged concept.
– The activity offers a sense of story to engage (especially younger) learners.

In the following, the course and theoretical background of five AI Unplugged
activities, which illustrate different elementary concepts behind AI systems and
are based on the criteria of Nishida et al. [18], are outlined and discussed.

4.1 Activity 1: Classification with Decision Trees – the
Good-Monkey-Bad-Monkey Game

Fig. 1. Activity 1: Finding classification strategies to distinguish biting and non-biting
monkeys with picture cards.

How does a computer make decisions independently? How does it decide whether
a person is athletic, should get a loan, etc.? Such classification processes are a
common application of AI. In this activity, students create classification models
to distinguish biting from non-biting monkeys by using decision trees. To achieve
this, they examine how certain sample elements (picture cards with monkey
faces) belong to a preset category (biting or non-biting monkey, see Fig. 1). In
pairs, the students develop criteria for each category that can be used to classify

Unplugged Activities in the Context of AI 127

new elements. The students’ models are then tested with new examples and
the accuracy of the prediction is evaluated to determine the best model. To
show possible weaknesses of classification models, the students are furthermore
confronted with elements that do not belong to any of the preset categories and
encouraged to think about real-life examples where this could be problematic.
The activity can, for example, be decontextualized with a learning task in which
the abstraction process from the concrete game to general machine learning
processes is made and where important terms like training and test data are
introduced.

The activity is suitable to introduce basic aspects of machine learning and, at
the same time, highlights problems that may arise from the use of AI systems for
classification tasks. After working with this activity, students can explain how a
computer learns to successfully classify elements using an already classified set of
examples, describe the training process of a classification system, and emphasize
the importance of training and test data. Furthermore, real situations in which
decisions of artificial intelligence can be problematic can be described.

4.2 Activity 2: #deeplearning – Recognition of Images with Neural
Networks

A

Contains
quadrilateral

shape?
Contains
triangle?

Contains
round shape?

B C
Triangle: Yes
Round shape: Yes
Quadrilaterial: No

cat

Fig. 2. Activity 2: students perform image classification.

How can a computer recognize objects? How does a computer decide whether a
photo shows a dog, a cat, or a mouse? How can it tell buildings from people?
It is very easy for people to recognize objects in their environment. However,
for a computer, which, e.g., has to recognize objects to navigate securely in a
self-propelled car, this is a complex task. In this activity, children and adoles-
cents have the opportunity to understand how computers recognize the objects
displayed in images. In addition, the term deep learning, which refers to the use
of complex, multi-layered neural networks in AI systems, is taken up.

In this activity, students engage in teams of three or more and assume dif-
ferent roles (in the following called A, B, and C). A takes an image from a stack
of photo cards (the cards show images of cats, houses and cars, A conceals the
photo from B and C), quickly draws two different sketches of it and passes them
on to student B. While making sure that C does not see the drafts, B checks
whether quadrilateral shapes, triangular shapes or round shapes are included in

128 A. Lindner et al.

the sketches. This information is collected by B and passed on to C. C then
evaluates the information received using a preset table and announces whether
the original picture was a house, a car or a cat. Finally, A confirms whether the
solution is correct (see Fig. 2).

This activity, which centers around image recognition, invites the students
to assume the roles of different layers within a neural network for image classifi-
cation. In this process of extracting features from a photograph and classifying
the image, the students recognize the limitations of the system (e.g. that only
object categories which are already familiar to the network can be recognized
and that more complex features are needed if they want to recognize new object
categories) and consider what modifications to the network are necessary to
achieve better results with their network. The activity introduces basic aspects
of neural networks and their layered architecture and, at the same time, high-
lights challenges that may be faced when using AI systems for image recognition
tasks. Afterwards, the students can explain how the number of layers in a neu-
ral network is connected to the identification of more complex features. They
can furthermore describe on a basic level, how images are processed in image
classification applications and which limitations these applications have.

4.3 Activity 3 and 4: Reinforcement Learning – Beat the Crocodile
and Back to the Roots – Crocodile Chess and Classic AI

Computers that defeat humans in playing chess are not a new phenomenon. The
Chinese board game Go, on the other hand, was considered so complex that only
humans can master it – until Google proved professional human players wrong
with AlphaGo. The AI system had developed a strategy which was far superior
to the one of its human opponent. Activity 3 outlines how computers develop
such strategies for playing games independently by using reinforcement learn-
ing, although they only know the rules and possible moves of the game. Activity
4 serves to show the differences between these learning AI systems and classic
approaches to AI that aim to make knowledge accessible for machines by using
logic and mathematically formalized knowledge. To achieve this, the reinforce-
ment learning activity is implemented with an expert system instead. Although
both activities can be used independently from each other, we recommend com-
bining activity 3 and 4. In this way, students are able to compare “traditional”
AI with machine learning techniques by basically playing the same game. They
explore how machine learning algorithms can be implemented independently
from the underlying game, while expert systems are difficult to initialize and
require a lot of expert knowledge.

The game underlying both the activities “Beat the Crocodile” (activity 3)
and “Back to the Roots” (activity 4) was initially created by Martin Gardner
as The Sweet Learning Computer for Hexapawn [7]. Our version of the game
contains a series of modifications compared to the original one: it uses the same
storyline as activity 1 and is, therefore, realized as a monkey-crocodile mini-chess.
Furthermore, awarding positive rewards, which is also an important part of rein-
forcement learning but not provided in the original game, has been integrated

Unplugged Activities in the Context of AI 129

into crocodile chess. Additionally, the board position overview has been opti-
mized by consequently subsuming symmetrical board positions. This increases
the comprehensibility of the game and makes it easier for students to quickly
find the matching positions on the game sheet.

In both activities, two students each play a game of mini-chess against each
other (see Fig. 3). One pupil takes on the role of a “paper” computer. If the two
activities are combined, the students should swap roles after the first game. In
activity 3, the computer initially selects its moves randomly from a given list
of all possible moves in any board position and gradually learns with a token
system, which moves lead to victory and which ones end in defeat. By using
this procedure, the computer develops a strategy and becomes better and better
over time. In contrast, in activity 4, the computer does not learn its behavior,
but works according to the rules of logic: this time, the computer’s behavior
is already preset and there is only one possible action for every board position.
Consequently, the computer wins every game right from the start. After playing,
the 3× 3 chessboard is modified and the students are confronted with a 4× 4
board. They have to consider now, how the computer can be adjusted to the
new conditions when either machine learning or an expert system is used.

Fig. 3. Activity 3 and 4: students compare principles of machine learning (in this case
reinforcement learning) and traditional approaches.

4.4 Activity 5: “And Oh! I Am Glad that Nobody Knew I’m a
Computer!” - the Turing Test

What behavior does a machine have to show to be intelligent? What exactly
does artificial intelligence mean? These questions have been on the minds of
researchers since the beginnings of artificial intelligence. In 1950, Alan Turing
developed the Turing Test, a method for determining whether a machine is intel-
ligent. This activity, borrowed from the original unplugged materials [3], recre-
ates the Turing Test with students and is intended to stimulate discussion as to
whether computers can actually show something like intelligence. In addition, it
becomes clear how easily one can be misled by a machine with carefully chosen
examples of “intelligence”. The activity suggests a series of questions that can
be used to find out which student has taken the role of the computer and which

130 A. Lindner et al.

student answers as themselves. However, teachers have the possibility to design
further questions themselves or to let the students develop questions which can
help to expose the computer. Afterwards, students can critically assess the intel-
ligent behavior of AI systems and identify features that make the AI system
appear intelligent when interacting with humans.

4.5 AI Unplugged and the CS Unplugged Criteria

The activities described align with the CS Unplugged criteria stated in [18].
Computers are not used in any of the activities. Furthermore, they all center
around a game or challenge: activity 1 challenges students to compete against
each other, activity 2 uses limited time frames to activate the students. In activ-
ity 3 and 4 students engage in a board game, while activity 5 asks learners
to identify the computer. The activities involve physical objects such as picture
cards, photographs, or board games which are interactively used by the students.
To guarantee easy implementation, all the material needed is made available and
can simply be printed. In order to be suitable for being used in class, all activ-
ities involve more than one student and foster interaction among the students.
Moreover, the students have to explore the concepts that are mediated in the
activities by themselves. The use of animals in activity 1, 3 and 4 (monkeys and
crocodiles) is both appealing for younger learners and funny for adolescents or
adults.

4.6 Unplugged Activities as Part of a Curriculum

Besides being used in individual lessons, the activities described in Sect. 4 can be
conducted in a curriculum of six to eight lessons that serves to introduce artificial
intelligence in K-12. The aim of the lessons is to discover and playfully explore
the underlying concepts of artificial intelligence, a possible sequence of how this
can be done is sketched in the following. The target group is in particular pupils
at secondary school level 1 and 2, although some activities can also be used
(possibly adapted) in other learning scenarios.

The sequence described addresses several of the content and process areas
outlined in the educational standards for computer science in Germany [19] and,
therefore, seizes on various competence areas. A particular focus lies on the
content areas computer science systems and computer science, man and soci-
ety, as well as the process areas justification and evaluation and modelling and
implementation, but the other content and process areas are also partly applied.
The sequence depicted in Table 1 wants to show that artificial intelligence can
take many forms and that current AI systems are limited to highly specialized
applications. In addition, the social effects of AI systems are discussed and it is
illustrated that artificial intelligence is less “magical” than one might initially
assume.

Unplugged Activities in the Context of AI 131

Table 1. Example course of lessons

Lesson Topic Description AI Unplugged

1 Introduction to AI Students explore the concept
of machine learning and its
effects on society

Activity 1

2–3 Neural Networks and
Deep Learning

Using image classification
with neural networks, the
pupils explore another area
of AI and analyze the
functioning of neural
networks. They also learn
what is behind the term deep
learning

Activity 2

4–5 Machine Learning and
Classic AI

Using two strategies for the
same game, the students
compare “new” and
traditional approaches to AI

Activity 3 and 4

6 What is artificial
intelligence?

With the help of the Turing
test, students explore the
question of whether
computers can really show
intelligence and reflect on
ethical aspects of AI

Activity 5

At the beginning of the sequence, the topic is introduced on the basis of object
classification, which is, e.g., important for self-driving cars. Following this intro-
duction, the image recognition activity serves as a context for machine learning
with neural networks, before these machine learning approaches are compared
to traditional AI. The game from activity 3 and 4 is used to highlight the differ-
ence between learning and rule-based systems so that the breadth of the subject
area is illustrated. Finally, students reflect on AI and the question as to what
extent computers can be intelligent is discussed. In a typical lesson structure,
the Unplugged Activities open the lessons and are followed by a phase of decon-
textualization, where the concrete game or activity situations are abstracted and
general principles are mediated by using learning tasks, group work, individual
research, “re-plugged” activities etc.

This combination of Unplugged Activities with further approaches and activ-
ities is central to the success of the activities. As Thies and Vahrenhold [21] high-
light, CS Unplugged Activities are most suitable for introductory and outreach
purposes but should not be used as stand-alone units or instead of comprehen-
sive teaching materials as their learning goals often do not provide the necessary
depth and cover all cognitive processes. For this reason, the material presented
should not be considered a fully extensive teaching unit but rather as introduc-
tory activities that need to be supported by further material adjusted to the
setting and the group of learners.

132 A. Lindner et al.

5 Discussion

AI Unplugged was tested in a school experiment with a year nine and a year ten
class of the German Realschule (ages 14 to 16). Even though most of the students
already had a rudimentary idea of the term artificial intelligence, they did not
have specific prior knowledge in the subject area. Prior to the intervention,
many pupils associated the term with robots that acted independently and were
capable of learning, they could not give any details about functional principles
of AI.

Throughout the lessons, the students quickly and comprehensively grasped
the principles of the activities, they were concentrated and had fun working in
teams. For example, when it came to establishing rules for classifying monkeys
(Activity 1), a competition developed to create the best classification model.
This competition was followed by a lively discussion about how fair classification
models could be. Thus, while exploring technical principles of AI, the students
independently came across ethical and socio-cultural issues of AI and discovered
limitations of AI applications. Furthermore, the students discussed questions
and problems with their classmates and worked out solutions in teams without
needing much assistance from the teacher. Even pupils who, in the beginning,
were skeptical about the idea of doing computer science without computers were
motivated by the activities and showed great interest in the topic afterwards.

During the subsequent decontextualization, a clear rise in knowledge was
noticeable among the pupils: After the implementation of AI Unplugged activi-
ties, the pupils were able to explain the concept of machine learning and were able
to discuss social implications of artificial intelligence on this basis. They quickly
recognized the connections between individual activities and the underlying con-
cepts of artificial intelligence and were able to draw parallels to phenomena they
knew from everyday life (e.g. Captchas, Google image search, etc.). This created
“aha” effects, even during the activities, and enabled the students to recognize
the limits of corresponding AI systems.

Unplugged Activities are a popular way to teach CS concepts and success-
fully conveyed in teaching [21]. But are they applicable to complex fields such
as AI as well? The use of Unplugged Activities in which the students take over
the tasks of the AI and experience the functional principles of AI systems does
not only support learning about AI but makes the students reflect about their
own thinking and decision-making processes as well. Even though the starting
point of these activities are questions like “How does a computer make decisions
independently? How does the computer recognize objects?”, they also stimu-
late reflections on one’s own thinking by asking the students to fulfill the AI’s
tasks: “How do I make decisions? How can humans identify objects in their
environment?” At this point, the strength of Unplugged approaches particularly
comes into effect: the students can relate to previous knowledge about how their
own thinking works when approaching the topic of artificial intelligence. They
observe or compare how certain mechanisms of thinking are automated and how
machine learning is realized so that the process of creating artificial intelligence
can be retraced. Reflecting on their own thinking and ways of acting makes it

Unplugged Activities in the Context of AI 133

easier for the students to fathom out the topic. Unplugged Activities foster this
aspect and, therefore, make a detailed analysis even of complex topics possible.
Nevertheless, certain principles of AI are hard to explain with human ways of
thinking and are difficult (or nearly impossible) to understand for humans. Thus,
it should be considered in future research if these concepts can be mediated with
Unplugged Activities.

6 Conclusion

The AI Unplugged Activities are well suited to comprehensively present the
complex topic of artificial intelligence. They allow action-oriented access to the
topic of AI, without being dependent on a technical framework. The topic can
thus be conveyed in a less complex way and, at the same time, can be expanded
upon with various software tools. Additionally, for teachers wary of introducing
the topic of AI due to its thematic complexity and the technical hurdles involved
(setting up program libaries, etc.), the Unplugged Activities offer an opportunity
to integrate the topic into the classroom.

Since AI Unplugged Activities incite the students to reflect upon their own
ways of thinking and acting and to associate them with the computer’s course
of action, Unplugged Activities seem to be particularly suitable to introduce
the topic of artificial intelligence. Furthermore, the conception of the activities
makes it possible to use them as a coherent teaching sequence for AI, as well as to
individually bring them in as an in-between activity or as a supplement to other
approaches to AI. The material is available online under Creative Commons
License.4 The online offer also contains further material and links.

References

1. Bell, T., Rosamond, F., Casey, N.: Computer science unplugged and related
projects in math and computer science popularization. In: Bodlaender, H.L.,
Downey, R., Fomin, F.V., Marx, D. (eds.) The Multivariate Algorithmic Revo-
lution and Beyond. LNCS, vol. 7370, pp. 398–456. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-30891-8 18

2. Bell, T., Tymann, P., Yehudai, A.: The big ideas in computer science for K-12
curricula. Bull. EATCS 1(124) (2018)

3. Bell, T., Witten, I., Fellows, M.: Computer Science Unplugged: Off-line Activities
and Games for All Ages. Citeseer (1998)

4. Brinda, T., Diethelm, I.: Education in the digital networked world. In: Tatnall,
A., Webb, M. (eds.) WCCE 2017. IAICT, vol. 515, pp. 653–657. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-74310-3 66

5. Bundesregierung: Strategie Künstliche Intelligenz der Bundesregierung [German
strategy for artificial intelligence] (2018). https://www.bmbf.de/files/Nationale
KI-Strategie.pdf. Accessed 18 June 2019

6. CSTA: About the CSTA K-12 computer science standards (2017). https://www.
csteachers.org/page/standards. Accessed 15 June 2019

4 https://ddi.cs.fau.de/schule/ai-unplugged/.

https://doi.org/10.1007/978-3-642-30891-8_18
https://doi.org/10.1007/978-3-319-74310-3_66
https://www.bmbf.de/files/Nationale_KI-Strategie.pdf
https://www.bmbf.de/files/Nationale_KI-Strategie.pdf
https://www.csteachers.org/page/standards
https://www.csteachers.org/page/standards
https://ddi.cs.fau.de/schule/ai-unplugged/

134 A. Lindner et al.

7. Demšar, I., Demšar, J.: CS unplugged: experiences and extensions. In: Brodnik,
A., Vahrenhold, J. (eds.) ISSEP 2015. LNCS, vol. 9378, pp. 106–117. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-25396-1 10

8. Ertel, W.: Introduction to Artificial Intelligence. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-58487-4

9. Gallenbacher, J.: The adventure of computer science. In: Böckenhauer, H.-J.,
Komm, D., Unger, W. (eds.) Adventures Between Lower Bounds and Higher Alti-
tudes. LNCS, vol. 11011, pp. 538–548. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-98355-4 31

10. Garcia, D., Harvey, B., Segars, L.: CS principles pilot at University of California,
Berkeley. ACM Inroads 3(2), 58–60 (2012)

11. Geldreich, K., Funke, A., Hubwieser, P.: A programming circus for primary schools.
In: Proceedings of the 9th International Conference on Informatics in Schools:
Situation, Evolution, and Perspectives, pp. 49–50 (2016)

12. Holder, C., Khurana, V., Watts, M.: Artificial intelligence: public per-
ception, attitude and trust (2018). https://www.bristows.com/assets/pdf/
Artificial%20Intelligence %20Public%20Perception%20Attitude%20and%20Trust
%20(Bristows).pdf. Accessed 06 June 2019

13. International Society for Technology in Education (ISTE): Bold new program
helps teachers and students explore the power of AI (2018). https://www.iste.
org/explore/articleDetail?articleid=2229. Accessed 15 June 2019

14. Kahn, K., Megasari, R., Piantari, E., Junaeti, E.: AI programming by children
using snap! block programming in a developing country. In: EC-TEL Practitioner
Proceedings 2018: 13th European Conference On Technology Enhanced Learning,
Leeds, UK, 3–6 September 2018 (2018). http://ceur-ws.org/Vol-2193/paper1.pdf

15. Kandlhofer, M., Steinbauer, G., Hirschmugl-Gaisch, S., Huber, P.: Artificial intelli-
gence and computer science in education: from kindergarten to university. In: 2016
IEEE Frontiers in Education Conference (FIE), pp. 1–9. IEEE (2016)

16. Knobelsdorf, M., Schulte, C.: Computer science in context: pathways to computer
science. In: Proceedings of the Seventh Baltic Sea Conference on Computing Edu-
cation Research - Volume 88, Koli Calling 2007, pp. 65–76 (2007)

17. Langley, P.: The changing science of machine learning. Mach. Learn. 82(3), 275–
279 (2011). https://doi.org/10.1007/s10994-011-5242-y

18. Nishida, T., Kanemune, S., Idosaka, Y., Namiki, M., Bell, T., Kuno, Y.: A CS
unplugged design pattern. ACM SIGCSE Bull. 41(1), 231–235 (2009)

19. Puhlmann, H., et al.: Grundsätze und Standards für die Informatik in der Schule
[Principles and standards for computer science education in schools]. Bildungsstan-
dards Informatik für die Sekundarstufe I. Beilage zu LOG IN (150/151) (2008)

20. Seegerer, S., Romeike, R.: Was jeder über Informatik lernen sollte - Eine Anal-
yse von Hochschulkursen für Studierende anderer Fachrichtungen [What everyone
should know about computer science - an analysis of university courses for students
from other fields]. In: HDI 2018, Potsdam, pp. 13–28 (2018). https://publishup.
uni-potsdam.de/files/41354/cid12.pdf

21. Thies, R., Vahrenhold, J.: Reflections on outreach programs in CS classes: learning
objectives for “unplugged” activities. In: Proceedings of the 43rd ACM Technical
Symposium on Computer Science Education, SIGCSE 2012, pp. 487–492. ACM,
New York (2012). https://doi.org/10.1145/2157136.2157281

22. Touretzky, D., Gardner-McCune, C., Martin, F., Seehorn, D.: Envisioning AI for
K-12: what should every child know about AI? In: “Blue sky talk” at the Thirty-
Third AAAI Conference on Artificial Intelligence (AAAI-19) (2019)

https://doi.org/10.1007/978-3-319-25396-1_10
https://doi.org/10.1007/978-3-319-58487-4
https://doi.org/10.1007/978-3-319-58487-4
https://doi.org/10.1007/978-3-319-98355-4_31
https://doi.org/10.1007/978-3-319-98355-4_31
https://www.bristows.com/assets/pdf/Artificial%20Intelligence_%20Public%20Perception%20Attitude%20and%20Trust%20(Bristows).pdf
https://www.bristows.com/assets/pdf/Artificial%20Intelligence_%20Public%20Perception%20Attitude%20and%20Trust%20(Bristows).pdf
https://www.bristows.com/assets/pdf/Artificial%20Intelligence_%20Public%20Perception%20Attitude%20and%20Trust%20(Bristows).pdf
https://www.iste.org/explore/articleDetail?articleid=2229
https://www.iste.org/explore/articleDetail?articleid=2229
http://ceur-ws.org/Vol-2193/paper1.pdf
https://doi.org/10.1007/s10994-011-5242-y
https://publishup.uni-potsdam.de/files/41354/cid12.pdf
https://publishup.uni-potsdam.de/files/41354/cid12.pdf
https://doi.org/10.1145/2157136.2157281

Unplugged Activities in the Context of AI 135

23. Williams, R., Park, H.W., Oh, L., Breazeal, C.: PopBots: designing an artificial
intelligence curriculum for early childhood education (2019)

24. Witten, H., Hornung, M.: Chatbots Teil 1: Einführung in eine Unterrichtsreihe
zu Informatik im Kontext (IniK). [Chatbots, part 1: Introduction to a teaching
sequence about computer science in context]. LOG IN 28(154/155), 51–60 (2008)

25. Yu, Y., Chen, Y.: Design and development of high school artificial intelligence
textbook based on computational thinking. Open Access Libr. J. 5(09), 1 (2018)

Machine Learning Unplugged
- Development and Evaluation

of a Workshop About Machine Learning

Elisaweta Ossovski(B) and Michael Brinkmeier

Universität Osnabrück, Wachsbleiche 27, 49090 Osnabrück, Germany
{eossovski,mbrinkmeier}@uni-osnabrueck.de

Abstract. Machine learning, being an important part of artificial intel-
ligence, is increasingly discussed and rated in the media without explain-
ing its functionality. This can lead to misconceptions of its real impact
and range of application, a problem especially concerning young people.
This contribution focuses on the theory-driven development and prac-
tical experience with an unplugged workshop concept, which is about
a simple technique of machine learning, as a basis for possible teaching
units for high school students. For this purpose, the focus of the work-
shop is an action-oriented method to simulate the classification of screws
with two different lengths. Workshop participants can reconstruct linear
classification by moving a classifier represented by a wooden strip accord-
ing to defined rules after each insertion of training data on a pinboard.
The aim is to examine whether and how the topic can be made under-
standable at school. Pre- and posttests are used to evaluate the impact
of the workshop on the participants’ image of artificial intelligence and
machine learning. The results of this research suggest that it is possible
to reduce simple methods of machine learning for teaching this topic at
school. Moreover, it seems that even a 90-min workshop can change the
participants’ conceptions of machine learning and artificial intelligence
to a more realistic appreciation of their impact.

Keywords: Machine learning · Linear classification · Unplugged ·
K-12 education

1 Introduction

Being a part of artificial intelligence, machine learning is a current topic of
discussion in the media, politics and economy. There is a constant stream of
discussions that rate artificial intelligence either dramatically dangerous or as
a miracle cure, when autonomously driving cars, diagnostic systems for disease
risks or data processing by large corporations are debated.

Thus, there is a danger that an assessment of the topic will quickly
develop, which, however, is strongly focused on the areas present in the media.

E. Ossovski—The author is an ELES research fellow.

c© Springer Nature Switzerland AG 2019
S. N. Pozdniakov and V. Dagienė (Eds.): ISSEP 2019, LNCS 11913, pp. 136–146, 2019.
https://doi.org/10.1007/978-3-030-33759-9_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33759-9_11&domain=pdf
https://doi.org/10.1007/978-3-030-33759-9_11

Machine Learning Unplugged 137

This means that it is not necessarily based on knowledge of the actual functional-
ity of machine learning and the diverse application possibilities. In the examined
curricula for computer science teaching in Lower Saxony [10,11], North Rhine-
Westphalia [9] as well as Bavaria [13,14] there are no topics covering any parts
of artificial intelligence, only the effects of computer systems on society are dis-
cussed. This, however, tends to reinforce the possibly distorted media impression,
since the pupils have to discuss the effects of systems whose technical functional-
ity and significance they are not at all aware of. Additionally, the consideration
of only the effects can lead to blaming machine learning methods for results
generated by the given or collected data and not by the processing itself. It is
seldom made clear by the media that methods of machine learning work in a
non-deterministic way depending on the data sample as well as other factors
and that the developer does not actively influence the result, but that statistical
calculations often play a role. In the literature no overall concept could be found
that didactically prepared the basics of machine learning, as well.

This paper describes an attempt how the topic of machine learning can be
made understandable to pupils. In this context, it will be examined whether an
unplugged concept, which is intended to make pupils understand the function of
a linear classifier, can be implemented in practice. The main part is the develop-
ment of a workshop in which machine learning is simulated in an action-oriented
way without the use of real technical systems.

The evaluation gives a first impression of the impact the workshop can have
on the participants. Special attention is paid to their assessment of the benefits
and dangers of artificial intelligence and machine learning, and whether the topic
can be adequately taught to pupils.

2 Action-Oriented Learning

Learning in school can take place in a variety of ways. A mostly positively
evaluated kind [8, p. 402] is called action-oriented learning, which is however
“used as a kind of collective name for quite different methodological practices”
[5, p. 8, translated from German]. In contrast to frontal teaching, in action-
oriented teaching it is not the teacher who is in the foreground, but the action
that is guided by a teacher. The pupils themselves should be active during the
learning process and work motorically in addition to pure reflection. Through
their own efforts in developing the learning content, the learning can be more
sustainable [8, p. 410]. In addition to the inclusion of different senses, the orga-
nizational form of group work is also associated with action-oriented learning
[5, p. 86f.]. The curriculum for high schools in Bavaria emphasizes action-oriented
teaching explicitly for the subject Computer Science [14, p. 32].

Other concepts that are closely linked to action-oriented learning include dif-
ferent levels of representation as a gradation for learning through concrete action.
The EIS principle according to Bruner [6, p. 92f.] is a didactic classification of
types of learning in three stages, whereby the materials used for learning play
an important role. When an action-based experience is offered this learning is

138 E. Ossovski and M. Brinkmeier

called enactive. An iconic form of representation is given by a visual experience
and a symbolic form of representation consists of formal symbolic signs.

This concept of action-oriented learning was used for CS Unplugged [1], which
offers a collection of materials for computer science teaching without using com-
puters, focusing on middle school topics. For these materials some studies on
motivation and benefit for computational thinking are already existing [12,15].

At the same time as this research Lindner and Seegerer [7] have developed
some unplugged materials on artificial intelligence addressing decision trees and
issues of general artificial intelligence topics among others mostly using decision
trees and tables to represent the learning agent.

3 Concept and Workshop Design

Taking the didactic aspects mentioned above into consideration, a concept for a
workshop was developed to examine whether the topic can be adequately taught
to pupils in the high school.

3.1 Linear Classification

Linear classifiers have been chosen as the main machine learning method to be
discussed in the workshop being a simple, but representative method. A linear
classifier is a function that separates two linearly separable sets from each other
as a hyperplane. It is formally defined as a perceptron function P : Rn → {0, 1}
with

P (x) =

⎧
⎨

⎩

1 if wx =
n∑

i=1

wixi > 0,

0 else
(1)

for a weight vector w = (w1, ..., wn) ∈ R
n and an input vector x ∈ R

n [4, p. 170].
The training of such a classifier consist of gradually adapting an initially selected
hyperplane to more and more training data. This is realized by changing the
weight vector parameters in order to find a classifier that is as good as possible.
Due to their equivalence to a two-layered, directed neural network and to the
Naive Bayes method [4], linear classifiers also offer good starting points to more
complex methods of machine learning. Linear classifiers can be used for various
classification issues where the data is linear separable. If the data does not meet
this requirements, a non-linear transformation with a support vector machine,
which has a similar representation, can be applied [4, p. 253].

In a school setting, the representation of a linear classifier in 2-dimensional
contexts is possible as a linear function or a straight line. The comparison to
linear regression, which is already known to students as a method used with the
calculator/CAS, offers a direct connection to other topics. While in regression a
balancing line for a given amount of data is to be found, in learning an initial

Machine Learning Unplugged 139

line for each data point is adapted in such a way that at the end of the learning
process the separation is as good as possible.

Overall, linear classifiers represent an authentic introduction to machine
learning and seem to be suitable in the school setting, since no competences
beyond the mathematics teaching of an intermediate level are required for the
understanding of 2-dimensional application scenarios.

3.2 Action-Oriented Unplugged Concept

The main focus of the workshop is on the action-oriented comprehension of the
learning process of a linear classifier. At the core of the concept, there is the idea
that learners handle data on their own as a computer could do with machine
learning, but do not use a computer for this purpose. In an action-oriented
unplugged scenario, all relevant details of the learning process are represented
by objects and actions with which the process can be executed and tested. Each
step of machine learning can be transferred to the unplugged concept and can be
understood by the learner, who actively controls changes in the classifier function
depending on the data.

Linear classifiers can be used in various situations. According to the require-
ments, an authentic but easily understandable example should be chosen for
the workshop. After careful consideration of the advantages and disadvantages,
screws have been chosen as the context for the workshop based on the resulting
easy-to-handle data. A linear classifier should be used to distinguish between
two screw types of different lengths.

The fictitious technical machine should work in such a way that the screws fall
individually in a random position onto a slightly movable, centrally illuminated
surface and are photographed from above. The mobility is intended to ensure
that no screw is photographed in the head position. This avoids the situation
where no difference can be detected between the short and the long screw. The
aim is to be able to distinguish between short and long screws with the photo
as data. On this photo the smallest possible rectangle with edges parallel to the
edges of the picture in which the screw can be completely embedded is then
determined (Fig. 1a). This rectangle is called the Bounding Box. The dimensions
of the rectangle serve as the data, whereby the larger length determines the first
vector component and the smaller one determines the second vector component.
By the choice of such a two-dimensional example an action-oriented represen-
tation as well as the renouncement of formal representations are made possible
and an overload of the learners is avoided.

These dimensions, shown on data cards (Fig. 1b), are inserted one after the
other into a coordinate system represented by a pinboard using pins in a color
according to the screw size. The current classifier is a thin wooden strip, which
was previously fixed to the x-axis at one end after consideration by the partici-
pants. Figure 1c illustrates the result of a group of participants. This results in
a representation that is both enactive and iconic. On the one hand, learners can
actively insert data points and move the separation line. On the other hand,
an iconic representation of the result similar to a function graph is achieved at

140 E. Ossovski and M. Brinkmeier

(a) Photo of a screw
with its Bounding Box

(b) Data card with pixel
size of the measured
Bounding Box

(c) Result of a group of participants

Fig. 1. Workshop material

the end. A formal mathematical level, where the straight line equation is deter-
mined at the end, could be discussed afterwards, but is not necessary for the
understanding of the procedure and the training result. However, a basic knowl-
edge of straight lines or linear functions is useful to see the possibility of algorith-
mically checking the final classification of data points. When selecting the screw
lengths, an error tolerance must be ensured, since an absolutely exact placement
of the pins cannot be guaranteed. Therefore, the data clusters must be far apart,
which can be achieved by a sufficiently large difference in length.

A step of training is performed by taking a random data card from a face-
down stack and entering the corresponding data point into the coordinate system
with a pin. Afterwards, the separation line is adjusted according to the position
of the newly inserted point by rotating the wooden strip at the non-fixed end
by a fixed distance, which is reduced with increasing number of inserted data
points according to a given scheme.

After a sufficient number of learning steps, the dimensions of the Bounding
Box can be used to determine the type of screw by the help of the separating
line. However, this requires a suitable selection of the initial straight line. A two-
dimensional input vector and a straight line as a one-dimensional hyperplane are
therefore sufficient for this context and are unlikely to overwhelm the learner.

The separating line is adjusted after each step of training, otherwise changes
would occur only rarely if the line position was already well chosen at the
beginning. The chosen procedure simplifies the usual procedure and makes it
manageable.

Machine Learning Unplugged 141

3.3 Workshop Draft

The action-oriented part1 of the workshop is accompanied by an introduction to
the topic and a subsequent discussion. At the beginning an overview illustration
(e.g. [4, p. 4]) is shown to clarify that the following application scenario is only an
example of a method of machine learning and that the topic artificial intelligence
covers a much larger area. An example of a classifier is given by explaining
possible inputs and outputs of a face detection machine. It is explained that
after a learning process such a machine is able to compute, for example, an
estimation of age or even the emotional state of a person by some parameters
taken from a video. As this example is too complex for the workshop the action-
oriented comprehension is performed with a different issue with only a small
number of involved parameters.

After this short theoretical impulse, the participants perform the described
learning procedure in groups according to a previously explained instruction. 20
random data cards from the data set are individually marked on the pinboard
and the wooden strip is moved in the direction of the inserted point. Then the
participants briefly present their results to the other groups. Because the data
and the classifier are represented on the pinboard, it is trivial to rate the success
of the training process and to predict the classification of possible new data.
During the presentation they should also explain their thoughts during the exe-
cution and answer some questions, e.g. which considerations led to the choice of
the initial straight line and whether they consider a continuation of the procedure
useful. The intention here is to realize the advantages of a computer in order to
guarantee precision and to be able to carry out even small changes meaningfully.
These characteristics cannot be fulfilled by the action-oriented representation,
since a movement of the wooden strip by a few millimetres would not produce
any significant results. The different results of the groups can be supplemented
by further results documented on photos and taken as an opportunity to discuss
the effects of different parameters such as the choice of the initial straight line
as well as the selection and number of data cards. Then a more or less detailed
theoretical analysis of the situation can be shown to the participants, depending
on their mathematical interest.

The workshop concludes with a discussion of further cases such as very small
or very high differences in screw sizes, non-linear separable data clusters and
classification of more than two types of screws. This discussion makes it clear
to the participants that the choice of a machine learning method should only be
made after a thorough consideration of different factors. For example in the case
of a very small difference it could happen that no well-classifiable datasets can
be generated. In the opposite case other methods like simple weighting could be
performed with significantly lower effort. Some participants may notice that the
given data has a relatively high difference in screw sizes, but this is necessary
to ensure a realistic success of the action-oriented learning method and can be
considered for further discussion.

1 The material used in the workshop is available at https://tinyurl.com/workshopuos.

https://tinyurl.com/workshopuos

142 E. Ossovski and M. Brinkmeier

4 Evaluation

In accordance with the evaluation concept described below, the workshop was
already realized and evaluated with a group of eight computer science teacher
trainees and eight Master of Education in computer science students and with
three groups of eight to ten high school pupils each.

4.1 Evaluation Concept

A pretest-posttest design without a control group according to [3, p. 102] was
chosen for evaluation. Participants are asked to complete a questionnaire with
their assessments immediately before and after the workshop. An evaluation
concept with a control group would be difficult to realize, as no alternative
learning programs can be implemented without considerable effort and the inter-
val between the two testing times is quite short. As possible other factors for
changes to be considered besides the workshop regression effects can occur, which
let extreme values tend to the middle during repeated measurement, as well as
influences by the pretest [3, p. 202]. However, regression effects can be partially
neglected, since the questionnaire is not a performance test. The evaluation
takes place both quantitatively and qualitatively. We used the non-parametric
Wilcoxon-signed-rank-test as well as the parametric Student’s t-test for matched
pairs for the quantitative evaluation of the items queried at both test times
according to [2, p. 133] and [3, p. 738] because of the partly low numbers of
participants in the different groups.

The pre- and posttest2 largely contain the same questions that are regarded
as statistical variables/items. In the posttest these were supplemented by three
questions to evaluate the workshop with regard to understanding, coverage and
relevance.

First, participants are asked about their personal definitions of artificial intel-
ligence and machine learning. Since many participants have little previous knowl-
edge of the topic before the workshop, the experiences and opinions on both
terms are asked, as they are often used synonymously by the participants. Sub-
sequently, the participants are asked to classify their personal impression into a
five-level, verbalized Likert scale “positive (5) - rather positive (4) - neutral (3)
- rather negative (2) - negative (1)”.

Since a neutral impression is not unlikely, especially with little prior knowl-
edge, a scale with a center was chosen here intentionally, while in the following
more extensive statement part we omitted choosing such a scale. For various
statements on benefit, danger and relevance for school teaching, the following
levels can be selected: “agree (1) - rather agree (2) - rather not agree (3) - not
agree (4)”. The assessment of one’s own knowledge of the topic is also asked.
The questionnaire ends with a section for further comments.

2 Available at https://tinyurl.com/workshopuos.

https://tinyurl.com/workshopuos

Machine Learning Unplugged 143

4.2 Discussion of the Results

First of all, we experienced that the workshop design was feasible as expected
and no practical or organizational problems arose. The comparison of pre- and
posttests of the eight computer science teacher trainees, eight Master of Educa-
tion in computer science students and 28 pupils from grades 10 to 12 shows
mainly small changes regarding the conception of artificial intelligence and
machine learning. A significantly lower agreement (with significance level 0.05) to
the statements I think artificial intelligence is dangerous., Artificial intelligence
is a miracle cure., but also I consider artificial intelligence to be an interest-
ing topic. could be determined. The lower agreement to the last statement can
possibly be justified by an unrealistically high estimation in the pretest. Nev-
ertheless the interest in the topic remains on a high level. Concerning machine
learning the item about its usefulness shows a significantly stronger agreement
in the posttest. Participants also rated their knowledge of artificial intelligence
and machine learning significantly higher after the workshop. Although the
impression of machine learning has not changed significantly among all par-
ticipants, a significantly more positive impression can be observed if only the
group of pupils is considered. When the groups were evaluated separately, fewer
items changed significantly due to the low response numbers of some items.

Table 1. Significant (p < 0.05) results of evaluation (excepting first item with n= 39),
partially rounded, n = number of paired answers given in pre- and posttest, 1 = agree
to 4 = not agree/* 1 = negative to 5 = positive, gray: only pupils

naemnmeti
pretest

mean
posttest

tendency

My impression of machine
learning is

39 3.5897* 3.75* more
positive

24 3.5417* 3.8571* more
positive

I think artificial intelligence is
dangerous.

43 2.5455 2.6744 lower
agreement

Artificial intelligence is a mira-
cle cure.

41 3.0238 3.1163 lower
agreement

I consider artificial intelligence
to be an interesting topic.

43 1.3953 1.6047 lower
agreement

I know several things about arti-
ficial intelligence.

42 3.1 2.83 stronger
agreement

I consider machine learning
useful.

39 1.825 1.6429 stronger
agreement

I know several things about ma-
chine learning.

41 3.2791 2.8049 stronger
agreement

144 E. Ossovski and M. Brinkmeier

Overall, the pupils also tend to rate their knowledge as better than the trainee
teachers and teacher training students. The results are listed in Tables 1 and 2.
There have been no major differences in significance depending on the statistical
test used. Since some participants in the pretest did not provide any information
on specific items due to a lack of knowledge of the terms, only answers that were
available in both the pretest and the posttest were included in the evaluation.
This results in different numbers of answers included in the evaluation.

The items about the workshop, which were only occurring in the posttest,
showed a slightly approving impression of the understanding, coverage and rel-
evance of the workshop as an integral part of computer science teaching, with
the group of trainee teachers and Master of Education students agreeing more
strongly overall. The strongest agreement in both groups refers to the under-
standing, the weakest to the coverage. This may be related to the fact that
the workshop only gives an insight into the topic and can therefore only be
assessed as sufficient by a more detailed examination of the topic. The slight
approval of the workshop as a fixed component of the computer science lesson can

Table 2. Significance results from Wilcoxon signed-rank-test (WSR) and paired Stu-
dent’s t-test (T), partially rounded, (n = df + 1), gray: only pupils

item WSR:
V-value

WSR:
p-value

T: t-value T: df T: p-value

My impression of
machine learning is

14.5 0.094 -1.843 38 0.0731

0 0,0147 -2.892 23 0.0082

I think artificial in-
telligence is danger-
ous.

0 0.0369 -2.3508 42 0.0235

Artificial intelligence
is a miracle cure.

4.5 0.041 -2.2207 40 0.0321

I consider artificial
intelligence to be an
interesting topic.

5 0.0147 -2.6678 42 0.0108

I know several things
about artificial intel-
ligence.

45 0.0048 3.1857 41 0.0028

I consider machine
learning useful.

40.5 0.0248 2.4535 38 0,0188

I know several things
about machine learn-
ing.

171 <0.001 5.595 40 <0.001

Machine Learning Unplugged 145

Table 3. Means of the workshop-related items, partially rounded, TT = Teaching
trainees/M.Ed. students, n = 16; P = pupils, 1 = agree to 4 = not agree, n = 28

Item Mean (TT) Mean (P)

The workshop has contributed to my
understanding of machine learning

1, 75 2, 2

The workshop gives a sufficient insight into
the topic

2, 0667 2, 4231

The workshop should become an integral
part of the computer science subject

1, 9375 2, 3478

possibly be understood as a basic approval of the workshop, but a weakening of
the obligation in the statement. The exact results are shown in Table 3.

In the evaluation, we noticed a teaching trainee who demonstrated a strongly
distorted view of artificial intelligence before the workshop and considered it to
be very dangerous, but demonstrated a much more moderate attitude after the
workshop. Among the students, it was noticeable that some who had not had
computer science lessons before had no idea of the terms and therefore had
difficulties filling them with content. Overall, many of the personal definitions
referred specifically to workshop content and items related to machine learning
and were answered more often and more detailed in the posttest.

5 Conclusions

The predominantly positive workshop feedback from pupils and teachers demon-
strates that concepts of machine learning can be adequately taught even to
pupils. Although the workshop is only content-oriented, we could ascertain an
influence on the participants’ perception, so that a reflection and analysis of the
topic seems to take place. Even if the screw topic of the workshop is not the most
interesting, it can help to focus the concentration on the learning procedure. In
this way, participants can learn that machine learning can not only be used in
areas of media interest. Continuing and extending the course into a teaching unit
can therefore counteract a possibly distorted perception of artificial intelligence
in schools.

References

1. CS Unplugged - Computer Science without a computer. https://classic.
csunplugged.org/. Accessed 19 Aug 2019

2. Bortz, J., Schuster, C.: Statistik für Human- und Sozialwissenschaftler [Statistics
for human and social scientists], vol. 7. Springer, Heidelberg (2010). https://doi.
org/10.1007/978-3-642-12770-0

https://classic.csunplugged.org/
https://classic.csunplugged.org/
https://doi.org/10.1007/978-3-642-12770-0
https://doi.org/10.1007/978-3-642-12770-0

146 E. Ossovski and M. Brinkmeier

3. Döring, N., Bortz, J.: Forschungsmethoden und Evaluation in den Sozial- und
Humanwissenschaften [Research methods and evaluation in the social sciences and
humanities], vol. 5. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
642-41089-5

4. Ertel, W.: Introduction to Artificial Intelligence. Springer, London (2011). https://
doi.org/10.1007/978-0-85729-299-5

5. Gudjons, H.: Handlungsorientiert lehren und lernen: Schüleraktivierung Selb-
sttätigkeit Projektarbeit [Action-oriented teaching and learning: student activation
- self-activity - project work], vol. 8. Klinkhardt Bad Heilbrunn (2014)

6. Hefendehl-Hebeker, L., Schwank, I.: Arithmetik: Leitidee Zahl [Arithmetic: cen-
tral idea number]. In: Bruder, R., Hefendehl-Hebeker, L., Schmidt-Thieme, B.,
Weigand, H.-G. (eds.) Handbuch der Mathematikdidaktik [Guide of mathematical
didactics], pp. 77–115. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-642-35119-8 4. Chap. 4

7. Lindner, A., Seegerer, S.: AI Unplugged - Wir ziehen künstlicher Intelligenz den
Stecker [AI Unplugged - we pull the plug on artificial intelligence]. https://ddi.cs.
fau.de/schule/ai-unplugged/. Accessed 07 May 2019

8. Meyer, H.: Unterrichtsmethoden II: Praxisband [Teaching methods II: practical
book], 14 edn. Cornelsen Scriptor Berlin (2011)

9. Ministerium für Schule und Weiterbildung des Landes Nordrhein-Westfalen:
Kernlehrplan für die Sekundarstufe II Gymnasium/Gesamtschule in Nordrhein-
Westfalen Informatik [Curriculum for secondary level II high school/comprehensive
school in north rhine-westfalia computer science]. https://www.schulentwicklung.
nrw.de/lehrplaene/upload/klp SII/if/KLP GOSt Informatik.pdf (2014). Accessed
07 May 2019

10. Niedersächsisches Kultusministerium: Kerncurriculum für die Schulformen des
Sekundarbereichs I Schuljahrgänge 5–10 [Curriculum for school types in lower sec-
ondary education years 5–10]. http://db2.nibis.de/1db/cuvo/datei/kc informatik
sek i.pdf (2014). Accessed 07 May 2019

11. Niedersächsisches Kultusministerium: Kerncurriculum für das Gymnasium - gym-
nasiale Oberstufe, die Gesamtschule -gymnasiale Oberstufe, das Kolleg Informatik
[Curriculum for high school - upper school, comprehensive school - upper school,
college in computer science]. http://www.db2.nibis.de/1db/cuvo/datei/inf go kc
druck 2017.pdf (2017). Accessed 27 Aug 2019

12. Rodriguez, B., Rader, C., Camp, T.: Using student performance to assess CS
unplugged activities in a classroom environment. In: Proceedings of the 2016
ACM Conference on Innovation and Technology in Computer Science Educa-
tion, ITiCSE 2016, pp. 95–100. ACM, New York (2016). https://doi.org/10.1145/
2899415.2899465

13. Staatsinstitut für Schulqualität und Bildungsforschung München: Jahrgangsstufen-
Lehrplan 11/12 Informatik [Computer science curriculum for years 11/12]. http://
www.isb-gym8-lehrplan.de/contentserv/3.1.neu/g8.de/index.php?StoryID=26193
(2004). Accessed 07 May 2019

14. Staatsinstitut für Schulqualität und Bildungsforschung München: Der Lehrplan
für das Gymnasium in Bayern im überblick [The curriculum for the high school in
bavaria at a glance]. https://www.isb.bayern.de/download/1555/broschuere-der-
lehrplan-im-ueberblick.pdf (2010). Accessed 07 May 2019

15. Thies, R., Vahrenhold, J.: On plugging “Unplugged” into CS classes. In: Pro-
ceeding of the 44th ACM Technical Symposium on Computer Science Education,
SIGCSE 2013, pp. 365–370. ACM, New York (2013). https://doi.org/10.1145/
2445196.2445303

https://doi.org/10.1007/978-3-642-41089-5
https://doi.org/10.1007/978-3-642-41089-5
https://doi.org/10.1007/978-0-85729-299-5
https://doi.org/10.1007/978-0-85729-299-5
https://doi.org/10.1007/978-3-642-35119-8_4
https://doi.org/10.1007/978-3-642-35119-8_4
https://ddi.cs.fau.de/schule/ai-unplugged/
https://ddi.cs.fau.de/schule/ai-unplugged/
https://www.schulentwicklung.nrw.de/lehrplaene/upload/klp_SII/if/KLP_GOSt_Informatik.pdf
https://www.schulentwicklung.nrw.de/lehrplaene/upload/klp_SII/if/KLP_GOSt_Informatik.pdf
http://db2.nibis.de/1db/cuvo/datei/kc_informatik_sek_i.pdf
http://db2.nibis.de/1db/cuvo/datei/kc_informatik_sek_i.pdf
http://www.db2.nibis.de/1db/cuvo/datei/inf_go_kc_druck_2017.pdf
http://www.db2.nibis.de/1db/cuvo/datei/inf_go_kc_druck_2017.pdf
https://doi.org/10.1145/2899415.2899465
https://doi.org/10.1145/2899415.2899465
http://www.isb-gym8-lehrplan.de/contentserv/3.1.neu/g8.de/index.php?StoryID=26193
http://www.isb-gym8-lehrplan.de/contentserv/3.1.neu/g8.de/index.php?StoryID=26193
https://www.isb.bayern.de/download/1555/broschuere-der-lehrplan-im-ueberblick.pdf
https://www.isb.bayern.de/download/1555/broschuere-der-lehrplan-im-ueberblick.pdf
https://doi.org/10.1145/2445196.2445303
https://doi.org/10.1145/2445196.2445303

About Classes and Trees: Introducing
Secondary School Students to Aspects

of Data Mining

Andreas Grillenberger(B) and Ralf Romeike

Computing Education Research Group, Freie Universität Berlin,
Königin-Luise-Str. 24/26, 14195 Berlin, Germany

{andreas.grillenberger,ralf.romeike}@fu-berlin.de

Abstract. Today, data is no longer just important to computer science.
Instead, basic competencies in managing, processing and using data are
necessary in almost all other sciences and even in everyday life. Such
competencies empower students to handle their own and others’ data
adequately and allow them to use data-related technologies and tools
in a critically-reflected way. Although aspects of this topic are typically
already part of computer science curricula for secondary schools, par-
ticularly fostering data-related competencies is often not the focus, so
that large parts of this exciting topic have not arrived in the classroom
yet. In this paper, we investigate the exemplary topic data analysis and
predictions from a secondary education perspective. After summarizing
the technical and didactic foundations, we describe a theoretically sound
teaching concept which aims to foster the acquisition of basic compe-
tencies in this field and to contribute to a better understanding of these
important aspects of the digital world. Besides presenting the teaching
concept, the paper discusses the methodical structure as well as the soft-
ware tool used. In addition, the mostly positive results and impressions
of an evaluation with ninth-grade students are presented.

Keywords: Data · Data literacy · Data mining · Data analysis ·
Prediction · Teaching concept · Secondary education · Evaluation

1 Data in the Digital World

In today’s world, data is an important basis of manifold developments which
are often subsumed under the term digitalization. However, although everyone
continuously generates and stores various data, when using those we typically
take a rather passive role: Evaluating and processing all the data is mostly left
to companies, whose products and services we use. Even more important is the
limited or often lacking understanding of how such analyses work and hence also
for their accompanying phenomena and impact: Despite an extensive discussion
in the social discourse, it is difficult for large parts of the population to assess the
power, possibilities and dangers of data analysis. Hence, they hardly have the
c© Springer Nature Switzerland AG 2019
S. N. Pozdniakov and V. Dagienė (Eds.): ISSEP 2019, LNCS 11913, pp. 147–158, 2019.
https://doi.org/10.1007/978-3-030-33759-9_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33759-9_12&domain=pdf
http://orcid.org/0000-0003-1760-2051
https://doi.org/10.1007/978-3-030-33759-9_12

148 A. Grillenberger and R. Romeike

opportunity to position themselves accordingly. This is particularly important
as today various decisions related to using data-driven services have to be made
taking into account the personal cost-benefit ratio and the effects on society,
for example when motor vehicle insurances desire to record driving behaviour.
The ability to reflect such developments in a critically-reflective manner is par-
ticularly important when data-driven approaches are used in the background
and/or without allowing people to decide for or against participating in this
system: for example, rating persons based on data is not only carried out by
well-known credit agencies, but increasingly also by government institutions. In
China this development is already so far advanced that all inhabitants will soon
be scored positively or negatively as part of a social credit system, with the aim
to educate them to a desired behaviour [1]. The consequences associated with
such developments can hardly be evaluated without a sound basic knowledge of
how data are handled and used, otherwise the extent and possibilities remain
hidden. In order to prepare for a self-determined and mature life in the digital
society, school—and in this case particularly computer science teaching—has to
provide insight into such developments and empower students to reflect them in
a critically-reflected manner. Although different approaches for fostering basic
competencies regarding handling and usage of data are already recognizable in
computer science lessons, there is still a large gap [5] which indicates that com-
puter science teaching in this area still has to develop further.

In this paper, we present a theoretically sound teaching concept focusing
on data analysis and prediction. In the course of the lessons, students are not
only given the chance to gain insight into the function of data analyses and
predictions, but they are also empowered to carry out their own analyses based
on real data sets and thus to fathom both the power and limits of automated
data analyses. The teaching concept promotes a critical examination of everyday
handling of data, but also enables students to deepen their experiences indepen-
dently. In the following, we first summarize the state of research in this area
and give an overview of CS teaching in this context. Then, before the teaching
concept is presented in Sect. 3, the focus of the concept on aspects of data min-
ing is discussed, relevant technical contents are outlined and the selection of the
tool used is discussed. Finally, in Sect. 4 we describe the predominantly positive
experiences gained during an evaluation of the teaching concept at school.

2 Current State of Teaching and Research

From a scientific perspective, the field data is particularly important: Not only is
it an important basis for all developments summarized under terms such as big
data, data mining and data science, but also for example in machine learning.
But such developments are also triggering changes in other subjects, in particular
related to research: For example, Hey et al. [10] emphasize the relevance of data-
oriented research as a new research paradigm. In this context, also the need
for fostering data competencies for everyone is stressed. The basic competencies
everyone needs in this context are often summarized under the term data literacy.

About Classes and Trees 149

Ridsdale et al. [14] describe it as “the ability to collect, manage, evaluate, and
apply data, in a critical manner” and, in a summative research approach, also
describe several key competencies related to this field. According to the common
understanding, data literacy competencies have to be differentiated from such
that are related to data science: Data science requires deeper competencies and
focuses on professionally oriented aspects of the field data.

In computer science curricula, at the moment the extensive field data is
mainly taken up with a focus on databases [5]1. In this context, central basics are
considered: in particular by introducing data models, the importance of defined
data structures and of data types becomes evident, while at the same time key
concepts are introduced, such as redundancy, consistency and durability. Beyond
databases, however, data have rather little importance in current CS teaching:
Although they play a certain role in programming and are also indispensable in
topics such as structure of the Internet, the focus of these topics is usually dif-
ferent, so that data and related concepts are only considered marginally. Thus,
the current role of this topic in the classroom hardly reflects its general impor-
tance. Accordingly, only few teaching concepts could be found which go a step
further and take a broader look at the complete field. However, there are at least
approaches that take up aspects of the topic which are typically less relevant in
school teaching. For example, in a German simulation game [3], the idea of data
protection is introduced. In another example, a teacher implemented a platform
called InstaHub that allows students to build their own social network as well
as a related teaching concept which allows students to get valuable insight into
such platforms [4]. These and similar concepts deal with central topics of the
field data. Yet, for several increasingly important areas such as data analysis
and prediction, corresponding ideas are not yet to be found.

In computer science education research, however, progress has been made in
recent years, particularly concerning the foundation of data-related aspects from
an educational perspective: On the one hand, from a rather technical point-of-
view, the entire subject area data management was investigated with the goal to
identify key concepts and practices characterizing this field and to also consider
recent developments [7]. Yet, as not only the technical aspects play an impor-
tant role for teaching, also the perspectives of students, teachers and society
as a whole have been investigated [8]. As part of this work, also a competency
model of data literacy was developed, which, in contrast to the one by Ridsdale
et al. takes the perspective of CS education and hence sets different foci [6], but
in general both models are consistent. This competency model consists of four
content and process areas each (cf. Fig. 1). Thus, it is not only focused on the
concepts or technical content of this subject area, but also emphasizes the prac-
tical perspective on the topic. However, this project is not the only approach
to consider rather modern data-oriented aspects in school: For example, in a
joint project with mathematics education, currently Heimann et al. [9] develop
a data science curriculum for secondary schools, which sets similar foci as the

1 Although the study [5] is about five years old, there were only few changes in CS
curricula in the last years.

150 A. Grillenberger and R. Romeike

data ethics and protection

data analysis

data storage and access

data and information

co
nt
en

t
ar
ea
s

implementing and optimizing

analyzing, visualizing and interpreting

sharing, archiving and erasing

gathering, modeling and cleansing

process
areas

(C1)

(C2)

(C3)

(C4)

(P1)

(P2)

(P3)

(P4)

Fig. 1. The data literacy competency model used as basis for the lesson sequence [6].

competency model described before. Despite these different approaches to inves-
tigate the topic from a CS education perspective, the topic has so far remained
a marginal topic in computer science education research and teaching.

3 Presentation of the Teaching Concept

In order to address the previously characterized gap in current computer science
teaching, the lesson sequence presented aims to foster a basic understanding
and the acquisition of competencies related to data analysis and predictions.
The planned lesson sequence is designed for only four lessons of 90 min each,
so that it can be flexibly included into teaching. However, of course it can be
adapted individually if necessary, since a much more in-depth or somewhat more
superficial examination is possible at various points. In general, we cannot expect
students to have basic knowledge in how data analysis or predictions work, there-
fore the lesson sequence was designed in such a way that no previous knowledge
needs to be built upon, which also makes it suitable for both lower and upper
secondary level.

In order to decide which competencies are emphasized, we used the data
literacy competency model mentioned before (cf. Fig. 1). This model is not only
well-founded in CS education research but, by distinguishing content and process
areas, it also helps to focus on both, content and practice, at the same time. In
order to achieve the desired goals, from a content perspective the focus was set
on data analysis (C3), while also general aspects of data and information (C1)
have to be taken into account, as we do not expect any prior knowledge. In
addition, because of the relevance of this topic in society, also data ethics and
protection (C4) cannot be left out, so that from a content perspective, we take
up parts of all content areas except data stores and data storage (C2). As we
have designed this teaching concept so that it can be taught in only four lessons,
we also could not include aspects from all process areas. Thus, we focus on the

About Classes and Trees 151

analysis and prediction itself, so that P4 (analyzing, visualizing and interpreting)
is emphasized while the other process areas are at most considered marginally.

Hence, in the teaching sequence we particularly aimed at fostering the fol-
lowing data literacy competencies:

– explain why and how (possibly new) information can be obtained from stored
data (C1/P3)

– characterize the difference between correlation- and causality-based relations
in data as well as their respective meaningfulness (C1/P3, C4/P3)

– sketch the process of a (correlation-based) data analysis (C3/P3)
– characterize a typical analysis method and explain the underlying principle

using a suitable example (C3/P3)
– perform a simple data analysis using a common method, manually as well as

using a suitable software tool (C3/P3)
– predict missing attributes of a data set using a self-conducted data analysis

(C3/P3)
– evaluate the outcome of the prediction and explain ideas for improvement

(C3/P3)
– reflect the results taking into account ethical and social implications (C4/P3)

As we did not expect any prior knowledge, we decided to divide the course
into two blocks: Initially, an introduction to the data analysis process is given in
order to allow students to understand how the analysis process works. For this
purpose, it is useful to focus on specific methods and on getting an overview of
the analysis process. Afterwards, we introduce the students to some basics of data
analysis and predictions without using digital analysis tools, as for this purpose
we do not need to use larger amounts of data, so that analysis can be carried
out manually in order to understand the important principles. Afterwards, in
order to be able to estimate the potential and risks of automated data analysis
and to get more valid and realistic analysis results, a software tool is used for
analyzing data. At this step, we also switch to a larger data set that leads to
more interesting results. While in the beginning we focus on a fictive data set
(from the context of online shopping), the data set selected for the second block
even more directly affects students, so that it leads to a critical discussion of the
results and the analysis itself.

3.1 Basics: Data Mining, Classification and Prediction

Before we describe the lesson sequence in detail, we need to focus on the relevant
basics of data mining and data analyses. While classical data analyses often
pursue the goal to structure and summarize existing data, particularly by using
aggregate functions in order to describe the data by minimum, maximum and
average values, data mining follows a different approach: It focuses on discovering
new information and often on predicting unknown attributes of a data set based
on other data. The term data mining can be understood as an analogy to gold
mining : It describes digging for valuable information in a large mountain of data.
Different methods are used for this purpose, of which most can be traced back
to the basic principles classification, clustering and association:

152 A. Grillenberger and R. Romeike

– Classification refers to dividing a data set into several classes. Often, the goal
of a classification is to predict unknown attributes of one instance of the data
set by looking at all the other instances of the same class. However, as using
classification, the classes cannot be inferred from the data, the existing classes
need to be known: For example, for classifying students by their performance
in school, the classes may be derived from the grades, for classifying them
by how far they live from school, it must be decided on which classes are
introduced (such as less than 5 km, more than 5 km).

– Clustering addresses the limits of classification: It pursues the same goal as
classification, but in this case the clusters are not predetermined but instead
determined inductively from the data. Often, the rules for assigning instances
of a data set to a certain cluster are an important result of clustering. So,
for example, groups of people (i.e. clusters) knowing each other might be
determined in social networks.

– Association analysis focuses on discover rules that describe a data set that
either explain causal relationships or can be based on correlations. They are
particularly useful for predicting unknown values. However, particularly in
large data sets, finding associations is a complex task.

In the lesson sequence, the focus is on the methods classification and asso-
ciation, which are easy to understand, but also allow getting insight into how
data analyses work. In this case, classification is used to find similarities in the
data, to structure them accordingly and to derive findings from it, which are
elaborated into rules as part of an association analysis. Thus, both methods
go hand in hand and show how predictions work: By learning rules from an
already classified data set, an automated classification of further data can take
place, which allows for predicting unknown attributes of these data. In order to
automate such analyses, a multitude of different classification algorithms exists,
which often become very complex and are therefore not discussed in detail in
the classroom. Instead, we focus on a basic method, the classification tree. These
trees can be used as an intuitive approach to gaining an overview on associa-
tion rules, as these rules are visualized as a decision tree, whose nodes represent
decisions and whose leaves are used for class allocation. Hence, based on such a
tree, predictions can easily be made, just by looking at a specific data set and
following the tree’s nodes from the root to a leave.

Besides the analysis methods, also the analysis process leading to a prediction
is an important part of the teaching sequence: For making valid high-quality
predictions, it is particularly important to consider the whole analysis process,
as the quality is i.a. influenced by the selection of the sample on which the
associations are determined. Hence, in the teaching sequence, we also give an
overview on this process and relate the methods discussed in school to the overall
process to give students an orientation during the analysis process (cf. Fig. 2).

3.2 Tool Selection: The Data Mining Tool Orange

While no software tool is necessary for the first part of the lesson series, in
the second part the aim is to make the power and potential of data analysis

About Classes and Trees 153

data acquisition

selection of a
data sample

detection of
associations/rules

creation of a
prediction model

application of the
model to the data

Fig. 2. Analysis process discussed during the lesson sequence.

visible for the students by enabling them to conduct their own analysis with
real data. For this purpose, a suitable tool is needed. Again, the selection of
the tool is particularly led by the criterion, that it should not require any prior
knowledge and be intuitively usable. When selecting the tool, we also took the
criteria into account that Resnick et al. established for tools that support cre-
ative thinking [13]: These tools should “make it easy for novices to get started
(low threshold)”2 [12,13], make it possible “for experts to work on increasingly
sophisticated projects (high ceiling)” [12,13] and “support and suggest a wide
range of explorations” [13] (wide walls). Accordingly, the use of a classical pro-
gramming language such as Python, which is very common for professional data
analyses, is hardly reasonable for this lesson series. Instead, graphically oriented
analysis tools are particularly suitable, especially tools in which users describe
the analysis as a data flow model, for example rapidminer3 and Orange4: these
tools allow students to directly transfer the knowledge on the analysis process
to the automated data analysis. Both tools provide all the functionalities that
we need for the specific lesson sequence, but they also offer many additional
possibilities, so that they could be used also for more sophisticated analyses.
We finally decided to use Orange in the classroom for two reasons: First, it was
possible to further reduce the complexity of the tool since it was an open source
program in which unneeded modules could be hidden. Furthermore, Orange can
be used and distributed without any license to be required, while rapidminer
requires both teachers and students to apply for an academic license, which
is a barrier for using the tool. Some impressions of Orange are given later in
Figs. 3 to 5.

3.3 Description of the Lesson Sequence

In the following, we give an overview of the course design. For a detailed descrip-
tion, refer to the overall concept published on the project website5, which con-
tains all the work materials and a detailed description for teachers.

In the first 90 min lesson, the central aspects of the analysis process are
emphasized. For motivating the importance of the topic, at the beginning of the
lesson sequence a newspaper article is presented, that describes the attempt of
a US retailer to recognize whether its customers are pregnant in order to send

2 Later, low threshold was also refered to as low floor.
3 https://rapidminer.com/educational-program/.
4 https://orange.biolab.si.
5 https://dataliteracy.education.

https://rapidminer.com/educational-program/
https://orange.biolab.si
https://dataliteracy.education

154 A. Grillenberger and R. Romeike

them targeted advertisments [11]. This article encourages students to discuss
how the retailer can determine that a customer is pregnant, which attributes
about its customers it probably collects and how these attributes could lead to
assuming a pregnancy. Thus, this discussion immediately draws students into the
topic and also gives the teacher an impression of what students know about data
analyses and how they think these work. Afterwards, based on other examples,
the value and usefulness of data for different purposes, companies and business
models is discussed and students can provide own examples they know from
their daily lives. The teacher directs these discussions towards introducing the
terms causality, correlation and prediction, which are relevant to be known for
the complete lesson sequence. Starting with the students’ ideas, afterwards a
model of data analysis processes is being created.

Based on this introduction, in the next lesson, the process from a data set to
a prediction is carried out manually, so that different principles of these analyses
become recognizable, particularly the importance of a sufficient data sample,
the selection of valid rules/associations and the creation of the data model.
For this lesson, students work on a given simple and fictive data set (in the
example from the context of online retail) and examine it for relations within
the data, which are then formulated as rules (i.e. associations). In order to make
these rules easier to grasp, to give a better overview of them and to simplify
applying them to data, a (non-binary) decision tree is introduced as a form of
representation. Afterwards, using this tree, the rules are applied to another data
set with unknown attribute values. The given data set was designed in such
a way that not all possible rules apply to all instances of the data set. Thus,
students need to decide whether they consider an association as valid that is
only valid for about 80% of the data. Hence, they also need to reflect about the
targeted analysis quality and about problems resulting from unfavorably chosen
rules. At the end of the lesson, the central task for the next lesson is introduced:
to predict students’ school grades based on a real data set.

In the third lesson, a freely accessible data set with (anonymised) data about
Portuguese students [2] is analysed. This data set contains various personal data
about more than 600 students (e. g. jobs of the parents, amount of spare time)
as well as their grades in three exams. Using the tool Orange, which is not
introduced in detail to the students, the aim is to generate a decision tree and
hence a prediction model, which is then used for predicting the third grade from
all the remaining data. As Orange not only allows viewing the actual results of
the analysis, but also getting insight into the intermediate steps, students can for
example have a look at the generated classification tree (Fig. 4), but also on the
data sample that was selected randomly. By discussing the teacher’s fictional goal
of significantly reducing the correction effort by using analysis and predictions,
students get into questioning and evaluating how good the analysis quality can
get in comparison with the teacher’s effort (size of the data sample). This is
particularly interesting because of the high analysis quality, which students can
for example observe by examining a confusion matrix (Fig. 5). Thus, the direct

About Classes and Trees 155

involvement of the students holds a high potential for critically discussing the
possibilities and threats of data analyses and predictions.

The last lesson focuses on additional use cases and on a critical reflection
of those: For this purpose, it is planned to transfer the competencies acquired
so far to other contexts and thus, for example, to question the use of data in
medicine, by insurance companies and banks and to discuss legal, ethical and
moral aspects of these analyses within the framework of a jigsaw puzzle.

Fig. 3. Model of a data analysis in the analysis tool Orange. (Color figure online)

Fig. 4. Part of a classification tree in
Orange. (Color figure online)

Fig. 5. Confusion matrix for examining
the analysis quality.

4 Evaluation in School

The lesson sequence was evaluated in two ninth grade classes of a German sec-
ondary school with 15 (three female) and 12 (no female) students respectively.
Both classes were taught by the same teacher and had no pre-knowledge from
teaching regarding data in general, databases or even programming. For organi-
sational reasons, only three lessons (90 min each) were available, hence we had to
drop the fourth lesson and included some of the discussion aspects in the other
lessons, so that those were very packed. The first author of this paper observed

156 A. Grillenberger and R. Romeike

the lessons using observation sheets and conducted a guided interview with the
teacher. Also, the students were interviewed with questionnaires at the end of
the last lesson in order to cover different perspectives.

In general, the observations were rather positive: Although both courses were
very different concerning students’ interest in the topic and their motivation to
participate in discussions, in general most students were taking part after a while,
which was also surprising for the teacher, who did confirm this observation. Gen-
erally spoken, there was a large overlap between the researcher’s and teacher’s
observations. In contrast, the students’ perspective on the topic seemed a bit
different in the questionnaires, but there was a high variation in their answers
in almost all questions asked. As the questionnaire was handed to them as the
last task of the lesson and hence also filled in by them very quickly, these results
have to be considered carefully. Yet, taking together the three methods, there
are some central results that can be deduced:

Interest and Motivation: Although the evaluation took place in two rather
difficult, both inattentive and poorly motivated classes, both the classroom
observation and the perception of the teacher showed a high interest and a
motivated participation. According to the teacher, both the interest in the topic
and the motivation seemed to be higher than for other topics. In addition, the
frequent and intensive discussions were highly noticeable, which was unusual in
particular for one of the classes. However, the student survey partly contradicted
these observations, especially with regard to the perceived interest in the topic,
which was rated as rather low.

Prior Knowledge and Experience: In the course of the lessons it became
apparent several times that the examples used and the entire topic have strong
references to the daily life of the students and to their experiences: In many cases,
they additionally brought their own examples and were able to find intuitive
explanations for questions that arose. Based on the students’ ideas, even the
data analysis process could be deduced well. Thus, it became clearly recognizable
that data and data analysis play an important role in students’ life and that they
have some ideas on how these work.

Comprehensibility: In general, the topics considered in the lesson sequence
seemed to be comprehensible and understandable for the students. This was
particularly evident in the discussion phases, where they often included aspects
in their argumentations that had been considered earlier. Only the distinction
between correlation- and causality-based data analysis occasionally led to diffi-
culties, so that more time should be devoted to this aspect. Also, the students
stated in the questionnaire that the tasks were easy to solve for them and that
they now feel to have an understanding of what can be done with data. So,
in general, at least the basics of the subject area are comprehensible for the
students.

Structure and Tool Selection: The structure of the lesson sequence was
appropriate from both the teacher’s and observer’s point of view. However, the
time should be distributed differently: The first block of manual data analysis

About Classes and Trees 157

was a bit too long, hence that it took considerable time before the students were
allowed to conduct practical data analysis on the computer. This particularly
seemed to lower their motivation as from previous teaching the students were
used to working at the computer in every lesson, so this led to displeasure in the
class. Therefore, a stronger integration of manual and automated data analysis
has to be considered depending on what the students’ are used to in class. Also,
the lessons were a bit too packed, so that taking more time and adding at least
a fourth lesson, as planned originally, seems necessary.

5 Summary

Summarizing, the developed lesson sequence could bring some important aspects
of data analysis to school teaching. Particularly, it allows students to deal with
this important topic and understand some of the underlying concepts. But it
also helps them to develop some basic skills that are needed for conducting
data analysis and for making predictions by themselves. It has turned out to
be particularly important not to stop at the data analysis step, but instead
to make predictions based on it, as this helped students to get into this topic,
because they for example know that people are rated based on data in different
contexts. Thus, the lesson sequence enabled students to understand aspects that
are fascinating for them because of their “magical” effects, but can be explained
with basic knowledge.

In general, the experiences of both, teacher and researcher, were very positive
as this topic was not only important for the students, but as they also coped
with the topic very well and developed a basic understanding. This particularly
enabled them to discuss about this topic in a sound way and to conduct simple
analyses by themselves. The active participation in the lessons confirmed the
interest in the topic and the relevance for the learners. The choice of the software
tool also seemed appropriate, as the students were not confronted with any
challenges when using it and were able to master it intuitively.

However, the evaluation revealed aspects that should be taken into account
in the future: In particular, the first phase with only manual data analyses was
too long, as this contradicted the usual teaching. Accordingly, for motivational
reasons, stronger intertwining the manual and automated data analyses will
be sought in the future. In addition, it turned out that including further con-
texts, which was planned for the fourth lesson, was clearly lacking in the end,
as the learners still found it difficult to relate the acquired competencies to new
examples. Hence, shortening the topic to only three 90 min lessons seems not
advisable.

Overall, the developed teaching concept and its implementation and evalua-
tion reveal the potential of the topic for school and also confirms the assumption
that this topic appears important for the students and is important for their
everyday lifes. In particular, we were also able to show that this topic, which is
often regarded as complex, can be reduced for and addressed in teaching even
at lower secondary level, without having to abstract too much from the central

158 A. Grillenberger and R. Romeike

aspects. Hence, the developed lesson sequence can be considered as a first step to
bringing more data-oriented aspects to school teaching. However, when looking
at the data literacy competency model used as a basis, there are many more
aspects in this field that should clearly be addresses in teaching.

References

1. Botswan, R.: Big data meets Big Brother as China moves to rate its cit-
izens (2018). https://www.wired.co.uk/article/chinese-government-social-credit-
score-privacy-invasion. Accessed 09 June 2019

2. Cortez, P., Silva, A.: Using data mining to predict secondary school student per-
formance. In: Proceedings of 5th Annual Future Business Technology Conference,
Porto, 2008, pp. 5–12. EUROSIS-ETI (2008)

3. Dietz, A., Oppermann, F.: Planspiel “Datenschutz 2.0”. LOG IN (2011)
4. Dorn, J.: InstaHub (2018). https://instahub.org. Accessed 09 June 2019
5. Grillenberger, A., Romeike, R.: A comparison of the field data management and

its representation in secondary CS curricula. In: Proceedings of the 9th Workshop
in Primary and Secondary Computing Education. ACM (2014)

6. Grillenberger, A., Romeike, R.: Developing a theoretically founded data literacy
competency model. In: Proceedings of the 13th Workshop in Primary and Sec-
ondary Computing Education, WiPSCE 2018, pp. 9:1–9:10. ACM (2018)

7. Grillenberger, A., Romeike, R.: Key concepts of data management: an empirical
approach. In: Proceedings of the 17th Koli Calling International Conference on
Computing Education Research, Koli Calling 2017, pp. 30–39. ACM (2017)

8. Grillenberger, A., Romeike, R.: What teachers and students know about data man-
agement. In: Tatnall, A., Webb, M. (eds.) WCCE 2017. IAICT, vol. 515, pp. 557–
566. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-74310-3 56

9. Heinemann, B.: Drafting a data science curriculum for secondary schools. In: Pro-
ceedings of the 18th Koli Calling International Conference on Computing Educa-
tion Research. ACM, New York (2018)

10. Hey, T., Tansley, S., Tolle, K.: The Fourth Paradigm: Data-Intensive Scientific
Discovery. Microsoft Research, Redmond (2009)

11. Hill, K.: How target figured out a teen girl was pregnant before her father
did (2012). https://www.forbes.com/sites/kashmirhill/2012/02/16/how-target-
figured-out-a-teen-girl-was-pregnant-before-her-father-did. Accessed 09 June 2019

12. Myers, B.A., Hudson, S.E., Pausch, R.: Past, present and future of user interface
software tools. ACM Trans. Comput. Hum. Interact. 7(1), 3–28 (2000)

13. Resnick, M., et al.: Design principles for tools to support creative thinking. National
Science Foundation workshop on Creativity Support Tools (2005)

14. Ridsdale, C., et al.: Strategies and best practices for data literacy education: knowl-
edge synthesis report, Dalhousie University (2015)

https://www.wired.co.uk/article/chinese-government-social-credit-score-privacy-invasion
https://www.wired.co.uk/article/chinese-government-social-credit-score-privacy-invasion
https://instahub.org
https://doi.org/10.1007/978-3-319-74310-3_56
https://www.forbes.com/sites/kashmirhill/2012/02/16/how-target-figured-out-a-teen-girl-was-pregnant-before-her-father-did
https://www.forbes.com/sites/kashmirhill/2012/02/16/how-target-figured-out-a-teen-girl-was-pregnant-before-her-father-did

Cybersecurity Within the Curricula
of Informatics: The Estonian Perspective

Birgy Lorenz(B) , Kaido Kikkas , Tiia Sõmer , and Edmund Laugasson

Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
{birgy.lorenz,kaido.kikkas,tiia.somer,edmund.laugasson}@taltech.ee

https://taltech.ee/en/

Abstract. While the needs for generic IT staff have been generally
addressed in many places, the lack of specialized workforce is a grow-
ing problem, especially in cybersecurity - falling behind in addressing
cybercrime can lead to serious problems. Not only should the common
cybersecurity awareness be raised, but more people should also be guided
to specialize in cybersecurity. The cost of cybersecurity education and
awareness campaigns is far less than the price of dealing with enormous
consequences of cybercrime – in 2018, 600 Billion was reported in CSIS
[17] by Internet Society, and it doubles annually.

In some countries, the problem has been recognized more than in oth-
ers. The Estonian CyberSecurity Strategy (2019) points out the need to
educate all citizens, improve education in schools and find new talents
for the field [11]. The new curriculum of Informatics of which 1

3
covers

the cyber skills was developed in 2017, new materials will be available
in 2019. In this paper we provide an overview of Estonian digital safety
and cybersecurity curricula as well as discuss how to educate the masses
and what to do with talents (how to detect talent and build up the tal-
ent pool). We will look at three years’ work and studies (including the
Cyber Olympics program) to offer ideas and perhaps inspiration to other
countries. We also list a number of initiatives and tools that could help
in updating the cybersecurity education and channeling resources in a
more effective way.

Keywords: Curriculum development · Cybersecurity · Talents

1 Background

1.1 Digitalization and Goals for EU

Various strategies of the European Union have pointed out the need for a Digital
Single Market [7] - everyone should have a possibility to conduct business or have
access to the goods regardless of the location. The foundation of a Digital Single
Market is formed by access, environment, economy, and society. This means that
everyone should know how to use technology and the internet, as well as have
access to it [4]. The downside is that cybercrime is also flourishing - not only are
c© Springer Nature Switzerland AG 2019
S. N. Pozdniakov and V. Dagienė (Eds.): ISSEP 2019, LNCS 11913, pp. 159–171, 2019.
https://doi.org/10.1007/978-3-030-33759-9_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33759-9_13&domain=pdf
http://orcid.org/0000-0002-9890-2111
http://orcid.org/0000-0003-4826-5668
http://orcid.org/0000-0002-8776-1384
http://orcid.org/0000-0002-0462-0384
https://doi.org/10.1007/978-3-030-33759-9_13

160 B. Lorenz et al.

companies developing services that are unstable and insecure, but many users
having full access seem to lack any competencies other than click wherever you
can, as fast as you can - unlike in city traffic, there is no driving license needed.
Also, the interoperability of services cuts both ways, e.g. fewer attack vectors are
needed for criminals [13]. Therefore the skill levels need to be raised for everyone,
and getting more specialists to the field is inevitable [20]. According to ENISA
[9], the focus has been on technical solutions - until the GDPR raised the issue
of privacy to the wider public [8], yet overall awareness and behavioral aspects
have but recently started to surface.

1.2 Developing Security-Aware Citizens for the Information Society

The latest DigComp 2.1 [2] points out that digital safety is among the five areas
of digital skills that common people should obtain – essentially a part of lifelong
learning. A lot of initiatives address coding and robotics (e.g. the Hour of Code
and other similar events), while cybersecurity gets more attention during two
months in a year - February being allocated for digital safety and behavior [22],
and October as the “Cybersecurity month” is run by ENISA in the EU. As
every country is free in their implementations, we studied various publications
and reports to find out the current situation. For example, the overview provided
by Informatics Europe [12] suggested that neither digital safety nor cybersecurity
are not focused upon. While ethics and privacy get briefly mentioned this is not
enough to successfully face the cybersecurity crisis that is coming our way.

Cybersecurity education in the EU and the US is mostly offered in the form
of specialized courses at the university (BSc, MSc, PhD) level, while public
awareness initiatives in the EU (e.g. Safer Internet) are commonly offered as
extracurricular education and campaigns. There are some initiatives to work
with technical talents within the framework of the European Cyber Security
Challenge (led by military organizations, universities, NGOs and ENISA) where
around 19 countries participate - 200 talents are tested annually on the EU level,
30–200 on the country level (average being around 100). This is not enough to
meet the needs in cybersecurity. Likewise, we doubt that the related mass initia-
tives reach everyone. Even if countries participate in various other competitions
like Cyber Patriot, Magic CTF or other Capture the Flag - style events, the
amount of talents who have access to them is limited (usually, the same peo-
ple attend all different events). Competitions for various skill levels are needed,
widely distributed online training materials can also help - for instance, during
the 2018–2019 season over 30 000 students participated in the CyberPatriot pre-
competitions on many levels [6]. At the same time, a similar initiative in the
UK (Cyber Security Challenge UK) is a more community-oriented NGO that
provides programs for schools, educates parents and society. As for the Estonian
approach, it is more akin to the wider, community-based UK model than the
more vertical, competition oriented way of the US.

In Estonia there are also several initiatives that have been launched pri-
marily by the Estonian Ministry of Defence through Cyber Olympic program
(targeting young cybersecurity talents) and its many competitions: the easier,

Cybersecurity Within the Curricula of Informatics: The Estonian Perspective 161

the test-like CyberCracker for 4–9th graders, the CyberCracker school round for
beginner-level talents (7–12th graders and vocational schools) and the Cyber-
Spike advanced-level talent competition for students aged 14–24 [5]. Estonia
is also involved in the Safer Internet initiative [3]. For schools, there are sev-
eral learning and teaching materials developed in 2018–2019. Until recently, the
majority of teaching on cybersecurity depended on the initiative of teachers only
as they invited guest speakers to talk about cybersecurity issues. Schools could
also choose National Defence as one of their elective courses, this course included
a part about cybersecurity.

The goal of this paper is to find out how to guide students in these directions.
Starting from middle school (ages 12–14) we could see a more rapid change and
improvement in the number of people entering the field, and discuss the must
have and nice to have options and their impact to cybersecurity national strat-
egy education subgoals. Creating this list is the theoretical part of the strat-
egy building using the top-down and bottom-up approach. Feedback was also
requested from 4 different ministries of Estonian government to suggest further
adjustments that could be made without needing changes in curricula (a political
decision).

2 Methods

We used a two-pronged approach in this study. In the top-down (from strategies
to implementations) part, we analyzed related strategy and policy documents
and their shortcomings in Estonia. In order to understand the current situation in
teaching, we analyzed the different levels of curricula, as well as the best practices
used, together with their shortcomings. In the reverse, bottom-up part, we used
a list of shortcomings compiled with the help of experts as the starting point.
The list was then sent to be evaluated by the ministry officials. The process and
its analysis took place in 3 months from February to April 2019.

The list addressed

– Policy documents and reports that support the development of a national
cyber strategy for schools in Estonia;

– Analysis of cybersecurity curricula development for all levels of education
from basic school to graduate studies;

– Best practices that are supported by volunteers, supporting programs, com-
petitions or other to update skills for both the masses and young talents
(robotics and coding training, complementary IT education; cyber education
through competition and awareness).

There were limitations for creating a list of initiatives - in the current sit-
uation, changing the current national curricula is not possible as there is no
room for mandatory cybersecurity education for all the students. Also, all the
initiatives should support community building to survive a decrease in funding

162 B. Lorenz et al.

in around 3–5 years. The effect of the initiatives would be measured by the num-
ber of people involved (mass education), but also by the quality (education for
talents).

The expert group consisted of young cybersecurity talents (2 persons), indus-
try experts (2 persons), representatives of gymnasium (1 person), vocational
school teachers (1 person), and university researchers (2 persons). The list was
compiled by reviewing the data (sent by email), open discussions, and online
cooperation in a shared file. The list was later also evaluated by officials from
4 different ministries (Ministry of Education and Science, Ministry of Defence,
Ministry of Economy and Communication, and Ministry of Internal Affairs).

3 Results

3.1 Policy Documents, Curricula, and Best Practices and Their
Shortcomings in Estonia

E-safety and cybersecurity are taught at Estonian schools today within the elec-
tive courses of Informatics and National Defense. However, various aspects of
cybersecurity are also integrated into other subjects (mathematics, societal stud-
ies). Most of the focus is on e-safety and cyber hygiene. To some extent, within
the teaching of national defense, the questions of critical information infrastruc-
ture and cyberterrorism/cyberwarfare are also discussed. The national defense
curriculum is coordinated by the Ministry of Defense; other subjects by the Min-
istry of Education and Science. The current national school curricula for all levels
do not cover cybersecurity as a separate subject, but outline the main compe-
tencies the students should be able to possess upon graduation, also including
cybersecurity-related competencies [25,26]. The first, second, and third level of
school students (grades 1–9) should be able to – with the successive deepening of
teaching – use computer programs for study and leisure and manage in the world
of technology in a safe manner. By the end of the 9th grade, the student should
be able to understand and analyze threats and opportunities arising from the use
of technology. The PRÕK 2011 also states that theory should be amended with
practical activities wherever possible. The objective for teaching Informatics,
among others, is that the student recognizes and avoids threats to their security
and personal information [26]. The Gymnasium level students should be able to
use contemporary technology with responsibility and have an informed opinion
on the trends of technology and questions related to its use [25]. The plan also
prescribes compulsory crossover themes, one of them being Technology & Inno-
vation. By the time of graduation, the gymnasium students should be prepared
to use ICT in their everyday lives, studies and work. (ibid). Within the elective
course of Informatics, the teachers mainly teach e-safety topics included in the
national curricula. The elective course of national defense covers more specific
areas, such as updates, firewalls, backups, encryption, VPN, and smart device
security. The five main areas covered are computers, the Web, wireless networks,
smart devices, and social networks.

Cybersecurity Within the Curricula of Informatics: The Estonian Perspective 163

With the introduction of the new National Cyber Security Strategy in 2019,
there will be a renewed emphasis on cybersecurity awareness development at
schools. The strategy also points out that we should strive to educate all citizens
and hunt for technical talent. For the moment, a curriculum for an elective course
on cybersecurity has been developed in 2017, and digital study materials for this
course are being finalized. The course, together with materials, will be available
to all schools in Estonia from September 2019 onwards.

3.2 The Curricula from a Cybersecurity Content Perspective

At the university level, there are programs for cybersecurity at Bachelor or Mas-
ter level, and several open courses for anyone interested (see Table 1). The anal-
ysis of the quality and topics of the courses (showing that while some special
branches give broad competencies and possibilities to specialize, the average IT
student will face much less) is presented in the Digiturvis report ordered by the
Ministry of Economic Affairs and Communications [18].

3.3 Nonformal Education

Today’s children get their first IT experience very early. Outside the national
school curricula, there are extracurricular activities offered by schools, different
organizations or the private sector. Teachers will be the people who would follow
the personality, development, interests, and skills of students throughout the
years - this is important for attracting talent in positive rather than negative
(i.e. criminal) ways. Prospective employers can have an early opportunity by
providing either specific training courses, boot camps or other activities to young
people in different age groups, but also by delivering information on options
available to them in their future careers.

Several initiatives in Estonia have started to analyze the challenges and raise
the interest of both students and schools to study IT [15], but the real impact still
comes from extracurricular activities or competitions, where the primary focus
is on development (programming). Most of these initiatives run solely due to a
few motivated people in academia and industry. The number of extracurricular
activities supported by the government is fairly low [19,28].

So far, the competitions have focused more on talents than numbers (see
Fig. 1). Only the yearly tests for 4–9th grade and the activities of the Safer
Internet (mentioned above) can be counted on to raise cybersecurity awareness
on a wider basis. Below is an overview of competitions and initiatives involving
cybersecurity and IT in Estonia. The comparison is made using DIGCOMP as
a reference for explaining the level of IT skills taught. While it seems that there
are many initiatives listed, the actual number of students that have access to
them should be much higher in order to impact cyber-awareness.

The military sector has also been involved in the skills development - there is
interest from the Estonian Defence League’s Cyber Defence Unit to do voluntary
work with youth [14]. An example of such work is assisting schools in introducing
cybersecurity courses [21].

164 B. Lorenz et al.

Table 1. Formal education and cyber security teaching

Level Content from curricula

Basic Digital safety is part of the new optional courses of
Informatics. 1.–3. Graders (Digital Safety); 4.–6. Grades
(Digital hygiene); 7.–9. Grades (Cyber Hygiene). The
courses are influenced by DIGCOMP. Main content
revolves around the use of technology (incl. Smart devices);
information systems and online environments; identity,
privacy; communication; health; problem-solving [10]

Secondary school A 35-h beginner-level course focuses on an introduction to
information society challenges (government services,
terminology, and legislation); data protection; incidents
and measures; improving one’s skills from generic digital
literacy to cybersecurity talent level [1]. Here, the talent
means those taking part in nonformal education
competitions for IT and cybersecurity (see the section for
nonformal education below)

Vocational school IT is taught at 12 schools, 11 of them training junior
specialists of IT systems and 1 junior software developers),
higher level skills are rarely seen. Cybersecurity is
somewhat included in overall system security management
training, but not in adequate levels and volume. 1–2
schools plan to start training IT security specialists from
January 2020. An important factor is the chance to
participate in various IT and cybersecurity competitions
on both national and international level (see the nonformal
competitions section below)

Bachelor studies The IT College of Tallinn University of Technology offers a
B.Sc. curriculum in CyberSecurity Engineering. Taught in
English, it has the benefit of an international community
and varying perspectives on cybersecurity [23]

Master studies A joint MSc program between the two largest universities
in Estonia (TalTech and UT). Courses include basic skills
(e.g. Entrepreneurship and Business Planning or
Organizational Theory and Psychology); basic IT
(programming, data mining, system administration);
crypto; cyber and forensics; special courses on attack and
defense; human side (human, legal and management
aspects, history of warfare) [24]

Doctoral studies Thesis topics are chosen from technical perspectives to the
gamification of cybersecurity to human aspects and
management. There is no dedicated doctoral program for
cybersecurity yet

Cybersecurity Within the Curricula of Informatics: The Estonian Perspective 165

Fig. 1. IT and Cyber Security related Competitions in Estonia for the youth

The question is when to start – at the university level, during general educa-
tion [16], or are there additional options and resources? One additional option
that is being considered in order to attract young cyber talent could be military
conscription, as it is mandatory for all male Estonian citizens aged 17–27 (and
voluntary for females).

4 Recommendations

4.1 Formal Education

IT and cybersecurity are being taught within the traditional school curricula at
all levels and within extracurricular activities [1,10] Table 2 shows the educa-
tion, training, knowledge, and experiences of young people prior to joining the
workforce compared to Table 1. There are also other education-related activities:
international olympiads are held in various subjects and cybersecurity competi-
tions are conducted. At gymnasium/high school levels there are national defense
courses, which among other topics give an overview of cyberdefense measures
in the military. There are also vocational schools where students get secondary
education together with a vocation. When the first year is devoted to general
studies and 2nd year to specialized studies (such as IT or cybersecurity-related
topics), the 3rd year is generally meant for job-oriented, on-site vocational train-
ing together with more specialized training. Utilizing these students for the pur-
poses of cyber conscription could prove useful.

For finding new talent, it will be important to not only have information
about the academic background and abilities of young people but to also gain
an insight into their other abilities. For example, a person without formal IT

166 B. Lorenz et al.

Table 2. Education and training possibilities for youth

All levels of education Extracurricular activities
Olympiads
Cyber competitions
Youth organizations

Elementary school Extracurricular activities
Olympiads

Gymnasium/high school Extracurricular activities
Olympiads
National defense studies

Vocational schools Year 1: general studies
Year 2: specialized studies
Year 3: on-the-job-training

Universities Academic studies

education might perform very well on some cybersecurity tasks. An important
aspect of developing cyber talent will be on attracting those people to the field,
who have not even thought about it for any reason. Studies have shown that
interdisciplinarity is very important in cybersecurity, and attracting young peo-
ple with other interests would widen the talent base, but also allow for more
effective use of persons with specific skills.

4.2 Non-formal Education

The proposed list of activities and its impact were divided into a. talent hunt and
competitions for masses regarding awareness (the focus group is students aged
8–24 years); b. International experiences and talent development c. Supporting
training events for students and teachers; d. Development of the learning content;
e. Support from research to evaluate the impact (see Table 3).

4.3 Based on the Findings, the Following Goals Were Delivered by
the Experts

Goal 1: Every child in Estonia is cyber-aware and possesses measurable skills
(CyberCracker) by 2022, 60% of the target group should participate;
Goal 2.1: in 2022, cybersecurity will be taught as an elective in at least 20 Esto-
nian Gymnasiums;
Goal 2.2: Teachers of cybersecurity will be adequately educated and supported
(community), more institutions will be involved in awareness campaigns to find
and guide cyber talents;
Goal 2.3: Teachers are provided with modern study aids;
Goal 3.1: Continuity in discovering, supporting (community) and directing
young talents (competitions, camps, community events);

Cybersecurity Within the Curricula of Informatics: The Estonian Perspective 167

Table 3. The proposed list of activities and its impact for cyber security

Initiative Focus group Goal

Talent hunt (a) 14–24 year
old students,
talents and
potential
talents

Local level competitions CyberSpike (online
pre-competition, main competition) for 250
participants from basic to university level;
CyberCracker School round for beginners once a year
for up to 3000 students from 7–12th graders and
vocational school. Local level Capture The Flag
competitions at least 4 times a year; Vocational
school CyberSecurity online competition once a year.
Cyber Innovation hackathon once a year to develop
new ideas, services, and products with the industry

Education for
masses (a)

8–19 year old
students,
mass

CyberCracker study 1–2 times a year for 4–9th

graders for 60% of the population, CyberCracker for
Primary once a year for 1–3 graders (40% of the
population)

International
experience (b)

15–24 year
old students,
talents

Taking part of a different competition like European
Cyber Security Challenge (EU), CyberPartiot (USA),
Magic CTF (USA), 9/12 (USA); Nordic Security
Competition (EU), Cyber Defenders Discovery Camp
(Singapore) and more. Organizing international
events in Estonia to attract foreign talents

Training for
students (c)

10–24 year
old students

CyberCamp 3 times a year for talents (a 25); local
training events at least 4 times a year (a 25).
Gymnasium level cyber security lessons (35 h) at 20
gymnasiums; Cybersecurity clubs (10 local clubs all
over Estonia). CyberSecurity Roadshow (local events
where experts come to visit - a 100 participants, 6
locations)

Training for
teachers (c)

Teachers Cyber seminars for teachers (3–4 times a year for
20–30 people); annual Cyber Conference for
Education (150–200 participants). Expert teachers
training for 10 teachers in a year

Development of
learning
content (d)

Teachers,
Parents,
Students

Beginner White-hat hacker exercise portal (12–20
new exercises annually); Learning videos (10
annually) with lesson plans; updating cybersecurity
materials, lesson plans for basic school and
gymnasium and make it publicly available (a 10
annually). Develop 3–4 learning games and scenarios
in a year to teach theoretical models and terminology

Science (e) Scientist,
Ministries,
Industry

Studies regarding monitoring initiatives and its
success, modeling how one becomes a cyber talent
and its shortcuts; curriculum development and
testing results; improving discussion about cyber
hygiene in society (academic seminars twice a year,
summer schools once a year for 60 people)

168 B. Lorenz et al.

Goal 3.2: Estonian cybersecurity talents will have opportunities to gain interna-
tional experience at various European and world events (competitions, camps);
Goal 4.1: The CyberOlympics event series will be based on research and acquire
international recognition;
Goal 4.2: Estonian research on cybersecurity is of good quality, results and best
practices will be delivered both nationally and internationally.

5 Discussion

Nowadays, we see that Informatics taught within the third-level education is
common, in the EU it is also being systematized for the first two levels. Never-
theless, cybersecurity has not found wider coverage, as seen from the “Are We
in the Same Boat?” report by Informatic Europe [12]. Only privacy and security
have been mentioned twice but in a rather passing manner. At the same time,
our experience with commoners, managers and experts alike suggests that both
securities of existing systems and awareness of the dark side of technology are of
prime importance. Also, the DigComp recommendations for ubiquitous digital
knowledge do include information security.

This raises the question: where should the sorely needed security experts
come from? In the EU, the issue is discussed on the political level - but in
practice, only volunteer enthusiasm is assumed through informal competitions
and some enterprise initiative (mostly enterprise training programs - as only a
few universities are capable of adequate training levels).

Moving to the first two levels of education, we see that there is a large
gap between slogans and reality. Campaigns like “Come Study IT”, “Hour of
Code” or “Women to IT” are attractive but their practical results (people getting
actually trained and employed) take years to achieve. We also see a bottleneck at
teachers - the fearful majority frightened by technology is incapable of acquiring
the necessary tech knowledge and thus also unable to pass it on to students.

From the results of the CyberCracker, we found that only 1
3 of Estonian

students saw themselves as prospective specialists and creators/developers of
IT, the rest saw themselves as predominantly consumers. Thus, one of the key
questions in getting more talent into IT and cybersecurity, in particular, is: how
to direct the youth to accept responsibility and take initiative.

Another problem is that students do not get in touch with actual content cre-
ation at school, and the little they get would only be via social media. This has
led to a skewed understanding of work in IT sector (or worse, no understanding
at all) - when asked about the prospective paths in IT, programmer and photog-
rapher were the only ones named in several cases. The issue should be addressed
by employers working together with each other (rather than competing) as well
as other parties involved.

The current situation in Estonia is interesting - on the one hand, Informatics
is not compulsory; on the other hand, new curricula have recently been devel-
oped to include various related topics (including cybersecurity). The government

Cybersecurity Within the Curricula of Informatics: The Estonian Perspective 169

would rather see it become compulsory, but it hesitates - not fearing opposition
to the very idea but rather the situation where there are no suitable people to
teach the new topics. Thus, a prime issue here is to find ways to involve new
teachers - whether by including enterprise, academy (even students), military,
or just further promoting e-learning.

Looking specifically at cybersecurity, we compiled the following SWOT
analysis:

– Strengths: small country - easy to change curricula, pilot and apply the
changes. The government supports the idea and there is political readiness
to back various initiatives to provide youth necessary knowledge and skills
(competitions, camps, course development etc).

– Weaknesses: resources, especially funding and staff. Lack of teachers in
cybersecurity and IT, in general, is a top concern (more so as cybersecurity
has high pay levels).

– Opportunities: using existing young talent as teachers and course devel-
opers. Possibility to attract large international corporations by offering a
uniquely positioned testing ground (Estonia is at the same time both a post-
Soviet country and a thoroughly Western startup dream with ample possibil-
ities and good infrastructure).

– Threats: the pace of development in the field will quicken further due to
rapid implementation of AI solutions, making the country unable to cope
with incidents, losing the image of an e-country and international reputation.
As in many other countries, the next generation is a concern as talents leave
towards wealthier countries. Another threat is the influence of services from
countries whose values differ from European ones.

At the university level, we see the need for competence centers for IT teaching
in various contexts. At Tallinn University of Technology, within its TalTechDig-
ital initiative, an e-course called DigiTarkus (DigiWisdom) was piloted for all
its staff in 2018 [27]. The aim of the course is to provide an all-covering basic
set of digital skills (including basic cybersecurity) for both academics of various
backgrounds and support staff alike. Building on the experience, we suggest a
similar project - but this time, not for just mass education but rather a hub for
developing and distributing a necessary skill set for teachers/trainers as well as
future talent hunters.

6 Conclusion

Cybersecurity and -privacy, while having largely been a niche topic in education
so far, move fast to become a central issue in digital education, and neglecting
or downplaying it can seriously hamper the development of the whole field.
Estonia is in a rather unique position to pilot an initiative for students to become
digitally competent and show the results to the rest of the world. We feel that
the orientation to generic awareness in today’s Europe is a mistake as it will
not direct enough young people towards proper IT careers - we may end up

170 B. Lorenz et al.

with either need to import the necessary workforce or just becoming passive
consumers of external services.

Finding teachers and funding is a challenge in education both in Estonia
and elsewhere, at the same time the number of cyber incidents is growing fast.
Competitions are a good way to find interested young people - but if they remain
isolated activities, the effect is not enough. The experiences of the UK and
Estonia both suggest that while we need to start from the grassroots level,
we also have to find ways to lead the talents to higher levels and specialist
careers (among others, both parents and schools should be more involved). At
the university level, cybersecurity should be offered on a wider basis - and again,
both on the mass/common (to provide related knowledge and skills to academics
with all backgrounds) and expert level (to train teachers who are capable of
forwarding the knowledge and skills).

References

1. Estonian Atlantic Treaty Association: National curricula cybersecurity for sec-
ondary school in Estonia (2017). https://1drv.ms/w/s!AuRLzcD9FVl7ywlqPX-
J4ewoLgIy

2. Carretero, S., Vuorikari, R., Punie, Y.: The digital competence framework for cit-
izens with eight proficiency levels and examples of use. Joint Research Centre.
European Commission. Luxembourg (2017). https://doi.org/10.2760/38842

3. Lastekaitse Liit. (Estonian) Union of Child Welfare: Targalt Internetis. About
the project (Estonian) safer internet centre in Estonia (2019). https://www.
targaltinternetis.ee/en/about-the-project/

4. Connectivity for a European gigabit society (2018). https://ec.europa.eu/digital-
single-market/en/policies/improving-connectivity-and-access

5. CyberOlympic. About the project (2019). https://sites.google.com/view/
kyberolympia/eng/about-the-project

6. CyberPatriot - the national youth cyber education program (2019). https://www.
uscyberpatriot.org/

7. A digital single market strategy for Europe (2015). https://eur-lex.europa.eu/
legal-content/EN/TXT/?uri=COM%3A2015%3A192%3AFIN

8. Drogkaris, P., Bourka, A.: Guidance and gaps analysis for European standardisa-
tion. ENISA (2018). https://doi.org/10.2824/698562

9. Drogkaris, P., Bourka, A.: Cybersecurity Culture Guidelines: Behavioural Aspects
of Cybersecurity. ENISA (2019). https://doi.org/10.2824/324042

10. Information Technology Foundation for Education: National curricula infor-
matics for basic school in Estonia (2016). https://drive.google.com/file/d/0B1-
0pZFgjFnQX29Gb0ZYb1FMc0k/view?usp=sharing

11. Estonian cybersecurity strategy (2019). https://www.mkm.ee/en/objectives-
activities/information-society/cyber-security

12. Informatics Europe & ACM Europe: Informatics education in Europe: Are we
all in the same boat? Technical report, The Committee on European Computing
Education (CECE), New York, NY, USA (2017). https://doi.org/10.1145/3106077

13. Interoperability & standardisation: connecting ehealth services (2018). https://ec.
europa.eu/digital-single-market/en/interoperability-standardisation-connecting-
ehealth-services

https://1drv.ms/w/s!AuRLzcD9FVl7ywlqPX-J4ewoLgIy
https://1drv.ms/w/s!AuRLzcD9FVl7ywlqPX-J4ewoLgIy
https://doi.org/10.2760/38842
https://www.targaltinternetis.ee/en/about-the-project/
https://www.targaltinternetis.ee/en/about-the-project/
https://ec.europa.eu/digital-single-market/en/policies/improving-connectivity-and-access
https://ec.europa.eu/digital-single-market/en/policies/improving-connectivity-and-access
https://sites.google.com/view/kyberolympia/eng/about-the-project
https://sites.google.com/view/kyberolympia/eng/about-the-project
https://www.uscyberpatriot.org/
https://www.uscyberpatriot.org/
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2015%3A192%3AFIN
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2015%3A192%3AFIN
https://doi.org/10.2824/698562
https://doi.org/10.2824/324042
https://drive.google.com/file/d/0B1-0pZFgjFnQX29Gb0ZYb1FMc0k/view?usp=sharing
https://drive.google.com/file/d/0B1-0pZFgjFnQX29Gb0ZYb1FMc0k/view?usp=sharing
https://www.mkm.ee/en/objectives-activities/information-society/cyber-security
https://www.mkm.ee/en/objectives-activities/information-society/cyber-security
https://doi.org/10.1145/3106077
https://ec.europa.eu/digital-single-market/en/interoperability-standardisation-connecting-ehealth-services
https://ec.europa.eu/digital-single-market/en/interoperability-standardisation-connecting-ehealth-services
https://ec.europa.eu/digital-single-market/en/interoperability-standardisation-connecting-ehealth-services

Cybersecurity Within the Curricula of Informatics: The Estonian Perspective 171

14. Kaska, K., Osula, A.M., Stinissen, J.: The cyber defence unit of the Estonian
defence league: Legal, policy and organisational analysis. In: Estonia: NATO Coop-
erative Cyber Defence Centre of Excellence, p. 15. NATO Cooperative Cyber
Defence Centre of Excellence (2013). http://ccdcoe.eu/uploads/2018/10/CDU
Analysis.pdf

15. Kooli, N.T.: Back to school programme (2019). https://tagasikooli.ee/?lang=en
16. Kori, K., Altin, H., Pedaste, M., Mäeots, M.: Why are students interested

in studying ICT? (2017). https://sisu.ut.ee/sites/default/files/ict/files/kulli kori
heilo altin.pdf

17. Lewis, J.: Economic Impact of Cybercrime, No Slowing Down. McAfee (2018).
https://csis-prod.s3.amazonaws.com/s3fs-public/publication/economic-impact-
cybercrime.pdf

18. Lorenz, B., Laugasson, E., Püvi, S., Laanpere, M.: DigiTurvis - study report.
Technical report, Tallinn University (2014). https://onedrive.live.com/view.aspx?
resid=120A5B9B56F334F2!340&ithint=file%2cdocx&app=Word&authkey=!
ALtyGq2CQwFt7Q4

19. Mektory tehnoloogiakool (2019). https://www.ttu.ee/kooliopilasele/
tehnoloogiakool/

20. National coalitions (2018). https://ec.europa.eu/digital-single-market/en/
national-local-coalitions

21. Põltsamaa gymnasium cyber security study programme elective subjects (2017).
https://drive.google.com/drive/folders/0B431U6eEm9oVY081WEhMaENQSFk

22. Safer internet day (2019). https://xn-pev-qla.internet.ee/
23. TalTech: TalTech cyber security engineering (2019). https://www.ttu.ee/studying/

tut admission/programmes-in-taltech/bachelors/cyber-security-engineering/#
specialty-4

24. TalTech: TalTech cyber security masters programme (2019). https://www.ttu.
ee/studying/tut admission/programmes-in-taltech/masters/cyber-security/#
specialty-12

25. Teataja, R.: GrÕk. (Estonian) National Secondary School Curriculum (2011).
https://www.riigiteataja.ee/akt/129082014021?leiaKehtiv

26. Teataja, R.: PrÕk. Estonian basic school national curriculum (2011). https://
www.riigiteataja.ee/akt/129082014020?leiaKehtiv

27. Tallinn University of Technology: What is TalTechDigital? (2019). https://www.
ttu.ee/projects/taltechdigital-2/

28. Tuisk, T.: Developments on science extracurricular activities 2013–2017 (2017).
http://www.etag.ee/wp-content/uploads/2017/10/Terje teadushuviharidus-2013-
2017.pdf

http://ccdcoe.eu/uploads/2018/10/CDU_Analysis.pdf
http://ccdcoe.eu/uploads/2018/10/CDU_Analysis.pdf
https://tagasikooli.ee/?lang=en
https://sisu.ut.ee/sites/default/files/ict/files/kulli_kori_heilo_altin.pdf
https://sisu.ut.ee/sites/default/files/ict/files/kulli_kori_heilo_altin.pdf
https://csis-prod.s3.amazonaws.com/s3fs-public/publication/economic-impact-cybercrime.pdf
https://csis-prod.s3.amazonaws.com/s3fs-public/publication/economic-impact-cybercrime.pdf
https://onedrive.live.com/view.aspx?resid=120A5B9B56F334F2!340&ithint=file%2cdocx&app=Word&authkey=!ALtyGq2CQwFt7Q4
https://onedrive.live.com/view.aspx?resid=120A5B9B56F334F2!340&ithint=file%2cdocx&app=Word&authkey=!ALtyGq2CQwFt7Q4
https://onedrive.live.com/view.aspx?resid=120A5B9B56F334F2!340&ithint=file%2cdocx&app=Word&authkey=!ALtyGq2CQwFt7Q4
https://www.ttu.ee/kooliopilasele/tehnoloogiakool/
https://www.ttu.ee/kooliopilasele/tehnoloogiakool/
https://ec.europa.eu/digital-single-market/en/national-local-coalitions
https://ec.europa.eu/digital-single-market/en/national-local-coalitions
https://drive.google.com/drive/folders/0B431U6eEm9oVY081WEhMaENQSFk
https://xn-pev-qla.internet.ee/
https://www.ttu.ee/studying/tut_admission/programmes-in-taltech/bachelors/cyber-security-engineering/#specialty-4
https://www.ttu.ee/studying/tut_admission/programmes-in-taltech/bachelors/cyber-security-engineering/#specialty-4
https://www.ttu.ee/studying/tut_admission/programmes-in-taltech/bachelors/cyber-security-engineering/#specialty-4
https://www.ttu.ee/studying/tut_admission/programmes-in-taltech/masters/cyber-security/#specialty-12
https://www.ttu.ee/studying/tut_admission/programmes-in-taltech/masters/cyber-security/#specialty-12
https://www.ttu.ee/studying/tut_admission/programmes-in-taltech/masters/cyber-security/#specialty-12
https://www.riigiteataja.ee/akt/129082014021?leiaKehtiv
https://www.riigiteataja.ee/akt/129082014020?leiaKehtiv
https://www.riigiteataja.ee/akt/129082014020?leiaKehtiv
https://www.ttu.ee/projects/taltechdigital-2/
https://www.ttu.ee/projects/taltechdigital-2/
http://www.etag.ee/wp-content/uploads/2017/10/Terje_teadushuviharidus-2013-2017.pdf
http://www.etag.ee/wp-content/uploads/2017/10/Terje_teadushuviharidus-2013-2017.pdf

Teaching Informatics: From High
School to University Level

Person-Thing-Orientation and the Choice
of Computer Science Courses

in High School

Jascha Kemper and Michael Brinkmeier(B)

Institute of Computer Science, Universität Osnabrück, Osnabrück, Germany
{jakemper,mbrinkmeier}@uni-osnabrueck.de

Abstract. Person-Thing-Orientation is a psychological trait that repre-
sents a persons interests in its social and physical environment. It often
is measured by a standardised questionnaire, providing two scores for
an individual, the Person- and the Thing-Score. In several studies they
were shown to correlate to a persons tendency to select STEM-subjects
at university and their persistence and success. In this paper the Person-
Thing-Orientation of German high school students and its correlation to
the choice of CS courses in the last two terms are examined. In addition
to the standardised self-test the same questionnaire is used to obtain the
Person- and Thing-Scores that the students ascribe to a typical computer
scientist. Based on the collected data the correlations between gender,
the choice of computer science courses and the self and foreign scores, as
well as their distance, is analysed.

Keywords: Person-Thing-Orientation · High schools · Gender
differences

1 Introduction

In Lower Saxony, and some other states of Germany, the students of the tenth
grade are required to choose a series of courses for the last two years of high
school. Usually these courses can be chosen as a high profile course with a large
impact on their final exam grade, a low profile course with a lower impact a
regular course with little or none impact at all. Some courses, like computer
science (CS) can even be dropped completely.

One year before, they already have to choose some courses for the tenth grade.
Regarding science, technology, engineering and math (STEM) the students have
to select three out of physics, chemistry, biology and CS. While the first three
are continuously taught, beginning in fifth or sixth grade, CS usually is a new
subject, unknown to most of the students. Nonetheless, in many schools, which
provide the possibility to choose CS1, quite a large proportion of students select
it, getting rid of one of the other three sciences. And, following oral reports of
1 Not all high schools provide the opportunity to select CS.

c© Springer Nature Switzerland AG 2019
S. N. Pozdniakov and V. Dagienė (Eds.): ISSEP 2019, LNCS 11913, pp. 175–188, 2019.
https://doi.org/10.1007/978-3-030-33759-9_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33759-9_14&domain=pdf
http://orcid.org/0000-0001-8234-9166
https://doi.org/10.1007/978-3-030-33759-9_14

176 J. Kemper and M. Brinkmeier

teachers, the fraction of girls in CS courses during the tenth grade is quite high2.
But at the brink to the 11th grade, many girls drop CS, reducing their fraction
massively.

To validate this observations by numbers and to understand the reasons, a
series of interviews with students and teachers of a high school were conducted.
From these a questionnaire was developed, which was tested in the CS courses
of a 10th grade in another high school. The survey took place several weeks after
the students had selected their courses for the 11th and 12th grade. Therefore,
they were aware of their reasons for dropping or selecting CS.

The survey was augmented by the standardised questionnaire for the Person-
and Thing-Orientation, as introduced by Graziano et al. [3]. The resulting two
scores are measures for the interest of the subjects in their social and physical
environments. It was observed that these correlate with the likelihood that a
person studies a STEM-subject and their persistence and success [4,6].

In addition to the individual Person-Thing-Orientation, the interest in a sub-
ject might be influenced by the stereotype of a person working in this field. If this
image fits the own interests and personality, this might have a positive influence
on the image of the subject itself. On the other hand, a large difference between
the self image and the stereotype may lead to a principal rejection or disinterest
in the subject. To measure this difference a second copy of the questionnaire
with a slightly different setting was added. It was used to determine the Person-
Thing-Orientation the students presume for a “typical” and fictitious computer
scientist, subsequently called Foreign-Scores. The resulting difference between
the Self- and the Foreign-Scores might correlate with the decision to select or
drop CS-courses in the last two years of high school.

In this paper we describe the results of the questionnaire regarding the
Person- and Thing-Scores and their difference between the Self- and the
Foreign-Scores. In the next section we recollect results about the Person-Thing-
Orientation and some observations documented in the literature about gender-
based differences in interest in computer sciences. These results and some quotes
from teachers, collected during the preparation of the questionnaire, are used to
deduce some hypotheses regarding the correlation of Person-Thing-Orientation
and the choice of CS courses, which we try to evaluate in the following.

2 Gender-Specific Differences of Interest in STEM
Subjects

It is a well documented fact that women are under-represented in many STEM-
disciplines and computer science in particular. This can already be observed in
the last terms of high schools if the students have the opportunity to choose
specific focus areas or to drop courses. One important factor causing this effect
seems to be a specific psychological trait, the so called Person-Thing-Orientation

2 Unfortunately we couldn’t find a reference for this observation, apart from anecdotal
reports of teachers.

Person-Thing-Orientation 177

Table 1. The questionnaire for Person-Thing-Orientation [4]

Item Situation Category

1 Redesign and install a stereo sound system yourself TO

2 Take apart and try to reassemble a desktop computer TO

3 Stop to watch a machine working on the street TO

4 Listen in on a conversation between two people in a crowd PO

5 Remove the back of a mechanical toy to see how it works TO

6 Strike up a conversation with a homeless person on a street PO

7 Try to fix your own watch, toaster, etc. TO

8 Listen with caring interest to an old person who sits next to you
on a bus

PO

9 Notice the habits and quirks of people around you PO

10 Make the first attempt to meet a new neighbor PO

11 Attend a speech given by a person you admire without knowing
the topic on the speech

PO

12 Attempt to comfort a total stranger who has had a disaster
happen

PO

13 Gain a reputation for giving good advice for personal problems PO

[3–5]. One part of it, the Person-Orientation, describes the interest of a person
in interpersonal relations, while the second, the Thing-Orientation, relates to
the interest in technological concepts and things.

For each of the two traits a score can be computed from a standardised
questionnaire (see Table 1, [4]). It was derived by factor analysis from a bigger
version introduced by Little, containing 12 items per aspect [5]. The resulting
questionnaire consists of a total of 13 items, 5 items measuring the TO and
the remaining eight the PO. Each item describes an activity which has to be
rated by the degree to which the subject would enjoy it. The ratings vary from 1
(strongly disagree) to 5 (strongly agree). The Person- and Thing-Scores are the
averages of the answers to the PO and TO items.

Table 2. The relation between Person-Thing-
Orientation and university subjects [4].
Category Gender Person-Score Thing-Score N

Mean SD Mean SD

STEM Female 2.58 0.83 1.81 1.21 30

Male 2.24 0.75 2.76 0.97 137

Non-STEM Female 2.59 0.60 0.87 0.89 109

Male 2.39 0.72 2.06 0.96 126

Graziano et al. examined the
influence of Person- and Thing-
Orientation on the choice of STEM
university courses [4] or as pre-
dictor for persistence and success
in engineering [6]. They observed
that women tended to have a
higher Person-Orientation (PO)
and men a higher Thing-Orientation (TO): “men were higher in TO 1 (M =
2.42, SD = 1.03) than women (M = 1.07, SD = 1.04). Women, however, were
higher in PO (M = 2.58, SD = 0.65) than men (M = 2.31, SD = 0.74)” [4].
They and independently Tay et al. [8] disproved the hypotheses that the Person-

178 J. Kemper and M. Brinkmeier

and Thing-Orientation contradict each other: “TO need not be conceptualized
as a bipolar opposite of PO, or even on a single common dimension with it.”
[4, p. 474]. While a correlation between the Thing-Orientation and the choice
of STEM-courses seems to be obvious, the Person-Orientation has an impact,
too: “On the other hand, students higher in PO may perceive more (or different)
options for their personal and occupational lives” [4, p. 475].

The fact that interest in CS seems to be gender specific was observed in
other studies, too. For example in [7] Petrut et al. describe that in elementary
schools boys seem to have a greater interest in technical devices, while girls
seem to have a higher interest in solving difficult tasks. In addition the interest
in Computer Science or computer related topics seems to be fixated at an early
age. They further subsume, that the influence of specific interventions seems to
be very limited. These observations are in accordance with the results about the
Person-Thing-Orientation and their gender specific differences.

Some studies, like that of Romero and Dietrich [1] indicate that the observed
early differences in the interest in computer science might stem from prejudices
or stereotypes. They used the software Sonic Pi [2] to introduce students to
programming. But instead of a STEM course, they did this in music lessons to
prevent biases. They observed, that especially girls showed a long-term interest
and remembered the key concepts after a longer period of time, indicating a
higher interest in the topic. This might be caused by the fact that students
connect music and musicians with another stereotype than CS and computer
scientists. Therefore the girls may tend to develop a stronger interest in the
application of computers and programming in this area.

2.1 Quotes from Teacher Interviews

During the preparation of the survey analysed in this paper, three teachers
were interviewed. They were asked to explain the high fraction of girls in the
10th grade and the sudden drop in the 11th grade. Here we only recollect those
statements, regarding the interest of girls in CS.

To begin with, none of the interviewed teachers denied the fact that the
interest of boys in CS is generally much higher than that of girls. But this
seems to contradict the fact that quite a large number of girls choose CS at the
first possibility in 10th grade. Two teachers suggested explanations which would
override the reduced interest, and thus explain this effect.

One teacher pointed out that girls often choose computer science in 10th
grade to have more opportunities of dropping subjects or grades later on. There-
fore it seems logical that they wouldn’t continue CS in the last two terms. He
stated that, provided they had the chance of dropping subjects or grades with-
out starting CS, they certainly would have chosen that way instead. But he also
states that nearly all girls who have chosen computer science show great effort
in class.

Another teacher suggests that the main reason for girls dropping CS is not
being disinterested in the subject, but their higher number of opportunities to
select courses. His is due to their more constant performances over all subjects.

Person-Thing-Orientation 179

On the other hand, a special reason for many boys to elect CS would be their
wish of dropping the second foreign language. He thinks that the specific topics
in CS or other subjects would have no influence on boys or girls interests in
the subject in general. He justifies this statement with the observation that the
students’ reactions on the topics were very different from class to class. In the end
he is sure that the reason for girls selecting CS is not a gender specific difference
of interest in the subject, but their higher number of alternatives because of
their more constant performances in all of the other subjects.

These statements seem to indicate that a lot of girls chose CS in the 10th
grade, even though they are disinterested in the subject. Regarding the Person-
Thing-Orientation and the results of Graziano et al. [4] the girls in CS courses
should not show a generally higher interest than the average. Therefore, the boys
in CS courses still would have higher Thing-Orientation than the girls.

3 Hypotheses

In this section some hypotheses are stated, which will subsequently be evaluated
using the concept of Person-Thing-Orientation.

– Hypothesis 1. The fraction of female students in CS courses drops significantly
from 10th to 11th grade. This hypothesis stems from the anecdotal reports
of teachers.

– Hypothesis 2. The Thing-Score of male students is significantly higher than
that of female students. As the first hypothesis this is a direct consequence of
published research on Person-Thing-Orientation. The Observations of Petrut
et al. [7] point in the same direction.

– Hypothesis 3. The probability that a student chooses CS courses in high school
correlates with his or her Thing-Score. This is a direct consequence of the
observation of Graziano et al. [4,6].

– Hypothesis 4. The Person- and Thing-Orientation of female students in 10th
grade CS courses do not differ significantly from the scores of all females. This
hypothesis is a consequence of the teacher’s statements. They claim that girls
do not select CS courses in 10th grade due to a high interest in the topic.
Instead they either choose it to drop another science or to obtain additional
alternatives.

3.1 Self- and Foreign-Assessment of Person-Thing-Scores

As in [3,4,9] one copy of the questionnaire for Person-Thing-Orientation is used
in a subjective perspective, i.e. the subject answers the questions from its own
point of view. The resulting scores are the Self-Assessment. In addition to the
studies mentioned above, and to our knowledge for the first time, a second copy
of the questionnaire should be answered by the subject, taking the perspective of
a fictitious computer scientist of roughly the same age. The resulting scores are
called Foreign-Assessment. It is assumed to provide a measure for the presumed

180 J. Kemper and M. Brinkmeier

Person- and Thing-Scores that the subject attributes to the fictitious and iconic
character. In other words, we assume that the Foreign-Assessment describes the
psychological traits connected with a stereotypical computer scientist.

Our interest in the Foreign-Assessment originates from the assumption that
a student is more likely to select a course, if the covered topic is connected
with a stereotype of persons similar to the own personality. We assume that this
difference can be measured by the difference between the Self- and the Foreign-
Assessment. Therefore, We will examine the correlation of this difference with
the likelihood that a person chooses a course in computer science.

Hypothesis 5. We expected a high correlation between the difference of
Person- and Thing-scores of the Self- and the Foreign-Assessment and their
Choice of CS courses. Especially students dropping CS courses are expected to
have a lower Thing-Self-Score as their Foreign-Score. On the other hand, we
expect that persons with a higher Person-Self-Score than the Foreign-Score are
likely to drop CS courses. The strength of this effect may vary between genders.

4 Method

The survey was conducted at a German high school allowing students to pick
computer science as an examination course since 2006. It took place at the end
of the term, a few weeks after the students selected their courses for the last two
years. All students of the 10th grade attending one of the four computer science
courses took part.

In total 74 students attend these courses, 37 of them female. 71 of them
took part in the survey. The question for their gender was answered by 33 with
“male”, 34 with “female” and 4 with “other”.

4.1 The Questionnaire

The questionnaire consisted of several sections, beginning with questions regard-
ing the gender and the choice of CS courses in the last two terms. The second
section consisted of questions regarding the motivation for the choice. These
questions were constructed from the interviews conducted at a different high
school. The third part consisted of the standardized questionnaire for the Person-
Thing-Score, including the introductory text. The fourth section consisted of 46
theses to which the students had to agree or disagree on a 5-level Likert-scale.
These were followed by a list of seven teaching methods which the students
should rate. The last section consisted of the Person-Thing-questionnaire, but
this time with the request to answer the questions from the perspective of a
young computer scientist.

For the following analysis we only use the gender, the fact whether CS courses
were selected or dropped and the scores obtained from the assessments.

Person-Thing-Orientation 181

4.2 Design

The survey is an empirical study with the independent variables Gender, Choice
of CS courses and Assessments, the latter including the Self-Scores and the
Foreign-Scores. The variable Gender is nominal with two values “male” and
“female”. The third option “other” was ignored due to the small sample size
(n = 4). The nominal variable Choice of CS courses with the values “selected”
and “not selected”. The type of course is neglected, due to small number of cases
in several categories.

The Assessments consists of the two factors Self-Assessment and Foreign-
Assessment. The first are the Person-Thing-Scores resulting from the standard
questionnaire, while the second are the Person-Thing-Scores resulting from the
same questions with regard to a fictitious computer scientist. All four are ordinal
variables with values between 1 (strongly disagree) and 5 (strongly agree).

5 Results

Due to space restrictions, this paper concentrates on the Self- and Foreign-
Assessment of the Person- and Thing-Scores. The data collected from the 46 the-
ses will be evaluated separately. The results regarding the Choice of CS courses
are displayed in Table 3. Exactly two thirds of the male students picked CS as
course in the last two terms, while only about one third of the female students
did. From the raw data a series of values were computed for the analysis:

– Gender with “female” and “male” as possible values.
– SP/ST are the Person- and Thing-Scores of the Self-Assessment.
– FP/FT are the Person- and Thing-Scores of the Foreign-Assessment.
– PTDist is the euclidean distance between the 13-dimensional Self- and

Foreign-Assessment-Vectors.
– PDist and TDist are the euclidean distances between the Person- and Object-

Items of the Self- and Foreign-Assessment-Vectors.
– CSC with the value “dropped” if CS courses were dropped, and “selected” if

a CS course was selected (neglecting the type of course).

Table 3. The Choice of CS courses

Type of CS exam Male Female Sum

High profile exam 18 7 25

Low profile exam 2 0 2

Without exam 2 4 6

Dropped 11 23 34

Total 33 34 67

Table 4. Dependence of the Person- and
Thing-Scores and the distances of Self- and
Foreign-Scores on the factor gender.

Variable F(1,61) p Effect sz. (η2)

SP 2.464 0.122 –

ST 13.82 <0.001 0.185

FP 2.417 0.125 –

FT 7.174 <0.01 0.105

PTDist 16.51 <0.01 0.213

PDist 1.841 0.18 –

TDist 17.41 <0.001 0.219

182 J. Kemper and M. Brinkmeier

Fig. 1. Scatter plots of the Person- and Thing-Scores, marked by gender and CSC.

Fig. 2. Scatter plot of the Person- and Thing-Distances between Self- and Foreign-
Scores plotted over the distance of all items and marked by gender.

5.1 Influence of Gender

Table 5. Means of Self- and Foreign-Scores
Gender SP

Mean (SD)

ST

Mean (SD)

FP

Mean (SD)

FT

Mean (SD)

n

Female 2.21(0.50) 1.28(0.90) 2.54(0.64) 4.37(0.51) 33

Male 2.00(0.60) 2.16(0.93) 2.81(0.74) 3.93(0.78) 34

All 2.11(0.56) 1.72(1.01) 2.67(0.70) 4.16(0.68) 67

The Self- and Foreign-
Assessments of the Person-
Thing-Scores are plotted
in Fig. 1, each dot rep-
resenting one student, its
shape showing the gender
and its colour the value of CSC. Regarding the Thing-Score, it stands out that
the Self Score (ST) and the Foreign-Score (FT) of male students seem to differ
less than those of female students, which tend to a lower ST and a higher FT.

Person-Thing-Orientation 183

Fig. 3. Averages of Self- and Foreign-Scores and the distances of the vectors by gender.

Fig. 4. The average Self- and Foreign-Scores by gender and type.

Since gender is a factor with two levels we use a between subject one way
Analysis of Variance (ANOVA) for the analysis of its influence on the Self- and
Foreign-Scores.3 The resulting F-scores are given in Table 4. While the Person-
Scores do not significantly depend on gender, the Thing-Scores do. This obser-
vation even holds for the Foreign-Scores, with males presuming higher values
for FT. The effect size is given by the η2-score. Values around 0.13 are usu-
ally deemed to indicate an effect of medium strength, while a vlaue of 0.26 is
interpreted as a strong effect.

3 All computations were performed using R.

184 J. Kemper and M. Brinkmeier

5.2 Dependence of Foreign-Scores on Self-Scores

Table 6. The influence of the Self- on the Foreign-
Scores tested by a two way ANOVA.

Variable Factor F(1,59) p-value Effect size (η2)

FP SP 15.2086 0.0002491 0.208

ST 3.4984 0.0663896 –

Interaction 1.0460 0.3106002 –

FT SP 2.1226 0.1504 –

ST 0.0010 0.9748 –

Interaction 0.2021 0.6547 –

SP and ST are used
as factors and FP and
FT as dependent vari-
ables. We execute a two
way ANOVA with the null
hypotheses that the values
of the Self-Scores have no
influence on the means of
FP and FT. The results
are displayed in Table 6.

The null hypothesis is only rejected with high significance (p < 0.001) for the
factor SP and the dependent variable FP. Thus the Self-Person-Score seems to
influence the Foreign-Person-Score. The effect size is quite high. The left scatter
plot in Fig. 1 indicates that a higher SP seems to be correlated to a higher mean
of FP.

5.3 Influence of Scores on the CS Choice

Table 7. The influence of the different variables on
CSC. In all cases CSC is the dependent variable and
Fisher’s exact Test is used.

Factor p-Value Interval Level width Cramer’s V

SP 0.252 [0, 4] 0.5 –

ST 8.424 · 10−6 0.5 [0, 4] 0.699

FP 0.4711 [0, 4] 0.5 –

FT 0.5423 [0, 4] 0.5 –

PTDist 0.0001408 [2, 11] 1 0.632

PDist 0.3364 [0, 7] 1 –

TDist 0.0005121 [0, 9] 1 0.635

Since CSC is a binomially
distributed variable, the
effects of the other vari-
ables cannot be measured
using ANOVA. Instead we
use Fisher’s Exact Test to
test the contingency table
for homogeneity. I.e. in all
cases CSC is the depen-
dent variable and we test
the null hypothesis that
the distribution of CSC does not depend on the second variable. For the analysis
the continuous variables were mapped to categories of given width. If the null
hypothesis is rejected with high significance, Cramer’s V is given as a measure
for the effect size. In all cases its value is larger than 0.6, indicating a strong
effect (Table 7).

Due to the high significance, we reject the null hypothesis that ST has no
effect on the mean value of Choice, being a measure for the probability. Hence
we assume that ST has an influence on the decision to choose a CS course during
the last terms. The same holds for the distance of Self- and Foreign-Assessment
and especially for the distance between the scores of Thing-items. On the other
hand, the ANOVA leads us to accept the hypotheses that SP has no effect on
the mean of CSC, while PDist has a small influence on a low significance level.

Person-Thing-Orientation 185

Table 8. Influence of gender and CSC on Person-Thing-Scores tested with two way
ANOVA.

Variable Factor (F1,59) p-value Effect size (η2)

SP CSC 0.7243 0.3982 –

Gender 1.4195 0.2382 –

Interaction 0.8394 0.3633 –

ST CSC 42.1848 1.925e−8 0.480

Gender 5.5425 0.02191 0.0466

Interaction 0.0959 0.75793 –

FP CSC 0.3507 0.5560 –

Gender 1.5673 0.2155 –

Interaction 0.2616 0.6110 –

FT CSC 0.4447 0.507460 –

Gender 7.4683 0.008273 0.111

Interaction 0.8416 0.362664 –

PTDist CSC 23.0809 1.105e−05 0.357

Gender 8.0947 0.006095 0.0776

Interaction 0.0022 0.962518 –

PDist CSC 3.1215 0.08244 –

Gender 0.5020 0.48140 –

Interaction 0.5643 0.45551 –

TDist CSC 30.1487 8.889e−07 0.409

Gender 8.4006 0.005258 0.0733

Interaction 0.2903 0.592084 –

5.4 Turning Things Around

Up to this point we interpreted CSC as the dependent variable and the Person-
and Thing-Scores as independent. In the following this is turned around. We
assume that gender and CSC are independent factors and that the Person- and
Thing-Scores are dependent variables. In each case the test is conducted against
the null hypotheses that the means of the corresponding scores do not differ
between the groups defined by gender and CSC. If the hypothesis is rejected by
at least a medium significance (p < 0.01), η2 is used to measure the effect size
(cmp Table 8).

In all cases in which the null hypothesis is rejected with high significance,
the influencing factor is CSC. In contrast, the effect of gender seems to be less
significant. This is confirmed by the effect size. For CSC the effect sizes are very
high, with a maximum of η2 = 0.480 for ST and a minimum of η2 = 0.357 for
PTDist. For the factor gender only a small effect can be observed.

186 J. Kemper and M. Brinkmeier

6 Discussion and Conclusions

Before we discuss the results, we have to observe that the number of students is
quite small and that the survey was only conducted at one high school. This may
cause problems regarding the statistical significance of our analysis. Nonetheless
many of the observed effects seem to be quite strong, which may be interpreted
as support for the results.

To start up we can say that many result appeared exactly the way they were
expected. Hypothesis 1, the anecdotal observation that the fraction of female
students in 10th grade CS courses is quite high and drops drastically in the 11th
grade, is confirmed by the numbers. In our sample the fraction of female students
selecting CS courses is half as big as that of male students.

Hypothesis 2 is confirmed, too. Girls are slightly, but not significantly higher
in SP while boys are much higher in ST (actually SP was quite homogeneous).
As the analysis of the dependence of the scores on gender shows (cmp. Table 4),
only the Thing-Scores – Self and Foreign – are influenced. Both genders have
higher FT than ST and lower FP than SP on the other hand, although Foreign-
and Self-Scores are independent. As girls are highest in FT we see that female
subjects have a much higher foreign-self-distance than the males.

The data supports the third hypothesis that CSC correlates to ST. As the
results of the statistical test show (cmp. Table 3) the hypothesis is confirmed
with high significance and a high effect strength. On the other hand SP seems to
have no significant influence. In fact, the effect of ST seems to be stronger than
that of gender. This might imply that the differences observed due to gender
may in fact be caused by the gender specific bias of ST.

Hypothesis 4 claimed that the SP and ST of girls in 10th grade CS courses do
not significantly differ from the whole population. As a comparison of Tables 2
and 5 shows, the values of SP and ST between our sample and the values of [4]
differ. In fact t-tests showed that in each case the means do significantly differ.
This result is somewhat unexpected and may be caused by two factors. First of
all, our sample is quite small, causing a deviation of the means. Secondly, the
samples originate from different populations regarding age and cultural back-
ground.

Regarding hypothesis 5 that the CS choice correlates with the distance
between Self- and Foreign-Assessment, we first have to observe that FP does
not seem to depend on gender, while FT does with medium significance and
medium effect strength. Female students tend to assign higher Thing-Scores to
the stereotypical computer scientist as males. And their ST is lower than that
of males. Therefore, the difference of FT and ST for females is much higher.

As the analysis of the interaction of the distance between Self- and Foreign-
Assessment and CSC shows (cmp. Table 3), the influence of the distance between
the person items is not significant. This is contrasted by the effect of PTDist
and TDist, which are correlated to CSC with high significance and high effect
strength.

Now we must ask if minimizing TDist can improve the number of students
selecting informatics (especially females) or if TDist and CSC are just two

Person-Thing-Orientation 187

factors resulting on a general disinterest in technology and CS. Interviews with
17 students, conducted during the preparation of the survey, showed that most
of them have no idea what the job of a computer scientist looks like. Maybe this
problem is the main reason for TDist being that high. We must ask how much
effect more information about the professional profile and a weakening of the
stereotype would have on TDist and maybe also on CSC.

On the other hand it is surprising that the triple interaction of gender,
CSC and TDist was definitely not significant although the graphical representa-
tion strongly suggests this correlation. Maybe a higher number of subjects can
improve this result. Nevertheless we can see that the group “girls dropping C”
is both the group with highest TDist and with ST.

Subsuming the discussion, ST, PTDist and TDist seem to be predictors of
comparable quality for the choice of CS courses in the last two terms of high
school. Due to the small sample and the nature of the survey, we are not able to
decide which one is better. In addition our claim that the Foreign-Assessment
and the distances are a valid and reliable measure for the stereotype and its
difference to the self image.

6.1 Possible Confounding Factors

To gain higher reliability the test should be improved at the sequence of the ques-
tions. As all subjects started with self-assessment before going over to foreign-
assessment, it is possible that there was an influence on foreign-assessment,
because subjects might have thought they must choose different answers that
time. Maybe even a subconscious wish of a high or low distance to a computer
scientist’s character might have had an influence. Furthermore three subjects
didn’t answer the foreign-assessment questions maybe because they didn’t see
the sense of it after recognizing the questions as seen before. Therefore the dif-
ference must be pointed out even stronger. But this actually might lead to the
subjects recognizing what the test is about to test, which in turn might worsen
the influence of wishing results. Another question is, whether the person-thing
items are suitable for all ages. E.g. a question is whether one would like to talk
to a homeless. As students would associate a homeless with a person much older
than themselves they might give a different answer. Nevertheless it is said that
the person-thing questionnaire is constant for all ages (see [9]). Moreover there
might have been an influence by all subjects visiting the same school which
suggests many common live experiences. They could be strongly connected to a
single item that thereby gets very high approval or rejection leading to a falsified
average result on the scores.

6.2 Future Work

Even though the sample is quite small and restricted to the students of one
school, the main effects seem to be quite strong. Therefore a larger survey and a
more thorough analysis seems to be justified. Especially the correlation between

188 J. Kemper and M. Brinkmeier

the distances of Self- and Foreign-Assessments needs to be checked. This includes
the examination of the claim that the Foreign-Scores measure the stereotype.

Furthermore, the claim that the Self-Scores of female students in CS courses
do not differ from the whole population, can only be checked by a larger survey,
including non-CS students of the same age.

The main job for further surveys is finding other factors on CSC and inte-
grating them by an equal number of items. A much higher number of subjects
is important in two ways: On the one hand it finally should lead to significant
results and on the other hand it allows us to analyze the correlation between
CSC and different profiles. This is not possible yet as e.g. less than 5% of the
subjects chose the sport profile or none of the joining girls elected the social-
science profile. Another important change in the selection of subjects should
be also including those students of grade 10 (or grade 11 in future) who never
elected CS and were missing in this poll because it was only to the CS courses of
grade 10 asking who is going to continue. That way we can also get to know why
not many girls of social-science profile choose CS. It will be especially interesting
to see whether students dropping CS after one year have more in common with
those continuing or with those who have never elected CS at all.

References

1. Alzate Romero, E., Dietrich, L.: Musikprogrammierung mit sonic pi. In: Informa-
tische Bildung zum Verstehen und Gestalten der digitalen Welt, pp. 191–200 (2017)

2. University of Cambridge Computer Laboratory: Sonic Pi - The Live Coding Music
Synth for Everyone (2018). http://sonic-pi.net/

3. Graziano, W., Habashi, M., Woodcock, A.: Exploring and measuring differences in
person-thing orientation. Pers. Individ. Differ. 51, 28–33 (2011)

4. Graziano, W.G., Habashi, M.M., Evangelou, D., Ngambeki, I.: Orientations and
motivations: are you a “people person,” a “thing person,” or both? Motiv. Emot.
36(4), 465–477 (2012). https://doi.org/10.1007/s11031-011-9273-2

5. Little, B.: Psychospecialization: functions of differential orientation toward spersons
and things. Bull. Br. Psychol. Soc. 21, 113 (1968)

6. Ngambeki, I., Evangelou, D., Graziano, W., Bairaktarova, D., Branch, S., Woodcock,
A.: Person-thing orientation as a predictor of engineering persistence and success,
January 2011

7. Petrut, S.J., Bergner, N., Schroeder, U.: Was grundschulkinder über informatik
wissen und was sie wissen wollen. In: Informatische Bildung zum Verstehen und
Gestalten der digitalen Welt, pp. 63–72. Gesellschaft für Informatik, Bonn (2017)

8. Tay, L., Su, R., Rounds, J.: People-things and data-ideas: bipolar dimensions? J.
Couns. Psychol. 58(3), 424–440 (2011). https://doi.org/10.1037/a0023488

9. Woodcock, A., Graziano, W.G., Branch, S.E., Habashi, M.M., Ngambeki, I., Evan-
gelou, D.: Person and thing orientations: psychological correlates and predictive
utility. Soc. Psychol. Pers. Sci. 4(1), 116–123 (2013). https://doi.org/10.1177/
1948550612444320

http://sonic-pi.net/
https://doi.org/10.1007/s11031-011-9273-2
https://doi.org/10.1037/a0023488
https://doi.org/10.1177/1948550612444320
https://doi.org/10.1177/1948550612444320

Wandering Micro:bits in the Public Education
of Hungary

Andor Abonyi-Tóth and Zsuzsa Pluhár(&)

Faculty of Informatics, Eötvös Loránd University, Budapest, Hungary
{abonyita,pluharzs}@inf.elte.hu

Abstract. Micro:bits have educational purposes, these Single Board Computers
(SBC) were based on BBC’s idea and developed by their supervision. The idea
behind it was to give students an insight into programming and engineering
science, encouraging them to choose their field connected to the STEM areas.
These microcontrollers are ideal for supporting kids in learning the foundations
of programming playfully. With the extensions, students experience the basics
of robotics too.
The T@T Labor at Eötvös Loránd University has been working on

experience-based education for decades. In the teacher training program and
public education, the team is trying to use and introduce devices which can
improve computational thinking skills. To achieve this, the University is coming
up and organizes different projects.
The “Micro:bit botorkálás” (“Wandering micro:bits”) was launched in

October 2017. The aim of the program to send micro:bits as many schools as
possible. Students can meet programming in a game-based way either inside the
classroom or in after-school activities. Our 23 kits contain 10 micro:bits. The
registered schools can use the kits free for a month, after that they must post the
kit to the next. Till now (07/2019) over 15000 students in 160 schools met the
kits.
We prepared a research survey to assess the effectiveness and success of our

initiative, and to get to know the teacher’s motivation and impressions.
In our article, we summarize and share our experiences on this device, based

on those reports we got from the participating schools and the completed
questionnaires (N = 78).

Keywords: Micro:bit � STEAM � Education � Learning-by-doing

1 Introduction

The increasing influence of ICT in everyday life and the currently used definition as a
fundamental skill for everyone, not just for computer scientists – computational
thinking [1] could change the views about skills, education and learning [2, 3].
However, the prevailing concepts about the term “user” have to be redefined, and it
does not only cover user activities, such as browsing, chatting or interacting and using
ICT tools, but more the ability to design and implement new ideas, and to be a “creative
creator” [4].

© Springer Nature Switzerland AG 2019
S. N. Pozdniakov and V. Dagienė (Eds.): ISSEP 2019, LNCS 11913, pp. 189–199, 2019.
https://doi.org/10.1007/978-3-030-33759-9_15

http://orcid.org/0000-0001-7629-0233
http://orcid.org/0000-0003-2688-4652
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33759-9_15&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33759-9_15&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33759-9_15&domain=pdf
https://doi.org/10.1007/978-3-030-33759-9_15

The teacher’s new role is to support both the formal and informal learning envi-
ronment, and instead of only delivering factual knowledge and domain specific
strategies to solve problems, rather enhancing the skills required by today’s society [5].

In education teachers mostly work with well-structured problems – they have
clearly defined initial states, goal states, and constraints. To solve them they must use
procedural knowledge, step-by-step algorithms. In the real world they mostly found
open or ill-structured problems, in which they do not know all elements of the problem,
there can be multiple solutions or multiple solution paths and they can use multiple
criteria to assess the solution [6].

A tool to support more dimensions of computational thinking and improve skills in
ill-structured problem solving is to create a program [1]. It means not only coding, but
phrasing ideas, expressing yourself, planning, developing, reflecting/reviewing, and
creating a new product [7].

An other important ability that plays a significant role in future of students is how
they can apply and reuse theirs knowledge and skills. The knowledge transfer, i.e. to
adapt acquired knowledge and skills to other situations, other subjects, and use in real
life and in multiple areas of science can be supported by STEAM (science, technology,
engineering, art and math) in the education [2]. To focus STEAM education the dis-
crete areas can be merged and consequently students can better understand their
environment [8].

To combine programming with robotics and STEAM, the reason will be a “tool”
where motivation and the concept of “learning-by-doing”, “hands-on mind-on learn-
ing”, project based learning can be improved and used and can be placed more and
deeper emphasis on the learning process instead of the result only [7, 8].

2 T@T Lab

The Faculty of Informatics at Eötvös Loránd University, Budapest not only has to teach
the theory of Computer Science, but also “has to use it in order to show its value in
suitable applications that not only facilitate better learning processes, but also motivates
learning and elevates its significance within the world of entertainment” [10, p 203].

In Department of Media and Educational Informatics we set up a special group:
T@T Lab, the name whereof comes from the English initials TEL (Technology
Enhanced Learning). The main goal of this lab is to create experience based learning
activities and environments in education. We use the latest technological advances and
tools in education, research and development to achieve this. Our aim is to improve and
create innovative informal installations in education that can be used both in formal
education or attract interest (e.g. in museums), increase motivation and facilitate the
experience of discovery [9, 11].

The lab is physically in our IT Hut (T@T Kuckó) that functions as a technology
playground for kids, students, parents, teachers and developers. In the IT Hut, we
would like to more bring the developer (computer scientists) site closer to teacher
training and public education. We organize our teacher training classes and innovative
labs for programmers and computer scientists in our IT Hut to share methodology, new
knowledge and cooperation, connection between the three key players in education:
developer - teacher - student.

190 A. Abonyi-Tóth and Zs. Pluhár

3 BBC Micro:bit

3.1 The Hardware

BBC micro:bit, a single board microcontroller allowing multiple educational applica-
tions. The screen with 25 red LED lights arranged in a 5 � 5 grid can display numbers,
texts, icons, animations or sprites that allow various simple games to be programmed
(Fig. 1).

There are several ways to interact with the device. The buttons (A and B) can be
pushed or the built-in sensors such as the temperature and light sensor, motion
detectors (accelerometer and compass) can be used to control the micro:bit using
multiple gestures like shaking, flipping or sensing the changing of environment.

Not only the LEDs are available as output, but it can play sounds, or even music.
The pins (edge connectors) enable the use of digital and analogue inputs and outputs
- connect external sensors or motors. These increasedly accurate sensor and control
solutions enable the application of micro:bits in robotic and STEAM education.

The devices support radio and Bluetooth communication, so users can develop
applications where several micro:bits communicate with each other. Users can design
and implement multi-user games or develop IoT-like systems where one micro:bit
probes the environment and send the readings to the other device that acts in response
by showing the changes which may represented as a diagram, or starting/stopping a
motor.

Power to the micro:bits may be provided via USB connection, external circuits (two
AAA batteries) or via the interface chip. So they can be used disconnected from the
computer. Develop applications and games used in outdoor activities or worn as clothes
as a step counter, jump counter, smart watch or remote controller to a mobile device.
See [12–15].

3.2 Programming Micro:bits

The micro:bit is a microcontroller – it means you can upload the compiled program to
it. Upload may be done via USB cable or Bluetooth connection supported by the micro:
bit companion app on Android or iOS devices.

Fig. 1. The front and back view of micro:bit

Wandering Micro:bits in the Public Education of Hungary 191

Programs can be developed in several programming environments [16, 17]:
Microsoft Makecode Editor, Makecode for micro:bit, Scratch 3.0, Python editor, Swift
and mBed OS 5. Some of them are block based languages, some are high level
languages and some of them support switching between two views: block view and
procedural language.

Several other programming environments developed by various companies or
groups are available [18, 19].

3.3 Micro:bits in Education

Micro:bit can be used in several educational areas and subjects due to their versatility.
The most important part of using this device in education is in information technology,
because it could present motivating, enjoyable activities to most segments like algo-
rithmic thinking, data modelling, programming, data visualization, problem solving,
infocommunication, operating principles of IT devices and math in CS [19, 20].

However, it is also suitable for use in STEM or STEAM education – to connect
multiple domains and subjects (from art to history, from maths to science), and solve
problems where students have to use skills from several subjects, and through the
activity they can learn (and gain experience) about multiple domains in an interdisci-
plinary, “out-of-silo” way.

The device can support project works, cooperation between students and individual
work, as well [12, 13].

4 The “Wandering Micro:bits” Initiative

The T@T lab at Eötvös Loránd University in cooperation with the Public Educa-
tion SIG of John von Neumann Computer Society started the “Wandering micro:bits”
(“Micro:bit botorkálás”) initiative in October 2017.

The main goal was to make BBC micro:bit – and its features in education –

available in as many schools as possible even if just for a limited time. Students should
try and come to know the potentials of the device, improve the computational-oriented
thinking and their motivation for computer science through playful coding. We also
would like to support teachers in deciding which device to buy if they have possibilities
and/or would broaden their educational horizon. Testing and trying the device before
buying it can help avoid buying devices they would not use later or having concerns
about opening towards new things.

First, we bought two kits (10 devices in each kit) and sent them to the participating
schools.

Teachers at schools could use the devices for 2–4 weeks free of charge. Initially the
test period was two weeks in order to involve more schools in the program. Later this
period was extended to four weeks as the number of available kits increased. We had
only two requirements: send the kits to the next school by post and report their
experiments. The report could be a posted on Facebook or sent as a document, the main
goal was to help other schools with ideas on how to start using micro:bits. The ini-
tiative is running, we are looking forward to the registration of additional school.

192 A. Abonyi-Tóth and Zs. Pluhár

In March 2018 the Hungarian distributor of micro:bits (Málna PC) donated a new
kit to the programme, and in May 2018 the Hungarian office of the CPU producer,
ARM extended the programme with 20 new kits. Consequently, we now use 23 kits,
which requires extensive organization work, but now schools have the chance to use
the kits for 4 weeks at a time.

The kits were available from the start in nearly 160 schools. Teachers could use the
devices either during lessons or in after-school activities, project days or weeks.

To support the teacher’s work in public education we published tutorials and
materials in Hungarian. Among others, we prepared and published a free after-school
activity curriculum [4]. This curriculum includes materials covering topics from ani-
mation through game programming to sensor uses and further utilization opportunities.
The material comprises fully developed 14 sessions, 90 min each.

We realized during the preparation of the curriculum for after-school activity that
the translation of the Makecode block environment was not well-prepared and was
missing the underlying basic, standardized concept. We took a lot of effort into the
translation and preparation of several materials.

5 Assessment of the Results and Impressions of Our Initiative

5.1 Scope of the Study, Methodology, Hypotheses

We prepared a research survey to review our original concept and the functioning the
initiative.

In April 2019 a questionnaire was sent to the contact persons of the schools that
participated in the programme, and finished the test period [N = 126]. We asked them
about motivation, impressions, ideas and about how the kits were used.

The questionnaire had 21 questions. For attitudes and ways of use we used the five-
point Likert scale, but for their impressions we preferred open answers.

Our hypotheses were as follows:

– H1. Mostly IT teachers will use the micro:bit kits in the initiative.
– H2. Most teachers (>75%) do not have any previous IT knowledge, and micro:bit

will be the first device they use in education.
– H3. Mostly one teacher (the contact person) will use the kits in the applicant school.
– H4. The kits will be used in classes 5–8 (age 10–14) in most cases.
– H5. The most commonly used (>75%) programing environment will be block

languages.

5.2 Participating Teachers and Schools

62% (N = 78) of the participating 126 schools completed our survey in April 2019.
Most teachers (99%) teach (at least) IT sciences that confirmed our hypothesis [H1]

about it. Though the device could be used in several STEM (and STEAM) subjects,
most teachers lack the required programming skills.

Wandering Micro:bits in the Public Education of Hungary 193

Our opinion is that teachers not specialized in IT could attend special teacher
training courses to learn not only integrating micro:bits in education but the basics of
programming.

We were interested in participants’ prior knowledge of programming single board
microcontrollers (e.g. Arduino, Raspberry pi, …) or robotics. We supposed that most
teachers (>75%) do not have any previous knowledge, and micro:bit will be the first
device they use in education. Our hypothesis [H2] was confirmed as most teachers
(81%) did not have any knowledge or experience in this area. The teachers who already
had some programming skills got the Bee Bot, Blue Bot or Mbot (6%), the LEGO
robots (6%), Arduino (4%) and the ArTeC tools (4%).

5.3 Use of the Kits

As the number of travelling kits was increasing we could increase the duration micro:
bits could spend at schools. More than half (59%) of the schools could use the kits for
3–4 weeks, 35% for less than 3 weeks and 6% for more 4 weeks.

We were curious how many teachers used the kits in each school. Our hypothesis
[H3] was that mostly one (the contact person) because of teachers’ extremely high
workload and the difficulty to learn new technology, cooperate with others in
unplanned activities and coordinate the sessions during the school year. We had to
dismiss this hypothesis: based on the answers several teachers used the device in most
schools (58%) (see Fig. 2).

Micro:bits can be used at various levels of education. We asked the teachers about
students’ ages to learn which age groups used the devices in the schools. Our
hypothesis [H4] – mostly in classes 5–8 (age 10–14) – was confirmed. The highest
number of students meet micro:bits in classes 5–8 (49%) (see Fig. 3).

1 teacher
41%

2 teachers
42%

3 teachers
10%

>=4 teachers
6%

Number of teachers to have used the kits in each school

Fig. 2. Number of teachers to have used the kits in each school

194 A. Abonyi-Tóth and Zs. Pluhár

Inside the Classroom
We asked the participants about using micro:bits in classrooms. Figure 4 and Table 1
shows the results.

There was only one school where the kit was not used in classroom activity, only in
after-school activities. Teachers used the devices in 23 lessons on average in the given
period. Most of them were IT lessons, however, some teachers also used them in
geography, science, English, physics, math lessons and in e-library activities.

classes 1-4
17%

classes 5-8
49%

classes 9-10
21%

classes 11-12
12%

Distribution of participating classes

Fig. 3. Distribution of participating classes

1

22

17
15

8
7 8

0

5

10

15

20

25

0 1-9 10-19 20-29 30-39 40-49 50<=

Number of micro:bit based lessons concerning the usage period

Number of schools (total)
Number of schools (1-2 weeks usage)
Number of schools (2-3 weeks usage)
Number of schools (3-4 weeks usage)

Fig. 4. Number of micro:bit based lessons according the usage period

Wandering Micro:bits in the Public Education of Hungary 195

We also surveyed the number of students. On average 114 students per school used
micro:bits. The minimum value was 17 and the maximum was 500, while the median
was 80. At least 4 teachers used the kit in the school with the maximum number of
students.

After-School Activities
Approximately third (35%) of the schools did not use the kits in after-school activities.
The others used them in extracurricular activities (73%), on project weeks, on Coding
Week (33%), they organized career orientation (12%), project days (10%). Some
schools used micro:bits at the Career Orientation Night1 (2%) and/or demonstration
class (2%).

On average 42 students per school used micro:bits in after-school activities. The
median was 20, the minimum value was 2 and the maximum was 400.

Programming Environments and Advanced Application
As we presumed [H5], the favourite programing environments were block languages
(87%) - Makecode (72%) and Scratch 3.0 (15%). Other than block based languages
were mostly used with older students in secondary schools, but not exclusively
(Table 2).

We were interested if teachers could try the advanced opportunities despite the
limited time, and if yes, which of them. Only 15 schools (19%) had time and external
tools (like aluminum foil, crocodile clips, …) to try the following advanced activities:

• data transfer/communication between micro:bits
• wearable projects (like step counter)

Table 1. Descriptive statistics of the number of micro:bit based lessons

Total 1–2 weeks usage 2–3 weeks usage 3–4 weeks usage

Sum 1807 132 272 1403
Average 23,17 9,43 20,92 27,51
Median 16,5 8 20 20
Minimum 0 0 6 4
Maximum 88 25 40 88

Table 2. Frequency of the programming environments

Programming environments Count Frequency (%)

Makecode environment (block programming) 67 72%
Makecode JavaScript programming environment 10 11%
Scratch 3.0 14 15%
Python 2 2%

1 National event showcasing various professions.

196 A. Abonyi-Tóth and Zs. Pluhár

• using external sensors
• robotics (control and line following projects)
• maths experiments in probability theory
• distance measuring by radio communication
• creation of a floor piano
• creating traffic lights
• reflex games, speed measuring
• smart house projects
• encryption, coding, decoding projects.

5.4 Teachers’ Impressions

The results of numerous researches (UK, Western Balkans, Denmark) about experi-
ences with using micro:bits in education are available on the micro:bit research website
[21]. We can read positive feedback that the device helps to demonstrate that all kids
can code, increases motivation, more girls will feel the power in CS (or STEAM) and
teachers can feel more confident themselves.

We do not have any similar research in Hungary, and we were interested in both the
positive and negative experiences with micro:bits.

The (free text) answers about positive experiences (N = 66) were diverse. We
categorized the open-ended answers. The most frequent answers of the teachers
included increased motivation (27%), user-friendliness (13%), spectacularness (9%),
connection to the real world (9%), the potential in creativity (8%) and problem solving
(8%), self-directed learning (6%), versatility (6%), the potential in differentiation (3%),
low price (3%), novelty (3%), external scalability (1%), the potential in group work
(1%), direct feedback (1%), on-line programming interface (1%), stand-alone operation
without computer (1%).

Negative feedback (N = 23) included the lack of external sensors and motors
(26%), difficult usage of the battery holder (17%), the smallness of the LED display
(13%), relative slowness (9%), limitations of built-in sensors (9%), problems with USB
connection (9%), vulnerability (4%), lack of user authentication on makecode portal
(4%), problems with software uploading (4%), lack of operation indicator led (4%).

Future Plans
We asked about the participants’ future plans with micro:bits: if the school would like
to buy some devices or kits. Most schools (80%) found the device so useful and
interesting that they plan buying, already ordered or they use their own (newly bought)
devices.

We were interested whether participation in our initiative influenced the plans about
buying micro:bits. The average of the answers on the five-point Likert scale was 4.7.
So we think the initiative had a very strong influence factor.

Teachers’ Feedback
We asked teachers about theirs opinion. 77 teachers answered this part of the ques-
tionnaire. Table 3 shows see the results with the most common answers set in bold.

Wandering Micro:bits in the Public Education of Hungary 197

5.5 Correlations

We could not find significant correlation between background variables (like previous
knowledge in programming single board microcontrollers) and experience or opinions
about the success of our initiative.

6 Conclusion and Future Works

Assessing the survey results, we obtained a bigger and in-depth picture about partic-
ipants (schools and teachers), about the methodology and the experience of using new
tools in Hungarian education.

Our results indicate that our initiative had a strong impact on the plans to buy
devices and on future educational activities at schools, and accordingly, it fits the main
idea to support teachers before knowing a tool and then decide about it. We will work
on reaching out to new schools, promote the device among decision makers and
prepare targeted tenders with industry partners to enable schools to have their own
micro:bits and extension kits to use them in a variety education scenarios.

We intend to start teacher training courses in the coming years not only for IT, but
other STEAM teachers focusing on micro:bits in education and robotics.

We believe that our initiative can also be successful outside Hungary, where the
main goals are the same: support teachers to bring IT education to the next level – not
only teaching how to use the devices, but focus more on logical thinking, creativity,
cooperation, team and project works in IT and STEAM education.

Table 3. Distribution of opinions

5 strongly
agree

4
agree

3
undecided

2
disagree

1 strongly
disagree

5 and 4 together
(mostly agree)

I. The device made the lessons and activities enjoyable for students
87% 12% 1% 0% 0% 99%
II. I find the device perfect for improving algorithmic thinking
82% 16% 1% 1% 0% 97%
III. I find the device perfect for improving problem solving skills (individual, in group work or
in project work)
81% 18% 0% 1% 0% 99%
IV. I feel more confident as a teacher in my subject by using micro:bits
38% 48% 9% 4% 1% 86%
V. We can go beyond the built-in capabilities fast, so we need the advanced level and external
extensions (external sensors, robotics, smart home, smart city applications)
45% 35% 16% 3% 1% 81%
VI. This device is just like the others, i.e. after its novelty wears off, students’ motivation will
decrease
4% 25% 36% 22% 13% 29%
VII. The device supports teaching facts and the curriculum
31% 44% 18% 5% 1% 75%

198 A. Abonyi-Tóth and Zs. Pluhár

Acknowledgments. We are grateful to our University (Faculty of Informatics at ELTE), the
Hungarian office of ARM and Málna PC for their support and for funding this initiative.

References

1. Wing, J.: Computational thinking. Commun. ACM 49(3), 33–35 (2006). https://doi.org/10.
1145/1118178.1118215

2. Csapó, B.: A tudáskoncepció változása: nemzetközi tendenciák és a hazai helyzet. Új
Pedagógia Szemle 2, 38–45 (2002)

3. Molnár, Gy., Kárpáti, A.: Informatikai műveltség. In: Csapó (ed.) Mérlegen a magyar iskola.
Nemzeti Tankönyvkiadó, Budapest, pp. 441–476 (2012)

4. Resnick, M.: Sowing the seeds for a more creative society. Learn. Lead. Technol. 35, 18–22
(2007)

5. Greiff, S., et al.: Domain-general problem solving skills and education in the 21st century.
Educ. Res. Rev. 13, 74–83 (2014). https://doi.org/10.1016/j.edurev.2014.10.002

6. Jonassen, D.H.: Toward a design theory of problem solving. Educ. Technol. Res. Dev. 48(4),
63–85 (2000). https://doi.org/10.1007/BF02300500

7. diSessa, A.: Changing Minds: Computers, Learning, and Literacy. MIT Press, Cambridge
(2000)

8. Papert, S.: Mindstorms: Children, Computers, and Powerful Ideas. Basic Books, New York
(1993)

9. Turcsányi-Szabó, M.: Aiming at sustainable innovation in teacher education – from theory to
practice. Inform. Educ. Int. J. 11(1), 115–130 (2012)

10. Turcsányi-Szabó, M.: Augmented Edutainment on campus, In: Gardner, M., Garnier, F.,
Delgado Kloos, C. (eds.) Proceedings of 2nd Immersive Education Summit, pp. 204–209.
Universidad Carlos III de Madrid Departamento de Ingeniería Telemática, Paris, France
(2012). ISBN 978-84-695-6427-1

11. Turcsányi-Szabó, M.: Online professional development for teachers. In: Knezek, G., Voogt,
J. (eds.) International Handbook of Information Technology in Primary and Secondary
Education, vol. 20, pp. 747–760. Springer, London (2008). https://doi.org/10.1007/978-0-
387-73315-9_43

12. Sentance, S., Waite, J., Hodges, S., MacLeod, E., Yeomans, L.E.: “Creating Cool Stuff” -
Pupils’experience of the BBC micro:bit. In: Proceedings of the 48th ACM Technical
Symposium on Computer Science Education, SIGCSE 2017 (2017). https://doi.org/10.1145/
3017680.3017749

13. Ball, T., et al.: Microsoft touch develop and the BBC micro:bit. In: Proceedings of the 38th
International Conference on Software Engineering Companion, ICSE 2016, pp. 637–640.
ACM, New York (2016)

14. Micro:bit hardware guide. https://microbit.org/guide/hardware/. Accessed 05 May 2019
15. Micro:bit hardware description. https://microbit.org/hardware/. Accessed 05 May 2019
16. Micro:bit editors. https://microbit.org/code/. Accessed 05 May 2019
17. Micro:bit Third Party Editors. https://microbit.org/code-alternative-editors/. Accessed 05

May 2019
18. The micro:bit software ecosystem. https://tech.microbit.org/software/. Accessed 06 Apr 2019
19. Andor, A.-T.: Programozzunk micro:biteket! (2018). http://microbit.inf.elte.hu/szakkori-

anyag/. ISBN 978-963-284-992-8. Accessed 05 May 2019
20. Péter, S., László, Z.: Informatika oktatása (2012). https://www.tankonyvtar.hu/hu/tartalom/

tamop412A/2011-0052_34_informatika_oktatasa/index.scorml. Accessed 05 May 2019
21. Academic research into the BBC micro:bit | micro:bit, https://microbit.org/research/.

Accessed 05 May 2019

Wandering Micro:bits in the Public Education of Hungary 199

http://dx.doi.org/10.1145/1118178.1118215
http://dx.doi.org/10.1145/1118178.1118215
http://dx.doi.org/10.1016/j.edurev.2014.10.002
http://dx.doi.org/10.1007/BF02300500
http://dx.doi.org/10.1007/978-0-387-73315-9_43
http://dx.doi.org/10.1007/978-0-387-73315-9_43
http://dx.doi.org/10.1145/3017680.3017749
http://dx.doi.org/10.1145/3017680.3017749
https://microbit.org/guide/hardware/
https://microbit.org/hardware/
https://microbit.org/code/
https://microbit.org/code-alternative-editors/
https://tech.microbit.org/software/
http://microbit.inf.elte.hu/szakkori-anyag/
http://microbit.inf.elte.hu/szakkori-anyag/
https://www.tankonyvtar.hu/hu/tartalom/tamop412A/2011-0052%5c_34%5c_informatika%5c_oktatasa/index.scorml
https://www.tankonyvtar.hu/hu/tartalom/tamop412A/2011-0052%5c_34%5c_informatika%5c_oktatasa/index.scorml
https://microbit.org/research/

Introduction to Computational Thinking
for University Students

Zsuzsa Pluhár(&) and Hajnalka Torma

Faculty of Informatics, Eötvös Loránd University, Budapest, Hungary
pluharzs@inf.elte.hu, hajnalka.torma@gmail.com

Abstract. Computer Science education has a long tradition at Eötvös Loránd
University, Budapest. A lot of students apply for BSc studies that consists of 6
semesters, and it provides a general overview of the world of Informatics: the
appropriate mathematical and theoretical background and practice in program-
ming and software engineering. Our experiences show three basic problems of
an computer science education at BSc level in English: an inadequate level of
English language skills, the lack of the basics in mathematics, and inexperience
in algorithmic thinking and problem solving. When applying to the university,
students are tested for English language and mathematics skills, and based on
the results they might be assigned to study in a preliminary year, where they
have courses that improve their skills in English and mathematics. However,
there was no course that aimed at improving algorithmic thinking and problem
solving skills, and students’ lack of these skills often resulted in problems and
learning difficulties in the introductory programming course. This experience
has inspired us to develop and start a new course (Introduction to Computational
Thinking) that focuses on improving computational thinking skills, with
emphasis on algorithmic thinking and problem solving skill development. The
aim of our paper is to describe the structure of the course, to introduce what was
done in the first semester, and present our first experiences with this course. We
would like to follow our students as they progress to their first year in their
university studies, look at their results in programming classes, and improve our
course based on the results.

Keywords: Computational thinking � Algorithmic thinking � Programming

1 Introduction

In the higher education, the first years in programming are difficult. Having lower level
skills in the basics of algorithmic thinking and problem solving strategies, and lack of
understanding of abstract programming concepts might have a negative effect on
students in their studies in the following semester [1]. Having worked with first year
Computer Science BSc international students at Eötvös Loránd University, Budapest
for several years, we experienced that they vary greatly in their knowledge and skills
when they enter the university. They have more diverse backgrounds than the Hun-
garian students, thus many of them have shown having more gaps in theoretical
background and knowledge than their Hungarian peers [1, 2]. To be more successful

© Springer Nature Switzerland AG 2019
S. N. Pozdniakov and V. Dagienė (Eds.): ISSEP 2019, LNCS 11913, pp. 200–209, 2019.
https://doi.org/10.1007/978-3-030-33759-9_16

http://orcid.org/0000-0003-2688-4652
http://orcid.org/0000-0002-7733-2105
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33759-9_16&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33759-9_16&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33759-9_16&domain=pdf
https://doi.org/10.1007/978-3-030-33759-9_16

with their studies, students’ computational thinking, and, in particular, algorithmic
thinking skills need to be improved.

1.1 Computational Thinking and Algorithmic Thinking

According to Jeanette Wing [3, 4] “Computational Thinking is the thought processes
involved in formulating problems and their solutions so that the solutions are repre-
sented in a form that can be effectively carried out by an information-processing agent”
[4, p 1]. Her definition has been discussed by many researchers, but the main ideas of
logical thinking, problem solving, algorithmic thinking, analysis, systematic planning,
generalization, and the skills of creating abstractions are common in most of the
Computational Thinking (CT) definitions. These skills enable people to solve more
complex problems [5–9]. According to Selby [11], CT consists of the ability of
abstraction and generalization, algorithmic thinking, the skill of breaking problems into
smaller sub-problems, and the skill of evaluation. Selby [11] stated that to be able to
discuss whether students’ CT skills have developed, the components of CT have to be
clearly identified.

Among the components of CT, the algorithmic thinking skills get in focus during
the learning of programming as algorithmic thinking is an essential skill in computer
science. Algorithms are present in our everyday lives, and we use algorithms to solve
computer science problems, as well. According to Zsakó and Szlávi [12], the levels of
algorithmic thinking are the identification of an algorithm, the understanding of an
algorithm, the execution of an algorithm, the analysis of an algorithm, the creation of
an algorithm, and the implementation of an algorithm. This definition corresponds to
the cognitive levels of Bloom’s taxonomy [13, 14].

Improving Computational Thinking and Algorithmic Thinking. There have been
several initiatives with the aim of improving computational thinking skills of students.
These can be divided into 3 main categories. The first aims at integrating some spe-
cially chosen tasks into other fields of study, often during project work.

In the second method, computational thinking skills are analyzed and improved
with the help of teaching programming skills and using simulations. Students might be
required to develop new programming artifacts, including planning and implementa-
tion, or to integrate existing systems into their own projects [15–17]. The third
approach does not involve programming, sometimes not even the use of a computer,
but tries to develop students’ skills with carefully designed activities [18–23].

Bebras and Unplugged Activities. Computer science unplugged activities can help to
improve computational thinking skills without using a computer, without learning
programming first. Focus can be given to hand made activities, and higher emphasis to
learning-by-doing and learning-by-moving methodologies that support the efficiency of
acquirement and motivation [24]. Moreover, several studies document the beneficial
effects of Computer Science Unplugged towards recruitment and motivation [24–28].

Bebras, an international initiative to promote CS and CT among school students
and teachers [10] is one activity where we can find unplugged possibilities. It can
motivate students/kids to think about IT or CS and help them avoid negative attitudes.
We can show students how important CS is in our world, and that they can find it

Introduction to Computational Thinking for University Students 201

everywhere around them [24]. The Bebras competition is present in Hungary since
2011, and last year more than 25,000 students participated in it [21]. One of the main
aims of Bebras is that tasks should not require any previous, background knowledge to
solve the problems, but students should “work” with typical CS problems and activi-
ties, and they unintentionally use strategies and algorithms from the area of IT.

Micro:bit, Robotics. The BBC micro:bit, a single board micro-controller can support
several educational goals. The hardware allows us to use multiple inputs: not only
pushing a button, but also sensing the environment in several ways. The output can be
simple led lighting, or the activities could be extended with the help of pins (edge
connectors). The tool supports communication via Bluetooth [30–32].

There exist several programming environments, both block and text based, and
both procedural and object-oriented. Programming environment and language could be
chosen based on the age, habits, attitudes or previous knowledge of students, or based
on our goals in education [31–34].

As educational goals, micro:bit supports hands-on mind-on learning, learning-by-
doing activities, STEAM (science, technology, engineering, art and math) ideas,
cooperation and project work. It connects multiple domains and science areas [34, 35].

1.2 Programming Studies at ELTE University

The Eötvös Loránd University has a long tradition in programming education. Some
parts of the curriculum require a high understanding of theory. In the first year of the
BSc programming studies, there is a programming course - programming fundamen-
tals, where students learn the theoretical background of basic algorithms and data
structures in imperative programming paradigm. Later, other paradigms and languages,
and more theories are built on these basics. The course consists of lectures about theory
with some examples, and lab sessions where further tasks are presented to students, and
students are required to work on their own, as well. The goal of the first year pro-
gramming course is to provide the theoretical background of programming, and less
emphasis is laid on syntax of a programming language.

Our previous findings and experiences have inspired us to develop a new course,
Introduction to Computational Thinking, where the focus is on helping students to
learn the basics of programming, improve algorithmic thinking and problem solving
skills, and introduce some data concepts to students.

2 The Introduction to CT Course

The new course, Introduction to Computational Thinking, which was developed based
on the discussed theoretical background, is aimed at students with little or no pro-
gramming experience. The main aims of this course are

• to give an algorithmic thinking and problem solving basis for students;
• to provide students with an understanding of the role computation can play in

solving problems;
• to help students write small programs that allow them to accomplish useful goals.

202 Zs. Pluhár and H. Torma

The course lasts for one semester (*12 weeks) with 4 contact hours per week. The
course is accompanied by a course in the Canvas learning management system. All the
course requirements, assignments and materials are uploaded to the Canvas course, and
students have to submit their work to the online course, as well. The aim of having the
online course is to make everything available for students wherever and whenever they
would like to deal with the course material.

The main idea of the course is to facilitate students to explore fundamental com-
puter science concepts through computer unplugged activities, code challenges and
solving problems with the micro:bit. Four sections were planned that were build one
upon other.

2.1 Bebras Tasks

The first section was planned as an introduction to the aims of the course. Our goals
were

• to give a picture about computer science problems;
• support students to start thinking about problems on their own;
• give place and time to speak about problems, problem solving strategies, wording

the questions and solutions in a problem;
• give the motivation for solving problems and thinking about strategies.

To achieve this, specially selected Bebras tasks were used in multiple formats.
First, Bebras cards [29], the Algorithms Unplugged version, were used. The stu-

dents worked in groups, and each group had 10 cards – selected by the instructors.
They had to solve the tasks, speak about them, try to find not only the solution but the
connection to CS. Then students were asked to read the “why informatics” section on
the card. Finally, they had to choose one task and speak about the problem for the
whole group.

As the next step, we collected several Bebras activities from the UK Bebras
challenge1 for students to work with. The basic concept was the same: students worked
in groups, and discussed problems, solutions and solution paths.

As closing this section we discussed the definition of problem solving, algorithm
(as a step-by-step solving method), and the open or ill-structured problems. The dis-
cussion worked like a directed brainstorming.

Then we discussed the attributes of Bebras tasks (in wording, pictures, previous
knowledge, etc.), and asked the students to write/prepare their own task.

2.2 Instructions in Unplugged Activities

In this section, we wanted to show the importance of precise and exact instructions that
a computer can use.

We began with small games: The students worked in groups. One team member
had to draw or move without to know the goal, and others had to give the instructions.

1 https://challenge.bebras.uk/index.php?action=user_competitions.

Introduction to Computational Thinking for University Students 203

https://challenge.bebras.uk/index.php?action=user_competitions

With the “moving” version, the given instructions needed to be executed in reversed
order, as well. As closing, after each game, we discussed the instructions, the success or
failure of “output”, how the instructor changed the instructions during the execution as
he/she detected the different action, and the reasons.

After that, we restricted the possible given commands, and the students had to use
only those instructions. (See Fig. 1).

The students often had to change their roles – each student acted as an “operator”
(who gives the instructions) and was the guided (who follows the instructions).

2.3 Code Challenges

As the third part of the course, we collected several code challenges from code.org and
from Bebras tasks. In this step, the students had to give instructions to the computer
mostly like LOGO commands. First, we used the basics as “go forward” or “turn” with
given attributes. Then we started to use loops and conditional branches.

A typical Bebras task was 2016-FR-04, where students had to solve several mazes.
The students had to build the mazes from LEGO blocks, and then give the instructions
so that 4 times repeated them the small robot can escape (see Fig. 2).

We used 3 levels for each tasks: an easy, a medium and a hard. The easy level was
the trial, the students could understand the problem and the task, and it provided the
motivation basis, as well.

Using these tasks, we had the opportunity to speak about the basics of program-
ming languages - what could be the meaning of a “left” arrow (only turn left, or turn
and step to the next place), and about that the differences in “codes” depend on the
meaning. In this step we introduced the ill-structured problems: we spoke about dif-
ferent solution paths and different solutions in “code”.

Fig. 1. One of the selected “instruction giving” tasks

204 Zs. Pluhár and H. Torma

From code.org, we selected not only problems with control (such as the angry bird
game2), but also other CS problems such as the text compression topic3. Students
usually had to work in pairs or in small groups, however, students did the text com-
pression tasks individually, comparing their results. All individual and group work was
followed by class discussions.

2.4 Programming Micro:bits

After reaching an understanding in controlling, we started to use the computer, with the
help of a block-based programming language, and sensing our environment.

In each class, first, we made a small introduction. From the second task on students
had to prepare a small task where they needed to use the learned skills from the last
occasions. When new things came up, we discussed the problems, talked about the
algorithm and the solving process, and then coded it together. After this initial stage,
students had to make some changes in the original projects, or prepare a variation to
show that they are able to synthesize the old and new knowledge and skills. Students
were told to work in groups, and discuss the processes, ideas, solutions.

The tools and the block-based environment was introduced with simpler projects
such as animations, throwing the dice, rock-paper-scissors game and coin-flipping.

Fig. 2. 2016-FR-04 Bebras task – medium level

2 https://studio.code.org/s/express-2018/stage/2/puzzle/2.
3 https://studio.code.org/s/csp2-2018/stage/2/puzzle/1.

Introduction to Computational Thinking for University Students 205

https://studio.code.org/s/express-2018/stage/2/puzzle/2
https://studio.code.org/s/csp2-2018/stage/2/puzzle/1

Then we started to use the inputs from the environment (like buttons and sensors), and
experimented with events, measuring and game design. At the end, we prepared games
with radio communication and voices from the planning phase to the programming and
testing.

2.5 Extending Micro:bits

As the last part of the course, we showed the simplest extensions of micro:bit. We
collected projects with simple circuits problems such as the frustration game4, timing
gates5, and the Morse code transmitter6. The students worked in groups. They had to
choose one of the projects, and follow the tutorial. When they understood the project,
and it worked as it was expected, they had to change something in the project: add a
new feature, increase the number of used micro:bits, or establish communication
between micro:bits.

In this part, one of the main ideas was following tutorials and instructions of a
document, and understanding a documentation about a project. We tested the under-
standing with the changes – if they could give simple modifications, new features, they
understood the basic problems deeper and the problem solving action was not only a
“following tutorial” method.

As the closing of the course, students had to present their projects in 10–15 min to
the others. They were required to speak about the basic problem, about the solution
path and the solution, and about their modification that was added as a new idea. We
asked them to speak about their experiences that they had while they were working on
the project - what had they found difficult or interesting, what was their motivation.

3 Impressions and Experiences from the Course

As the English language skills of many of the students in the preparatory year are
lacking, at the beginning of the semester, it was only some students who were actively
participating during the discussion of problems/tasks. However, all the students seemed
to be open towards the course contents and aims, and were engaged in the given tasks.
Their lack of language skills, later in the course, could be overcome by switching the
language of the programming environment to their mother tongue, and by the provided
step-by-step, easy to understand tutorials and other materials uploaded to the online
course management system. We felt that many of the students were better at com-
municating, and more of them were taking part in discussions by the end of the
semester.

As far as the assignments are concerned, the Bebras tasks submitted by students
mainly required logical thinking skills which were more familiar to them, and it was
difficult for them to distinguish between tasks that need just mathematical/logical skills

4 https://learnlearn.uk/microbit/2016/07/05/steady-hand-game/.
5 https://makecode.microbit.org/projects/timing-gates.
6 https://tinkercademy.com/tutorials/microbit-morse-code-transmit-receive/.

206 Zs. Pluhár and H. Torma

https://learnlearn.uk/microbit/2016/07/05/steady-hand-game/
https://makecode.microbit.org/projects/timing-gates
https://tinkercademy.com/tutorials/microbit-morse-code-transmit-receive/

or computational thinking skills. The micro:bit assignment which required them to take
a micro:bit extension activity, create and then present it, was not successfully com-
pleted by all students. Some of them had not had any ideas about how to modify the
original task to add something to it. Others had problems with STEM concepts, such as
if they put their hands on the wire, it is them who the current flows through. However,
they tried to overcome the difficulties, and their presentations were enjoyed by their
peers.

The evaluation of the course was not just based on the submitted assignments, but
also on the engagement and activity of students during the classes. This approach
seemed to be unfamiliar to students, which was made more difficult for them by having
to work together with two separate teachers at two different time slots. At the last class
session, students got their grades for the whole course, and they were overall satisfied
with their results. One student even asked for us to allow him to resubmit a task to get
100% instead of 96% (it’s a grade “excellent” regardless). Our goal was to create a
sense of self-achievement and motivation to study CS, and this last class was an
indicator for us that this goal could be achieved.

4 Conclusion, Future Plans

Based on our experiences, in overall, the course was well-organized with a good theory
background, which could be supported by the positive feedback from students. In
classes, a hopeful progression in communication skills, in motivation and in thinking
processes could be seen from the part of the students. Our plan is to make only some
small changes to the course in the following semester.

To be able to see whether the course needs any serious modifications or the review
of original goals, and to see whether the course adds to the success of students, the
progress of students in their studies will be tracked. Their outcomes in other courses
(such as the programming course in first year) will be analyzed to look for correlation
between participation in this preparatory course (and in other pre-year courses) and the
results of students in the next few semesters in their studies.

Currently, there is a selection process for international students before the begin-
ning of the first year to decide whether they should go to the preparatory year. In the
last few years, only language and math skills were tested. From the following term, this
selection process will be extended with a computational thinking skills test. Bebras
tasks or Bebras-like tasks will be used. There could be two outcomes: students could be
advised to learn and improve some skills in CT, or they could start with their first year
programming studies.

Such a test is planned to be used in the Hungarian computer science BSc program
later. By defining several levels of CT skills in our students, a customized support and
differentiation could be realized at our university.

Introduction to Computational Thinking for University Students 207

References

1. Canedo, E.D., Santos, G.A., Leite, L.L.: An assessment of the teaching-learning
methodologies used in the introductory programming courses at a Brazilian University.
Inform. Educ. 17(1), 45–59 (2018)

2. Pluhár, Zs., Torma, H., Törley, G.: Hallgatói teljesítményértékelés az algoritmikus
gondolkodás tükrében. In: Szlávi, P., Zsakó, L. (eds.) InfoDidact 2018. Webdidactica
Alapítvány (2019). https://people.inf.elte.hu/szlavi/InfoDidact18/Manuscripts/PzsTHTG.pdf.
Accessed 10 May 2019

3. Wing, J.: Computational thinking. Commun. ACM 49, 33–35 (2006)
4. Wing, J.: Research Notebook: Computational Thinking - What and Why? The Link.

Carneige Mellon, Pittsburgh (2011). https://www.cs.cmu.edu/*CompThink/resources/
TheLinkWing.pdf. Accessed 15 Oct 2018

5. Hu, C.: Computational thinking: what it might mean and what we might do about it. In:
Proceedings of the 16th Annual Joint Conference on Innovation and Technology in
Computer Science Education. ACM, Darmstadt (2011)

6. Casey, P.J.: Computer Programming: A Medium for Teaching Problem Solving. The
Haworth Press, New York (1997). Computers in the Schools, vol. XIII, pp. 41–51

7. OECD (2010)
8. Csapó, B.: A tanulás dimenziói és a tudás szerveződése. Educatio 2008(2), 107–217 (2008)
9. Adey, P., Csapó, B.: A tudományos gondolkodás fejlesztése és értékelése. In: Csapó, B.,

Szabó, G. (eds.) Tartalmi keretek a természettudomány diagnosztikus értékeléséhez, pp. 17–
57. Budapest, Nemzeti Tankönyvkiadó (2012)

10. Chen-Chung, L., Yuan-Bang, C., Chia-Wen, H.: The effect of simulation games on the
learning of computational problem solving. Comput. Educ. 57, 1907–1918 (2011)

11. Selby C.C.: Computational Thinking: The Developing Definition. Submitted for ItiCSE
Conference 2013 (2013). http://people.cs.vt.edu/*kafura/CS6604/Papers/CT-Developing-
Definition.pdf. Accessed 15 Oct 2018

12. Zsakó, L., Szlávi P.: Informatikai kompetenciák: Algoritmikus gondolkodás. InfoDidact
2010 (2010). https://people.inf.elte.hu/szlavi/InfoDidact10/Manuscripts/ZsL_SzP.htm.
Accessed 07 Nov 2018

13. Bloom, B.S., Krathwohl, D.R.: Taxonomy of Educational Objectives: The Classification of
Educational Goals, by a committee of college and university examiners. Handbook I:
Cognitive Domain. Longmans, Green, New York (1956)

14. Anderson, L.W., Krathwohl, D.R., et al. (eds.): A Taxonomy for Learning, Teaching, and
Assessing: A Revision of Bloom’s Taxonomy of Educational Objectives. Allyn & Bacon,
Boston (2001)

15. Brennan, K, Resnick, M.: New frameworks for studying and assessing the development of
computational thinking, AREA (2012)

16. Brennan, K.: Creative computing: A design-based introduction to computational thinking
(2011). http://scratched.media.mit.edu/sites/default/files/CurriculumGuide-v20110923.pdf.
Accessed 25 Oct 2016

17. Aiken, J.M., et al.: Understanding student computational thinking with computational
modeling. In: PERC Proceedings (2011)

18. Bell, T., Witten, I.H., Fellows, M.: Computer Sciene Unplugged (2010). http://csunplugged.
org/books. Accessed 25 Oct 2016

19. Dagiene, V.: Information technology contests – introduction to computer science in a
attractive way. Inform. Educ. 5(1), 37–46 (2006)

208 Zs. Pluhár and H. Torma

https://people.inf.elte.hu/szlavi/InfoDidact18/Manuscripts/PzsTHTG.pdf
https://www.cs.cmu.edu/%7eCompThink/resources/TheLinkWing.pdf
https://www.cs.cmu.edu/%7eCompThink/resources/TheLinkWing.pdf
http://people.cs.vt.edu/%7ekafura/CS6604/Papers/CT-Developing-Definition.pdf
http://people.cs.vt.edu/%7ekafura/CS6604/Papers/CT-Developing-Definition.pdf
https://people.inf.elte.hu/szlavi/InfoDidact10/Manuscripts/ZsL_SzP.htm
http://scratched.media.mit.edu/sites/default/files/CurriculumGuide-v20110923.pdf
http://csunplugged.org/books
http://csunplugged.org/books

20. Cartelli, A., Dagiene, A., Futschek, G.: Bebras contest and digital competence assessment:
analysis of frameworks. Int. J. Digit. Lit. Digit. Competence 1, 24–39 (2010)

21. Pluhár, Z., Gellér, B.: International informatic challenge in Hungary. In: Auer, Michael E.,
Guralnick, D., Simonics, I. (eds.) ICL 2017. AISC, vol. 716, pp. 425–435. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-73204-6_47

22. CS Unplugged website. http://csunplugged.org. Accessed 10 Nov 2018
23. Computer Science for Fun website. http://cs4fun.org. Accessed 10 Nov 2018
24. Bell, T., Curzon, P., Cutts, Q., Dagiene, V., Haberman, B.: Overcoming obstacles to CS

education by using non-programming outreach programmes. In: Kalaš, I., Mittermeir,
Roland T. (eds.) ISSEP 2011. LNCS, vol. 7013, pp. 71–81. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-24722-4_7

25. Bell, T., Witten, I.H., Fellows, M.: CS Unplugged (2015). www.csunplugged.org
26. Lambert, L., Guiffre, H.: Computer science outreach in an elementary school. J. Comput.

Sci. Coll. 24(3), 118–124 (2009)
27. Mano, C., Allan, V., Cooley, D.: Effective in-class activities for middle school outreach

programs. In: Proceedings of 40th Annual Frontiers in Education Conference, FIE 2010,
pp. F2E-1–F2E-6 (2010)

28. Taub, R., Ben-Ari, M., Armoni, M.: The effect of CS unplugged on middle-school students’
views of CS. In: Proceedings of 14th Annual SIGCSE Conference on Innovation and
Technology in Computer Science Education, ITiCSE 2009, pp. 99–103 (2009)

29. Dagiene, V., Futschek, G., Koivisto, J., Stupurienė, G.: The card game of Bebras-like tasks
for introducing informatics concepts. In: ISSEP 2017 Online Proceedings. Helsinki,
13.11.2017–15.11.2017 (2017)

30. Sentance, S., Waite, J., Hodges, S., MacLeod, E., Yeomans, L.: “Creating Cool Stuff”:
Pupil’s experience of the BBC micro:bit. In: Proceedings Of The 2017 ACM SIGCSE
Technical Symposium on Computer Science Education, Seattle, Washington, USA, pp. 531–
536 (2017). https://doi.org/10.1145/3017680.3017749

31. Ball, T., et al.: Microsoft touch develop and the BBC micro:bit. In: Proceedings of the 38th
International Conference on Software Engineering Companion, pp. 637–640 (2016). https://
doi.org/10.1145/2889160.2889179

32. micro:bit hardware description. https://tech.microbit.org/hardware/. Accessed 31 May 2019
33. Abonyi-Tóth, A.: Programozzunk micro:biteket! ELTE Informatikai Kar (2017)
34. Resnick, M.: Sowing the seeds for a more creative society. Learn. Lead. Technol. 35, 18–22

(2007)
35. Jonassen, D.H.: Toward a design theory of problem solving. Educ. Technol. Res. Dev. 48(4),

63–85 (2000)

Introduction to Computational Thinking for University Students 209

http://dx.doi.org/10.1007/978-3-319-73204-6_47
http://csunplugged.org
http://cs4fun.org
http://dx.doi.org/10.1007/978-3-642-24722-4_7
http://www.csunplugged.org
http://dx.doi.org/10.1145/3017680.3017749
http://dx.doi.org/10.1145/2889160.2889179
http://dx.doi.org/10.1145/2889160.2889179
https://tech.microbit.org/hardware/

Enhancing Student Engagement
in Multidisciplinary Groups

in Higher Education

Michael Opoku Agyeman(&) , Haiping Cui, and Shirley Bennett

University of Northampton, Northampton, UK
Michael.OpokuAgyeman@northampton.ac.uk

Abstract. Recently, there has been a rise in the integration of curriculum from
different disciplines in higher education (HE) in response to the multidisci-
plinary nature of the skillset required by modern job market. In cases where the
curriculum is delivered to students from the same discipline, it is intuitive for
students to easily identify with the relevance the module. However, the afore-
mentioned will not be as straightforward in situations where a
curriculum/module from a particular discipline is taken by multidisciplinary
groups of students. Consequently, there is a risk of disengagement of student
groups from one or more of those disciplines. This report evaluates a strategy to
enhance student engagement in modules taught to multidisciplinary groups in
HE. For this purpose, a real-world case study of a module taken by Computer
Science, Electrical and Electronics Engineering and Mechatronics Engineering
Students at University of Northampton is used. Firstly, the report reviews the
key problems in relation to student engagement. A review of recent literature is
then presented to evaluate the state-of-the art approaches. An action
plan/intervention is then proposed in response to the problem statement and
findings from literature. Furthermore, an initial study based on an evaluation of
the implemented action plan is then presented before a final conclusion remark.

Keywords: Computing education � Student engagement � Problem-Based
learning � Learning in groups

1 Introduction

Computer Science and Engineering students often disengage from modules because of
excessive, irrelevant or forced examples that do not relate to real-world applications
[1]. While some students are interested in hands-on experience, others prefer theory [2].
This is exacerbated in cases where a curriculum/module from a particular discipline is
taken by multidisciplinary groups of students. There is a higher risk of disengagement
of student groups from one or more of the contributory disciplines. Studies have shown
a positive correlation between student engagement and improved academic perfor-
mance [3]. However, there are a range of different points of views reported in literature
about effective student engagement techniques.

CSY2015 is a level 5 (second year) module taken by Computer Science, Electrical
and Electronics Engineering and Mechatronics Engineering Students within the

© Springer Nature Switzerland AG 2019
S. N. Pozdniakov and V. Dagienė (Eds.): ISSEP 2019, LNCS 11913, pp. 210–221, 2019.
https://doi.org/10.1007/978-3-030-33759-9_17

http://orcid.org/0000-0002-3734-4451
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33759-9_17&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33759-9_17&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33759-9_17&domain=pdf
https://doi.org/10.1007/978-3-030-33759-9_17

Department of Computing. It has been observed over the years (at least 5 years under
two module leaders) that the engagement of the students within the first teaching block
is low. Particularly, a common trend is that some students believe that other students
are more skilled in particular aspects of the module. For instance, engineering students
expect computing students to be better at programming while computing students
expect engineering students to be better at building circuits and mathematics. This
belief, however, inhibits the learning experience of the students and also creates a
disjoint in the engagement of aspects of the module. Moreover, most students feel they
can at least disengage from the face-to-face sessions, read a book or engage with online
resources with hope of passing the module. Student engagement is however, better in
the second teaching block, possibly because they realize the significance of engage-
ment with the face-to-face sessions after the first teaching block.

This case study evaluates how to enhance student engagement in this multidisci-
plinary module and the effectiveness of an implemented intervention. The aim of the
intervention is to enhance the student learning experience through introducing specific
engagement techniques right from the beginning of the first teaching block.

1.1 Possible Causes

1.1.1 Student Expectations
Some students may not believe that they have the required background for the
module. Though students are aware that no prerequisite is assumed, they do not seem
to identify with this. Perhaps, providing reassurance throughout the teaching weeks
will help.

The belief that a student does not have the right background, creates a sense that
students in other disciplines have been taught some modules that makes them better
skilled for this module. Hence, some students believe that other students are more
skilled in some aspect. Engineering students think computing students are better at
programming, while computing students think engineering students are better at
building circuits [3–5]. However, though the particular specialisms of the varied dis-
ciplines create some advantages, the module is designed and delivered to compensate
possible issues that may be associated as both groups are exposed to the fundamentals
during the initial weeks of the module. This assumption from the students seems
interfere with of their learning.

Some students do not see the direct relevance to their programme of study and
career because it is delivered by staff from a different discipline/department. Most
Computing and Engineering dissertations in level 6 depend on Microcontrollers (the
core of CSY2015). However, in level 5, students do not seem to see the relevance to
their individual programme of study. Managing expectations by showing students
relevant job advertisements and salary ranges from their respective disciplines seems to
help.

Over the years, there has been an imbalance in the number of Computing and
Engineering students enrolled onto the module. Though the total number of students
vary each year, normally, the ratio of the number of Computing to Engineering students
is about 4-to-1. This can create a sense of minority group among the Engineering
students [6–8]. Furthermore, considering that the module is delivered within the

Enhancing Student Engagement in Multidisciplinary Groups 211

Computing Department, the Engineering students may not see the relevance of the
module to their studies. This exacerbates the problem of students feeling that they do
not have the right specialisms.

1.1.2 Computer-Based Multiple-Choice Questions (MCQ)
The module runs for 24 weeks with two summative assessment points: an interim
computer-based MCQ (marking the end of first teaching block) and an end of module
report, AS1, (marking the end of second teaching block). Most students feel they can at
least disengage with the face-to-face sessions, read a book or online resources and/or
try their luck with multiple-choice questions and at least pass [9]. Problem-based
learning where students get to learn the theory through solving practical exercises may
be a solution. This will not only ensure that they have transferable skills ready for the
second teaching block but also help them identify how the theory links to practical
solutions and their respective programme of study.

1.2 Challenge

In order to implement the right intervention to the aforementioned problem considering
the possible causes and previous resolution attempts, there were 4 main challenges that
needed to be addressed:

1. How does one redesign the delivery of the module to enhance the engagement of
students from the different disciplines involved?

2. Are there any existing student engagement strategies that could be adopted or
improved to resolve this issue?

3. What is the most feasible way to adopt the new strategies while keeping student-
staff workload balance, without breaching the module specification and adhering to
the learning outcomes?

4. What is the most effective mode of delivery to enhance student learning that could
be incorporated in the module?

1.3 Possible Solutions Found in Literature

Many studies confirm that students’ engagement is essential to their success [10, 11].
According to Willis [12], student engagement consists of academic engagement and
institutional engagement. Similar to Renninger [13], academic engagement is defined
by Ketele [14] as the ability to allocate metacognitive, cognitive and affective resources
to a learning task. This case study focuses on how to enhance academic engagement of
the students. Various literature has identified problem-based learning, active learning,
collaborative learning and cooperative learning techniques as effective in engaging
students academically [15–18].

Teaching via problem-based learning techniques normally involve putting stu-
dents into small groups to work on tasks in an independent manner. Norman et al. [19],
based on several meta-analysis, highlighted that the small groups help improve the
academic achievements while the independent element of problem-based teaching has
some negative effects on student learning. Some literature on the application of

212 M. Opoku Agyeman et al.

problem-based learning in teaching medicine [2, 20] claims that there is some level of
improvement in the clinical performance at the expense of exams which had a negative
correlation. A study by Bédard et al. [1], suggests that both medicine and engineering
students find problem-based learning rigid and stressful [1, 2, 21]. In their study,
students relate this rigidity to the requirement of having to work in groups and keep up
with the group. The increase in stress levels were mostly related to the fear of failing a
group work as an individual. In fact, among the four determinants of students’
engagement identified by Bédard et al. [1] (self-efficacy, stress, new cognitive tasks,
theories and beliefs about knowing), stress is the most predominant element of stu-
dents’ engagement. Vernon et al. [22] after investigating 35 studies between 1970 and
1992 concluded that problem-based learning improves students’ attitudes. Moreover,
work by Albanese et al. also confirm that both students and tutors have positive
attitudes towards problem-based learning approaches, while Norman et al. [19] con-
firms that problem-based learning does not only challenge students but is also more
exciting and motivating. In summary, problem-based learning has been extensively
supported by literature to increase student engagement and attendance [2, 20, 23].
However, strategies must be put in place to reduce the level of stress and possible
negative effects on assessment results.

Active learning techniques involve engaging students through meaningful learning
activities. A common approach is to occasionally (twice or thrice in an hour) break the
lecture for students to discuss their notes in pairs. A study by Hartley et al. [24]
revealed that students’ attention and retention reduce drastically with the length of the
lecture. Interrupting lectures with relevant activities help refocus the minds of students
and keep them engaged [2, 25]. Work done by Qin et al. [23], suggests that cooper-
ation is more effective in producing high quality individual problem solving compared
to competition. Their conclusion, however, is based on the findings that individuals in
teams had better solutions to challenges compared to individuals working competi-
tively. These findings do not necessarily conclude that students working in cooperative
groups were more engaged or developed stronger transferrable skills or long-term
problem-solving techniques. Problem-based learning helps resolve the issue of long
lectures and students’ disengagement. The activities give the students the opportunity
to collaborate and cooperate in groups. Due to technology advancements, online
learning and/or blended learning, where synchronous and/or asynchronous technology
enhanced strategies are used as active learning techniques, have become increasingly
popular. As highlighted by Reeves [21], depending on student’s learning preference,
synchronous and asynchronous sessions have their advantages and disadvantages in
students’ engagement. Some students feel safer to engage anonymously online while
others engage more during face-to-face sessions. Reeves (2015) presented an inter-
esting case of teaching hands-on laboratories online to multidisciplinary engineering
students where the Virtual Learning Environment (VLE) was depended on extensively
for student engagement. Their findings show that both asynchronous and synchronous
sessions are useful in engaging students online. Kemp [26] however, revealed that
students feel more engaged with face-to-face discussions with peers and instructors
compared with online, though they prefer to do the activities online.

Enhancing Student Engagement in Multidisciplinary Groups 213

Though the findings above may help in improving the students’ engagement of
CSY2015, there are some associated challenges such as low grades and stress that need
to be considered.

2 Preliminary Study

In order to gain a deeper understanding of the student engagement issues and associ-
ated challenges from the students’ perspective, a study was conducted in-class, with the
experimental group (CSY2015 2018/19), using an adopted empathy map adopted
Ferreira et al. [27] (Table 1 and Fig. 1). It can be deduced from Table 1 that, while
most students want to “gain” good programming skills and good grades in order to
graduate and get good jobs, they fear the “pain” of not having enough prior pro-
gramming skills and failing. As shown in Fig. 1, the study reveal that one student
(“Student A”) suffers from the fear of anxiety and depression, and feels overwhelmed
by the impact of the study responsibility involved with taking several modules at the
same time. This was taken into consideration in implementing the interventions dis-
cussed in this case-study (the details of the additional advice and support provided to
“Student A” is beyond the scope of this report and hence not discussed). This study
reveals that students see the relevance of the module to their future job opportunities.
They want high grades; however, they do not have enough confidence in their own
programming skills. Therefore, an intervention that gives students the opportunity to
apply their theoretical knowledge to practical problems in order to help improve their
programming skills while given them a feel of the work environment may be the right
solution. Problem-based learning provides such an opportunity. Moreover, if given the
opportunity to work with others, students do not only get to learn from each other but to
also understand that they are not alone in some of the challenges encountered during
the learning curve. A lesson the tutor gained from the study is to not overly complicate
the problem-based learning activities, as this may rather demotivate the students or
hinder their learning. Also, the use of interim but flexible deadlines will help ease the
level of anxiety on students with regards to not being able to complete the tasks in time.

3 Intervention

3.1 Problem-Based Learning

The idea is to use problem-based learning with various hands-on laboratory activities to
encourage experiential learning where students learn by doing [1, 18, 21]. CSY2015
involves physical computing where hardware (microcontroller) development tools are
used. In order to help engage the students and to increase the relevance of the module
to the individual disciplines, the most popular microcontroller programming hardware
and software resources among both engineering and computing students for disserta-
tions in Level 6 is selected for the activities of CSY2015. Problem-based learning
theories suggest the use and effectiveness of small groups in improving academic
achievements [19]. A similar approach is adapted (see Sect. 3.2) but with the aim of
improving both student engagement and academic achievement.

214 M. Opoku Agyeman et al.

3.2 Effective Large and Small Student Group Strategies

3.2.1 Rational
To make effective use of groups as an intervention to enhance student engagement, an
adapted version of the 7 steps strategy proposed in [28] is used. The 7 steps strategy
involves 1. Setting clear expectations for group work 2. Thinking carefully about the
group size and composition 3. Helping to manage the logistics of the group work 4.
Encouraging intercultural group work 5. Designing innovative group work activities 6.
Monitoring the group’s activities 7. Managing assessed group work.

Table 1. Results of student empathy study of CSY2015

Enhancing Student Engagement in Multidisciplinary Groups 215

3.2.2 Strategy

Set Clear Expectations for Group Work: Groups benefit from effective teamwork
and planning (Livingstone, Lynch 2000) and hence students must be given enough
time to evaluate practicalities of forming/joining a particular group [29]. Therefore, the
new strategy is to help students familiarize themselves with each other in the early
weeks of the module. The practical problems in the early weeks are formatively
assessed in order to encourage students to get engaged in group activities without the
fear of risking grades. Students are encouraged to either work in groups of 4 of their
choice or individually (Gibbs, G. 1995b). They are given the flexibility to either stay in
the same group throughout, or to form different groups for each session. Their progress
is monitored during class and through group discussions (and through the project
log/journal on the VLE).

Group Size and Composition: Existing research has shown that choosing the right
group size can enhance student engagement [30]. It has been identified in the literature
that the ideal group size is between four and six people [31–33]. Different strategies
have been used to form working student groups (4 per group) in the second teaching
block in the past which have had varied effects. For example, students have previously
been allocated as follows:

1. A mixture of Engineering and Computing students. It was observed that, Engi-
neering students either ended up dormant or relying too much on computing stu-
dents for programming while computing students relied on engineering students for
circuit building and report writing. There was not much interdisciplinary learning
involved. Students from each discipline mostly concentrated on what they felt they
were good at. This may not be an issue in the first teaching block which emphasizes
individual learning. However, interdisciplinary learning is essential in the second

Fig. 1. Sample from student empathy study

216 M. Opoku Agyeman et al.

teaching block which emphasizes transferable skills and students’ ability to work in
a real-world industrial setting.

2. A mix of engaged (or promising) students and non-engaging (or at-risk) students. It
was observed that non-engaging students depended too much on the “promising
students” for the completion of the tasks and sometimes slowed down their learning
curve.

In response to the above, the idea is to help students form teams rather than just
groups to enhance engagement. The early weeks where students work individually or
in larger groups are used to monitor engaging and non-engaging students. This helps to
identify students at risk early enough to help put the right intervention in place.
Afterwards (around weeks 5–6), smaller groups facilitated by the tutor are formed.
Engaging students who have made significant progress can either work alone or with
other engaging students or with students of their choice. Progress can easily be
monitored by the quality of their contribution to the journal feature of VLE. Non-
engaging students either get to work on their own or with other non-engaging students.

Though this intervention may seem like a bad idea, when implemented (in Week 7),
the non-engaging students suddenly started showing some willingness to learn. They
demonstrated a sense of responsibility to complete the tasks in their own creative way,
knowing that they cannot hide behind the mask of other students. Moreover, after the
implementation of this strategy, classroom attendance, student participation and
interaction with the tutor (asking for clarification and feedback) has also improved
greatly.

Encourage Intercultural/Interdisciplinary Group Work: Gibbs [34] emphasized
that intercultural groups are more beneficial. In this context, the idea is to design the
group activities in such a way that no particular discipline has familiar advantage over
the other. Thus, to encourage interdisciplinary group work, each task requires building
a circuit on a solderless breadboard and programming the circuit to work. This requires
both Engineering and Computing skills without deviating from the learning outcomes
of the module.

Innovative Group Work Activities: As emphasized by Gibbs [35] group activities
should be of a complexity suitable for the collective effort and knowledge of all the
group members. During the first few weeks where groups of 4 are used, students have
to work collaboratively and creatively employ problem solving skills as well as subject
knowledge to solve the problems. Groups are being introduced into the early teaching
weeks as an intervention to encourage student engagement. Hence, the focus of the
activities in this stage is to help students identify which group members they work best
with, and whether they engage better with the module working alone or as a group. The
goal here is not to use overly complex activities to ensure that each activity can be
completed in within a week. This allows student to form new groups in different weeks
in order to find the best group members for them.

Help Manage the Logistics of Group Work; Monitor the Group’s Activities; and
Manage Assessed Group Work: This involves the effective use of VLE’s “group”
resources. Using the group resource on VLE, students, can exchange files, create wikis,
blogs, use journals and more importantly, these activities can easily be monitored and

Enhancing Student Engagement in Multidisciplinary Groups 217

graded by the tutor. This has been implemented as an intervention in CSY2015. Stu-
dents were advised to work within their groups and upload the findings of their
completed task (by following a template) to their group page on the VLE site. Most
students could not complete this during the class when it was first introduced as they
had no prior experience with the group tool of the VLE. However, all the groups
participated. Additional time was given to complete the task outside the face-to-face
session. The statistics report from the VLE shows a high level of student engagement
with the activities both during and outside the face-to-face session.

3.3 An Element of Game Theory

The fundamental of game theory is competition and reward. People are often motivated
when there is a suitable reward which align with their goals [36]. The trick here is to
assign a percentage (say 10%) of the assessment of the second teaching block (AS1) of
the module to the problem-based activities [37].

AS1 accesses all the learning outcomes specified in the module specification of
CSY2015. Hence, the problem-based activities are designed to map the learning out-
comes of the module. It should be noted that one single submission point was used for
AS1 for both the report on the project and the progress of the problem-based activities.
Therefore, caution was taken in the allocation of the “reward” to ensure that the no rule
is broken with regards to the module specification of CSY2015.

4 Quantitative Evaluation of Findings

In order to evaluate the impact of the intervention, effect sizes, a well trusted quanti-
fying tool for evaluating the significance of an improvement, is used. The aim is to
evaluate the effect of the intervention on the student engagement and academic
achievement. The percentage difference between the number of students in 2018/19
(experimental group) and 2016/17 is 83.3% (see the table in Fig. 2) which is too
significant to give a fair comparison of effect sizes. Therefore, grades of students from
2017/18 which has only 15.8% difference in student numbers with the experimental
group was selected as the control group. Besides, the time overlap between the two
academic years makes it more suitable to be selected for quantitative evaluation.

0
5
10
15
20
25
30
35
40
45

N
um

be
r o

f S
tu

de
nt

s
(%

)

41

14

21

11

33 33

A B

2018/19

14

2726

11

3

0

C D
Grade

2017/18 2016/

5

1

32

17 17

F

17

Fig. 2. Assessment (MCQ) results of first teaching block of CSY2015

218 M. Opoku Agyeman et al.

The average score was 64.4 in 2018/19, and 50 in 2017/18 with a standard devi-
ation of 18.8. Hence the effect size is (64.4−50)/18.8 = 0.8. This implies that the grade
of an average student in 2018/19 after the implementation of the intervention outper-
forms the grades of 79% of the students in the previous year. Effect sizes of 0.5 or
higher (in this case 0.8) is much higher than most interventions reported in the literature
[2]. Moreover, it has been confirmed in the literature that findings of effects sizes of 0.8
are rare as it demands significant gains [2, 20]. This therefore confirms that the
intervention has a significant impact on the student’s grades [3].

As shown in Fig. 2, students’ grades in the MCQ test have greatly improved in
2018/19 compared to that of the previous two years. Though 2018/19 has the highest
recorded number of students taking the test, 41% of the students had A while only 5%
got F grade in contrast with the previous year which recorded 21% and 32% in A and
F, respectively, with 19 students. An interesting observation, however, is that, the 5%
of the students who got F is in fact a student who did not engage with the face-to-face
sessions and only turned up on test date. The student’s engagement with the online
content and “possibly” his peers outside the classroom might have however, con-
tributed to the F + instead of F or F-. Research conducted in [2] and [20] suggested a
negative correlation between problem-based learning and test results. However, the
results of the interventions prove that problem-based learning helps improves students’
grades. The intervention in this case-study promoted competition through rewards,
however, this did not have a negative effect on the quality of individual problem
solving as implied by [23]. It rather had a positive effect on the quality of individual
problem solving, student engagement and grades. The improved engagement and
grades after implementing engagement strategies in the face-to-face session agrees with
Kemp’s work [26] which shows that students have a higher preference for engagement
in face-to-face discussions.

5 Conclusion: Implications for Future Development
and Teaching Practice

The use of larger but variable groups to work on formative assessment problems and
eventually forming smaller groups to work on elements of the summative assessment is
a particularly good technique for encouraging interdisciplinary learning, enhancing
student engagement and given effective feedback. The problems-based approach to
teaching theory is an effective technique for engaging students of varied abilities and
disciplines. However, since the interim summative assessment is MCQ, it will be good
to provide MCQ-based knowledge checks on the VLE site. It will also be beneficial to
highlight the related learning outcomes within the activity briefs. The multiple-choice
questions should be designed to draw on the experience and understanding gained
through the problem-based learning without breaching the learning outcomes assessed
in each item. It will be interesting to get external parties, such as employers, involved.
For instance, the problems or activities could be linked to particular industrial projects
and employers could be invited to give the briefing or help set the real-world scenarios.
Alternatives such as giving labs and problems that cuts across the disciplines could be
explored.

Enhancing Student Engagement in Multidisciplinary Groups 219

References

1. Bédard, D., et al.: Problem-based and project-based learning in engineering and medicine:
determinants of students’ engagement and persistance. Interdisc. J. Prob.-Based Learn. 6(2),
8 (2012)

2. Prince, M.: Does active learning work? a review of the research. J. Eng. Educ. 93(3), 223–
231 (2004). https://doi.org/10.1002/j.2168-9830.2004.tb00809.x

3. Trowler, P., Trowler, V.: Student engagement evidence summary (2010)
4. Parnas, D.L.: Education for computing professionals. Computer 23(1), 17–22 (1990)
5. McCracken, M., et al.: A multi-national, multi-institutional study of assessment of

programming skills of first-year CS students. In: Working Group Reports from ITiCSE on
Innovation and Technology in Computer Science Education (2001)

6. England, R.E., Meier, K.J., Fraga, L.R.: Barriers to equal opportunity: educational practices
and minority students. Urban Aff. Q. 23(4), 635–646 (1988)

7. Finn, J.D., Voelkl, K.E.: School characteristics related to student engagement. J. Negro
Educ. 62(3), 249–268 (1993)

8. Talbott, E., et al.: Making sense of minority student identification in special education:
school context matters. Int. J. Special Educ. 26(3), 150–170 (2011)

9. Dermo, J.: e-Assessment and the student learning experience: A survey of student
perceptions of e-assessment. Br. J. Educ. Technol. 40(2), 203–214 (2009)

10. Schmoker, M.: Focus: Elevating the Essentials to Radically Improve Student Learning
(2018)

11. Eccles, J.S., Wigfield, A., Schiefele, U.: Motivation to succeed. (1998)
12. Willis, D.: Academic involvement at university. Higher Educ. 25(2), 133–150 (1993)
13. Hidi, S., Renninger, K.A.: The four-phase model of interest development. Educ. Psychol. 41

(2), 111–127 (2006)
14. Pirot, L., Ketele, D.: L’engagement académique de l’étudiant comme facteur de réussite à

l’université Étude exploratoire menée dans deux facultés contrastées. Revue Des Sci. De
L’Éduc. 26(2), 367–394 (2000)

15. Pirker, J., Riffnaller-Schiefer, M., Gütl, C.: Motivational active learning: engaging university
students in computer science education. In: Proceedings of the 2014 Conference on
Innovation & Technology in Computer Science Education (2014)

16. Attle, S., Baker, B.: Cooperative learning in a competitive environment: classroom
applications. Int. J. Teach. Learn. Higher Educ. 19(1), 77–83 (2007)

17. Burden, P.R., Byrd, D.M.: Methods for Effective Teaching. p. 160 (1994)
18. Freeman, S., et al.: Active learning increases student performance in science, engineering,

and mathematics. Proc. Nat. Acad. Sci. 111(23), 8410–8415 (2014)
19. Norman, G.R., Schmidt, H.G.: Revisiting ‘effectiveness of problem-based learning curricula:

theory, practice and paper darts’. Med. Educ. 50(8), 793–797 (2016)
20. Albanese, M.A., Mitchell, S.: Problem-based learning: a review of literature on its outcomes

and implementation issues. Acad. Med.-Philadelphia 68, 52 (1993)
21. Reeves, J., Arnold, B.J.: Applying student engagement techniques to multidisciplinary

online engineering laboratories. In: ASEE Annual Conference and Exposition
22. Vernon, D.T., Blake, R.L.: No title, Does problem-based learning work? a meta-analysis of

evaluative research (1993)
23. Qin, Z., Johnson, D.W., Johnson, R.T.: Cooperative versus competitive efforts and problem

solving. Rev. Educ. Res. 65(2), 129–143 (1995)
24. Hartley, J., Davies, I.K.: Note-taking: a critical review. Program. Learn. Educ. Technol. 15

(3), 207–224 (1978)

220 M. Opoku Agyeman et al.

http://dx.doi.org/10.1002/j.2168-9830.2004.tb00809.x

25. Ruhl, K.L., Hughes, C.A., Schloss, P.J.: Using the pause procedure to enhance lecture recall.
Teacher Educ. Special Educ. 10(1), 14–18 (1987)

26. Kemp, N., Grieve, R.: Face-to-face or face-to-screen? Undergraduates’ opinions and test
performance in classroom vs. online learning. Front. Psychol. 5, 1278 (2014)

27. Ferreira, B., et al.: Designing personas with empathy map. In: Seke (2015)
28. 7 Steps to: Using Group Work in Your Teaching. https://www.plymouth.ac.uk/uploads/

production/document/path/2/2398/7_steps_to_using_group_work_in_your_teaching_
March_2013__1_.pdf

29. Gibbs, G.: Learning in Groups: Tutor Guide. Oxford: Oxford Centre for Staff Development
(1995)

30. Seethamraju, R., Borman, M.: Influence of group formation choices on academic
performance. Assess. Eval. Higher Educ. 34(1), 31–40 (2009)

31. Best, J.W., Kahn, J.V.: Research in Education (2016)
32. Keller, R.T.: Predictors of the performance of project groups in R & D organizations. Acad.

Manag. J. 29(4), 715–726 (1986)
33. Kitzinger, J.: Qualitative research: introducing focus groups. BMJ 311(7000), 299–302

(1995)
34. Gibbs, G.: The assessment of group work: lessons from the literature. Assessment Standards

Knowledge Exchange, 1–17 (2009)
35. Gibbs, G.: Learning in groups: tutor guide (1995)
36. Prensky, M.: The motivation of gameplay: The real twenty-first century learning revolution.

Horizon 10(1), 5–11 (2002)
37. Gibbs, G.: Using Assessment to Support Student Learning (2010)

Enhancing Student Engagement in Multidisciplinary Groups 221

https://www.plymouth.ac.uk/uploads/production/document/path/2/2398/7_steps_to_using_group_work_in_your_teaching_March_2013__1_.pdf
https://www.plymouth.ac.uk/uploads/production/document/path/2/2398/7_steps_to_using_group_work_in_your_teaching_March_2013__1_.pdf
https://www.plymouth.ac.uk/uploads/production/document/path/2/2398/7_steps_to_using_group_work_in_your_teaching_March_2013__1_.pdf

Contests, Competitions and Games in
Informatics

Situated Learning with Bebras Tasklets

Carlo Bellettini1 , Violetta Lonati1(B) , Mattia Monga1 ,
Anna Morpurgo1 , and Martina Palazzolo2

1 Università degli Studi di Milano, Milan, Italy
violetta.lonati@unimi.it

http://aladdin.di.unimi.it
2 Istituto Comprensivo ‘Ilaria Alpi’, Milan, Italy

Abstract. A Bebras short task, a tasklet, is designed to provide a source
for exploring a computational thinking concept: at the end of the con-
test it could be used as a starting point to delve deeper into a computing
topic. In this paper we report an experience which aims at taking full
advantage of the potential of Bebras tasklets. A math teacher asked her
pupils to act as Bebras “trainers” for younger mates. The pupils, in
pairs, were assigned to design and prepare a tangible game inspired by
a Bebras tasklet, devised for the younger pupils to practice. They also
had to explain the game to the younger pupils, make them play and
support them in solving it. In carrying out this assignment the pupils
acting as trainers had to deeply explore the Bebras tasklet and face its
computational thinking challenge, and also practiced soft skills as col-
laborating with peers towards a common goal, adapting language and
communicative style to engage with younger mates, devising and design-
ing a tangible object, and planning its creation. The experience proved
that using Bebras tasklets as the social and cultural context for situ-
ated learning of computational thinking competencies is indeed quite
productive.

Keywords: Computational thinking · Situated learning · Bebras

1 Introduction

Bebras, the “International Challenge on Informatics and Computational Think-
ing”1 [7,9,13], is a popular initiative aimed at introducing to the fundamental
concepts of informatics pupils from 1st grade to the end of secondary school, inde-
pendently of their exposure to formal computer science studies. The challenge is
organized on an annual basis in several (54 in 2018) countries since 2004, with
almost three million participants in the last edition. The setting of the contest is
slightly different in each country, but in general participants have to solve a set
of about 10–15 tasks that are designed to be fun and attractive, adequate for the

1 http://bebras.org/ ‘Bebras’ is the Lithuanian word for ‘beaver’: some countries trans-
late it, and others use it as a brand name.

c© Springer Nature Switzerland AG 2019
S. N. Pozdniakov and V. Dagienė (Eds.): ISSEP 2019, LNCS 11913, pp. 225–239, 2019.
https://doi.org/10.1007/978-3-030-33759-9_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33759-9_18&domain=pdf
http://orcid.org/0000-0001-8526-4790
http://orcid.org/0000-0002-4722-244X
http://orcid.org/0000-0003-4852-0067
http://orcid.org/0000-0003-0081-914X
http://bebras.org/
https://doi.org/10.1007/978-3-030-33759-9_18

226 C. Bellettini et al.

contestants’ age, and solvable in an average time of three minutes, hence called
tasklets. Moreover, since the contest is especially aimed at a non-vocational audi-
ence, tasklets should be independent of specific curricular activities and avoid
the use of jargon. In fact, Bebras tasklets focus on that part of informatics that
should become familiar to everyone, not just computing professionals. A number
of tasklets are prepared every year by an international team of experts in com-
puter science and computing education; then each national organization selects,
adapts and translates a set of tasklets to be used in the local competition. After
the contest, the translated tasklets used in the challenge are publicly released by
most countries and can be used by teachers as teaching resources in their school
practice [2,8]. In Italy, the challenge is proposed to teams of (up to) 4 pupils,
divided into 5 categories according to contestant age (from 8 to 18 years), and
administered by an online platform [3,4] that displays tasklets and collects the
submitted answers. Once the contest is over, the same platform also allows pupils
to access their answers and check the solutions. In particular, for each tasklet
they can see the correct answer (or one of them, if applicable), compare their
answer with the correct one, access the explanation on how the answer could
be obtained, and read a short text (“It’s informatics”) about the informatics
content of the tasklet. The system is available also beyond the contest, so that
the challenge can be simulated and answers and explanation be accessed at any
time. Usually, after the challenge pupils are eager to know whether the solutions
they had submitted are right or wrong. However, when they have learnt they got
an answer (partially) wrong, many are not too motivated to investigate further.
During the last edition, we observed some pupils when the teacher disclosed the
results, and they did not spend much time in examining the explanation or ascer-
taining they really understood the tasklet and the correct answer, even when the
teacher urged them to. In order to encourage pupils’ engagement, a math class
teacher (author Martina Palazzolo) asked her 6th grade pupils to act as Bebras
trainers for a primary school class (3rd grade); pupils were requested to design
and prepare tangible games, inspired by Bebras tasklets, to be offered to younger
pupils to practice in view of next year’s Bebras Challenge. The trainers then had
to explain the game to the younger pupils, make them play and support them in
solving the tasklet. The last of these training sessions was observed by a comput-
ing education expert, member of the Italian Bebras Committee (author Violetta
Lonati), whose observations were the basis for the assessment of the project.
In this paper we report this experience and the related findings. In Sect. 2 we
describe the activities that have been carried out and the project’s learning goals
and methodology. In Sect. 3 we present the tasklets chosen by the pupils and the
derived games they built, and we report about the interaction of the pupils with
their mates and their teacher during the preparation of games and the training
sessions. In Sect. 4 we give some elements to evaluate the overall experience and
we draw some conclusions.

Situated Learning with Bebras Tasklets 227

2 Description of the Project

In this section we present the project, and in particular the context where it was
proposed, the planned activities, the learning goals, and the methodology used
to manage the activities and assess the results.

Context and Activities. The experience involved a 6th grade class of a publicly-
funded school, composed by 22 pupils (age 10–11 years). This particular class of
the school is involved in a three-year long experimentation on innovative teach-
ing methods which involves all the class teachers. The class timetable schedules
a two-hour weekly session of mildly structured activities devoted to the develop-
ment of cross competencies, conducted by the math and science teacher (author
Martina Palazzolo, from now on, the Teacher). This was the context where the
project was conducted throughout the second term (January–May) of year 2019.
All the pupils were familiar with Bebras tasklets since they had already played
a simulation of the challenge in the first term. They had also spent a couple of
hours working in groups to check their answers and study the explanations pro-
vided in the Italian Bebras Platform. At the beginning of the project pupils were
informed by the Teacher that they were going to act as Bebras trainers for 3rd
graders. From now on we will call these groups of pupils trainers and trainees,
respectively. The project was thus organized in two phases: (1) Preparation of
the Games. Working in pairs, trainers were asked to choose a Bebras tasklet,
design a tangible game, and build it (with cardboard, etc.) so that it would be
possible for the younger pupils to try it without accessing the original tasklet
through the platform. This phase lasted around three months. The game had to
be built in such a way that it would be clearly accessible and understandable by
a peer. In particular, the requirements were that the title, the text, and ques-
tion should be clearly readable, the game should be self-explanatory and have
all the elements necessary to solve it, and it should be equipped with an enve-
lope containing the correct answer. It was not requested though that the game
were accessible by a 3rd grader without some help or further explanation by the
trainers. (2) Training Sessions. Towards the end of the school year the trainers
actually trained a 3rd grade class of 22 pupils by using their games. The trainees
were invited to two training sessions, one held in April and one in May 2019,
and played all the games. Between the two sessions, the Teacher conducted a
discussion among the trainers: they were requested to report to their mates how
the training sessions went and whether they thought their games needed some
adjustments.

Soon after the project had started, a computing education expert and mem-
ber of the national Bebras Committee (author Violetta Lonati, from now on
the Expert) was asked by the Teacher to contribute to the project as a mentor
and supervisor. The Expert’s role was to support the Teacher in relation to the
computational thinking aspects involved by the tasklets chosen by the pupils,
and hence to help her understand how the project improved the learning of com-
putational thinking skills. Teacher and Expert had already collaborated in other

228 C. Bellettini et al.

computing education projects in the past [5], after they had met several years
ago in a refreshment course attended by the Teacher.

2.1 Learning Goals

The project aimed at several learning goals for the trainers. On the one hand,
the trainers were expected to improve in the computational thinking skills (CT)
implied by Bebras tasklets [2,8]. In particular the focus was on the following CT
skills.

Represent—representing information through abstraction such as models, dia-
grams, symbolic encodings and understanding such representations;

Algo think—automating tasks through algorithmic thinking (i.e., series of
ordered steps);

Implement—implementing algorithmic solutions complying with some prede-
fined syntax (i.e., coding);

Organize—logically organizing data;
Reason—analytically reasoning about data, objects, situations to check prop-

erties and draw logical conclusions.

In stating such goals, we adopt the framework discussed in [2], mostly based
on the the operational definition of CT [1] developed by ISTE (International
Society for Technology in Education) and CSTA (Computer Science Teachers
Association). Only some of the skills described in the paper are mentioned here,
namely those that are relevant with respect to the set of tasklets chosen by the
pupils (see Sect. 3). In fact, since each pair of trainers chose a different tasklet,
they actually practiced different skills among the above ones. We should also
mention here that different (and only partially overlapping) definitions of CT
exist; a good recent survey can be found in [6], which discusses also frequent
misconceptions of CT by primary teachers. On the other hand, the project also
aimed at promoting soft skills like: learning to learn; collaborating with peers
towards a common goal; adapting language and communicative style to engage
with younger mates; devising and designing a tangible object, and planning its
creation; practically producing a tangible object identifying, getting and using
the proper materials and techniques. In this paper we are mainly interested
in reporting and discussing the findings concerning the CT skills, and we will
consider the soft skills mentioned above as side learning goals only. For the
trainees no learning goals were actually set, since they were involved in the
activities only for two hours. However the training was useful to them as it
gave them the opportunity to face the Bebras tasklets in a even more friendly
setting than the online platform. A very recent work [10] describes a similar
project conducted in Lithuania where game cards inspired by Bebras tasklets
were proposed outside the challenge to foster CT. In this project too, tangible
objects, mostly provided by the teacher, were used to support pupils in their
solving process.

Situated Learning with Bebras Tasklets 229

2.2 Methodology

During the whole project the Teacher acted more as a facilitator of the learn-
ing process than as an instructor, keeping in mind the constructivist view of
learning: learners actively construct their knowledge and skills through reorga-
nization of their previously acquired mental structure [15]. According to social-
constructivism such construction of knowledge is also guided and influenced by
the social context, and thus by the interactions with others and in particular by
their use of language [16]. Hence the learning process is fostered by feedback,
examples, and scaffolding by teachers, and interaction with peers rather than
only by free exploration [14].

For this project, the Teacher designed the activities in a CSSC (Constructive,
Self-Regulated, Situated, and Collaborative) learning environment [11]: the first
phase required a mindful and effortful involvement by pupils in the exploration of
the tasklets and allowed them to individually construct knowledge and meaning
(constructive); pupils worked in pairs, exchanging ideas and mediating different
points of view (collaborative); during the training sessions pupils acted in a social
and cultural context, where learning was further enacted in the interaction with
the younger pupils (situated); during the whole project the pupils were let free to
decide how to use their time and how to plan their activities, while the Teacher
monitored their work giving some feedback, avoiding to give direct instructions
if not asked by the pupils themselves, and was available to support them upon
request (self-regulated). The Teacher set some constraints in order to promote
the expected learning outcomes in CT.

– Pupils were requested to design a game inspired by one among the tasklets
they had not correctly solved in the first place. Hence, in order to design their
game, they needed to examine the chosen task with care, understanding what
it asked the solver to do, and how the correct answer could be found.

– In the transposition toward a tangible game, they were allowed to change
some details and introduce variants to the original task, but the resulting
game had to reflect the spirit of the original task and in particular be suitable
to stimulate the same abilities.

– The rules and directions for the games had to be written in full on a poster
to be made available to trainees.

– Pairs were broken up during the two training sessions so that each trainer
was in charge of personally conducting the game in one of them.

At the beginning of the first phase, pupils were randomly split in pairs. As
one could expect, several pairs were therefore composed by pupils with different
levels of cognitive, linguistic, creative, and practical skills, and some of them
were actually unhappy of the draw’s outcome. This choice was discussed with
the pupils and then motivated by the Teacher: they would be asked to collaborate
with their mates as true professionals; moreover, identifying at least one positive
trait in their mate was a target they had to achieve throughout the project.

During the training sessions (two hour long each), several table islands were
arranged in the classroom where the games were displayed, and the trainees

230 C. Bellettini et al.

could move around the islands to play the games; each trainee was equipped
with a card where trainers logged the participation to their games. During the
games, the trainees could read the poster with the rules and directions for a
game, however trainers were not forbidden to read aloud or explain in their own
words the rules for the trainees, or more generally to interact with them.

To assess the project we took into consideration both the products of the
pupils involved—namely the tangible games they built—and the overall learn-
ing process, focusing mainly on their interactions with peers, trainees, and their
Teacher. In particular, the Expert attended the second (and last) training ses-
sion as a non-participant observer. The observation goal was to detect whether
and how the CT aspects underlying the Bebras tasklets had been grasped by
the trainers. Both the Teacher during the first phase of the project, and the
Expert during the last training session used the anecdotal records methodol-
ogy [12], which consists of short descriptions of behavior as observed in specific
situations. As typical in anecdotal records, the observed incidents have then
been interpreted, and recommendations arising from the observations have been
suggested and, in some cases, immediately implemented.

3 Process and Products

The 22 pupils in the 6th grade class were randomly split into 11 pairs. Three pairs
chose tasklet “Birthday party” (2018-RO-06), two pairs chose tasklet “Drawing
Game” (2018-PK-01), the other pairs chose one of the following tasklets: “Balls”
(2017-RS-02), “Board jumps” (2018-CA-06), “Waiter” (2018-IT-06), “Room
sharing” (2018-DE-07), “Finding the route” (2018-CY-04), “Dustmen robots”
(2018-SK-05)2. Ten pairs succeeded in building their games. Most games were
realized as posters (some of the posters are shown in Figs. 1, 2, 3, 4 and 5), and
some of them also had mobile elements so that the interactivity of the original
tasks could be simulated. One pair only (who chose “Birthday party”) did not
succeed in getting the game ready for the training sessions. Two pairs added some
difficulties in their games that were not included in the original tasks (namely
“Drawing Game” and “Birthday party”). Since such difficulties were deemed by
the teacher too hard for 3rd graders, and other groups had chosen the same tasks,
at the end only the latter games were used in the training sessions. During the
training sessions most pairs were split, so that half of the 6th graders attended
the first session and the other half attended the second session, and most trainers
ran their game individually. Some exceptions occurred: some pairs were kept as
such, mainly due to the presence of pupils with special needs; moreover, since
“Drawing Game” was chosen by two pairs, but only one version of the game

2 We report in bracket the international Bebras id code, although the tasklets were
sometimes modified to exploit the interactivity potential of the Italian Bebras Plat-
form and to take into account that the Italian contest is team based (whereas it is
individual in most of the countries). The screenshots of the actual tasklets (trans-
lated to English for this paper) are given in Appendix A.

Situated Learning with Bebras Tasklets 231

was suitable for the training session, the trainers did not work alone but were
coupled with a member of the other pair.

In the following we give some details on the tasklets chosen and how they
were used by the pupils. Due to space constraints we limit the description to five
tasklets only, namely those which led to situations offering more elements for
the discussion. We relate the tasklets to the CT skills we listed in Sect. 2.1 and
we describe how the related games were realized and which differences pupils
introduced with respect to the original tasklets. We also report and discuss
the relevant incidents that occurred during the first phase and/or the training
sessions. These facts shed lights on both the cases where pupils had understood
the CT concepts, and the cases where critical issues came up.

3.1 Birthday Party

Tasklet. The tasklet, shown in Fig. 1, asks the solver to consider the friendship
relationship among animals and place the animales around tables respecting
some given constraints, thus it relates to the “Reason” skill. While reading the
text one can start placing the animals, considering one constraint at a time, but
there is some freedom in the choice of the tables, since some placements are fully
determined only by forthcoming constraints. In particular, two critical situations
might happen: i. if one places the Rabbit (the first mentioned animal) at the
wrong table, she gets eventually stuck due to the different number of seats at
the two tables; ii. all animals are placed before the text is over complying with
all but the last constraint, but the placement might turn out not to satisfy the
last constraint. In both cases, the solver needs to backtrack and reconsider the
solution or start over.

Game. The trainers drew the two tables on the poster, and pieces of Velcro tape
were stuck around each table as placeholders for the guests. The faces of the
animals were drawn on cards, with Velcro on the back, so that they could be
attached to the places around the tables. The cards were stored in an envelope
attached to the poster. The task’s text and the question were written on separate
sheets and put in another envelope.

Anecdotal Record. At the beginning of the training session, trainers were very
directive and basically guided the trainees step by step; when trainers read a
sentence like “animal A is friends with animal B”, they also added a comment
like “then you have to put animal A at the same table as animal B”, often
pointing at the corresponding card. Moreover, when trainees got stuck because
of the wrong choice of the table for the Rabbit (case i. above), they straightfor-
wardly suggested to start over by placing it at the other table. Also, as soon as
the trainees placed the last animal at a table, the trainers stopped the trainees
(even though the text was not over yet) asked them to check the obtained sit-
uation against the solution in the envelope, and made them start over when
they differed. In other terms, when something went wrong, the trainers did not
wait for the trainees to discover the problem and try to fix it by themselves.

232 C. Bellettini et al.

The Teacher advised the trainers to be more patient, but they appeared skepti-
cal and indeed showed again the tendency of being too directive. After a second
intervention, they succeeded in being more patient and realized that the trainees
were actually able to eventually detect the inconsistencies by themselves without
checking the solution, if allowed to conclude reading the text. Once, a trainee
got stuck but refused to start over, asking instead try to fix the solution alone.
He switched the tables and then re-checked that all constraints were satisfied.
The trainers were really surprised that the trainee was actually able to fix the
error by a different approach: “he did find the correct solution, but he found it
without starting over!”.

Discussion. Trainers were able to reason on the task’s constraints, identifying
the correct solution. They also showed to be aware of the two critical situations
that might happen. However, the fact that they stopped trainees prematurely
suggests that they probably did not identify the origin of the issue for case (ii).
The last trainee described above showed good abstraction skills, being able to
grasp that the relation “being at the same table with” is more important –in
this tasklet– than the property “being seated at a certain table”. Moreover, this
interaction helped the trainers understand an important CT aspect: the same
output or final result can be obtained with different strategies.

3.2 Drawing Game

Tasklet. The tasklet, shown in Fig. 2, is basically a programming question –
the programs’ goal being to draw shapes– and it relates to “Implement” and
“Algo think” skills. Due to the presence of multiple choices, the tasklet could be
solved simply by executing the programs and checking if the obtained output is
a square.

Game. The tasklet text was directly written on the poster, but the examples
shown in the original were omitted. Moreover, the original tasklet presented a
multiple choice question; the trainers opted instead for a constructive question,
asking the solver to build a program with the provided commands. In an envelope
attached to the poster, some white sheets were made available to write down the
program, with lines numbered 1 to 6, to suggest that six commands were needed
in the program.

Anecdotal Record. During the preparation of the game, the Teacher suggested
that trainees would have benefited from manipulating some tangible objects
when creating the program. Trainers were skeptical at first but then they used
some cardboard to make four logs and a flag, so that the target drawing could
actually be composed with objects. During the first training session, the trainers
realized that writing the program on the sheets of paper was too time consuming.
Hence, before the next training session, the trainers added some cards with the
four available commands, that could be put in a sequence to form a program.
During the next training session, however, they observed that multiple copies

Situated Learning with Bebras Tasklets 233

of each command were actually needed, since some commands had to be used
more than once in the same program.

Discussion. The game resulted in a much more difficult task than the origi-
nal one; according to the Bloom’s taxonomy, the required cognitive skill moved
from “apply” to “create”. This fact suggests that the trainers mastered the CT
content implied by the tasklet. During the training, they further realized the
importance of re-using the same command more than once and in different posi-
tions. This is a peculiar aspect of programming, that does not often appear in
other mathematical or logical tasks that require rearranging (e.g., sequencing)
objects. Moreover, while supporting their trainees struggling in the program-
writing process, the trainers came to understand better what is implied in such
process: on the one hand one has to select and properly position the appropriate
commands (write code), on the other hand one has to simultaneously simulate
and trace the effect of the commands themselves (execute code).

3.3 Balls

Tasklet. The tasklet, presented in Fig. 3 focuses on LIFO stacks, and it relates
to “Algo think” and “Organize” skills.

Game. The ramps with holes and pins were drawn directly on the poster together
with the tasklet’s text and some new explanations on how the system was sup-
posed to work. As in the original task, four possible alternative answers were
given. An extra sheet with the ramp and the holes drawn on it was made avail-
able to track the rolling balls. The original number of balls was doubled from 10
to 20, the number of holes was increased from three to four with their capacity
always of decreasing size.

Anecdotal Record. During the first phase, the Teacher suggested to prepare some
tangible elements to simulate the process. The trainers did not accept the sug-
gestion since “it will make the game too easy”. Then the Teacher suggested that
they could provide the trainees with some support to trace the process; they
agreed but were not able to find a way. At the end, the Teacher suggested to
draw the ramps with holes and pins on separate sheets, to be freely sketched
by the trainees. During the first training session, the trainers did not use the
sheets until after some iterations, when they saw trainees struggling with the
task. At the end of the first training session, the trainer commented that the
sheets were in fact useful. The trainer of the second session was very patient and
intervened only when the trainees were stuck or made some errors in the exe-
cutions of steps, by re-reading them the appropriate specification when needed,
and advising them to trace the process step by step on the sheet.

Discussion. The fact that the trainer of the second session was so precise in
reminding the relevant specifications at the exact moment they were needed
is evidence that she had understood and remembered how the system worked

234 C. Bellettini et al.

and was perfectly able to follow the evolution of the system and apply the
general specifications to its current state. The latter one is an important CT skill,
especially useful when analyzing or debugging programs or systems. Moreover,
her manner of supporting the trainees helped them in appreciating how the
system evolved in a deterministic way, according to the specifications.

3.4 Waiter

Tasklet. The tasklet, presented in Fig. 4, asks pupils to choose among different
representations (notes) of an order taken by a waiter. The tasklet aimed at
promoting a reflection on how different ways of representing the same data can
serve different purposes, hence it relates to “Organize” and “Represent” skills.

Game. The tasklet text was written on the poster, whereas the multiple choice
answers were written on separate sheets and glued to the poster. Each answer
had a piece of Velcro tape on top, and a Velcro cross should be used to select
the right answer. The setting was changed with respect to the original tasklet:
instead of a waiter, the main character was a shop assistant selling make-up
products. The game presented only three multiple choice options instead of five.
Moreover, the three options in the new setting did not present the same features
as the original ones. In fact, each original option contained different pieces of
information, whereas the new ones were actually equivalent with respect to the
information they contained, differing only in the notation (numbers instead of
letters, abbreviations, . . .).

Anecdotal Record. During the training session, the game was easily solved by all
trainees who simply had to pick the shortest option. When the Teacher asked
the trainer to explain why they had changed the tasklet, the trainer only focused
on the setting and not on the options and the differences in their information
content (in fact, there were no differences). Only after recovering the original
tasklet on the Bebras Platform and asking to check the correspondence between
the options, the trainer realized that he was not able to match the modified ones
with the original ones.

Discussion. Most likely, the trainers were able to identify the correct answer by
simply recognizing the typical form of waiter’s note, but they appeared to have
missed the CT content in the explanation and comments to the tasklet. This
interpretation is supported by the fact that the correct answer was faithfully
transposed in the new setting, whereas the other options did not show the same
features as the original ones. For instance, the explanation highlighted that the
second option clustered the ordered items into two groups (Drinks and Foods)
and could be useful if the service was prepared by two different people in charge
respectively of drinks and foods only. This difference totally disappeared in the
new setting.

Situated Learning with Bebras Tasklets 235

3.5 Board Jumps

Tasklet. The tasklet, presented in Fig. 5, models a setting with pointers or jump
instructions, and it relates to “Algo think” skill.

Game. The game was built by using shoe boxes. Each of them was labeled, in
order, with a capital letter from A to H, and a card with the instruction was
glued inside each box. No poster was prepared and the tasklet text was written
on a piece of paper. The correct solution was written on another sheet and put
into an envelope. The text was changed; the basic instruction “2L means to
open the box that is 2 positions to the Left” was rewritten as “move this box
two positions to the left”. Notice that this rule is not precise enough, since it is
not clear what “move to another position” means, given that a box can be placed
next to other boxes but cannot replace another box. Also, this new kind of rules
does not fully determine the process, since it is not specified which box must be
opened next. It was actually assumed that the boxes be opened in alphabetical
order.

The question was changed too, in that solvers were asked to establish how
the boxes are sorted at the end of the process. Notice that the new interpretation
of the text changes completely the process and its outcome, since the solution
of the original tasklet cannot be obtained following the text of the new game.
However, the solution in the envelope reported exactly the correct solution of
the original tasklet.

Anecdotal Record. During the training session, the trainer read aloud the
tasklet’s text, then waited for the trainees to start, by opening and moving
the box labeled A. At this point the trainees were stuck and they asked what
to do next, thus the trainer explained to follow the alphabetical order, i.e., to
open next the box labeled B. When the trainees concluded the game, their solu-
tions inevitably differed from the expected one. The trainer then offhandedly
explained the fact with vague remarks like “you did not move the boxes into
the proper positions”. The trainer never tried to repeat the process, showing or
checking the proper actions to be carried out to reach the expected outcome. The
trainees did not appear convinced but did not engage in any further discussion
nor asked explanations.

Discussion. Manifestly, the trainer had not understood the tasklet and in par-
ticular the rules, their effect when applied, the overall process, nor the question.
Surprisingly, even though the wrong interpretation of the rules and question was
not compatible with the correct solution and its explanation (which reported step
by step the complete process), the trainer remained comfortably in her interpre-
tation. The trainer’s imposing self-assurance on one hand, and the instructions’
lack of rigor on the other hand, might have inhibited the critical thinking skills of
the trainee. All in all, in this case neither the game preparation nor the training
served as promoters of CT skills.

236 C. Bellettini et al.

4 Conclusions and Further Work

The idea of asking 6th graders to train younger pupils with Bebras-inspired
games they invented has proven to be a good opportunity for situated learning.
All but one pair succeeded in finalizing the game they designed: the assign-
ment and the time allocated seem to be well chosen for the age group. In most
cases, we collected evidence that the pupils had understood the original tasklets,
transposed correctly their core CT ideas, and were able to explain them to their
younger mates. The interaction between trainers and trainees shows in more than
one case (e.g., “Balls” and “Drawing Game”) that trainers were in fact able to
follow the solving process of the trainees and support them appropriately. Not
by chance, these are exactly the cases where the trainers intentionally made the
tasklet’s task more challenging, which is further evidence of their mastering of
the implied CT skills. It is important for the teacher to monitor this aspect and
make sure that the implied CT skills are preserved and the level of difficulty is
kept adequate for the trainees’ age.

With “Birthday party” and “Dustman robots” we also have evidence that the
feedback from younger mates helped trainers in further improving their under-
standing of the task and the important elements therein. Finally, in many cases
(e.g., “Room sharing”, “Drawing Game”, “Dustmen robots”), pupils elaborated
the original tasklet content, still preserving its sense and efficacy, showing in the
process to be able to identify and abstract the important elements and properties
of the entities involved in the tasklet, and the skills required to solve it. However,
in two cases (namely “Board jumps” and “The waiter”) the trainers clearly did
not succeed in understanding the tasklet or the CT aspects, all the more so to
convey them to the younger mates. For these pupils, most activities carried out
during the project (and especially the whole training sessions) were not produc-
tive, as far as the CT aspects were concerned. At the end of the project, the
Teacher reckoned that at first she was not familiar with those tasks and that she
focused mainly in building a collaborative atmosphere within the class and in
helping pupils with their design and creation of the game. These are probably
the reasons why she did not notice at an early stage that the pupils were missing
some meaningful points in the tasklets. Considering the results of the project,
an important lesson learned by the Teacher is the need to spend some time to
deeply examine the chosen tasklets (including the explanation and the commen-
tary) in order to identify more clearly the important elements therein and the
underlying CT content, so as to be able to monitor whether they are grasped
during the activities or intervene in case they are not. As for the cross-cutting
competencies, the pairs definitely practiced a number of them, e.g., working
towards a common goal, designing and building a tangible object, being patient
in letting the younger work through the solution of the tasklet without stopping
them beforehand, accepting and appreciating other ways of reasoning. We have
to point out that initially the trainers displayed some resistance to building and
providing trainees with tangible objects to work with, which instead proved to
be helpful and appreciated by the younger pupils, as testified also in [10].

Situated Learning with Bebras Tasklets 237

All in all, the experience proved that using Bebras tasklets as the social and
cultural context for situated learning of CT competencies is indeed quite pro-
ductive: pupils were generally captivated and showed signals of learning in all
the phases. This approach provides many elements to the instructor to monitor
the learning process and its effectiveness. Future work aims at measuring and
evaluating more analytically the impact of such didactic interventions on improv-
ing computational thinking skills. Bebras can in fact be a valuable resource for
learning activities, and the richness of the tasklets, sometimes overlooked during
the short time available during the contest, is instead fully explored in the deep
engaging series of activities such as the ones described here.

A Tasklets screenshots with games

(a) Tasklet (b) Game

Fig. 1. Birthday party

(a) Tasklet (b) Game

Fig. 2. Drawing game

238 C. Bellettini et al.

(a) Tasklet (b) Game

Fig. 3. Balls

(a) Tasklet (b) Game

Fig. 4. Waiter

(a) Tasklet (b) Game

Fig. 5. Board jumps

Situated Learning with Bebras Tasklets 239

References

1. International Society for Technology in Education & Computer Science Teach-
ers Association: Operational definition of computational thinking for K-
12 education. http://www.iste.org/docs/ct-documents/computational-thinking-
operational-definition-flyer.pdf (2011)

2. Calcagni, A., Lonati, V., Malchiodi, D., Monga, M., Morpurgo, A.: Promoting
computational thinking skills: would you use this bebras task? In: Dagiene, V.,
Hellas, A. (eds.) ISSEP 2017. LNCS, vol. 10696, pp. 102–113. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-71483-7 9

3. Bellettini, C., et al.: A platform for the Italian Bebras. In: CSEDU 2018, vol. 1,
pp. 350–357. SCITEPRESS (2018). https://doi.org/10.5220/0006775103500357

4. Bellettini, C., Lonati, V., Monga, M., Morpurgo, A.: How pupils solve online prob-
lems: an analytical view. In: CSEDU 2019 – vol. 2, pp. 132–139. SCITEPRESS
(2019). https://doi.org/10.5220/0007765801320139

5. Lonati, V., Malchiodi, D., Monga, M., Morpurgo, A.: Is coding the way to go? In:
Brodnik, A., Vahrenhold, J. (ed.) ISSEP 2015, pp. 165–174 (2015). https://doi.
org/10.1007/978-3-319-25396-1 15

6. Corradini, I., Lodi, M., Nardelli, E.: Conceptions and misconceptions about com-
putational thinking among Italian primary school teachers. In: Proceedings of the
ICER 2017, pp. 136–144. ACM (2017)

7. Tatnall, A., Jones, A. (eds.) WCCE 2009. IAICT, vol. 302. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-03115-1

8. Dagienė, V., Sentance, S.: It’s computational thinking! bebras tasks in the cur-
riculum. In: Brodnik, A., Tort, F. (eds.) ISSEP 2016. LNCS, vol. 9973, pp. 28–39.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46747-4 3

9. Dagienė, V., Stupuriene, G.: Informatics education based on solving attractive
tasks through a contest. KEYCIT 2014, 97–115 (2015)

10. Dagienė, V., Futschek, G., Stupurienė, G.: Creativity in solving short tasks for
learning computational thinking. Constructivist Found. 14(3), 382–396 (2019).
https://cepa.info/6060

11. De Corte, E.: Constructive, self-regulated, situated, and collaborative learning: an
approach for the acquisition of adaptive competence. J. Educ. 192, 33–47 (2012).
https://doi.org/10.1177/0022057412192002-307

12. Froehlich, C.P., Hoyt, K.B.: Guidance testing and other student appraisal proce-
dures for teachers and counselors. Science Research Associates (1959)

13. Haberman, B., Cohen, A., Dagienė, V.: The beaver contest: attracting youngsters
to study computing. In: Proceedings of ITiCSE 2011, pp. 378–378. ACM (2011)

14. Mayer, R.E.: Should there be a three-strike rule against pure discovery learning?
Am. Psycol. 59, 14–19 (2004)

15. Piaget, J.: The Child’s Constructions of Reality. Routledge and Kegan Poul, Abing-
don (2013)

16. Vygotsky, L.: Mind in Society: Development of Higher Psychological Processes.
Harvard University Press, Cambridge (1978)

http://www.iste.org/docs/ct-documents/computational-thinking-operational-definition-flyer.pdf
http://www.iste.org/docs/ct-documents/computational-thinking-operational-definition-flyer.pdf
https://doi.org/10.1007/978-3-319-71483-7_9
https://doi.org/10.5220/0006775103500357
https://doi.org/10.5220/0007765801320139
https://doi.org/10.1007/978-3-319-25396-1_15
https://doi.org/10.1007/978-3-319-25396-1_15
https://doi.org/10.1007/978-3-642-03115-1
https://doi.org/10.1007/978-3-319-46747-4_3
https://cepa.info/6060
https://doi.org/10.1177/0022057412192002-307

The Genesis of a Bebras Task

Christian Datzko(B)

Wirtschaftsgymnasium und Wirtschaftsmittelschule Basel, Basel, Switzerland
christian@datzko.ch

Abstract. This paper reports the milestones a task proposal takes from
its initial conception until its use in the Bebras International Chal-
lenge of Informatics and Computational Thinking and the experiences
that Switzerland has with the procedures with the intent to share best-
practices. This includes the Swiss Bebras Task Workshop, the Interna-
tional Bebras Task Workshop, the generation of the Swiss Task Set, the
adaptation of a task proposal for the Swiss Bebras Challenge, the Con-
test System and the Brochure. Although the process is described from
the point of view of the Swiss Bebras Challenge, the processes in some
other participating countries are similar. The description of the process
is accompanied by a task proposal of which the changes over time are
documented. The basic findings are that during the year-long process
a task proposal experiences several (re-)considerations, several stages of
reworking and adaptation but that these reiterations serve towards qual-
ity improvement and ensure that each task proposal is up to standard to
be offered to the more than 21, 000 participants in Switzerland annually
or even (up to and including the International Bebras Task Workshop
2019) 2.78 million students world-wide annually. This paper is targeted
at the general audience interested in the process of developing high qual-
ity tasks, be it for contests or for general use. It may also be of interest
to people working within the Bebras community to compare the Swiss
process to their processes of preparing tasks.

Keywords: Bebras International Challenge of Informatics and
Computational Thinking · Task preparation · Quality management

1 Background

The Bebras International Challenge of Informatics and Computational Thinking
(short: Bebras) is an “international initiative aiming to promote Informatics
(Computer Science, or Computing) and computational thinking among school
students of all ages” [7]. Since its start in 2004 [4] it has grown to reach more
than 54 countries and more than 2.78 million students annually by mid-2019 [5].

After a pilot run in 2009 using the German Challenge, Switzerland started
to offer the challenge in 2010 in French, German and Italian. The annual partic-
ipants in Switzerland have grown to more than 21, 000 participants annually in
2018 [20].

c© Springer Nature Switzerland AG 2019
S. N. Pozdniakov and V. Dagienė (Eds.): ISSEP 2019, LNCS 11913, pp. 240–255, 2019.
https://doi.org/10.1007/978-3-030-33759-9_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33759-9_19&domain=pdf
http://orcid.org/0000-0003-1175-314X
https://doi.org/10.1007/978-3-030-33759-9_19

The Genesis of a Bebras Task 241

The Challenge takes place online. Teachers enroll their students and let them
participate in class [21]. The Challenge itself consists of 15 tasks for each age
group except for 12 tasks for the age group 10–12, and 9 tasks for the age group
8–10 of which 1/3 are easy tasks, 1/3 are of medium difficulty and 1/3 are hard to
solve, which are independent of each other and graded individually [16, p. 4].1

These task proposals (see Sect. 2) are conceived by individuals in the mem-
ber countries of Bebras (see Sect. 3), aggregated nationally (see Sect. 4) and
selected and reworked internationally (see Sect. 5) into a task pool. From there
the member countries of Bebras select their own set of tasks for each age group
(see Sect. 6), adapt them to their own language and national requirements (see
Sect. 7) and implement them into their respective online system (see Sect. 8).
Some countries including Switzerland publish them after the challenge (see
Sect. 9). This process takes up most of the year: In Switzerland the task proposal
generation starts in February and the brochure gets published after the challenge
in mid-November.

Although generally the process described is similar for other countries partic-
ipating in Bebras, the Swiss procedure especially before the International Bebras
Task Workshop ensures that the submitted tasks have a quality regarded highly
within the international community. This process has been improved gradually
over the last 10 years and sharing it with a general audience hopefully helps
other countries and other communities with similar processes to learn from the
experience gained over time.

2 What Is a Bebras Task?

As in probably every active community of individuals from different backgrounds
and with different experiences, the opinions on what a Bebras Task exactly
defines differ in detail. However some basic categories for task proposals have
been laid out early on already [11]. Since then there have been several approaches
to refine these categories. One category of task proposals in particular, “Using
computer systems”, has been debated again and again. Many typical task pro-
posals for this category require pre-knowledge that is not available to students
of most participating countries, therefore it has been not used for task proposals
in the recent years.

Lately there has been a proposal to focus the main informatics concept intro-
duced in a task proposal [13]. This proposal is developed with aspects of com-
putational thinking skills in mind. These categories are in use in the Bebras
community since 2017.

Officially a task proposal has no requirements for the content [8, p. 6].
However there are suggestions about what a good task proposal is about.
1 In this document the term “age groups” with a rough age range is given instead of

the school years to enhance the international understanding of the target age of the
students. Teachers in Switzerland however register the students based on the school
year that they’re in so it could be that some students are older and some students
are even younger than the age group stated.

242 Chr. Datzko

This document has been approved officially by the Bebras community and there-
fore sets the standards [8, pp. 6–7]2:

– “A good task proposal introduces or reinforces a topic in computer science.
– A good task proposal is quick and easy to understand. . .
– . . . but challenging to solve.
– A good task proposal is usable after the contest as a good example.”

The reason that these suggestions are not requirements is that the rules
should not prohibit a task proposal to be made if it doesn’t fall into one of the
categories even though it touches an important or interesting topic of computer
science. A task proposal can still be a good task proposal if it breaks the criteria
cited.

Besides these internal definition there have some attempts to define or at
least hint what a good task proposal is. Dagienė and Futschek [11, pp. 4–5],
Dagienė [9], Vańıček [27] or even the project’s own website [6]3 try to closer
define it but most of these offer further refinements of the four criteria from
above, some of them even deal with rather formal or practical aspects.

There are several formal requirements for a task proposal though. Besides
some technical requirements like naming conventions and licensing information
as well as a record of internal comments about the task proposal, a task proposal
consists of [8, pp. 4–5]:

– a title which is displayed for the student and used as a name in brochures,
– a body which tells the story and explains the constraints,
– a question or challenge that the student has to answer or solve,
– either different answer alternatives for multiple-choice task proposals or an

interactive pane in which the student can work on solving the task,
– an answer explanation which explains to the student which answers are cor-

rect and how they could be obtained,
– an “It’s Informatics” section which explains to the student what the task

proposal has to do with computer science,
– and optionally some keywords and links to websites for further reading on the

computer science topics.

The last three categories of course are not presented to the student before
or during the challenge but afterwards for example in the brochure (see Sect. 9).
Although these formal requirements are like fields in a template to simply fill
out [19], they are supposed to help the authors and editors of task proposals to
make sure their task proposal is complete and adequate for students.

2 This document has been prepared by Ivo Blöchliger, Christian Datzko, Mathias
Hiron, Wolfgang Pohl, Eljakim Schrijvers, Alexandra Talon and Jǐŕı Vańıček within
the Bebras community.

3 Some countries allow the use of pen and paper.

The Genesis of a Bebras Task 243

3 From the Initial Idea to a Task Proposal

To describe a creative process of getting an initial idea for a task proposal eludes
the descriptions in many ways. However there are some aspects that can be
perceived and improved like the aspects described by Paul and Elder [25]. What
stands out is the fact that a single creative process must be accompanied by
hard work to refine the initial idea [25, p. 45].

One way to get a first idea for a task proposal is to choose an informat-
ics concept, develop a fitting cover story, add visual components and anima-
tion or interactivity and synthesize it into a task proposal [12, p. 258]. In some
cases however it’s the other way around: for the task proposal 2017-CH-08[a–b]
([15], [10, pp. 534–535]) for instance the cover story was first and then a fitting
application of the story within computer science was found. Further approaches
are mentioned by Vańıček [27, p. 24]. Switzerland even invites students from
the age group 16–19 to submit task proposals (see also the experiences made by
Manabe, Tani, Kanemune and Manabe [23]).

The task 2018-CH-11 [18]4 will serve as an example how an initial task pro-
posal gets transformed into its final form. It was chosen because for it wasn’t a
“standard” task but offered some controversy, and also because for it all data for
presenting it here was available. For obvious reasons task proposals that were
discarded during the process were not taken into account.

This is how the task proposal was submitted originally5:

– Title: Beaver-Modulo.
– Body: There are five little stones in the water arranged in a circle numbered

from 0 to 4. Pfiffikus stands on stone number 0 and jumps from stone to
stone clockwise. If he jumps 5 times, he will land on the number 0. If he
jumps 8 times, he will land on number 3.

4 Urs Hauser, Juraj Hromkovič, Regula Lacher, Jacqueline Staub, Christian Datzko,
Susanne Datzko, Špela Cerar and Hanspeter Erni contributed to this task. Some
of the comments about this task cited later were also done by Zsuzsa Pluhar, Emil
Kelevedjiev and Wolfgang Pohl.

5 The original graphics which were replaced later include work done by Vaidotas
Kinčius.

244 Chr. Datzko

– Question: Pfiffikus is very athletic and jumps 129 times! On which number
will he land?

– Answer Alternatives: Integer numbers from [0, 4].
– Answer Explanation: Number 4 because 129 mod 5 is 4.
– It’s Informatics: The modulo operation is often used in computer science

or number theory and finds the remainder after division of one number by
another (sometimes called modulus). Given two positive numbers, a (the div-
idend) and n (the divisor), a modulo n is the remainder of the Euclidean
division of a by n. For example is 11 mod 5 = 1 because 5 ∗ 2 = 10 rest6 1.

– Keywords: modulo operation.
– Websites: left empty.

From a formal point of view this task proposal is complete and the relation of
the content to computer science is referred to in the “It’s Informatics” section.
It was originally aimed by the original author at students aged 10–12 with a
medium difficulty (about the difficulty to assess the difficulty of a task see van
der Vegt [28–30]).

4 The Swiss Bebras Task Workshop

Switzerland like other countries in Bebras holds a national workshop to collect
the task proposals, to discuss them, to select those that will be submitted to
the international community and to improve the selected task proposals based
on the collected remarks. In some way that national workshop is similar to the
international workshop (see Sect. 5). Because of its smaller scale7 and the much
lesser amount of work8 it is less formalized.

The usual proceedings are:

1. Collecting comments on all task proposals.
2. Rating all task proposals based on their current state and their potential

and calculating a weighted average (usually with twice the weight for the
potential). All numbers are from 1 to 6 with 1 being the worst rating.

3. Discussing the task proposals from the top-scorer down and selecting which
task proposals are to be improved and submitted to the international
community.

4. Assign persons responsible for each selected task proposal and to double check
the quality of the work.

5. If time permits starting the work on improving the task proposals to give new
people in the team a chance to ask questions directly.

6 This is a translation error from German to English: “Rest” in German should have
been translated as “with a remainder of” in English.

7 In the last years between 3 and 6 people participated in the Swiss Bebras task
workshop.

8 In the last years between 15 and 25 task proposals were collected, not counting
variants of task proposals, from these between 9 and 13 were submitted to the
international community.

The Genesis of a Bebras Task 245

After the national workshop the work is finished individually. Once the work
is done, the task proposals are given a final check for formalities and submitted
to the international workshop.

The task proposal 2018-CH-11 received a current state of 4.80 and a potential
of 5.17 which gives a weighted average of 5.04. With this value it scored fourth
out of the 19 task proposals (with their variants) of that year.

The following comments were made:

– Mathematical task, modulo operations are used but not a “topic” for CS [com-
puter science].

– Better to use “normal” names.
– However it is a very simple task and could be interesting for 5th6th graders

[age group 10–12]?
– Try to get as much math out of it as possible.
– In the It’s Informatics make sure this is more the interpretation of a dynamic

process than applying modulo.

The first comment already names one of the main discussions around this
task: Is a task that has the modulo function in its core a task about computer
science or is it a task about mathematics? Discussions like these happen again
and again because computer science and mathematics are closely related and
share methods and concepts. In this case at the end of the discussion it was
decided that this task proposal was indeed about computer science, but that it
should be noted in the internal documents:

“One could argue that this is a math task, because calculating the remain-
der of an integer division is a math competence students at target age
might know. Also this concept is further explored in math applications like
multiplicative groups of integers modulo n. However this task focuses on
the dynamic process of jumping n rounds first and then (indirectly) asking
how many jumps are left instead of asking what’s ‘left’ after doing a regu-
lar mathematical operation. So in this sense the task is primarily about the
analysis of a process and how to efficiently get the final result. It could even
be gotten very quickly by an educated guess from the student: go 5 steps
(124 to go), go 5 steps (119 to go), go 5 steps (114 to go) and see that the
last digit is always either 9 or 4 so the answer must be 4 (since for 9 you
could go another round and end up with 4 also).”

The other issues were also addressed. In order to ease the difficulty of the task
proposal which was considered harder than originally stated the short example of
8 jumps was elaborated. The graphics were redone to make them more appealing
to students. The answer explanation has been extended to make it easier to
understand by students, especially the term “lap” was introduced in order to
make the concept of the integer quotient more understandable (it is commented:
“when doing endurance sports, often events are done in laps (like how many
times a race track has to be completed or how many times one has to swim

246 Chr. Datzko

back and forth in a swimming pool); this association with sports is very near to
students at target age and closely associated with the story of the task”). The “It’s
Informatics” was completely rewritten in order to make the connection between
what the students might know from math class and the modulo operation and
to show applications of the method.

The task proposal was submitted into the international community like this:

– Title: Beaver-Modulo
– Body: In order to train for the annual beaver challenge some beavers train

a lot. Today the task is to jump from rock to rock in clockwise direction as
indicated by the arrow starting from rock number 0. So if he jumps 8 times,
he’ll end up on rock number 3:

0 → 1 → 2 → 3 → 4 → 0 → 1 → 2 → 3.

0

3

4 1

2

– Question: One of the beavers shows off and jumps an astonishing 129 times.
On which rock did he end up?

– Answer Alternatives: Integer numbers from [0, 4]
– Answer Explanation: If a beavers jumps 5 times, he ends up where he is, let’s

call it a “lap”. To find out where he ends up after 129 jumps we have to find
out how many “laps” he jumps and how many jumps he still has to do after
that. In this case it’s 129 = 25 × 5 + 4. So jumping 129 times will have him
end up at the same place as if he just had jumped 4 times, he ends up on
stone number 4.

– It’s Informatics: You may have seen this operation in math class before. It’s
part of what you might know as the Long Division or the Euclidean division
which calculates an integer quotient and a remainder.
In this case you’re asked to calculate the remainder of 129 ÷ 5. Since this
operation is used very commonly in computers, it has a name: modulo oper-
ation. Usually “%” or “mod” is used as an operator. So for our equation we
could write: 129%5 = 4.
Typical applications of this operator are in loops of programs (just like our
beaver jumping in loops), when variables overflow or even for the widespread
cryptosystem RSA.

– Keywords: modulo operation.
– Websites: https://en.wikipedia.org/wiki/Modulo operation

https://en.wikipedia.org/wiki/Long division

https://en.wikipedia.org/wiki/Modulo_operation
https://en.wikipedia.org/wiki/Long_division

The Genesis of a Bebras Task 247

https://en.wikipedia.org/wiki/Euclidean division
https://en.wikipedia.org/wiki/RSA (cryptosystem)

During the improvement of the task proposal the following alternative has
been considered and discarded but viewed as relevant to note in the internal
comments: “I have considered to further explain that for 129 = 25 × 5 + 4 that
the number 25 is irrelevant, especially since for a divisor 5 or 10 it’s very simple
to find the remainder. However this would make the answer explanation longer.
Further I have decided to not go further into applications of the modulo operation,
especially considering the target age group. This could be elaborated.” This kind
of consideration is typical for tasks: on one hand most tasks open up a topic of
computer science where many interesting things could be written, but on the
other hand a task including the information only used for after the challenge
should be as short as possible to avoid information overload.

5 The International Bebras Task Workshop

Each year the Bebras community meets for a week at the International Bebras
task workshop. One of the main goals of that event is “to discuss and prepare
tasks” [2]. The participants are mostly computer scientists, computer science
teachers and computer science teacher educators, but also some representatives
from companies working in the area of computer science challenges or representa-
tives from ministries of science or education. However, virtually every participant
works in one of the pre-assigned working groups.

Since the recommendations of the pre-workshop review process [8] were begun
to be implemented before the workshop, the community is asked to comment and
rate task proposals. Although the review system is improved every year the basic
idea is the same: every task proposal gets rated based on its current state and on
its potential (using the same 1 to 6 scale) and further comments are collected.
Unlike in the corresponding process at the Swiss Bebras task workshop a task
proposal receives only a few ratings since in the last years there has been a surge
of task proposals (between 194 and 250 task proposals annually) which lead to
1 to 3 reviews per task proposal. Consequently the ratings are only moderately
comparable to each other, but in most cases at least hint the general direction.
The comments serve a much higher value because they allow the task proposers
before the workshop to improve their task proposals based on the comments.
The comments and ratings are also available to the working groups during the
workshop.

During the workshops the task proposals are assigned to working groups con-
sisting of about 8 members which work on roughly 20 task proposals (depending
on the number of task proposals and the number of participants of course). The
method of working is up to the working group leader, but most working groups
do their own rating (current state and potential again like in the review) to have
a better base to decide on which task proposals to work on with higher priority.
Especially those task proposals with a big difference between their current state

https://en.wikipedia.org/wiki/Euclidean_division
https://en.wikipedia.org/wiki/RSA_(cryptosystem)

248 Chr. Datzko

and their potential are improved and worked on significantly. This is usually
done in pairs with a second pair responsible for double checking. Some work is
outsourced: graphics are created by experts brought to the workshop by some
countries and the programming of interactive tasks which depends on the contest
system being used (see Sect. 8) is skipped and left to the countries to develop
after the workshop. Instead a description on how the interactive parts should
work is given.

Towards the end of the workshop all groups give a final rating of the new
current state and select those that they deem as suitable for the national chal-
lenges. These form the “task pool” from which the national task set is chosen
(see Sect. 6).

The task 2018-CH-11 received two reviews in the pre-workshop review pro-
cess. The current state was rated 3.50 and the potential 4.00. The review com-
ments were: “Can a beaver jump? It is more counting (math) for me. But because
of the inf.part [‘It’s Informatics’] and the comments could be used.” as well as
“The task is more suitable for a mathematical competition”. This on one hand
shows the question originally raised in the Swiss Bebras task workshop whether
the task proposal is sufficiently about computer science, but the first comment
also mentions that the approach to make the computer science aspects in this
task proposal more visible in the “It’s Informatics” section was successful. The
other issue is: beavers usually don’t jump but rather swim or walk. However
using the beaver as a fairy tale character instead of the animal it would be can
be viewed as acceptable [27, pp. 24–25].

Later during the workshop the working group commented: “good presenta-
tion, math background, make water lighter” and gave it a rating of 4.67 (current
state) and 4.88 (potential). The task proposal was ranked second out of the
20 task proposals in that particular working group.

The working group changed some details of the text and changed the color
of the lake. The changed parts now looked like this:

– Body: Some beavers took part in the annual beaver challenge. Their first task
was to jump from rock to rock in a clockwise direction, as shown by the arrow,
starting from rock number 0. So, if a beaver jumped 8 times, he will end up
on rock number 3:

0 → 1 → 2 → 3 → 4 → 0 → 1 → 2 → 3.

The color of the water was brightened.
– Question: One of the beavers showed off and jumped an astonishing 129 times.

On which rock did he end up?

The task was given a final rating of 4 (ranking 15th out of the 21 tasks worked
on with in that working group9). These ratings of course cannot be compared to
the previous ratings because many tasks have changed and the demands for a
task to receive a good grade were raised during this process. It is still interesting
9 One of the tasks got split up into two variants.

The Genesis of a Bebras Task 249

to note that the rank dropped so clearly for no obvious reason. The task was
assigned by the working group to age group 12–14 with a medium difficulty. It
was assigned to the task pool and thus classified as suitable.

6 Selecting Tasks for the Swiss Task Set

From the task pool every country selects those tasks that they deem suitable for
their national challenges [2]. In order to do that, for every age group that they
offer they have to select tasks. Switzerland offers the age groups 8–10, 10–12,
12–14, 14–16 and 16–19. With overlaps this resulted in 37 to 45 tasks in total in
the last few years.

Traditionally Switzerland cooperates with Austria, Germany and Hungary
for the selection of a task set. As a result from that the vast majority of the
tasks used in these countries were the same although some details differed to
make up for regional needs.

The task selection is done in a meeting of representatives of these countries.
Before the meeting members from these countries rate all tasks in the task pool
and comment on them. This gives a uniform rating (see Sect. 4) and ensures
that the rather similar opinions on what a good task is are the base for the
selection of the tasks. Of course during the meeting still sometimes controversial
discussions about some tasks were held. For a task set not only the quality
and suitability of individual tasks are important, but also the construction and
balance of the whole task set has to be taken into account. The students have
to be presented with a number of tasks that to some extent show the breadth of
computer science. Tasks about similar aspects of computer science in the same
age category should be avoided. Although for the countries mentioned above no
mandatory national curriculum exists, selecting topics that would be adequate
for a certain age category is also taken into account. In the end each age category
should offer an attractive insight in computer science.

The task 2018-CH-11 received diverse feedback. The 7 ratings resulted in
an average of 3.86 with a quite high standard deviation of 1.86 (again on a
scale from 1 to 6). The only comment reiterated the two criticisms of the task:
“Beavers do not jump! This is a maths task, we should not present it as CS, in
spite of modulo being used in many computing applications”. The same person
even stated later: “ [for my country]: maybe not” and indeed that country did
not select the task. The rating was fixed as “medium” for the age group 12–14
and “easy” for the age group 14–16.10

7 Adapting a Task for the Swiss Bebras Challenge

After the selection of the tasks they are first adapted to the German language. In
some cases this includes major changes in the wording, especially of the answer

10 The complete Swiss task set can be derived from the brochure [16].

250 Chr. Datzko

explanation and the “It’s Informatics”. This is because not every country pub-
lishes brochures and in some cases doesn’t need these texts. For Switzerland
the brochure is valued quite highly because it will be available for students and
teachers for the years to come for instance to be used in class (see Sect. 9). Also
in many cases the graphics are reworked. This is not true for the translation into
French and Italian afterwards where a rather close translation is strived for to
offer the same experience to the whole country.

The adaption work is done by members of the team, usually in cooperation
with Austria and Germany. After the adaption an experienced team member
double checks it and if the task had been adapted by Austria or Germany adapts
it to the local language specialties so that in the end two or three persons have
approved it.

Offering the same challenge in three languages (French, German and Italian
in the case of Switzerland) is a huge effort. Subtle differences may already make
a huge difference in how easy it is to solve a task (there is an interesting study
about this done by Tomcsányi and Vańıček [26]). This is especially true if lan-
guage is involved in the task, for instance as a text that has to be decrypted. For
that reason Switzerland also assigns two people to each task for the translation
into French and two people for the translation into Italian. One is doing the
translation and the other one is doing the double checking.

The time to create the translations is limited and most of the work is done in
the spare by volunteers. Switzerland tries to reserve four weeks for the translation
of the tasks from German to French and Italian. Besides the actual translation
work the texts would have to be available in a proper format for reuse for the
contest system and the brochure. Also the text for some graphics and some
interactive systems needs to be adapted. It is however typical for Switzerland to
care for their local languages and so this effort is regarded as worth it.

For the task 2018-CH-11 not many changes were made for the adaptation into
German. The title was changed to “Biber-Wettbewerb” (“beaver challenge”) to
avoid the likely unknown word “modulo” for the students and as a pun on the
German name of the challenge: “Informatik-Biber Wettbewerb”. The story was
refined a little bit (it now was about a training instead of the challenge itself).
The equation 129 = 25 × 5 + 4 was explained as “25 Runden plus 4 Sprünge”
(“25 laps and 4 jumps”). Otherwise it was more or less a literal translation of
the final English version of the international workshop. For the graphics it was
decided to go with the original darker blue color of the lake instead of the newly
introduced light blue color. The task in the challenge was identical to the version
in the brochure [18]. The difficulty of the task was kept at “medium” for the
age group 12–14. The task 2018-CH-11 was then translated into French by Elsa
Pellet [24] and into Italian by Andrea Adamoli [1].

8 The Task in the Contest System

Many countries use their own online system for letting students participate in
their contest ([14, pp. 233–238], [3]). However the effort to develop and maintain

The Genesis of a Bebras Task 251

an online system which is used once a year for two weeks and must be compatible
with many different clients is quite an effort [22, pp. 78–80]. Therefore Switzer-
land like roughly 1/3 of all countries participating in Bebras has been using an
external contest system from the beginning [17]. It provides all the means for
running the challenge in three languages, has the necessary IT knowledge and
hardware and is offering appropriate third level support.

The tasks have to be implemented in the contest system. In the case of the
contest system used by Switzerland that means that the task has to be recreated
in HTML and that all graphics have to be available as SVG (or PNG for the
few pixel graphics used). To ensure a unified look of all tasks, the HTML used
is handcrafted and done as simple as possible. The HTML for all tasks is first
created in one language and then the source code is copied and the text replaced
again to ensure the uniformity.

The tasks are then tested in different browsers on different operating systems
based on what typical and wide-spread setups are. This is necessary because some
bugs in the graphics or in the interactive tasks only show in special combina-
tions. Especially if different versions of the same browser are wide-spread (like
Microsoft Edge and Internet Explorer) testing is quite an effort.

The implementation of 2018-CH-11 was pretty straight forward. By using
only the <p>, and (to highlight the question) tags and some basic
CSS like “text-align: center;” the whole task was implemented.

The task gave the results presented in Table 1:

Table 1. Results of 2018-CH-11.

12–14 14–16

Students Correct Percentage Rank Students Correct Percentage Rank

French 1014 467 46.1% 6 1125 754 67.0% 4

German 4838 3071 63.5% 5 4540 3422 75.4% 3

Italian 140 64 45.7% 6 52 31 59.6% 4

Total 5992 3602 60.1% 5 5717 4207 73.6% 3

The numbers for Italian should be read with care, because the absolute num-
bers are so low. The percentages between the different languages should not be
compared directly because the students that take part are not chosen in a repre-
sentative way: it depends on which teacher chooses to let his students take part
and if the teacher chooses to let every student take part or just some students he
selects (perhaps to promote gifted students or as part of an elective subject). It
also depends on the region which teachers are reached: in Switzerland for those
age groups classes are often separated depending on their performance in earlier
years and the Swiss Bebras cannot reach out to every school in the country.

All in all however one can say that the tasks rating as “medium” for the
age group 12–14 is rather correct (the rank should have been between 6 and
10; two tasks that were rated “easy” actually were perceived as “hard” by the

252 Chr. Datzko

students) and for the age group 14–16 correct (the rank should be between 1
and 5). Judging from the ranks of some other task proposals in the same age
group, however, the process of assigning a task difficulty based on the average
opinion of the persons who decide on the task set is to be questioned. Van der
Vegt [29] aggregates some more systematic methods that could raise the quality
of these assessments.

9 The Task in the Brochure

Many countries offer the tasks in form of a brochure after the challenge. The
idea is not only to document the tasks but also to offer them as a resource for
students and teachers to use in class and at home. Since 2013 the Swiss Bebras
offers the brochure with all questions and solutions right on the Monday after
the challenge. That way the teachers can address the tasks in class directly after
the challenge when the memories are still fresh. Since 2015 the Swiss Bebras
offers not only one brochure for each language with all questions and answers,
but a total of 36 brochures: one for each of the five age groups as well as one
with the tasks of all age groups and this with and without solutions and for each
of the three languages.

In order to reduce the amount of work and because of the high redundancy
of these 36 brochures an automated system is used to generate these brochures.
Unlike the contest system the brochure system is developed and maintained
within the Swiss Bebras. Based on the experiences of the first brochure system
used in 2014 and 2015 it was rebuilt from scratch in 2016 by using LaTeX only
with as much modularization as possible. A task for instance is a single LaTeX
file for each of the three languages and only contains the information for that
task.

In the case of 2018-CH-11 the implementation of the task in LaTeX was
nearly as simple as the implementation in the contest system. Besides the
definition of the meta information of the task only the commands \emph{}
and \begin{center}\end{center} were used besides some math commands.
In order to automatically generate the list of involved authors [16, p. 100]
LaTeX variables are used as tags for which later the authors get aggregated
automatically.

In the last years in Switzerland the brochure was actually prepared before the
implementation of the tasks in the contest system. This ensured that the answer
explanation was ready and checked before the implementation of the task in the
contest system. In a few cases this also gave a last chance to correct aspects of
the task itself, for instance unclear wordings or missing detail information in the
task itself.

10 Conclusion and Further Considerations

The development of a Bebras Task is a year-long process (see Sect. 1) which
involves many spiral-like iterations [12, p. 258] of improving a task. Therefore

The Genesis of a Bebras Task 253

many people are involved in the process which leads to a quality control on
several levels.

Almost all work for the Swiss Bebras is done voluntarily by teachers and peo-
ple from Universities in Switzerland. The work is rewarded by a rising number of
participants and some nice feedback mostly from teachers whose students par-
ticipate. Without the dedication of these people to deliver reliably high quality
work the Swiss Bebras wouldn’t be possible.

The extra amount of work put into a task proposal before submitting it
internationally leads to the fact that Swiss task proposals tend to require less
work during or after the international Bebras task workshop, which eases the
workload in preparation of the national challenge and of course makes the work
available to everyone in the Bebras community. The work for the adaptation
of some other tasks selected after the international Bebras task workshop is
necessary for those tasks which have a rather high potential but have not yet
been polished enough yet.

The Swiss Bebras still holds a treasure chest of research opportunities. Espe-
cially the setup with offering the same task in three languages with translations
being as close as possible (as opposed to what Tomcsányi and Vańıček found in
their research [26, p. 219]) raises interesting questions. Also the self-developed
brochure system might be worth some more analytical attention. A comparison
of slightly different versions of the same task in different countries of the same
language (Austria, Germany and Switzerland) could give interesting results.

Acknowledgments. The author would like to thank Juraj Hromkovič for the encour-
agement to start this paper. He would also like to thank his wife Susanne for proof
reading this paper in its various stages. This paper would not have been possible with-
out the experience earned within the Swiss Bebras team lead by Hanspeter Erni and
by the support we get from Eljakim Schrijvers and his team. A special thanks is owed
to Willem van der Vegt who reviewed this paper from the point of view of the Bebras
community and gave some valuable feedback. Thanks is also owed to Frances Rosa-
mond and Michael Fellows who reviewed the paper and gave some good advice. The
author would also finally like to thank the reviewers for their constructive feedback.

References

1. Adamoli, A., Datzko, C., Datzko, S., Erni, H. (eds.): Quesiti e soluzioni
2018 – Tutte le Categorie. SVIA-SSIE-SSII Società Svizzera per l’Informatica
nell’Insegnamento, Zürich (2018). https://www.informatik-biber.ch/documents/
2018/Castoro-informatico-2018-TutteLeCategorie-conSoluzioni.pdf

2. Bebras International Challenge of Informatics and Computational Thinking:
Bebras task workshops (2019). https://www.bebras.org/?q=workshops

3. Bebras International Challenge of Informatics and Computational Thinking: Con-
test management systems (2019). https://www.bebras.org/?q=technology

4. Bebras International Challenge of Informatics and Computational Thinking: His-
tory (2019). https://www.bebras.org/?q=history

5. Bebras International Challenge of Informatics and Computational Thinking:
Statistics (2019). https://www.bebras.org/?q=statistics

https://www.informatik-biber.ch/documents/2018/Castoro-informatico-2018-TutteLeCategorie-conSoluzioni.pdf
https://www.informatik-biber.ch/documents/2018/Castoro-informatico-2018-TutteLeCategorie-conSoluzioni.pdf
https://www.bebras.org/?q=workshops
https://www.bebras.org/?q=technology
https://www.bebras.org/?q=history
https://www.bebras.org/?q=statistics

254 Chr. Datzko

6. Bebras International Challenge of Informatics and Computational Thinking: What
is a Bebras task (2019). https://www.bebras.org/?q=goodtask

7. Bebras International Challenge of Informatics and Computational Thinking: What
is Bebras (2019). https://www.bebras.org/?q=about

8. Blöchliger, I., et al.: Pre-workshop review process (2014). Unpublished
9. Dagienė, V.: What kinds of tasks are good for contests? In: 6th International

conference on Creativity in Mathematics Education and the Education of Gifted
Students, Riga, pp. 62–65 (2011). https://www.bebras.org/sites/default/files/
documents/publications/DagieneV-2011.pdf

10. Dagienė, V.: Resurgence of informatics education in schools. In: Böckenhauer, H.-
J., Komm, D., Unger, W. (eds.) Adventures Between Lower Bounds and Higher
Altitudes. LNCS, vol. 11011, pp. 522–537. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-98355-4 30

11. Dagienė, V., Futschek, G.: Bebras international contest on informatics and com-
puter literacy: criteria for good tasks. In: Mittermeir, R.T., Sys�lo, M.M. (eds.)
ISSEP 2008. LNCS, vol. 5090, pp. 19–30. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-69924-8 2

12. Dagienė, V., Futschek, G., Stupurienė, G.: Teachers’ constructionist and decon-
structionist learning by creating Bebras tasks. In: Sipitakiat, A., Tutiyaphueng-
prasert, N. (eds.) Constructionism in Action 2016, pp. 257–264. Suksapattana
Foundation, Bangkok (2016). http://e-school.kmutt.ac.th/constructionism2016/
Constructionism

13. Dagienė, V., Sentance, S.: It’s computational thinking! bebras tasks in the cur-
riculum. In: Brodnik, A., Tort, F. (eds.) ISSEP 2016. LNCS, vol. 9973, pp. 28–39.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46747-4 3

14. Dagiene, V., Stupuriene, G., Vinikiene, L., Zakauskas, R.: Introduction to bebras
challenge management: overview and analyses of developed systems. In: Dagiene,
V., Hellas, A. (eds.) ISSEP 2017. LNCS, vol. 10696, pp. 232–243. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-71483-7 19

15. Datzko, C., Datzko, S., Erni, H.: Der einarmige Biber. In: Datzko, C., Erni, H.
(eds.) Aufgaben und Lösungen 2017 – Alle Stufen, pp. 15–17. SVIA-SSIE-SSII
Schweizerischer Verein für Informatik in der Ausbildung, Zürich (2017). https://
www.informatik-biber.ch/documents/2017/Informatik-Biber-2017-Alle-Stufen-
mitLoesungen.pdf

16. Datzko, C., Datzko, S., Erni, H. (eds.): Aufgaben und Lösungen 2018 –
Alle Stufen. SVIA-SSIE-SSII Schweizerischer Verein für Informatik in der
Ausbildung, Zürich (2018). https://www.informatik-biber.ch/documents/2018/
Informatik-Biber-2018-Alle-Stufen-mitLoesungen.pdf

17. Eljakim Information Technology bv: Bebras (2019). https://www.eljakim.nl/
project/beverwedstrijd/

18. Hauser, U., et al.: Biber-Wettbewerb. In: Datzko, C., Datzko, S., Erni, H.
(eds.) Aufgaben und Lösungen 2018 – Alle Stufen, pp. 43–44. SVIA-SSIE-SSII
Schweizerischer Verein für Informatik in der Ausbildung, Zürich (2018). https://
www.informatik-biber.ch/documents/2018/Informatik-Biber-2018-Alle-Stufen-
mitLoesungen.pdf

19. Informatik-Biber Schweiz: 20XX-YZ-01a-eng (2018). https://informatik-biber.ch/
wordpress/wp-content/uploads/2014/01/20XX-YZ-01a-eng.odt

20. Informatik-Biber Schweiz: Chronik (2019). http://www.informatik-biber.ch/de/
geschichte/

21. Informatik-Biber Schweiz: Teilnehmen (2019). http://www.informatik-biber.ch/
de/teilnehmen/

https://www.bebras.org/?q=goodtask
https://www.bebras.org/?q=about
https://www.bebras.org/sites/default/files/documents/publications/DagieneV-2011.pdf
https://www.bebras.org/sites/default/files/documents/publications/DagieneV-2011.pdf
https://doi.org/10.1007/978-3-319-98355-4_30
https://doi.org/10.1007/978-3-319-98355-4_30
https://doi.org/10.1007/978-3-540-69924-8_2
https://doi.org/10.1007/978-3-540-69924-8_2
http://e-school.kmutt.ac.th/constructionism2016/Constructionism
http://e-school.kmutt.ac.th/constructionism2016/Constructionism
https://doi.org/10.1007/978-3-319-46747-4_3
https://doi.org/10.1007/978-3-319-71483-7_19
https://www.informatik-biber.ch/documents/2017/Informatik-Biber-2017-Alle-Stufen-mitLoesungen.pdf
https://www.informatik-biber.ch/documents/2017/Informatik-Biber-2017-Alle-Stufen-mitLoesungen.pdf
https://www.informatik-biber.ch/documents/2017/Informatik-Biber-2017-Alle-Stufen-mitLoesungen.pdf
https://www.informatik-biber.ch/documents/2018/Informatik-Biber-2018-Alle-Stufen-mitLoesungen.pdf
https://www.informatik-biber.ch/documents/2018/Informatik-Biber-2018-Alle-Stufen-mitLoesungen.pdf
https://www.eljakim.nl/project/beverwedstrijd/
https://www.eljakim.nl/project/beverwedstrijd/
https://www.informatik-biber.ch/documents/2018/Informatik-Biber-2018-Alle-Stufen-mitLoesungen.pdf
https://www.informatik-biber.ch/documents/2018/Informatik-Biber-2018-Alle-Stufen-mitLoesungen.pdf
https://www.informatik-biber.ch/documents/2018/Informatik-Biber-2018-Alle-Stufen-mitLoesungen.pdf
https://informatik-biber.ch/wordpress/wp-content/uploads/2014/01/20XX-YZ-01a-eng.odt
https://informatik-biber.ch/wordpress/wp-content/uploads/2014/01/20XX-YZ-01a-eng.odt
http://www.informatik-biber.ch/de/geschichte/
http://www.informatik-biber.ch/de/geschichte/
http://www.informatik-biber.ch/de/teilnehmen/
http://www.informatik-biber.ch/de/teilnehmen/

The Genesis of a Bebras Task 255

22. Kristan, N., Gostǐsa, D., Fele-Žorž, G., Brodnik, A.: A high-availability bebras com-
petition system. In: Gülbahar, Y., Karataş, E. (eds.) ISSEP 2014. LNCS, vol. 8730,
pp. 78–87. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09958-3 8

23. Manabe, H., Tani, S., Kanemune, S., Manabe, Y.: Creating the original Bebras
tasks by high school students. In: Olympiads in Informatics, vol. 12, pp. 99–110
(2018). https://ioinformatics.org/journal/v12 2018 99 110.pdf

24. Parriaux, G., et al. (eds.): Exercices et solutions 2018 – Tout âge. SVIA-SSIE-
SSII Société de l’Informatique dans l’Enseignement, Zürich (2018). https://
www.informatik-biber.ch/documents/2018/Castor-informatique-2018-ToutAge-
avecSolutions.pdf

25. Paul, R., Elder, L.: The Thinker’s Guide to The Nature and Functions of Critical
& Creative Thinking. The Foundation for Critical Thinking, Dillon Beach (2008)

26. Tomcsányi, P., Vańıček, J.: International comparison of problems from an infor-
matics contest. In: Mechlova, E. (ed.) ICTE 2009: Information and Communication
Technology in Education 2009, Ostrava, pp. 219–223. Ostrava University Editorial
Centre (2009). https://ioinformatics.org/journal/INFOL127.pdf

27. Vańıček, J.: Bebras informatics contest: criteria for good tasks revised. In:
Gülbahar, Y., Karataş, E. (eds.) ISSEP 2014. LNCS, vol. 8730, pp. 17–28. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-09958-3 3

28. van der Vegt, W.: Predicting the difficulty level of a Bebras task. In: Olympiads
in Informatics, vol. 7, pp. 132–139 (2013). https://ioinformatics.org/journal/
INFOL127.pdf

29. van der Vegt, W.: How hard will this task be? Developments in analyzing and
predicting question difficulty in the Bebras challenge. In: Olympiads in Informatics,
vol. 12, pp. 119–132 (2018). https://ioinformatics.org/journal/v12 2018 119 132.
pdf

30. van der Vegt, W., Schrijvers, E.: Analyzing task difficulty in a Bebras contest using
Cuttle. Olympiads Inform. 13, 145–156 (2019). https://ioinformatics.org/journal/
v132019145156.pdf

https://doi.org/10.1007/978-3-319-09958-3_8
https://ioinformatics.org/journal/v12_2018_99_110.pdf
https://www.informatik-biber.ch/documents/2018/Castor-informatique-2018-ToutAge-avecSolutions.pdf
https://www.informatik-biber.ch/documents/2018/Castor-informatique-2018-ToutAge-avecSolutions.pdf
https://www.informatik-biber.ch/documents/2018/Castor-informatique-2018-ToutAge-avecSolutions.pdf
https://ioinformatics.org/journal/INFOL127.pdf
https://doi.org/10.1007/978-3-319-09958-3_3
https://ioinformatics.org/journal/INFOL127.pdf
https://ioinformatics.org/journal/INFOL127.pdf
https://ioinformatics.org/journal/v12_2018_119_132.pdf
https://ioinformatics.org/journal/v12_2018_119_132.pdf
https://ioinformatics.org/journal/v132019145156.pdf
https://ioinformatics.org/journal/v132019145156.pdf

From Bebras Tasks to Lesson
Plans – Graph Data Structures

Lucia Budinská(B) and Karoĺına Mayerová

Department of Didactics in Mathematics, Physics and Informatics,
Comenius University, Bratislava, Slovakia

{lucia.budinska,mayerova}@fmph.uniba.sk

Abstract. In this paper we focused on graph tasks from Slovak Bebras
Challenge with the intent to use them as a teaching and learning mate-
rial. Based on qualitative categorisation of tasks together with quan-
titative analysis of contestants results we chose three tasks that were
the most suitable for lower secondary schools Informatics in Slovakia.
We used qualitative research methods to better understand what had
caused the most significant problems. Based on these results we have
prepared lesson plans with objective to teach pupils to understand, read,
edit and to create specific graph structures. Taking Bloom taxonomy into
account, worksheets were created and for each learning objective, there
is at least one subtask in a worksheet. The main parts of this paper are
pre-research and preliminary results of testing worksheets with pupils in
the 5th and 6th year. We describe differences between groups based on
gender and age. These results help us understand the reasons of contes-
tants’ mistakes in the original tasks and of gender- and grade-specific
performance in these tasks. We plan to further develop the lesson plans
as we found them valuable not only as a method of research but also as
proof that tasks from Bebras Challenge could be used for learning and
for teaching.

Keywords: Graph data structure · Graph task · Bebras challenge ·
Lesson plans · Worksheets · Qualitative research

1 Introduction

The Bebras Challenge is a great opportunity for every pupil and student to get in
touch with computer science and computational thinking. The Slovak version of
Bebras, called iBobor (as in “informatics beaver”) is widely known throughout
the country as in the school year 2018/19, 77,928 pupils and students from
almost 1,000 schools (both primary and secondary) took part in the challenge.
The iBobor’s aim is not only to bring some of computer science concepts to
schools, but also to inspire teachers and to give them a chance to teach parts
of the informatics curriculum that are not contained in the textbooks. This is
also the aim of our research presented in this paper, where we were looking for a
way how Bebras tasks could be used in Slovak schools to help pupils learn graph
structure topic more in depth and more precisely.
c© Springer Nature Switzerland AG 2019
S. N. Pozdniakov and V. Dagienė (Eds.): ISSEP 2019, LNCS 11913, pp. 256–267, 2019.
https://doi.org/10.1007/978-3-030-33759-9_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33759-9_20&domain=pdf
https://doi.org/10.1007/978-3-030-33759-9_20

From Bebras Tasks to Lesson Plans – Graph Data Structures 257

1.1 Context

To better understand why we chose Bebras task as a way to teach some top-
ics, it is important to state that while Informatics is mandatory subject from
third grade (8–9 years old pupils) to eighth grade (13–14 years old pupils) with
one lesson per week in Slovakia, more than 40% of informatics lessons in lower
secondary education (fifth to ninth grade) are taught by teachers with different
specialisation (based on data from Slovak School Inspection). These teachers
therefore, in many cases teach more digital skills and are not willing to try to
teach programming or more specialised areas of computing. This problem is
interconnected with another one – there are no official up-to-date textbooks.
The old ones were created in 2005 and the National Educational Programme
(NEP) [1] has been changed since the books’ publication. Therefore there are
some areas which these textbooks do not cover. This leaves a lot of work to teach-
ers – they need to adjust old materials, create their own or search for materials
from different teachers or even countries and adapt or translate them for their
students. From teachers’ feedback to Bebras we know that many of them use
Bebras archive throughout the school year to teach some informatics areas or
just to make it easier for them and more fun for their students. Based on this we
assumed that Bebras seems like a good starting point to create new learning and
teaching materials, as many pupils and teachers are familiar with the challenge
which creates a higher chance of them using it.

Which topic to cover stemmed from experience of one co-author who is a
teacher in lower secondary school. While we had many materials for each area
from NEP, the biggest issue was with the part Structures – Graphs. We were not
able to find a good materials which were suitable for pupils of age 10 to 12. What
were we looking for? In NEP, there is stated that pupils at the end of the sixth
grade (12 years old) should know: “to orientate in a simple structure (searching
and obtaining information from structure based on some criteria); to organise
information to structures (creating and manipulating with structures with data
and simple relations, e. g. tables, graphs, sequences of pictures or numbers); and
to interpret information from structures (deducting existing relations from data
in structure, retelling information in structure using own words)” [1].

Another reason for using task from Bebras was categorisation of graph task
created in Slovakia [2] based on tasks which were used in Slovak contest. One
of the main objectives in this categorisation are methods and strategies used in
solving process, which are (1) trying all possibilities, (2) the “look-see” method,
(3) graph search with constraints, (4) uncovering a strategy, (5) creating a strat-
egy. Connecting this categorisation with NEP, we focused on the first three
categories, as the rest of them are more suitable to algorithmic thinking and
their main goal is not to work with structures.

1.2 Literature Overview

While looking through the literature concerning the use of Bebras tasks in schools
we found many interesting ways – for example adapting Bebras-like tasks into a

258 L. Budinská and K. Mayerová

computational thinking test or tests to evaluate their knowledge and skills from
the computing [3]. There were many articles where authors were describing what
can Bebras teach, using categorisation of the tasks, e.g. [4,5]

Valentina Dagiene and Gabriele Stupuriene’s [6] way of bringing Bebras to
school unplugged and not as a part of evaluation or assessment was adapting
Bebras tasks to playing cards, which can be used in many ways in lessons.
One of them is letting pupils solve the task individually and later grouping
them and encouraging them to talk about their ideas. These cards were used in
primary school level and increased motivation of both pupils and their teachers.
On one hand they helped pupils to think about concepts, but on the other hand,
there were some misconceptions which partially came from some teachers’ lower
qualification in informatics.

This all led us to question whether pupils of this age can gain a deep under-
standing of some concepts through a small task which can be usually solved in
3 min. Do they learn what we think they do? Can they find similarities in differ-
ent contexts? A teacher is a crucial part in this constructionist process and while
we also deal with teachers who are not qualified in informatics, we need to cre-
ate some materials which can guide pupils through them, making smaller steps
and then trying to generalise what they learnt. To better distinguish between
steps, we find Bloom taxonomy of learning objectives [10] to be the best alterna-
tive, as slovak teachers are (more-or-less) familiar with it and it is used in many
textbooks or teachers’ materials.

An inspiration how to use task from competition in school was found in
paper about a Slovak contest for talented students in lower secondary education
PRASK [7]. The author, Michal Anderle showed how these tasks can be adapted
to high school lessons and why it is important to divide them into subtasks. He
mixed individual, pair and group work in one lessons and we believe this is a
good approach.

2 Research Methods

Our research is a part of long going mixed methods research [8]. The main goal of
this paper was to find out how can be Bebras tasks transformed and implemented
into school informatics with emphasis on enhancing pupils’ skills in orientat-
ing, interpreting and organising graph structures. Which can also enhance their
computational thinking skills, as abstraction and generalisation. Our research is
divided into several phases which have different ways of collecting data, and also
their analysis (qualitative and quantitative). In this paper we discuss mainly
three phases (see below) and one pre-phase which was an important part of
creating the whole research idea.

2.1 Zeroth Phase

In this phase we analysed the National Educational Programme in Informatics
(NEP) [1], as one of the main documents used in creating curriculums and lesson

From Bebras Tasks to Lesson Plans – Graph Data Structures 259

plans, and we were looking for suitable tasks from Slovak Bebras contest which
could satisfy its requirements. We identified tasks which could be used in schools
as a learning material, as they contain all processes needed. Theoretical analysis
of documents was used in this phase. We also used graph task categorisation
from Budinska and Mayerova [2], which was the result of open coding of tasks.
And this results in finding graph tasks suitable to use in schools.

2.2 First Phase

In previous phase a group of tasks was chosen, and in this phase we analysed
contestants’ results from these tasks to better understand if tasks were easy
or difficult and if there are any problems in tasks’ text, pictures or proposed
answers. For analysing data, the quantitative methods were used. We used sta-
tistical methods – both basic descriptive statistics (percentage of correct answers
for each year) and statistical hypothesis test (chi-square test, Pearson standard-
ised residuals [9] in which we tested differences between gender and school grade
groups.

2.3 Second Phase

Based on results from previous phase, we knew only global results of these tasks
but we wanted to see how pupils solve them and if our hypothesis about what
was causing the errors were true. Therefore, the second qualitative phase was
conducted in October 2018 in the fifth (7 pupils, 3 boys) and the sixth grade (10
pupils, 4 boys) of one lower secondary school. We chose three tasks from Bebras,
all of them were easier with higher success rate but still with a good potential
to learn basics of graph theory. They were proposed in a form of a worksheet.

Pupils solved worksheet individually and for each task they were asked to
describe how they found the answer. After individual solving, each class was
grouped into two groups – boys and girls as one of our aims was to better
understand what could have caused the gender-specific differences in solving
these tasks. Each group had time to discuss their answers and to find one that
all of them think is correct. This is an example of focus group [8], where there
is no moderator but instructions in worksheets take his role. All pupils have a
chance to say something, and their goal is to find an answer they all agree on.

Discussions were recorded (each group had their own recorder) and later
rewritten and analysed using axial coding [8]. To make sure all pupils in the
group understand how to solve these tasks, another worksheet was made with
only slight changes for each task. Teacher motivated pupils that if (and only if)
pupils from the whole group would have correct answers for all three tasks in it
they all would get bonus points in Informatics as a reward. Both worksheets were
analysed using codes and interjoining it with information from the recordings.
To ensure the triangulation of the data the researcher (teacher) took field notes
which provided us with more insight to what was happening (e.g. when pupils
were showing each other something in worksheets).

260 L. Budinská and K. Mayerová

2.4 Third Phase

In the third phase, which was taking place in May 2019, we created worksheets
for each of the originally tested tasks. We were taking into account the results
of previous phase and trying to create tasks in each stage of Bloom taxonomy
of learning objectives [10]. To address some problems with original tasks, we
proposed some introduction to worksheets, which should be done together with
the whole group. We showed worksheets to two groups of primary and lower
secondary school teachers and they gave us a lot of ideas about methods that
could be used in lesson plans.

First test of first worksheet was made in May 2019 in the same classes as
research from previous phase. While most of them saw these tasks before, we
saw from their reactions that many of them had no deeper insight into graph
tasks, but it is possible, that some pupils created good mental models of family
trees. The worksheets adapt only a concept of original task and not the task
itself, so they could be suitable for pupils who are new to the topic and others
could challange their mental models. From this research we have field notes from
the teacher and student products – filled worksheets. All of them were analysed,
coded, and evaluated using a point system. Due to problems with time at the end
of the school year we were able to test only one of three worksheets, as one testing
takes approximately one lesson and these classes have only one informatics school
lesson per week.

3 Results

In this article, we focused on three tasks which were analysed, tested with pupils
and based on the results, worksheet for each task was created. In this part we
present whole analysis, observations and worksheets, separately for each task to
make it easier to understand.

3.1 Family Relationships Tree

The first task we chose for this research was the task called Family Relationship
Tree that was used in the competition in the school year 2013/14 in the category
Benjamin (in that time 5th to 7th grade). This task had been proposed as
easy and its real success rate was 48.8%. As can be seen in Fig. 1, there is
a graph showing family relationships, that the lower secondary school pupils
should be familiar with. For finding the right solution, the direction of the arrows
is important, indicating who has a family relationship with whom.

The right answer was an arrow pointing from Maria to Tomas. 46.4% of boys
and 51.8% of girls answered this task correctly, which is a statistically signifi-
cant deviation (Pearson’s coefficient was 7.08 for girls). The difference between
boys and girls success rate was significant for all age groups of competitors, but
from the results it was also visible that with increasing age the error rate of
competitors has decreased.

From Bebras Tasks to Lesson Plans – Graph Data Structures 261

Based on the graph task categorisation, we thought that pupils mostly use
“look-see” method, therefore they obtain information from graph structure and
then they interpret them.

Fig. 1. The task Family relationships tree from second phase worksheet

3.2 Results of the Second Phase

When working alone, pupils spent either very long time on the task Family
Relationship Tree, or not enough time and they did not check their answers. In
all four groups, pupils came to the conclusion that Maria was the grandmother.
The boys in the sixth grade, even originally just circled the name Maria, so the
teacher had to coordinate their solutions, pointing out that they should select
an arrow. In the end, both boys’ groups chose an (wrong) answer, an arrow
pointing from Lucia to Maria. It has been said several times that “Lucia is the
grandmother of Maria” together with “Maria is the grandmother”. It is clear
from both debates that some pupils understand what the direction of arrows
means, but it seems as if they did not combine these two contradictory pieces
of information. In both boys’ groups they spent more time discussing family
relationships (“Lucia is Mary’s granddaughter because...”) and they were less
focused on the direction of the arrows. Girls’ groups have been more focused
on the direction of arrows than family relationships. In both girls’ groups, they
correctly read from the graph that Mary has (at least) two grandchildren – Lucia
and Thomas. Both groups discussed a lot whether the arrow direction indicates
“the relationship of whom or relationship from to”, while trying to base their
opinions on the rest of the relationships shown in the graph. Both girls’ groups
found the right answers.

The validation task for the Family Relationship Tree was named The Clever
Family and it consisted of graph constructed with the same rules as in the
previous task. Pupils were asked to name one relationship in the blank arrow.
Interestingly, three out of four groups named it correctly – both girls’ groups
and the fifth grade boys’ group. In the sixth grade boys’ group only one pupil
had correct answer, three other boys in this group all had incorrect answer
“daughter”, that means they again changed the meaning of the arrows’ direction.

262 L. Budinská and K. Mayerová

Based on this observation we identified the main problems in this task – (1)
the meaning of arrows direction is ambiguous, (2) boys in this groups had prob-
lems with naming the family relationship names, (3) the pupils intuitively under-
stands who is in which relationship with whom but they did not pay attention
to direction of this relationship. We addressed these problems in our proposed
worksheet.

3.3 Results of the Third Phase

The worksheet consists of 9 tasks, each one focusing on one Bloom cognitive
development stage. Before working on the worksheet there is a time for talking
about relations name in the family. The names of relations in the family should
be written down on a blackboard, as it helps pupils to focus on the task and not
to find the right relation (therefore, it deals with the problem (2)). Our solution
of problems (1) and (3) was gradation of the tasks. First three tasks used one
graph and in the text we explicitly named two relationships from it (e.g. Adam is
Simon’s son). In the first task pupils should write down the relationships which
are directly visible (and one is also written in the text). In the second task,
they need to complete the relationships which are not directly mentioned (the
opposite or missing relations). In the third task pupils were asked to draw two
specific relationships to the graph and create one on their own. In the fourth
task we tell them three relationships and they need to choose one of four graphs
which represents them. In the fifth task pupils draw graph based on written
relationships. The sixth and the seventh task are very similar – we used the
same graph and were asking for the same relationships, but in the sixth task
we drew the graph and in the seventh task we wrote down the relationships.
We wanted to find out if there is a difference between these two ways of solving
the problem and we also asked pupils which one is their preferred one and why
(the eighth task). The last, ninth, task was to create own relationships graph, it
could be based on their family tree or they could imagine one.

On average, after scoring each answer, fifth grade pupils got 79% of points,
while sixth grade pupils got 85%. The lowest success rate was in the third, fifth
and ninth task. In the third and the fifth task pupils were drawing arrows and
most of their mistakes were based on wording – while Hana is Simon’s wife was
incorrect in 5 times, Lenka has a brother named Albert was incorrect 10 times.
We chose the wording on purpose because both ways are used in the real life
but it changes the direction of the arrows in our graph and we wanted pupils
to understand it. Because this was one of the biggest issues in our worksheet,
in the next version we would like to add one task were we explicitly ask pupils
to write down what the direction of the arrow means. This could help them to
think about it and to validate their intuitive grasp of the concept.

In the sixth and the seventh task there were no significant differences between
pupils’ results, but we saw that they needed more time to answer the task without
the graph and a lot of them draw their own graph while solving it. Based on
pupils’ answers in the last task where they were drawing their own family graph
we can see that they only had a little problem with it, but they were losing

From Bebras Tasks to Lesson Plans – Graph Data Structures 263

points for forgetting to write two relationships in sentences (e.g. My mother is
Eve.). Some of them changed a direction of a few arrows, and another group was
using only lines (not arrows) and naming relations such as “siblings”, “couple”,
etc. This could arouse the discussion with the whole group and the teacher
about representation of the structure, the logic behind it and even about how
computers store some data. All of this will be added to the lesson plans.

4 Tram Lines

The second task analysed in this research was the task from the Benjamin cate-
gory (fifth to seventh grade) in the school year 2015/16 called Tram Lines. The
picture shows a map of tram lines and the contestants were supposed to find
out what tram a boy used, see Fig. 2. The description of his route (turning and
final stop) has been described in the text. 51.9% of the girls and 49.6% of the
boys solved this task correctly. This difference is moderately significant (Pearson
coefficient 3.38 in favor of girls). From the results it was visible that while in the
fifth grade the differences between boys and girls were negligible, in the seventh
grade they were markant. Also, the success rate increased significantly with age.
Pupils had to use a textual description of the route, which contained several con-
ditions. Therefore, we consider searching a graph with constraints as a suitable
method for solving this task. From the NEP point of view it is connected with
obtaining information according to specified criteria.

Fig. 2. The task Tram Lines from second phase worksheet

4.1 Results of the Second Phase

When solving the Tram Lines task, many pupils initially did not understand
the picture. After explaining that white rectangles are stops, they understood
what to do. They also gave hints to each other with examples from the real
environment familiar to them. Some pupils guessed the answer, the rest got it
right. In this task pupils could not easily explain why their answer was correct.
When they explained it to each other, they traced the route with their fingers

264 L. Budinská and K. Mayerová

or pencils. Therefore, they were following steps written in the text on the graph
representation. The sixth grade boys had the biggest problem with explanation
to this task, they all guessed the answer and were not able to tell why. It turned
out they used method of exclusion to find the correct answer when they were
working together. The problem in this task proved to be that the starting stop is
not counted and therefore many pupils got stuck at the first statement. Finally,
all the groups agreed on the correct answer.

The variation in the second worksheet was the task named Trams in
Beartown, in which the pupils were supposed to determine which trams the
boy was allowed to go by. There were no differences between boys and girls, and
both groups solved the task correctly. The difference was only between the fifth
and sixth grade – in the fifth grade only one girl found two possible lines, but
in the sixth grade there were six (out of ten) answers with the two lines. Wrong
answers did not occur in this task. The main problems we found were that (1)
pupils were not able to understand a graph structure quickly, (2) some wording
could be ambiguous (e.g. “initial stop”, “turn”) and (3) younger pupils were not
looking for more than one correct answer.

4.2 Proposed Worksheet

In the worksheet, tasks were created using Bloom taxonomy. Each subtask is
trying to reach one objective. As we were not able to test this worksheet with
pupils, we describe only tasks and not their results. To deal with problems with
Tram Lines task, we slightly changed the structure and made it more similar
to real-life line maps – that means we added places and names into it. In the
first task pupils need to find basic concepts (“stop”, “initial stop”) in the graph
structure. This could help with problems (1) and (2). In the next task they count
stops of some of the trams – so they need to find which line in graph represents
which tram, in the third task they need to decide which tram to take based on
some criteria. There is implicitly stated that sometimes there are more options
available and then there is more space for pupils to fill in their answers. In the
next task they need to choose the better line. The synthesis is represented by
the task where pupils design their own tram lines in the “city”, and the last task
is to discuss why their map is better than the proposed one and what they think
is important when creating such a map.

In the lesson pupils could talk with their teacher about why is it sometimes
better to use this kind of diagram instead of the real map. They could also find
some maps of public transport from the different cities and towns, and talk about
how they think the Internet search tool for transportation could work and how
computers know where you should transfer.

5 Bracelet Machine

The task, originally called Mother’s Day, but in our worksheet changed to
Bracelet Machine, was the third and final task in the research described in

From Bebras Tasks to Lesson Plans – Graph Data Structures 265

this paper. It was used in 2013/14 in the Cadets category (eighth and ninth
grade), with 82.0% boys’ success rate and 85.6% girls’ success rate. The gender
difference was statistically significant with a Pearson coefficient of 5.6 in favor
of girls. Gender differences are equally significant in both age groups. Although
the task was designed for a higher age category, its very good results and a small
error rate convinced us that this task could be suitable for younger pupils too.

The task uses a finite state machine model (considerably simplified) and the
contestants need to comprehend the rules of making bracelets, which are shown
in the graph, see Fig. 3. An example was used to describe how bracelets were
made. Since the task contained four possible answers, it was advisable to resolve
it by eliminating each option, or in other words, by trying all the options. In this
task, the pupils manipulated with the data (pictures) in the graph and, based
on the rules, constructed the results (bracelets).

Fig. 3. The task Bracelet machine from second phase worksheet

5.1 Results of the Second Phase

The Bracelet Machine task was the most problematic for many pupils in our
testing groups – many of them did not know what the rules in the picture meant
and how to interpret them. The most common explanation for choosing the
answer A was: “She went through the bottom path, now she’ll go through the
upper.” Some pupils chose answer B with the argument that it contains all the
shapes which were in the picture. The argument for C was that shapes were in
the right order. The boys’ groups chose a strategy of exclusion, in discussion in
the sixth grade one boy clearly defined the rules for bracelets. In each group it
was said that the loop under the pink diamond meant “that it could go twice
this way,” none of the groups thought about going more than twice.

It was clear from the discussions that the pupils understood the graph only
intuitively and could not fully explain why their answer was correct. This has
proven to be a problem in the solution of a similar task in the next work-
sheet called Bracelets. Only slight changes were made to the original graph – we
let them write down (or more accurately draw) their own bracelets made with
“machine” from the graph. We were interested if they understood the rules in
the graph and how they would work in looking for two different answers.

266 L. Budinská and K. Mayerová

Pupils who did not engage in the groups discussion of previous task or it was
clear from their words they did not understand it, had problems with solving the
Bracelets task. There was a pupil in each group except the fifth grade girls, who
just redrawn the diagram – they considered it a bracelet, as all of them later
explained, “the bracelet is circular”. All fifth grade girls wrote more than two
options, in every case at least two of them were correct. The common mistake
was to miss the shape from the beginning or end of the bracelet, or to repeat
the shape that did not have a loop above it. The remaining pupils had the right
answers – they all chose both possible ways and if there was a loop on the way
they used it. The problems we identified were (1) more difficult comprehension
of rules from graph for this age group and (2) not clear understanding what the
loop means.

5.2 Proposed Worksheet

In proposed worksheet we addressed these problems with small steps which
pupils need to take in order to understand the structure. Firstly they see some
bracelets which were made by the machine and they need to draw the “way”
how machine was creating them – to address the second problem we used loop
zero, one and three times. In the next task they are asked to fill missing piece
into bracelets. Then they decide which bracelets were made by machine in the
picture, and in the next task they are shown three machines and six bracelets
and they connect each bracelet to related graph. In synthesis we let them write
their own bracelets for the graph and then they are supposed to write down
what are the rules for the bracelets (with what shape it starts, with what shape
it ends. . .). To make it more interesting for more motivated pupis an additional
task is at the end of the worksheet – to create their own machine (it could create
bracelets, funny words or whatever they want).

The discussion following the worksheet could be about simplifying the rules
to follow by drawing them into diagram like this one. With pupils, who did not
have problems with the worksheet, the teacher could have a discussion about
determinism and nondeterminism (e.g. what would the machine do if there are
two possible ways each starting with the same shape).

6 Conclusion

In this paper we presented the results of using Bebras graph task in lower sec-
ondary school as a part of the learning process. We chose three tasks which
seemed to meet the criteria from the National Educational Programme, anal-
ysed their results from the competition and let two groups of pupils from fifth
and sixth year solve them. While analysing methods they used, errors they made
and misconceptions they gained, we were able to identify the most significant
problems and we tried to overcome them with creating worksheet for each task.
Subtasks in worksheets are created with Bloom taxonomy in mind, so for each
cognitive objective there is at least one subtask.

From Bebras Tasks to Lesson Plans – Graph Data Structures 267

Even though we could not test all three worksheets, based on the results of
the first one, it appears to be a good approach to teach graph data structures.
We are aware of the small group of participants, and we are planning to test
them with different setting groups. To find them, we presented the worksheets
to the two groups of primary and lower secondary school teachers and they gave
us more ideas and insight to what they need. They liked the idea and they agreed
that it is not so easy for them to use Bebras tasks in lessons if they do not have a
good understanding of the informatics concept behind it. Also, some ideas about
post-worksheet discussion arose from the results and teachers opinions, as well
as many different uses of worksheets – it can be done individually, in pairs, in
groups or even with a different approach for each task. Some of the teachers are
willing to participate in later rounds of the research starting in the new school
year, which could bring a new perspective to all of it.

Acknowledgment. This research was supported by the Comenius University in
Bratislava Grant UK/373/2019.

References

1. Slovak innovated National Educational Programme in Informatics for lower sec-
ondary eduaction http://www.statpedu.sk/files/articles/dokumenty/inovovany-
statny-vzdelavaci-program/informatika nsv 2014.pdf. Last accessed 25 May 2019

2. Budinská, L., Mayerová, K.: Graph tasks in bebras contest: what does it have to
do with gender? In: Proceedings of the 6th Computer Science Education Research
Conference, pp. 83–90. ACM (2017)

3. Román-González, M., Moreno-León, J., Robles, G.: Combining assessment tools
for a comprehensive evaluation of computational thinking interventions. In: Kong,
S.C., Abelson, H. (eds.) Comput. Think. Educ., pp. 79–98. Springer, Singapore
(2019). https://doi.org/10.1007/978-981-13-6528-7 6

4. Dagienė, V., Sentance, S.: It’s computational thinking! bebras tasks in the cur-
riculum. In: Brodnik, A., Tort, F. (eds.) ISSEP 2016. LNCS, vol. 9973, pp. 28–39.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46747-4 3

5. Calcagni, A., Lonati, V., Malchiodi, D., Monga, M., Morpurgo, A.: Promoting
computational thinking skills: would you use this bebras task? In: Dagiene, V.,
Hellas, A. (eds.) ISSEP 2017. LNCS, vol. 10696, pp. 102–113. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-71483-7 9

6. Dagiene, V., Stupuriene, G.: Short Tasks - Big Ideas: Constructive Approach for
Learning and Teaching of Informatics Concepts in Primary Education. In: Dagiene,
V., Jasute, E. (eds.) Constructionism 2018. Vilius (2018)

7. Anderle, M.: Transformation of tasks from competition to high school lessons -
Binary search trees. In: ICERI2018 Proceedings, pp. 6549–6557 (2018)

8. Creswell, J.W.: Educational Research: Planning, Conducting, and Evaluating
Quantitative and Qualitative Research. Pearson Education Inc., London (2015)

9. Agresti, A.: Categorical Data Analysis. John Wiley & Sons Inc., Hoboken (2002)
10. Bloom, B.: Taxonomy of Educational Objectives: The Classification of Educational

Goals. Handbook 1 Cognitive Domain McKay. New York (1956)

http://www.statpedu.sk/files/articles/dokumenty/inovovany-statny-vzdelavaci-program/informatika_nsv_2014.pdf
http://www.statpedu.sk/files/articles/dokumenty/inovovany-statny-vzdelavaci-program/informatika_nsv_2014.pdf
https://doi.org/10.1007/978-981-13-6528-7_6
https://doi.org/10.1007/978-3-319-46747-4_3
https://doi.org/10.1007/978-3-319-71483-7_9

CITY: A Game to Raise Girls’ Awareness
About Information Technology

Evelyn Saxegaard and Monica Divitini(&)

Department of Computer Science, Norwegian University of Science
and Technology, Trondheim, Norway

divitini@ntnu.no

Abstract. Worldwide there is a significant under-representation of females
considering Information Technology (IT), and more in general STEM, as a
career option. The missing women in IT have long been a topic of concern and
several factors are known to contribute to this gender gap. Among the factors
identified in the literature, there is a misconception of the role of IT and its role
in everyday life. In turn, this might result in a decrease in interest. The aim of
this research is to explore the possibility to increase girls´ awareness about IT in
an accessible and engaging way. With this objective, the paper presents the
design of CITY, a game concept aiming at explaining the role that technology
plays in everyday life. The paper also presents the evaluation of the game.

Keywords: Gender gap � Serious games � IT education � Awareness

1 Introduction

The reduced number of women in Science, Technology, Engineering, and Mathematics
(STEM) has long been a topic of concern [4]. Different factors influence the gender gap
in STEM, including stereotypes, missing awareness, lack of role models, and the view
on girls’ abilities. In particular, lack of information leads to misunderstandings and
misconceptions about the field that might negatively influence girls [2, 7].

In this research we investigate how to address the lack of information with an
informative serious game. Several studies described such games as effective both for
motivation and learning [10, 18]. This research will therefore focus on the use of serious
games to present information about IT with the aim to raise awareness among girls about
IT as an interesting subject of study and a possible meaningful career option.

The research presented in this paper follows the Design Science paradigm [11],
aiming at developing an artifact in form of a game prototype that is grounded in current
understanding of the problem domain as well as in the body of knowledge in serious
games.

Next section elaborates on related work. We then present the game in Sect. 3 and
its evaluation in Sect. 4. Section 5 concludes the paper and points out directions for
future work. The game is available online at https://techinthecity.firebaseapp.com
(in Norwegian).

© Springer Nature Switzerland AG 2019
S. N. Pozdniakov and V. Dagienė (Eds.): ISSEP 2019, LNCS 11913, pp. 268–280, 2019.
https://doi.org/10.1007/978-3-030-33759-9_21

https://techinthecity.firebaseapp.com
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33759-9_21&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33759-9_21&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33759-9_21&domain=pdf
https://doi.org/10.1007/978-3-030-33759-9_21

2 Serious Games for Providing Information

Most research on building awareness and behavior change has been carried out in the
field of healthcare [14, 17]. For example, the games PROCEE [8], NutritionRush [3],
and RebEarth [1] all utilize information as an important tool throughout the game play
to increase players’ knowledge about the topic at hand. The evaluation of these three
games, as presented in the referenced papers, reports good results suggesting that the
use of information can be an effective tool to make players more aware of a topic.

When exploring the use of informative serious games to raise awareness about IT,
both learning elements and game elements are important to take into account, as the
player’s educational experience must be supported by fun and engaging activities. The
construction of an engaging, informative learning environment ensures that the player
does not passively receive information, but that new knowledge is obtained through
active tasks. However, balancing learning and fun is challenging, as informative serious
games might struggle to present information without being tedious.

Different game elements are identified in the literature to help keeping the player
engaged. For example, Boller described Conflict, Cooperation and Competition,
Strategy and Chance, Aesthetics, Theme, Story, Resources, Rewards, Levels, and
Scoring as the fundamental game elements [5]. Many elements are also identified as
essential to promote learning. Quizzes and active game tasks, such as collecting items
or controlling the character, are wide-spread learning elements. For example, the game
in Cosma et al. [8], and many of the games mentioned in the literature review by
Mortara et al. [15] use question and answer-based exercises to make the player more
aware of the consequences of a decision or to improve their knowledge about a topic.
Storytelling and choice-driven elements are also frequently used to compel the player
to feel an affiliation to the plot and the game. Stories grounded in the subject of the
serious game are often used to combine the serious content with the game’s enter-
taining side [13]. This ensures that the player sees the game as a meaningful activity.

When designing games targeting girls it is important to be aware of possible gender
issues that might dis-engage girls. For example, a study by Kafai [12] shows that girls
tend to prefer realistic game environments with little violence or negative feedback for
taking wrong decisions. Similar studies revealed the value of having meaningful
content presented through dialogue and character interaction [6, 16]. The role of the
game’s narrative was also found to be central to females’ enjoyment of games. This
gave them the opportunity to explore and engage with characters facilitating social
interaction [6].

Table 1 provides an overview of elements from the literature that are identified as
relevant in the design of CITY. The first column (a) lists game elements that can be
used to promote learning, while the second column (b) lists game elements that can be
used to promote engagement.

CITY: A Game to Raise Girls’ Awareness About Information Technology 269

3 CITY Game Design

CITY is an online game targeted toward female teenagers in secondary schools with the
aim of increasing their awareness of IT. The storyline is summarized in Table 2. The
game does not aim at providing a comprehensive coverage of the topic. IT is an
umbrella term that makes it almost impossible to include all aspects. A few topics have
therefore been selected based on girls’ interests and the likelihood of them finding the
chosen scenarios engaging and attractive. The chosen narrative makes it easy to add
additional areas in a later phase. The story and the information are presented in Nor-
wegian, but the game could be easily made available in any other language.

Table 1. Overview of learning and engaging game elements

Table 2. CITY storyline

You are in "CITY", a peaceful town with a lot of technological resources. However,
the mayor has decided to ban all Information Technology because it steals jobs from
hard-working people, huge corporations misuse the citizens’ personal data, and people
are more occupied with checking their phones than talking to others (i.e. common con-
cerns about technology). He wants to create an inclusive and caring society where
people interact with each other the way they used to before technology changed eve-
rything. Although the intentions of the mayor seem good, ignorance concerning tech-
nology can be dangerous.
You need to get enough information to convince the mayor that banning technology is
not the right decision. Although his claims have some truth to it, understanding the
underlying causes is imperative in any situation.
You will move around the city to learn about IT. Inside each location you can talk to
employees and visitors, and play minigames, to gain insight into what technology is
and how it affects us. At the end of the game, you will use your new awareness about
IT to convince the mayor to change his mind.

270 E. Saxegaard and M. Divitini

The game is built around four interrelated information pillars: (i) What is tech-
nology; (ii) What is technology used for; (iii) How is technology created; and (iv) who
uses and creates technology. An important part is to emphasize women’s position in the
technology industry and other industries where IT is used, challenging the existing
stereotypes many girls have about people working with technology.

The game is divided into 8 scenes: (1) Introduction; (2) Walking in town;
(3) Hospital; (4) Walking to the next location; (5) IT-business; (6) Travel to the mayor´
s office; (7) City hall; (8) End of debate.

SCENE 1 and 2. Introduction
The player gets a brief introduction to the story and the mission. The player meets a
woman that urges her to visit various locations in the city (Fig. 1). This will provide the
knowledge needed to change the mayor´s mind about banning technology from the
city. The player is also given tips on how to interact with the game.

Learning Goal. The aim of Scenes 1 and 2 is to set the scene for the player and give a
preliminary introduction to technology. The general concept of what technology is and
what it can be used for is presented, setting the context for the rest of the game.

Game Elements. The woman that the player meets provides basic information. Pre-
sentation of information in a conversation is more engaging than reading it in a non-
contextual manner. The scene is driven by the narrative and curiosity. The narrative
provides the player with a story and a mission to fulfill, creating an atmosphere that
allows the player to immerse herself in the experience. Curiosity is tightly coupled with
this as the game seeks to increase the player’s spirit of inquiry to learn more about how
to reach the goal. In addition, following the idea of flow [9], it is important that the first
phase is simple to carry out. This gives the player a chance to get to know the game
before the difficulty is increased. Short hints about how to play the game are provided
to ensure a smooth start.

Fig. 1. CITY - Starting scene

CITY: A Game to Raise Girls’ Awareness About Information Technology 271

SCENE 3. Hospital
The first location the player encounters is the hospital. Here the player is presented with
a hospital building (Fig. 2), with objects and characters that are clickable. By selecting
these elements, the player is taken to new scenes where information related to the
clicked object will be presented or interaction with the characters is started. There are
four interactive scenarios in the hospital: (1) a female doctor discussing technology in
the health sector; (2) a male doctor explaining the use of artificial intelligence in
medicine; (3) a patient with a pace-maker describing how technology keeps him alive,
and lastly, (4) a person in the waiting room wearing an activity tracker.

Learning Goal. The learning goal of this scene is to make the player aware of the use
and impact of IT in the health sector, an area that many girls find interesting. The
themes for this location are (i) general information about technology in hospitals,
(ii) the type of technology used, (iii) how artificial intelligence is used to improve
diagnostics, (iv) patients’ view on technology, and (v) wearables that track activity.

Game Elements. The provision of information is central throughout all the gameplay.
In this scene, the player is presented with general knowledge about technology in
hospitals. Central game elements in this phase are the player’s opportunity to select
what she wants to know more about; choose to participate in a minigame; gather light
bulbs; and be intrigued by a vague hint in the smartwatch scene.

SCENE 4. Travel Between the Hospital and the IT business
Upon leaving the hospital, the player returns outside. It has begun to darken, and the
mayor’s meeting is starting in only a few hours. As she hurries to the next location, the
player is able to pick up a newspaper laying on the street, with an article describing
how the mayor has already started turning off technology. When putting down the
paper, the player receives a notification on her phone informing that the Internet has
been switched off. She then hurries to the next location, i.e. the IT business.

Fig. 2. Representation of the hospital as the player sees it

272 E. Saxegaard and M. Divitini

Learning Goal. In this part of the game, the learning goal is to make the player reflect
on a scenario where technology is not available, possibly seeing the benefits of using
technology and understanding its importance.

Game Elements. The main learning elements in this scene are providing information
and to benefit from the user’s emotions. The newspaper is a way of presenting
information that the player has not seen before. This breaks with previously used
approaches to form a more diverse and interesting game. Additionally, the scene is
aimed at generating emotions in the player by having them experience the time rush
and the disappearing of the Internet. The player is motivated to continue the quest when
she is driven forward by elements such as the dark skies, her encounter with the
consequences of removing technology, and the desire to get to the next location.

SCENE 5. IT Business
Similar to the hospital, the IT business is depicted as a building with transparency of
the various office rooms (Fig. 3) and the player can interact with the characters in
different rooms. There are five different scenarios at this location: (1) A female
developer asking the player her thoughts on programming, (2) a male developer
explaining the value programming holds, (3) a female programmer talking about her
experience with code, (4) a room where two people are testing virtual reality equip-
ment, and (5) a computer that demonstrates examples of what you can do with coding.

Learning Goal. In contrast to the hospital location where the goal was to show the
player the practical use of technology and its benefits, the IT business is designed to
demonstrate how technology is created and who is behind it. The location aspires to
generate positive associations to IT and convince the player that programming is less
frightening than many might think. The female developers work as a role model.

Game Elements. The information is presented either as a speech, an image, or as text.
The image is a new medium not previously experienced in the game and is meant as a
tool to make the presentation of the information more engaging. As in the hospital, the
use of real-world examples is an important aspect. Using realistic examples allow the
player to identify with the characters and the information, creating a contextual learning
environment. There are several characters and objects around the office that the player
can interact with. These people have been created to be relatable and charming, gen-
erating a pleasant and friendly atmosphere. As in the hospital, a minigame is included
to promote engagement. If the player is able to complete the minigame, she is awarded
a light bulb to help her against the mayor. There is also a light bulb hidden in this
location that awards the curious players later in the game.

SCENE 6 and 7. Outside the City Hall
When leaving the building, the user exits out into the dark evening and is told that the
mayor’s meeting is about to start. When the player reaches the city hall, she realizes
that she has no way of getting inside. She must search for a means to gain access, and
by glancing around the area, she will be able to find an access key to be used with an
access code, i.e. the step count from the wearable scenario.

CITY: A Game to Raise Girls’ Awareness About Information Technology 273

Game Elements. This scene is not associate to any learning goal, but it is meant as an
engaging and fun element providing a break to the player. (Although it is not specif-
ically mentioned, the scene could be relevant to security aspects of technology as it
depicts the player using a lost keycard to gain access to a location.) This scene is a
puzzle where the player needs to find an object. In this scene, the unfamiliar task of
solving a puzzle presents the player with a new challenge, increasing motivation and
interest.

SCENE 8. Debate
In the final scene, the player interrupts the mayor’s presentation about prohibiting
technology from the city. This starts a debate between the two where the player must
decide how to argue against the mayor’s allegations and claims.

Learning Goal. In the previous scenes, the focus is on collecting new information and
gaining an understanding of how technology is created and used. In the final debate, the
player must use this information to present her argumentation. The level is designed to
make the player contemplate the information that has already been presented and see it
in a new context when hearing the mayor’s side. The discussion facilitates reflection
and it is an opportunity to hear the other side of technology and understand the possible
trade-offs.

Game Elements. Repetition of information from the game is utilized in the argument
to help reinforcing the user’s understanding, a strategy that is widely used to boosts
learning outcomes. Moreover, the player is able to select the argument she wants to use,
drawing on the concept of consequential play and providing her with the opportunity to
learn more about what she finds most important. The information she has previously
learned will then be repeated in the conversation, resulting in an enhanced learning
experience. Because of the reflective nature of this scene, the level contains few other
engagement elements, other than a scorekeeper. The score allows the player to pay
attention to her answers to see if she is doing better than the mayor.

CITY is built on Phaser3, an HTML game engine for creating two-dimensional
games, with support for both Canvas and WebGL rendering, and is JavaScript-based.
Images used in the game are designed by illustrators for Freepik.com.

Fig. 3. Representation of the IT business as the player sees it

274 E. Saxegaard and M. Divitini

https://Freepik.com

4 Evaluation

The prototype has gone through four iterations, from a paper-based to a fully functional
prototype. The intermediate prototypes have been improved through interviews with
stakeholders and experts. These intermediate evaluations have been used to improve
the game concepts, its playability, and relevance. Here we report only the evaluation of
the last prototype, as described in Sect. 3, with focus on the evaluation of the overall
concept and the use of a serious game to promote awareness about IT. The main
evaluation was done through interviews with the target group and experts, including a
group interviews with three lower secondary female students, a group interview with
four upper secondary school female students, an two individual interviews with one
game design expert and one recruitment expert working in an initiative at the university
level to recruit girls for STEM related study programs. Secondary school students were
recruited to evaluate the game as possible recipients, share their insight on how the
target group would assess the game and supply the researcher with an understanding of
how well the game mechanics work to increase the player’s awareness. The evaluation
with the game design expert aimed at evaluating the game based on her expertise in
game design and provide insight into how well the game mechanics work to raise
awareness of the topic presented. The evaluation with the recruitment expert aimed at
evaluating the game based on her expertise from working with recruiting girl to
technology studies and share her knowledge of what younger girls find interesting with
IT. Interviews lasted approximately one hour. They all started with a brief introduction
to the study and to the game, as well as information about ethical issues. Before the
game session started, it was made clear that this was not a usability test. The game is a
concept demonstrator, and the goal of the evaluation was to assess its potential, not its
functionality. The introduction was followed by a game session and then the semi-
structured interview. Notes were taken during the interviews, but no recording to
protect the privacy of the participants.

4.1 Lower Secondary School Students

The students were very positive, and they all liked the idea of using a game to get the
information. They mentioned that it could be used at school “I think our science
teacher could have used this”, but also for homework, as a more exciting way of
learning than having to search for information on the Internet. They emphasized, “The
information was very well explained. We wouldn’t have to browse through tons of
irrelevant theory on Wikipedia, for instance. Everything we need is right here.” They
also expressed their appreciation of the design, thinking it was fitting. It was, however,
proposed to add a method to go back to earlier levels, in case one forgets the code to the
city hall.

The game was evaluated as entertaining. Participants liked the mini-games, actually
suggesting adding more. An idea the girls suggested was a minigame where the player
would assemble a computer. The minigames were, however, not the most engaging
game element, as this was found to be the dialogue choices, or the consequential play
element. They explained that being able to choose what to say and what action the
character should take empowered them as players. It made them excited to discover

CITY: A Game to Raise Girls’ Awareness About Information Technology 275

what the response would be. They also liked that they were able to click on the
characters in the buildings, thus being given the ability to select the person they wanted
to talk to, rather than being presented with someone. They viewed the storyline as an
essential aspect of the game, always leading them further along. “It’s what the game is
based on. It follows you from the start to the end, making it easier to learn as you see
the overall context at every step.”

Even if the participants already knew some of the information presented in the
game, they got a new perspective by playing the game. As one participant said, “I
haven’t thought about clothes or a pacemaker to be part of technology. Neither to what
extent hospitals use it.” Another stated, “It’s a new way of thinking about technology.”
When queried about how interesting the information was, they said that it was fasci-
nating and easy to follow. “Many sites and articles on the Internet are so long and have
difficult language, but the language here was simple and understandable.” Further-
more, they explained that the game made them think about technology and program-
ming differently than before. “You get to see that it’s more than just creating
computers. The domain is so much more than what people might think.” They also
added that CITY could be a motivator to both teachers and students when starting out
exploring technology and programming.

Participants also suggested that, for future extensions, a location not directly linked
to technology and programming would be educational. “Something like a farm. They
use a great amount of technology, but no one ever thinks about that.” A police station
was also proposed, with emphasis on that it would be fun to solve a case using some
particular type of technology. The girls were also eager about the idea of having a final
page with resources to learn more about the presented topics and on how to proceed to
learn to program. “Many people don’t know where to start. Even the once who are
interested in learning.”

4.2 Upper Secondary School Students

This group of students provided feedbacks similar to the ones from younger students.
They thought the game was engaging and relevant. In their opinion, students at the age
of 10–13 would benefit from playing the game, though they would not rule out that this
could be used also by older students. They liked the idea of the game being created for
girls, without being too “girly”. As the younger students, they also suggested it could
be targeted toward teachers: “Many teachers don’t know where to start so it could be a
great tool they could use as a starting point when introducing technology to us.” The
participants proposed to use it at school, at educational fairs, research days, explaining
that it would work as an excellent opening into IT.

They liked the design and aesthetics of the game, particularly mentioning the
gradually darkening of the sky as the story progress. They all evaluated the game as
entertaining, in particular the minigames. The story was also deemed to be an essential
part of the game and a central element in generating motivation. “Without a clear
objective to the game, I see no reason to play it, but in CITY I was like: ‘Oh no, the
mayor has taken all the technology. I must stop him’.” The participants explained that
there was no wow-experience when reading the information because they had some

276 E. Saxegaard and M. Divitini

previous understanding of it. However, they stated that it got them thinking. “The
information made it less scary and foreign, and more interesting.”

Talking to the other characters was considered a good way to learn. “It’s more
interesting to hear a doctor say something than reading ‘Here at the hospital…’.” The
game’s flow and clear connection between the goal and the presented information were
mentioned as well and said to be engaging. They felt that they knew more about IT
after playing the game, saying that the discussion with the mayor was especially
interesting.

The girls thought a third location would be a nice supplement, making the game
longer and therefore a more suitable learning tool to be used during class. “Maybe a
farm, or a space station that you travel to.” The space station idea was however, put
aside in favor of an airport because of the unrealistic scenario it would present.

4.3 Game Expert

The game expert’s first comment after playing the game was “It’s very engaging. This
is a feeling you can count on to emerge in the target group.” She emphasized that the
game made her reflect on technology in a way she had not previously done and that it
made her stop and think. She evaluated the game to be appropriate for students in both
lower and upper secondary school students. “The upper grades can get a glimpse of
what they can choose to study, while the younger students can have their interest in
technology kickstarted.” She was of the opinion that the game would go well with both
girls and boys, but that it was particularly accommodating toward girls. She pointed to
the use of many female characters and the female-specific information such as
examples of using technology in fashion and health. When discussing the game design,
the game specialist found the design elegant and easy to navigate.

When asked about her opinion on the game’s level of difficulty, she answered that
she thought it to be suitable. She declared that it was easy at this point but that it was
more important that the game made the students stop and think than have them struggle
to complete the game. If it was desirable to raise the challenge level, more difficult
questions could be included, or the dialogue choices could be made harder.

She evaluated the dialog options as a good way to promote learning. She also found
the storyline and minigames engaging elements that are useful in classroom settings.
The game expert believed the game to be a nice supplement in a school class, pointing
to research on how games often are used to stimulate discussions afterward. She
therefore suggested creating a teacher’s guide to facilitate further discussions on the
topic of technology and programming. Video interviews with real people were also
proposed, as well as having resources to guide interested players in the right direction
for learning more.

4.4 Recruitment Expert

The recruitment expert thought the game to be a pleasant way of learning about IT,
including a good variety of areas within IT with the potential for expanding it further in
the future. In her opinion the game is better targeting students in lower secondary
schools, maybe even primary schools. However, with some changes to make the

CITY: A Game to Raise Girls’ Awareness About Information Technology 277

information more complex it could become more relevant also for upper secondary
school students. She suggested to use the game in school, at events, and coding clubs.

The expert evaluated the game as engaging: “The concept was captivating, and I
thought the minigames were a good way of maintaining the motivation during the play.
There could be even more of them.” Despite the fact that she enjoyed the minigames,
she found clicking on objects and the characters to be the most engaging game
mechanics. She also mentioned choosing what to say as part of the debate among the
best engagement elements.

In the expert’s opinion, the game provides a good mixture of relevant information
that girls would find interesting. “It covers a broad aspect of technology in a short time,
demonstrating that it can be so much more than just programming and websites.” To
make the game more engaging, she suggested making the information a more signif-
icant part of the minigames. Moreover, she mentioned that much of the information in
CITY was related to what her project uses to promote interest in IT, confirming the
relevance of the game. She added that the game could include supplementary examples
on why we need women/gender-balance in technology fields.

The learning element she found to be most effective in increasing the player’s
awareness was the conversations with the characters, as well as the debate against the
mayor. “It was fun to be able to use what I had learned during the game.”When asked if
a quiz should be included at the end of the game to test the player’s new knowledge, it
was said that this would ruin the flow of the game. “The battle with the mayor is an
essential part of the game, but if the quiz was prior to the end discussion, as a challenge
the player would have to face before the final ‘boss,’ then I think it could work.”

When asked about possible improvements, the expert pointed at the role of pro-
gramming. She liked how programming was presented as something everybody could
learn, but she missed being able to try it out while playing. It was therefore proposed to
implement a short code assignment, in form of a minigame, to boost the player’s
confidence in regard to programming. Sub-quests were also suggested, having the
player help characters solve their problems.

5 Conclusions

The paper presents CITY, a game to provide information about IT and improve
awareness about IT and IT careers. The work is motivated by the lack of information
about IT that is identified in the literature as one of the factors behind the gender gap in IT.

The proposed game is a proof of concept and provides a framework that can be
extended to add more detailed learning objectives. The evaluation of the game with
different stakeholders was very positive, with the game evaluated as an engaging way
to get information and help reflecting on the role of IT in society. Players appreciated
the possibility to engage with different characters to get information, to be able to
choose different objects and characters, and to play minigames. On the overall they
gave a positive evaluation of both the storyline and the aesthetics of the game.

The work is now proceeding in two main directions. First, and following some of
the feedbacks received by the evaluators, we are working on an extension of the game
to provide more information, for example adding new places to visit and mini-games.

278 E. Saxegaard and M. Divitini

Second, we are researching on ways to capitalize on the interest triggered by the game
and help the players to move forward in the path of developing relevant knowledge,
e.g. how one could go ahead and learn something about programming.

Acknowledgements. The research is co-funded by Excited, the Norwegian Center for Excel-
lent IT Education (https://www.ntnu.edu/excited). We warmly thank the people who participated
to the research and provided valuable feedbacks.

References

1. Ali, A., et al.: Raising awareness on hydroponics via an educational video game using an
indirect teaching method. In: 9th IEEE-GCC Conference and Exhibition (GCCCE), pp. 1–6
(2017)

2. Bach, D.: Study examines why some STEM fields have fewer women than others (2016).
https://phys.org/news/2016-10-stem-fields-women.html

3. Baranyi, R., et al.: NutritionRush - a serious game to support people with the awareness of
their nutrition intake. In: IEEE SeGAH. IEEE, pp. 1–8 (2017)

4. Beede, D.N., et al.: Women in STEM: A Gender Gap to Innovation. SSRN Electron.
J. (2011). ISSN: 1556-5068. http://www.ssrn.com/abstract=1964782

5. Boller, S.: How Much Story Does a Serious Game Need? (2014). http://www.
theknowledgeguru.com/much-story-serious-game-need/

6. de Castell, S., Bryson, M.: “Retooling play: dystopia, dysphoria, and difference. In: From
Barbie to Mortal Kombat, pp. 232–261. MIT Press (1998)

7. Cheryan, S., et al.: Why are some STEM fields more gender balanced than others? Psychol.
Bull. 143(1), 1–35 (2017). https://doi.org/10.1037/bul0000052

8. Cosma, G., et al.: PROCEE: a PROstate Cancer Evaluation and Education serious game for
African Caribbean men. J. Assistive Technol. 10(4), 199–210 (2016)

9. Csikszentmihalyi, M.: Beyond Boredom and Anxiety. Jossey-Bass Publish- ers (1975).
(1990). Flow: The Psychology of Optimal Experience

10. Girard, C., Ecalle, J., Magnan, A.: Serious games as new educational tools: how effective are
they? A meta-analysis of recent studies. J. Comput. Assist. Learn. 29(3), 207–219 (2013)

11. Hevner, A.R., et al.: Design science in information systems research. Manage. Inf. Syst.
Quart. 28(1), 75–105 (2004)

12. Kafai, Y.V.: Video game designs by girls and boys: variability and consistency of gender
differences. In: From Barbie to Mortal Kombat. MIT Press, pp. 90–114 (1998)

13. Kampa, A., Haake, S., Burelli, P.: Storytelling in Serious Games. In: Dörner, R., Göbel, S.,
Kickmeier-Rust, M., Masuch, M., Zweig, K. (eds.) Entertainment Computing and Serious
Games. LNCS, vol. 9970, pp. 521–539. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-46152-6_19

14. Miltenburg, C.V.: Games for Good - Research into the use of serious games to raise
awareness for charitable organizations (2014). http://arno.uvt.nl/show.cgi?fid=134760

15. Mortara, M., et al.: Learning cultural heritage by serious games. J. Cult. Heritage 15(3),
318–325 (2014)

CITY: A Game to Raise Girls’ Awareness About Information Technology 279

https://www.ntnu.edu/excited
https://phys.org/news/2016-10-stem-fields-women.html
http://www.ssrn.com/abstract=1964782
http://www.theknowledgeguru.com/much-story-serious-game-need/
http://www.theknowledgeguru.com/much-story-serious-game-need/
http://dx.doi.org/10.1037/bul0000052
http://dx.doi.org/10.1007/978-3-319-46152-6_19
http://dx.doi.org/10.1007/978-3-319-46152-6_19
http://arno.uvt.nl/show.cgi?fid=134760

16. Rubin, A., et al.: What Kind of Educational Computer Games Would Girls Like?. AERA
presentation (1997). https://www.researchgate.net/publication/265269338_What_Kind_of_
Educational_Computer_Games_Would_Girls_Like

17. Wattanasoontorn, V., et al.: Serious games for health. Entertainment Comput. 4(4), 231–247
(2013)

18. Wouters, P., et al.: A meta-analysis of the cognitive and motivational effects of serious
games. J. Educ. Psychol. 105(2), 249–265 (2013)

280 E. Saxegaard and M. Divitini

https://www.researchgate.net/publication/265269338_What_Kind_of_Educational_Computer_Games_Would_Girls_Like
https://www.researchgate.net/publication/265269338_What_Kind_of_Educational_Computer_Games_Would_Girls_Like

Computer Science Problem Solving
in the Escape Game “Room-X”

Alexander Hacke(B)

Didaktik der Informatik, University of Potsdam,
August-Bebel-Str. 89, 14482 Potsdam, Germany

ahacke@uni-potsdam.de

Abstract. Problem solving is a key element of computer science. It is
also a research topic within computer science education examining topics
like processes, tasks and attitudes with regard to computer scientific
approaches and contents. Our computer science escape game “Room-
X” offers learners an insight into computer science and enables them to
practice problem solving in an attractive and motivating environment.
From a research perspective, Room-X allows us to observe learners of
computer science while solving problems and to analyze their strategies
involved. Video analyses are used to analyze behavioral patterns and to
draw conclusions in order to promote problem solving skills in computer
science and to further develop Room-X.

Keywords: Computer science problem solving · Escape game ·
Out-of-school learning experience

1 Introduction

Problem solving is a key element of computer science and forms links with each
of its sub-disciplines. In order to obtain a solid foundation for computer science
education, secondary school and university students are required to deal explic-
itly with problem solving. However, little research is available on this topic.
Consequently, little is known about how computer science problem solving can
be taught in a purposeful manner. Nevertheless, problem solving is an inher-
ent part of the German educational standards for computer science [2] and, in
the form of computational thinking, of the K-12 CS standards [8]. Since com-
puter scientific problem solving in German secondary schools is often treated
in a rather theoretical manner, the topic is of little interest to many students.
Often it is even taught implicitly, which does not do justice to the importance
of the topic. Our approach to motivate secondary school students for it and to
practice problem solving strategies is the computer science-based escape game
Room-X. It was specifically designed with computer science problem solving in
mind. Room-X serves as a showcase for computer science (CS) and shows that
CS education can also be helpful in a playful environment. In the first part of this
paper, there will be a theoretical account of CS problem solving. Afterwards, a
c© Springer Nature Switzerland AG 2019
S. N. Pozdniakov and V. Dagienė (Eds.): ISSEP 2019, LNCS 11913, pp. 281–292, 2019.
https://doi.org/10.1007/978-3-030-33759-9_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33759-9_22&domain=pdf
http://orcid.org/0000-0002-2124-7956
https://doi.org/10.1007/978-3-030-33759-9_22

282 A. Hacke

video analysis currently being conducted within the framework of Room-X will
be described with the aim of finding out which major hurdles play a role in CS
problem solving. At a later stage, this allows conclusions to be drawn as to which
areas should play a significant role in teaching CS problem solving.

2 Computer Science Problem Solving

In cognitive psychology, problem solving is described as the attempt to move
from an initial state past a barrier to a target state [9]. Problem solving requires
a number of cognitive abilities which, according to Bloom, can be classified
into six categories, with the top three (“Analyzing”, “Evaluating”, “Creating”)
being higher-order thinking and presupposing the lower three (“Remembering”,
“Understanding”, “Applying”) [1]. The processing of simple tasks can usually be
represented by the lower three categories. Hence, it is necessary to understand
the task (Understanding), to retrieve appropriate information and procedures
from the long-term memory (Remembering) and apply them in the given con-
text (Applying). Problem solving also requires higher-order thinking skills. It
is important to analyze the problem, distinguishing important from unimpor-
tant details and revealing hidden aspects (Analyzing). Based on the analysis, a
target-oriented strategy must be generated using appropriate heuristics, which,
depending on the case, links known elementary procedures with new contexts
(Creating). During the problem-solving process, this strategy must be constantly
monitored for effectiveness and, if necessary, reconsidered (Evaluating).

The difference between a task and a problem lies in the fact that tasks require
“only the use of known means in a known way to achieve a clearly defined goal”,
thus requiring only reproductive thinking. Problems, however, can only be solved
with productive thinking. So a new or at least a modified solution has to be
devised [4]. Whether it is a task or a problem depends on prior knowledge and
is therefore not a fixed property.

In order to be successful in problem solving, it is necessary to have confidence
in one’s own abilities. Also, the attitudes to the specific problem and towards
problem solving in general are largely responsible for how effectively a problem
solver can use the means at his or her disposal (cf. [12]). The term “problem”
needs to be narrowed down in terms of problem solving. A psychology-based
definition states that a problem exists when, in a situation where a particular
goal is to be achieved, an obstacle or barrier prevents it [9]. Problems can be cat-
egorized in many ways. For example, they can be differentiated by how clearly a
target state to be reached is defined, or by classifying them as so-called simple or
complex problems. In the case of complex problems, the surrounding conditions
change during the course of the solution attempt, which requires a continuous
reassessment of the solution approach. In addition, a large number of variables
come into play, with many of them being interdependent. Complex problems
include situations like managing a business or managing a global crisis. Sim-
ple problems, on the other hand, have stable conditions and comparatively less
relevant variables. However, other than the name suggests, they are not easy

Computer Science Problem Solving in the Escape Game “Room-X” 283

to solve, either. Problems within a computer scientific context usually fall into
the category of simple problems. This means that the general conditions do not
change or change only slightly during the solution attempt and the number of
variables to be considered is within manageable limits. Of course, embedded in a
real-world situation, they can also be part of a complex problem. In the context
here, however, the focus will be on simple problems, since otherwise it is no
longer clear whether the problem is of computer scientific or other nature.

Definition: A computer science problem exists when, in a situation with
stable conditions, an obstacle or barrier prevents a particular goal requiring
a computer science-based solution approach from being achieved.

Computer Science Methods. It now has to be clarified which methods are
to be attributed to computer science and which are not. Various attempts have
been made in the past to characterize the nature of CS, as demonstrated by
Grillenberger [5]. Thus, the theoretical-argumentative and the empirical app-
roach stand opposite to each other. Depending on the focus in terms of sub-
ject area and perspective, quite different models or catalogs arise as to what is
attributed to computer science. Irrespective of the methodology, the computer
science method used for problem solving should be found at least in one of the
widely accepted approaches, be it in the Fundamental Ideas of computer science
by Schwill [13] or in the Great Principles of Computing by Denning [3]. If, for
example, one sticks to the theoretical-argumentative point of view of the cat-
alog of Fundamental Ideas as a description of the essence of CS, then it must
be possible to trace computer science problem solving back to at least one of
these ideas. This means, for example, that the use of an algorithmic paradigm
such as Divide and Conquer or the use of the tree representation can be counted
among the computer science methods, since they can be found in the list of
Fundamental Ideas.

The question then arises as to whether the problem at hand is of a com-
puter scientific nature or only the problem-solving process chosen or whether
both parts may be attributable to computer science. Similar to the approach by
Humbert and Puhlmann subdividing computer science phenomena into three
categories [6], problems can also be classified according to their relation to
computer science:

1. The problem is not of computer science nature. Problems of a purely philo-
sophical nature where a computer scientific approach is not appropriate or
out of place.

2. The problem is indirectly of a computer science nature. Problems that have a
real-world character but are inherently computer scientific and can therefore
be solved by a CS problem-solving strategy.

3. The problem is directly of a computer science nature. Problems that require
a problem-solving strategy with computer-scientific principles.

By classifying problems in this way, it becomes obvious that a problem of the
third category like finding the closest pair of points that can be solved using the

284 A. Hacke

divide-and-conquer algorithm, can certainly also be part of category two, namely
as a computer-scientific part of a real world problem. For example, a problem
involving the distribution of tasks to employees or vehicle scheduling in suburban
traffic systems is often an integer programming problem that can be solved with
the branch-and-bound algorithm of computer science. The problem space of such
a problem then consists not only of the computer science problem, but also of
the fact that the computer-scientific character must first be recognized. However,
problems of category two may also be solved in a non-computer-scientific manner.
For example, depending on the scenario, in the case of a distribution problem
either CS optimization might be necessary or a simple random distribution might
suffice. It also becomes apparent that the initial situation of the problem provides
information about the likelihood of an involvement of computer science in the
problem-solving process.

2.1 Problem Solving Versus Computational Thinking

One of the concepts that seem similar to computer science problem solving at
first glance is Computational Thinking (CT). In 2006, Jeannette Wing’s term
came into play to describe a particular way of thinking.

Wing characterizes CT as problem-solving, system design and the under-
standing of human behavior through the use of fundamental computer science
concepts. It contains mental tools that reflect the breadth of computer science
[14]. Since there is no precise definition of Computational Thinking, ISTE and
CSTA have sought to narrow down what CT is, based on the feedback from peo-
ple involved in computer science education. CT is characterized as a problem-
solving process with at least the following properties:

– formulate problems in such a way that we can solve them with the help of
computers.

– logical organization and analysis of data.
– Representation of data by means of abstraction (e.g. models, simulations).
– automation of problem solving through algorithmic thinking (sequence of

ordered steps).
– identify, analyze and implement possible solutions with the goal of using the

most efficient and effective combinations of steps and resources possible.
– generalization and transfer of the problem solving process to a multitude of

other problems [7].

The list of properties of Computational Thinking is based on the assumption
that a problem from another science should be solved by means of computer
science and that this solution should be implemented and automated. CS prob-
lem solving plays a role in this process, of course. However, the focus of CS
problem solving, as described in this document, is not on the implementation
and automation of a solution, but on the previous step, i.e. thinking through
CS problems and creating structured solutions. This process does not necessar-
ily require the computer, nor does the automation of problem solving and the
generalization and transfer of the problem-solving process take center stage.

Computer Science Problem Solving in the Escape Game “Room-X” 285

3 Problem Solving in Escape Games

Escape rooms (also known as live escape games, exit rooms, and other similar
terms) are a special kind of escape game in which players as a team are locked
inside a room. With the help of clues and puzzles inside they try to escape the
room in a limited time. In most cases, there is also a mission to fulfill, such
as disarming a bomb, solving a criminal case or stealing an object. The topics
for such games are extremely diverse and are based on exciting settings, e.g.
chemical laboratories, prison tracts or agent offices. Escape games also provide
incentives for educational contexts. For example, Nicholson [10] describes the
benefits of using such games in the classroom as a welcome change from working
on the computer, the need for team collaboration, and motivational aspects as
the basis for active learning and social constructivism. Escape games provide
a great opportunity to train problem-solving skills. The concept of such games
incorporates the essential features of a simple problem and thus makes the play-
ers problem solvers. Within a certain period of time, they have to move from an
initial state (the room and the hints provided) to a destination state (usually: to
leave the room). This is not possible without further ado because one or more
obstacles (riddles, the door cannot be opened easily, etc.) are put in the way.
Therefore, they must use heuristic procedures (for example, formation of sub
goals, search space limitation, visualization), creatively plan a solution strategy
and constantly check this strategy for meaningfulness during execution. In addi-
tion, escape games are well-suited as their playful adventure character helps to
keep the motivation of the participants high and to mask any negative attitudes
to problem solving that may exist. Possibly the contained problem solving will
not even be perceived as such.

Group Effects. In addition to the usual hurdles of a problem solver, accord-
ing to Rosenstiel [11] team interaction creates various additional obstacles. For
example, the so-called group think may play a role. The opinion of the majority
then becomes the binding factor and deviating ideas are suppressed. A further
influence is possible through the effect that a very talkative person might have
on the group. The latter is granted a higher influence on group decisions. He
or she may therefore consciously or unconsciously lead the group, as long as he
is not recognized as a “busybody”. Furthermore, the decision-making quality
does not increase proportionally with the size of the group. On the contrary, it
even decreases with group sizes of ten or more participants due to constraints
in communication and interaction. [11] Even though Room-X does not allow for
more than six participants, the group effect may affect the result. There are
also known negative group effects when the team cohesion is disturbed. The
individual may then not exhaust his full potential but rather orient himself
towards the maximum performance of the group. He or she does not want to be
the only one, who works, if the others do not participate. Nobody really feels
responsible and certain team members may choose not to work at all and still
profit from the work of the others. However, the group also has positive effects.

286 A. Hacke

Usually there is communication, i.e. the observation of the processes is sim-
plified, which is essential to gain knowledge about problem solving situations.
In groups, the participants are usually less inhibited and motivation is higher.
Also, the performance of the individual participants can be increased by the
team feeling.

4 Room-X: An Escape Game for Computer Science
Lessons

The escape game Room-X was set up at our university to give students in a
limited time frame a motivating insight into various topics of computer science
and to promote the institute of computer science. In this context, groups of
students who would like to play the game come to visit us regularly. This gives
us the opportunity to observe them while solving problems. Their mission is
to spy on the tasks of the next computer science exam, which is stored on a
password-protected tablet in the classroom of Mr. Schroeder. The exam must be
photographed, otherwise the mission is not completely fulfilled and is considered
as failed. The password can be found using the items in the room. In addition,
the teacher has activated the alarm system of the classroom door. In order to
escape unnoticed, the team must find out the numerical code of the key vault
containing the remote control of the alarm system. The team in Room-X is
monitored throughout the session by a camera inside the room, so they can
be helped if necessary by the game supervisor passing tips into the room. The
game lasts 60 min. When the time expires, the alarm system triggers. Opening
the door prematurely also triggers the alarm system and leads to disqualification
and abortion of the mission. First, the team get all the information about the
scenario, the processes and the rules of Room-X in a separate room. The use
of the whiteboard and notepads and pens in the room is explicitly permitted.
The teams are advised that the game supervisor can contact people in the room
during the game. Then the team is led into Room-X, the timer is started, the
door is closed and the alarm system is activated. By recognizing and solving
characteristic CS tasks and skillfully combining the clues found, it is finally
possible to unlock the tablet, open the key vault and deactivate the alarm system.
The team members then have the opportunity to discuss their experiences with
each other and to learn backgrounds and solutions to the individual puzzles in
the room.

In order to prevent the dissemination of the solution for the room, only a
rough description of the puzzles is given here:

– The tablet is secured with a password and has a sticky note on it with the
words “PW: Holidays! (HexHex)” → What’s that supposed to mean?

– On the wall is a piece of paper with a cryptic message: “zpcyidyqr rmbyw
dccjq jgic y pmai gl kw qrmkyaf.” → What does that mean?

– On the teacher’s desk there is an SD card with the inscription SECRET. If
you insert it into a digital camera lying around, you will see photos of different

Computer Science Problem Solving in the Escape Game “Room-X” 287

objects (for example, a huge device with the inscription Z3 and a strangely
colored map) → Are there any decisive hints in the pictures?

5 Room-X and Computer Science Problem Solving

Aiming at observing the students’ approach to solving computer science prob-
lems in Room-X, it will first be examined to what extent the game demands or
requires computer science problem solving. For this purpose, the room with its
associated tasks and puzzles is analyzed below with reference to the definitions
and thinking skills mentioned above. In a subsequent video analysis, the strate-
gies of the participants are identified and analyzed with regard to the properties
that lead to success to derive conclusions for fostering problem-solving strategies.

5.1 Description of Problem and Problem Solving in Room-X

The starting situation faced by the participants corresponds to a simple prob-
lem according to the above-mentioned problem definition, because the following
characteristics can be found: At the beginning of the game the team is in the
initial state, which consists of the room with its hidden clues and the hints given
by the game supervisor. The group cannot easily proceed to the target state,
because of various obstacles (door code, tablet password). The surrounding con-
ditions do not change during the search in the problem space, if time pressure is
disregarded. Also, the number of variables that must be handled in the course
of the game is manageable and the inter-dependencies between them are low.
Accordingly, the problem is not part of the complex category. Examining the
path through Room-X reveals that it includes many elements that only need
lower-order thinking skills. That is, there are a number of tasks to be solved
in the room. For the most part it is not possible to establish the connection
between the tasks, or to recognize what the solution of a task might be good for
in order to progress in the game. This has less to do with the complexity of the
strategy to be found than with the fact that the proposed solution is in some
places too artificial. Connections do not always follow a recognizable pattern
and are thus not predictable. So, the way to the target state often requires brute
force, teamwork and luck.

5.2 Computer Science in Room-X

The problem to be solved in Room-X is not computer scientific in itself. How-
ever, the path through the problem space contains a number of tasks of a com-
puter science nature. The individual tasks on the topics of encryption, logic and
automata theory require computer-scientific and general sub-strategies for prob-
lem solving, such as following a path, reproducing algorithms, representation
and recognition of a model, verification and purposeful combination of results
as well as continuous documentation. Room-X therefore does not contain an
overarching CS problem-solving strategy, but sufficient sub-strategies in order
to allow conclusions to be drawn as to how well the students are prepared for
CS problem solving.

288 A. Hacke

5.3 Applied Problem-Solving Strategies in Room-X

In a qualitative video analysis, we aim to examine whether the sub-strategies
mentioned above can be observed and whether an influence on the success of
problem solving can be derived. This raises the following questions for the video
analysis:

RQ1. What typical behavioral patterns can be observed during a problem-
solving process in Room-X?

RQ2. What impact do observed behavioral patterns have on success in problem
solving in Room-X?

Regarding the questions, the following assumptions can be deduced based on the
considerations and definitions in Sect. 2 as well as the properties of Room-X: It is
assumed that the teams will search the objects in the room for clues of all kinds.
The team will split up according to their preferences or prior knowledge accord-
ing to the tasks. They will try to solve the individual tasks, use the whiteboard
and notepads as a means of visualizing or representing the findings, communi-
cate with each other and evaluate findings in the team. It is assumed that the
following behavioral patterns lead to success: systematic search for clues, cor-
rect solution of the individual tasks, visualization and representation of the hints
and results, involvement of all team members and evaluation and combination
of hints and results.

5.4 Conducting the Video Analysis

For the video analysis, video material of 38 groups of five to six people each is
available, which corresponds to about 200 participants. The material is high-
definition video with sound from a surveillance camera on the ceiling of the
room. This monitoring is usually used by the game supervisor to control the
game. The video footage was examined for the participants’ success in problem
solving. The following behaviors were isolated in advance and operationalized
(deductive approach):

1. Correct solution of the individual tasks: One or more team members solve
one of the tasks and find a correct solution.

2. Involvement of all team members: All participants are focused on the problem,
that is, looking for clues, giving advice, helping others, solving tasks.

3. Systematic search for clues: The room is thoroughly examined for clues from
one end to the other, ideally independently by several people.

4. Visualization and representation of hints and results: The board or a notepad
is used to record intermediate results, hints, findings and questions as soon
as they are available.

5. Evaluation and combination of hints and results with each other: results are
mutually checked; they are related to each other verbally or in writing on the
whiteboard.

Computer Science Problem Solving in the Escape Game “Room-X” 289

Observed Behavioral Patterns. After qualitative evaluation of approx. 70%
of the video material, tendencies regarding the first question can be identified.
Every group begins by applying a brute-force heuristic strategy: all team mem-
bers swarm out, scatter in the room, leaf through books, etc. This corresponds to
the expected search of the objects in the room for clues. Speed and thoroughness
of this process vary greatly. The fast teams need about 13 min, the slow teams
up to 30 min (average: 19 min). During the search, various tasks are discovered
and usually immediately attempted to be solved. Tasks that seem too difficult
for one person are left behind or someone else is consulted. For example, this
happens when a conversion to another number system must be carried out. Find-
ing the correct solutions to the CS tasks varies from eight to 31 min (average:
18 min). There are also a number of teams that cannot solve all the tasks.

The whiteboard is used to document individual results. However, the doc-
umentation of found hints is often sparse and visualization is rare. Every now
and then hints get lost in the communication process of the team members and
then have to be rediscovered.

In addition, behavioral patterns become visible that suggest that individual
team members are demotivated, which means that sometimes there are partici-
pants who often look out of the window or stand around indifferently.

Promising Behavioral Patterns for Solving Problems. The assumptions
regarding promising behavioral patterns can also be largely confirmed by the
video material: Teams that use the whiteboard in a more structured fashion
are usually more successful. For example, dashes for the number of digits of
the password were written on the board, which can be seen as a meaningful
representation of a sub goal. Teams without recognizable structured sketches on
the whiteboard could still be successful, provided they still wrote down a lot
in their notepads or kept the results circulating verbally. There was little use
of computer scientific graphical aids, e.g. trees or graphs, but that was to be
expected. More successful teams also have at least two structured task solvers.
These do not jump from task to task but remain focused on one task and use
paper and pencil.

Group behavior. The analysis of the video material also revealed that teams
work very differently. There are teams whose members communicate a lot with
each other, those in which the members seem to be relatively indifferent, and
sometimes even teams that work destructively. Certainly, there are group effects
involved as described in Sect. 3. The following role types were identified during
the analysis: the leader (someone who distributes tasks to others), the coordinator
(someone who writes down intermediate results and ensures that information is
passed on, but does not distribute tasks), the loner (someone who works alone
on tasks for a longer period of time), the inactive (someone who is idle for a
longer period of time), the follower (someone who essentially only follows and
watches other team members), the worker (someone who gets to work and tries
to solve tasks) and the supporter (someone who, for example, assists a worker
and helps him to solve tasks). These types are not disjoint and there are also
role changes. Also, not all types are present in every team. It seems to be more
effective to have a coordinator rather than a leader on the team. In fact, at least

290 A. Hacke

five teams with a leader present could not finish the game successfully. On the
other hand, the fastest team is one with two coordinators. It can also be seen
that unsuccessful teams usually have one to five followers or inactive members.
Successful teams consist exclusively of coordinators, supporters and workers. It
can already be seen that behavior suggesting convergent or divergent thinking
is not tied to a specific role. The evaluation must still show whether a certain
way of thinking is more likely to belong to a certain role type or not.

Aspects Hampering Success. The game contains some wrong tracks, which
all in all lead quite effectively to the group losing sight of the essentials and
thus increase the problem space. In addition to these deliberate measures, there
were several other hurdles for the participants. An often-recurring phenomenon
is the lack of meaningful documentation of intermediate results and the lack
of communication within the team. As a result, interim results are lost and
it can happen that the notes on the whiteboard, which are mostly lacking any
explanation and are usually written by different team members, cause additional
confusion. In this regard, there is a tendency not to pursue all hints consistently.
More than half of the teams leave at least one discovered item unused for minutes
or do not use it thoroughly. Another point is the lack of evaluation of results.
Results that appear cryptic are accepted without cross-checking and lead to
avoidable errors for at least six teams. Furthermore, the CS tasks lead to failure
for approx. 20% of the teams. The reasons are manifold. There are at least two
teams that are unwilling to do the tasks. Several teams lack the basic knowledge,
which is why they need a very long time to familiarize themselves with the
matter. In addition, hints attached to the tasks are often ignored, which leads
to incorrect results.

6 Analysis of Behavioral Patterns in Room-X

Known behavioral patterns from research about problem solving (cf. [4]) appar-
ently also become visible in Room-X, as far as the ongoing evaluation of the
data shows.

Convergent and Divergent Thinking. Teams that are able to combine con-
vergent thinking with divergent thinking are more efficient. It also seems to be
helpful if there are team members who are focused on solving the computer sci-
ence tasks and those who are able to recombine the results with other details.
However, it is not very effective to switch frequently between the individual tasks.
(Data shows, that teams with more than two convergent thinkers are usually
successful. However, teams with a chaotic approach are usually unsuccessful.)

Convenience. Room-X is not a complex problem, but the presence of the team
members and the different puzzles require some mental work to keep the overview
and to recognize what the structure of the overall problem and its solution
looks like. It is therefore a matter of gaining “system knowledge”. Teams with
good coordination, communication and documentation have an advantage here
as described in Sect. 5.4, since the thinking capacities of the team members are
tied up in tasks and can only partially deal with the overall view.

Computer Science Problem Solving in the Escape Game “Room-X” 291

Overstraining. The cognitive system reacts to tasks that seem too complicated
by preferring other, simpler tasks, even if they seem less relevant or even when
the importance of the difficult task is recognized. This effect can also be observed
in Room-X. There are teams who postpone or ignore computer science tasks to
the end, but instead complete all simple search tasks very quickly. In Room-X
this is especially visible for teams with little CS background knowledge.

Protection of the Sense of Competence. It is also not uncommon to observe
actions in which participants ignore clues they have found if these did not fit
into the solution strategy they had devised. This effect apparently protects the
problem solver from getting into a feeling of inability to act if a hint does not fit
into the plan. Thus, the hint is rather put aside, than that it ruins the solution
plan.

7 Threats of Validity

As the video analysis is still in progress, there are shortcomings in the area of test
validity. The objectivity of implementation can be assumed since the situation as
an escape game has no direct test character and is carried out independently and
without the influence of the researcher. Due to the number of runs, effects that
can occur due to irregular external conditions are reduced. Evaluation and inter-
pretation still require analysis by at least one other person in order to achieve
a certain degree of objectivity. The same therefore also applies to the reliability
of the evaluation and interpretation of the video material. The operationalized
characteristics and behaviors must be made available to the second analyst as a
manual and interpreted according to fixed rules in order to achieve the highest
possible degree of validity.

8 Conclusion and Perspective

Room-X is an escape game with computer scientific tasks that requires gen-
eral problem-solving strategies. An advantage of the current concept is that no
prior knowledge of specific problem-solving procedures is required. Thus, it can
address a broad audience as it only expects skills most tenth-grade learners
already have. With regard to the individual tasks, it is advantageous that even
teams with little or no prior knowledge can be given a motivating insight into
ideas of computer science.

In order to be able to adjust the computer science content according to prior
knowledge and skills of the visiting groups, the development of interchangeable
modules is planned, which emphasize the usefulness of the computer scientific
ideas and the meaning of computer science methods.

First indications for the promotion of problem-solving skills can be derived
from the results of the video analysis. As for RQ1, many typical basic problem-
solving strategies such as systematic search, team collaboration, documentation

292 A. Hacke

could be observed as predicted. As for RQ2, the successful teams are more moti-
vated and determined and are better at documentation and communication.
They search more thoroughly and work on the tasks more concentrated. In short,
they work in a more structured way. In terms of documentation, the low ten-
dency of the teams towards structured representation is particularly noticeable.
The causes for this must therefore be examined more closely.

Ideally, problem solvers should use a cleverly chosen strategy to move pur-
posefully through the problem space. The video analysis showed, however, that
no planning phase takes place, but instead participants start with the search for
clues, since the current concept does not require a planning phase. In order to
strengthen the problem-solving aspect in the future, the current procedure must
be replaced. One possible approach is to examine computer science concepts in
terms of their structure and integrate them as a (sub) strategy.

References

1. Anderson, L.W., Krathwohl, D.R.: A Taxonomy for Learning, Teaching, and
Assessing: A Revision of Bloom’s Taxonomy of Educational Objectives. Longman,
New York (2001)

2. Arbeitskreis Bildungsstandards SII: Bildungsstandards Informatik für die Sekun-
darstufe II. Supplement to LOG IN 183/184 (2016)

3. Denning, P.J.: Great principles of computing. Commun. ACM 46(11), 15–20 (2003)
4. Dörner, D., Kreuzig, H.W., Reither, F., Stäudel, T.: Lohhausen: vom Umgang mit

Unbestimmtheit und Komplexität. Huber (1983)
5. Grillenberger, A.: Von Datenmanagement zu Data Literacy: Informatikdidaktische

Aufarbeitung des Gegenstandsbereichs Daten für den allgemeinbildenden Schulun-
terricht. Dissertation, Freie Universität Berlin (2019)

6. Humbert, L., Puhlmann, H.: Essential ingredients of literacy in informatics. In:
Magenheim, J., Schubert, S. (eds.) Informatics and Student Assessment - Concepts
of Empirical Research and Standardisation of Measurement in the Area of Didactics
of Informatics. LNI Seminars, vol. 1, pp. 65–76. GI, Bonn (2004)

7. International Society for Technology in Education (ISTE): Operational definition
of computational thinking for K-12 education (2011)

8. K-12 Computer Science Framework Steering Committee: K-12 Computer Science
Framework. Technical report, Association for Computing Machinery, Code.org,
Computer Science Teachers Association, Cyber Innovation Center, and National
Math and Science Initiative, New York, NY, USA (2016)

9. Müsseler, J., Rieger, M.: Allgemeine Psychologie, 3rd edn. Springer, Heidelberg
(2017). https://doi.org/10.1007/978-3-642-53898-8

10. Nicholson, S.: Creating engaging escape rooms for the classroom. Child. Educ.
94(1), 44–49 (2018)

11. Rosenstiel, L.: Grundlagen der Organisationspsychologie: Basiswissen und Anwen-
dungshinweise, 7th edn. Schäffer-Poeschel, Stuttgart (2011)

12. Schoenfeld, A.H.: Reflections on problem solving theory and practice. Math. Enthu-
siast 10(1), 9–34 (2013)

13. Schwill, A.: Fundamentale Ideen der Informatik. Zentralblatt für Didaktik der
Mathematik 25(1), 20–31 (1993)

14. Wing, J.M.: Computational thinking. Commun. ACM 49(3), 33–35 (2006)

https://doi.org/10.1007/978-3-642-53898-8

PrivaCity

A Chatbot Game to Raise Privacy Awareness
Among Teenagers

Erlend Berger, Torjus H. Sæthre, and Monica Divitini(&)

Department of Computer Science, Norwegian University of Science
and Technology, Trondheim, Norway

divitini@ntnu.no

Abstract. Privacy is a well-known concern connected to teenagers’ use of e.g.,
social media, mobile apps, and wearables. An increasing number of schools are
looking for ways to integrate this topic in their activities, as part of informatics
subjects or integrated in other subjects as part of basic digital competences. This
paper explores how chatbot serious games, i.e. games that evolves as a con-
versation between a player and a software agent, can be used as a tool to raise
privacy awareness. We present PrivaCity, a chatbot game to raise privacy
awareness in smart cities. Focus on smart cities is motivated by a predominant
focus in existing games on what to share and not to share on social networks.
Little is done to learn about the risks of the digital footprints, when data is
collected about the citizens across a multitude of devices, digital services, and
ubiquitous digital sensors. The paper presents the game design, implementation,
and evaluation.

Keywords: Chatbot games � Privacy awareness � Smart cities

1 Introduction

Privacy is an ever-growing concern. With the technological development and increase
in use of connected devices, data is being collected everywhere, leaving people una-
ware of what data they share, with whom and what it is used for. Teenagers are a user
group for which concerns are higher As a consequence, schools are looking for ways to
integrate this topic in their curriculum, as part of informatics subjects or integrated in
other subjects aiming at developing basic digital competences. For example, Stobert
et al. [22] present the development of curriculum modules related to authentication for
Swiss schools. An NSF-sponsored project between the International Computer Science
Institute and the University of California-Berkeley has developed an extensive set of
material for supporting teachers in addressing privacy in K-12 education1. Serious
games have recently emerged as a way to learn about sharing of personal data and
privacy in an engaging and evoking way. Just to mention a few examples of privacy
related serious games (hereafter simply games):

1 https://teachingprivacy.org/.

© Springer Nature Switzerland AG 2019
S. N. Pozdniakov and V. Dagienė (Eds.): ISSEP 2019, LNCS 11913, pp. 293–304, 2019.
https://doi.org/10.1007/978-3-030-33759-9_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33759-9_23&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33759-9_23&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33759-9_23&domain=pdf
https://teachingprivacy.org/
https://doi.org/10.1007/978-3-030-33759-9_23

– Friend Inspector, described in [5], aims to raise the privacy awareness of Social
Network Sites (SNS) users, like Facebook. The conceptual design of the game
focuses on the discrepancies between perceived and actual visibility of shared
items.

– Master F.I.N.D., described in [23], focuses on awareness about privacy risks in
SNSs. The game is a fake SNS to be played individually by teenagers.

– Google’s Interland [12] aims at educating children in four areas of internet security:
Cyber bullying, phishing, password creation and sharing awareness.

Within this line of research, we present PrivaCity, a chatbot game to increase
privacy awareness about Smart Cities, intended as a collection of vehicles, buildings
and other physical devices that exchange data with the same information grid, and use
this data to create safer, cleaner, more sustainable and efficient cities [16]. Focus on
Smart Cities is due to a predominant focus in existing games, and in general in the
available teaching material, on what to share and not to share on social networks. Little
is done to learn about the risks of the digital foot-prints left by simply using digital
services [25].

The research presented in this paper has an explorative nature, aiming at studying
how to promote privacy awareness using a chatbot narrative game, i.e. a game where
the player assumes the role of a protagonist in an interactive story driven by exploration
and puzzle-solving through a conversation with a chatbot, i.e. a software agent. In
particular, we aim at understanding which game elements promote learning and
engagement. It is important here to underline that the goal of the game is to promote
awareness. PrivaCity does not have the ambition to change the behavior of the players.
This would be a long-term endeavor, particularly challenging when it comes to privacy
[4]. PrivaCity is not a silver bullet, but rather aims at providing an additional tool to
teacher to help them discussing about privacy with their students in an engaging way.

In the next section, we present motivations and background information, justifying
the choice of a chatbot game and the conceptualization of privacy in the game. We then
present the design of PrivaCity and its evaluation with teenagers in 5 different schools.

2 Background

Privacy is a complex concept that has evolved throughout the years, mostly responding
to emerging challenges connected to an increasingly digitalized world [9]. Early
conceptualizations of privacy explain privacy as control [24], mainly connecting it to
the capability of controlling the flow and use of personal data. Especially relevant for
serious games is the concept of contextual integrity [18], which is frequently used to
understand privacy concerns related to voluntary sharing of information. Contextual
integrity is about respecting the social norms of the situation. In this perspective,
privacy concerns arise when the information is shared outside its context. Another
interesting concept related to privacy is the privacy calculus [14]. In this perspective,
the user weighs the risks and benefits of a decision, for instance whether or not to share
a photo or current geo-location. Therefore, the decision to share information or not
becomes a matter of weighing the trade-offs.

294 E. Berger et al.

PrivaCity looks at privacy in terms of Contextual Integrity and Privacy Calculus.
The decisions of the player can be seen as a result of the privacy calculus, whereas
whether the privacy of the user has been violated or not can be viewed in the light of
the concept of Contextual Integrity. In this perspective, the game refuses an over-
simplifying classification of right or wrong behaviors, but rather aims at raising the
awareness of teenagers of potential risks and consequences of their actions and the need
to reflect carefully before taking any decision. To achieve this learning objective, a
chatbot game seems a promising approach since it allows to involve the player with a
conversational agent that can support reflection and privacy calculus.

Chatbot serious games have recently grown in popularity. For example, CiboPo-
liBot [11] is an educational chatbot game specialized in teaching children about a
healthy lifestyle. CuCoMag [19] is designed for the training of customer complaint
management in electronic shops. Communicate! [13] is a serious game for practicing
communication skills for healthcare professionals, such as doctors or psychologists.
While in the mentioned examples the game itself is a chatbot, other games integrate
chatbots as non-playable characters to improve the playing experience. For example, in
Solis Curse [17] the chatbot plays the role of a narrator. In general, a chatbot can be
accessed on multiple channels on several platforms, without restricting the player.
Chatbots have a very simple User Interface [11]. Advances in Natural Language
Processing, machine learning and big data have contributed to making chatbots better
and easier to develop [15], without requiring the high cost of developing the graphics
of more traditional video games. This simplicity is not paid in terms of learning since a
number of studies, see e.g. [20], have shown that players do not require audio-visually
rich games to be effective learning tools.

3 PrivaCity Game Design

PrivaCity is a chatbot serious game for teenagers. The progression of the game is
mainly conversationally driven, only including a limited number of buttons and lists to
guide the player. The game can be played in a web-browser. The game requires the
player to have a persistent Internet connection. Expected time to complete the game is
20–45 min. The conversation is in English.

The game is an adventure game, i.e. a game where the player assumes an active role
in an interactive story driven by exploration and puzzle-solving [23]. The adventure
genre is one of the most common types of serious games and has been studied to a great
extent [8]. The choice of an adventure game was grounded in a series of co-design
workshops to understand the type of privacy games interesting for the target group [3].

The game takes place in a fictional city Metropolis, that has been a smart city for a
few years. A lot of information is being collected to improve the environment, safety,
and economy of the city. However, a new party, E.N.D. Privacy, gets control of the city
and might try to mis-use the collected information, not respecting the privacy of
Metropolis’ citizens. The player is challenged with helping to solve the situation. The
general idea is that at the beginning of the game the player will be presented with the
positive sides of a smart city. As the game progresses, more and more privacy issues

PrivaCity 295

and concerns emerge. After having seen both positive and negative sides of a smart
city, the player puts his knowledge to use in quizzes and in the conversation.

The player advances the story by completing levels. Each level is located in a
different area, starting from a hotel room (where the player gets the context) to the
server room (Level 6). At Level 4, the player can choose between two paths (Fig. 1),
either to try to sneak into the server room (Level 4.1) or to infiltrate the organization by
getting employed (Level 4.2).

Both paths, when completed successfully, take the player to the server room. Here
the player can weigh risks and benefits of data sharing and decide whether to destroy
the server or leave it untouched (Fig. 2). At the end of the game, the player receives a
short summary of the game session to promote reflection (Level Sum).

Fig. 1. Choosing between the infiltration or the sneaky path

Fig. 2. Reflecting on the final decision, destroying or keeping the server

296 E. Berger et al.

At the beginning of the game (Level 0), while in its hotel room, the player is
presented with the positive sides of a smart city. As the game progresses, more and
more privacy issues and concerns are introduced. The main learning goal of the first
level is to give a basic introduction to the topic of smart cities. Basic concepts include
how a smart city works, as well as how data is gathered and used. Additionally, the
player should learn how the smart city can benefit society with improved efficiency,
environment, safety and economy. This level also plays an important role in letting the
player familiarize with game mechanics, learning how to control the player and interact
with objects using the chat only.

In the Hallway (Level 1), the player is made aware of possible problems with smart
cities. A secondary learning goal of this level is to teach the player that privacy is often
a trade-off, and that one sometimes pays with personal information to receive a reward -
such as a monetary reward for sharing location for the rest of the day. Level 2 (the hotel
lobby), has the same learning objective and the knowledge of the player is tested with a
quiz on privacy. Some questions are general, e.g. Do all mobile apps have access to
your position? Others are more specific to smart cities, e.g. How is data collected in a
smart city?

When moving to Level 3, a cafe’ of the city, the player is made aware about how
information in a smart city can be abused by the people with access to it. Additionally,
that information collected for one purpose can later be (ab)used for another purpose.
The player can also learn about the Facebook and Cambridge Analytica scandal by
overhearing the conversation on another table.

At this point the player can choose between two paths. If he decides to break into the
server room (Level 4.1), the player is presented with more information about the dan-
gerous misuse of smart city personal data, in form of a quiz based on real-life examples
and scenarios. For example, the player has to evaluate if smart street lights that adjusts to
natural lighting and people nearby might represent a privacy violation. This level is then
followed by a level that is mainly focusing on fun rather than learning.

If the player decides to infiltrate the organization by getting employed (Level 5.1),
he is pushed to see things from an attacker perspective and imagine ways that personal
information from a smart city can be used. In this way, the game is designed to make
the player more aware of privacy trade-offs and understand better the value of the
information. At Level 5.2, after being employed, by gaining access to a lot of personal
information of the citizens through the audio recordings, the player will get a sense of
what information is too personal to be shared online.

Level 6 is the final level, and common for the two paths, aims at underlining the
complexity of privacy related decisions. The goal of the player for the majority of the
game has been to destroy the data server. However, when the player actually reaches
the goal he is once again presented with the positive sides of a smart city, and all the
good things collection of information can be used for - for example reduce environ-
mental impact, improve traffic and even for counter-terrorism. As in real life, this is a
privacy decision with trade-offs that needs to be carefully considered.

Table 1 presents an overview of the game elements used at the different levels.
Some of the learning elements are consistently present in most levels of the game, such
as Provide Information. Others are only present in some of the levels, such as using a
Real Life Scenario.

PrivaCity 297

Table 2 summarizes the game elements used to engage the player. The novelty of
interacting with a chatbot is an engagement element that is persistent throughout the
game, though likely most effective in the earlier levels of the game and more effective if
the player has little experience with chatbots. One of the main ways to engage players
in the game is curiosity to explore each level as well as progressing with the narrative.
Curiosity is a typical intrinsic motivation [7]. To increase extrinsic motivation, Pri-
vaCity also uses rewards and points for answering quizzes correctly. To promote flow,
it is important to balance the difficulty of the task with the ability of the player [6]. For
this reason, in the initial levels, when the ability of the player is low, the difficulty to
complete the level is low. The player also receives more hints. As the game progresses,
the difficulty increases.

Consequential play, i.e. seeing the consequences of own’s actions in the game, is an
element that is used to promote both learning and engagement.

Table 1. Game elements to promote learning in each level of the game

Level Provide
info

Consequential
play

Repetition Quiz Emotions
points

Attacker
POV

Real
scenario

After-
action
report

0 X
1 X X
2 X X X X X
3 X X X
4.1 X X X X
4.2 X X
5.1 X X X
5.2 X X X X X
6 X X X
Sum X X

Table 2. Game elements to promote engagement in each level of the game

Level Chatbot
novelty

Curiosity Reward Points Consequential
play

Funny Role-
play

Character

0 X X
1 X X X X
2 X X X X X X
3 X X X X X
4.1 X X X
4.2 X
5.1 X X X
5.2 X X X X
6 X

298 E. Berger et al.

PrivaCity was developed using Microsoft Bot Framework and Microsoft LUIS2 for
language understanding; Facebook Messenger and Web-Chat as chat-platforms. Fig-
ure 3 provides an overview of the system architecture.

4 Evaluation

A first pilot evaluation of the game was conducted to evaluate the usability of the game
and to discover unwanted game behavior, where the game does not respond, freezes,
crashes, or provides the wrong response. Running a pilot test helped evaluating which
utterances the bot interprets correctly or utterances that are not yet covered by the game
and subsequently train the bot. After this first pilot, outside the scope of this paper,
PrivaCity was evaluated with teenagers in 5 classes (Table 3).

With this evaluation we want to evaluate if the game indeed promotes awareness of
privacy issues in a smart city. More specifically, we aim to evaluate the game in terms
of learning and engagement, understanding how different game elements in the game
design are perceived by the players.

Fig. 3. System architecture

Table 3. Overview of participants in the evaluation

Class Time allowed No. players No. finishers Age

A 51 min 30 21 13–14
B 29 min 18 12 16–17
C 25 min 15 2 18–19
D 36 min 25 22 16–17
F 46 min 16 13 14–15

2 For more information on Microsoft Bot Framework see https://dev.botframework.com/ and for
Microsoft LUIS https://www.luis.ai/home.

PrivaCity 299

https://dev.botframework.com/
https://www.luis.ai/home

The evaluation was conducted as part of regular school activities, administered
individually by the teachers. The teachers were recruited via e-mail. 4 teachers par-
ticipated in the evaluation of the game with a total of 104 students, non-native English
speakers. (Class C and D had the same teacher.) The classes B, C, and D are from
upper secondary schools; A and F from lower secondary schools. The authors were not
present during testing but monitored the server logs in case of technical problems.
A questionnaire was designed to collect data from students (on a Likert scale 1–5).
Some feedbacks from the teachers were also collected via email. The students were
given the URL to the game by their teacher, played individually on their own device,
and as they reached the final level of the game, they were given a unique ID and a link
to the questionnaire. Playing the game was a mandatory classroom activity but
answering the questionnaire was voluntary. No sensitive personal data was collected.

Out of the 104 participants, 70 finished the game reaching the final level and 45 of
the ones who completed also answered the questionnaire. The low numbers are not
completely unexpected. As the game was played individually, it was not possible for
the researchers or the teachers to have control on what students were actually doing.
Also, it should be noted that in Class C only 2 students completed the game. This was
mainly due to some difficulties connected to playing the game on mobile phones.
Though it is possible to play, the experience is not optimal. For none of the other
players we detected any error or system crash, except for one of the students who made
his game session freeze by interrupting the chatbot too many times.

Out of the two paths, 33 participants chose to play the sneaky path, and 37 played
infiltration (out of the 70 participants who finished the game). For the sneaky path of
the game, based on the questionnaire’s results, there is a gradual increase of perceived
difficulty as the game progresses, whereas for the infiltration path the difficulty is
constantly around 2 (Easy) to 3 (Medium). Regarding fun, the levels consistently
scored between 3 (Medium) and 4 (Fun). There is little difference in the entertainment
of the two paths of the game, but sneaky scores slightly higher.

To evaluate if the game raises privacy awareness, the questionnaire included three
5-point scale agreement questions Fig. 4.

Fig. 4. Privacy awareness, lower versus upper secondary school

300 E. Berger et al.

Respondents reported a higher agreement on the questions regarding learning
outcome and raised awareness, as compared to whether they would change their
behavior. This is consistent with multiple studies that discuss the difficulties of
achieving behavioral change with a serious game, e.g. [4, 23]. When studying the data
grouped by educational stage, there is a significant difference across all three state-
ments, with students from upper secondary schools scoring between 0.5 (p = 0.2360)
and 1.1 (p = 0,0133) points higher.

It is also interesting to note that players spending more time playing video games
report significantly lower scores on all three questions in comparison to players with
little video game time per week (Fig. 5).

One possible reason for this outcome might be that gamers bring different expec-
tations to the game. One participant with 20+ h/week, the one who managed to freeze
the game session, commented that the game “still had a few bugs to iron out” and
provided suggestions to improve the game experience. In comparison, another par-
ticipant with 0–1 h/week stated that PrivaCity was a “great game, made me think about
how much information the companies Facebook, Snapchat and others know about me
and how they can use it”. This feedback is very different from that of the gamer,
focusing more on the educational part of the game. This is in line with similar results
reported in the literature [11].

The participants were asked to identify the game elements they believe to have
helped raise their privacy awareness, with multiple answers allowed (Fig. 6). Quiz is
the game element scoring highest. The general idea behind a quiz works well in a
chatbot game, where the dialog goes back and forth between the bot asking questions,
the player responding, and the bot revealing the correct answer. However, as emerged
during the pilot test, it is important to provide an explanation for the answer, even when
the player answers correctly. The second most popular learning element is Real life
examples. This can be combined with the quiz game element, where when explaining
the correct answer, one can use an example from real life. Seeing consequences of
actions was also perceived as a good way to learn and raise awareness. It is however
very important that the player actually gets to see how actions impact the game, which

Fig. 5. Privacy awareness grouped by hours spent playing video games per week.

PrivaCity 301

is the foundation for Consequential Play [2]. Additional research and evaluation are
needed to understand how to design the other elements to exploit more their learning
potential.

When relating the perceived fun of the game levels with the engagement mecha-
nisms used at that level, the levels relying on curiosity seem to be more entertaining
than the ones based on extrinsic motivation (rewards, points, etc.). Seeing conse-
quences of actions, which many of the players rated to work well as a learning element,
is also a good way to engage the player.

Regarding difficulty, the most difficult level of the game, Level 4.2, is also con-
sidered the most entertaining one. This might indicate that increasing the overall dif-
ficulty of the game will increase the entertainment value. While an overall increased
difficulty of the game might make it more entertaining, the observations from the
teachers who were present during the testing indicate that the game was more than
challenging enough for some of the students. Therefore, an increased difficulty would
probably have led to even fewer students being able to finish the game.

5 Conclusions

The paper presented PrivaCity, a chatbot serious game to promote privacy awareness
among teenagers about data sharing in smart cities. The game is a short adventure game
where players have to prevent that a malicious organization misuses the data that is
collected to provide services to the city’s inhabitants. The game aims at promoting
awareness about the tradeoffs that are involved in data collection for digital services
and make players more aware of the consequences of their choices. The game was
evaluated with teenagers of 5 school classes, pointing out strengths and limitations. On
the overall, the evaluation was positive. Players reported that their awareness has
increased, both in general about privacy and specifically about privacy in smart cities.
However, their intention to change behavior was rather low. This is not surprising and

Fig. 6. Evaluation of learning elements

302 E. Berger et al.

calls for a holistic approach to privacy teaching, where the game is seen as one of the
tools for a continuous discussion and engagement. This is an approach similar to the
one of Google Interland, where the game is used to motivate and interest students,
while additional learning material is provided for deepening the understanding of
relevant issues. It should also be noted that the results are higher for upper secondary
schools. This requires further investigation, but we expect this to be connected to the
complexity of the topic and the use of a foreign language for interaction. Students who
play less video games also reported higher raised awareness from playing the game.
This might imply that the simple text-based interaction becomes boring for experienced
gamers. This is another element that requires further investigation.

An important element to promote engagement as well as learning proved to be
consequential play. Players enjoyed feeling like they shape the narrative of the game.
They also evaluated this to be a successful way to learn about how actions have
consequences. This game element may be especially relevant in a serious game trying
to raise awareness that all privacy decisions are a trade-off and that choices have
consequences for future privacy.

Quizzes also were evaluated as a good game element for promoting learning. In our
design experience, the chatbot should provide a brief explanation of the answer, even
when it is correct. The explanations that contained real-life examples were considered
successful. Even though quiz is a good game element to raise the awareness of the
player, we don’t believe an entire game based on a quiz is a good idea for a chatbot
serious game. That would become too repetitive, and thus quiz is much better suited as
a game element in a bigger adventure game.

As part of our future work we aim at conducting a more detailed evaluation of the
game, including observations and post-game interviews. We also plan to extend the
game using the concept of nudging [1] to research how different ways of presenting
information and path choices might influence players.

Acknowledgements. The research is co-funded by the NFR IKTPLUSS project ALerT,
#270969. We thank the students and teachers who joined the evaluation.

References

1. Acquisti, A., et al.: Nudges for privacy and security. ACM Comput. Survey 50(3), 1–41
(2017)

2. Barab, S.A., Gresalfi, M., Ingram-Goble, A.: Transformational play: using games to position
person, content, and context. Educ. Res. 39(7), 525–536 (2010)

3. Bergen, E., Solberg, D.F., Sæthre, T.H., Divitini, M.: Supporting the co-design of games for
privacy awareness. In: Auer, M.E., Tsiatsos, T. (eds.) ICL 2018. AISC, vol. 916, pp. 888–
899. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-11932-4_82

4. Blythe, J.M., Coventry, L.: Cyber security games: a new line of risk. In: Herrlich, M.,
Malaka, R., Masuch, M. (eds.) ICEC 2012. LNCS, vol. 7522, pp. 600–603. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-33542-6_80

5. Cetto, A., Netter, M., Pernul, G., Richthammer, C., Riesner, M., Roth, C., Sänger, J.: Friend
Inspector: A Serious Game to Enhance Privacy Awareness in Social Networks (2014)

6. Chen, J.: Flow in games (and everything else). Commun. ACM 50(4), 31–34 (2007)

PrivaCity 303

http://dx.doi.org/10.1007/978-3-030-11932-4_82
http://dx.doi.org/10.1007/978-3-642-33542-6_80

7. Cherry, K.: Extrinsic vs. Intrinsic Motivation: What’s the Difference? Very well Mind
(2019). https://www.verywellmind.com/differences-between-extrinsic-and-intrinsic-motivat
ion-2795384. Accessed Aug 2019

8. Connolly, T.M., et al.: A systematic literature review of empirical evidence on computer
games and serious games. Comput. Educ. 59(2), 661–686 (2012)

9. Crabtree, A., Tolmie, P., Knight, W.: Repacking ‘Privacy’ for a networked world. Comput.
Support. Coop. Work. (CSCW) 26(4-6), 453–488 (2017)

10. Dickey, M.D.: Murder on Grimm Isle: the impact of game narrative design in an educational
game-based learning environment. Br. J. Educ. Technol. 42(3), 456–469 (2011)

11. Fadhil, A., Villafiorita, A.: An adaptive learning with gamification & conversational UIs: the
rise of CiboPoliBot. In: Adjunct Publication of UMAP 2017, pp. 408–412. ACM (2017)

12. Interland - Be Internet Awesome. https://beinternetawesome.withgoogle.com/. Accessed
Aug 2019

13. Jeuring, J., et al.: Communicate! — a serious game for communication skills —. In: Conole,
G., Klobučar, T., Rensing, C., Konert, J., Lavoué, É. (eds.) EC-TEL 2015. LNCS, vol. 9307,
pp. 513–517. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24258-3_49

14. Laufer, R.S., Wolfe, M.: Privacy as a concept and a social issue: a multidimensional
developmental theory. J. Soc. Issues 33(3), 22–42 (1977)

15. Lebeuf, C., Storey, M.A., Zagalsky, A.: Software bots. IEEE Soft. 35(1), 18–23 (2018).
ISSN: 0740-7459

16. McLaren, D., Agyeman, J.: Sharing Cities: A Case for Truly Smart and Sustainable Cities.
Urban and Industrial Environments. MIT Press, Cambridge (2015)

17. Neto, J.N., et al.: Solis’Curse - a cultural heritage game using voice interaction with a virtual
agent. In: 2011 Third International Conference on Games and Virtual Worlds for Serious
Applications, pp. 164–167 (2011)

18. Nissenbaum, H.: Privacy in Context: Technology, Policy, and the Integrity of Social Life.
Stanford University Press, Stanford (2009)

19. Othlinghaus, J., Hoppe, H.U.: Supporting group reflection in a virtual role-playing
environment. In: Poppe, R., Meyer, J.-J., Veltkamp, R., Dastani, M. (eds.) INTETAIN 2016
2016. LNICST, vol. 178, pp. 292–298. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-49616-0_30

20. Ravyse, W.S., et al.: Success factors for serious games to enhance learning: a systematic
review. Virtual Real. 21(1), 31–58 (2017)

21. Rollings, A., Adams, E.: Andrew Rollings and Ernest Adams on Game Design. NRG Series.
New Riders, Indianapolis (2003)

22. Stobert, E., et al.: Teaching authentication as a life skill. IEEE Secur. Priv. 16(5), 82–85
(2018). https://doi.org/10.1109/MSP.2018.3761712

23. Vanderhoven, E., Schellens, T., Valcke, M.: Educating Teens about the risks on social
network sites. Huelva 22(43), 123–131 (2014)

24. Westin, A.F.: Privacy and freedom. Wash. Lee Law Rev. 25(1), 166 (1968)
25. van Zoonen, L.: Privacy concerns in smart cities. Gov. Inf. Q. 33(3), 472–480 (2016). Open

and Smart Governments: Strategies, Tools, and Experiences

304 E. Berger et al.

https://www.verywellmind.com/differences-between-extrinsic-and-intrinsic-motivation-2795384
https://www.verywellmind.com/differences-between-extrinsic-and-intrinsic-motivation-2795384
https://beinternetawesome.withgoogle.com/
http://dx.doi.org/10.1007/978-3-319-24258-3_49
http://dx.doi.org/10.1007/978-3-319-49616-0_30
http://dx.doi.org/10.1007/978-3-319-49616-0_30
http://dx.doi.org/10.1109/MSP.2018.3761712

Correction to: Introducing Informatics
in Primary Education: Curriculum

and Teachers’ Perspectives

Valentina Dagienė , Tatjana Jevsikova ,
and Gabrielė Stupurienė

Correction to:
Chapter “Introducing Informatics in Primary Education:
Curriculum and Teachers’ Perspectives” in: S. N. Pozdniakov
and V. Dagienė (Eds.): Informatics in Schools, LNCS 11913,
https://doi.org/10.1007/978-3-030-33759-9_7

In the original version of this paper the affiliation was correct only for the author
Valentina Dagienė. For authors Tatjana Jevsikova and Gabrielė Stupurienė affiliation
has been corrected to:

Vilnius University Institute of Data Science and Digital Technologies, Vilnius,
Lithuania.

The updated version of this chapter can be found at
https://doi.org/10.1007/978-3-030-33759-9_7

© Springer Nature Switzerland AG 2019
S. N. Pozdniakov and V. Dagienė (Eds.): ISSEP 2019, LNCS 11913, p. C1, 2019.
https://doi.org/10.1007/978-3-030-33759-9_24

http://orcid.org/0000-0002-3955-4751
http://orcid.org/0000-0002-6253-7941
http://orcid.org/0000-0001-5577-1054
http://dx.doi.org/10.1007/978-3-030-33759-9_7
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33759-9_24&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33759-9_24&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33759-9_24&domain=pdf
http://dx.doi.org/10.1007/978-3-030-33759-9_7
https://doi.org/10.1007/978-3-030-33759-9_24

Author Index

Abonyi-Tóth, Andor 189

Barendsen, Erik 41, 95
Bellettini, Carlo 225
Bennett, Shirley 210
Berger, Erlend 293
Brinkmeier, Michael 136, 175
Brodnik, Andrej 3
Budinská, Lucia 256

Corradini, Isabella 53
Cui, Haiping 210

Dagienė, Valentina 41, 83
Datzko, Christian 240
Divitini, Monica 268, 293
Dolgopolovas, Vladimiras 41

Faber, Hylke H. 95

Grillenberger, Andreas 147
Guniš, Ján 68

Hacke, Alexander 281
Hazzan, Orit 28

Jasutė, Eglė 41
Jevsikova, Tatjana 83

Kemper, Jascha 175
Kikkas, Kaido 159
Koning, Josina I. 95

Laugasson, Edmund 159
Lindner, Annabel 123
Lokar, Matija 3

Lonati, Violetta 225
Lorenz, Birgy 159

Mayerová, Karolína 256
Menta, Renato 107
Mirolo, Claudio 15
Monga, Mattia 225
Morpurgo, Anna 225

Nardelli, Enrico 53
Noa, Ragonis 28

Opoku Agyeman, Michael 210
Ossovski, Elisaweta 136

Palazzolo, Martina 225
Pears, Arnold 41
Pedrocchi, Serena 107
Pluhár, Zsuzsa 189, 200

Romeike, Ralf 123, 147

Sæthre, Torjus H. 293
Saxegaard, Evelyn 268
Scapin, Emanuele 15
Seegerer, Stefan 123
Šnajder, Ľubomír 68
Sõmer, Tiia 159
Staub, Jacqueline 107
Steenbeek, Henderien W. 95
Stupurienė, Gabrielė 83

Tkáčová, Zuzana 68
Torma, Hajnalka 200

Weibel, Dominic 107
Wierdsma, Menno D. M. 95

	Preface
	Organization
	Contents
	Teacher Education in Informatics
	Empowering the Teachers with the NAPOJ - A Grassroots Movement Towards Computing Teachers Community of Practice
	1 Introduction
	2 Learning Communities
	3 NAPOJ Project
	3.1 Goals
	3.2 Master Teachers
	3.3 Materials and Tools

	4 NAPOJ2
	4.1 Goals
	4.2 Activities

	5 NAPOJ3
	5.1 Goals
	5.2 Activities

	6 Conclusion
	References

	An Exploration of Teachers' Perspective About the Learning of Iteration-Control Constructs
	1 Introduction
	2 Background
	3 Methodology
	3.1 Instruments
	3.2 Data Collection

	4 Results
	5 Discussion
	6 Conclusions
	References

	What Are Computer Science Educators Interested In? The Case of SIGCSE Conferences
	Abstract
	1 Introduction
	2 Research Background
	3 Research Framework
	3.1 Research Objective
	3.2 Research Questions
	3.3 Data Collected
	3.4 Data Analysis

	4 Findings: Trends in CSE
	4.1 Content Categorization
	4.2 Keyword Categorization

	5 Discussion
	References

	Holistic STEAM Education Through Computational Thinking: A Perspective on Training Future Teachers
	1 Introduction
	2 Computational Thinking as an Integrating Skill
	2.1 Research Perspective
	2.2 Scientific Literacy
	2.3 STEAM Integration

	3 An Integrated CT Curriculum for Teacher Education
	3.1 Content
	3.2 Pedagogical Approaches

	4 Project: Developing Teacher Education on CT in STEAM
	4.1 Objectives
	4.2 Design Principles
	4.3 Methodology
	4.4 Module Structure

	5 Implications
	6 Summary
	References

	Informatics Education in School: A Multi-Year Large-Scale Study on Female Participation and Teachers' Beliefs
	1 Introduction
	2 Related Work
	3 Methods
	3.1 Context
	3.2 Questionnaires
	3.3 Population and Sample Demographics

	4 Results and Discussion
	4.1 Aggregated Data
	4.2 Disaggregated Data

	5 Conclusions
	References

	Inquiry-Based Learning in Computer Science Classroom
	1 Introduction
	2 Methodology
	3 Results
	3.1 Theoretical Background, Sources of Information on IBL
	3.2 Individual Perception of Benefits/Barriers and Personal Identification of the Teacher with IBL
	3.3 Individual Interest and Practical Experience with Teaching IBL and Creating Own Educational IBL Materials
	3.4 Usability of IBL in Computer Science Classrooms
	3.5 Factor Analysis

	4 Discussion and Conclusions
	A Correlation matrix (Pearson(n))
	References

	Primary Education in Informatics
	Introducing Informatics in Primary Education: Curriculum and Teachers’ Perspectives
	Abstract
	1 Introduction
	2 Informatics in Primary Education
	2.1 Research Methodology and Respondents
	2.2 Study Results and Discussion

	3 Informatics Curriculum for Primary Education: Prospective Framework in Lithuania
	4 Primary School Teachers Readiness for Informatics Curriculum Implementation
	4.1 Research Methodology and Respondents
	4.2 Results and Discussion

	5 Discussion and Conclusion
	Acknowledgement
	References

	Observing Abstraction in Young Children Solving Algorithmic Tasks
	1 Introduction
	2 Background
	2.1 Layers of Abstraction
	2.2 Research Question

	3 Method
	3.1 Educational Design
	3.2 Data Collection
	3.3 Data Analysis

	4 Results
	5 Conclusion and Discussion
	5.1 Cubetto
	5.2 Layers of Abstraction

	References

	Implementing a Reverse Debugger for Logo
	1 Introduction
	1.1 Making Mistakes: A Matter of Attitude
	1.2 The Rift Between Expectation and Outcome
	1.3 Semantic Errors vs. Syntactic Errors

	2 Background
	2.1 Debugging: A Glimpse Back in History
	2.2 Debugging in Novice Programming Environments

	3 Typical Challenges When Learning to Program
	3.1 Sequences of Commands
	3.2 Repetition
	3.3 Modular Program Design

	4 What Natural Coping Strategies Do Novices Use?
	4.1 Setup
	4.2 Problem Decomposition: There Is No Single Correct Solution
	4.3 Not Only Beginners Face Semantic Problems
	4.4 Discussion – Challenges in Tracing

	5 Implementing a Reverse Debugger for Logo
	5.1 Logo's Language Constructs
	5.2 Execution: From Raw Text to Visual Output
	5.3 Single Stepping: Understanding Program Execution
	5.4 Reverse Debugging: Can We Go Back in Time?

	6 Conclusion
	References

	Contemporary Computer Science Ideas in School Informatics
	Unplugged Activities in the Context of AI
	1 Introduction
	2 Artificial Intelligence - Theoretical Background
	3 Artificial Intelligence as a Topic in K-12
	4 AI Unplugged Activities
	4.1 Activity 1: Classification with Decision Trees – the Good-Monkey-Bad-Monkey Game
	4.2 Activity 2: #deeplearning – Recognition of Images with Neural Networks
	4.3 Activity 3 and 4: Reinforcement Learning – Beat the Crocodile and Back to the Roots – Crocodile Chess and Classic AI
	4.4 Activity 5: ``And Oh! I Am Glad that Nobody Knew I'm a Computer!'' - the Turing Test
	4.5 AI Unplugged and the CS Unplugged Criteria
	4.6 Unplugged Activities as Part of a Curriculum

	5 Discussion
	6 Conclusion
	References

	Machine Learning Unplugged - Development and Evaluation of a Workshop About Machine Learning
	1 Introduction
	2 Action-Oriented Learning
	3 Concept and Workshop Design
	3.1 Linear Classification
	3.2 Action-Oriented Unplugged Concept
	3.3 Workshop Draft

	4 Evaluation
	4.1 Evaluation Concept
	4.2 Discussion of the Results

	5 Conclusions
	References

	About Classes and Trees: Introducing Secondary School Students to Aspects of Data Mining
	1 Data in the Digital World
	2 Current State of Teaching and Research
	3 Presentation of the Teaching Concept
	3.1 Basics: Data Mining, Classification and Prediction
	3.2 Tool Selection: The Data Mining Tool Orange
	3.3 Description of the Lesson Sequence

	4 Evaluation in School
	5 Summary
	References

	Cybersecurity Within the Curricula of Informatics: The Estonian Perspective
	1 Background
	1.1 Digitalization and Goals for EU
	1.2 Developing Security-Aware Citizens for the Information Society

	2 Methods
	3 Results
	3.1 Policy Documents, Curricula, and Best Practices and Their Shortcomings in Estonia
	3.2 The Curricula from a Cybersecurity Content Perspective
	3.3 Nonformal Education

	4 Recommendations
	4.1 Formal Education
	4.2 Non-formal Education
	4.3 Based on the Findings, the Following Goals Were Delivered by the Experts

	5 Discussion
	6 Conclusion
	References

	Teaching Informatics: From High School to University Level
	Person-Thing-Orientation and the Choice of Computer Science Courses in High School
	1 Introduction
	2 Gender-Specific Differences of Interest in STEM Subjects
	2.1 Quotes from Teacher Interviews

	3 Hypotheses
	3.1 Self- and Foreign-Assessment of Person-Thing-Scores

	4 Method
	4.1 The Questionnaire
	4.2 Design

	5 Results
	5.1 Influence of Gender
	5.2 Dependence of Foreign-Scores on Self-Scores
	5.3 Influence of Scores on the CS Choice
	5.4 Turning Things Around

	6 Discussion and Conclusions
	6.1 Possible Confounding Factors
	6.2 Future Work

	References

	Wandering Micro:bits in the Public Education of Hungary
	Abstract
	1 Introduction
	2 T@T Lab
	3 BBC Micro:bit
	3.1 The Hardware
	3.2 Programming Micro:bits
	3.3 Micro:bits in Education

	4 The “Wandering Micro:bits” Initiative
	5 Assessment of the Results and Impressions of Our Initiative
	5.1 Scope of the Study, Methodology, Hypotheses
	5.2 Participating Teachers and Schools
	5.3 Use of the Kits
	5.4 Teachers’ Impressions
	5.5 Correlations

	6 Conclusion and Future Works
	Acknowledgments
	References

	Introduction to Computational Thinking for University Students
	Abstract
	1 Introduction
	1.1 Computational Thinking and Algorithmic Thinking
	1.2 Programming Studies at ELTE University

	2 The Introduction to CT Course
	2.1 Bebras Tasks
	2.2 Instructions in Unplugged Activities
	2.3 Code Challenges
	2.4 Programming Micro:bits
	2.5 Extending Micro:bits

	3 Impressions and Experiences from the Course
	4 Conclusion, Future Plans
	References

	Enhancing Student Engagement in Multidisciplinary Groups in Higher Education
	Abstract
	1 Introduction
	1.1 Possible Causes
	1.1.1 Student Expectations
	1.1.2 Computer-Based Multiple-Choice Questions (MCQ)

	1.2 Challenge
	1.3 Possible Solutions Found in Literature

	2 Preliminary Study
	3 Intervention
	3.1 Problem-Based Learning
	3.2 Effective Large and Small Student Group Strategies
	3.2.1 Rational
	3.2.2 Strategy

	3.3 An Element of Game Theory

	4 Quantitative Evaluation of Findings
	5 Conclusion: Implications for Future Development and Teaching Practice
	References

	Contests, Competitions and Games in Informatics
	Situated Learning with Bebras Tasklets
	1 Introduction
	2 Description of the Project
	2.1 Learning Goals
	2.2 Methodology

	3 Process and Products
	3.1 Birthday Party
	3.2 Drawing Game
	3.3 Balls
	3.4 Waiter
	3.5 Board Jumps

	4 Conclusions and Further Work
	A Tasklets screenshots with games
	References

	The Genesis of a Bebras Task
	1 Background
	2 What Is a Bebras Task?
	3 From the Initial Idea to a Task Proposal
	4 The Swiss Bebras Task Workshop
	5 The International Bebras Task Workshop
	6 Selecting Tasks for the Swiss Task Set
	7 Adapting a Task for the Swiss Bebras Challenge
	8 The Task in the Contest System
	9 The Task in the Brochure
	10 Conclusion and Further Considerations
	References

	From Bebras Tasks to Lesson Plans – Graph Data Structures
	1 Introduction
	1.1 Context
	1.2 Literature Overview

	2 Research Methods
	2.1 Zeroth Phase
	2.2 First Phase
	2.3 Second Phase
	2.4 Third Phase

	3 Results
	3.1 Family Relationships Tree
	3.2 Results of the Second Phase
	3.3 Results of the Third Phase

	4 Tram Lines
	4.1 Results of the Second Phase
	4.2 Proposed Worksheet

	5 Bracelet Machine
	5.1 Results of the Second Phase
	5.2 Proposed Worksheet

	6 Conclusion
	References

	CITY: A Game to Raise Girls’ Awareness About Information Technology
	Abstract
	1 Introduction
	2 Serious Games for Providing Information
	3 CITY Game Design
	4 Evaluation
	4.1 Lower Secondary School Students
	4.2 Upper Secondary School Students
	4.3 Game Expert
	4.4 Recruitment Expert

	5 Conclusions
	Acknowledgements
	References

	Computer Science Problem Solving in the Escape Game ``Room-X''
	1 Introduction
	2 Computer Science Problem Solving
	2.1 Problem Solving Versus Computational Thinking

	3 Problem Solving in Escape Games
	4 Room-X: An Escape Game for Computer Science Lessons
	5 Room-X and Computer Science Problem Solving
	5.1 Description of Problem and Problem Solving in Room-X
	5.2 Computer Science in Room-X
	5.3 Applied Problem-Solving Strategies in Room-X
	5.4 Conducting the Video Analysis

	6 Analysis of Behavioral Patterns in Room-X
	7 Threats of Validity
	8 Conclusion and Perspective
	References

	PrivaCity
	Abstract
	1 Introduction
	2 Background
	3 PrivaCity Game Design
	4 Evaluation
	5 Conclusions
	Acknowledgements
	References

	Correction to: Introducing Informatics in Primary Education: Curriculum and Teachers’ Perspectives
	Correction to: Chapter “Introducing Informatics in Primary Education: Curriculum and Teachers’ Perspectives” in: S. N. Pozdniakov and V. Dagienė (Eds.): Informatics in Schools, LNCS 11913, https://doi.org/10.1007/978-3-030-33759-9_7

	Author Index

