
Chapter 3
Matter Multiplets

Abstract After the Weyl multiplet is introduced, we can now define matter
multiplets whose transformations respect the algebra with structure functions that
depend on the fields of the Weyl multiplet. We treat here vector multiplets and
hypermultiplets. We define them for D = 4, 5 and 6, first for rigid supersymmetry
and then for the superconformal theory. In the second part of this chapter we define
actions for these multiplets, which will be the basis for the further chapters.

The goal of this chapter is to construct local superconformal actions for the matter
multiplets, exploiting our knowledge of the Weyl multiplet. In principle there are
many representations of the superconformal algebra that define matter multiplets.
The physical theories for D = 4 can all be obtained with vector multiplets and
hypermultiplets. For D = 5 and D = 6 tensor multiplets can lead to inequivalent
theories. For D = 5, this has been included in the treatments of [1–5], to which we
will come back to this in Sect. 6.2. One might also prefer formulations in terms of
other multiplets to make connections with other descriptions, e.g. in string theory.
We will briefly discuss the D = 4 tensor multiplet in a superconformal background
[6] in Sect. 3.2.5. The action with one tensor multiplet was given in [7] and extended
to more multiplets in [8]. On-shell matter couplings using different formalisms have
been given in [9–11]. Recently [12], also the (off-shell) coupling of one tensor
multiplet to an arbitrary number of vector multiplets has been obtained.

The main focus of this chapter will be on vector and hypermultiplets. Importantly,
the latter will be used not only as physical multiplets, but also as compensating
multiplets to describe super-Poincaré theories with matter couplings. This is in the
spirit of the general strategy outlined in Sect. 1.2.2 that we review in Sect. 3.1.

The remainder of this chapter is split in two parts. In Sect. 3.2 we explain
the structure of first vector and then hypermultiplets and their embedding in the
superconformal algebra. The construction of actions is postponed to the second part,
Sect. 3.3. We explicitly construct the superconformal invariant actions for sets of
these multiplets, which will be combined in Chap. 4 by the gauge fixing to Poincaré
supergravity. Many parts of this chapter, especially for the case of D = 4, have been
obtained in the context of the master thesis of De Rydt and Vercnocke [13].
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66 3 Matter Multiplets

3.1 Review of the Strategy

In Sect. 1.2.2, we already outlined the general idea of the superconformal con-
struction for actions with super-Poincaré invariance. At that time, we had not yet
explained the gauging of the conformal algebra. Now we can be more precise. For
this example, we will still restrict to the bosonic case. Consider a scalar field φ with
Weyl weight w and no intrinsic special conformal transformations: kμ(φ) = 0. Its
superconformal covariant derivative is

Dμφ = (
∂μ − wbμ

)
φ . (3.1)

The transformation of the covariant derivative Daφ can be easily obtained from
the ‘easy method’ (Sect. 2.3.4). One takes into account (2.25) to find that there is a
K transformation. The transformation law of a covariant derivative determines the
covariant box

�
Cφ ≡ ηabDbDaφ = eaμ

(
∂μDaφ − (w + 1)bμDaφ + ωμ abDbφ + 2wfμaφ

)

= e−1 (
∂μ − (w + 2 − D)bμ

)
egμν (∂ν − wbν) φ − w

2(D − 1)
R φ. (3.2)

We use here the constraint (2.72) (without matter for the pure bosonic case). The
last term is the well-known R/6 term in D = 4. In fact, choosing w = D

2 − 1, one
has a conformal invariant scalar action

S =
∫

dDx eφ�
Cφ . (3.3)

Exercise 3.1 Show that
∫

dDx eDaφ Daφ is not a special conformal invariant,
while �φ is invariant under K iff w = D

2 − 1. �
In order to obtain a Poincaré invariant action, we have to break dilatations and

special conformal transformations (as these are not part of the Poincaré algebra).
Considering (2.25), it is clear that the latter can be broken by a gauge choice

K − gauge : bμ = 0 . (3.4)

One could take as gauge choice for dilatations a fixed value of a scalar φ. As a
consequence, the action (3.3) reduces to the Poincaré gravity action: only the frame
field of the ‘Weyl multiplet’ (which was in the background) remains.

The lesson to learn is: once the gauge for the superfluous symmetries in the
matter action is fixed, without considering any action for the Weyl multiplet, we
find kinetic terms for the gravity sector.
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We can schematically summarize this procedure in the following diagram:

Weyl multiplet: eμ
a, bμ (Background)

+
matter field: φ

↓ gauge fixing Ka, D

Poincaré gravity eμ
a , (3.5)

namely we introduce, in the background of the Weyl multiplet, the conformally
invariant action of a matter field φ and we fix the gauge to get the action of
Poincaré gravity. In the above scheme, the field φ provides the compensating field
degree of freedom that makes the combined field gauge equivalent to an irreducible
multiplet of Poincaré gravity. We remark that, at the classical level, every gauge
fixing is equivalent to redefinitions of the fields. In this case, defining (the conformal
invariant)

g̃μν = gμνφ
4/(D−2) , (3.6)

and writing the action in terms of R(g̃), the field φ disappears from the action

S = − D − 2

4(D − 1)

∫
dDx

√
g̃ R(g̃) . (3.7)

The absence of φ from the action above is just a consequence of dilatational
invariance

∫
dDx

[
δS(g̃, φ)

δg̃μν(x)
δDg̃μν(x) + δS(g̃, φ)

δφ(x)
δDφ(x)

]
= 0 , (3.8)

which, together with δDg̃μν = 0, implies S(g̃, φ) ≡ S(g̃).

3.2 Conformal Properties of the Multiplets

Having the Weyl multiplet, the further step now is to introduce other multiplets in
the background of the Weyl multiplet. The resulting algebra, which depends for part
on the fields of the Weyl multiplet, is fixed for what concerns the superconformal
transformations. On the other hand, extra terms with gauge transformations of extra
vectors or antisymmetric tensors may still appear in the algebra. As long as the fields
of the Weyl multiplet are inert under these transformations (as we will impose by
hypothesis), these extra transformations do not modify our previous results.
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A first modification of this structure is obtained by the introduction of a gauge
vector multiplet. The commutator of the supersymmetries can still be modified by a
gauge transformation that depends on fields of this vector multiplet. For this struc-
ture to make sense, the algebra of the Weyl multiplet had to close without using an
equation of motion. Furthermore, as long as the vector multiplet is well defined off-
shell, a matter multiplet (in the background of both the vector and Weyl multiplet)
may now be introduced whose algebra closes only modulo equations of motion.

All fields in ‘matter multiplets’ will now have to obey the same ‘soft’ algebra
defined by the Weyl multiplet. A first step is to define their transformations under the
bosonic symmetries. We assume the rules (2.87) and (2.88) under Weyl and chiral
transformations, where the weights will be given in Table 3.1. The R-symmetry
SU(2) transformation is implicit in the index structure of the fields.

Table 3.1 Fields in some
superconformal matter
multiplets

We indicate for each dimension the Weyl weight (and for D =
4 chiral weight), the number of real degrees of freedom, the
SU(2) representations, which is the same in any dimension,
and the chirality for D = 4 and D = 6. For each multiplet
we give first the bosonic fields, and then the fermionic fields
(below the line)
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3.2.1 Vector Multiplets

Vector multiplets can first be defined in 6 dimensions, and then reduced to 5 or 4
dimensions.

3.2.1.1 Vector Multiplet in 6 Dimensions (Abelian Case)

Consider the vector multiplet in D = 6, which has already been introduced in
Sect. 2.3.2. It has been shown in (2.59) that the supersymmetry transformations
do not close. The solution to this issue is well-known: the 5 bosonic components
of the gauge vector, and the 8 components of the spinor, need an SU(2)-triplet
of real scalars, Y (ij). The latter will appear in the transformation law of the
fermion.

As an illustrative example, let us show how the transformation laws of the
D = 6 vector multiplet have been determined with methods that can be used
in general. In general, it is useful to first consider the Weyl weights of the
fields. One useful principle is that gauge fields (beyond the Weyl multiplet)
should have Weyl weight 0, as all transformations beyond the superconformal
group must commute with the conformal generators. Equivalently, all the
parameters beyond the superconformal group have to be considered1 as Weyl
weight 0.

For the U(1) gauge vector Wμ, whose abelian gauge transformation is δGWμ =
∂μθ , the previous argument implies that Wμ has Weyl weight 0.2 The same argument
holds in fact for any gauge field, or gauge two-form, . . . . Then the associated
curvature Fab has Weyl weight 2 (due to the frame fields involved in Fab =
ea

μeb
νFμν ). As we have explained, these are the covariant quantities that should

appear in the transformations of other matter fields. The supersymmetry parameter
ε should be considered to be of Weyl weight − 1

2 , identical to its gauge field ψμ.
Thus the supersymmetry transformation of the gaugino to the field strength of the
gauge field determines that the conformal weight of λ is indeed 3

2 .

Exercise 3.2 Determine the same result from the transformation of the gauge field
to the gaugino. �
The auxiliary field Y ij can appear in the transformation of the fermion via an extra
term δλi = Y ij εj , hence the auxiliary field should be of Weyl weight 2. In its
supersymmetry transformation law can appear a covariant fermionic object of Weyl
weight 5

2 . This is consistent with a transformation to the covariant derivative of the

1In principle parameters do not transform, but the commutators of symmetries can be stated in
these terms.
2We could straightforwardly have generalized to a non-abelian algebra. We will do this below for
D = 5 and D = 4.
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gaugino, in order to cancel (2.59). The full transformation laws are

δWμ = ∂μθ + 1
2 ε̄γμλ ,

δλi =
(

3
2λD − 1

4γ abλab

)
λi + λij λj − 1

4γ abF̂abε
i − Y ij εj ,

δY ij = 2λDY ij + 2λk(iY j)
k − 1

2 ε̄(i /Dλj) + η̄(iλj) . (3.9)

Starting from the rigid transformations, we replaced Fab by the covariant expression
F̂ab and the derivative of λj has been replaced by a covariant derivative.

F̂μν =Fμν − ψ̄[μγν] ,

Dμλi =
(
∂μ − 3

2bμ + 1
4γ abωμab

)
λi − Vμ

ij λj + 1
4 ψ̄i

μγ abF̂ab + Y ijψμ j .

(3.10)

The consistency with Weyl weights does not leave place for other terms in the
Q-transformations. Since the S-supersymmetry parameter η has to be considered
as having Weyl weight 1

2 , the only S-transformation that can occur consistent with
Weyl weights is the last term in (3.9). Its coefficient has to be fixed from calculating
the [δQ(ε), δQ(η)] commutator on the gaugino or from the method in item (3) in
Sect. 2.6.1. One can check that the extra terms from Y ij cancel the non-closure
terms (2.59).

Exercise 3.3 Check that all the transformation laws determine (and are consistent
with) λ to be a left-chiral spinor, in accordance with Table 1.1. �

3.2.1.2 Vector Multiplet in 5 Dimensions

The transformations of the vector multiplet in 5 dimensions can be obtained from
dimensional reduction3 of the transformations for D = 6. Note that one component
of the D = 6 vector is a real scalar σ in D = 5.

We will introduce here the vector multiplet in a non-abelian group, based on
matrix representations with [tI , tJ ] = fIJ

KtK . Note that we will use the index I

from now on to enumerate the vector multiplets, and thus the generators of the non-
abelian algebra that can be gauged. We hope that this does not lead to confusion
with the index I that was used so far to denote all standard gauge transformations
as it was done in Chap. 2.

3The reader can easily find the linearized transformations from those in (3.9) using the rules in
Appendix A.4. It may be more difficult to find the nonlinear transformations, since there are
redefinitions such as Wμ(D = 6) = Wμ(D = 5) + e5

μσ . It is easier to obtain the nonlinear
transformations from directly imposing the supersymmetry algebra in D = 5.
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The full rules can be found in [14, 5] for a generalization containing also tensor
multiplets. For simplicity, we give here the supersymmetry transformations for only
vector multiplets:

δWI
μ = ∂μθI − θJ WK

μ fJK
I + 1

2 ε̄γμψI − 1
2 iσ I ε̄ψμ,

δY ijI = − 1
2 ε̄(i /Dψj)I + 1

2 iε̄(iγ · T ψj)I − 4iσ I ε̄(iχj),

+ 1
2 iε̄(ifJK

I σJ ψj)K + 1
2 iη̄(iψj)I ,

δψiI = − 1
4γ · F̂ I εi − 1

2 i /Dσ I εi − Y ijI εj + σ I γ · T εi + σ I ηi,

δσ I = 1
2 iε̄ψI . (3.11)

The (superconformal) covariant derivatives are given by

Dμ σ I = DμσI − 1
2 iψ̄μψI ,

DμσI = (∂μ − bμ)σ I − fJK
IWK

μ σJ ,

DμψiI = DμψiI + 1
4γ · F̂ Iψi

μ + 1
2 i /Dσ Iψi

μ + Y ijIψμj − σ I γ · T ψi
μ,

+ 1
2fJK

IσJ σKψi
μ − σ Iφi

μ,

DμψiI =
(
∂μ − 3

2bμ + 1
4γabω̂μ

ab
)

ψiI − V ij
μ ψI

j − fJK
IWK

μ ψiJ . (3.12)

with F̂ I
μν given by

F̂ I
μν = Fμν

I − ψ̄[μγν]ψI + 1
2 iσ I ψ̄[μψν] , Fμν

I = 2∂[μWI
ν] + WJ

μ WK
ν fJK

I ,

(3.13)

There is one more aspect in the dimensional reduction (whether the multiplet is
abelian or not). Remember that the covariant general coordinate transformations
contain a linear combination of all gauge symmetries. That involves also the
gauge transformation of the vector. Thus in the commutator of two supersymmetry
transformations in D = 6 is a term ε̄2γ

με1Wμ. When reduced to 5 dimensions (and
below also to 4 dimensions), some components of Wμ are replaced by the scalars
σ . This is the origin of a new term in the supersymmetry commutator involving
structure functions depending on the scalars, which is implicit in the form of the last
term in F̂ I

μν , which is of the form of the last term in (2.5) for gravitini as gauge fields.

3.2.1.3 Vector Multiplet in 4 Dimensions

Further dimensional reduction leads to the vector multiplet in 4 dimensions. As
mentioned already in Sect. 1.2.1, it has then a complex scalar, built from the fourth
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and fifth components of the vector of 6 dimensions. To get the right behaviour of
gauge and general coordinate transformations, one has to consider the reduction
of the vector with tangent spacetime indices (see [15, 16] and a useful general
introduction to dimensional reduction is [17]). In other words, the object from where
the scalars originate in the dimensional reduction should be a world scalar, ea

μWμ,
which has Weyl weight 1. Therefore the complex4 scalar X of the D = 4 vector
multiplets has w = 1.

Before giving the supersymmetry transformations, we have to translate the reality
of the triplet Yij in appropriate notation for 4 dimensions. In 6 dimensions the reality
is Y = Y ∗ = σ2Y

Cσ2. It is in the form with YC that we have to translate it, thus
giving rise to

Yij = εikεj�Y
k� , Y ij = (Yij )

∗ . (3.14)

As for D = 5, we write the transformations for the non-abelian vector
multiplet. The transformations under dilatations and chiral U(1) transformations
follow from Table 3.1, with the general rules (2.87) and (2.88). The supersymmetry
(Q and S), and the gauge transformations with parameter θ in 4 dimensions
are5

δXI = 1
2 ε̄i�I

i − θJ XKfJK
I ,

δ�I
i = /DXIεi + 1

4γ abF I−
ab εij ε

j + Y I
ij εj + XJ X̄KfJK

I εij ε
j

+2XIηi − θJ �K
i fJK

I ,

δWI
μ = 1

2εij ε̄iγμ�I
j + εij ε̄iψμjX

I + h.c. + ∂μθI − θJ WK
μ fJK

I ,

δY I
ij = 1

2 ε̄(i /D�I
j) + 1

2εikεj�ε̄
(k /D��)I + εk(i

(
ε̄j)X

J �kK − ε̄kX̄J �j)K

)
fJK

I

−θI YK
ij fJK

I , (3.15)

where

F I−
ab ≡ F̂ I−

ab − 1
2 X̄I T −

ab. (3.16)

In the latter expression F̂ I−
ab denotes the anti-self-dual part of F̂ab, which is covariant

with the new structure functions, as dictated by definitions given in Chap. 2 and

4To be in accordance with common practice here, we denote the complex conjugates of the scalar
fields by X̄ rather than X∗.
5For the translation from D = 5, we use XI = 1

2 (WI
4 − iσ I ), and � has been defined with the

opposite sign as would straightforwardly follow from Appendix A.4: ψiI = −�iI − �I
j ε

ji .
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reported here for convenience

F̂μν
I = Fμν

I +
(
−εij ψ̄

i[μγν]�Ij − εij ψ̄
i
μψj

ν X̄I + h.c.
)

,

F I
μν = ∂μWI

ν − ∂νWμ
I + Wμ

J Wν
KfJK

I . (3.17)

Indeed, the second term of the transformation of the vector reflects the presence
of the new term in the commutator of two supersymmetries, as already discussed
for D = 5, and modifies (2.96) to

[δQ(ε1), δQ(ε2)] = δP

(
ξa

3

) + δM

(
λab

3

)
+ δK

(
λa

K3

) + δS (η3)

+δG

(
θI

3 (ε1, ε2) = εij ε̄2iε1jX
I + h.c.

)
, (3.18)

where δG is the (non-abelian) gauge transformation parameterized by θI .

Exercise 3.4 Check that this leads to the form of F̂μν
I as given in (3.17). �

The covariant derivatives are

DμXI = DμXI − 1
2 ψ̄i

μ�I
i ,

DμXI = (
∂μ − bμ − iAμ

)
XI + WJ

μ XKfJK
I ,

Dμ�I
i = Dμ�I

i − /DXIψμi − 1
4γ abF I−

ab εijψ
j
μ

−Y I
ijψ

j
μ − XJ X̄Kf I

JKεijψ
j
μ − 2XIφμi, (3.19)

Dμ�I
i =

(
∂μ + 1

4ωμ
abγab − 3

2bμ − 1
2 iAμ

)
�I

i + Vμi
j�j

I + WJ
μ �K

i fJK
I .

As will become clear in the following section, the vector multiplet is a con-
strained chiral multiplet. This observation becomes relevant when constructing
actions for the vector multiplet (Sect. 3.3).

3.2.2 Intermezzo: Chiral Multiplet

A multiplet corresponds to a superfield in superspace. A multiplet or a superfield
can be real or chiral, or carry a Lorentz representation, or be in a non-trivial repre-
sentations of the R-symmetry, . . . . For the multiplet, this just reflects the property
of its ‘lowest component’.6 For example, a chiral multiplet is characterized by the
fact that its lowest component transforms ‘chirally’, i.e. only under the left-handed
supersymmetry and not under the right-handed one. In superspace this means that
one chiral superspace derivative vanishes on the field. Furthermore multiplets or

6‘Lowest’ refers here to the Weyl weight in superconformal language (or to the engineering
dimensions, if we do not discuss the superconformal properties).
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superfields can be constrained. In this section we explain, first in the context of rigid
supersymmetry, how further constraints on a chiral multiplet lead to the vector mul-
tiplet, which is smaller. A generalization to the rigid superconformal case follows.

Let us consider a general scalar multiplet, whose ‘lowest’ component is a
complex scalar A. In general, a complex scalar can transform under Q to arbitrary
spinors

δQ(ε)A = 1
2 ε̄i�i + 1

2 ε̄i�
i . (3.20)

Then the transformations of these arbitrary spinors �i and �i can have arbitrary
expressions containing new fields, as long as it is consistent with the algebra. See
e.g. [18, Sect. 14.1.1] for the example of N = 1 chiral multiplets, and in Sect. 2.2
of [19] this is worked out for the chiral multiplet of N = 2, which we consider
here.

If �i = 0, then the lowest component only transforms under left supersymmetry:

δQ(ε)A = 1
2 ε̄i�i , (3.21)

and the multiplet is called chiral. Imposing the rigid supersymmetry algebra leads
to the following general expressions:

δQ(ε)A = 1
2 ε̄i�i ,

δQ(ε)�i = /∂Aεi + Bij ε
j + 1

4γabG
−abεij ε

j ,

δQ(ε)Bij = 1
2 ε̄(i /∂�j) − 1

2 ε̄k�(iεj)k ,

δQ(ε)G−
ab = 1

4εij ε̄i /∂γab�i + 1
4 ε̄iγab�i ,

δQ(ε)�i = − 1
4γ abG−

ab

←
/∂ εi − /∂Bij εjkεk + 1

2Cεij ε
j ,

δQ(ε)C = −εij ε̄i /∂�j . (3.22)

The reader can count that this is a 16 + 16 multiplet counted as real components. In
fact it is reducible, since one can impose the following consistent constraints7:

Bij − εikεj�B
k� = 0 ,

/∂�i − εij �j = 0 ,

7There is an extension possible that the first of these expressions is not zero [20] but a constant. This
leads to magnetic couplings in rigid supersymmetry, and possibilities for partial breaking to N = 1
supersymmetry. Recently [21], it has been shown how to generate these constants dynamically
using multiplets with 3-form gauge fields, and in [22] this has been related to deformations in
Dirac–Born–Infeld actions. It is not clear how to generalize this to supergravity, and hence we will
not further discuss this.
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∂b(G
+ab − G−ab) = 0 ,

C − 2∂a∂
aĀ = 0 , (3.23)

where Bk� is, as usual, defined by the complex conjugate of Bk�, and similarly G+
is the complex conjugate of G−, and thus self-dual as G− is anti-self-dual. These
constraints are consistent in the sense that a supersymmetry variation of one of them
leads to the other equations, and this is a complete set in that sense.

The third equation is a Bianchi identity that can be solved by interpreting Gab

as the field strength of a vector. To conclude, the independent components are then
those of the vector multiplet, with the following identifications:

X = A , �i = �i , Fab = Gab , Yij = Bij . (3.24)

Indeed the linear part of (3.15) corresponds to (3.22). We have thus identified the
vector multiplet as a constrained chiral multiplet.

To define the chiral multiplet in the conformal algebra, one first allows an
arbitrary Weyl weight for A, say that this is w. Then consistency with Weyl
weights imposes that a general S-supersymmetry transformation for �i should be
proportional to A. Imposing the {Q,S} anticommutator immediately shows that the
chiral U(1) weight of A should be related to its Weyl weight. In fact, to avoid the εi

terms in this anticommutator, one should impose that under dilatations and U(1),

δD,T (λD, λT )A = w (λD + iλT ) A . (3.25)

The same transformations for the other fields can be obtained by requiring compat-
ibility with Q-transformations, to obtain

δD,T (λD, λT )�i =
((

w + 1
2

)
λD + i

(
w − 1

2

)
λT

)
�i ,

δD,T (λD, λT )Bij = ((w + 1)λD + i(w − 1)λT ) Bij ,

δD,T (λD, λT )G−
ab = ((w + 1)λD + i(w − 1)λT ) G−

ab ,

δD,T (λD, λT )�i =
((

w + 3
2

)
λD + i

(
w − 3

2

)
λT

)
�i ,

δD,T (λD, λT )C = ((w + 2)λD + i(w − 2)λT ) C . (3.26)

To complete the superconformal multiplet, one has to add S-transformations, and
there are nonlinear transformations involving the matter fields of the Weyl multiplet
χi and Tab, necessary in order to represent the anticommutators (2.96). The full
result was found in [23]:

δQ,S(ε, η)A = 1
2 ε̄i�i ,

δQ,S(ε, η)�i = /DAεi + Bij εj + 1
4γ · G−εij ε

j + 2wAηi ,
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δQ,S(ε, η)Bij = 1
2 ε̄(i /D�j) − 1

2 ε̄k�(iεj)k + (1 − w)η̄(i�j) ,

δQ,S(ε, η)G−
ab = 1

4εij ε̄i /Dγab�j + 1
4 ε̄iγab�i − 1

2εij (1 + w)η̄iγab�j ,

δQ,S(ε, η)�i = − 1
4γ · G− ←

/D εi − /DBij εkε
jk + 1

2Cεjεij

− 1
8 ( /DA)T · γ )εi − 1

8wA( /DT ) · γ εi − 3
4 (χ̄[iγa�j ])γ aεkε

jk

−2(1 + w)Bij εjkηk + 1
2 (1 − w)γ · G−ηi ,

δQ,S(ε, η)C = −εij ε̄i /D�j − 6ε̄iχjBk�ε
ikεj�

+ 1
8 (w − 1)ε̄iγ · T

←
/D �jε

ij + 1
8 ε̄iγ · T /D�jε

ij + 2wεij η̄i�j .

(3.27)

This time, the set of consistent constraints is8

0 = Bij − εikεjlB
kl ,

0 = /D�i − εij�j ,

0 = Da
(
G+

ab − G−
ab + 1

2ATab − 1
2 ĀTab

)
− 3

4

(
εij χ̄iγb�j − h.c.

)
,

0 = −2�Ā − 1
2G+

μνT
μν − 3χ̄i�

i − C . (3.28)

Interestingly, the constraints above are consistent only for a specific choice of w.
For example, the first constraint is a reality condition, and it is easy to check that
this is only consistent if the chiral weight of Bij is zero. This fixes w = 1, which in
turn is the appropriate value also to interpret Gab as a covariant field strength. Note
that the Bianchi identity in the third line of (3.28) shows the shift between the pure
covariant field strength and the G. Compare this with (3.16).

The chiral multiplet plays an important role in the construction of the actions
in rigid supersymmetry, as its highest component C is a scalar transforming to
a total derivative. That action corresponds in superspace to take the full chiral
superspace integral of the chiral superfield. However, in local supersymmetry, as
in the superconformal transformations in (3.27), the transformation of C is not a
pure derivative. Therefore in order to have an invariant action, one has to include
more terms, i.e. something of the form

I =
∫

d4x e C + · · · + h.c. . (3.29)

The + · · · in (3.29) are terms that should be such that the transformation of the
integrand is a total derivative.

8For rigid supersymmetry, an imaginary constant in Bij would be possible, describing magnetic
charges.
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But we can first make a few general observations. The integrand should be
invariant under all superconformal transformations. Let us start with the Weyl
transformations. The Weyl weight of the determinant of the frame field is −4, so
C should have Weyl weight 4. It should also be invariant under T -transformations,
which means that the chiral weight should be zero. We see from (3.26) that these two
requirements are consistent with a requirement that the chiral multiplet should have
Weyl weight 2. Note that this implies that it will not be a constrained chiral (i.e.
vector) multiplet. We found above that these have Weyl weight 1. But if we start
from a vector multiplet, any holomorphic function of X still transforms only under
1 chirality of Q. Hence any F(X) is a chiral multiplet. If we take a homogeneous
function of second degree in X, this gives us a chiral multiplet with w = 2 on which
we can use the action formula.

To determine the full expression in (3.29) one considers other terms that have
Weyl weight 4 and chiral weight 0, and imposes the condition of invariance of
the action. In practice, imposing S-supersymmetry is easiest to determine all the
coefficients of these terms. For local superconformal symmetry the result is [23]

e−1L = C − ψ̄i · γ�jε
ij + 1

8
ψ̄μiγ · T +γ μ�jε

ij − 1

4
AT +

abT
+ab

−1

2
ψ̄μiγ

μνψνjBklε
ikεjl + ψ̄μiψνj ε

ij
(
G−μν − AT +μν

)

+1

2
iεij εk�e−1εμνρσ ψ̄μiψνj ψ̄ρk (γσ �� + ψσ�A) + h.c. . (3.30)

This is called the chiral density formula.

3.2.3 Rigid Hypermultiplets

Hypermultiplets are the analogues of the chiral multiplets of N = 1 supersymmetry.
They contain four scalars and two spin- 1/2 fields. In supergravity, they are defined
in the background of the Weyl multiplet and possibly also in the background
of the vector multiplet (i.e. they can transform non-trivially under the gauge
transformations of the vector multiplets). One can further introduce auxiliary fields
to close the algebra for the simplest quaternionic manifolds. The methods of
harmonic or projective superspace mentioned in the introduction [24–30] are also
equivalent to introducing an infinite number of auxiliary fields. However, we do not
need auxiliary fields any more at this point because the hypermultiplets are at the
end of the hierarchy line.9

9We are not going to introduce any further multiplet in the background of the hypermultiplets, as
these do not introduce new gauge symmetries. This is to be confronted to when we considered the
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The closure of the supersymmetry algebra will impose equations that we will
interpret as equations of motion, even though we have not defined an action yet.
Later we will see how an action can be constructed that gives precisely these
equations as Euler–Lagrange equations.

Although our interest is the local case, the present section is mostly devoted to
rigid super(conformal) symmetry. This choice has been made since the rigid case
provides already simpler and explicative examples of the story. We remark that since
dimensional reduction for scalars and spin-1/2 fermions leads to the same type of
particles in lower dimension, the properties of the hypermultiplets do not depend
on whether we consider D = 6, D = 5, or D = 4 (or even D = 3). There is a
technical difference since the four on-shell (or eight off-shell) degrees of freedom
are captured in symplectic Weyl, symplectic or Majorana spinors, respectively. In
practice, we mostly report formulae in D = 5. These can be translated to D = 6
and D = 4 by the rules in Appendix A.4.

Before starting the mathematical formulation, we still want to point out how
massive hypermultiplets can be described in this context, since the readers will
mainly see equations of motion that describe only massless hypermultiplets. This
is of course also related to the fact that we are mainly interested in conformal
theories. Massive hypermultiplets in rigid supersymmetry are obtained in this setting
by adding a coupling to a vector multiplet that has just a first scalar component
equal to the mass, and all other components zero. The reader can glimpse at (3.88)
for D = 5 with σ I equal to a mass, or to (3.93) and (3.95) for XI providing the
mass to see that with a suitable choice of the Killing vectors these are massive
field equations. In supergravity this will be natural for the σ I or XI referring to the
compensating multiplet.

3.2.3.1 Rigid Supersymmetry

We consider a set of nH hypermultiplets. The real scalars are denoted as qX,
with X = 1, . . . , 4nH , and the fermions are indicated by ζA, where the indices
A = 1, . . . , 2nH will indicate a fundamental representation of Sp(2nH ). Imposing
the supersymmetry transformations on the bosons lead to the identification of
a hypercomplex manifold10 parameterized by these bosons qX. The structure is
determined by frame fields f iA

X, connections ωXAB and �Z
XY (the latter symmetric

in its lower indices) such that

f iA
Y f X

iA = δX
Y , f iA

Xf X
jB = δi

j δ
A
B . (3.31)

vector multiplets. The construction of the latter had to take into account that the multiplets can be
used for various possible actions (including hypermultiplets or not).
10In supergravity the scalars span a quaternionic manifold, see Sect. 5.6.
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and

∇Y f X
iA ≡ ∂Y f X

iA − ωYAB(q)f X
iB + �X

YZ(q)f Z
iA = 0 ,

∇Y f iA
X ≡ ∂Y f iA

X + f iB
XωYBA(q) − �Z

YX(q)f iA
Z = 0 , (3.32)

are satisfied. The frame field satisfies a reality condition, for which we will also
introduce indices Ā:

(
f iA

X

)∗ = f jB
XεjiρBĀ ,

(
f X

iA
)∗ = εij ρĀBf X

jB , (3.33)

in terms of a non-degenerate covariantly constant tensor ρAB̄ that satisfies

ρAB̄ρB̄C = −δCA , ρĀB = (
ρAB̄

)∗
. (3.34)

By field redefinitions, we could bring it in the standard antisymmetric form

ρAB̄ =
(

0 1lnH

−1lnH 0

)
= ρĀB . (3.35)

We will not impose this basis choice in general. In Sect. 3.3.4 we will show how
such a basis could be implemented.

The complex conjugate of ωXAB is

(
ωXAB

)∗ ≡ ω̄X
Ā
B̄ = −ρĀCωXCDρDB̄. (3.36)

The above conditions lead to the identification of almost quaternionic structures

2f iA
Xf Y

jA = δY
Xδi

j + JX
Y

j
i , JX

Y
j
i = τ j

i · JX
Y ,

JX
Y =

(
JX

Y
)∗ = −f iA

Xf Y
jAτ i

j . (3.37)

We use here the 3-vectors notation and τ i
j = iσ i

j in terms of the three Pauli-
matrices σ i

j as in (1.52), (1.54). Related formulas are given in Appendix A.2.2.
The three matrices J satisfy the quaternionic algebra, i.e. for any vectors A, B

A · JX
ZB · JZ

Y = −δX
Y A · B + (A × B) · JX

Y . (3.38)

In passing, we note that we can solve (3.32) for ωXAB, such that the independent
connection is �XY

Z. The latter is the unique connection on the scalar manifold
respect to which

∇ZJX
Y ≡ ∂ZJX

Y − �ZX
UJU

Y + �ZU
Y JX

U = 0. (3.39)
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This last condition promotes JX
Y to be quaternionic structures.

The integrability condition of (3.32) relates the curvatures defined by the two
connections:

RXY
W

Z ≡ 2∂[X�W
Y ]Z + 2�W

V [X�V
Y ]Z ,

RXYBA ≡ 2∂[XωY ]BA + 2ω[X|C|AωY ]BC ,

RXY
W

Z = f W
iAf iB

ZRXYBA , RXYBA = 1
2f W

iBf iA
ZRXY

Z
W .

(3.40)

In order to work with these tensors, it can be useful to introduce also tensors L that
are orthogonal to the complex structures:

LY
ZAB ≡ f Z

iAf iB
Y , JZ

Y LY
ZAB = 0 ,

LX
YABLY

ZCD = LX
ZCBδAD ,

LX
XAB = 2δAB , LX

YABLY
XCD = 2δCBδAD . (3.41)

If the affine connections is the Levi-Civita connection of a metric, then the
curvatures satisfy the cyclicity properties R(XY

W
Z) = 0, and one can show that

f X
iCf Y

jDRXYBA = − 1
2εijWCDBA , WABCD ≡ −εij f X

iAf Y
jBRXYCD .

(3.42)

The tensor WABCD is symmetric in its lower indices, and the other curvatures can
be expressed in function of this one as

RXY
W

Z = LZ
WDC RXYCD = −εij

1
2LZ

WCDf iA
Xf jB

Y WABCD . (3.43)

The Bianchi identity on RXYAB implies also a symmetry of the covariant derivative
of W :

f X
iA∇XWBCDE = f X

i(A|∇XW|BCD)
E . (3.44)

When a metric will be defined on the manifold, the W -tensor will become
symmetric in the 4 indices. As a consequence, the manifold will be Ricci flat:

RYZ = RXY
X

Z = 0 . (3.45)
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3.2.3.2 Reparameterizations and Covariant Quantities

The hypermultiplet is defined in terms of the scalars qX, which form a param-
eterization of a 4nH -dimensional manifold, and the fermions ζA, which are a
parameterization of a 2nH -dimensional manifold of fermions. Both these basic
parameterizations can be changed [14]. There are thus two kinds of repara-
meterizations. The first ones are the target space diffeomorphisms, qX → q̃X(q),
under which f X

iA transforms as a vector, ωXAB as a one-form, and �XY
Z as a

connection. The second set are the reparameterizations, which act on the tangent
space indices A,B etc. On the fermions, they act as

ζA → ζ̃A(q) = ζBUBA(q) , (3.46)

where UAB(q) is an invertible matrix, and the reality conditions impose U∗ =
ρ−1Uρ, defining G�(r,H). In general, the right-hand side of (3.46) depends on the
ζA and on the scalars. Thus the new basis ζ̃A is a basis where the fermions depend
on the scalars qX. In this sense, the hypermultiplet is written in a special basis where
qX and ζA are independent fields. We will develop a covariant formalism which also
takes into account these reparameterizations.

The supersymmetry transformations in D = 5 are

δqX = −iε̄iζAf X
iA ,

δζA = 1
2 if iA

X /∂qXεi − ζBωXBAδqX . (3.47)

They are covariant under (3.46) if we transform f iA
X(q) as a vector and ωXAB

as a connection,

ωXAB → ω̃XAB =
[(

∂XU−1
)

U + U−1ωXU
]

A
B . (3.48)

These considerations lead us to define the covariant variation of vectors (see [18,
Appendix 14B]) with indices in the tangent space, as ζA, or a quantity �X with
coordinate indices:

δ̂ζA ≡ δζA + ζBωXBAδqX , δ̂�X ≡ δ�X + �Y�YZ
XδqZ , (3.49)

for any transformation δ (as e.g. supersymmetry, conformal transformations,. . . ).
Two models related by either target space diffeomorphisms or fermion reparame-

terizations of the form (3.46) are equivalent; they are different coordinate descrip-
tions of the same system. We usually work in a basis where the fermions and
the bosons are independent, i.e. ∂XζA = 0. But in a covariant formalism, after
a transformation (3.46), this is not anymore valid. This shows that the expression
∂XζA has no basis-independent meaning. It makes only sense if one compares a
transformed basis, like the ζ̃ A with the original basis where ∂XζA = 0. But in the
same way also the expression ζBωXBA makes only sense if one compares different
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bases, as the connection has no absolute value. The only object that has a coordinate-
invariant meaning is the covariant derivative

∇XζA ≡ ∂XζA + ζBωXBA. (3.50)

In the basis where the fermions ζA are considered independent of the bosons, i.e.
∂XζA = 0, which is the basis used to write down the transformation rules (3.47),
only the second term in the covariant derivative above remains, and thus (3.49)
becomes

δ̂ζA = δζA + ∇XζA δqX. (3.51)

We will always consider independent bosons and fermions when we write varia-
tions.

On any covariant coordinate quantity that depends only on the coordinates qX,
covariant transformations act by covariant derivatives, e.g. for some vectors V X(q),
WA or WA:

δ̂V X(q) = δqY ∇Y V X(q) = δqY
(
∂Y V X(q) + �X

YZV Z(q)
)

,

δ̂WA(q) = δqY ∇Y WA(q) = δqY
(
∂Y WA(q) + WB(q)ωYBA

)
,

δ̂WA(q) = δqY ∇Y WA(q) = δqY
(
∂Y WA(q) − ωYABWB(q)

)
.

(3.52)

In particular, δ̂ of any covariantly constant object (like the frame fields f iA
X) is

zero.
Note that we can exploit covariant transformations to calculate any transforma-

tion on e.g. a quantity WA(q)ζA:

δ
(
WA(q)ζA

)
= δ̂

(
WA(q)ζA

)
= δqX∇XWA ζA + WA δ̂ζA . (3.53)

Coordinates are not covariant, but their derivatives are, and e.g. the Laplacian11

�qX = ∇μ∂μqX = ∂μ∂μqX + �YZ
X

(
∂μqY

) (
∂μqZ

)
, (3.54)

is covariant for target space transformations.

11In the local (gravity) theory, the first term should be (
√

g)−1∂μ
√

ggμν∂ν .
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Another interesting relation is that the commutator of δ̂ and ∇ gives rise to
curvature terms:

δ̂∇μV X = ∇μδ̂V X + RZW
X

Y V Y
(
δqZ

) (
∂μqW

)
. (3.55)

Similarly the commutator gets adapted by curvature terms:

[δ(ε1), δ(ε2)] V X = δ(ε3)V
X →

[
δ̂(ε1), δ̂(ε2)

]
V X = δ̂(ε3)V

X + RZW
X

Y V Y
(
δ(ε1)q

Z
) (

δ(ε2)q
W

)
, (3.56)

where ε3 is the function of ε1 and ε2 determined by the structure functions. With
these methods, it is easy to compute the commutator of two covariant derivatives.
E.g. in D = 5 with (3.47) for the fermions

[
δ̂(ε1), δ̂(ε2)

]
ζA = 1

2γ με2if
iA

Xε̄
j

1 ∇μζBf X
jB − (1 ↔ 2)

= 1
4γ μ [(ε̄2ε1) + γ ν(ε̄2γνε1)] ∇μζA

= 1
2∇μζA(ε̄2γ

με1) + 1
4 [(ε̄2ε1) − γ ν(ε̄2γνε1)] /∇ζA , (3.57)

with the definition

∇μζA ≡ ∂μζA +
(
∂μqX

)
ζBωXBA. (3.58)

Indices i, j are raised and contracted as in Appendix A.3.2. This result shows that
the algebra does not close: we will interpret the extra parts as equations of motions
of a putative action, see Sect. 3.3.3.

3.2.3.3 Non-closure Relations for Fermions and Bosons

From the result (3.57), using (3.56), we can obtain the following commutator of
transformations:

[δ(ε1), δ(ε2)] ζA = 1
2∂μζA(ε̄2γ

με1) + 1
4 [(ε̄2ε1) − γ ν(ε̄2γνε1)] /∇ζA

+ ζBRXYBAε̄i
1ζ

Cf X
iCε̄

j

2 ζDf Y
jD . (3.59)

With (3.42) and a Fierz transformation, we obtain that the non-closure terms (the
last term on the first line and the second line) are

+ 1
4 [(ε̄2ε1) − γ ν(ε̄2γνε1)] /∇ζA + 1

8WCDBAζBζ̄C [(ε̄2ε1) + γ ν(ε̄2γνε1)] ζD .

(3.60)
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Using some D = 5 Fierz identities:

5ζ (Bζ̄CζD) = −γ μζ (Bζ̄CγμζD) ,

ζ (Bζ̄Cγ νζD) = −γ νζ (Bζ̄CζD) , (3.61)

we find

[δ(ε1), δ(ε2)] ζA = ξμ∂μζA + 1
4

[(
ε̄i

2ε
j
1

)
− γ ν

(
ε̄i

2γνε
j
1

)]
εji i�A , (3.62)

i.e., the non-closure terms are proportional to12

i�A ≡ /∇ζA + 1

2
WBCDAζBζ̄CζD . (3.63)

The expression above must be interpreted as an equation of motion for the fermions.
The supersymmetry transformation of (3.63) gives then also an equation of motion
for the scalar fields:

δ̂(ε)�A = 1

2
f iA

Xεi�
X , (3.64)

where

�X = �qX − 1

2
ζ̄Bγaζ

D∂aqYf iC
Y f X

iAWBCDA

− 1

4
∇Y WBCDAζ̄EζDζ̄CζBf iY Ef X

iA . (3.65)

The equations of motion given by (3.63) and (3.65) form a multiplet, since (3.64)
has the counterpart

δ̂(ε)�X = ε̄i /∇�Af X
iA − ε̄i�Bζ̄CζDf X

iAWBCDA , (3.66)

where the covariant derivative of �A is defined similar to (3.58). As announced
before, we thus have already physical equations despite the absence of an action.

3.2.3.4 Rigid Superconformal

To allow the generalization to superconformal couplings, the essential question is
whether the manifold has dilatational symmetry. This means, according to (1.30),

12We inserted a factor i in order that �A is symplectic Majorana.
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that there is a ‘closed homothetic Killing vector’ [31] (see also [18, Sect. 15.7]). The
dilatations act as13

δD(λD)qX = λDkD
X(q), (3.67)

where kD
X satisfies (we generalize here already to D dimensions, as the modifica-

tions involve only a normalization factor)

∇Y kD
X ≡ ∂Y kD

X + �X
YZkD

Z = D − 2

2
δY

X. (3.68)

On a flat manifold, the fields qX have thus Weyl weight (D − 2)/2. The presence
of this vector allows one to extend the transformations of rigid supersymmetry to
the superconformal group [31, 32, 14], with e.g. transformations under the SU(2)

R-symmetry group:

δSU(2)(λ)qX = ∓2 λ · kX , kX ≡ 1

D − 2
kD

Y JY
X . (3.69)

Note the sign difference between D = 4, upper sign, and D = 5, 6, lower sign, as
in (A.24).

In general, one can introduce the sections

AiA = kX
Df iA

X , (3.70)

and in terms of these

kX = − 1

D − 2
AiAτ i

j f X
jA . (3.71)

Using the rules of covariant transformations (and in particular that ∇Y f iA
X

implies δ̂f iA
X = 0), the AiA transform as

δ̂AiA = f iA
X∇Y kX

D δqY = D − 2

2
f iA

XδqX

= D − 2

2

(
−iε̄iζA + λDAiA)

+ AjAλj
i , (3.72)

13Note that we give here only the intrinsic part of the dilatations, i.e. the λD term in (1.24), and
not the ‘orbital’ part included in the general coordinate transformation ξμ(x). Similarly for special
conformal transformations, we will write here only the intrinsic part represented as (kμφ) in that
equation and also the ‘orbital’ S-supersymmetry part (1.60) is not mentioned explicitly.



86 3 Matter Multiplets

using (3.68) and (3.69). Note that the supersymmetry transformation in this
equation is written for the symplectic spinors of D = 5, 6. Below, we will write
them for D = 4.

We can then derive the other (super)conformal transformations using
the algebra. The intrinsic special conformal transformations on qX and ζA
vanish. They have only the ‘orbital’ parts as follows from (1.24). The latter
imply e.g. that δK(λK)/∂qX �= 0. The algebra gives then for the intrinsic S-
supersymmetry

δS(ηi)ζA = −AiAηi . (3.73)

The (intrinsic) bosonic conformal symmetries act as

δ̂DζA = D − 1

2
λDζA , δ̂SU(2)ζ

A = 0 . (3.74)

The fermions are inert under SU(2) R-symmetries group.

3.2.3.5 Isometries and Coupling to Vector Multiplets

So far we considered the hypermultiplet with ungauged isometries. A more general
situation includes couplings to vector multiplets and in this case one has to define
the hypermultiplet in the algebra including the vector multiplet with its gauge
transformations. Let us consider general isometries (not necessarily gauged) of the
hypermultiplet:

δG(θ)qX = θI kI
X(q) , (3.75)

where θI are constant parameters and the kI
X(q) represent the transformations. The

index I identifies the different generators of the isometry group. Then a subgroup
of these could be gauged, identified by an embedding tensor [33–36] projecting
from all the symmetries to those that are gauged.14 When we have a metric, kI

X(q)

should be Killing vectors in order to define symmetries of the action. As we have
not discussed a metric yet, we could define here some generalization of symmetries,
but we just refer the interested reader to [14]. The transformations (3.75) constitute
an algebra with structure constants fIJ

K ,

kI
Y ∂Y kJ

X − kJ
Y ∂Y kI

X = fIJ
K kK

X . (3.76)

14However, we will here soon gauge the symmetries, and thus restrict the index I to the gauged
symmetries.
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We consider symmetries that respect the hypercomplex structure. This is the
requirement that kI

X(q) is tri-holomorphic:

(
∇XkY

I

)
JY

Z = JX
Y

(
∇Y kZ

I

)
. (3.77)

Extracting affine connections from this equation, it can be written as

(LkI J
)

X
Y ≡ kI

Z∂ZJX
Y − ∂ZkI

Y JX
Z + ∂XkI

ZJZ
Y = 0 . (3.78)

This is the Lie derivative of the complex structure in the direction of the vector kI .
Multiplying (3.77) with f X

iAf jB
Y proves that f Y

iA∇Y kI
Xf jB

X should be
proportional to δ

j
i . This leads to the definition of the matrices

tIAB =1

2
f Y

iA∇Y kI
Xf iB

X, f Y
iA∇Y kI

Xf jB
X = δ

j

i tIAB . (3.79)

These matrices satisfy a reality and an almost covariant constancy equation15

(
tIAB)∗ = −ρĀCtICDρDB̄ = −tI

Ā
B̄ , ∇XtIAB = kY

I RXYA
B , (3.80)

as well as the commutation relations

[tI , tJ ]BA = fIJ
KtKBA − kX

I kY
J RXYBA , (3.81)

which are consistent with (3.56).
The transformation of the fermions under the gauge group follows from the

requirement that the commutator of supersymmetry and Killing symmetries van-
ishes. It is given by the above-defined matrices:

δ̂G(θ)ζA = θI tIBA(q)ζB . (3.82)

For the coupling of the hypermultiplet to the vector gauge multiplets in the
presence of the superconformal algebra, these isometries should be consistent
with the conformal structure. The requirement that dilatations commute with the
isometries is the equation

0 = kD
Y ∂Y kI

X − kI
Y ∂Y kD

X = kD
Y ∇Y kI

X − D − 2

2
kI

X . (3.83)

15Note that we defined tI
ĀB̄ using the common NW–SE convention for raising and lowering

indices, and that the equation implies in this sense that tI is imaginary.
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This implies that the dilatations also commute with the SU(2) transformations
generated by kX, defined in (3.69). This equation can also be written as

AiBtIBA = D − 2

2
f iA

XkI
X . (3.84)

One can also obtain the covariant transformation of AiA (as for the other
transformations in (3.72)), using (3.77) and (3.83)

δ̂G(θ)AiA = AiBθI tIBA . (3.85)

3.2.3.6 Non-closure Relations in D = 5

We now have all the ingredients to understand the case when the isometry with index
I is coupled to the gauge symmetry of the vector multiplet (label by index I )—see
Sect. 3.2.1.2. The full form of (3.47) is now

δQ(ε)qX = −iε̄iζAf X
iA ,

δ̂Q(ε)ζA = 1
2 i /DqXf iA

Xεi + 1
2σ I kI

Xf iA
Xεi , (3.86)

with covariant derivatives defined as follows:

DμqX = ∂μqX − WI
μkI

X ,

∇μζA ≡ ∂μζA +
(
∂μqX

)
ζBωXBA − WI

μζBtIBA. (3.87)

Due to the gaugings, there are extra terms in the supersymmetry transformation
of the fermions and the non-closure functions (3.63) and (3.65) are now modified to
[14]

i�A = /∇ζA + 1

2
WBCDAζBζ̄CζD − ikI

Xf iA
Xψi

I + iζBσ I tIBA ,

�X = �qX − 1

2
ζ̄Aγaζ

BDaqY WY
XAB − 1

4
f X

iAεij f Y
jE∇Y WBCDAζ̄EζDζ̄CζB

− kY
I JY

X · YI + σ IσJ kY
J ∇Y kX

I

+ 2iψ̄iI ζ BtIBAf X
iA − 1

2σ I kY
I WY

XABζ̄AζB , (3.88)

where �qX is now also covariant for gauge transformations:

�qX = ∂aD
aqX − Daq

Y∇Y kX
I WaI + Daq

Y DaqZ�X
YZ , (3.89)
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and we introduced the notation, using (3.41),

WX
Y AB = LX

Y CDWABCD . (3.90)

3.2.3.7 Rigid Superconformal Case in D = 4

To formulate the results in 4 dimensions, we consider the same bosonic fields
qX. The fermionic formulae have to be translated using the rules explained in
Appendix A.4. This leads again to 2nH spinors, whose left-handed part is ζA, with
A = 1, . . . , 2nH and the left-handed ones (C-conjugates of the former) are ζĀ.
Thus, in absence of an SU(2) index on these spinors, the chirality is indicated by
the fact that it has the index A up or down. One can start again by allowing arbitrary
transformations for the scalars, and transformations of the spinors to derivatives
of the scalars and deduce again the conditions on quantities that appear in these
transformations. We would arrive again at (3.31) and (3.32). But as we have already
done all the work for D = 5 (for which in fact the formalism is easier) we can also
translate the results from what we already know.

This leads in 4 dimensions to the transformations [18, (20.33)]

δQ(ε)qX = −if X
iAε̄iζA + if XiĀε̄i ζĀ ,

δ̂Q(ε)ζA = 1
2 if iA

X /DqXεi + iX̄I kI
Xf iA

Xεij ε
j ,

δQ(ε)ζĀ = − 1
2 ifiĀX

/DqXεi − iXI kI
XfiAXεij εj , (3.91)

where the complex conjugates of the frame fields are denoted as f XiĀ = (f X
iA)∗

and fiĀX = (f iA
X)∗, see e.g. (A.31). DμqX is given in (3.87).

The non-closure of the supersymmetries on the fermions is obtained in
Appendix A.4 as an example of the translation rules from D = 5 to D = 4.
The result is

[
δQ(ε1), δQ(ε2)

]
ζA = ξμ∂μζA − 1

2εij ρB̄A�B̄ε̄1iε2j − 1
2γμε̄i

[1γ
με2]i�A ,

(3.92)

with ξμ as in (1.6). The non-closure functions are

�A ≡ − /∇ζA + 1
2WBCD̄AζD̄ζ̄BζC + 2X̄I tI

B̄AζB̄ + if iA
XkI

Xεij�
Ij ,

�Ā ≡ − /∇ζĀ + 1
2W B̄C̄

DĀζ̄B̄ζC̄ζD + 2XI tIBĀζB + ikI
Xf iB

X�I
i ρBĀ ,

(3.93)

where WBCD̄A = ρD̄EWBCEA and W B̄C̄DĀ is its complex conjugate. We will raise
or lower indices changing the holomorphicity with the tensors ρAB̄ in NE–SW
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convention, e.g.

tI
ĀB = ρĀAtIAB , tIAB̄ = tIABρBB̄ =

(
tI
ĀB)∗

. (3.94)

These fermionic non-closure functions transform in real bosonic quantities �X as
in (3.64)16:

δ(ε)�A = − 1
2 if iA

Xεi�
X ,

�X = �qX + 2
(
XI X̄J + XJ X̄I

)
kY
I ∇Y kJ

X − 2kI
Y JY

X · YI

+ XI kI
Y WY

X
ABζ̄AζB + X̄I kI

Y WY
XĀB̄ζ̄ĀζĀ + ζ̄ AγaζB̄Daq

YWY
XAB̄

+ 1
2f X

iAεij f Y
jB∇Y W D̄ĒCAζ̄BζCζ̄D̄ζĒ

− 2if X
iA�̄I iζB̄tI

B̄A + 2if XiĀ�̄I
i ζ

BtIBĀ . (3.95)

Finally, for the remaining U(1) factor in the R-symmetry group we find

δ̂U(1)q
X = 0,

δ̂U(1)ζ
A = 1

2 iλT ζA. (3.96)

3.2.4 Hypermultiplets in Superconformal Gravity

The previous results (Sect. 3.2.3) for rigid hypermultiplets can be generalized to
local superconformal invariant theories by properly ‘covariantizing’ the previous
expressions with respect to the superconformal algebra.

3.2.4.1 Case D = 5

The supersymmetry rules for the hypermultiplet coupled to the D = 5 standard
Weyl multiplet and the gauge symmetry of the vector multiplet were found to be
[14]17

δqX = −iε̄iζAf X
iA ,

δ̂ζA = 1
2 i /DqXf iA

Xεi + 1
2σ I kI

Xf iA
Xεi − AiAηi . (3.97)

16Note that we use here the translation between Y ij and Y from (A.21), which will be used a lot
further on.
17A few changes of notation can be found in (C.3).
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The new ingredients with respect to (3.86) are the ‘matter terms’ of the Weyl
multiplets and the S-supersymmetry. These transformations and the conformal and
R-symmetry transformations determine the superconformal covariant derivatives

DμqX = DμqX + iψ̄i
μζAf X

iA,

DμqX = ∂μqX − bμkX
D − 2Vμ · kX − WI

μkI
X,

D̂μζA = D̂μζA − 1
2 i /DqXf iA

Xψμi − 1
3γ · T kD

Xf iA
Xψμi − 1

2σ I kX
I f iA

Xψμi

+AiAφμi , (3.98)

D̂μζA = ∂μζA + 1
4ωμ

bcγbcζ
A − 2bμζA − WI

μζBtIBA + ∂μqXωXBAζB .

The equations of motion for ζA can be obtained by imposing the closure of the
superconformal algebra

i�A ≡ /DζA + 1

2
WBCDAζBζ̄CζD + 2iγ abTabζ

A

− ikI
Xf iA

XψI
i + iζBσ I tIBA + 8

3 ikD
Xf iA

Xχi . (3.99)

3.2.4.2 Case D = 4

The covariant supersymmetry transformations are those from (3.91) with only a
replacement of Dμ by the fully covariant Dμ, which are

DμqX = DμqX + iψ̄i
μζAf X

iA − iεij ρĀBψ̄μiζĀf X
jB ,

DμqX = ∂μqX − bμkD
X + 2Vμ · kX − Wμ

IkI
X , (3.100)

D̂μζA = D̂μζA − 1
2 if iA

X /DqXψμi − iX̄I kI
Xf iA

Xεijψ
j
μ − iAiAφμi ,

D̂μζA =
(
∂μ + 1

4ωμ
abγab − 3

2bμ + 1
2 iAμ

)
ζA − WI

μtIBAζB + ∂μqXωXBAζB .

Note that the hatted covariant derivatives are covariant for target space transforma-
tions as well and that ∂μqX in the last term should not be covariantized to obtain this
covariant expression D̂μζA. Because of central-charge like terms, the algebra does
not close on the spinors. The new non-closure functions �A will be used to derive
the action for the hypermultiplet, as we will explain in Sect. 3.3.3.

In terms of AiA (3.70), the covariant transformations are

δ̂AiA ≡ δAiA + AiBωXBAδqX = −iε̄iζA + iε̄j ζB̄ εjiρB̄A ,

δ̂ζA = 1
2 i /̂DAiAεi + iX̄I kI

Xf iA
Xεij ε

j + iAiAηi , (3.101)
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where we used

D̂μAiA = f iA
X∇Y kD

XDμqY = f iA
XDμqX

= f iA
X∂μqX − bμAiA − AjAVμj

i − WI
μAiBtIBA

+ iψ̄i
μζA − iψ̄μj ζB̄ εjiρB̄A . (3.102)

Note that the δ̂ used in (3.101) has no SU(2) connection, similar as in (3.32).

3.2.5 Tensor Multiplet in D = 4 Local Superconformal Case

The tensor multiplet in D = 4 dimensions was obtained in [7]. It is in fact the
multiplet of the constraints (3.28). We can name these constraints, respectively, as
Lij , ϕi , Eb (satisfying a differential constraint) and G. These transform in each
other and thus form a multiplet. It starts from an SU(2) triplet Lij (hence satisfying
the reality property as in (A.21)). The constrained Ea implies that the multiplet has a
gauge tensor Eμν (3 degrees of freedom) and a complex auxiliary G, to balance the
8 fermionic degrees of freedom in ϕi . The transformation rules in the background
of conformal supergravity are18

δLij = ε̄(iϕj) + εikεj� ε̄(kϕ�) + 2λDLij ,

δϕi = 1
2

/DLij εj + 1
2εij /E εj − 1

2G εi + 2Lij ηj +
(

5
2λD + 1

2 iλT

)
ϕi ,

δG = −ε̄i /Dϕi − 3ε̄iL
ij χj + 1

8 ε̄iγ
abT +

abϕj ε
ij +2η̄iϕ

i + (3λD − iλT ) G ,

δEμν = 1
4 iε̄iγμνϕ

j εij − 1
4 iε̄iγμνϕj εij + 1

2 iLij εjkε̄iγ[μψν]k − 1
2 iLij εjkε̄iγ[μψν]k ,

(3.103)

where

Eμ = e−1εμνρσ ∂νEρσ − 1
2

(
ψ̄i

νγ
μνϕj εij + h.c.

)
− 1

2 ie−1εμνρσ Lij ε
jkψ̄i

νγρψσk .

(3.104)

A first step in building actions from this multiplet has been set in [7], but more
applications can be found in [8].

18Of course the tensor multiplet for rigid supersymmetry can be obtained from (3.103) by setting to
zero the fields of the Weyl multiplet (T and ψμ) and replacing the covariant derivatives by ordinary
derivatives.
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3.3 Construction of the Superconformal Actions

This section is devoted to the construction of local superconformally invariant
actions for the vector and the hypermultiplet. As we have shown in the example of
Sect. 3.1, later one gauge-fixes the extra symmetry such that the remaining theory
has just the super-Poincaré invariance. Crucially, as we will explain in Chap. 4, for
these last steps one needs to include compensating multiplets. Besides interacting
matter, the resulting action from the gauge fixing will contain also the pure gravity
sector.

3.3.1 Action for Vector Multiplets in D = 4

Let us consider the basic supergravity multiplet coupled to n vector multiplets. The
physical content that one should have (from representation theory of the super-
Poincaré group) can be represented in terms of particles with spin as follows:

SUGRA vector multiplet
2

3
2

3
2

1 1 → n + 1
+n ∗ 1

2
1
2

0 0

. (3.105)

The supergravity sector contains the graviton, 2 gravitini and a so-called gravipho-
ton, Wμ (that is a spin-1 field). When coupled to n vector multiplets, Wμ gets part
of a set of n + 1 vectors, which will be uniformly described by the special Kähler
geometry. The scalars inside these vector multiplets appear as n complex fields zα ,
with α = 1, . . . , n.

In the framework of superconformal calculus, we consider n+ 1 superconformal
vector multiplets with scalars XI (I = 0, . . . , n) in the background of the Weyl
multiplet (main formulae can be found in Sect. 3.2.1). One of these multiplets should
contain the graviphoton, while we will use the missing fermions and scalars to fix
superfluous gauge symmetries of the superconformal algebra.

Exploiting the fact that vector multiplets are constrained chiral multiplets
(Sect. 3.2.2), we can build an action for the vector multiplet from an action for
a chiral multiplet. The lowest component of the chiral multiplet should be A =
1
2 iF(X),19 being then A a new chiral superfield, given by an arbitrary holomorphic
function of the scalars in vector multiplets. This function F(X) will determine the

19The overall normalization is for later convenience to get a result with the normalization that is
most used in the literature
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action, and is called the prepotential. The further components are then defined by
the transformation laws, which give, comparing with (3.21), �i = 1

2 iFI�
I
i , where

we defined

FI (X) = ∂

∂XI
F (X) , F̄I (X̄) = ∂

∂X̄I
F̄ (X̄) ,

FIJ = ∂

∂XI

∂

∂XJ
F(X) . . . . (3.106)

Calculating the transformation of �i one finds Bij , G−
ab, . . .

A = 1
2 iF

�i = 1
2 iFI�

I
i

Bij = 1
2 iFIY

I
ij − 1

8 iFIJ �̄I
i �

J
j

G−
ab = 1

2 iFIF −I
ab − 1

16 iFIJ �̄I
i γab�

J
j εij

�i = − 1
2 iFI /D�jI εij − 1

2 iFIf
I
JKX̄J �K

i − 1
8 iFIJ γ abF −I

ab �J
i

− 1
2 iFIJ �J

k Y I
ij ε

jk + 1
96 iFIJKγ ab�I

i �̄
J
j γab�

K
k εjk

C = −iFIDaD
aX̄I − 1

4 iFIF+I
ab T +ab − 3

2 iFI χ̄i�
iI + 1

2 iFI f
I
JK�̄iJ �jKεij

−iFIf
I
JKf J

LMX̄KX̄LXM − 1
2 iFIJ Y ijI Y J

ij + 1
4 iFIJF −I

ab F −abJ

+ 1
2 iFIJ �̄I

i
/D�iJ − 1

2 iFIJ f I
KLX̄K�̄J

i �L
j εij + 1

4 iFIJKY ijI �̄J
i �K

j

− 1
16 iFIJKεij �̄I

i γ
abF −J

ab �K
j + 1

48 iFIJKL�̄I
i �

J
l �̄K

j �L
k εij εkl. (3.107)

This is the composite chiral multiplet that we discussed at the end of Sect. 3.2.2,
and on which we can apply the ‘density formula’ (3.30). As mentioned, F(X) must
be homogeneous of weight 2, where the X fields carry weight 1. This implies the
following relations for the derivatives of F :

2F = FIX
I , FIJ XJ = FI , FIJKXK = 0. (3.108)

Inserting (3.107) in (3.30) leads to

e−1Lg = −iFI DaD
aX̄I + 1

4 iFIJF −I
ab F −abJ + 1

2 iFIJ �̄I
i

/D�iJ

− 1
2 iFIJ Y ijI Y J

ij + 1
4 iFIJKY ijI �̄J

i �K
j

− 1
16 iFIJKεij �̄I

i γ
abF−J

ab �K
j + 1

48 iFIJKL�̄I
i �

J
� �̄K

j �L
k εij εk�

+ 1
2 iFIf

I
JK�̄iJ �jKεij − 1

2 iFIJ f I
KLX̄K�̄J

i �L
j εij
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−iFI f
I
JKf J

LMX̄KX̄LXM

− 1
4 iFIF +I

ab T +ab − 3
2 iFI χ̄i�

iI − 1
2 iFIJ ψ̄i · γ�I

jY
ijJ

+ 1
2 iFIf

I
JKX̄J ψ̄i · γ�K

j εij − 1
2 iFI ψ̄i · γ /D�iI

+ 1
8 iFIJF−I

ab ψ̄i · γ γ ab�J
j εij

+ 1
12 iFIJK�̄J

� �K
j ψ̄i · γ�I

kε
ij εk� + 1

16 iFI ψ̄μiγ · T +γ μ�I
j ε

ij

− 1
8 iFT +

abT
+ab

− 1
2 iFI ψ̄μiγ

μνψνj Y
ijI − 1

2 iFT +μνψ̄μiψνj ε
ij + 1

2 iFIF −μνI ψ̄μiψνj ε
ij

− 1
16 iFIJ ψ̄μiψνj �̄

I
kγ

μν�J
� εij εk� + 1

8 iFIJ �̄I
k�

J
� ψ̄μiγ

μνψνj ε
ikεj�

− 1
4εij εk�e−1εμνρσ ψ̄μiψνj ψ̄ρk

(
γσFI �

I
� + Fψσ�

) + h.c. (3.109)

The first terms of the action (3.109) are kinetic terms for the scalars X, the vectors
and the fermions �. The following term says that Yij is an auxiliary field that
can be eliminated by its field equation. The first 5 lines are the ones that we
would encounter also in rigid supersymmetry, see [18, (20.15)]. For these terms,
the relations (3.108) have not been used, and this part is thus the general result for
rigid supersymmetry. The other lines are due to the local superconformal symmetry.
For those interested in rigid symmetry, we repeat that in that case the covariant
derivatives (3.19) reduce to, e.g.,

DaX
I = ∂aX

I − WK
a XJ fJK

I ,

Da�
I
i = ∂a�

I − WK
a �J

i fJK
I ,

F I
ab = 2∂[aWI

b] + WK
b WJ

a fJK
I . (3.110)

Note that the Lagrangian is a total derivative if F(X) is a quadratic function of XI

with real coefficients:

F(X) = CIJ XIXJ , CIJ ∈ R → S =
∫

d4x Lg = 0 . (3.111)

In deriving the above formulae, we assumed for simplicity that F is a gauge-
invariant function such that Lg is invariant under gauge transformations. However,
the property (3.111) suggests that there is a more general situation [37, 38] in which
F transforms under the gauge transformations as

δG(θ)F ≡ FI θ
KXJ fJK

I = −θICI,JKXJ XK, (3.112)
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where CI,JK are real constants. In fact, due to (3.111), the action is invariant for
rigid transformations that satisfy (3.112), transforming to

δGLg = 1
3CI,JKεμνρσ θIF J

μνF
K
ρσ . (3.113)

In order to allow this extra possibility with local θI , one has to add to (3.109) a
Chern–Simons term

LCS = 2
3CI,JKεμνρσ Wμ

IWν
J

(
∂ρWσ

K + 3
8fLM

KWρ
LWσ

M
)

. (3.114)

To prove the supersymmetry invariance of Lg +LCS one needs a few more relations
that follow from (3.113). Replacing the arbitrary θK by XK the variation vanishes,
and thus for the consistency of (3.112) we should have

C(I,JK)X
I XJ XK = 0 , (3.115)

namely the completely symmetric part of CI,JK must vanish.
By taking two derivatives of (3.112) we obtain

CK,IJ = fK(I
LFJ)L − 1

2FIJLXMfMK
L = fK(I

LF̄J )L − 1
2 F̄IJLX̄MfMK

L .

(3.116)

To prove the invariance of the sum of (3.109) and (3.114) one needs an identity [37]

fKL
MCM,IJ = 2fJ [KMCL],IM + 2fI [KMCL],JM , (3.117)

which follows from the requirement that the gauge group closes on F(X). A simple
example of the occurrence of a Chern–Simons term is given in [37, (3.21)].

3.3.1.1 Simplifications

In order to get a more useful form of the action, one has to make the conformal
covariant derivatives explicit. The principle is explained for the bosonic case
in (3.2). This leads here to

�
CX̄I = ∂̂μDμX̄I − ω μν

μ DνX̄
I − iWμDμX̄I + 2f μ

μ X̄I − 1
2 ψ̄μiD

μ�iI

+ 1
32 ψ̄i

μγ μγ · T +�jIεij − 1
2�̄iI γ · φi − 3

4 ψ̄i · γχiX̄
I

− 1
2εij ψ̄i · γ�J

j X̄Kf I
JK − 1

2εij ψ̄
i · γ�jJ X̄Kf I

JK. (3.118)
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Hence the first term of (3.109) after adding a total derivative, is

−iFI�CX̄I = iFIJDμXI
(
DμX̄J − 1

2 ψ̄
μ
i �iJ

)
− 2iFIfμ

μX̄I + 1
2 iFI ψ̄μiD

μ�iI

− 1
32 iFI ψ̄

i
μγ μγ · T − 1

2�jI εij + 1
2 iFI �̄

iI γ · φi + 3
4 iFI ψ̄

i · γχiX̄
I

+ 1
2 iFI ε

ij ψ̄i · γ�J
j X̄Kf I

JK + 1
2 iFI εij ψ̄

i · γ�jJ X̄Kf I
JK

+ iFI ψ̄
i
[μγ νψν]i

(
DμX̄I − 1

2 ψ̄
μ
i �iI

)

+ total derivative. (3.119)

The other term that has to be written explicitly is the covariant derivative of the
fermions

/D�iJ = /D�iJ − γ μγ νψi
μ

(
DνX̄

J − 1
2 ψ̄νj�

jJ
)

− 1
4γμγ · F +J ψ

μ
j εij − γ · ψj

(
Y ijJ + εij X̄KXLf J

KL

) − 2X̄J γ · φi .

(3.120)

Deleting total derivatives, the action is at this point (adding also (3.114))

e−1Lg = iFIJDμXIDμX̄J − 2iFIfμ
μX̄I + 1

4 iFIJF−I
ab F −abJ − 1

8 iFT +
abT

+ab

− 1
4 iFIF +I

ab T +ab − 1
2 iFIJ Y ijI Y J

ij − iFI f
I
JKf J

LMX̄KX̄LXM + e−1LCS

+ iFI X̄
I ψ̄μiγ

μνφi
ν + 1

2 iFIJ �̄I
i
/D�iJ + 1

2 iFI ψ̄μiγ
μνγ ρDρX̄I ψi

ν

+ 1
2 iFI �̄

iI γ · φi

+ 1
8 iFI ψ̄μiγ

μνγ · F +I εijψνj − 1
32 iFI ψ̄

i
μγ μγ · T +�jIεij

+ 3
4 iFI ψ̄

i · γχiX̄
I

+ 1
2 iFI ε

ij ψ̄i · γ�J
j X̄Kf I

JK + 1
2 iFI εij ψ̄

i · γ�jJ X̄Kf I
JK

+ iFI ψ̄
i[μγ νψν]i

(
DμX̄I − 1

2 ψ̄
μ
i �iI

)
− 3

2 iFI χ̄i�
iI

+ 1
2 iFIf

I
JK�̄iJ �jKεij

− 1
2 iFIJDμXJ ψ̄

μ
i �iI − 1

2 iFI ψ̄μiγ
μνDν�

iI

− 1
2 iFIJ �̄I

i γ
μγ νψi

μDνX̄
J + 1

2 iFIF −μνI ψ̄μiψνj ε
ij

− 1
8 iFIJ �̄I

i γμγ · F +J ψ
μ
j εij − 1

2 iFIJ �̄I
i γ · ψjε

ij X̄KXLf J
KL

− iFIJ X̄J �̄I
i γ · φi − 1

2 iFIJ f I
KLX̄K�̄J

i �L
j εij + 1

4 iFIJKY ijI �̄J
i �K

j

− 1
16 iFIJKεij �̄I

i γ
abF −J

ab �K
j
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− 1
2 iεij ψ̄μi

(
FT +μνψνj − 1

8γ · T +γ μFI�
I
j

)

+ 1
2 iFIf

I
JKX̄J ψ̄i · γ�K

j εij + 1
8 iFIJF−I

ab ψ̄i · γ γ ab�J
j εij

+ 1
12 iFIJK�̄J

� �K
j ψ̄i · γ�I

kε
ij εk� − 1

4 iFI ψ̄μiγ
μνγ ρψi

ν ψ̄ρk�
kI

+ 1
8 iFIJ �̄I

k�
J
� ψ̄μiγ

μνψνj ε
ikεj� + 1

4 iFIJ �̄I
i γ

μγ νψi
μψ̄νj�

jJ

+ 1
48 iFIJKL�̄I

i �
J
� �̄K

j �L
k εij εk� − 1

16 iFIJ ψ̄μiψνj �̄
I
kγ

μν�J
� εij εk�

− 1
4εij εk�e−1εμνρσ ψ̄μiψνj ψ̄ρk

(
γσ FI�

I
� + Fψσ�

) + h.c. (3.121)

We use then (3.16) and the values of the conformal gauge fields that follow from the
constraints:

fμ
μ = − 1

12R − 1
2D

+
{

1
8 ψ̄ i · γχi + 1

24 ie−1εμνρσ ψ̄i
μγνDρψσi + 1

24 ψ̄ i
μψj

ν εij T
+μν + h.c.

}
,

φi
μ = 1

4γμχi + 1
4

(
γ νργμ − 1

3γμγ νρ
) (

Dνψ
i
ρ − 1

16γ · T −εij γνψρj

)
.

(3.122)

This leads to various simplifications, after which the vector action reduces to [18,
(20.89)]:

e−1Lg = − 1
6N R − N D − NIJ DμXI DμX̄J + NIJ YI · YJ

+ NIJ fKL
I X̄KXLfMN

J X̄MXN + e−1LCS

+
{
− 1

4 iF̄IJ F̂+I
μν F̂+μνJ − 1

16NIJ XIXJ T +
abT

+ab + 1
4NIJ XI F̂+J

ab T +ab

− 1
4NIJ �̄iI /D�J

i + 1
6N ψ̄iμγ μνρDνψ

i
ρ

− 1
2N ψ̄iaγ aχi + NIJ XI �̄iJ χi − 1

3NIJ XJ �̄iI γ μνDμψνi

+ 1
2NIJ ψ̄i

μ
/DX̄I γ μ�J

i + 1
4NIJ X̄I ψ̄aiγ

abcψi
bDcX

J

+ 1
2 iF̄IJ εij

(
�̄iI γμ − X̄I ψ̄i

μ

)
ψj

ν
˜̂
FμνJ − 1

16 iFIJK�̄I
i γ

μν�J
j εij F− K

μν

+ 1
2NIJ �̄I

i fKL
J

(
�L

j + γ aψajX
L
)

X̄Kεij

+
(

1
12N ψ̄a

i ψb
j − 1

6NIJ X̄I �̄J
i γ aψb

j + 1
32 iFIJK�̄I

i γ
ab�J

j X̄K
)

T −
abε

ij

− 1
4 iFIJKDμXI �̄J

i γ μ�iK + 1
4 iFIJKY ijI �̄J

i �K
j + h.c.

}

+ 4-fermion terms . (3.123)
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Here, important quantities are introduced, which will often be used below:

NIJ = NIJ (X, X̄) ≡ 2 Im FIJ = −iFIJ + iF̄IJ , N ≡ NIJ XI X̄J .

(3.124)

Since FIJ is a function of XK , we have the chain rule for the gauge transforma-
tions:

δFIJ = FIJKδXK = FIJKθLXMfML
K , (3.125)

and therefore the gauge transformation of NIJ is by (3.116)

δNIJ = 2θKfK(I
LNJ)L . (3.126)

Covariant derivatives are presented in (3.19) together with

Dμψνi =
(
∂μ + 1

4ωμ
abγab + 1

2bμ + 1
2 iAμ

)
ψνi + Vμi

jψνj . (3.127)

3.3.2 Action for Vector Multiplets in D = 5

The scheme for D = 5 is similar to (3.105) with the only exception that vector
multiplets20 have only one real scalar, and thus at the end we will have n real scalars,
which are the σ I that we saw already in Sect. 3.2.1. For D = 6, which we will not
treat in detail here, it is also be similar but without scalars in the vector multiplets.

The rigid superconformally invariant action D = 5 is determined by a prepoten-
tial CIJKσ IσJ σK cubic in the scalars σ I [39, 40]. Since the vectors WI

μ can gauge
a group, I is also the index of the adjoint of the gauge group. As a consequence, the
local superconformal action is determined by a gauge-invariant symmetric tensor
CIJK

fI (J
MCKL)M = 0. (3.128)

20We use here and below freely the terminology ‘spin 1’ for vectors, spin- 1
2 for spinors, . . . , though

of course only in 4 dimensions the representations of the little group of the Lorentz group can be
characterized by just one number, which is called ‘spin’. In higher dimensions, the representations
should be characterized by more numbers, but often the same fields, like graviton as a symmetric
tensor, vectors, . . . occur, and we denote them freely with the terminology that is appropriate for
the 4-dimensional fields.
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Note that this tensor has no relation to the tensor CI,JK introduced for D = 4
in (3.112). The presence of this tensor allows Chern–Simons terms in the action.
The kinetic term of the scalars defines the ‘very special real geometry’ (see [18,
Sect. 20.3.2]). The full superconformal invariant action takes the form [5]

e−1Lg = CIJK

[(
− 1

4 F̂ I
μνF̂

μνJ − 1
2 ψ̄I /DψJ + 1

3σI�cσ J

+ 1
6Daσ

IDaσJ + 2YI · YJ
)

σK

− 4
3σIσJ σK

(
D + 26

3 TabT
ab

)
+ 4σI σJ F̂K

abT
ab

− 1
8 iψ̄I γ · F̂ J ψK − 1

2 iψ̄ iIψjJ YK
ij + iσI ψ̄J γ · T ψK − 8iσI σJ ψ̄Kχ

+ 1
6σI ψ̄μγ μ

(
iσJ /DψK + 1

2 i( /DσJ )ψK − 1
4γ ·F̂ J ψK + 2σJ γ ·T ψK

−8σJ σKχ
)

− 1
6 ψ̄aγbψ

I
(
σJ F̂ abK − 8σJ σKT ab

) − 1
12σI ψ̄λγ

μνλψJ F̂K
μν

+ 1
12 iσI ψ̄aψb

(
σJ F̂ abK − 8σJ σKT ab

) + 1
48 iσI σJ ψ̄λγ

μνλρψρF̂K
μν

− 1
2σI ψ̄ i

μγ μψjJYK
ij + 1

6 iσIσJ ψ̄ i
μγ μνψ

j
ν YK

ij − 1
24 iψ̄μγνψ

I ψ̄J γ μνψK

+ 1
12 iψ̄ i

μγ μψjI ψ̄J
i ψK

j − 1
48σI ψ̄μψνψ̄

J γ μνψK + 1
24σI ψ̄ i

μγ μνψj
ν ψ̄J

i ψK
j

− 1
12σI ψ̄λγ

μνλψJ ψ̄μγνψ
K + 1

24 iσIσJ ψ̄λγ
μνλψKψ̄μψν

+ 1
48 iσIσJ ψ̄λγ

μνλρψρψ̄μγνψ
K + 1

96σIσJ σKψ̄λγ
μνλρψρψ̄μψν

− 1
24e−1εμνλρσ WI

μ

(
FJ

νλF
K
ρσ − fFG

JWF
ν WG

λ

(
1
2FK

ρσ − 1
10fHL

KWH
ρ WL

σ

))

+ 1
4 iσIσJ fLM

Kψ̄LψM
]

, (3.129)

where covariant derivatives and F̂ I
μν are given in (3.12) and (3.13), and the

superconformal d’Alembertian is defined as

�
cσ I = DaDaσ

I

=
(
∂a − 2ba + ω ba

b

)
Daσ

I + fJK
IWJ

a DaσK − 1
2 iψ̄μDμψI − 2σI ψ̄μγ μχ

+ 1
2 ψ̄μγ μγ · T ψI + 1

2 φ̄μγ μψI + 2fμ
μσI − 1

2 ψ̄μγ μfJK
IψJ σK . (3.130)

The dependent gauge fields are given in (2.100).
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3.3.3 Action for Hypermultiplets

While the actions of vector multiplets were constructed using tensor calculus manip-
ulations, for the hypermultiplets we use another procedure. The main difference
is that we have already the equations of motion from the non-closure relations,
e.g. (3.99) in D = 5, and we can therefore infer the action from the latter. To this
end, we need a few ingredients that we are going to introduce in the following.

3.3.3.1 Ingredients

We first define a covariantly constant antisymmetric tensor CAB(q) that describes
the proportionality between the field equations for the fermions ζA and the non-
closure functions. For example, in D = 5,

δShyper

δζ̄A = 2CABi�B . (3.131)

Then, once the right-hand side of (3.131) is known, one can functionally integrate
the above equation in order to obtain the action. The properties of the tensor are
(independent whether we consider D = 5 or D = 4):

∇XCAB ≡ ∂XCAB + 2ωX[ACCB]C = 0 ,

CAB = −CBA ,

CĀB̄ ≡ (CAB)∗ = ρĀCρB̄DCCD . (3.132)

As will become clear below, the kinetic terms involve the Hermitian metric in
tangent space

dĀB ≡ −ρĀCCCB ,

dĀB = (dB̄A)∗ = ρĀCdD̄CρBD̄ , (3.133)

such that

CAB = ρAC̄d C̄B . (3.134)

We also define an inverse

CACCBC = δAB , (3.135)
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so that we can use these matrices to raise and lower A indices, using the common
NE–SW convention

VA = V BCBA , V A = CABVB . (3.136)

On the other hand, we raise or lower indices changing the holomorphicity as
in (3.94). This is then consistent with changing the holomorphicity using dĀB. For
example, for the gauge-transformation matrices in (3.94):

tIAB = tIACCCB = tIAB̄dB̄B . (3.137)

Consistency of the transformations of the left- and right-hand side of (3.131)
under the isometry group, determined by (3.82), implies that this matrix should be
symmetric:

tIAB = tIBA . (3.138)

This equation is, using (3.80), equivalent to

tI
Ā
B̄dB̄C = tICBdĀB , (3.139)

which shows more clearly that it is related to the invariance of the action with
signature matrix dĀB.

With the above conditions, dĀB respects the quaternionic structure. It has been
proven in [37], using the theorems of [41], that at any point one can choose a basis
such that ρ is in the form (3.35) and at the same time

dĀB =

⎛

⎜
⎜
⎝

η

η

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

−1lp
1lq

−1lp
1lq

⎞

⎟
⎟
⎠ , p+q = nH . (3.140)

For rigid supersymmetry, positive kinetic terms will be obtained for p = 0 and
q = nH . For supergravity we need one compensating multiplet and will use p = 1.
These matrices should be covariantly constant. As we use a basis where they are
actually constant, this implies from (3.132) that (using the lowering of indices as
in (3.136))

2ωX[ACCB]C = −ωXAB + ωXBA = 0 . (3.141)

Thus the USp-connection is symmetric in such bases. From

∇XdĀC = −ω̄X
Ā
B̄dB̄C − ωXCDdĀD = 0 , (3.142)
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one finds

dĀCωXBC = −ω̄X
Ā
C̄d C̄B . (3.143)

When d = 1l the above condition is the antihermiticity of ω. In the preferred basis
with (3.35) and (3.140) we can also write

CAB =
(

0 η

−η 0

)
, tIAB =

(
UI VI

WI UI
∗
)

,
VI

T = ηVIη , WI
T = ηWIη ,

U† = −ηUη , V ∗ = −W .

(3.144)

This expresses that the transformations are in the subgroup of G�(nH ,H) that
preserves the antisymmetric metric CAB and the metric dĀB, which is USp(2p, 2q).

We define then the metric of the manifold to be

gXY =
(
f iĀ

X

)∗
dĀBf iB

Y = f iA
XεijCABf jB

Y , (3.145)

such that the holonomy associated to gXY is indeed USp(2p, 2q).
The curvature tensor on the scalar manifold is determined in terms of a 4-index

symmetric tensor in Sp(2nH ), denoted by WABCD:

WABCD ≡ WABCECED = − εij f X
iAf Y

jBRXYCD

= 1
2f XiAf Y

iBf ZkCf W
kDRXYZW , (3.146)

where we used the metric gXY (3.145) to lower the indices.

3.3.3.2 Remark on the Conformal Symmetry

Due to the fact that we have now a metric available, we can invoke the homothetic
Killing equation (3.68) and, similarly as in (1.45), introduce a scalar function k̃D
such that

kDX = gXY kD
Y = ∂Xk̃D . (3.147)

It is also possible to start from this scalar function, and generate the metric from

gXY = 2

D − 2
∇X∂Y k̃D . (3.148)

We also define kD
2 using the metric (3.145)

kD
2 ≡ gXY kX

D kY
D . (3.149)
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It will be also useful to express kD
2 in terms of the sections introduced in (3.70) and

their complex conjugates

AiĀ =
(
AiA

)∗ = AjBρBĀεji , AiA = −εij ρB̄AAj B̄ . (3.150)

To do so, we note that the matrix

Mi
j ≡ AiAdB̄AAj B̄ , (3.151)

is Hermitian and equal to εikεj�M
�
k , i.e. σ2M

T σ 2. Therefore it should be propor-
tional to the unit matrix. Indeed, using (3.70) and (3.145)

Mi
j = 1

2δi
jA

kAdB̄AAkB̄ = 1
2δi

j kD
2 . (3.152)

Another way in which kD
2 appears is in terms of an inner product of the SU(2)

Killing vectors introduced in (3.69):

kD
2 = 1

3 (D − 2)2kX · kX . (3.153)

It is useful to record the relation between these quantities for arbitrary vectors A
and B:

A · kX B · kX = 1

(D − 2)2 kD
2A · B . (3.154)

3.3.3.3 Moment Maps

The isometries defined in (3.75) can be expressed in terms of moment maps. The
definition of the latter depends on the theory. As we will discuss in Sect. 5.4.1,
isometries for Kähler manifolds can be generically generated from a real moment
map function using the complex structure and the metric. The hypermultiplet
geometry has three complex structures, and as such have a triplet moment map for
any isometry PI . They should satisfy

∂XPI = JX
Y kIY . (3.155)

Furthermore, they satisfy an ‘equivariance relation’, which is necessary to build
supersymmetric actions with these symmetries:

kI
XJXY kJ

Y = fIJ
KPK. (3.156)
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With conformal symmetry, the solution of (3.155) is determined to be21

PI = kXkIX = 1

D − 2
kD

Y JY
XkIX = 2

(D − 2)2 AiAtIABτ ijA
jB . (3.157)

In this context, it is also convenient to rewrite an expression that appears in the
potential that occurs in these theories

kX
I kJX = 4

(D − 2)2 εijA
iAAjBtIACCCDtJBD . (3.158)

3.3.3.4 Action for Hypermultiplets in D = 5

The resulting action is [5]

e−1Lh = − 1
2gXY Daq

XDaqY + ζ̄A /DζA + 4
9DkD

2 + 8
27T abTabkD

2

+ 16
3 iζ̄AχikD

Xf iA
X + 2iζ̄Aγ · T ζA − 1

4WABCDζ̄AζBζ̄ CζD

− 2
9 ψ̄aγ

aχkD
2 − 1

3 ζ̄Aγ aγ · T ψaik
Xf iA

X − 1
2 iζ̄Aγ aγ bψaiDbq

Xf iA
X

+ 2
3fa

akD
2 − 1

6 iψ̄aγ
abφbkD

2 + ζ̄Aγ aφaikD
Xf iA

X

+ 1
12 ψ̄i

aγ
abcψ

j
b Dcq

Y JYX ij kD
X − 1

9 ikD
2ψ̄a

(
ψbTab − 1

2γ abcdψbTcd

)

+iσ I tIB
Aζ̄AζB − 2ikX

I f iA
Xζ̄AψI

i − 1
2σ I kX

I f iA
Xζ̄Aγ aψai

− 1
2 ψ̄i

aγ
aψjI PIij + 1

4 iψ̄i
aγ

abψ
j

b σ IPIij + Y I
ijP

ij

I − 1
2σ IσJ kX

I kJX ,

(3.159)

with covariant derivatives given in (3.98).

3.3.3.5 Action for Hypermultiplets in D = 4

When we discuss D = 4, we can multiply (3.131) at both sides with a chiral
projection PR . Using the rules (A.63) we should now impose for the action Shyper

δShyper

δζ̄Ā
= 2dĀB�B . (3.160)

21It is a nice exercise to prove that (3.155) is solved by (3.157). You may replace the ∂X by
covariant derivatives and use (3.69), (3.39), (3.68), (3.77) and (3.83).
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We also want the action to generate the field equations for the scalars that we have
seen in (3.95). This leads in rigid supersymmetry to

Lh = − 1
2gXY DμqXDμqY −

(
ζ̄Ā /∇ζBdĀB + h.c.

)

+ 1
2WABEF d C̄EdD̄F ζ̄C̄ζD̄ζ̄AζB

+
(

2XI tIABζ̄AζB + 2if iA
X kX

I ζ̄B̄�jIεij d
B̄A + h.c.

)

+ 2PI · YI − 2X̄IXJ kI
XkJX , (3.161)

with the covariant derivatives in (3.87), which satisfies (3.160), and also

δShyper

δqX
= gXY �Y −

(
2ζ̄Ā�BωXBCdĀC + h.c.

)
. (3.162)

See [18, Exercises 20.8 and 20.9] for a concrete example.
After gauge covariantization and using the values of the conformal gauge fields as

in (3.122) and the covariant derivatives (3.100), the superconformal hypermultiplet
action with gauged isometries in D = 4 is [18, (20.93)]

e−1Lh = − 1
12kD

2R + 1
4kD

2D − 1
2gXY DμqXDμqY − 2X̄IXJ kI

XkJX + 2PI · YI

+
{

− ζ̄Ā /̂DζBdĀB + 1
12kD

2ψ̄iμγ μνρDνψ
i
ρ

+ 1
8kD

2ψ̄iaγ aχi − 2idĀBAiBζ̄Āχi

+ 1
2 iζ̄Āγ a /DqXψaif

iB
XdĀB − 1

3 idĀBAiBζ̄Āγ μνDμψνi

+
(

1
12 idĀBAiBζ̄Āγaψ

j
b − 1

48kD
2ψ̄i

aψ
j
b

)
T +abεij

− 1
8 ζ̄Āγ abT +

abζB̄CĀB̄ + 2iX̄I kX
I ζ̄Āγ aψ

j
a εij d

ĀBf iB
X

+ 2XI ζ̄AζBtIAB + 2ikX
I f iA

Xζ̄B̄�jIεij d
B̄A

+ 1
2 ψ̄aj γ

a�I
i PI

ij + 1
2 X̄I ψ̄i

aγ
abψ

j
b PIij + h.c.

}

+ 1
2 ψ̄i

aγ
abcψbjDcq

XkX · τ i
j + 4-fermion terms . (3.163)

We can rewrite the kinetic terms for the scalars qX in terms of the sections (3.70)
using the bosonic part of (3.102)

gXY DμqXDμqY = εijCAB
(
D̂μAiA

) (
D̂μAjB

)
. (3.164)
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3.3.4 Splitting the Hypermultiplets and Example

In general we did not use the basis (3.35). Sometimes, however, it will be convenient
to use such basis in examples. To do this, we split the index A = 1, . . . , 2nH into
A = (αa), with α = 1, 2 and a = 1, . . . , nH . The index Ā will then have the same
form, but with a in the opposite (up-down) position. We can then write the canonical
basis with (3.35) and (3.140) as

ρAB̄ =εαβδb
a , dĀB = ηabδ

α
β , CAB = ηabεαβ . (3.165)

The components of AiA can then be written as Aiαa and (Aiαa)∗ = Ajβbεjiεβα.
Upon this splitting the action (3.163) starts with

e−1Lh = − 1
12kD

2R + 1
4kD

2D − 1
2D̂μAiαaD̂μAjβbεij εαβηab + · · · ,

kD
2 =AiαaAjβbεij εαβηab = Aiαa

(
Aiβb

)∗
ηab . (3.166)

The conditions on the symmetry matrices tIAB (see (3.144)) are such that they can
be decomposed as

tIαa
βb = tI0a

bδα
β + tIa

bτα
β , tI0a

b, tIa
b ∈ R ,

tI0a
b = −ηactI0d

cηdb , tIa
b = ηactId

cηdb . (3.167)

As an example, we may consider

tIαa
βb = iQIa

b(σ3)α
β , QIa

b ∈ R , QIa
b = ηbcQIc

dηda . (3.168)

Then from (3.84) and (3.157) we have

kI
X = if X

i(αa)A
iβbQIb

a(σ3)β
α ,

PI = 1
2 iAiαaQIab(A

jβb)∗τ i
j (σ3)α

β , (3.169)

with QIab = QIa
cηcb = QIba .
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