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Preface

Supergravity theories play an important role in present-day research on fundamental
interactions. A profound knowledge can only be gained by understanding how
supergravity theories are constructed. To understand the necessary techniques is not
easy starting from the published literature. Despite the presence of a few books, it
turns out that a detailed explanation is still lacking and this is particularly the case
for supergravity theories with matter couplings in so-called N = 2 supergravity. In
this book, we want to provide a detailed explanation of these theories and tools that
researchers have used to construct supergravity theories with 8 real supercharges, in
4, 5 and 6 dimensions.

The basic technique is the superconformal calculus. We explain these methods
from basic principles. Chapter 1 will introduce the basic ingredients: the multiplets
and the symmetries that will be instrumental in the rest of the book. In Chap. 2 it
will be explained how these symmetry groups can be promoted to gauge groups.
The matter multiplets will enter the game in Chap. 3: first defining these multiplets
in the superconformal context, and then actions will be constructed. These are
reduced to super-Poincaré theories in Chap. 4. The beautiful geometric structure that
these theories enjoy is discussed and characterized in Chap. 5. These geometries
go together under the name of special geometries, which include special Kähler
geometry and quaternionic-Kähler manifolds.

For readers who want to progress soon to final results, Chap. 6 gives a shorter
account.

The text grew from lecture notes during the semester ‘Supergravity, superstrings
and M-theory’ at Institut Henri Poincaré, Paris, in November 2000. Parts of it have
been available on internet sites and were appreciated by many researchers. We hope
that this book will be useful as well for students as for researchers who want to know
how these standard theories are constructed and what is their geometric structure.

Palaiseau, France Edoardo Lauria
Leuven, Belgium Antoine Van Proeyen
September 2019
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Chapter 1
Basic Ingredients

Abstract We give an introduction to the book, discussing the role of the N = 2
theories, its geometric structure, and the superconformal tensor calculus. We also
refer to other treatments. We then set out the plan of the book.

In the second part of the chapter we introduce tools that are useful for the
construction of superconformal gauge theory and multiplets. We first discuss the
catalogue of supersymmetric theories with 8 supercharges (Sect. 1.2) and their
multiplets (Sect. 1.2.1). After a short Sect. 1.2.2 with the strategy, we discuss the
conformal (Sect. 1.2.3) and then superconformal (Sect. 1.2.4) groups. The transfor-
mations of the fields under the conformal symmetry are also given in Sect. 1.2.3,
while for the fermionic symmetries, this is discussed in a short Sect. 1.2.5.

1.1 Introduction

Theories with 8 supercharges, i.e. N = 2 in D = 4, 5 and 6, occupy a special place
in the atlas of supersymmetric quantum field theories and supergravities. They lead
to very interesting geometries called ‘special manifolds’, including special Kähler
and quaternionic-Kähler geometries.

Why are the theories with 8 supersymmetries so interesting? The maximal
supergravities1 contain 32 supersymmetries. These are the N = 8 theories
in 4 dimensions, and exist in spaces of Lorentzian signature with at most 11
dimensions, i.e. (10, 1) spacetime dimensions. If one allows more time directions,
32 supersymmetries are possible in 12 dimensions with (10, 2) or (6, 6) signature.
However, these theories allow no matter multiplets.2 For the geometry, determined
by the kinetic terms of the scalars, this means that the manifold is fixed once the

1The restriction is due to interacting field theory descriptions, which e.g. in 4 dimensions does not
allow fields with spin larger than 2.
2We distinguish the multiplet that contains the graviton and gravitini, and is determined by
specifying the dimension and the number of supersymmetries, and other multiplets, which we
call ‘matter multiplets’.

© Springer Nature Switzerland AG 2020
E. Lauria, A. Van Proeyen, N = 2 Supergravity inD = 4, 5, 6 Dimensions,
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dimension is given. For all theories with 32 supersymmetries this is a symmetric
space.

Matter multiplets are possible if one limits the number of supersymmetries to 16
(thus N = 4 in 4 dimensions). Theories with 16 real supersymmetries exist up to
10 dimensions with Lorentzian signature. In this case, the geometry is fixed to a
particular coset geometry once the number of matter multiplets that are coupled to
supergravity is given.

The situation becomes more interesting if the number of supersymmetries
is 8. Now there are functions, which can be varied continuously, that determine
the geometry. This makes the geometries much more interesting. Of course, if
one further restricts to 4 supersymmetries, more geometries would be possible.
In 4 dimensions, e.g., general Kähler manifolds appear. For 8 supersymmetries,
these are restricted to ‘special Kähler manifolds’, determined by a holomorphic
prepotential [1]. This restriction makes the class of manifolds very interesting and
manageable. The holomorphicity is a useful ingredient, and was e.g. essential to
allow the solution of the theory in the Seiberg–Witten model [2, 3]. The theories
with 8 supersymmetries are thus the maximally supersymmetric ones that are not
completely determined by the number of fields in the model, but allow arbitrary
functions in their definition, i.e. continuous deformations of the metric of the
manifolds.

A short account of the necessary techniques and results of this book has been
given in Chaps. 20 and 21 of [4]. The scope of this work is to elaborate further
on these results, as well as allowing a more complete and detailed explanation of
these techniques. Specifically, we will consider N = 2 supergravities in 4, 5 and 6
dimensions, and at the end pay special attention to theD = 4 framework. We use the
terminology N = 2 in 6 dimensions for what is also called (1, 0) in 6 dimensions.
Indeed, in 6 dimensions one can have chiral and antichiral real supersymmetry
generators, and the nomenclature can thus be done by giving multiples of 8 real
chiral, namely the minimal spinor of Spin(5, 1). Also for N = 2 in 5 dimensions,
the minimal spinor of Spin(4, 1) has 8 real components. We denote these theories
still as N = 2 because for practical work we always use doublets of 4-component
spinors. Note also that for other signatures (2 or 3 time directions in D = 5) one
can impose Majorana conditions such that only 4 of them survive (N = 1). But
for Minkowski signature,3 one can only have (symplectic) Majorana conditions,
which need doublets of 4-component spinors. The basic properties of the spinors
are repeated in Appendix A.3. As well for D = 4, 5 and 6 we have an SU(2)
automorphism group of the spinors, and for 4 dimensions the automorphism group
has an extra U(1), important for the Kähler geometry that we will discuss.

3In this review, we only consider Minkowski signature of spacetime. In the literature, also other
signatures are discussed, e.g. Euclidean signature in a series of papers [5–8], and special geometry
has also been defined for other signatures [9–12].
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The geometry described by the scalar fields in these theories is a main topic in
this book and for these theories in general. This geometry is a direct product of two
parts: the geometry of the scalars of vector multiplets and the one of the scalars
of hypermultiplets. Even the supergravity couplings do not mix these independent
parts [13]. That hypermultiplets in N = 2 rigid supersymmetric theories lead to
hyper-Kähler manifolds was already known since [14]. In supergravity theories
these geometries are upgraded to quaternionic [15] geometries.4 The fact that
actions for vector multiplets can be constructed from an arbitrary holomorphic
function in supersymmetry has been found first for rigid supersymmetry in [17].
For the coupling in supergravity this appeared first in [1]. In the following years
it was called ‘Kähler manifolds of restricted type’, see e.g. [18]. Later, Strominger
[19] gave it the name ‘special Kähler geometry’. It was then also recognized that
this is the geometry of the moduli of Calabi–Yau threefolds. In the first years only
special coordinates were used. In [20] a start was made to formulate the geometry
in arbitrary coordinates.

At the start of the second superstring revolution, people first considered models
with N = 2 and special geometry [2, 3] because of the restrictive nature
(holomorphicity) of these theories. The concept of duality became very important at
that time. These dualities in N = 2,D = 4 have a natural formulation in the context
of superconformal tensor calculus.

Superconformal tensor calculus is another main topic of this book. It has been
the basis of the first constructions of general matter couplings. It was initiated
in N = 1 due to the work of S. Ferrara, M. Kaku, P.K. Townsend and P. van
Nieuwenhuizen [21–23]. The extra symmetries of the superconformal group give
an advantage over the direct super-Poincaré approach since many aspects of the
theory get a clear structure. In fact, the natural vectors in which the dualities have
to be formulated are the multiplets of the superconformal tensor calculus. In this
approach, the superconformal symmetry is used as a tool to obtain the theories
that have super-Poincaré symmetry. All the super-Poincaré theories are constructed
as broken superconformal theories. Lately the conformal symmetry has gained
importance. There is of course its interest in AdS/CFT correspondence, although
in that context one mostly considers rigid conformal symmetry. But it may also
be interesting to consider which parts of the supergravity theory are explicitly
determined by the breaking of the superconformal invariance, and which parts are
generically determined by the superconformal structure. Thus the superconformal
approach may be more interesting than just as a tool to obtain super-Poincaré results.

The tensor calculus clarifies also the off-shell structure, and as such has been used
in the developments of ‘supersymmetric localization’, where the auxiliary fields in
the conformal calculus play an important role. We refer to [24] for an overview.

4Strictly speaking: to quaternionic-Kähler geometry, which means that there is a metric. For the
difference between these manifolds and the used terminology we refer to the review [16].
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The conformal tensor calculus is not the only one to obtain the theories that we
consider. There are several superspace methods5 developed for N = 2. Standard
superspace techniques for D = 4, N = 2 conformal supergravity have been
described long ago, see [25, 26] and references therein. For D = 5 and D = 6 they
have been developed in [27, 28]. An approach that is closer to the superconformal
methods is the ‘conformal superspace’ method. This has been developed in [29]
first for N = 1, and extended to D = 4, N = 2 in [30, 31], for D = 5 in [32]
and for D = 6 in [33, 34]. In this method the entire superconformal symmetry is
gauged as in the conformal tensor calculus, and the connection with the approach in
components was developed in detail in [31, 32, 34]. Especially for hypermultiplets,
the harmonic and projective superspace approaches are alternatives allowing off-
shell matter couplings at the expense of an infinite number of auxiliary fields,
packed in dependences on extra superspace coordinates. The harmonic superspace
for rigid N = 2 supersymmetry has been developed in [35] and reviewed in [36],
while projective superspace was developed in [37–39] and is reviewed in [40, 41].
For supergravity the harmonic and projective approaches have been developed in
[42–45, 27, 46, 26, 47–49].

Furthermore there is the rheonomic approach that has been used for another
formulation of the general N = 2 theories in four dimensions [50, 51], and in five
dimensions [52]. A relation with the conformal approach has been obtained in [53].
These methods (including the conformal tensor calculus) do not prove uniqueness
of the N = 2 theories. Recently some uniqueness proofs (at least for the pure
supergravities) have been given in [54] based on BRST-BV methods [55–58]. They
are consistent with the results found with other methods.

The plan of the book is as follows. In the rest of this chapter we will introduce
some basic concepts: the supersymmetries and multiplets and the superconformal
groups. In Chap. 2 we gauge these groups by a gauge multiplet, which is called the
Weyl multiplet. This gauging of the spacetime symmetries is not straightforward
and needs curvature constraints.

In Chap. 3 the matter multiplets are introduced: the vector multiplets in 6,
5 and 4 dimensions in that order, and the hypermultiplets, whose structure is
not dependent on the spacetime dimension. We have chosen to first present the
multiplets independent of the actions. We thus give the definition of the fields,
possible reality conditions, and how they represent the superconformal algebra.
Then we present the construction of the superconformal-invariant actions for vector
and for hypermultiplets. Another alternative order is possible in Chap. 3: those
mainly interested in vector multiplets can go from Sect. 3.2.1 directly to Sect. 3.3.1
for D = 4 or Sect. 3.3.2 for D = 5. On the other hand after discussing
hypermultiplets in Sects. 3.2.3 and 3.2.4 one can also directly go to the discussion
of its actions in Sect. 3.3.3.

5We thank G. Tartaglino-Mazzucchelli for his assistance in this overview.
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After the partial gauge fixing (i.e. gauge fixing of the symmetries that are
not in the super-Poincaré algebra) the actions of vector- and hypermultiplets are
connected. The total action is considered in Chap. 4. We first discuss in Sect. 4.2
pure supergravity in 4 dimensions, obtained by adding to the minimal field represen-
tation (Weyl multiplet + a compensating vector multiplet) a second compensating
multiplet. Here we consider three possibilities. In the other parts of the book, we
always use the hypermultiplet as second compensating multiplet. We also consider
the reduction of these pure supergravity theories to N = 1 in Sect. 4.3. Then
we go back to the complete matter-coupled supergravities. We discuss convenient
coordinates for the scalars in these theories. The vector multiplets are discussed
more thoroughly in preparation of the following chapter. The D = 5 and D = 6
theories are discussed shortly, referring to the techniques explained in detail for
D = 4.

The structure of the special geometries that result are studied in Chap. 5. This
structure is also characterized independently of its supergravity construction. The
isometries (gauged or non-gauged) are discussed. In Sect. 5.5 the (charged) black
holes are discussed as an application and the role of the symplectic transformations
in this context becomes apparent. In Sect. 5.6 we will also give an introduction to the
properties of quaternionic-Kähler spaces independent of supergravity. The matter
couplings with N = 2 in 5 and 6 dimensions are very much related to those in
four dimensions as we discuss in Sect. 5.7. We discuss the differences and specific
properties of the N = 2 theories in these dimensions. Very special geometry will
then show up in relations between the scalar manifolds defined by these theories.
This is further clarified in relations between the homogeneous spaces.

Chapter 6 gives the final super-Poincaré theory. In Sect. 6.1 the actions, super-
symmetry transformations and algebra are written explicitly forD = 4. Section 6.2
is a bit similar for D = 5, though we are less complete there, referring to [59] for
the full results in the same notation. In the final remarks in Sect. 6.3 we stress the
choices and restrictions that we made throughout the book. This includes then also
references to papers that go beyond the present text, and the outlook to applications.

The notation in this book is the same as in [4]. But in Appendix A this is
explained more explicitly for the theories that we consider. We repeat the use of
indices, spinor notations, SU(2) conventions and the relations between spinors in
D = 6, D = 5 and D = 4. A short summary of simple superalgebras is given
in Appendix B. Finally for convenience of the reader who also wants to use the
original papers, we give in Appendix C the translations of our notation to those of
these papers.

Readers may also choose to start immediately with Chap. 6. There we repeat the
main ingredients and that chapter contain references to earlier parts when necessary.
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1.2 Supersymmetric Theories with 8 Real Supercharges

As mentioned in the introduction, we will be focusing on theories with 8 super-
charges in D = 4, 5, 6, being the latter the maximal dimension for theories with
8 supercharges.6 In fact, one could first construct D = 6 theories and then derive
several results for D < 6 from dimensional reduction. This programme has been
started for the superconformal theories in [60, 61]. There are many aspects that can
be treated at once for D = 4, 5, 6. The treatment of the Weyl multiplets is for a
large part the same in these dimensions. Hypermultiplets (multiplets with scalars
and spinors only) do not feel the difference of dimension. This difference is relevant
for vectors and tensors, which under dimensional reduction decompose in several
representations of the Lorentz algebra. However, only a subset of the couplings of
vectors multiplets inD = 4 andD = 5 can be obtained from dimensional reduction,
as we will explicitly demonstrate in Sect. 5.7. Spinors are also treated differently,
and this has an immediate consequence on the supersymmetry algebra.

In 4 dimensions, the supersymmetries are represented by Majorana spinors, but
in practice one can also use chiral spinors. We refer to [4, Chap. 3] for the notation
and definitions of the properties of the spinors. A supersymmetry operation is
represented as

δ(ε) = ε̄iQi + ε̄iQi ,
εi = γ∗εi , Qi = γ∗Qi , εi = −γ∗εi , Qi = −γ∗Qi , (1.1)

where γ∗ = iγ0γ1γ2γ3 is Hermitian with (γ∗)2 = 1l and Q is the supersymmetry
operator that acts on the fields, e.g. if δ(ε)X = 1

2 ε̄
iλi , then QiX = 1

2λi and
QiX = 0.

In 5 dimensions, one uses symplectic Majorana spinors. The reality rules of
Appendix A.3.2 imply that we have to insert a factor i in δ(ε) (see also the different
meaning of the position of the indices i, as explained in Appendix A.3.2):

δ(ε) = iε̄iQi . (1.2)

In 6 dimensions, symplectic Majorana–Weyl spinors can be used. In this case we
have

δ(ε) = ε̄iQi ,
γ∗εi = εi , γ∗Qi = −Qi , (1.3)

where γ∗ is given in (A.39).

6Of course one can introduce 8 supercharges in 1 or 2 dimensions, where the elementary spinors
have just one component. In 3 dimensions, gamma matrices are 2 × 2 matrices, and the theories
with 8 supercharges are N = 4 theories where the spinors satisfy a reality condition (a Majorana
condition).
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The properties of the spinors also imply how the translations appear in the
anticommutator of two supersymmetries (the overall real factor is a matter of choice
of normalization):

D = 4 :
{
Qiα,Qβj

}
= − 1

2 (γaPL)αβ δ
i
jP

a

D = 5 and D = 6 :
{
Qiα,Q

j
β

}
= − 1

2ε
ij (γa)αβ P

a . (1.4)

On the use of spinor indices, see [4, Sect. 3.2.2]. The normalization of the spinor
generators is chosen to agree with much of the original literature in each case. See
Appendix C.

Exercise 1.1 Verify that, given (1.4) one finds

[δ(ε1), δ(ε2)] = ξa(ε1, ε2)Pa , (1.5)

with

D = 4 : ξa(ε1, ε2) = 1
2

(
ε̄i2γ

aε1i + ε̄2iγ aεi1
)

D = 5 and D = 6 : ξa(ε1, ε2) = 1
2 ε̄2γ

aε1 . (1.6)

��

1.2.1 Multiplets

On general grounds, in any supersymmetric theory, the bosonic and fermionic
number of degrees of freedom must be equal.7 More precisely, this rule applies
to transformations between states where the Q-transformation of a fermionic state
gives a bosonic state, and vice versa, with symbolically {Q,Q} = P , and P
invertible. The invertible P can refer to translations in rigid supersymmetry or
general coordinate transformations in supergravity. On the contrary, this rule does
not apply to nonlinear realizations where some fields transform to constants.

Counting the number of degrees of freedom may be very subtle, and for this
reason we need to be more precise about the correct procedure that we should adopt.
Firstly, we will see that the anticommutator of supersymmetries often does not only
contain the translations, but also gauge transformations. Therefore, the argument
about equal number of bosonic and fermionic states is only correct up to gauge

7Different proofs of this statement can be given. A general argument has been given in [62].
This has been further discussed in [4, App. 6B]. For on-shell states in D = 4, see also [4, Sect.
6.4.1]. For solutions of field equations that preserve supersymmetry, a detailed explanation is in
Appendix B of [63].
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transformations. In other words, in general we should subtract the gauge degrees of
freedom in order to perform the counting.8

Secondly, there are two possible countings of degrees of freedom: on-shell
counting and off-shell counting. When the supersymmetry algebra is applied to
the physical states determined by the equations of motion we denote this as ‘on-
shell counting’. In that case, the consistency requires that there are as many
bosonic as fermionic physical states. On the other hand, in order to couple many
different actions to the multiplets that we are constructing, we usually want the
supersymmetry algebra to be satisfied independently of the equations of motion. In
other words, we consider an off-shell closed algebra and adopt off-shell counting of
degrees of freedom. More details on the concepts of on-shell and off-shell degrees
of freedom are explained in [4] in the beginning of Chap. 4 and in Appendix 6B.

Let us first consider on-shell states. The massless on-shell multiplets for extended
supersymmetry, on which we will later impose the superconformal algebra, are
classified in the classical reference [64]. The multiplets of N = 2 for the dimensions
in which we are interested are given in Table 1.1. The on-shell components for
massless fields form representations of SO(D − 2) with an internal SU(2) group
(which is the R−symmetry group of N = 2 theories and is labelled by i-
type indices). The representation content is indicated then as its multiplicity in
(SO(D − 2),SU(2)).

The vectors (Vμ or Wμ) are a fundamental representation of SO(D − 2) and
have therefore D − 2 on-shell components (see the analysis in [4, Sect.4.1.2]).
The gravitons eaμ are (after taking Lorentz symmetry into account) described as
the symmetric gμν . The on-shell components are symmetric traceless tensors so one
counts 1

2 (D − 2 + 1)(D − 2)− 1 = D(D − 3)/2 (see the analysis in [4, Sect.8.2]).
In order to count the degrees of freedom for spinors one must take into account

that their characteristics differ in different dimensions. It is useful to first discuss
the off-shell degrees of freedom and then go to the on-shell degrees of freedom
which just differ by a factor 1

2 . The number of complex components of a spinor
in dimension D is given by 2[D/2]. In D = 4 we can furthermore impose
consistent Majorana conditions, so that the minimal spinor has 4 real components,
or, equivalently consider one helicity with 2 complex components (and the other
helicity is then related by complex conjugation). ForN = 2, spinors in 4 dimensions
will be taken to be part of an SU(2) doublet with index i, leading to 8 real
components. For D = 5 it is not possible to define the Majorana condition in a
consistent manner and one must use the symplectic Majorana condition. This does
not lower the number of components but rewrites them as a symplectic pair of
Majorana spinors related through charge conjugation. Thus one finds that a spinor in
5 dimensions has 4 complex components or 2 × 4 real components. For D = 6 one
still needs to use symplectic Majorana spinors but, moreover, one can impose the
Weyl condition, which projects half of the components of the spinors, thus leaving

8General coordinate transformations are also local gauge transformations that are more general
than fixed translations. So the general coordinate-equivalent states should also be subtracted.



1.2 Supersymmetric Theories with 8 Real Supercharges 9

Table 1.1 Massless on-shell
representations

D = 4 eaμ ψiμ Vμ Gravity

SO(2) (2,1) (2,2) (2,1)

Wμ λi X X∗ Vector multiplet

(2,1) (2,2) (1,1) (1,1)

ζ qi Hypermultiplet

(2,1) (1,2)

D = 5 eaμ ψiμ Vμ Gravity

SO(3) (5,1) (4,2) (3,1)

Wμ λi σ Vector multiplet

(3,1) (2,2) (1,1)

ζ qi Hypermultiplet

(2,1) (1,2)

D = 6 eaμ ψiμL B−
μν Gravity

SO(4) (3,3;1) (2,3;2) (1,3;1)

B+
μν ψiR σ Tensor multiplet

(3,1;1) (2,1;2) (1,1;1)

Wμ λi Vector multiplet

(2,2;1) (1,2;2)

ζ qi Hypermultiplet

(2,1;1) (1,1;2)

The representation content is indicated as its multiplicity in
(SO(D − 2),SU(2)). The SU(2) representation can also be
identified from the i-type indices. For 6 dimensions, SO(4) =
SU(2)×SU(2), and the corresponding decomposition is written.
The non-symmetric representations are either chiral (chirality is
indicated on the field) or they are antisymmetric tensors with
self-dual (+) or anti-self-dual (−) field strengths. Of course, the
two-form indicated here is not ± self-dual, only its field strength
is

us with 1
2 the number of complex components. So, one gets 8 complex components,

which can be described by the symplectic condition as 2 × 8 real components, and
due to the Weyl condition can be projected to 2 × 4 real components. Hence in all
three cases this leads to 8 real off-shell degrees of freedom. Going from off-shell to
on-shell degrees of freedom means multiplying the number of real components with
1
2 leading to 4 real on-shell degrees of freedom for the three cases that we consider.

The gravitini are described by massless vector–spinors. Their off-shell degrees of
freedom are reduced by the supersymmetry, so that forD = 4, 5, 6 we have 8(D−1)
components. The on-shell degrees of freedom are γ -traceless in D − 2 dimensions
(see [4, Sect.5.1]). Therefore one has (D − 2 − 1) vector degrees of freedom where
the D − 2 comes from the vector representation and the −1 comes from the γ -
traceless condition. One must then multiply these vector degrees of freedom with
the spinor degrees of freedom, which leads to 4(D − 3) degrees of freedom.

The vector multiplets in different dimensions are related by dimensional reduc-
tion. In the highest dimension (D = 6) one has a vector Wμ and a symplectic
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pair of spinors λi . The scalars in lower dimensions can be considered as some of
the vector components of D = 6 after the reduction. For 5 dimensions one has
an additional real scalar σ = W5 and for 4 dimensions an additional complex
scalar X = 1

2 (W4 − iσ). The notion that there are scalar fields present in the vector
multiplet for D = 4, 5 will give rise to special geometries described by these scalar
fields. We will describe this in detail in Chap. 5.

Looking at the hypermultiplets in Table 1.1 one notices that the scalars qi

transform as a doublet under SU(2). Following from the fact that the SU(2)-
transformations are complex this means that the scalars cannot be real. Taking them
complex is equivalent to taking 4 real scalars qX, which will due to supersymmetry
define 3 complex structures. The scalars naturally combine into quaternions as we
will describe in Sect. 3.2.3. The corresponding geometry will thus be of the type of
a quaternionic manifold, which we will exhibit in Sect. 5.6.

Remark that here the on-shell massless multiplets have been mentioned. The
same multiplet may be represented by different off-shell multiplets. In 4 dimensions,
physical scalars may be dualized to antisymmetric tensors. E.g. when one of the
scalars of a vector multiplet is replaced by an antisymmetric tensor, we obtain the
vector–tensor multiplet [65–67]

vector–tensor multiplet: Vμ, λi, φ, Bμν . (1.7)

When one of the scalars of a hypermultiplet is replaced by an antisymmetric tensor,
then this gives the so-called linear multiplet (the name is due to its relation with a
superfield that has a linear constraint)

linear multiplet: ϕi, L(ij), Ea . (1.8)

We write the antisymmetric tensor here as a vector Ea that satisfies a constraint
∂aEa = 0, such that Ea = εabcd∂bEcd . In this way, it can be generalized to D = 5
and D = 6 in a similar way. In these cases the Ea is the field strength of a 3-form
or 4-form, respectively.

In 5 dimensions a vector is dual to a 2-index antisymmetric tensor. Therefore the
vector multiplets can be dualized to antisymmetric tensor multiplets:

D = 5 antisymmetric tensor multiplet: Hμν, λi, φ . (1.9)

For non-abelian multiplets, the two formulations are not equivalent. This has been
investigated in detail in a series of papers of Günaydin and Zagermann [68–70] and
further worked out in [52, 59]. We will come back to this in Sect. 6.2. The above
overview is not exhaustive.
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1.2.2 The Strategy

Our aim is to study the transformation laws and actions for the N = 2 multiplets,
coupled to supergravity. As mentioned in the introduction, there are several ways to
accomplish this. One possible way is to use in intermediate steps symmetries that
will not be present in the final action. Auxiliary enhancement of symmetry has the
particular advantage that it facilitates the construction of the theories, clarifying a
lot of their structures.

The extra symmetry will be the superconformal symmetry and the method
we use goes under the name of superconformal tensor calculus. In the classical
work of Coleman and Mandula [71] and its supersymmetric extension by Haag–
Łopuszański–Sohnius [72], it is proven that the superconformal groups is the largest
spacetime symmetry allowed for a non-trivial quantum field theory.9 Although our
motivation and use of the group is completely different, this gives an indication that
the use of this group may be the most advantageous strategy. Over the years we got
more convinced that indeed the use of conformal symmetries is a very useful and
clarifying method. Analyzing the steps that are taken in local superspaces, we see
that after using part of the superspace constraints, the remaining part that leads to
more insight is equivalent to the structure that we use in the ‘superconformal tensor
calculus’.

What we have in mind can be illustrated first for pure gravity. We show how
Poincaré supergravity is obtained after gauge fixing a conformal invariant action.
The details of this example will come back in Sect. 3.1. We now just give the general
idea. The conformal invariant action for a scalar φ (in 4 dimensions) is10

L = √
g
[

1
2

(
∂μφ

) (
∂μφ

) + 1
12Rφ

2
]
,

δφ = λDφ , δgμν = −2λDgμν , (1.10)

where the second line gives the local dilatation symmetry that leaves this action
invariant. Now, we can gauge fix this dilatation symmetry by choosing11 the gauge

φ =
√

6

κ
. (1.11)

9Coleman and Mandula prove that the largest spacetime group that is allowed without implying
triviality of all scattering amplitudes is the conformal group. This theorem is valid under some
assumptions, like the analyticity of the elastic two-body scattering amplitudes. Haag, Łopuszański
and Sohnius base their analysis on the previous result and use group-theoretical arguments
(essentially Jacobi identities). For an extension of the theorem to strongly coupled quantum field
theories, see e.g. [73, 74].
10Note that the scalar here has negative kinetic energy, and the final gravity action has positive
kinetic energy.
11A gauge fixing can be interpreted as choosing better coordinates such that only one field still
transforms under the corresponding transformations. Then, the invariance is expressed as the

absence of this field from the action. In this case we would use g′
μν = κ2

6 gμνφ
2 as D-invariant

metric. One can check that this redefinition also leads to (1.12) in terms of the new field.
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This leads to the pure Poincaré action

L = 1
2κ2

√
gR . (1.12)

Pure Poincaré is in this way obtained from a conformal action of a scalar after gauge
fixing. This scalar, which we will denote further as ‘compensating scalar’, thus has
no physical modes. Note also that the mass scale of the Poincaré theory is introduced
through the gauge fixing (1.11).

What we have seen is (1) the use of conformal symmetry, (2) construction of a
conformal invariant action, (3) gauge fixing of superfluous symmetries.

In the remaining part of this chapter, we will familiarize ourselves first with the
conformal group, and first of all as a rigid symmetry. We will then take a look at
possible superconformal groups, and repeat the basis rules for gauging symmetries.
In Chap. 2 we will learn how to gauge the superconformal group. The step (2) of the
above overview involves the superconformal construction of multiplets and their
action. This will be the subject of Chap. 3. The step (3) will be taken in Chap. 4,
which will allow us to obtain the physical theories, and be the starting point for
analysing their physical and geometrical contents.

1.2.3 Rigid Conformal Symmetry

Conformal symmetry is defined as the symmetry that preserves angles. Under a
conformal transformation, the metric may change by a Weyl factor. In terms of
infinitesimal transformations x ′μ = xμ + ξμ(x), for a given flat metric ημν , the
latter condition implies the following ‘conformal Killing equation’ for ξμ ≡ ξμ(x)

∂μξν + ∂νξμ − 2

D
ημν∂ρξ

ρ = 0 . (1.13)

Exercise 1.2 Get more insight in the meaning of the statement that these are the
transformations that preserve ‘angles’. To consider angles, we should consider two
variations of the same spacetime point. Consider the vectors from x to xμ + (�1)

μ

and another one to xμ + (�2)
μ, where the deformations are considered to be small.

The angle between these two is

cos2 θ = (�1 ·�2)
2

(�1 ·�1) (�2 ·�2)
. (1.14)

Now we perform a spacetime transformation that takes a point x to x ′(x) = x+ξ(x).
Then the first vector will be between x ′(x) and x ′(x +�1) = x ′(x)+�1 · ∂x ′(x).
The new vector is thus

�′
1 = �1 · ∂x ′(x) = �1 +�1 · ∂ξ(x). (1.15)
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We thus find that

�′
1 ·�′

2 = �1 ·�2 +�ρ1
(
∂ρξ

μ(x)
)
ημν�

ν
2 +�μ1 ημν�ρ2

(
∂ρξ

μ(x)
)
, (1.16)

where we added indices for clarity. If the last factor gives just a scaling, i.e. if

�
ρ
1

(
∂ρξ

μ(x)
)
ημν�

ν
2 +�μ1 ημν�ρ2

(
∂ρξ

μ(x)
) = 2�D(x)�

μ
1 ημν�

ν
2, (1.17)

then it is easy to see that (1.14) is invariant. Indeed, all factors scale with the same
coefficient as the scale factor has to be evaluated at the same spacetime point.

The requirement (1.17) amounts to the scaling of the metric. Indeed, if a metric
scales under spacetime transformations,

δ(dxμημνdxν) ≡ 2dxρ
(
∂ρξ

μ(x)
)
ημνdxν = 2�D(x)(dxμημνdxν), (1.18)

then replace dx in the above by (�1 + �2) and subtract the diagonal terms. This
leads to (1.17) and hence to the invariance of the angle.

Angles are thus preserved by the transformations that scale the metric and these
are the conformal transformations. ��

In D = 2 with as non-zero metric12 elements ηzz̄ = 1, the Killing equations
are reduced to Cauchy–Riemann equations: ∂zξz = ∂z̄ξz̄ = 0. Therefore any
holomorphic (and anti-holomorphic) function is locally a conformal transformation
(ξz̄(z) and ξz(z̄)) and the conformal algebra becomes infinite dimensional (Virasoro
algebra). In dimensions D > 2 the conformal algebra is finite-dimensional and the
general solutions of (1.13) are

ξμ(x) = aμ + λμνxν + λDx
μ +

(
x2λ

μ
K − 2xμx · λK

)
. (1.19)

They contain D translations Pμ corresponding to the parameters aμ, one dilatation
D related to the parameter λD, D(D − 1)/2 (pseudo-)Lorentz rotationsMμν corre-
sponding to the parameters λμν and a set of D ‘special conformal transformations’
Kμ related to the parameters λμK. One may notice that the full set of conformal
transformations contains (D + 1)(D + 2)/2 parameters.

The most general conformal transformation, δC(ξ), can be expressed in terms of
generators as follows:

δC(ξ) = aμPμ + 1
2λ
μνMμν + λDD + λμKKμ . (1.20)

12In Minkowski space z = 1√
2

(
x1 + x0

)
and z̄ = 1√

2

(
x1 − x0

)
are not each other complex

conjugates. In Euclidean signature they are complex conjugates.
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With these transformations, one can obtain the conformal algebra. The non-zero
commutators are

[Mμν,Mρσ ] = −4δ[ρ[μMν]
σ ] ,

[Pμ,Mνρ] = 2ημ[νPρ] , [Kμ,Mνρ] = 2ημ[νKρ] ,

[Pμ,Kν] = 2(ημνD +Mμν) ,
[D,Pμ] = Pμ , [D,Kμ] = −Kμ . (1.21)

The conformal algebra defined on a flat space with signature (p, q), is iso-
morphic to the SO(p + 1, q + 1) algebra. In what follows we will consider a D
dimensional Minkowski space (whose signature is (D − 1, 1) in our conventions),
such that the conformal algebra is the SO(D, 2) algebra.13 Indeed one can define

Mμ̂ν̂ =
⎛
⎝

Mμν 1
2 (P

μ −Kμ) 1
2 (P

μ +Kμ)
− 1

2 (P
ν −Kν) 0 −D

− 1
2 (P

ν +Kν) D 0

⎞
⎠ , (1.22)

where indices are raised w.r.t. the rotation matricesMμ̂
ν̂ with the metric

η̂ = diag (−1, 1, . . . , 1,−1) . (1.23)

When applied on fields, conformal transformations have ‘orbital parts’ and
may have ‘intrinsic parts’. We absorb the orbital parts of all generators in the
conformal Killing vector ξμ(x), given by (1.19). The general form of the conformal
transformations of fields φi(x) is14

δC(ξ)φ
i(x) = ξμ(x)∂μφ

i(x)− 1
2�M

μν(x)mμν
i
j φ
j (x)

+�D(x) kD
i (φ)(x)+ λμKkμi(φ)(x) , (1.24)

where the x-dependent rotation �Mμν(x) and x-dependent dilatation �D(x) are
given by

�Mμν(x) = ∂[νξμ] = λμν − 4x[μλK ν] ,

�D(x) = 1
D
∂ρξ

ρ = λD − 2x · λK , (1.25)

13In the 2-dimensional case SO(2, 2) = SU(1, 1) × SU(1, 1) is realized by the finite subgroup
of the infinite dimensional conformal group, and is well known in terms of L−1 = 1

2 (P0 − P1),

L0 = 1
2 (D+M10), L1 = 1

2 (K0 +K1), L̄−1 = 1
2 (P0 +P1), L̄0 = 1

2 (D−M10), L̄1 = 1
2 (K0 −K1).

Higher order Ln, |n| ≥ 2 have no analogs in D > 2.
14The expression ξ always determines the parameters {aμ, λμν, λD, λ

μ
K} as in (1.19).
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and m[μν]i j φj (x), kD
i (φ)(x) and kiμ(φ)(x) determine the intrinsic part of the

conformal transformations on the fields.
To specify for each field φi its transformations under conformal group one has to

specify the intrinsic part of the conformal transformation, namely

1. Transformations under the Lorentz group, encoded into the matrix (mμν)i j . The
Lorentz transformation matrix mμν should satisfy

mμν
i
kmρσ

k
j −mρσ ikmμνkj = 2ημ[ρmσ ]ν ij − 2ην[ρmσ ]μij . (1.26)

The explicit form for Lorentz transformation matrices is for vectors (the indices
i and j are of the same kind as μ and ν)

mμν
ρ
σ = 2δρ[μην]σ , e.g. δV μ = −λμνVν , (1.27)

while for spinors, (where i and j are (unwritten) spinor indices)

mμν = 1
2γμν , e.g. δ� = − 1

4λ
μνγμν� . (1.28)

2. Transformation under dilatation specified by kD
i (φ). In most cases (and for all

non-scalar fields), we just have

kD
i (φ) = wφi , (1.29)

where w is a real number called the Weyl weight of the field φi (in principle,
different for each field). However, for scalars in a non-trivial manifold with affine
connection �ij k (torsionless, i.e. symmetric in (ij)), these are closed homothetic
Killing vectors, see [4, Sect. 15.7], i.e. solutions of

∇ikD
j ≡ ∂ikD

j + �ikj kD
k = wδji , (1.30)

where again w is the ‘Weyl weight’ and the derivatives ∂i , ∇i are with respect to
the field φi . For �ij k = 0, this reduces to the simple case (1.29).

3. Special conformal transformations can have extra parts apart from those in (1.19)
and (1.25), connected to translations, rotations and dilatations. These are denoted
as kiμ(φ). From the commutator [D,Kμ] = −Kμ and (1.29) it is easy to see
that15

kμ
j ∂j kD

i − kD
j ∂j kμ

i = kμi . (1.31)

15Remember that, for the intrinsic part, δKδDφi = δK(kiD(φ)) = ∂j kiD(φ)δKφj .
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For the simple form of the dilatations (1.29), this means that kμi(φ) must have
Weyl weight one less than that of φi . Also, for consistency of the [K,K]
commutators, the kiμ∂i should be mutually commuting operators.

In this way, the algebra (1.21) is realized on the fields as

[δC(ξ1), δC(ξ2)]φ = δC
(
ξμ = ξν2 ∂νξμ1 − ξν1 ∂νξμ2

)
φ , (1.32)

where ξμ stands for the set {aμ, λμν, λD, λ
μ
K} building (1.19).

To understand fully the meaning of the order of the transformations, consider in
detail the calculation of the commutator of transformations of fields. See e.g. for a
field of zero Weyl weight (kD(φ) = 0), and notice how the transformations act only
on fields, not on explicit spacetime points xμ:

λDa
μ[D,Pμ]φ(x) = (

δD(λD)δP (a
μ)− δP (aμ)δD(λD)

)
φ(x)

= δD(λD)a
μ∂μφ(x)− δP (aμ)λDx

μ∂μφ(x)

= aμ∂μ
(
λDx

ν
)
∂νφ(x)

= aμλD∂μφ(x) = λDa
μPμφ(x) . (1.33)

It is important to notice that the derivative of a field of Weyl weight w has
weight w + 1. E.g. for a scalar with dilatational transformation determined by the
vector kD (and without extra special conformal transformations) we obtain, using
δC(ξ)(∂μφ(x)) = ∂μ(δC(ξ)φ(x))

δC(ξ)∂μφ(x) = ξν(x)∂ν∂μφ(x)+�D(x) ∂μkD(φ)

−�Mμν(x)∂νφ(x)+�D(x)∂μφ(x)− 2 λKμkD(φ) . (1.34)

The first term on the second line says that it behaves as a vector under Lorentz trans-
formations. Furthermore, this equation implies that the dilatational transformation
of ∂μφ is determined by ∂μ(kD(φ) + φ). For the simple transformation (1.29), this
means that the derivative also satisfies such a simple transformation with weight
w + 1. Furthermore, the derivative ∂μφ has an extra part in the special conformal
transformation of the form λνKkν(∂μφ) = −2λKμkD(φ), as can be seen by looking
at the special conformal transformation part in δC(ξ)φ(x).

With these rules the conformal algebra is satisfied. The question remains when
an action is conformally invariant. We consider local actions for fields φi with at
most first derivatives of the fields:

S =
∫

dDx L(φi(x), ∂μφi(x)) . (1.35)

The fields φi are scalars or other representations of the Lorentz group, and have
dilation transformation (1.29) with weight wi for each field (for an extension, see
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further Exercise 1.4). For invariance of the action under Pμ and Mμν one has the
usual requirements of a covariant action. For invariance under dilatation one needs
that the total weight of each term should be equal to the dimension D. Here ∂μ
counts also for 1, as can be seen from (1.34). Then

δDL = ξμ∂μL +D�D(x)L
= ∂μ

(
ξμL) − (

∂μξ
μ
)L +D�D(x)L = ∂μ

(
ξμL) , (1.36)

so the remaining term is a total derivative which vanishes in the action.
Finally, we consider the condition for invariance of an action under special

conformal transformation. The special conformal transformations sit in the last
term of (1.24), and hidden in �D(x) and �M μν(x) in (1.25). The contributions
when the latter are not differentiated in the transformation of ∂μφi , are canceled
by the steps mentioned above where the Lorentz transformations and dilatational
transformations are considered (e.g. in (1.36)). When they are differentiated they
give rise to extra terms

δK,extra∂μφ
i = wi(∂μ�D)φ

i − 1
2 (∂μ�

ρσ
M )mρσ

i
jφ
j . (1.37)

E.g. for scalars, the last term in (1.34) is the contribution due to the first term here.
The contributions due to the last term of (1.24) act, using the chain rule, as a field
equation of φi times the transformation kμi(φ)(x). We thus remain with

δKS = 2λμK

∫
dDx

L
←
∂

∂(∂νφi)

(
−ημνwiφi −mμνijφj

)
+ λμK

S
←
δ

δφi(x)
kμ
i(φ)(x) ,

(1.38)

where
←
∂ indicates a right derivative. In many cases the first terms already cancel

and no kμ(φ) are necessary. In fact, the latter are often excluded because of the
requirement that they should have Weyl weight wi − 1, and in many cases there are
no such fields available.

Exercise 1.3 There are typical cases in which the first two terms of (1.38) cancel.
Check the following ones

1. scalars with Weyl weight 0.
2. spinors appearing as /∂λ if their Weyl weight is (D − 1)/2. This is also the

appropriate weight for actions as λ̄/∂λ.
3. Vectors or antisymmetric tensors whose derivatives appear only as field strengths
∂[μ1Bμ2...μp] if their Weyl weight is p − 1. This value of the Weyl weight is
what we need also in order that their gauge invariances and their zero modes
commute with the dilatations. Then scale invariance of the usual square of the
field strengths will fix p = d

2 .
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4. Scalars Xi with Weyl weight d2 − 1 and

L =
(
∂μX

i
)
Aij

(
∂μXj

)
, (1.39)

where Aij are constants.

��
Exercise 1.4 When the scalars transform under dilatations and special conformal
transformations according to

δφi = ξμ(x)∂μφi +�D(x)k
i
D(φ) , (1.40)

with kiD(φ) arbitrary, check that the conformal algebra is satisfied. Consider now the
action for scalars

Ssc = − 1
2

∫
dDx ∂μφi gij (φ) ∂μφj . (1.41)

It is invariant under translations and Lorentz rotations. Check that the dilatational
and special conformal transformations leave us with

δSsc = −
∫

dDx
{
�D(x)∂μφ

i ∂μφj
[
gk(i

(
∂j)kD

k + �j)�kkD
�
)

− 1
2 (D − 2)gij

]

−2λμK∂μφ
i gij kD

j
}
, (1.42)

if one identifies the affine connection with the Levi-Civita connection of the metric,
similar to (A.4). The invariance under rigid dilatations is thus obtained if

∇(ikj)D = 1
2 (D − 2)gij , (1.43)

with the usual definition of a covariant derivative ∇i . Vectors satisfying this equation
are called ‘homothetic Killing vectors’.16 However, to obtain special conformal
invariance, the last term of (1.42), originating from a contribution ∂μ�D(x), should
be a total derivative. Thus one requires that

kiD = ∂ik , (1.44)

for some k. Then ∇ikjD is already symmetric, and thus with the requirement (1.43)
one obtains that (1.30) should be satisfied with w = (D − 2)/2. The vectors

16The terminology reflects that the right-hand side is a constant times gij . For a function times gij
it is just a ‘conformal Killing vector’.
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satisfying (1.30) are ‘exact homothetic Killing vectors’. One can find that the scalar
k in (1.44) is

(D − 2)k = kD
igij kD

j . (1.45)

A systematic investigation of conformal actions for scalars in gravity can be found
in [75]. ��
Exercise 1.5 Check that for a Lagrangian of the form

L =
(
∂μφ

1
) (
∂μφ2

)
, (1.46)

the conformal Killing equation has as solution

kD
1 = w1φ

1 , kD
2 = w2φ

2 , w1 +w2 = D − 2 . (1.47)

However, the Eq. (1.30) gives also that w1 = w2 = 1
2 (D − 2). Check that this is

necessary for special conformal transformations.
Modifying the Lagrangian to

L =
(

1 + φ1

φ2

)(
∂μφ

1
) (
∂μφ2

)
, (1.48)

one finds as only non-zero Levi-Civita connections

�1
11 = 1

φ1 + φ2 , �2
22 = − φ1/φ2

φ1 + φ2 . (1.49)

The solutions of the conformal Killing equations (1.43) already fix (1.47) withw1 =
w2 = 1

2 (D − 2). However, now the Eq. (1.30) gives no solution. Hence, this model
can only have rigid dilatations, but no rigid special conformal transformations. ��

1.2.4 Superconformal Groups

A classical work on the classification of superconformal groups is the paper of
Nahm [76]. In the groups that he classified, the bosonic subgroup is a direct product
of the conformal group and the R-symmetry group, the automorphism group of the
supersymmetries. The latter are bosonic symmetries that are not in the conformal
algebra, hence are spacetime scalars, as motivated by the works of [71] and [72].17

17However, with branes the assumptions of these papers may be too constrained. Other examples
have been considered first in 10 and 11 dimensions in [77].
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Table 1.2 Superconformal algebras, with the two parts of the bosonic subalgebra: one that
contains the conformal algebra and the other one is the R-symmetry

D Supergroup Bosonic group

3 OSp(N|4) Sp(4) = SO(3, 2) SO(N)
4 SU(2, 2|N) SU(2, 2) = SO(4, 2) SU(N)× U(1)

5 OSp(8∗|N) SO∗(8) ⊃ SO(5, 2) USp(N)
F(4) SO(5, 2) SU(2)

6 OSp(8∗|N) SO∗(8) = SO(6, 2) USp(N)
7 OSp(16∗|N) SO∗(16) ⊃ SO(7, 2) USp(N)
8 SU(8, 8|N) SU(8, 8) ⊃ SO(8, 2) SU(N)× U(1)

9 OSp(N|32) Sp(32) ⊃ SO(9, 2) SO(N)
10 OSp(N|32) Sp(32) ⊃ SO(10, 2) SO(N)
11 OSp(N|64) Sp(64) ⊃ SO(11, 2) SO(N)

In the cases D = 4 and D = 8, the U(1) factor in the R-symmetry group can be omitted for
N �= 4 and N �= 16, respectively

Another classification has appeared in [78] from which we can extract18 Table 1.2
for dimensions from 3 to 11. The bosonic subgroup contains always two factors:
the conformal group (one should consider its covering that allows the spinor
representation) and the R−symmetry group. When the first factor is just the
conformal group, then the algebra appears in Nahm’s classification. Note that 5
dimensions is a special case. There is a generic superconformal algebra for any
extension. But for the case N = 2 there exists a smaller superconformal algebra
that is in Nahm’s list. Note that for D = 6 or D = 10, where one can have
chiral spinors, only the case that all supersymmetries have the same chirality has
been included. Non-chiral supersymmetry can be obtained from the reduction in one
more dimension, so e.g. from the D = 7 algebra OSp(16∗|N) we obtain (N,N)
supersymmetry inD = 6 [79]. So far, superconformal tensor calculus has only been
based on algebras of Nahm’s type.19

In the case of our interest N = 2 in D = 4, D = 5 and D = 6 the
superconformal algebras are, respectively, SU(2, 2|2), F2(4) and OSp(8∗|2) and
withR-symmetry groups SU(2)×U(1), SU(2), SU(2). In the practical treatment, we
will not see any fundamental difference in the structure of these supergroups. The
fermionic part of the superconformal group is generated by the supersymmetries
Qi (superpartners of the translations Pa) and the special supersymmetries Si

(superpartners of the special conformal transformationKa).

18See Appendix B for the notations of groups and supergroups.
19Note that the superalgebras that are relevant for quantum field theories, according to Coleman
and Mandula [71] and Haag–Łopuszański–Sohnius [72], only exist for D ≤ 6. The maximal
number of supercharges of the corresponding superconformal QFTs is bounded by the requirement
that they admit a suitable stress-tensor multiplet, see e.g. [80] for a recent discussion.
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The dilatations provide a 3-grading of the conformal algebra and a 5-grading
of the superconformal algebra. In the conformal algebra, the translations Pa have
weight 1, in the sense that [D,Pa ] = Pa . The special conformal transformationsKa
have weight −1, while Lorentz generatorsMab and dilatations have all weight 0. Of
course, the R-symmetry algebra commutes with the conformal algebra and thus has
weight 0. The supersymmetries have weight + 1

2 (see already that this is consistent
with (1.4)), and the special supersymmetries have weight − 1

2 . Thus, there is a
clear structure in the superconformal algebra, ordering them according to the Weyl
(dilatational) weight:

1 : Pa
1
2 : Q
0 : D, Mab, Uij , T

− 1
2 : S

−1 : Ka . (1.50)

This grading already determines the structure of many commutators.
Let us now present some details of the superconformal algebras.20 First, we have

the conformal algebra, as given in (1.21). The other part of the bosonic algebra is
the R-symmetry. We denote Uij as the anti-hermitian generators of SU(2) and T as
the real generator of U(1), the latter only for D = 4. The SU(2) algebra is

[
Ui
j , Uk

�
]

= δi
�Uk

j − δkjUi� . (1.51)

The antihermiticity and tracelessness properties of the SU(2) generators are

Ui
j = −

(
Uj
i
)∗
, Ui

i = 0 ,

Ui
j = U · τ , (1.52)

with τ i
j = iσ i j in terms of the three Pauli matrices σ i

j . The 3-vectors U have real
components U1, U2 and U3 are real operators, for which the commutators (1.51)
imply

[U1, U2] = U3 , [U2, U3] = U1 , [U3, U1] = U2 . (1.53)

20To prepare these formulae, we made use of [81] forD = 4, apart from a sign change in the choice
of charge conjugation, such that the anticommutators of fermionic generators have all opposite
sign. For D = 5, we made use of [82], and for D = 6 of [83], but replacing there K by −K and
Uij by − 1

2Uij .
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More on the use of the SU(2) indices is collected in Appendix A.2 and specifically
for the triplet notation in Appendix A.2.2.

The equations of the first line of (1.52) are valid as well in D = 4, where raising
and lowering of i-indices is done by complex conjugation, and in D = 5, 6 where
they are raised and lowered by the εij as in (A.15). In 4 dimensions, the first equation
is written as

D = 4 : Uij = −Uj i . (1.54)

In 5 and 6 dimensions the one-index raised or lowered matrices are (e.g. τ1ij =
τ1i
kεkj = iσ1iσ2 = −iσ3)

D = 5, 6 : Uij = −iU1σ3 − U21l + iσ1U3 , Uij = iU1σ3 − U21l − iσ1U3 .

(1.55)

The first equation of (1.52) implies with the charge conjugation rule (see Appen-
dices A.3.2 and A.3.3) MC = σ2M

∗σ2 that U is a C-invariant matrix. The
tracelessness translates in symmetry of U(ij) and U(ij). Thus, in conclusion, U is
C-invariant and symmetric (and thus also Uij = Uj i here, different from (1.54)).

Then we include the fermionic generators. In 6 dimensions Qi and Si are
symplectic Majorana–Weyl spinors with opposite chirality

Qi = PRQi = −γ∗Qi, Si = PLSi = γ∗Si . (1.56)

In 4 dimensions, theQi and Si have opposite chirality: i.e.Qi and Si are left-handed
(compare with (1.1))

Si = PLSi = γ∗Si , Si = PRSi = −γ∗Si . (1.57)

The commutators between the bosonic and fermionic generators are (we leave
implicit the trivial ones)

[Mab,Qiα] = − 1
2 (γabQ

i)α , [Mab, Siα] = − 1
2 (γabS

i)α ,

[D,Qαi] = 1
2Qα

i , [D,Sαi] = − 1
2S
i
α ,

[Uij ,Qαk] = δi
kQ

j
α − 1

2δi
jQα

k , [Uij , Sαk] = δi
kS
j
α − 1

2δi
j Sα

k ,

[Uij ,Qαk] = −δkjQαi + 1
2δi

jQαk , [Uij , Sαk] = −δkjSαi + 1
2δi

j Sαk ,

[T ,Qαi] = 1
2 iQαi , [T , Sαi ] = 1

2 iSαi ,
T exists only forD = 4 ,

[Ka,Qiα] = sD (γaS
i)α , [Pa, Sαi ] = s̄D(γaQ

i)α ,

with

⎧
⎨
⎩
D = 4 : s4 = 1,
D = 5 : s5 = i,
D = 6 : s6 = −1.

(1.58)
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and s̄D is the complex conjugate of sD (only different for D = 5). Note that the
commutators [K,Q] and [P, S] have a different form in different dimensions due
to the difference in reality and chirality conditions. The factors i are necessary in 5
dimensions if we use the same symplectic Majorana condition for all the spinors.
This can be seen easily from the C-conjugation rules in Appendix A.3.2.

The anticommutation relations between the fermionic generators are

D = 4 : {Qαi,Qj β} = − 1
2δj

i(γ a)α
βPa , {Qαi,Qjβ } = 0 ,

{Sαi, Sj β} = − 1
2δj

i(γ a)α
βKa , {Sαi , Sjβ} = 0 ,

{Qαi, Sjβ} = 0 ,

{Qαi, Sj β} = − 1
2δj

iδα
βD − 1

4δj
i(γ ab)α

βMab − 1
2 iδj iδαβT + δαβUj i ,

D = 5, 6 : {Qiα,Qjβ} = − 1
2δi

j (γ a)α
βPa , {Siα, Sjβ } = − 1

2δi
j (γ a)α

βKa ,

D = 5 : {Qiα, Sjβ} = − 1
2 i
(
δi
j δα

βD + 1
2δi

j (γ ab)α
βMab + 3δα

βUi
j
)
,

D = 6{Qiα, Sjβ} = 1
2

(
δi
j δα

βD + 1
2δi

j (γ ab)α
βMab + 4δα

βUi
j
)
. (1.59)

Note that in 6 dimensions, the spinors have a chiral projection, and the gamma
matrices in the right-hand side should also be understood as their chiral projection,
thus e.g. in the last line δαβ stands for 1

2 (1l − γ∗)αβ .

Exercise 1.6 Check that in 5 and 6 dimensions the [U,Q] commutator can be
written as [Uij ,Qk] = δ(ikQj). ��

1.2.5 Rigid Superconformal Symmetry

To upgrade a realization of supersymmetry to superconformal transformations, we
thus have to define also the S-supersymmetry transformations on the fields on top
of the Q-supersymmetry. At the bosonic side, we saw in (1.24) that conformal
transformations of fields have ‘orbital’ parts and ‘intrinsic’ parts. The same will
be true for the supersymmetries. Though the word ‘orbital’ is not really clear for
supersymmetries, we will use the same terminology since the procedure is similar.
The orbital parts at the bosonic side were chosen such that the first term in (1.24)
with the definition (1.19) already satisfies the conformal algebra. We can do the
same for supersymmetry: we replace the constant supersymmetry parameters ε of a
rigid supersymmetric theory by

ε(x) = ε + sDγμxμη , (1.60)
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where the ε and η at the right-hand side are the constant parameters for rigidQ- and
S-supersymmetry, respectively. The constants sD are those in (1.58), such that the
algebra is satisfied.

Finally, in parallel with the special conformal transformations, we should
expect intrinsic contributions from S-supersymmetry transformations. As follows
from (1.50), these can only transform a field A to a quantity B that has dilatation
weight 1/2 less than A.
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Chapter 2
Gauging Spacetime Symmetries:
The Weyl Multiplet

Abstract In this chapter, we will discuss the gauge multiplets of the superconfor-
mal algebra, called Weyl multiplets. We start by repeating the basic transformation
rules for gauge fields and curvatures, and discuss then the modifications necessary
for spacetime symmetries. We will see that one needs constraints on curvatures,
and will learn how to deal with them. At the end of this chapter we obtain a Weyl
multiplets for N = 2 theories in D = 4, D = 5 andD = 6.

2.1 Rules of (Super)Gauge Theories, Gauge Fields
and Curvatures

Consider a general (super)algebra with commutators

[δ(ε1), δ(ε2)] = δ
(
εC3 = εB2 εA1 fABC

)
. (2.1)

In general fABC may be structure functions, i.e. depend on the fields. Moreover, the
equality above may be satisfied only modulo equations of motion, as we will see
below. The fABC are related to the abstract algebra introduced in Sect. 1.2.4:

D = 4, 6 : [TA, TB} = TATB − (−)ABTBTA = fABCTC ,
D = 5 : [TA, TB} = TATB − (−)ABTBTA = (−)ABfABCTC , (2.2)

where (−)A is a minus sign if TA is fermionic. The extra sign factor for D = 5 is
due to the factors i in (1.2). It is assumed that in all other cases the transformation is
generated by εATA.

The algebra above can be realized locally by introducing gauge fields and
curvatures. This means that for every generator there is a gauge field, BμA, which
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Table 2.1 Superconformal
gauge symmetries, their
gauge fields and parameters

transforms as follows1:

δ(ε)Bμ
A = ∂μεA + εCBμBfBCA . (2.3)

Covariant derivatives have a term involving the gauge field for every gauge
transformation

Dμ = ∂μ − δ(Bμ) , (2.4)

and their commutators are new transformations with as parameters the curvatures:

[Dμ,Dν ] = −δ(Rμν) ,
Rμν

A = 2∂[μBν]A + BνCBμBfBCA , (2.5)

which transform ‘covariantly’:

δ(ε)Rμν
A = εCRμνBfBCA , (2.6)

and, with the definitions (2.4), satisfy Bianchi identities

D[μRνρ]A = 0 . (2.7)

Having in mind the motivations presented in Sect. 1.2.2, we now start gauging
the superconformal group. In Table 2.1 we give names to the gauge fields and
parameters for the generators that appeared in Sect. 1.2.4. The relation between
parameters (or gauge fields) and generators varies in different dimensions due to
the different spinor properties and notations for raising and lowering i indices. This

1Note that the order of the fields and parameters is relevant here. For fermionic fields, the indices
contain spinor indices and one may use the conventions of [1, Sect. 3.2.2]. Although the objects
may be fermionic or bosonic, you do not see many sign factors. The trick to avoid most sign factors
is to keep objects with contracted indices together. For example, you see here the B index of the
gauge field next to the B index in the structure constants, and then the C contracted indices do not
have other uncontracted indices between them.
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is encoded in the transformation rule δ = εATA:

δ = εATA = 1
2λ
abM[ab] + λDD + λaKKa +

⎧⎨
⎩

+λijUj i + λT T + ε̄iQi + ε̄iQi + η̄iSi + η̄iSi for D = 4
+λijUij + iε̄iQi + iη̄iSi for D = 5
+λijUij + ε̄iQi + η̄iSi for D = 6 .

(2.8)

The same correspondence holds for the gauge fields in expressions BμATA. With
this correspondence, the commutators can be written in terms of parameters in
commutators of transformations, e.g. for D = 4, we have

[
δS(η), δQ(ε)

] = δD(λD(ε, η))+ δM(λab(ε, η))+ δU(λij (ε, η)) ,
λD(ε, η) = 1

2 (ε
iηi + h.c.) ,

λab(ε, η) = 1
4 (ε

iγ abηi + h.c.) ,

λT (ε, η) = 1
2 i(−ε̄iηi + ε̄iηi) ,

λi
j (ε, η) = ε̄j ηi − ε̄iηj − 1

4δ
j

i (ε̄
kηk − ε̄kηk) , (2.9)

and

[
δT (λT ), δQ(ε)

] = δQ(ε′(ε, λT )) , ε′i (ε, λT ) = 1
2 iλT εi ,

[
δSU(2)(λ), δQ(ε)

] = δQ(ε′(ε, λ)) , ε′i (ε, λ) = λij εj . (2.10)

Exercise 2.1 Check that the first equation of (A.2) corresponds to the defini-
tion (2.5) for Rμνab if we just consider the Lorentz group, i.e. the first equation
of (1.21), and define ωμab as the gauge field ofMab. ��

2.2 Gauge Theory of Spacetime Symmetries

The sole procedure explained in Sect. 2.1 is not sufficient to define a suitable theory
for local spacetime symmetries. In the following we will explain the necessary steps
to improve the recipe given in Sect. 2.1.

2.2.1 General Considerations

The main problem is that in general relativity one should have general coordinate
transformations (gct) as a local symmetry rather than the local translations defined



32 2 Gauging Spacetime Symmetries: The Weyl Multiplet

by rules of the previous section. The action of gct on spacetime scalar fields and
gauge vectors is, by definition

δgct(ξ)φ(x) = ξμ(x)∂μφ(x) , (2.11)

δgct(ξ)Bμ
A ≡ ξν∂νBμ

A + (∂μξν)BνA = δB(ξνBνB)BμA − ξνRμνA , (2.12)

where in the last line we have rewritten the transformation using (2.3) and (2.5).
On the other hand, the definition (2.3) with the algebra (1.21) would lead e.g. to
δP bμ = 2ξafμa , which is not yet a general coordinate transformation. We will
take a few steps to relate gct to local translations as defined by the algebra (1.21)
and (1.58).

Step 1 First of all we distinguish the translations from all the other transformations.
All these others will be denoted as standard gauge transformations. We therefore
split the range of indices A in the following way:

TA =
⎛
⎜⎝ Pa︸︷︷︸

Translations

, TI︸︷︷︸
Standard Gauge

⎞
⎟⎠ . (2.13)

The gauge field of Pa , denoted as eμa , is required to be invertible as a matrix, and it
is interpreted as the frame field.

Step 2 When we consider the parameter aμ in (1.19) as a local function, this
absorbs all the other terms in (1.19), and we further denote it as ξμ(x). In other
words, a change of basis in the set of the gauge transformations is performed such
that all the orbital parts of Lorentz rotations, dilatations and special conformal
transformations are reabsorbed into the general coordinate transformation. In the
same way the special conformal transformations in (1.25) are absorbed in the local
parameters λab(x) and λD(x) and the S-supersymmetry part in (1.60) is absorbed in
ε(x).

Step 3 A further basis change is performed using covariant general coordinate
transformations (cgct) [2, 3]:

δcgct(ξ) = δgct(ξ)− δI
(
ξμBμ

I
)
. (2.14)

Note that (2.14) is a combination of general coordinate transformations and all the
non-translation transformations (standard gauge transformations) whose parameter
εI has been replaced by ξμBμI . As we require that the final action is invariant both
under generic δgct and δI , it should be invariant also under cgct. To summarize, we
replace

δ(ε) = εATA = ξaPa + εITI , (2.15)
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by a different transformation that leaves the action invariant:

δ̄ = δcgct(ξ)+ εI TI = δgct(ξ)+ δI
(
εI − ξμBμI

)
. (2.16)

Below, we will discuss the action of cgct in more detail for the different types of
fields.

Step 4 In order to identify the cgct transformations with gauged translations we
further need constraints on some curvatures. As we will see in Sect. 2.2.2, the first
one will be the curvature of translations that will be put to zero. This will imply
that the gauge field of Lorentz rotations ωμab will become a function of eaμ as is
common in general relativity, where it is then often called the ‘spin connection’.
The expression in the supersymmetric theory will also involve other fields such as
the gravitino. This is related to torsion, see e.g. [1, Sect. 7.9]. We will see in Sect. 2.4
that more constraints will be imposed such that also other gauge fields of Table 2.1
are composite rather than independent fields.

Step 5 When general coordinate transformations are properly implemented, the
numbers of bosonic and fermionic degrees of freedom in a supersymmetric theory
should match, as we discussed in the beginning of Sect. 1.2.1. In the N = 2 theories,
this will involve the introduction of additional (auxiliary) degree of freedom, which
we will discuss in Sect. 2.6.

In summary the essential modifications of the procedure outlined in Sect. 2.1
are

1. Translations are replaced by general coordinate transformations, which are
further combined with other symmetries to covariant general covariant transfor-
mations (cgct) (2.14).

2. Some gauge fields will turn out to be ‘composite’, i.e. functions of the other fields
in the multiplet.

3. The multiplet that gauges the superconformal group will contain auxiliary fields.
4. The structure constants will be replaced by structure functions.

In the following we present the general form of cgct acting on frame fields,
other gauge fields2 and matter fields, which will be useful for our considerations. At
this point, it is important to keep in mind that the fundamental distinction between

2The part on gauge fields could be generalized to p-form fields. We do not include a general setup
for these, but the essential characteristics of cgct apply in the same way.
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‘gauge fields’ and ‘matter fields’ is that the former have a coordinate indexμ,3 while
matter fields have no coordinate indices. In other terms,

Matter vs Gauge Fields
The transformation of matter fields does not involve a derivative of a gauge
parameter, while the transformation of gauge fields does have the ∂μεA term.

2.2.2 Transformations of the Frame Fields

Let us derive the explicit form of the transformations of the frame field. For a cgct
the last term of (2.14) cancels the first term of the second expression in (2.12),
apart from the translation part (where B takes only the values corresponding to
translations, i.e. b). As a result we obtain

δcgct(ξ)eμ
a = ∂μξa + ξbBμBfBba − ξνRμν

(
Pa

)
. (2.17)

The first two terms in the expression above are just (2.3), with ε replaced by ξa . In
particular after imposing the constraint Rμν(P a) = 0, the cgct of the frame field is
equal to its Pa transformation as it would directly follow from (2.3).

Let us now consider this first constraint using the explicit expressions of the
commutators that are of the form [P, ·] = P in the algebra (1.21) and (1.58).

Rμν(P
a) = 2

(
∂[μ + b[μ

)
eaν] + 2ω[μabeν]b + ξa(ψμ,ψν) = 0 , (2.18)

where ξa is the function introduced in (1.6). This constraint implies that ωμab is
the connection such that for pure gravity (hence ψμ = 0) the spacetime manifold
with metric gμν = eaμeνa is torsionless, while the gravitino terms define a torsion.
We will come back to this constraint and its consequences below, and explain its
solution for ωμab in general. The expression (2.17) then collapses to

δcgct(ξ)eμ
a = (

∂μ + bμ
)
ξa + ωμabξb . (2.19)

3Of course one could change it to a frame index a by multiplication with eaμ, but we consider it
in the form BAμ as the basic field and BAa as the composite of eaμBAμ . This field BAμ may still be
composite by itself, but that is not important at this point.
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The standard gauge transformations of the frame field follow straightforwardly
from the rule (2.3). That is, using the notation ξa(·, ·) from (1.6),

δI (ε
I )eμ

a = εIBBμ fBI
a = −λDeμ

a − λabeμb + ξa(ψμ, ε) ,
D = 4 : ξa(ψμ, ε) = 1

2 ε̄
iγ aψμi + 1

2 ε̄iγ
aψiμ ,

D = 5, 6 : ξa(ψμ, ε) = 1
2 ε̄
iγ aψμi . (2.20)

2.2.3 Transformations of the Other Gauge Fields

Transformations (2.3) of gauge fields other than eμa are often deformed by the
presence of matter fields in the multiplet. That is, the expression (2.3) is often not
complete. This will be the case after other fields have been added as mentioned
above under ‘Step 5’, and will be discussed in full in Sect. 2.6. Here we will already
discuss how this modifies some general rules that were presented in Sect. 2.1. A
simple example of this phenomenon appears in the supersymmetry transformation
of the gauge field Wμ in the abelian vector multiplet, which contains a ‘gaugino’,
λi :

δQ(ε)Wμ = − 1
2εij ε̄

iγμλ
j + h.c. , (D = 4) . (2.21)

Clearly the r.h.s. of the equation above cannot be seen as a part of (2.3). Therefore,
in order to account for these additional fields, we need to modify some of the
general rules presented in Sect. 2.1. We allow in general a modification of (2.3)
by considering the following general form of standard gauge transformations:

δJ

(
εJ
)
BIμ = ∂μεI + εJBμAfAJ I + εJMμJ I . (2.22)

The expression MaJ I is a function of ‘matter fields’, which should be a covariant
quantity (i.e. not transforming with a derivative of a parameter, see Sect. 2.3). As an
example, when the field BIμ is the U(1) gauge fieldWμ, the term written in (2.21) is
of this form where the supersymmetry index is J = (αi) and I refers to this gauge
field, say I = �:

Mμαi
� = − 1

2εij

(
γμλ

j
)
α
. (2.23)

As mentioned above, such terms will also appear for the gauge fields in Table 2.1
after auxiliary fields have been added.

In (2.22) there is still a sum overA, which we want to split in the standard gauge
transformations, and the contribution when BμA is the frame field eμa . Therefore



36 2 Gauging Spacetime Symmetries: The Weyl Multiplet

we rewrite (2.22) as

δJ

(
εJ
)
BIμ = ∂με

I + εJBμKfKJ I + εJMμJ
I ,

MaJ
I = faJ

I +MaJ I . (2.24)

While the terms containing MaJ I are determined case by case, depending on the
multiplet, those proportional to faJ I are fixed by the superconformal algebra (in
particular by the commutators [Pa, TJ ] = faJ I TI ). Explicitly,

δI

(
εI
)
ψiμ = · · · − sDγμηi ,

δI

(
εI
)
bμ = · · · + 2λKμ,

δI

(
εI
)
ωμ

ab = · · · − 4λ[a
K eμ

b] . (2.25)

The constants sD are those that appear in the algebra (1.58). Including the matter
terms as in (2.24), the cgct (2.14) on the gauge fields BIμ are

δcgct(ξ)B
I
μ = −ξνRμνI + ξaBJμfJaI − ξνBJν MμJ I

= −ξνR̂μνI − ξaBJμMaJ
I . (2.26)

The second term in the first line only occurs for the transformation of the gauge
fields of supersymmetry, dilatations and Lorentz rotations. This is the original
Pa transformation of the gauge field. In the second line appears a new covariant
curvature, which takes the transformations of the gauge fields to matter fields into
account. Indeed, the last term of (2.22) implies thatRμνI transforms in the derivative
of a parameter, i.e. there is a term 2∂[μεJMν]J I . In the last line we introduced the
modified curvature

R̂μν
I = RμνI − 2B[μJMν]J I = rμν I − 2B[μJMν]J I , (2.27)

which does not transform to a derivative of a parameter and we defined

rμν
I = 2∂[μBν]I + BνKBμJfJKI , (2.28)

by stripping all contributions from translations out of the curvatures.

Exercise 2.2 We saw already in (2.24)–(2.25) the explicit form of the terms that
make the difference between M and M. Using (2.27), this should allow you to
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determine that the only ones where these play a role are

Rμν

(
Mab

)
= rμν

(
Mab

)
+ 8f[μ[aeν]b],

Rμν(D) = rμν(D)− 4f[μaeν]a,

Rμν(Q) = rμν(Q)− 2sDγ[μφν] . (2.29)

��
The cgct of a standard gauge field, given by (2.26), takes into account the matter
fields as well as modifications of the gauge curvatures by the latter. On the frame
field, upon imposing the constraint (2.18), a cgct gives a local translation as dictated
by (2.3). In the case of standard gauge fields, the relation between local translations
and these covariant general coordinate transformations is less obvious. First of all,
we cannot simply put all curvatures equal to zero to use (2.12). This would impose
derivative constraints on all fields, and thus restrict their dynamics. It could be done
forR(P) because in that case, this constraint will just determine the spin connection
in terms of the frame field, without imposing further dynamical constraints.

We will only choose constraints that in the same way can be solved for gauge
fields. In this respect, (2.29) will be useful, which already shows that with such
constraints fμa and φμ may be determined in terms of other fields. How this is done
exactly and what are the consequences will be the subject of Sect. 2.4. Suppose that
this is done, let us count the number of off-shell degrees of freedom associated with
the independent fields of Table 2.1. This is done in Table 2.2, where for comparison,
we also included N = 1 in D = 4. As explained in the beginning of Sect. 1.2.1,
the number of off-shell degrees of freedom is given by total number of components
minus the gauge degrees of freedom. From the components we have a factor D for
the indexμ and a, a factor 3 for the SU(2) gauge fields, and a factor 8 for the spinors
of the N = 2 theories (4 forN = 1). Upon subtracting the gauge degrees of freedom
corresponding to the superconformal group, we see that for N = 1 there remain an
equal number of bosonic and fermionic degrees of freedom. It turns out that indeed
the gauged translations can be identified with general coordinate transformations. A
detailed analysis can be found in [4]. On the other hand, the numbers do not match
for the N = 2 theories. A standard procedure to cure this mismatch introduces other
(auxiliary) fields, which will be new ‘matter fields’. This solution will be presented
in Sect. 2.6.

Table 2.2 Off-shell degrees of freedom in gauge fields



38 2 Gauging Spacetime Symmetries: The Weyl Multiplet

2.2.4 Transformations of Matter Fields

Matter fields transform by definition without derivatives on the parameters. Using
this, we can rewrite the definition (2.14) of the cgct, extracting the ξμ, as

δcgct(ξ)φ = ξμ∂μφ − δI
(
ξμBIμ

)
φ

= ξμDμφ , Dμφ ≡ ∂μφ − δI
(
BIμ

)
φ . (2.30)

Note that the new derivative Dμ such defined is not a covariant quantity. Indeed,
under general transformations its transformation includes ∂μξνDνφ, hence a deriva-
tive on a parameter. This can be avoided by defining Daφ, as we will discuss below.
We will then also prove that this is a covariant quantity, and then the action of
translations on matter fields is Paφ = Daφ.

2.3 Covariant Quantities and Covariant Derivatives

We reserve the present section for a more specific discussion on covariant quantities
in gauge theories. Several important steps for this were obtained in [5, Sect. 3.2].
We start from the following definition:

Covariant Quantity
A covariant quantity is a field whose transformation under any local symmetry
has no derivative on a transformation parameter.

The Lie derivative (general coordinate transformation) of a world scalar (namely
an object with only frame indices) does not involve a derivative on the parameter,
while all other fields that have coordinate indices (components of forms, world
vectors, . . . ) transform under general coordinate transformations with derivatives of
ξμ. Therefore, any covariant quantity must be a world scalar. Using this prescription,
we have immediately two ways to build covariant quantities:

1. A covariant derivative on a covariant quantity with its index turned to a frame
index:

Daφ = eaμDμφ . (2.31)

2. Covariant curvatures with their indices turned to frame indices:

R̂ab
I = eaμebνR̂μνI . (2.32)
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The elementary matter fields transform under the symmetries in other covariant
quantities. As will become clearer soon, this is not a general property of covariant
quantities. For quantities that do not transform in covariant quantities, the expression
of the covariant derivative is not as in (2.30). Let us first look to covariant quantities
that do transform in covariant quantities. For those we have the lemma

Lemma on Covariant Derivatives If a covariant quantity φ transforms into
covariant quantities under standard gauge transformations, its covariant derivative
Daφ given by (2.31), with Dμφ given by (2.30), is a covariant quantity. Moreover,
if the algebra closes on the field φ then the standard gauge transformations of Daφ
involve only covariant quantities.

An immediate consequence of the lemma is that under these conditions the cgct
Daφ = Paφ gives a covariant quantity.

In this lemma a difference is made whether the algebra is ‘open’ or ‘closed’ on
the original field. We refer for more information to [1, Sect. 11.1.3]), but repeat here
the essential statement. In general, the commutator of two transformations on a field
φ is of the form

δI

(
εI
)
φ = εIχI ,

[
δI

(
εI1

)
, δJ

(
εJ2

)]
φ = εJ2 ε

I
1

(
fIJ

KχK + fIJ aDaφ + ηIJ
)
. (2.33)

The last tensor, ηIJ is the non-closure function for the field φ. It is not always
possible to close the algebra on all fields without using equations of motion. If these
transformations occur for a theory based on an invariant action, the tensor ηIJ is
proportional to equations of motion, and the algebra is still ‘on-shell’ closed, i.e.
using trivial on-shell symmetries.4 In conclusion if, for the field φ, ηIJ �= 0, then
Daφ is still a covariant quantity, but its transformation δI (εI )Daφ is not. Vice versa,
if ηIJ = 0, then the algebra closes off-shell, and the lemma says that δI (εI )Daφ is
again a covariant quantity.

A similar lemma holds for curvatures, which are in fact the generalization of the
covariant derivatives for gauge fields:

Lemma on Covariant Curvatures For a gauge field with transformation law
as in (2.22) where MaJ I is a covariant quantity, the covariant curvature (2.32),
with (2.27) is a covariant quantity.

The rest of this section is organized as follows. We first give a proof of the
lemma of covariant derivatives in Sect. 2.3.1. In Sects. 2.3.2 and 2.3.3 we discuss
the example of the D = 6 abelian vector multiplet, in which we see in practice how
the cgct indeed needs the seemingly non-covariant last term in (2.26) and how the

4Note that in principle, ηIJ may have contributions for all symmetries denoted by the indices I, J ,
but in practice (due to the engineering dimensions of the transformations) non-closure functions
are related only to [δQ, δQ].
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lemma on the covariant curvature is realized: R̂μν does not transform to a covariant
quantity, but R̂ab does. As it will be clear soon, computing these variations is in
general long and painful. Useful simplifications happen if we strategically make use
the lemmas above, provided the algebra is closed, and this will be in fact the content
of Sect. 2.3.4, the ‘easy way’. In Sect. 2.3.5 we will also consider an example with
an open algebra.

2.3.1 Proof of Lemma on Covariant Derivatives

Let us start from computing δJ (εJ )Dμφ. Using the definitions (2.30), (2.24)
and (2.33)

δJ

(
εJ
)
Dμφ = εI ∂μχI − εJBKμ fKJ IχI − εJMμJ

IχI − BIμδJ
(
εJ
)
χI

= εI
(
Dμ + δJ

(
BJμ

))
χI − εJBKμ fKJ IχI

−εJMμJ
IχI − δJ

(
εJ
)
δI

(
BIμ

)
φ . (2.34)

For the last term, we used the notation in the way it is used in calculating a
commutator. That means, the first δ(ε) does not act on theBIμ within the δI (BIμ)φ, as
it is done when one calculates a commutator. Then from this piece plus εI δJ (BJμ)χI
in the second line one reconstructs a commutator with εI1 replaced by BIμ and εI2 by
εI . Using then (2.33), we obtain

δJ (ε
J )Dμφ = εIDμχI − εJMμJ

IχI + εJBIμ
(
fIJ

aDaφ + ηIJ
)

= εIDμχI − εJMμJ
IχI + εJBIμηIJ

+
(
δI (ε

I )eμ
a − εI ebμfbI a

)
Daφ . (2.35)

At the end, we made use of (2.20). The first term in the bracket has an explicit ψμ,
but is canceled when reverting to the transformation of Daφ:

δJ

(
εJ
)
Daφ = εIDaχI − εJMaJ

I χI + εJBIa ηIJ − εIfaI bDbφ , (2.36)

namely Daφ is a covariant quantity, since δJ (εJ )Daφ does not contain derivatives
on the parameters. If ηIJ = 0, the explicit gauge fields disappear from (2.36) and
the transformation of the derivative is again a covariant quantity. This proves the
lemma on covariant derivatives. We will come back to the meaning of the last term
of (2.36) in Sect. 2.3.4.
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2.3.2 Example: D = 6 Abelian Vector Multiplet

We will use an example to illustrate the closure of the algebra on gauge fields.
In Sect. 2.3.3 this example is used to show how the transformation of curvatures
gives a covariant result. Finally, in Sect. 2.3.4 it is used to illustrate how to facilitate
calculations using the lemmas.

The D = 6 abelian vector multiplet consists of a vectorWμ and a spinor λi . The
transformations5 under standard gauge transformations are

δI

(
εI
)
Wμ = ∂μθ + 1

2 ε̄γμλ ,

δI

(
εI
)
λi =

(
3
2λD − 1

4γ
abλab

)
λi + λij λj − 1

4γ
abF̂abε

i , (2.37)

where θ is the parameter for the U(1) transformation that Wμ gauges. This U(1)
commutes with all other symmetries. Wμ is thus one of the BIμ in the general
treatment, and comparing with (2.22), we can identify

Mμ(αi)
U(1) = 1

2

(
γμλi

)
α
, (2.38)

where (αi) stands for the combined index (spinor + extension) indicating a
supersymmetry. The i-index (and also the spinor index α) is implicit in the first
line of (2.37), as explained in (A.18). The modified curvature, which is called F̂μν ,
is

F̂μν = Fμν − ψ̄[μγν]λ, Fμν = 2∂[μWν]. (2.39)

Instead of using (2.27), just recognize that derivatives in Fμν have to be completed
to covariant derivatives.

Let us now comment on δI (εI )λi . The λD-term states that the fermion λi has
‘Weyl weight’ 3

2 . We will explain in Sect. 3.2 how this weight can be easily obtained.
The Lorentz transformation is valid for all the spinors. Its form can in fact already
be seen from the first commutator in (1.58). Similarly, the SU(2) transformation is
general for any doublet. Finally, under supersymmetry transformations, the matter
field λi transforms to F̂ab, which is a covariant quantity (as will be shown explicitly
in Sect. 2.3.3). This should be the case, since λi is a matter field and should thus
transform to a covariant quantity.

5We apologize for the many occurrences of λ here. λi is the spinor, while λab and λij are the
parameters appearing in Table 2.1.
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Transformations under cgct follow from (2.26)

δcgct(ξ)Wμ = −ξνF̂μν − 1
2ξ
aψ̄μγaλ

δcgct(ξ)λ
i = ξaDaλi , Dμλi = Dμλi + 1

4 ψ̄
i
μγ

abF̂ab ,

Dμλ
i =

(
∂μ − 3

2bμ + 1
4γ
abωμab

)
λi − Vμij λj . (2.40)

Let us first comment on the last expression. The Dμ introduced here only includes
the D,Mab and R-symmetry, i.e. the linearly realized symmetries.6

Note that the last term in the first line is necessary for a correct result of
the anticommutator of two supersymmetries. Indeed, consider the exercise of
calculating the commutator of two supersymmetries on Wμ. In order to close the
algebra, this commutator should give a cgct.

δQ(ε1)δQ(ε2)Wμ = 1
2 ε̄2γμδQ(ε1)λ+ 1

2 ε̄2γaλ δQ(ε1)eμ
a . (2.41)

The first term gives clearly the covariant curvature, and the second one leads to the
second term in the last expression of (2.26). The {Q,Q} algebra is thus closed on
Wμ.

Exercise 2.3 Check further that one obtains indeed the right coefficient for the
transformations, using (1.6), symmetries using [1, (3.51)], Fierz formulae (A.48),
gamma manipulations using (A.42), and (A.17). ��

2.3.3 Illustration of Full Calculation of the Transformation of
a Curvature

We will now show that F̂ab is a covariant quantity. We first calculate the super-
symmetry transformation of F̂μν , defined in (2.39). Therefore we need δQψμ. The
matter terms are collected into the symbols Υμ. As we have seen, the latter are in
principle determined by the gauge algebra. For the sake of simplicity we will leave
the matter terms arbitrary in the following derivation. The starting point is then

δQψμ = Dμε +ϒμ , Dμε
i ≡

(
∂μ + 1

2bμ + 1
4γ
abωμab

)
εi − Vμij εj ,

(2.42)

thus

δQ(ε)F̂μν = ∂[μ
(
ε̄γν]λ

) − (
D[με

)
γν]λ− ϒ̄[μγν]λ− ψ̄[μδQ(ε)

(
γν]λ

)
. (2.43)

6That turns out to be convenient in computations, as will be illustrated below.
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The first ∂μ can be replaced by a covariant derivative Dμ with only Yang–Mills
gauge connections, as it acts on a SU(2) scalar, Lorentz scalar, and D-invariant
quantity. To say so, we consider for now the parameter ε as an SU(2) doublet,
Lorentz spinor, and of dilatational weight − 1

2 (check that λ got weight 3
2 and the

implicit eνa has weight −1, see (2.20)). That is implicit in the definition of Dμεi

in (2.42). Then we can ‘distribute’ this covariant derivative, and terms with Dμ on
ε cancel. This illustrates the convenience to work with the Dμ derivatives. We are
left with

δQ(ε)F̂μν = ε̄γ[νDμ]λ+ε̄γaλD[μeν]a−ϒ̄[μγν]λ−2δQ(ε)δQ(ψ[μ)Wν] . (2.44)

The writing of the last term is similar to what was done in Sect. 2.3.1, and the
following manipulations are similar to those that we did there. Replacing the first
derivative by a full covariant derivative, this can be written as Dμλ = Dμλ +
δQ(ψμ)λ. The latter term nearly leads to δQ(ψμ)δQ(ε)Wν , apart from that we have
to be careful that also the frame field transforms in the latter expression. We obtain:

δQ(ε)F̂μν = ε̄γ[νDμ]λ+ ε̄γaλD[μeν]a − ϒ̄[μγν]λ

+2
[
δQ(ψ[μ), δQ(ε)

]
Wν] − ε̄γaλδQ(ψ[μ)eν]a . (2.45)

We already calculated the commutator on Wμ, checking that it gives the covariant
general coordinate transformation. The parameter that we have to use here is,
see (1.6):

ξa(ψμ, ε) = 1
2 ε̄γ

aψμ = δQ(ε)eμa . (2.46)

That can be inserted in (2.40) and one can use the constraint (2.18) to obtain

0 = 2D[μeν]a + ξa(ψμ,ψν) . (2.47)

We leave to you that after further Fierz manipulations as in Exercise 2.3, one arrives
at

δQ(ε)F̂μν = ε̄γ[νDμ]λ− ϒ̄[μγν]λ− 2F̂a[νδQ(ε)eμ]a . (2.48)

The last term contains an explicit ψμ. This is canceled when calculating the
transformation

δQ(ε)F̂ab = ε̄γ[bDa]λ− ϒ̄[aγb]λ , (2.49)

which does not contain any explicit gauge fields. The gauge fields are hidden in the
covariant derivative.
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2.3.4 The Easy Way

This was enough to show that the transformation works out as expected. But the
calculation was complicated, and we were only looking to a simple example!
However, now comes the good news: once you know some tricks, you never have to
do all the computations. These tricks involve the knowledge of some basic facts:

1. Da on a covariant quantity and R̂ab are covariant quantities;
2. The transformation of a covariant quantity does not involve a derivative of a

parameter (definition).
3. If the algebra closes on the fields, then the transformation of a covariant quantity

is again a covariant quantity, i.e. gauge fields only appear either included in
covariant derivatives or in curvatures.

Let us consider again the calculation of δQF̂ab in the D = 6 abelian vector
multiplet, where from (2.41) we know that the algebra closes on the gauge fields.
The third principle implies that δQF̂ab should be a covariant quantity. Let us start
from the definition (2.39)

F̂μν = Fμν − ψ̄[μγν]λ, Fμν = 2∂[μWν] . (2.50)

First of all, consider the transformation δQFμν � 2∂[μδQWν], where δQWμ =
−εγμλ. When taking the ∂μ derivative, we delete the term where the derivative acts
on the parameters α, ε, because these have to disappear in the transformation of a
covariant quantity. Hence,

δQFμν ⇒ εγ[ν∂μ]λ . (2.51)

Moreover we can forget about derivatives on a frame field. Indeed, a derivative on
any gauge field can only appear as its curvature, but we know that the curvature for
the frame field has been constrained to zero. Hence,

δQFab ⇒ εγ[b∂a]λ⇒ εγ[bDa]λ . (2.52)

The last implication is just the ‘covariantization’ of the term involving the partial
derivative ∂a , which is not covariant. The covariant quantity must involve Da ,
instead of ∂a .

Let us now consider the second term, ψ̄[μγν]λ. One can realize that the interesting
term arises from

(
δQψ̄[μ

)
γν]λ . (2.53)

Indeed, if we would act with δQ on the other factors, then a ψμ remains and we
know that these must be included in those covariant derivatives that we have already
considered in the first term. For the same reason, regarding the variation of ψμ, as
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for any BIμ gauge field, one can neglect the first and second terms in the first line
of (2.24):

δJ

(
εJ
)
BIμ ⇒ εJMI

μJ . (2.54)

In our case this M is the ϒ-term in (2.42). These steps are quite general, leading to
the conclusion that the only relevant part of the transformation of gauge fields is M.

In light of this smart strategy, we now review the result of the transformation of
a covariant derivative on a covariant quantity, δJ (εJ )Daφ, as obtained in (2.36). In
order to apply this method we need to assume that the algebra closes on the field
φ, since otherwise δJ (εJ )Daφ is not a covariant quantity and this ‘easy’ method
cannot be applied straightforwardly.

The first term in (2.36) is the covariantization of the ∂μφ term in (2.34).
The second term, the M term, is the only one that remains explicit from

δJ (ε
J )BIμ, the rest being implicitly included in covariant derivatives. Thus, from

a practical point of view, these non-gauge terms are the most interesting terms in the
transformation of gauge fields. As shown in (2.24), M terms are of two types. The
first ones are those from the gauge algebra where the gauge field was the frame field.
These are the transformations explicitly given in (2.25). The others are the matter
terms, which we still have to find for each case. For the gauge field in the vector
multiplet, that was the relevant term, which gave its supersymmetry transformation
to the gaugino.

The third term appears only in case of non-closure. We will consider below the
fermionic field in the vector multiplet for which there is no closure.7

Now consider the fourth term, which finds its origin in transformations of the
frame field to the frame field, (2.20). This term refers to the first two terms in the
explicit expression of (2.20):

δJ

(
εJ
)
Daφ = · · · −

(
λDδa

b + λab
)
Dbφ , (2.55)

which amount to the following. The first one implies that the Weyl weight of Daφ
is one higher than that of φ. The second one implies that Daφ is a Lorentz vector.

Exercise 2.4 Check that, whatever would be the S-transformation of λ (here in 6
dimensions it is zero, however the corresponding fermion in 4 and 5 dimensions has
S-supersymmetry transformations), the S-variation of F̂ab is due to (2.25):

δS(η)F̂ab = η̄γabλ . (2.56)

��

7 Closure could be obtained if we would have introduced auxiliary fields, but for the didactical
value of the example, it is good to consider the situation without the auxiliary fields.
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Exercise 2.5 One can even give a general formula for the transformation of
curvatures, correcting (2.6) for the effects that gauge fields transform with matter-
like terms. To apply the methods explained earlier, the last decomposition in (2.27)
is most useful. Indeed, explicit gauge fields appear only quadratically in rabI . You
can then determine that

δJ

(
εJ
)
R̂ab

I = εJ R̂abKfKJ I + 2εJD[aMb]J I − 2εKM[aKJMb]J I . (2.57)

Similarly, the Bianchi identity becomes

D[aR̂bc]I + R̂[abJMc]J I = 0 . (2.58)

��

2.3.5 Non-closure Terms in D = 6 Abelian Vector Multiplet

Finally, let us consider the fermionic field (gaugino) λi in the D = 6 vector
multiplet, on which the supersymmetry algebra does not close. As we have already
calculated the supersymmetry transformation of F̂ab in (2.49), it is easy to calculate
the commutator of two supersymmetries on the gaugino. We do not take the ϒ-term
into account, as we do not know its form yet, and it is independent of the rest. The
commutator is

[
δQ(ε1), δQ(ε2)

]
λi = − 1

2Dcλi ε̄1γ cε2
+ 3

16γc /Dλi ε̄1γ cε2 + 1
96γcde /Dλj ε̄(i1 γ cdeεj)2 . (2.59)

The first term is the covariant general coordinate transformation. The others are
the non-closure terms, all proportional to /Dλ. From these terms one finds that the
supersymmetry variation of Daλ is (neglecting again possible extra matter terms in
transformations of gauge fields)

δQ(ε)Daλi = − 1
4γ
bcεiDaF̂bc + 3

16γc /Dλi ψ̄aγ cε + 1
96γcde /Dλj ψ̄(ia γ cdeεj) .

(2.60)

To conclude, we see explicitly that the transformation of Daλ is not a covariant
quantity. It is now not possible to define DbDaλ such that it does not transform to
a derivative of a gauge field. However, note that one can define it such that at least
the antisymmetric part in [ab] does not transform in a derivative. That is analogous
to a curvature. Also on a gauge field we cannot define a covariant generalization
of ∂(μWν). The covariant D[bDa] should just have extra factors 1

2 for every term in
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which there are two gauge fields. Also that is similar to a curvature:

D[bDa]λi = ∂[bDa]λi + 1
4γ
cdψi[bDa]F̂cd

− 3
32γc /Dλi ψ̄aγ cψb − 1

192γcde /Dλj ψ̄(ia γ cdeψj)b . (2.61)

But these are objects that one seldom needs.

2.4 Curvature Constraints

As we advocated in Sect. 2.2, we need to impose certain constraints in order that
the translations on the gauge fields take the form of (covariant) general coordinate
transformations. The kind of constraints we need are the so-called conventional con-
straints, which are algebraic (and not differential) conditions on some fields. At the
classical level, conventional constraints do not impose restrictions on the dynamic
itself. Importantly, this discussion is not specific for conformal supergravity.8

2.4.1 Constraint on R(P )

The vanishing of the Pa curvature has been already considered in (2.18) and
it is immediately clear why this leads to a conventional constraint. Concerning
representation content, (2.18) is a vector times an antisymmetric tensor, and the
same holds for the spin connection ωμab. For this reason one can solve (2.18)
algebraically for ωμab, which from now on will become a dependent field9:

ωμ
ab = ωμab(e, b)− ξ [a (ψμ,ψb]

)
− 1

2ξμ

(
ψa,ψb

)
,

ωμ
ab(e, b) = ωμab(e)+ 2eμ[abb] , (2.62)

where ωμab(e) is the usual expression of the spin connection, see (A.4), obtained
by the antisymmetric part of (A.3), which is a simplification of the above constraint
without bμ and gravitini. The term with bb can be understood as necessary to
reproduce the special conformal invariance, see (2.25). The gravitino contribution
is already known from pure Poincaré N = 1 supergravity [6–8].

It is important to realize that the constraint (2.18) is not invariant under all
the symmetries if one assumes for ωμab the transformation rule that follows

8Indeed, one needs such constraints also in general relativity (as explained at the beginning of this
chapter) where the connection ωμab must be a function of eaμ, and not an independent field.
9This is what we were looking for (see the first item of the list of three shortcomings in Sect. 2.2).
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from (2.3), such that the curvatures would just transform as in (2.6). Explicitly, the
transformation δI (εI )Rab(P c) can be calculated from the definition (2.18) using
the ‘easy method’. The terms quadratic in the gravitino do not play a role in the
variation, as they will always leave a naked gravitino behind. Thus we should only
consider the variations of the frame field in the derivative. According to (2.20), this
involves only ∂e, i.e. Rab(P ), and ∂ψ , i.e. R̂ab(Q). The former are zero, so there
remains only a variation in R̂ab(Q):

δI

(
εI
)
Rab(P

c) = ξc (R̂ab(Q), ε
)
. (2.63)

One may therefore expect that there would be a new constraint R̂ab(Q) = 0.
However, since in the expression for R̂ab(Q) there is no field that is a spinor–
antisymmetric tensor, this choice would be an unconventional constraint: it cannot
be solved. Instead, one should define the transformation laws of the dependent field
from its definition as in (2.62). As ωμab is now defined by the vanishing of Rab(P ),
its transformations can be defined by its expression in terms of the other fields.
Another way to say so, is that δωμab has extra terms to compensate for the non-
invariance of Rab(P ), calculated above.

To see how this method works concretely, let us be slightly more general and
consider a constraint C(ω(φ), φ), where ω(φ) is a composite of the independent
field φ and we assume that C contains at least a curvature. The transformation of C
consists of the pure gauge terms, from the gauge theory algebra and following the
general rules, plus extra terms δMω like in (2.24):

δC = δgaugeC + δMC = δgaugeC + ∂C

∂ω
δMω . (2.64)

Because ∂C
∂ω

is invertible we can calculate the extra terms in the transformation of ω
that are necessary in order that the constraint is invariant, δC = 0. The result for the
constraint (2.18) has the same structure as the solution (2.62):

δMωμab = ξ [a (R̂μb](Q), ε
)

+ 1
2ξμ

(
R̂ab(Q), ε

)
, (2.65)

and can be thus interpret as the additionalM term in (2.24) for the ω gauge field.
A final consequence of the imposing (2.18) can be seen from the Bianchi

identity (2.7) applied to translations: D[μRνρ](P a) = 0. Of course the covariant
derivative used in this expression is not limited to the standard gauge transfor-
mations, and as such one will find covariantization terms corresponding to local
translations, i.e. ebμfbJ

aRνρ
J , where fbJ a are structure constants in the commutator

[Pb, TJ ] proportional to Pa . This commutator is only non-zero for TJ being
dilatations and Lorentz rotations. According to the lemmas in Sect. 2.3, these
covariantization terms (with all μ indices changed to tangent spacetime indices) are
the only ones that we have to consider when we upgrade the curvatures to covariant
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quantities. Hence the Bianchi identity for translations immediately gives

− δ[adR̂bc](D) + R̂[ab
(
Mc]d

)
= 0 . (2.66)

So far, this is independent of supersymmetry or even of the conformal group. In
fact, the last identity, without R(D) would then be the well-known equation that
the M-curvature antisymmetrized in 3 indices is zero. Multiplying (2.66) with δda

gives that the contractedM-curvature, i.e. the Ricci tensor, is symmetric if there is
no Rab(D):

(2 −D)R̂ab(D) = 2R̂d[a
(
Mb]d

)
. (2.67)

Exercise 2.6 The M-curvature can be calculated directly by taking the derivative
of (2.62). As the final result has to be covariant, we can drop all other terms, and
restrict to the ∂ω term, where the derivative acts either on ω(e) or on bμ. This leads
to a direct relation expressing R̂μν(Mab) in the covariantization of ∂ω(e), and R̂μν .
Check that in this terminology, (2.66) implies that the former part satisfies the cyclic
identity R[μνρ]σ = 0 and leads to a symmetric Ricci tensor. ��

2.4.2 Other Conventional Curvature Constraints

Now that we have seen the procedure how ωμ
ab became composite, we may

consider whether this can be done for other gauge fields in the same way. If we
look for the smallest possible multiplet, then we should use this procedure for
all the gauge fields that we can algebraically solve. The clue is given in (2.29).
These equations show which gauge fields appear ‘linearly’ in the curvatures, namely
multiplied by a frame field. In particular, we may choose constraints that determine
fμ
a and φμ. This looks rather convenient. Indeed, without such a constraint fμa

would already appear in bosonic conformal gravity, while we do not know this
field in the physical conformal gravity. At first it looks that we can define it either
from a constraint on the dilatational or on the Lorentz curvature. But (2.67) implies
that R̂(D) is a function of R̂(M), so that we can restrict ourselves to the Lorentz
curvature. To be able to eliminate fμa completely, the constraint should be a general
d × d matrix:

R̂ac

(
Mbc

)
+ Cab = 0 , (2.68)

where Cac may be any covariant function that is independent of fμa . Similarly,
there can be a third constraint that determines φμ from a constraint of the form

γ bR̂(Q)ba + ρa = 0 , (2.69)
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where ρa is a covariant spinor-vector. One might impose the constraints with Cab

and ρa vanishing, but we will see in Sect. 2.6 that modifying the constraints in
this way depending on other (auxiliary) fields can be convenient. In any case, the
addition or not of such extra parts amounts at the end only to a field redefinition of
the dependent gauge fields.

We go now again through the consequences of these constraints. Let us repeat
the names of the various covariantizations of curvatures (and introduce meanwhile
another one: R̂′):

rμν
I = 2∂[μBν]I + BνKBμJfJKI ,

RIμν = rμν
I − 2B[μJ fν]J I ,

R̂μν
I = Rμν

I − 2B[μJMν]J I = rμνI − 2B[μJMν]J I ,

R̂′
μν
I = rμν

I − 2B[μJMν]J I = R̂μνI + 2B[μJ fν]J I . (2.70)

Furthermore, as a completion of the Ricci tensor, see (A.2), we define

Rμν = R̂′
ρμ

(
Mab

)
ea
ρeνb , R = Rμμ . (2.71)

The solution of (2.68) and (2.69) is

2(D − 2)fμa = −Rμa − Cμa + 1

2(D − 1)
eμ
a
(
R + Cbb

)
,

−sD(D − 2)φa = γ bR̂′
ab(Q)− ρa − 1

2(D − 1)
γa

(
γ bcR̂′

bc(Q)− γ bρb
)
.(2.72)

This is thus the analogue of (2.62). Similar to what we found there, the constraints
will have the consequence that the transformation law of the fields fμa and φμ get
extra matter-like contributions. We assume that the extra Cab and ρ terms in the
constraints have the same Lorentz structure, SU(2) structure, dilatational and U(1)
weight as the curvature term. As we explained at the beginning of Sect. 2.4.1 (see
e.g. around (2.64)), the constraints do not break supersymmetry (in general, this can
be as well Q as S supersymmetry) as long as one modifies the transformations of
the composite fields. The exact rules depend on the transformations of the matter
terms in the constraint. The simplicity of the result, e.g. invariance of the constraint
under S-transformations may even be an argument for the choice of the matter terms
in the constraints.

The K transformations of these constraints vanish due to the constraint on
Rμν(P ), at least when the extra matter fields do not transform under K . Indeed,
this will not be the case due to a Weyl weight related argument that we will give in
Sect. 2.6.1.

Furthermore, there are relations between the curvatures as a consequence of
Bianchi identities, similar to (2.66). Those give relations for the S andK curvatures.
The explicit form depends on the matter sector.
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2.5 Example: Non-SUSY Sigma Model

Before continuing with the full theory, let us illustrate the construction of a confor-
mal invariant action by looking at a scalar sigma model without supersymmetry.
In this context, the scalars φi are coordinates of a Riemannian manifold, with
metric gij . The latter defines the Levi-Civita connection �kij . We assume that there
is a closed homothetic Killing vector as in (1.30), which allows to define the
conformal symmetry of the scalars. The gauge fields are eμa , ωμab, bμ and fμa

(with conventions given in Table 2.1) and their transformation under local dilatations
and special conformal transformations follow directly from (2.3):

δφi = kD
iλD ,

δeμ
a = −λDeμ

a, δeμa = λDe
μ
a,

δωμ
ab = −4λ[a

K e
b]
μ ,

δbμ = ∂μλD + 2λKμ ,

δfμ
a = λDfμ

a + ∂μλK
a , (2.73)

where as usual, eμa is the inverse of eμa . The scalar fields are thus invariant under
special conformal transformations.10

The covariant derivative for the scalars follows from (2.30):

Dμφi = ∂μφi − bμkD
i , Daφi = eμa Dμφi , (2.74)

leading to

δDaφi = λD

[
Daφi +

(
∂j kD

i
)
Daφj

]
− 2λKakD

i

= λD

[
(w + 1)Daφi − kD

k�ijkDaφj
]

− 2λKakD
i . (2.75)

The second (contracted) covariant derivative is therefore

DaDaφi = ∂aDaφi + 2f aa kD
i − ba

[
(w + 1)Daφi − kk�ijkDaφj

]

+eμaωμabDbφi . (2.76)

The covariant box is

�cφi = DaDaφi + �ijkDaφjDaφk . (2.77)

10kiμ(φ) = 0 in the terminology of (1.24), and this can be expressed by saying that φi are primary
fields.
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Since

δK�
cφi = 2λaK(D − 2 − 2w)Daφi , (2.78)

the covariant box is conformally invariant only for w = (D − 2)/2.
We will show that the following action is conformal invariant:

e−1L = −1

2
gijDaφiDaφj + 1

w
f aa gij kD

ikD
j . (2.79)

Both terms on the right-hand side scale under dilatations separately with a factor
2(w + 1), while the left-hand side scales with weight D. So it is consistent under
the same condition

w = 1
2 (D − 2) , (2.80)

which keeps the conformal box also K-invariant. Now we will show the K-
invariance, which is why we need the second term in (2.79). TheK transformations
of the action give

e−1δKL = 2λaKkD
igijDaφj + 1

w

(
∂aλ

a
K

)
gij kD

ikD
j = 1

w
∂a

(
�aKgij kD

ikD
j
)
,

(2.81)

where one uses that

∂a

(
gij kD

ikD
j
)

= 2wkD
igij ∂aφ

j . (2.82)

This finishes the proof of the invariance of the action (2.79).
The equations of motion from (2.79) with (2.80) read

δ

δφi

∫
dDL = gij�cφj . (2.83)

We now consider the constraint (2.68) with Cab = 0. Indeed, here we do not
have any reason nor fields available to consider a differentCab. Then (2.72) leads to

f aa = − 1

4(D − 1)
R . (2.84)

We now just write R, rather than R to indicate that there are no further corrections
to the usual bosonic scalar curvature of the metric. Therefore, the Lagrangian is

e−1L = −1

2
gijDaφiDaφj − 1

2(D − 1)(D − 2)
Rgij kD

ikD
j . (2.85)
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In order to have positive energy for gravity, the metric gij should have a negative
signature in the direction of the homothetic Killing vector kD

i . In flat space, kD
i =

wφi and we obtain

e−1L = −1

2
gijDaφiDaφj − D − 2

8(D − 1)
Rgij φ

iφj . (2.86)

For D = 4, in the case of a single scalar with negative kinetic energy, this reduces
to (1.10).

2.6 The Standard Weyl Multiplets

The aim of this section is to construct and describe the multiplet of pure super-
conformal gravity, called Weyl multiplet. As long as we are not interested in
higher-derivatives supergravity theories, we do not need to consider an action for the
Weyl multiplet. Instead, in the spirit of the superconformal calculus, results given in
the present section will be very useful to build up actions for Poincaré supergravity.

2.6.1 Matter Fields Completing the Weyl Multiplet

So far, the problem mentioned in the fifth step of Sect. 2.2.1 has not been considered.
We saw in Table 2.2 that the number of bosonic and fermionic components of
the independent gauge fields do not match. As a consequence, the supersymmetry
algebra cannot give rise to invertible coordinate transformations. We could expect
this result, since given the general forms for the covariant general coordinate
transformations and for the other gauge transformations, nothing guarantees that
supersymmetries anticommute to the covariant general coordinate transformations.
The matter terms M in the transformations of the gauge fields (2.22) should
be chosen appropriately to obtain the right anticommutator, and they should be
functions of new matter fields.

The solution is not unique and the arguments to obtain it are not so obvious. The
first one of this nature was obtained in 4 dimensions from splitting a linearized
Poincaré multiplet [9–11] that was found earlier. One way of constructing the
complete set of fields is to make use of supercurrents. One starts with a multiplet
that has rigid superconformal symmetry and considers the fields that couple to the
Noether currents. This method has been used in various cases, see [12–18]. We will
not go into this subject any further here.

We present here the solutions with the fields mentioned in Table 2.3, which are
called the ‘standard Weyl multiplets’. Alternative versions for Weyl multiplets have
been constructed [5, 18, 19], which differ from the above ones in the choice of
auxiliary fields (fields below the double line in Table 2.3). These multiplets contain
a dilaton auxiliary field and are therefore called the ‘dilaton Weyl multiplets’. The
existence of a D = 4 version, recently found in [19] was already noticed in [20,
Sect. 4.4].
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Table 2.3 Number of off-shell components in the fields of the standard Weyl multiplet

The columnsD = 4, 5, 6 indicate the number of components of the fields in the first column with
gauge transformations subtracted. The next columns contain the Weyl weight, the chiral weight
(only for D = 4, where it means that the transformation under U(1) is δT φ = icφλT ), and the
chirality for the fermions for even dimension. Note that for D = 4, changing the position of the
index changes the chirality, while in 6 dimensions the chirality is generic. Finally, we indicate the
symmetry for which it is a gauge field, and possibly other gauge transformations that have been
used to reduce its number of degrees of freedom in this counting

The standard Weyl multiplet involves an antisymmetric tensor T , with two
indices in 4 dimensions (Tab, you may take it anti-self-dual, but then it is
complex) [21], with two or three indices in 5 dimensions (these are dual to each
other) [18], or an anti-self-dual real tensor in 6 dimensions [5]. Further there is a
real scalar D and a fermion doublet χi .

In order to obtain the transformation laws of the standard Weyl multiplet one
uses the general procedure outlined in [5].

(1) As a first step one must construct the linear Q-supersymmetry transformations
of the matter fields and also the additional transformations for the gauge
fields due to the presence of these matter fields. This is done by writing a
general ansatz linear in the fields with yet undetermined coefficients. These
coefficients will be fixed by demanding that the commutator of two super-
symmetry transformations gives a local translation, i.e. [δQ(ε1), δQ(ε2)] =
ξa(ε1, ε2)Pa with ξa(ε1, ε2) given by (1.6). In writing the ansatz one makes
use of the Lorentz structure of the fields and of course their spin. Recalling
the tricks presented in Sect. 2.3.4, a derivative acting on a gauge field can be
replaced with the corresponding (modified) curvature. Similarly, one must also
covariantize all the derivatives using the covariant derivative. Both the explicit
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expressions of the covariant derivatives and the curvatures will change during
the procedure that we outline here. More specifically one will encounterMμJ I

terms, which will modify the transformation laws and curvatures as shown
in (2.22) and (2.29), respectively.

(2) Next one would like to obtain the bosonic transformation rules of the matter
fields. The Lorentz transformations follow straightforwardly from the index
structures of the different fields. For the fields that we consider here, the action
of the dilatation on a field is of the form

δDφ = w λDφ , (2.87)

determined completely by the Weyl weight w of the field. The Weyl weights of
the gauge fields are easily found by looking at the algebra. For the matter fields
one must use another consequence of the algebra, namely that the Weyl weight
of the Q-supersymmetry transformation must be 1

2 higher than the original
field on which it acts. This is equivalent to considering the Weyl weight of the
parameter ε as − 1

2 and demand an equality of the Weyl weight of the left-
hand side and right-hand side of the Q-supersymmetry transformations that
we have just determined. In this one must also use that the Weyl weight of a
covariant derivative is 1 and that a curvature has Weyl weight 2 higher than
the corresponding gauge field. This is due to the presence of frame fields in
their expressions. The determination of the Weyl weights is an important step
because they restrict the other transformations severely. Especially for the K-
transformation, which lowers the Weyl weight of the field by 1. In the same
sense as for ε one can consider the parameter λaK as having weight 1. So in
order to construct these transformations, one must look whether there are fields
present in the multiplet that obey this restriction.

One is then left with the R-symmetries. For the T transformation in D = 4
one uses similar rules as for dilatations, using a chiral weight c for every field
with the meaning

δT φ = icφλT . (2.88)

The complex conjugate of a field has opposite chiral weight. In the same way,
the right-projected field, e.g. χi has c = − 1

2 since χi has c = + 1
2 . To find

the weights, the commutator [T ,Qi] in (1.58) implies that one can count εi as
having chiral weight 1

2 , and thus εi as weight − 1
2 . The SU(2) transformations

are implicit in the position of the indices, see (A.26).
(3) The S-supersymmetry transformation is determined by using the action of the

commutator [K,Q] ∼ S on the fields. Since for the Weyl multiplet, bμ is the
only one of the independent fields that transforms under K-transformations
(as in (2.25)), the S-transformation is easy to get in the following way. First
consider all occurrences of bμ in the transformation law (hidden in covariant
derivatives and composite fields such as (2.62)). This should lead to terms
proportional to bμγ μεi . Then replace bμγ μεi by −2sDηi where sD are the
sign factors in (1.58).
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Exercise 2.7 An immediate example of how this procedure works consists in
obtaining the first line in (2.25) from the supersymmetry transformation of the
gravitino

δ(ε)ψμ = Dμε + · · · =
(

1
2bμ + 1

4ωμ
ab(e, b)γ ab

)
ε + · · · (2.89)

��
At this point we have determined all the transformations for the fields of the

standard Weyl multiplet. However, there are two complications which will further
modify these transformations. A first modification applies only to the composite
fields as discussed in Sect. 2.4. There we have shown that in order for the constraints
to be invariant under the symmetries one must change the transformations of the
composite fields. First, it is important that one uses the modified curvatures due to
the extra matter terms in, for example, theQ-supersymmetry transformations of the
gauge fields.

Further, as shown in Sect. 2.4.2, it is possible to change these constraints by
adding additional covariant functions of fields. In some cases, these functions can be
chosen in a way that they simplify the transformations of the composite fields. For
D = 4 and forD = 6 (the (1, 0) theory that we treat here) we will be able to choose
the constraints invariant under S-supersymmetry, avoiding extra S-transformations
for the constrained fields. Observe, however, that this is a choice for convenience,
which is even not necessary possible (it is not possible inD = 5 [18] or for (2, 0) in
D = 6 [17]). In principle all constraints of the form (2.68) and (2.69) are equivalent
up to field redefinitions.

A second, and more important, complication is the fact that one obtains addi-
tional transformations if one determines {Q,Q}. For example if one calculates this
commutator on the frame field one will obtain a general coordinate transformation,
as expected, but also an additional Lorentz transformation. These transformations
will depend on the fields and thus change the algebra into a soft algebra, which
has structure functions rather than constants, see [1, Sect. 11.1.3]. This change in
the algebra is the start of an iterative process. First one imposes the newly found
commutator {Q,Q} on all the fields, i.e. one demands that theQ-transformations of
all the fields are such that their commutator gives a Lorentz transformation acting on
the field. In order to be able to do this one may need to use terms that are nonlinear
in the fields, e.g. second order. If these nonlinearQ-transformations are found, one
again calculates the commutator on all the fields. If one finds a new transformation
as a result, one must impose this again on all the fields and thus change the Q-
transformations. This iterative process stops if one finds no new transformations
in calculating the commutator and thus obtains closure. A same procedure can be
applied to {Q,S} and {S, S}.
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2.6.2 D = 4

We present here theQ and S supersymmetry transformations inD = 4. First for the
independent gauge fields:

δQ,S(ε, η)eμ
a = 1

2 ε̄
iγ aψμi + h.c. ,

δQ,S(ε, η)bμ = 1
2 ε̄
iφμi − 1

2 η̄
iψμi

− 3
8 ε̄
iγμχi + h.c. ,

δQ,S(ε, η)Aμ = − 1
2 iε̄iφμi − 1

2 iη̄iψμi

− 3
8 iε̄iγμχi + h.c. ,

δQ,S(ε, η)Vμ i
j = −ε̄iφjμ − η̄iψjμ

+ 3
4 ε̄iγμχ

j − (h.c. ; traceless) ,

δQ,S(ε, η)ψ
i
μ =

(
∂μ + 1

2bμ + 1
4γ
abωμab − 1

2 iAμ
)
εi − Vμj iεj

− 1
16γ · T −εij γμεj − γμηi ,

δQ,S(ε, η)T
−
ab = 2ε̄i R̂ab(Q)j εij ,

δQ,S(ε, η)χ
i = − 1

24γ · /DT −εij εj − 1
6 R̂j

i · γ εj + 1
6 iR̂(T ) · γ εi + 1

2D ε
i

+ 1
12γ · T −εij ηj ,

δQ,S(ε, η)D = 1
2 ε̄
i /Dχi + h.c. , (2.90)

where R̂j i is the SU(2) curvature, R(T ) the U(1) curvature, and γ · R = γ abRab.
The notation Aij − (h.c. ; traceless) stands for Aij − Aj

i − 1
2δj

i(Akk − Ak
k).

For the gauge fields, the first line represents the original gauge transformations, and
the second line are the terms that were symbolically represented by M in (2.26).
Observe the covariance of these terms and the transformations of the matter terms.

The dependent fields are defined by the constraints

0 = Raμν(P ) ,

0 = γ bR̂ba(Q)
i + 3

2γaχ
i ,

0 = R̂ac(M
bc)− i ˜̂Rab(T )+ 1

4T
−
caT

+bc + 3
2δa

bD . (2.91)

The terms that could appear in these constraints are fixed by compatibility with Weyl
weights (thus that we do not want to modify the dilatational transformations), and
as mentioned above, the coefficients are chosen such that they are invariant under
S-supersymmetry.
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The expressions of the dependent fields in terms of the physical fields are

ωμ
ab = ωμ

ab(e, b)+ 1
2

[
ψ̄iμγ

[aψb]i + ψ̄μiγ [aψb]i + ψ̄ [a
i γμψ

b]i] ,

fμ
a = − 1

4 R̂μ
a + 1

24eμ
aR̂ + 1

4 i˜̂Rμa(T )− 1
16T

−
cμT

+ac − 1
8eμ

aD ,

φiμ = − 1
2γ
νR̂′
μν(Q

i)+ 1
12γμγ

abR̂′
ab(Q

i)+ 1
4γμχ

i . (2.92)

Here appears the dual of the U(1) curvature, and the Ricci tensor (2.71) of

R̂′
μν

(
Mab

)
= rμν(M

ab)+
[
ψ̄i[μγν]

(
3
4γ
abχi + R̂ab(Qi)

)

+ 1
4 ψ̄

i
μψ

j
ν εij T

+ab + h.c.
]
,

rμν(M
ab) = 2∂[μων]ab + 2ω[μacων]cb − ψ̄i[μγ abφν]i − ψ̄i[μγ abφiν] , (2.93)

and

R̂′
μν(Q

i) = 2
(
∂[μ + 1

2b[μ + 1
4γabω[μab − 1

2 iA[μ
)
ψiν] + 2V[μijψjν]

− 1
8γ
abT −

abε
ij γ[μψν]j . (2.94)

We present the transformations of the constrained fields in 3 lines: first the orig-
inal transformations, then theM-transformations determined by the non-invariance
of the constraints, and finally terms that represent modified structure functions:

δQ,S(ε, η)ωμ
ab = 1

2 ε̄
iγ abφμi + 1

2 η̄
iγ abψμi

− 3
8 ε̄
iγμγ

abχi − 1
2 ε̄
iγμR̂

ab(Q)i

− 1
4 ε̄
iT +abεijψjμ + h.c. ,

δQ,S(ε, η)f
a
μ = 1

2 η̄
iγ aφμi

− 3
16eμ

aε̄i /Dχi + 1
4 ε̄
iγμDbR̂ba(Q)i

− 1
8 ε̄
iψ
j
μDbT +baεij − 3

16 ε̄
iγ aψμi D + h.c. ,

δQ,S(ε, η)φ
i
μ =

(
∂μ − 1

2bμ + 1
4γ
abωμab − 1

2 iAμ
)
ηi + Vμijηj − f aμγaεi

− 1
32
/DT − · γ γμεij εj − 1

8 R̂j
i · γ γμεj − 1

8 iR̂(T ) · γ γμεi

+ 3
8

[ (
χ̄j γ

aεj
)
γaψ

i
μ −

(
χ̄j γ

aψ
j
μ

)
γaε

i
]
. (2.95)
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The third line of each of the (2.95) show that the commutator between two
supersymmetries is modified as follows:

[δQ(ε1), δQ(ε2)] = δcgct
(
ξa3
) + δM

(
λab3

)
+ δK

(
λaK3

) + δS
(
ηi3

)
, (2.96)

where the associated parameters are given by the following expressions:

ξa3 = 1
2 ε̄
i
2γ
aε1i + h.c. ,

λab3 = 1
4 ε̄
i
1ε
j
2 T

+abεij + h.c. ,

�aK3 = 1
8 ε̄
i
1ε
j

2 DbT +baεij + 3
16 ε̄

i
2γ
aε1i D + h.c. ,

ηi3 = 3
4 ε̄
i[1ε
j
2] χj . (2.97)

These extra terms become important in applications where they can give rise to
central charges if the fields appearing in the structure functions get non-zero vacuum
expectation values. We will see that in the presence of vector multiplets, there appear
extra terms of a similar nature involving the scalars of the vector multiplet.

2.6.3 D = 5

We report here theQ- and S-supersymmetry transformation laws of the independent
fields using again the same splitting in two lines for gauge terms and matter terms11

δQ,S(ε, η)eμ
a = 1

2 ε̄γ
aψμ ,

δQ,S(ε, η)bμ = 1
2 iε̄φμ + 1

2 iη̄ψμ

−2ε̄γμχ ,

δQ,S(ε, η)Vμ
ij = − 3

2 iε̄(iφj)μ + 3
2 iη̄(iψj)μ

+4ε̄(iγμχ
j) + iε̄(iγ abTabψ

j)
μ ,

δQ,S(ε, η)ψ
i
μ = ∂μεi + 1

2bμε
i + 1

4ω
ab
μ γabε

i − V ijμ εj − iγμηi

+iγ abTabγμε
i ,

δQ,S(ε, η)Tab = 1
2 iε̄γabχ − 3

32 iε̄R̂ab(Q) ,

δQ,S(ε, η)χ
i = 1

4ε
iD − 1

64γ
abR̂

ij
ab(V )εj + 1

8 iγ ab /DTabεi − 1
8 iγ aDbTabεi

11For δχ the split in two lines is accidental due to the length of the expression.
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− 1
4γ
abcdTabTcdε

i + 1
6T

2εi + 1
4γ
abTabη

i ,

δQ,S(ε, η)D = ε̄ /Dχ − 5
3 iε̄γ abTabχ − iη̄χ . (2.98)

In 5 dimensions, not much simplifications are possible by taking appropriate C
in (2.68) or ρ in (2.69), so that we just took the constraints [18]

Raμν(P ) = 0 , γ bR̂ba(Q)
i = 0 , R̂ac(M

bc) = 0 . (2.99)

Following the methods in Sect. 2.4, we find expressions for the dependent gauge
fields: gauge fields associated with S and K symmetries, respectively:

ω abμ = ω abμ (e, b)− 1
2 ψ̄

[bγ a]ψμ − 1
4 ψ̄

bγμψ
a ,

φiμ = 1
3 iγ aR̂′

μa
i(Q)− 1

24 iγμγ abR̂′
ab
i (Q) ,

R̂′
μν
i(Q) = 2∂[μψiν] + 1

2ω[μabγabψiν] + b[μψiν] − 2V[μijψν] j + 2iγ · T γ[μψiν] ,
fa
a = 1

16

(
−R(ω)− 1

3 ψ̄ργ
ρμνDμψν

+ 1
3 ψ̄

i
aγ
abcψ

j

b Vcij + 16ψ̄aγ aχ − 4iψ̄aψbTab + 4
3 iψ̄bγabcdψaT cd

)
.

(2.100)

The full commutator of two supersymmetry transformations is

[
δQ(ε1), δQ(ε2)

] = δcgct
(
ξ
μ
3

) + δM
(
λab3

)
+ δS(η3)+ δU

(
λ
ij

3

)
+ δK

(
λaK3

)
.

(2.101)

The covariant general coordinate transformations have been defined in (2.14). The
parameters appearing in (2.101) are

ξ
μ
3 = 1

2 ε̄2γμε1 ,

λab3 = −iε̄2γ [aγ cdTcdγ b]ε1 ,

λ
ij
3 = iε̄(i2 γ

abTabε
j)
1 ,

ηi3 = − 9
4 i ε̄2ε1χ

i + 7
4 i ε̄2γcε1γ

cχi

+ 1
4 i ε̄(i2 γcdε

j)
1

(
γ cdχj + 1

4 R̂
cd
j (Q)

)
,

λaK3 = − 1
2 ε̄2γ

aε1D + 1
96 ε̄

i
2γ
abcε

j

1 R̂bcij (V )

+ 1
12 iε̄2

(−5γ abcdDbTcd + 9DbT ba
)
ε1

+ε̄2
(
γ abcdeTbcTde − 4γ cTcdT

ad + 2
3γ
aT 2

)
ε1 . (2.102)
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For theQ,S commutators we find the following algebra:

[
δS(η), δQ(ε)

] = δD

(
1
2 iε̄η

)
+ δM

(
1
2 iε̄γ abη

)
+ δU

(
− 3

2 iε̄(iηj)
)

+ δK
(
λaK3

)
,

[δS(η1), δS(η2)] = δK

(
1
2 η̄2γ

aη1

)
, (2.103)

with

λaK3 = 1
6 ε̄

(
γ bcTbcγa − 1

2γaγ
bcTbc

)
η . (2.104)

For practical purposes (see how to calculate transformations of covariant deriva-
tives), it is useful to give the extra parts of the transformation laws of dependent
gauge fields, i.e. the parts denoted by MμJ

I in (2.24). These are (for the gauge field
of special conformal transformations we suffice by giving the transformation of the
trace, as this is what one often needs)

δQ,S(ε, η)ωμ
ab = · · · − 1

2 ε̄γ
[aR̂μb](Q)− 1

4 ε̄γμR̂
ab(Q)− 4eμ[aε̄γ b]χ ,

δQ,S(ε, η)φ
i
μ = · · · − 1

12 i
{
γ abγμ − 1

2γμγ
ab
}
R̂ab

i
j (V )ε

j +

+ 1
3

[
/Dγ abTabγμ − Dμγ abTab + γμγ cDaTac

]
εi +

+i
[
−γμabcdT abT cd + 8γρT ρσ Tμσ − 2γμT 2

]
εi +

+ 1
3 i
(
8γ bTμb − γμγ · T ) ηi ,

δS(η)fa
a = −5iη̄χ, (2.105)

with γ · T = γ abTab and T 2 = T abTab. Note that there are other terms, which
however are proportional to gauge fields, determined by the algebra. For example,
the λab3 expression in (2.102) implies that the supersymmetry transformation of the
spin connection contains a term

δQ(ε)ωμ
ab = · · · − iε̄γ [aγ cdTcdγ b]ψμ . (2.106)

2.6.4 D = 6

The transformation laws of the independent fields are

δQ,S(ε, η)eμ
a = 1

2 ε̄γ
aψμ ,

δQ,S(ε, η)bμ = − 1
2 ε̄φμ + 1

2 η̄ψμ

− 1
24 ε̄γμχ ,
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δQ,S(ε, η)Vμ
ij = 2ε̄(iφj)μ + 2η̄(iψj)μ

+ 1
6 ε̄
(iγμχ

j) ,

δQ,S(ε, η)ψ
i
μ =

(
∂μ + 1

2bμ + 1
4γ
abωμab

)
εi + Vμij εj

+ 1
24γ · T −γμεi + γμηi ,

δQ,S(ε, η)T
−
abc = − 1

32 ε̄γ
deγabcR̂de(Q)− 7

96 ε̄γabcχ ,

δQ,S(ε, η)χ
i = + 1

8 (Dμγ · T −)γ μεi − 3
8 R̂

ij (V ) · γ εj + 1
4D ε

i + 1
2γ · T −ηi ,

δQ,S(ε, η)D = ε̄i /Dχi − 2η̄χ , (2.107)

where γ · T ≡ γ abcTabc, . . ..
The constraints that we took in 6 dimensions are

0 = Raμν(P ) ,

0 = γ bR̂ba(Q)
i + 1

6γaχ
i ,

0 = R̂ac

(
Mbc

)
− T −

acdT
−bcd + 1

12δa
bD . (2.108)

The last equation contains a sign correction12 to the equation in [5].
The transformations of the dependent gauge fields ωμab and φiμ contain as

covariant terms (terms not determined by the algebra)

δQ(ε)ωμ
ab = · · · − 1

2 ε̄γ
[aR̂μb](Q)− 1

4 ε̄γμR̂
ab(Q)− 1

12eμ
[aε̄γ b]χ ,

δQ(ε)φ
i
μ = · · · + 1

32

{
γ abγμ − 1

2γμγ
ab
}
R̂ab

i
j (V )ε

j +

− 1
96

(
/Dγ abcT −

abcγμ

)
εi . (2.109)

In this case the constraints are also S-invariant, and thus there are no extra S-
supersymmetry transformations.

The algebra is only modified in the anticommutator of twoQ-supersymmetries:

[
δQ(ε1), δQ(ε2)

] = δcgct

(
1
2 ε̄2γμε1

)
+ δM

(
1
2 ε̄2γcε1T

− abc) + δS
(

1
24γaχ

i ε̄2γ
aε1

)

+ δK
(
− 1

8 ε̄2γbε1

(
DcT − abc + 1

12η
abD

))
. (2.110)

12We thank T. Kugo for this correction.



References 63

Again, this implies that the transformations of gauge fields contain extra terms
with gauge fields as e.g. there is in the transformation of the spin connection
+ 1

2 ε̄γcψμT
− abc.
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Chapter 3
Matter Multiplets

Abstract After the Weyl multiplet is introduced, we can now define matter
multiplets whose transformations respect the algebra with structure functions that
depend on the fields of the Weyl multiplet. We treat here vector multiplets and
hypermultiplets. We define them for D = 4, 5 and 6, first for rigid supersymmetry
and then for the superconformal theory. In the second part of this chapter we define
actions for these multiplets, which will be the basis for the further chapters.

The goal of this chapter is to construct local superconformal actions for the matter
multiplets, exploiting our knowledge of the Weyl multiplet. In principle there are
many representations of the superconformal algebra that define matter multiplets.
The physical theories for D = 4 can all be obtained with vector multiplets and
hypermultiplets. For D = 5 and D = 6 tensor multiplets can lead to inequivalent
theories. For D = 5, this has been included in the treatments of [1–5], to which we
will come back to this in Sect. 6.2. One might also prefer formulations in terms of
other multiplets to make connections with other descriptions, e.g. in string theory.
We will briefly discuss the D = 4 tensor multiplet in a superconformal background
[6] in Sect. 3.2.5. The action with one tensor multiplet was given in [7] and extended
to more multiplets in [8]. On-shell matter couplings using different formalisms have
been given in [9–11]. Recently [12], also the (off-shell) coupling of one tensor
multiplet to an arbitrary number of vector multiplets has been obtained.

The main focus of this chapter will be on vector and hypermultiplets. Importantly,
the latter will be used not only as physical multiplets, but also as compensating
multiplets to describe super-Poincaré theories with matter couplings. This is in the
spirit of the general strategy outlined in Sect. 1.2.2 that we review in Sect. 3.1.

The remainder of this chapter is split in two parts. In Sect. 3.2 we explain
the structure of first vector and then hypermultiplets and their embedding in the
superconformal algebra. The construction of actions is postponed to the second part,
Sect. 3.3. We explicitly construct the superconformal invariant actions for sets of
these multiplets, which will be combined in Chap. 4 by the gauge fixing to Poincaré
supergravity. Many parts of this chapter, especially for the case ofD = 4, have been
obtained in the context of the master thesis of De Rydt and Vercnocke [13].

© Springer Nature Switzerland AG 2020
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Lecture Notes in Physics 966, https://doi.org/10.1007/978-3-030-33757-5_3

65

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33757-5_3&domain=pdf
https://doi.org/10.1007/978-3-030-33757-5_3


66 3 Matter Multiplets

3.1 Review of the Strategy

In Sect. 1.2.2, we already outlined the general idea of the superconformal con-
struction for actions with super-Poincaré invariance. At that time, we had not yet
explained the gauging of the conformal algebra. Now we can be more precise. For
this example, we will still restrict to the bosonic case. Consider a scalar field φ with
Weyl weight w and no intrinsic special conformal transformations: kμ(φ) = 0. Its
superconformal covariant derivative is

Dμφ = (
∂μ − wbμ

)
φ . (3.1)

The transformation of the covariant derivative Daφ can be easily obtained from
the ‘easy method’ (Sect. 2.3.4). One takes into account (2.25) to find that there is a
K transformation. The transformation law of a covariant derivative determines the
covariant box

�
Cφ ≡ ηabDbDaφ = eaμ

(
∂μDaφ − (w + 1)bμDaφ + ωμabDbφ + 2wfμaφ

)

= e−1 (∂μ − (w + 2 −D)bμ
)
egμν (∂ν −wbν) φ − w

2(D − 1)
R φ. (3.2)

We use here the constraint (2.72) (without matter for the pure bosonic case). The
last term is the well-known R/6 term in D = 4. In fact, choosing w = D

2 − 1, one
has a conformal invariant scalar action

S =
∫

dDx eφ�Cφ . (3.3)

Exercise 3.1 Show that
∫

dDx eDaφDaφ is not a special conformal invariant,
while �φ is invariant underK iff w = D

2 − 1. �
In order to obtain a Poincaré invariant action, we have to break dilatations and

special conformal transformations (as these are not part of the Poincaré algebra).
Considering (2.25), it is clear that the latter can be broken by a gauge choice

K − gauge : bμ = 0 . (3.4)

One could take as gauge choice for dilatations a fixed value of a scalar φ. As a
consequence, the action (3.3) reduces to the Poincaré gravity action: only the frame
field of the ‘Weyl multiplet’ (which was in the background) remains.

The lesson to learn is: once the gauge for the superfluous symmetries in the
matter action is fixed, without considering any action for the Weyl multiplet, we
find kinetic terms for the gravity sector.
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We can schematically summarize this procedure in the following diagram:

Weyl multiplet: eμa, bμ (Background)

+
matter field: φ

↓ gauge fixing Ka, D

Poincaré gravity eμa , (3.5)

namely we introduce, in the background of the Weyl multiplet, the conformally
invariant action of a matter field φ and we fix the gauge to get the action of
Poincaré gravity. In the above scheme, the field φ provides the compensating field
degree of freedom that makes the combined field gauge equivalent to an irreducible
multiplet of Poincaré gravity. We remark that, at the classical level, every gauge
fixing is equivalent to redefinitions of the fields. In this case, defining (the conformal
invariant)

g̃μν = gμνφ4/(D−2) , (3.6)

and writing the action in terms of R(g̃), the field φ disappears from the action

S = − D − 2

4(D − 1)

∫
dDx

√
g̃ R(g̃) . (3.7)

The absence of φ from the action above is just a consequence of dilatational
invariance

∫
dDx

[
δS(g̃, φ)

δg̃μν(x)
δDg̃μν(x)+ δS(g̃, φ)

δφ(x)
δDφ(x)

]
= 0 , (3.8)

which, together with δDg̃μν = 0, implies S(g̃, φ) ≡ S(g̃).

3.2 Conformal Properties of the Multiplets

Having the Weyl multiplet, the further step now is to introduce other multiplets in
the background of the Weyl multiplet. The resulting algebra, which depends for part
on the fields of the Weyl multiplet, is fixed for what concerns the superconformal
transformations. On the other hand, extra terms with gauge transformations of extra
vectors or antisymmetric tensors may still appear in the algebra. As long as the fields
of the Weyl multiplet are inert under these transformations (as we will impose by
hypothesis), these extra transformations do not modify our previous results.
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A first modification of this structure is obtained by the introduction of a gauge
vector multiplet. The commutator of the supersymmetries can still be modified by a
gauge transformation that depends on fields of this vector multiplet. For this struc-
ture to make sense, the algebra of the Weyl multiplet had to close without using an
equation of motion. Furthermore, as long as the vector multiplet is well defined off-
shell, a matter multiplet (in the background of both the vector and Weyl multiplet)
may now be introduced whose algebra closes only modulo equations of motion.

All fields in ‘matter multiplets’ will now have to obey the same ‘soft’ algebra
defined by the Weyl multiplet. A first step is to define their transformations under the
bosonic symmetries. We assume the rules (2.87) and (2.88) under Weyl and chiral
transformations, where the weights will be given in Table 3.1. The R-symmetry
SU(2) transformation is implicit in the index structure of the fields.

Table 3.1 Fields in some
superconformal matter
multiplets

We indicate for each dimension the Weyl weight (and forD =
4 chiral weight), the number of real degrees of freedom, the
SU(2) representations, which is the same in any dimension,
and the chirality for D = 4 and D = 6. For each multiplet
we give first the bosonic fields, and then the fermionic fields
(below the line)
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3.2.1 Vector Multiplets

Vector multiplets can first be defined in 6 dimensions, and then reduced to 5 or 4
dimensions.

3.2.1.1 Vector Multiplet in 6 Dimensions (Abelian Case)

Consider the vector multiplet in D = 6, which has already been introduced in
Sect. 2.3.2. It has been shown in (2.59) that the supersymmetry transformations
do not close. The solution to this issue is well-known: the 5 bosonic components
of the gauge vector, and the 8 components of the spinor, need an SU(2)-triplet
of real scalars, Y (ij). The latter will appear in the transformation law of the
fermion.

As an illustrative example, let us show how the transformation laws of the
D = 6 vector multiplet have been determined with methods that can be used
in general. In general, it is useful to first consider the Weyl weights of the
fields. One useful principle is that gauge fields (beyond the Weyl multiplet)
should have Weyl weight 0, as all transformations beyond the superconformal
group must commute with the conformal generators. Equivalently, all the
parameters beyond the superconformal group have to be considered1 as Weyl
weight 0.

For the U(1) gauge vectorWμ, whose abelian gauge transformation is δGWμ =
∂μθ , the previous argument implies thatWμ has Weyl weight 0.2 The same argument
holds in fact for any gauge field, or gauge two-form, . . . . Then the associated
curvature Fab has Weyl weight 2 (due to the frame fields involved in Fab =
ea
μeb

νFμν ). As we have explained, these are the covariant quantities that should
appear in the transformations of other matter fields. The supersymmetry parameter
ε should be considered to be of Weyl weight − 1

2 , identical to its gauge field ψμ.
Thus the supersymmetry transformation of the gaugino to the field strength of the
gauge field determines that the conformal weight of λ is indeed 3

2 .

Exercise 3.2 Determine the same result from the transformation of the gauge field
to the gaugino. �
The auxiliary field Y ij can appear in the transformation of the fermion via an extra
term δλi = Y ij εj , hence the auxiliary field should be of Weyl weight 2. In its
supersymmetry transformation law can appear a covariant fermionic object of Weyl
weight 5

2 . This is consistent with a transformation to the covariant derivative of the

1In principle parameters do not transform, but the commutators of symmetries can be stated in
these terms.
2We could straightforwardly have generalized to a non-abelian algebra. We will do this below for
D = 5 and D = 4.
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gaugino, in order to cancel (2.59). The full transformation laws are

δWμ = ∂μθ + 1
2 ε̄γμλ ,

δλi =
(

3
2λD − 1

4γ
abλab

)
λi + λij λj − 1

4γ
abF̂abε

i − Y ij εj ,
δY ij = 2λDY

ij + 2λk(iY j)k − 1
2 ε̄
(i /Dλj) + η̄(iλj) . (3.9)

Starting from the rigid transformations, we replacedFab by the covariant expression
F̂ab and the derivative of λj has been replaced by a covariant derivative.

F̂μν =Fμν − ψ̄[μγν] ,

Dμλi =
(
∂μ − 3

2bμ + 1
4γ
abωμab

)
λi − Vμij λj + 1

4 ψ̄
i
μγ

abF̂ab + Y ijψμ j .
(3.10)

The consistency with Weyl weights does not leave place for other terms in the
Q-transformations. Since the S-supersymmetry parameter η has to be considered
as having Weyl weight 1

2 , the only S-transformation that can occur consistent with
Weyl weights is the last term in (3.9). Its coefficient has to be fixed from calculating
the [δQ(ε), δQ(η)] commutator on the gaugino or from the method in item (3) in
Sect. 2.6.1. One can check that the extra terms from Y ij cancel the non-closure
terms (2.59).

Exercise 3.3 Check that all the transformation laws determine (and are consistent
with) λ to be a left-chiral spinor, in accordance with Table 1.1. �

3.2.1.2 Vector Multiplet in 5 Dimensions

The transformations of the vector multiplet in 5 dimensions can be obtained from
dimensional reduction3 of the transformations forD = 6. Note that one component
of the D = 6 vector is a real scalar σ in D = 5.

We will introduce here the vector multiplet in a non-abelian group, based on
matrix representations with [tI , tJ ] = fIJ

KtK . Note that we will use the index I
from now on to enumerate the vector multiplets, and thus the generators of the non-
abelian algebra that can be gauged. We hope that this does not lead to confusion
with the index I that was used so far to denote all standard gauge transformations
as it was done in Chap. 2.

3The reader can easily find the linearized transformations from those in (3.9) using the rules in
Appendix A.4. It may be more difficult to find the nonlinear transformations, since there are
redefinitions such as Wμ(D = 6) = Wμ(D = 5) + e5

μσ . It is easier to obtain the nonlinear
transformations from directly imposing the supersymmetry algebra inD = 5.
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The full rules can be found in [14, 5] for a generalization containing also tensor
multiplets. For simplicity, we give here the supersymmetry transformations for only
vector multiplets:

δWI
μ = ∂μθ

I − θJWK
μ fJK

I + 1
2 ε̄γμψ

I − 1
2 iσ I ε̄ψμ,

δY ijI = − 1
2 ε̄
(i /Dψj)I + 1

2 iε̄(iγ · T ψj)I − 4iσ I ε̄(iχj),

+ 1
2 iε̄(ifJKI σJψj)K + 1

2 iη̄(iψj)I ,

δψiI = − 1
4γ · F̂ I εi − 1

2 i /Dσ I εi − Y ijI εj + σ I γ · T εi + σ I ηi,
δσ I = 1

2 iε̄ψI . (3.11)

The (superconformal) covariant derivatives are given by

Dμ σ I = Dμσ
I − 1

2 iψ̄μψI ,

Dμσ
I = (∂μ − bμ)σ I − fJKIWK

μ σ
J ,

DμψiI = Dμψ
iI + 1

4γ · F̂ Iψiμ + 1
2 i /Dσ Iψiμ + Y ijIψμj − σ I γ · Tψiμ,

+ 1
2fJK

IσJ σKψiμ − σ Iφiμ,
Dμψ

iI =
(
∂μ − 3

2bμ + 1
4γabω̂μ

ab
)
ψiI − V ijμ ψIj − fJKIWK

μ ψ
iJ . (3.12)

with F̂ Iμν given by

F̂ Iμν = FμνI − ψ̄[μγν]ψI + 1
2 iσ I ψ̄[μψν] , Fμν

I = 2∂[μWI
ν] +WJ

μW
K
ν fJK

I ,

(3.13)

There is one more aspect in the dimensional reduction (whether the multiplet is
abelian or not). Remember that the covariant general coordinate transformations
contain a linear combination of all gauge symmetries. That involves also the
gauge transformation of the vector. Thus in the commutator of two supersymmetry
transformations inD = 6 is a term ε̄2γ με1Wμ. When reduced to 5 dimensions (and
below also to 4 dimensions), some components of Wμ are replaced by the scalars
σ . This is the origin of a new term in the supersymmetry commutator involving
structure functions depending on the scalars, which is implicit in the form of the last
term in F̂ Iμν , which is of the form of the last term in (2.5) for gravitini as gauge fields.

3.2.1.3 Vector Multiplet in 4 Dimensions

Further dimensional reduction leads to the vector multiplet in 4 dimensions. As
mentioned already in Sect. 1.2.1, it has then a complex scalar, built from the fourth
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and fifth components of the vector of 6 dimensions. To get the right behaviour of
gauge and general coordinate transformations, one has to consider the reduction
of the vector with tangent spacetime indices (see [15, 16] and a useful general
introduction to dimensional reduction is [17]). In other words, the object from where
the scalars originate in the dimensional reduction should be a world scalar, eaμWμ,
which has Weyl weight 1. Therefore the complex4 scalar X of the D = 4 vector
multiplets has w = 1.

Before giving the supersymmetry transformations, we have to translate the reality
of the triplet Yij in appropriate notation for 4 dimensions. In 6 dimensions the reality
is Y = Y ∗ = σ2Y

Cσ2. It is in the form with YC that we have to translate it, thus
giving rise to

Yij = εikεj�Y k� , Y ij = (Yij )∗ . (3.14)

As for D = 5, we write the transformations for the non-abelian vector
multiplet. The transformations under dilatations and chiral U(1) transformations
follow from Table 3.1, with the general rules (2.87) and (2.88). The supersymmetry
(Q and S), and the gauge transformations with parameter θ in 4 dimensions
are5

δXI = 1
2 ε̄
i�Ii − θJXKfJKI ,

δ�Ii = /DXIεi + 1
4γ
abF I−ab εij εj + Y Iij εj +XJ X̄KfJKI εij εj

+2XIηi − θJ�Ki fJKI ,
δWI

μ = 1
2ε
ij ε̄iγμ�

I
j + εij ε̄iψμjXI + h.c.+ ∂μθI − θJWK

μ fJK
I ,

δY Iij = 1
2 ε̄(i /D�Ij) + 1

2εikεj�ε̄
(k /D��)I + εk(i

(
ε̄j)X

J�kK − ε̄kX̄J�j)K
)
fJK

I

−θI YKij fJKI , (3.15)

where

F I−ab ≡ F̂ I−ab − 1
2 X̄

I T −
ab. (3.16)

In the latter expression F̂ I−ab denotes the anti-self-dual part of F̂ab, which is covariant
with the new structure functions, as dictated by definitions given in Chap. 2 and

4To be in accordance with common practice here, we denote the complex conjugates of the scalar
fields by X̄ rather than X∗.
5For the translation from D = 5, we use XI = 1

2 (W
I
4 − iσ I ), and � has been defined with the

opposite sign as would straightforwardly follow from Appendix A.4: ψiI = −�iI −�Ij εji .
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reported here for convenience

F̂μν
I = Fμν

I +
(
−εij ψ̄i[μγν]�Ij − εij ψ̄iμψjν X̄I + h.c.

)
,

F Iμν = ∂μW
I
ν − ∂νWμI +WμJWνKfJKI . (3.17)

Indeed, the second term of the transformation of the vector reflects the presence
of the new term in the commutator of two supersymmetries, as already discussed
forD = 5, and modifies (2.96) to

[δQ(ε1), δQ(ε2)] = δP
(
ξa3
) + δM

(
λab3

)
+ δK

(
λaK3

) + δS (η3)

+δG
(
θI3 (ε1, ε2) = εij ε̄2iε1jXI + h.c.

)
, (3.18)

where δG is the (non-abelian) gauge transformation parameterized by θI .

Exercise 3.4 Check that this leads to the form of F̂μν I as given in (3.17). �
The covariant derivatives are

DμXI = DμXI − 1
2 ψ̄

i
μ�

I
i ,

DμX
I = (

∂μ − bμ − iAμ
)
XI +WJ

μX
KfJK

I ,

Dμ�Ii = Dμ�Ii − /DXIψμi − 1
4γ
abF I−ab εijψjμ

−Y Iijψjμ −XJ X̄Kf IJKεijψjμ − 2XIφμi, (3.19)

Dμ�
I
i =

(
∂μ + 1

4ωμ
abγab − 3

2bμ − 1
2 iAμ

)
�Ii + Vμij�j I +WJ

μ�
K
i fJK

I .

As will become clear in the following section, the vector multiplet is a con-
strained chiral multiplet. This observation becomes relevant when constructing
actions for the vector multiplet (Sect. 3.3).

3.2.2 Intermezzo: Chiral Multiplet

A multiplet corresponds to a superfield in superspace. A multiplet or a superfield
can be real or chiral, or carry a Lorentz representation, or be in a non-trivial repre-
sentations of the R-symmetry, . . . . For the multiplet, this just reflects the property
of its ‘lowest component’.6 For example, a chiral multiplet is characterized by the
fact that its lowest component transforms ‘chirally’, i.e. only under the left-handed
supersymmetry and not under the right-handed one. In superspace this means that
one chiral superspace derivative vanishes on the field. Furthermore multiplets or

6‘Lowest’ refers here to the Weyl weight in superconformal language (or to the engineering
dimensions, if we do not discuss the superconformal properties).
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superfields can be constrained. In this section we explain, first in the context of rigid
supersymmetry, how further constraints on a chiral multiplet lead to the vector mul-
tiplet, which is smaller. A generalization to the rigid superconformal case follows.

Let us consider a general scalar multiplet, whose ‘lowest’ component is a
complex scalar A. In general, a complex scalar can transform under Q to arbitrary
spinors

δQ(ε)A = 1
2 ε̄
i�i + 1

2 ε̄i�
i . (3.20)

Then the transformations of these arbitrary spinors �i and �i can have arbitrary
expressions containing new fields, as long as it is consistent with the algebra. See
e.g. [18, Sect. 14.1.1] for the example of N = 1 chiral multiplets, and in Sect. 2.2
of [19] this is worked out for the chiral multiplet of N = 2, which we consider
here.

If�i = 0, then the lowest component only transforms under left supersymmetry:

δQ(ε)A = 1
2 ε̄
i�i , (3.21)

and the multiplet is called chiral. Imposing the rigid supersymmetry algebra leads
to the following general expressions:

δQ(ε)A = 1
2 ε̄
i�i ,

δQ(ε)�i = /∂Aεi + Bij εj + 1
4γabG

−abεij εj ,

δQ(ε)Bij = 1
2 ε̄(i /∂�j) − 1

2 ε̄
k�(iεj)k ,

δQ(ε)G
−
ab = 1

4ε
ij ε̄i /∂γab�i + 1

4 ε̄
iγab�i ,

δQ(ε)�i = − 1
4γ
abG−

ab

←
/∂ εi − /∂Bij ε

jkεk + 1
2Cεij ε

j ,

δQ(ε)C = −εij ε̄i /∂�j . (3.22)

The reader can count that this is a 16 + 16 multiplet counted as real components. In
fact it is reducible, since one can impose the following consistent constraints7:

Bij − εikεj�Bk� = 0 ,

/∂�i − εij�j = 0 ,

7There is an extension possible that the first of these expressions is not zero [20] but a constant. This
leads to magnetic couplings in rigid supersymmetry, and possibilities for partial breaking to N = 1
supersymmetry. Recently [21], it has been shown how to generate these constants dynamically
using multiplets with 3-form gauge fields, and in [22] this has been related to deformations in
Dirac–Born–Infeld actions. It is not clear how to generalize this to supergravity, and hence we will
not further discuss this.
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∂b(G
+ab −G−ab) = 0 ,

C − 2∂a∂aĀ = 0 , (3.23)

where Bk� is, as usual, defined by the complex conjugate of Bk�, and similarly G+
is the complex conjugate of G−, and thus self-dual as G− is anti-self-dual. These
constraints are consistent in the sense that a supersymmetry variation of one of them
leads to the other equations, and this is a complete set in that sense.

The third equation is a Bianchi identity that can be solved by interpreting Gab
as the field strength of a vector. To conclude, the independent components are then
those of the vector multiplet, with the following identifications:

X = A , �i = �i , Fab = Gab , Yij = Bij . (3.24)

Indeed the linear part of (3.15) corresponds to (3.22). We have thus identified the
vector multiplet as a constrained chiral multiplet.

To define the chiral multiplet in the conformal algebra, one first allows an
arbitrary Weyl weight for A, say that this is w. Then consistency with Weyl
weights imposes that a general S-supersymmetry transformation for �i should be
proportional to A. Imposing the {Q,S} anticommutator immediately shows that the
chiral U(1) weight of A should be related to its Weyl weight. In fact, to avoid the εi
terms in this anticommutator, one should impose that under dilatations and U(1),

δD,T (λD, λT )A = w (λD + iλT )A . (3.25)

The same transformations for the other fields can be obtained by requiring compat-
ibility withQ-transformations, to obtain

δD,T (λD, λT )�i =
((
w + 1

2

)
λD + i

(
w − 1

2

)
λT

)
�i ,

δD,T (λD, λT )Bij = ((w + 1)λD + i(w − 1)λT ) Bij ,

δD,T (λD, λT )G
−
ab = ((w + 1)λD + i(w − 1)λT )G

−
ab ,

δD,T (λD, λT )�i =
((
w + 3

2

)
λD + i

(
w − 3

2

)
λT

)
�i ,

δD,T (λD, λT )C = ((w + 2)λD + i(w − 2)λT ) C . (3.26)

To complete the superconformal multiplet, one has to add S-transformations, and
there are nonlinear transformations involving the matter fields of the Weyl multiplet
χi and Tab, necessary in order to represent the anticommutators (2.96). The full
result was found in [23]:

δQ,S(ε, η)A = 1
2 ε̄
i�i ,

δQ,S(ε, η)�i = /DAεi + Bij εj + 1
4γ ·G−εij εj + 2wAηi ,
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δQ,S(ε, η)Bij = 1
2 ε̄(i /D�j) − 1

2 ε̄
k�(iεj)k + (1 −w)η̄(i�j) ,

δQ,S(ε, η)G
−
ab = 1

4ε
ij ε̄i /Dγab�j + 1

4 ε̄
iγab�i − 1

2ε
ij (1 +w)η̄iγab�j ,

δQ,S(ε, η)�i = − 1
4γ ·G− ←

/D εi − /DBij εkεjk + 1
2Cε

jεij

− 1
8 ( /DA)T · γ )εi − 1

8wA( /DT ) · γ εi − 3
4 (χ̄[iγa�j ])γ aεkεjk

−2(1 +w)Bij εjkηk + 1
2 (1 −w)γ ·G−ηi ,

δQ,S(ε, η)C = −εij ε̄i /D�j − 6ε̄iχjBk�εikεj�

+ 1
8 (w − 1)ε̄iγ · T

←
/D �jε

ij + 1
8 ε̄iγ · T /D�jεij + 2wεij η̄i�j .

(3.27)

This time, the set of consistent constraints is8

0 = Bij − εikεjlBkl ,
0 = /D�i − εij�j ,
0 = Da

(
G+
ab −G−

ab + 1
2ATab − 1

2 ĀTab

)
− 3

4

(
εij χ̄iγb�j − h.c.

)
,

0 = −2�Ā− 1
2G

+
μνT

μν − 3χ̄i�i − C . (3.28)

Interestingly, the constraints above are consistent only for a specific choice of w.
For example, the first constraint is a reality condition, and it is easy to check that
this is only consistent if the chiral weight of Bij is zero. This fixes w = 1, which in
turn is the appropriate value also to interpretGab as a covariant field strength. Note
that the Bianchi identity in the third line of (3.28) shows the shift between the pure
covariant field strength and the G. Compare this with (3.16).

The chiral multiplet plays an important role in the construction of the actions
in rigid supersymmetry, as its highest component C is a scalar transforming to
a total derivative. That action corresponds in superspace to take the full chiral
superspace integral of the chiral superfield. However, in local supersymmetry, as
in the superconformal transformations in (3.27), the transformation of C is not a
pure derivative. Therefore in order to have an invariant action, one has to include
more terms, i.e. something of the form

I =
∫

d4x e C + · · · + h.c. . (3.29)

The + · · · in (3.29) are terms that should be such that the transformation of the
integrand is a total derivative.

8For rigid supersymmetry, an imaginary constant in Bij would be possible, describing magnetic
charges.
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But we can first make a few general observations. The integrand should be
invariant under all superconformal transformations. Let us start with the Weyl
transformations. The Weyl weight of the determinant of the frame field is −4, so
C should have Weyl weight 4. It should also be invariant under T -transformations,
which means that the chiral weight should be zero. We see from (3.26) that these two
requirements are consistent with a requirement that the chiral multiplet should have
Weyl weight 2. Note that this implies that it will not be a constrained chiral (i.e.
vector) multiplet. We found above that these have Weyl weight 1. But if we start
from a vector multiplet, any holomorphic function of X still transforms only under
1 chirality of Q. Hence any F(X) is a chiral multiplet. If we take a homogeneous
function of second degree inX, this gives us a chiral multiplet with w = 2 on which
we can use the action formula.

To determine the full expression in (3.29) one considers other terms that have
Weyl weight 4 and chiral weight 0, and imposes the condition of invariance of
the action. In practice, imposing S-supersymmetry is easiest to determine all the
coefficients of these terms. For local superconformal symmetry the result is [23]

e−1L = C − ψ̄i · γ�jεij + 1

8
ψ̄μiγ · T +γ μ�jεij − 1

4
AT +

abT
+ab

−1

2
ψ̄μiγ

μνψνjBklε
ikεjl + ψ̄μiψνj εij

(
G−μν − AT +μν)

+1

2
iεij εk�e−1εμνρσ ψ̄μiψνj ψ̄ρk (γσ�� + ψσ�A)+ h.c. . (3.30)

This is called the chiral density formula.

3.2.3 Rigid Hypermultiplets

Hypermultiplets are the analogues of the chiral multiplets of N = 1 supersymmetry.
They contain four scalars and two spin- 1/2 fields. In supergravity, they are defined
in the background of the Weyl multiplet and possibly also in the background
of the vector multiplet (i.e. they can transform non-trivially under the gauge
transformations of the vector multiplets). One can further introduce auxiliary fields
to close the algebra for the simplest quaternionic manifolds. The methods of
harmonic or projective superspace mentioned in the introduction [24–30] are also
equivalent to introducing an infinite number of auxiliary fields. However, we do not
need auxiliary fields any more at this point because the hypermultiplets are at the
end of the hierarchy line.9

9We are not going to introduce any further multiplet in the background of the hypermultiplets, as
these do not introduce new gauge symmetries. This is to be confronted to when we considered the
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The closure of the supersymmetry algebra will impose equations that we will
interpret as equations of motion, even though we have not defined an action yet.
Later we will see how an action can be constructed that gives precisely these
equations as Euler–Lagrange equations.

Although our interest is the local case, the present section is mostly devoted to
rigid super(conformal) symmetry. This choice has been made since the rigid case
provides already simpler and explicative examples of the story. We remark that since
dimensional reduction for scalars and spin-1/2 fermions leads to the same type of
particles in lower dimension, the properties of the hypermultiplets do not depend
on whether we consider D = 6, D = 5, or D = 4 (or even D = 3). There is a
technical difference since the four on-shell (or eight off-shell) degrees of freedom
are captured in symplectic Weyl, symplectic or Majorana spinors, respectively. In
practice, we mostly report formulae in D = 5. These can be translated to D = 6
andD = 4 by the rules in Appendix A.4.

Before starting the mathematical formulation, we still want to point out how
massive hypermultiplets can be described in this context, since the readers will
mainly see equations of motion that describe only massless hypermultiplets. This
is of course also related to the fact that we are mainly interested in conformal
theories. Massive hypermultiplets in rigid supersymmetry are obtained in this setting
by adding a coupling to a vector multiplet that has just a first scalar component
equal to the mass, and all other components zero. The reader can glimpse at (3.88)
for D = 5 with σ I equal to a mass, or to (3.93) and (3.95) for XI providing the
mass to see that with a suitable choice of the Killing vectors these are massive
field equations. In supergravity this will be natural for the σ I or XI referring to the
compensating multiplet.

3.2.3.1 Rigid Supersymmetry

We consider a set of nH hypermultiplets. The real scalars are denoted as qX,
with X = 1, . . . , 4nH , and the fermions are indicated by ζA, where the indices
A = 1, . . . , 2nH will indicate a fundamental representation of Sp(2nH ). Imposing
the supersymmetry transformations on the bosons lead to the identification of
a hypercomplex manifold10 parameterized by these bosons qX. The structure is
determined by frame fields f iAX, connectionsωXAB and �ZXY (the latter symmetric
in its lower indices) such that

f iAY f XiA = δXY , f iAXfXjB = δij δ
A
B . (3.31)

vector multiplets. The construction of the latter had to take into account that the multiplets can be
used for various possible actions (including hypermultiplets or not).
10In supergravity the scalars span a quaternionic manifold, see Sect. 5.6.
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and

∇Y f XiA ≡ ∂Y f XiA − ωYAB(q)fXiB + �XYZ(q)fZiA = 0 ,

∇Y f iAX ≡ ∂Y f iAX + f iBXωYBA(q)− �ZYX(q)f iAZ = 0 , (3.32)

are satisfied. The frame field satisfies a reality condition, for which we will also
introduce indices Ā:

(
f iAX

)∗ = f jBXεjiρBĀ ,
(
f XiA

)∗ = εij ρĀBf XjB , (3.33)

in terms of a non-degenerate covariantly constant tensor ρAB̄ that satisfies

ρAB̄ρ
B̄C = −δCA , ρĀB = (

ρAB̄
)∗
. (3.34)

By field redefinitions, we could bring it in the standard antisymmetric form

ρAB̄ =
(

0 1lnH
−1lnH 0

)
= ρĀB . (3.35)

We will not impose this basis choice in general. In Sect. 3.3.4 we will show how
such a basis could be implemented.

The complex conjugate of ωXAB is

(
ωXAB

)∗ ≡ ω̄XĀ
B̄ = −ρĀCωXCDρDB̄. (3.36)

The above conditions lead to the identification of almost quaternionic structures

2f iAXf Y jA = δYXδij + JXY j i , JX
Y
j
i = τ j

i · JXY ,

JXY =
(

JXY
)∗ = −f iAXf Y jAτ i

j . (3.37)

We use here the 3-vectors notation and τ i
j = iσ i j in terms of the three Pauli-

matrices σ i
j as in (1.52), (1.54). Related formulas are given in Appendix A.2.2.

The three matrices J satisfy the quaternionic algebra, i.e. for any vectors A, B

A · JXZB · JZY = −δXYA · B + (A × B) · JXY . (3.38)

In passing, we note that we can solve (3.32) for ωXAB, such that the independent
connection is �XYZ. The latter is the unique connection on the scalar manifold
respect to which

∇ZJXY ≡ ∂ZJXY − �ZXUJUY + �ZUY JXU = 0. (3.39)
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This last condition promotes JXY to be quaternionic structures.
The integrability condition of (3.32) relates the curvatures defined by the two

connections:

RXY
W
Z ≡ 2∂[X�WY ]Z + 2�WV [X�VY ]Z ,

RXYBA ≡ 2∂[XωY ]BA + 2ω[X|C|AωY ]BC ,

RXY
W
Z = fW iAf iBZRXYBA , RXYBA = 1

2f
W
iBf iAZRXYZW .

(3.40)

In order to work with these tensors, it can be useful to introduce also tensors L that
are orthogonal to the complex structures:

LY
ZAB ≡ f ZiAf iBY , JZYLY ZAB = 0 ,

LX
YABLY ZCD = LXZCBδAD ,

LX
XAB = 2δAB , LX

YABLYXCD = 2δCBδAD . (3.41)

If the affine connections is the Levi-Civita connection of a metric, then the
curvatures satisfy the cyclicity properties R(XYWZ) = 0, and one can show that

f XiCf Y jDRXYBA = − 1
2εijWCDBA , WABCD ≡ −εij f XiAf Y jBRXYCD .

(3.42)

The tensor WABCD is symmetric in its lower indices, and the other curvatures can
be expressed in function of this one as

RXY
W
Z = LZWDC RXYCD = −εij 1

2LZ
WCDf iAXf jBYWABCD . (3.43)

The Bianchi identity on RXYAB implies also a symmetry of the covariant derivative
ofW :

fXiA∇XWBCDE = f Xi(A|∇XW|BCD)E . (3.44)

When a metric will be defined on the manifold, the W -tensor will become
symmetric in the 4 indices. As a consequence, the manifold will be Ricci flat:

RYZ = RXYXZ = 0 . (3.45)
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3.2.3.2 Reparameterizations and Covariant Quantities

The hypermultiplet is defined in terms of the scalars qX, which form a param-
eterization of a 4nH -dimensional manifold, and the fermions ζA, which are a
parameterization of a 2nH -dimensional manifold of fermions. Both these basic
parameterizations can be changed [14]. There are thus two kinds of repara-
meterizations. The first ones are the target space diffeomorphisms, qX → q̃X(q),
under which f XiA transforms as a vector, ωXAB as a one-form, and �XY Z as a
connection. The second set are the reparameterizations, which act on the tangent
space indices A,B etc. On the fermions, they act as

ζA → ζ̃A(q) = ζBUBA(q) , (3.46)

where UAB(q) is an invertible matrix, and the reality conditions impose U∗ =
ρ−1Uρ, defining G�(r,H). In general, the right-hand side of (3.46) depends on the
ζA and on the scalars. Thus the new basis ζ̃A is a basis where the fermions depend
on the scalars qX. In this sense, the hypermultiplet is written in a special basis where
qX and ζA are independent fields. We will develop a covariant formalism which also
takes into account these reparameterizations.

The supersymmetry transformations in D = 5 are

δqX = −iε̄iζAfXiA ,

δζA = 1
2 if iAX /∂qXεi − ζBωXBAδqX . (3.47)

They are covariant under (3.46) if we transform f iAX(q) as a vector and ωXAB
as a connection,

ωXAB → ω̃XAB =
[(
∂XU

−1
)
U + U−1ωXU

]
A

B . (3.48)

These considerations lead us to define the covariant variation of vectors (see [18,
Appendix 14B]) with indices in the tangent space, as ζA, or a quantity �X with
coordinate indices:

δ̂ζA ≡ δζA + ζBωXBAδqX , δ̂�X ≡ δ�X +�Y�YZXδqZ , (3.49)

for any transformation δ (as e.g. supersymmetry, conformal transformations,. . . ).
Two models related by either target space diffeomorphisms or fermion reparame-

terizations of the form (3.46) are equivalent; they are different coordinate descrip-
tions of the same system. We usually work in a basis where the fermions and
the bosons are independent, i.e. ∂XζA = 0. But in a covariant formalism, after
a transformation (3.46), this is not anymore valid. This shows that the expression
∂Xζ

A has no basis-independent meaning. It makes only sense if one compares a
transformed basis, like the ζ̃ A with the original basis where ∂XζA = 0. But in the
same way also the expression ζBωXBA makes only sense if one compares different
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bases, as the connection has no absolute value. The only object that has a coordinate-
invariant meaning is the covariant derivative

∇XζA ≡ ∂XζA + ζBωXBA. (3.50)

In the basis where the fermions ζA are considered independent of the bosons, i.e.
∂Xζ

A = 0, which is the basis used to write down the transformation rules (3.47),
only the second term in the covariant derivative above remains, and thus (3.49)
becomes

δ̂ζA = δζA + ∇XζA δqX. (3.51)

We will always consider independent bosons and fermions when we write varia-
tions.

On any covariant coordinate quantity that depends only on the coordinates qX,
covariant transformations act by covariant derivatives, e.g. for some vectors V X(q),
WA orWA:

δ̂V X(q) = δqY∇YV X(q) = δqY
(
∂YV

X(q)+ �XYZV Z(q)
)
,

δ̂WA(q) = δqY∇YWA(q) = δqY
(
∂YW

A(q)+WB(q)ωYBA
)
,

δ̂WA(q) = δqY∇YWA(q) = δqY
(
∂YW

A(q)− ωYABWB(q)
)
.

(3.52)

In particular, δ̂ of any covariantly constant object (like the frame fields f iAX) is
zero.

Note that we can exploit covariant transformations to calculate any transforma-
tion on e.g. a quantityWA(q)ζA:

δ
(
WA(q)ζA

)
= δ̂

(
WA(q)ζA

)
= δqX∇XWA ζA +WA δ̂ζA . (3.53)

Coordinates are not covariant, but their derivatives are, and e.g. the Laplacian11

�qX = ∇μ∂μqX = ∂μ∂μqX + �YZX
(
∂μq

Y
) (
∂μqZ

)
, (3.54)

is covariant for target space transformations.

11In the local (gravity) theory, the first term should be (
√
g)−1∂μ

√
ggμν∂ν .
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Another interesting relation is that the commutator of δ̂ and ∇ gives rise to
curvature terms:

δ̂∇μV X = ∇μδ̂V X + RZWXYV Y
(
δqZ

) (
∂μq

W
)
. (3.55)

Similarly the commutator gets adapted by curvature terms:

[δ(ε1), δ(ε2)]V X = δ(ε3)V X →
[
δ̂(ε1), δ̂(ε2)

]
V X = δ̂(ε3)V X + RZWXYV Y

(
δ(ε1)q

Z
) (
δ(ε2)q

W
)
, (3.56)

where ε3 is the function of ε1 and ε2 determined by the structure functions. With
these methods, it is easy to compute the commutator of two covariant derivatives.
E.g. in D = 5 with (3.47) for the fermions

[̂
δ(ε1), δ̂(ε2)

]
ζA = 1

2γ
με2if

iA
Xε̄
j

1 ∇μζBfXjB − (1 ↔ 2)

= 1
4γ
μ [(ε̄2ε1)+ γ ν(ε̄2γνε1)] ∇μζA

= 1
2∇μζA(ε̄2γ με1)+ 1

4 [(ε̄2ε1)− γ ν(ε̄2γνε1)] /∇ζA , (3.57)

with the definition

∇μζA ≡ ∂μζA +
(
∂μq

X
)
ζBωXBA. (3.58)

Indices i, j are raised and contracted as in Appendix A.3.2. This result shows that
the algebra does not close: we will interpret the extra parts as equations of motions
of a putative action, see Sect. 3.3.3.

3.2.3.3 Non-closure Relations for Fermions and Bosons

From the result (3.57), using (3.56), we can obtain the following commutator of
transformations:

[δ(ε1), δ(ε2)] ζA = 1
2∂μζ

A(ε̄2γ με1)+ 1
4 [(ε̄2ε1)− γ ν(ε̄2γνε1)] /∇ζA

+ ζBRXYBAε̄i1ζ
Cf XiCε̄j2 ζ

Df Y jD . (3.59)

With (3.42) and a Fierz transformation, we obtain that the non-closure terms (the
last term on the first line and the second line) are

+ 1
4 [(ε̄2ε1)− γ ν(ε̄2γνε1)] /∇ζA + 1

8WCDBAζBζ̄C [(ε̄2ε1)+ γ ν(ε̄2γνε1)] ζD .
(3.60)
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Using some D = 5 Fierz identities:

5ζ (Bζ̄CζD) = −γ μζ (Bζ̄CγμζD) ,
ζ (Bζ̄Cγ νζD) = −γ νζ (Bζ̄CζD) , (3.61)

we find

[δ(ε1), δ(ε2)] ζA = ξμ∂μζA + 1
4

[(
ε̄i2ε

j
1

)
− γ ν

(
ε̄i2γνε

j
1

)]
εji i�A , (3.62)

i.e., the non-closure terms are proportional to12

i�A ≡ /∇ζA + 1

2
WBCDAζBζ̄CζD . (3.63)

The expression above must be interpreted as an equation of motion for the fermions.
The supersymmetry transformation of (3.63) gives then also an equation of motion
for the scalar fields:

δ̂(ε)�A = 1

2
f iAXεi�X , (3.64)

where

�X = �qX − 1

2
ζ̄BγaζD∂aqYf iCY f XiAWBCDA

− 1

4
∇YWBCDAζ̄EζDζ̄CζBf iY Ef XiA . (3.65)

The equations of motion given by (3.63) and (3.65) form a multiplet, since (3.64)
has the counterpart

δ̂(ε)�X = ε̄i /∇�Af XiA − ε̄i�Bζ̄CζDfXiAWBCDA , (3.66)

where the covariant derivative of �A is defined similar to (3.58). As announced
before, we thus have already physical equations despite the absence of an action.

3.2.3.4 Rigid Superconformal

To allow the generalization to superconformal couplings, the essential question is
whether the manifold has dilatational symmetry. This means, according to (1.30),

12We inserted a factor i in order that �A is symplectic Majorana.
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that there is a ‘closed homothetic Killing vector’ [31] (see also [18, Sect. 15.7]). The
dilatations act as13

δD(λD)q
X = λDkD

X(q), (3.67)

where kD
X satisfies (we generalize here already to D dimensions, as the modifica-

tions involve only a normalization factor)

∇Y kD
X ≡ ∂Y kD

X + �XYZkD
Z = D − 2

2
δY
X. (3.68)

On a flat manifold, the fields qX have thus Weyl weight (D − 2)/2. The presence
of this vector allows one to extend the transformations of rigid supersymmetry to
the superconformal group [31, 32, 14], with e.g. transformations under the SU(2)
R-symmetry group:

δSU(2)(λ)q
X = ∓2 λ · kX , kX ≡ 1

D − 2
kD
Y JY X . (3.69)

Note the sign difference between D = 4, upper sign, and D = 5, 6, lower sign, as
in (A.24).

In general, one can introduce the sections

AiA = kXDf iAX , (3.70)

and in terms of these

kX = − 1

D − 2
AiAτ i

j f XjA . (3.71)

Using the rules of covariant transformations (and in particular that ∇Y f iAX
implies δ̂f iAX = 0), the AiA transform as

δ̂AiA = f iAX∇Y kXD δqY = D − 2

2
f iAXδqX

= D − 2

2

(
−iε̄iζA + λDA

iA) + AjAλj i , (3.72)

13Note that we give here only the intrinsic part of the dilatations, i.e. the λD term in (1.24), and
not the ‘orbital’ part included in the general coordinate transformation ξμ(x). Similarly for special
conformal transformations, we will write here only the intrinsic part represented as (kμφ) in that
equation and also the ‘orbital’ S-supersymmetry part (1.60) is not mentioned explicitly.
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using (3.68) and (3.69). Note that the supersymmetry transformation in this
equation is written for the symplectic spinors of D = 5, 6. Below, we will write
them forD = 4.

We can then derive the other (super)conformal transformations using
the algebra. The intrinsic special conformal transformations on qX and ζA
vanish. They have only the ‘orbital’ parts as follows from (1.24). The latter
imply e.g. that δK(λK)/∂q

X �= 0. The algebra gives then for the intrinsic S-
supersymmetry

δS(η
i)ζA = −AiAηi . (3.73)

The (intrinsic) bosonic conformal symmetries act as

δ̂Dζ
A = D − 1

2
λDζ

A , δ̂SU(2)ζ
A = 0 . (3.74)

The fermions are inert under SU(2) R-symmetries group.

3.2.3.5 Isometries and Coupling to Vector Multiplets

So far we considered the hypermultiplet with ungauged isometries. A more general
situation includes couplings to vector multiplets and in this case one has to define
the hypermultiplet in the algebra including the vector multiplet with its gauge
transformations. Let us consider general isometries (not necessarily gauged) of the
hypermultiplet:

δG(θ)q
X = θI kIX(q) , (3.75)

where θI are constant parameters and the kIX(q) represent the transformations. The
index I identifies the different generators of the isometry group. Then a subgroup
of these could be gauged, identified by an embedding tensor [33–36] projecting
from all the symmetries to those that are gauged.14 When we have a metric, kIX(q)
should be Killing vectors in order to define symmetries of the action. As we have
not discussed a metric yet, we could define here some generalization of symmetries,
but we just refer the interested reader to [14]. The transformations (3.75) constitute
an algebra with structure constants fIJ K ,

kI
Y ∂Y kJ

X − kJ Y ∂Y kIX = fIJ K kKX . (3.76)

14However, we will here soon gauge the symmetries, and thus restrict the index I to the gauged
symmetries.
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We consider symmetries that respect the hypercomplex structure. This is the
requirement that kIX(q) is tri-holomorphic:

(
∇XkYI

)
JY Z = JXY

(
∇Y kZI

)
. (3.77)

Extracting affine connections from this equation, it can be written as

(LkI J
)
X
Y ≡ kIZ∂ZJXY − ∂ZkI Y JXZ + ∂XkI ZJZY = 0 . (3.78)

This is the Lie derivative of the complex structure in the direction of the vector kI .
Multiplying (3.77) with f XiAf jBY proves that f Y iA∇Y kIXf jBX should be

proportional to δji . This leads to the definition of the matrices

tIAB =1

2
f Y iA∇Y kIXf iBX, f Y iA∇Y kIXf jBX = δji tIAB . (3.79)

These matrices satisfy a reality and an almost covariant constancy equation15

(
tIAB)∗ = −ρĀCtICDρDB̄ = −tI ĀB̄ , ∇XtIAB = kYI RXYAB , (3.80)

as well as the commutation relations

[tI , tJ ]BA = fIJ KtKBA − kXI kYJ RXYBA , (3.81)

which are consistent with (3.56).
The transformation of the fermions under the gauge group follows from the

requirement that the commutator of supersymmetry and Killing symmetries van-
ishes. It is given by the above-defined matrices:

δ̂G(θ)ζ
A = θI tIBA(q)ζB . (3.82)

For the coupling of the hypermultiplet to the vector gauge multiplets in the
presence of the superconformal algebra, these isometries should be consistent
with the conformal structure. The requirement that dilatations commute with the
isometries is the equation

0 = kD
Y ∂Y kI

X − kI Y ∂Y kD
X = kD

Y∇Y kIX − D − 2

2
kI
X . (3.83)

15Note that we defined tI ĀB̄ using the common NW–SE convention for raising and lowering
indices, and that the equation implies in this sense that tI is imaginary.
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This implies that the dilatations also commute with the SU(2) transformations
generated by kX, defined in (3.69). This equation can also be written as

AiBtIBA = D − 2

2
f iAXkIX . (3.84)

One can also obtain the covariant transformation of AiA (as for the other
transformations in (3.72)), using (3.77) and (3.83)

δ̂G(θ)A
iA = AiBθI tIBA . (3.85)

3.2.3.6 Non-closure Relations in D = 5

We now have all the ingredients to understand the case when the isometry with index
I is coupled to the gauge symmetry of the vector multiplet (label by index I )—see
Sect. 3.2.1.2. The full form of (3.47) is now

δQ(ε)q
X = −iε̄iζAfXiA ,

δ̂Q(ε)ζ
A = 1

2 i /DqXf iAXεi + 1
2σ
I kI

Xf iAXεi , (3.86)

with covariant derivatives defined as follows:

Dμq
X = ∂μqX −WI

μkI
X ,

∇μζA ≡ ∂μζA +
(
∂μq

X
)
ζBωXBA −WI

μζ
BtIBA. (3.87)

Due to the gaugings, there are extra terms in the supersymmetry transformation
of the fermions and the non-closure functions (3.63) and (3.65) are now modified to
[14]

i�A = /∇ζA + 1

2
WBCDAζBζ̄CζD − ikIXf iAXψiI + iζBσ I tIBA ,

�X = �qX − 1

2
ζ̄AγaζBDaqYWYXAB − 1

4
f XiAεij f Y jE∇YWBCDAζ̄EζDζ̄CζB

− kYI JY X · YI + σ IσJ kYJ ∇Y kXI
+ 2iψ̄iI ζ BtIBAfXiA − 1

2σ
I kYI WY

XABζ̄AζB , (3.88)

where �qX is now also covariant for gauge transformations:

�qX = ∂aDaqX −DaqY∇Y kXI WaI +DaqYDaqZ�XYZ , (3.89)
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and we introduced the notation, using (3.41),

WX
YAB = LXY CDWABCD . (3.90)

3.2.3.7 Rigid Superconformal Case in D = 4

To formulate the results in 4 dimensions, we consider the same bosonic fields
qX. The fermionic formulae have to be translated using the rules explained in
Appendix A.4. This leads again to 2nH spinors, whose left-handed part is ζA, with
A = 1, . . . , 2nH and the left-handed ones (C-conjugates of the former) are ζĀ.
Thus, in absence of an SU(2) index on these spinors, the chirality is indicated by
the fact that it has the index A up or down. One can start again by allowing arbitrary
transformations for the scalars, and transformations of the spinors to derivatives
of the scalars and deduce again the conditions on quantities that appear in these
transformations. We would arrive again at (3.31) and (3.32). But as we have already
done all the work for D = 5 (for which in fact the formalism is easier) we can also
translate the results from what we already know.

This leads in 4 dimensions to the transformations [18, (20.33)]

δQ(ε)q
X = −if XiAε̄iζA + if XiĀε̄i ζĀ ,

δ̂Q(ε)ζ
A = 1

2 if iAX /DqXεi + iX̄I kI Xf iAXεij εj ,

δQ(ε)ζĀ = − 1
2 ifiĀX /Dq

Xεi − iXI kIXfiAXεij εj , (3.91)

where the complex conjugates of the frame fields are denoted as f XiĀ = (f XiA)∗
and fiĀX = (f iAX)∗, see e.g. (A.31).DμqX is given in (3.87).

The non-closure of the supersymmetries on the fermions is obtained in
Appendix A.4 as an example of the translation rules from D = 5 to D = 4.
The result is

[
δQ(ε1), δQ(ε2)

]
ζA = ξμ∂μζ

A − 1
2ε
ij ρB̄A�B̄ε̄1iε2j − 1

2γμε̄
i
[1γ

με2]i�A ,

(3.92)

with ξμ as in (1.6). The non-closure functions are

�A ≡ − /∇ζA + 1
2WBCD̄AζD̄ζ̄

BζC + 2X̄I tI B̄AζB̄ + if iAXkIXεij�Ij ,

�Ā ≡ − /∇ζĀ + 1
2W

B̄C̄
DĀζ̄B̄ζC̄ζ

D + 2XI tIBĀζ
B + ikIXf iBX�Ii ρBĀ ,

(3.93)

whereWBCD̄A = ρD̄EWBCEA andW B̄C̄DĀ is its complex conjugate. We will raise
or lower indices changing the holomorphicity with the tensors ρAB̄ in NE–SW
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convention, e.g.

tI
ĀB = ρĀAtIAB , tIAB̄ = tIABρBB̄ =

(
tI
ĀB)∗

. (3.94)

These fermionic non-closure functions transform in real bosonic quantities �X as
in (3.64)16:

δ(ε)�A = − 1
2 if iAXεi�X ,

�X = �qX + 2
(
XI X̄J + XJ X̄I

)
kYI ∇Y kJX − 2kI Y JY X · YI

+XI kI YWY XABζ̄AζB + X̄I kI YWYXĀB̄ζ̄ĀζĀ + ζ̄ AγaζB̄DaqYWYXAB̄

+ 1
2f
X
iAεij f Y jB∇YW D̄ĒCAζ̄BζCζ̄D̄ζĒ

− 2if XiA�̄I iζB̄tI
B̄A + 2ifXiĀ�̄Ii ζBtIBĀ . (3.95)

Finally, for the remaining U(1) factor in the R-symmetry group we find

δ̂U(1)q
X = 0,

δ̂U(1)ζ
A = 1

2 iλT ζA. (3.96)

3.2.4 Hypermultiplets in Superconformal Gravity

The previous results (Sect. 3.2.3) for rigid hypermultiplets can be generalized to
local superconformal invariant theories by properly ‘covariantizing’ the previous
expressions with respect to the superconformal algebra.

3.2.4.1 Case D = 5

The supersymmetry rules for the hypermultiplet coupled to the D = 5 standard
Weyl multiplet and the gauge symmetry of the vector multiplet were found to be
[14]17

δqX = −iε̄iζAfXiA ,

δ̂ζA = 1
2 i /DqXf iAXεi + 1

2σ
I kI

Xf iAXεi − AiAηi . (3.97)

16Note that we use here the translation between Y ij and Y from (A.21), which will be used a lot
further on.
17A few changes of notation can be found in (C.3).
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The new ingredients with respect to (3.86) are the ‘matter terms’ of the Weyl
multiplets and the S-supersymmetry. These transformations and the conformal and
R-symmetry transformations determine the superconformal covariant derivatives

DμqX = Dμq
X + iψ̄iμζ

AfXiA,

Dμq
X = ∂μq

X − bμkXD − 2Vμ · kX −WI
μkI

X,

D̂μζA = D̂μζ
A − 1

2 i /DqXf iAXψμi − 1
3γ · T kD

Xf iAXψμi − 1
2σ
I kXI f

iA
Xψμi

+AiAφμi , (3.98)

D̂μζ
A = ∂μζ

A + 1
4ωμ

bcγbcζ
A − 2bμζA −WI

μζ
BtIBA + ∂μqXωXBAζB .

The equations of motion for ζA can be obtained by imposing the closure of the
superconformal algebra

i�A ≡ /DζA + 1

2
WBCDAζBζ̄CζD + 2iγ abTabζA

− ikIXf iAXψIi + iζBσ I tIBA + 8
3 ikD

Xf iAXχi . (3.99)

3.2.4.2 Case D = 4

The covariant supersymmetry transformations are those from (3.91) with only a
replacement of Dμ by the fully covariant Dμ, which are

DμqX = DμqX + iψ̄iμζ
AfXiA − iεij ρĀBψ̄μiζĀf

X
jB ,

Dμq
X = ∂μqX − bμkD

X + 2Vμ · kX −WμIkIX , (3.100)

D̂μζA = D̂μζA − 1
2 if iAX /DqXψμi − iX̄I kIXf iAXεijψjμ − iAiAφμi ,

D̂μζ
A =

(
∂μ + 1

4ωμ
abγab − 3

2bμ + 1
2 iAμ

)
ζA −WI

μtIBAζB + ∂μqXωXBAζB .

Note that the hatted covariant derivatives are covariant for target space transforma-
tions as well and that ∂μqX in the last term should not be covariantized to obtain this
covariant expression D̂μζA. Because of central-charge like terms, the algebra does
not close on the spinors. The new non-closure functions �A will be used to derive
the action for the hypermultiplet, as we will explain in Sect. 3.3.3.

In terms of AiA (3.70), the covariant transformations are

δ̂AiA ≡ δAiA + AiBωXBAδqX = −iε̄iζA + iε̄j ζB̄ ε
jiρB̄A ,

δ̂ζA = 1
2 i /̂DAiAεi + iX̄I kIXf iAXεij εj + iAiAηi , (3.101)
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where we used

D̂μAiA = f iAX∇Y kD
XDμqY = f iAXDμqX

= f iAX∂μqX − bμAiA − AjAVμj i −WI
μA

iBtIBA

+ iψ̄iμζ
A − iψ̄μj ζB̄ ε

jiρB̄A . (3.102)

Note that the δ̂ used in (3.101) has no SU(2) connection, similar as in (3.32).

3.2.5 Tensor Multiplet in D = 4 Local Superconformal Case

The tensor multiplet in D = 4 dimensions was obtained in [7]. It is in fact the
multiplet of the constraints (3.28). We can name these constraints, respectively, as
Lij , ϕi , Eb (satisfying a differential constraint) and G. These transform in each
other and thus form a multiplet. It starts from an SU(2) triplet Lij (hence satisfying
the reality property as in (A.21)). The constrainedEa implies that the multiplet has a
gauge tensor Eμν (3 degrees of freedom) and a complex auxiliaryG, to balance the
8 fermionic degrees of freedom in ϕi . The transformation rules in the background
of conformal supergravity are18

δLij = ε̄(iϕj) + εikεj� ε̄
(kϕ�) + 2λDLij ,

δϕi = 1
2
/DLij εj + 1

2ε
ij /E εj − 1

2Gε
i + 2Lij ηj +

(
5
2λD + 1

2 iλT
)
ϕi ,

δG = −ε̄i /Dϕi − 3ε̄iLij χj + 1
8 ε̄iγ

abT +
abϕj ε

ij +2η̄iϕi + (3λD − iλT )G ,

δEμν = 1
4 iε̄iγμνϕj εij − 1

4 iε̄iγμνϕj εij + 1
2 iLij εjkε̄iγ[μψν]k− 1

2 iLij εjkε̄iγ[μψν]k ,
(3.103)

where

Eμ = e−1εμνρσ ∂νEρσ − 1
2

(
ψ̄iνγ

μνϕj εij + h.c.
)

− 1
2 ie−1εμνρσLij ε

jkψ̄iνγρψσk .

(3.104)

A first step in building actions from this multiplet has been set in [7], but more
applications can be found in [8].

18Of course the tensor multiplet for rigid supersymmetry can be obtained from (3.103) by setting to
zero the fields of the Weyl multiplet (T and ψμ) and replacing the covariant derivatives by ordinary
derivatives.
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3.3 Construction of the Superconformal Actions

This section is devoted to the construction of local superconformally invariant
actions for the vector and the hypermultiplet. As we have shown in the example of
Sect. 3.1, later one gauge-fixes the extra symmetry such that the remaining theory
has just the super-Poincaré invariance. Crucially, as we will explain in Chap. 4, for
these last steps one needs to include compensating multiplets. Besides interacting
matter, the resulting action from the gauge fixing will contain also the pure gravity
sector.

3.3.1 Action for Vector Multiplets in D = 4

Let us consider the basic supergravity multiplet coupled to n vector multiplets. The
physical content that one should have (from representation theory of the super-
Poincaré group) can be represented in terms of particles with spin as follows:

SUGRA vector multiplet
2

3
2

3
2

1 1 → n+ 1
+n ∗ 1

2
1
2

0 0

. (3.105)

The supergravity sector contains the graviton, 2 gravitini and a so-called gravipho-
ton, Wμ (that is a spin-1 field). When coupled to n vector multiplets, Wμ gets part
of a set of n + 1 vectors, which will be uniformly described by the special Kähler
geometry. The scalars inside these vector multiplets appear as n complex fields zα ,
with α = 1, . . . , n.

In the framework of superconformal calculus, we consider n+ 1 superconformal
vector multiplets with scalars XI (I = 0, . . . , n) in the background of the Weyl
multiplet (main formulae can be found in Sect. 3.2.1). One of these multiplets should
contain the graviphoton, while we will use the missing fermions and scalars to fix
superfluous gauge symmetries of the superconformal algebra.

Exploiting the fact that vector multiplets are constrained chiral multiplets
(Sect. 3.2.2), we can build an action for the vector multiplet from an action for
a chiral multiplet. The lowest component of the chiral multiplet should be A =
1
2 iF(X),19 being then A a new chiral superfield, given by an arbitrary holomorphic
function of the scalars in vector multiplets. This function F(X) will determine the

19The overall normalization is for later convenience to get a result with the normalization that is
most used in the literature
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action, and is called the prepotential. The further components are then defined by
the transformation laws, which give, comparing with (3.21), �i = 1

2 iFI�Ii , where
we defined

FI (X) = ∂

∂XI
F (X) , F̄I (X̄) = ∂

∂X̄I
F̄ (X̄) ,

FIJ = ∂

∂XI

∂

∂XJ
F(X) . . . . (3.106)

Calculating the transformation of �i one finds Bij , G−
ab, . . .

A = 1
2 iF

�i = 1
2 iFI�Ii

Bij = 1
2 iFIY Iij − 1

8 iFIJ �̄Ii �
J
j

G−
ab = 1

2 iFIF −I
ab − 1

16 iFIJ �̄Ii γab�
J
j ε
ij

�i = − 1
2 iFI /D�jI εij − 1

2 iFIf IJKX̄
J�Ki − 1

8 iFIJ γ abF −I
ab �

J
i

− 1
2 iFIJ�Jk Y

I
ij ε
jk + 1

96 iFIJKγ ab�Ii �̄
J
j γab�

K
k ε
jk

C = −iFIDaDaX̄I − 1
4 iFIF+I

ab T
+ab − 3

2 iFI χ̄i�iI + 1
2 iFI f IJK�̄

iJ�jKεij

−iFIf IJKf
J
LMX̄

KX̄LXM − 1
2 iFIJ Y ijI Y Jij + 1

4 iFIJF −I
ab F −abJ

+ 1
2 iFIJ �̄

I
i
/D�iJ − 1

2 iFIJ f
I
KLX̄

K�̄Ji �
L
j ε
ij + 1

4 iFIJKY ijI �̄Ji �
K
j

− 1
16 iFIJKεij �̄Ii γ

abF −J
ab �

K
j + 1

48 iFIJKL�̄Ii �
J
l �̄

K
j �

L
k ε
ij εkl. (3.107)

This is the composite chiral multiplet that we discussed at the end of Sect. 3.2.2,
and on which we can apply the ‘density formula’ (3.30). As mentioned, F(X) must
be homogeneous of weight 2, where the X fields carry weight 1. This implies the
following relations for the derivatives of F :

2F = FIXI , FIJX
J = FI , FIJKX

K = 0. (3.108)

Inserting (3.107) in (3.30) leads to

e−1Lg = −iFIDaDaX̄I + 1
4 iFIJF −I

ab F −abJ + 1
2 iFIJ �̄Ii /D�

iJ

− 1
2 iFIJ Y ijI Y Jij + 1

4 iFIJKY ijI �̄Ji �
K
j

− 1
16 iFIJKεij �̄Ii γ

abF−J
ab �

K
j + 1

48 iFIJKL�̄Ii �
J
� �̄

K
j �

L
k ε
ij εk�

+ 1
2 iFIf IJK�̄

iJ�jKεij − 1
2 iFIJ f IKLX̄

K�̄Ji �
L
j ε
ij
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−iFI f IJKf
J
LMX̄

KX̄LXM

− 1
4 iFIF +I

ab T
+ab − 3

2 iFI χ̄i�iI − 1
2 iFIJ ψ̄i · γ�IjY ijJ

+ 1
2 iFIf IJKX̄

J ψ̄i · γ�Kj εij − 1
2 iFI ψ̄i · γ /D�iI

+ 1
8 iFIJF−I

ab ψ̄i · γ γ ab�Jj εij

+ 1
12 iFIJK�̄J� �

K
j ψ̄i · γ�Ikεij εk� + 1

16 iFI ψ̄μiγ · T +γ μ�Ij εij

− 1
8 iFT +

abT
+ab

− 1
2 iFI ψ̄μiγ

μνψνj Y
ijI − 1

2 iFT +μνψ̄μiψνj εij + 1
2 iFIF −μνI ψ̄μiψνj εij

− 1
16 iFIJ ψ̄μiψνj �̄Ikγ

μν�J� ε
ij εk� + 1

8 iFIJ �̄Ik�
J
� ψ̄μiγ

μνψνj ε
ikεj�

− 1
4ε
ij εk�e−1εμνρσ ψ̄μiψνj ψ̄ρk

(
γσFI�

I
� + Fψσ�

) + h.c. (3.109)

The first terms of the action (3.109) are kinetic terms for the scalars X, the vectors
and the fermions �. The following term says that Yij is an auxiliary field that
can be eliminated by its field equation. The first 5 lines are the ones that we
would encounter also in rigid supersymmetry, see [18, (20.15)]. For these terms,
the relations (3.108) have not been used, and this part is thus the general result for
rigid supersymmetry. The other lines are due to the local superconformal symmetry.
For those interested in rigid symmetry, we repeat that in that case the covariant
derivatives (3.19) reduce to, e.g.,

DaX
I = ∂aXI −WK

a X
J fJK

I ,

Da�
I
i = ∂a�I −WK

a �
J
i fJK

I ,

F Iab = 2∂[aWI
b] +WK

b W
J
a fJK

I . (3.110)

Note that the Lagrangian is a total derivative if F(X) is a quadratic function of XI

with real coefficients:

F(X) = CIJXIXJ , CIJ ∈ R → S =
∫

d4xLg = 0 . (3.111)

In deriving the above formulae, we assumed for simplicity that F is a gauge-
invariant function such that Lg is invariant under gauge transformations. However,
the property (3.111) suggests that there is a more general situation [37, 38] in which
F transforms under the gauge transformations as

δG(θ)F ≡ FI θKXJ fJKI = −θICI,JKXJXK, (3.112)
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where CI,JK are real constants. In fact, due to (3.111), the action is invariant for
rigid transformations that satisfy (3.112), transforming to

δGLg = 1
3CI,JKε

μνρσ θIF JμνF
K
ρσ . (3.113)

In order to allow this extra possibility with local θI , one has to add to (3.109) a
Chern–Simons term

LCS = 2
3CI,JKε

μνρσWμ
IWν

J
(
∂ρWσ

K + 3
8fLM

KWρ
LWσ

M
)
. (3.114)

To prove the supersymmetry invariance of Lg+LCS one needs a few more relations
that follow from (3.113). Replacing the arbitrary θK by XK the variation vanishes,
and thus for the consistency of (3.112) we should have

C(I,JK)X
IXJXK = 0 , (3.115)

namely the completely symmetric part of CI,JK must vanish.
By taking two derivatives of (3.112) we obtain

CK,IJ = fK(ILFJ)L − 1
2FIJLX

MfMK
L = fK(I LF̄J )L − 1

2 F̄IJLX̄
MfMK

L .

(3.116)

To prove the invariance of the sum of (3.109) and (3.114) one needs an identity [37]

fKL
MCM,IJ = 2fJ [KMCL],IM + 2fI [KMCL],JM , (3.117)

which follows from the requirement that the gauge group closes on F(X). A simple
example of the occurrence of a Chern–Simons term is given in [37, (3.21)].

3.3.1.1 Simplifications

In order to get a more useful form of the action, one has to make the conformal
covariant derivatives explicit. The principle is explained for the bosonic case
in (3.2). This leads here to

�
CX̄I = ∂̂μD

μX̄I − ω μν
μ DνX̄

I − iWμDμX̄I + 2f μ
μ X̄I − 1

2 ψ̄μiD
μ�iI

+ 1
32 ψ̄

i
μγ

μγ · T +�jIεij − 1
2�̄

iI γ · φi − 3
4 ψ̄

i · γχiX̄I

− 1
2ε
ij ψ̄i · γ�Jj X̄Kf IJK − 1

2εij ψ̄
i · γ�jJ X̄Kf IJK. (3.118)
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Hence the first term of (3.109) after adding a total derivative, is

−iFI�CX̄I = iFIJDμXI
(
DμX̄J − 1

2 ψ̄
μ
i �

iJ
)

− 2iFIfμμX̄I + 1
2 iFI ψ̄μiDμ�iI

− 1
32 iFI ψ̄iμγ

μγ · T − 1
2�

jI εij + 1
2 iFI �̄iI γ · φi + 3

4 iFI ψ̄i · γχiX̄I

+ 1
2 iFI εij ψ̄i · γ�Jj X̄Kf IJK + 1

2 iFI εij ψ̄i · γ�jJ X̄Kf IJK
+ iFI ψ̄

i
[μγ

νψν]i
(
DμX̄I − 1

2 ψ̄
μ
i �

iI
)

+ total derivative. (3.119)

The other term that has to be written explicitly is the covariant derivative of the
fermions

/D�iJ = /D�iJ − γ μγ νψiμ
(
DνX̄J − 1

2 ψ̄νj�
jJ
)

− 1
4γμγ · F +Jψμj εij − γ · ψj

(
Y ijJ + εij X̄KXLf JKL

) − 2X̄J γ · φi .
(3.120)

Deleting total derivatives, the action is at this point (adding also (3.114))

e−1Lg = iFIJDμXIDμX̄J − 2iFIfμ
μX̄I + 1

4 iFIJF−I
ab F −abJ − 1

8 iFT +
abT

+ab

− 1
4 iFIF +I

ab T
+ab − 1

2 iFIJ Y ijI Y Jij − iFI f IJKf
J
LMX̄

KX̄LXM + e−1LCS
+ iFI X̄I ψ̄μiγ μνφiν + 1

2 iFIJ �̄Ii /D�iJ + 1
2 iFI ψ̄μiγ μνγ ρDρX̄Iψiν

+ 1
2 iFI �̄iI γ · φi

+ 1
8 iFI ψ̄μiγ μνγ · F +I εijψνj − 1

32 iFI ψ̄iμγ
μγ · T +�jIεij

+ 3
4 iFI ψ̄i · γχiX̄I

+ 1
2 iFI ε

ij ψ̄i · γ�Jj X̄Kf IJK + 1
2 iFI εij ψ̄

i · γ�jJ X̄Kf IJK
+ iFI ψ̄i[μγ νψν]i

(
DμX̄I − 1

2 ψ̄
μ
i �

iI
)

− 3
2 iFI χ̄i�iI

+ 1
2 iFIf

I
JK�̄

iJ�jKεij

− 1
2 iFIJDμXJ ψ̄μi �iI − 1

2 iFI ψ̄μiγ μνDν�iI

− 1
2 iFIJ �̄Ii γ

μγ νψiμDνX̄J + 1
2 iFIF −μνI ψ̄μiψνj εij

− 1
8 iFIJ �̄Ii γμγ · F +Jψμj εij − 1

2 iFIJ �̄Ii γ · ψjεij X̄KXLf JKL
− iFIJ X̄J �̄Ii γ · φi − 1

2 iFIJ f IKLX̄
K�̄Ji �

L
j ε
ij + 1

4 iFIJKY ijI �̄Ji �
K
j

− 1
16 iFIJKεij �̄Ii γ

abF −J
ab �

K
j
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− 1
2 iεij ψ̄μi

(
FT +μνψνj − 1

8γ · T +γ μFI�Ij
)

+ 1
2 iFIf

I
JKX̄

J ψ̄i · γ�Kj εij + 1
8 iFIJF−I

ab ψ̄i · γ γ ab�Jj εij

+ 1
12 iFIJK�̄J� �

K
j ψ̄i · γ�Ikεij εk� − 1

4 iFI ψ̄μiγ μνγ ρψiν ψ̄ρk�
kI

+ 1
8 iFIJ �̄Ik�

J
� ψ̄μiγ

μνψνj ε
ikεj� + 1

4 iFIJ �̄Ii γ
μγ νψiμψ̄νj�

jJ

+ 1
48 iFIJKL�̄Ii �

J
� �̄

K
j �

L
k ε
ij εk� − 1

16 iFIJ ψ̄μiψνj �̄Ikγ
μν�J� ε

ij εk�

− 1
4ε
ij εk�e−1εμνρσ ψ̄μiψνj ψ̄ρk

(
γσFI�

I
� + Fψσ�

) + h.c. (3.121)

We use then (3.16) and the values of the conformal gauge fields that follow from the
constraints:

fμ
μ = − 1

12R − 1
2D

+
{

1
8 ψ̄

i · γχi + 1
24 ie−1εμνρσ ψ̄iμγνDρψσi + 1

24 ψ̄
i
μψ

j
ν εij T

+μν + h.c.
}
,

φiμ = 1
4γμχ

i + 1
4

(
γ νργμ − 1

3γμγ
νρ
) (

Dνψiρ − 1
16γ · T −εij γνψρj

)
.

(3.122)

This leads to various simplifications, after which the vector action reduces to [18,
(20.89)]:

e−1Lg = − 1
6N R − N D − NIJDμXIDμX̄J +NIJYI · YJ

+NIJfKLI X̄KXLfMNJ X̄MXN + e−1LCS
+
{
− 1

4 iF̄IJ F̂+I
μν F̂

+μνJ − 1
16NIJX

IXJ T +
abT

+ab + 1
4NIJX

I F̂+J
ab T

+ab

− 1
4NIJ �̄

iI /D�Ji + 1
6N ψ̄iμγ

μνρDνψ
i
ρ

− 1
2N ψ̄iaγ

aχi +NIJXI �̄iJ χi − 1
3NIJX

J �̄iI γ μνDμψνi

+ 1
2NIJ ψ̄

i
μ
/DX̄I γ μ�Ji + 1

4NIJ X̄
I ψ̄aiγ

abcψibDcX
J

+ 1
2 iF̄IJ εij

(
�̄iI γμ − X̄I ψ̄iμ

)
ψjν

˜̂
FμνJ − 1

16 iFIJK�̄Ii γ
μν�Jj ε

ij F−K
μν

+ 1
2NIJ �̄

I
i fKL

J
(
�Lj + γ aψajXL

)
X̄Kεij

+
(

1
12N ψ̄

a
i ψ

b
j − 1

6NIJ X̄
I �̄Ji γ

aψbj + 1
32 iFIJK�̄Ii γ

ab�Jj X̄
K
)
T −
abε

ij

− 1
4 iFIJKDμX

I �̄Ji γ
μ�iK + 1

4 iFIJKY ijI �̄Ji �
K
j + h.c.

}

+ 4-fermion terms . (3.123)
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Here, important quantities are introduced, which will often be used below:

NIJ = NIJ (X, X̄) ≡ 2 ImFIJ = −iFIJ + iF̄IJ , N ≡ NIJXI X̄J .
(3.124)

Since FIJ is a function of XK , we have the chain rule for the gauge transforma-
tions:

δFIJ = FIJKδXK = FIJKθLXMfMLK , (3.125)

and therefore the gauge transformation of NIJ is by (3.116)

δNIJ = 2θKfK(I
LNJ)L . (3.126)

Covariant derivatives are presented in (3.19) together with

Dμψνi =
(
∂μ + 1

4ωμ
abγab + 1

2bμ + 1
2 iAμ

)
ψνi + Vμijψνj . (3.127)

3.3.2 Action for Vector Multiplets in D = 5

The scheme for D = 5 is similar to (3.105) with the only exception that vector
multiplets20 have only one real scalar, and thus at the end we will have n real scalars,
which are the σ I that we saw already in Sect. 3.2.1. For D = 6, which we will not
treat in detail here, it is also be similar but without scalars in the vector multiplets.

The rigid superconformally invariant action D = 5 is determined by a prepoten-
tial CIJKσ IσJ σK cubic in the scalars σ I [39, 40]. Since the vectorsWI

μ can gauge
a group, I is also the index of the adjoint of the gauge group. As a consequence, the
local superconformal action is determined by a gauge-invariant symmetric tensor
CIJK

fI (J
MCKL)M = 0. (3.128)

20We use here and below freely the terminology ‘spin 1’ for vectors, spin- 1
2 for spinors, . . . , though

of course only in 4 dimensions the representations of the little group of the Lorentz group can be
characterized by just one number, which is called ‘spin’. In higher dimensions, the representations
should be characterized by more numbers, but often the same fields, like graviton as a symmetric
tensor, vectors, . . . occur, and we denote them freely with the terminology that is appropriate for
the 4-dimensional fields.
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Note that this tensor has no relation to the tensor CI,JK introduced for D = 4
in (3.112). The presence of this tensor allows Chern–Simons terms in the action.
The kinetic term of the scalars defines the ‘very special real geometry’ (see [18,
Sect. 20.3.2]). The full superconformal invariant action takes the form [5]

e−1Lg = CIJK

[(
− 1

4 F̂
I
μνF̂

μνJ − 1
2 ψ̄

I /DψJ + 1
3σ
I�cσ J

+ 1
6Daσ IDaσJ + 2YI · YJ

)
σK

− 4
3σ
IσJ σK

(
D + 26

3 TabT
ab
)

+ 4σI σJ F̂KabT
ab

− 1
8 iψ̄I γ · F̂ JψK − 1

2 iψ̄ iIψjJ YKij + iσI ψ̄J γ · T ψK − 8iσI σJ ψ̄Kχ

+ 1
6σ
I ψ̄μγ

μ
(

iσJ /DψK + 1
2 i( /DσJ )ψK − 1

4γ ·F̂ J ψK + 2σJ γ ·T ψK

−8σJ σKχ
)

− 1
6 ψ̄aγbψ

I
(
σJ F̂ abK − 8σJ σKT ab

)− 1
12σ

I ψ̄λγ
μνλψJ F̂Kμν

+ 1
12 iσI ψ̄aψb

(
σJ F̂ abK − 8σJ σKT ab

)+ 1
48 iσI σJ ψ̄λγ μνλρψρF̂Kμν

− 1
2σ
I ψ̄ iμγ

μψjJYKij + 1
6 iσIσJ ψ̄ iμγ

μνψ
j
ν Y

K
ij − 1

24 iψ̄μγνψI ψ̄J γ μνψK

+ 1
12 iψ̄ iμγ

μψjI ψ̄Ji ψ
K
j − 1

48σ
I ψ̄μψνψ̄

J γ μνψK + 1
24σ

I ψ̄ iμγ
μνψjν ψ̄

J
i ψ

K
j

− 1
12σ

I ψ̄λγ
μνλψJ ψ̄μγνψ

K + 1
24 iσIσJ ψ̄λγ μνλψKψ̄μψν

+ 1
48 iσIσJ ψ̄λγ μνλρψρψ̄μγνψK + 1

96σ
IσJ σKψ̄λγ

μνλρψρψ̄μψν

− 1
24e

−1εμνλρσWI
μ

(
FJνλF

K
ρσ − fFGJWF

ν W
G
λ

(
1
2F

K
ρσ − 1

10fHL
KWH

ρ W
L
σ

))

+ 1
4 iσIσJ fLMKψ̄LψM

]
, (3.129)

where covariant derivatives and F̂ Iμν are given in (3.12) and (3.13), and the
superconformal d’Alembertian is defined as

�
cσ I = DaDaσ I

=
(
∂a − 2ba + ω bab

)
Daσ

I + fJKIWJ
a DaσK − 1

2 iψ̄μDμψI − 2σI ψ̄μγ μχ

+ 1
2 ψ̄μγ

μγ · T ψI + 1
2 φ̄μγ

μψI + 2fμ
μσI − 1

2 ψ̄μγ
μfJK

IψJ σK . (3.130)

The dependent gauge fields are given in (2.100).
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3.3.3 Action for Hypermultiplets

While the actions of vector multiplets were constructed using tensor calculus manip-
ulations, for the hypermultiplets we use another procedure. The main difference
is that we have already the equations of motion from the non-closure relations,
e.g. (3.99) in D = 5, and we can therefore infer the action from the latter. To this
end, we need a few ingredients that we are going to introduce in the following.

3.3.3.1 Ingredients

We first define a covariantly constant antisymmetric tensor CAB(q) that describes
the proportionality between the field equations for the fermions ζA and the non-
closure functions. For example, in D = 5,

δShyper

δζ̄A
= 2CABi�B . (3.131)

Then, once the right-hand side of (3.131) is known, one can functionally integrate
the above equation in order to obtain the action. The properties of the tensor are
(independent whether we considerD = 5 or D = 4):

∇XCAB ≡ ∂XCAB + 2ωX[ACCB]C = 0 ,

CAB = −CBA ,

CĀB̄ ≡ (CAB)∗ = ρĀCρB̄DCCD . (3.132)

As will become clear below, the kinetic terms involve the Hermitian metric in
tangent space

dĀB ≡ −ρĀCCCB ,

dĀB = (dB̄A)∗ = ρĀCdD̄CρBD̄ , (3.133)

such that

CAB = ρAC̄d
C̄B . (3.134)

We also define an inverse

CACCBC = δAB , (3.135)
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so that we can use these matrices to raise and lower A indices, using the common
NE–SW convention

VA = V BCBA , VA = CABVB . (3.136)

On the other hand, we raise or lower indices changing the holomorphicity as
in (3.94). This is then consistent with changing the holomorphicity using dĀB. For
example, for the gauge-transformation matrices in (3.94):

tIAB = tIACCCB = tIAB̄d
B̄B . (3.137)

Consistency of the transformations of the left- and right-hand side of (3.131)
under the isometry group, determined by (3.82), implies that this matrix should be
symmetric:

tIAB = tIBA . (3.138)

This equation is, using (3.80), equivalent to

tI
Ā
B̄d

B̄C = tICBdĀB , (3.139)

which shows more clearly that it is related to the invariance of the action with
signature matrix dĀB.

With the above conditions, dĀB respects the quaternionic structure. It has been
proven in [37], using the theorems of [41], that at any point one can choose a basis
such that ρ is in the form (3.35) and at the same time

dĀB =

⎛
⎜⎜⎝

η

η

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

−1lp
1lq

−1lp
1lq

⎞
⎟⎟⎠ , p+q = nH . (3.140)

For rigid supersymmetry, positive kinetic terms will be obtained for p = 0 and
q = nH . For supergravity we need one compensating multiplet and will use p = 1.
These matrices should be covariantly constant. As we use a basis where they are
actually constant, this implies from (3.132) that (using the lowering of indices as
in (3.136))

2ωX[ACCB]C = −ωXAB + ωXBA = 0 . (3.141)

Thus the USp-connection is symmetric in such bases. From

∇XdĀC = −ω̄XĀ
B̄d

B̄C − ωXCDdĀD = 0 , (3.142)
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one finds

dĀCωXBC = −ω̄XĀ
C̄d

C̄B . (3.143)

When d = 1l the above condition is the antihermiticity of ω. In the preferred basis
with (3.35) and (3.140) we can also write

CAB =
(

0 η

−η 0

)
, tIAB =

(
UI VI

WI UI
∗
)
,

VI
T = ηVIη , WI T = ηWIη ,

U† = −ηUη , V ∗ = −W .
(3.144)

This expresses that the transformations are in the subgroup of G�(nH ,H) that
preserves the antisymmetric metricCAB and the metric dĀB, which is USp(2p, 2q).

We define then the metric of the manifold to be

gXY =
(
f iĀX

)∗
dĀBf iBY = f iAXεijCABf jBY , (3.145)

such that the holonomy associated to gXY is indeed USp(2p, 2q).
The curvature tensor on the scalar manifold is determined in terms of a 4-index

symmetric tensor in Sp(2nH ), denoted byWABCD:

WABCD ≡ WABCECED = − εij f XiAf Y jBRXYCD
= 1

2f
XiAf Y iBf ZkCfW kDRXYZW , (3.146)

where we used the metric gXY (3.145) to lower the indices.

3.3.3.2 Remark on the Conformal Symmetry

Due to the fact that we have now a metric available, we can invoke the homothetic
Killing equation (3.68) and, similarly as in (1.45), introduce a scalar function k̃D
such that

kDX = gXY kD
Y = ∂Xk̃D . (3.147)

It is also possible to start from this scalar function, and generate the metric from

gXY = 2

D − 2
∇X∂Y k̃D . (3.148)

We also define kD
2 using the metric (3.145)

kD
2 ≡ gXY kXDkYD . (3.149)



104 3 Matter Multiplets

It will be also useful to express kD
2 in terms of the sections introduced in (3.70) and

their complex conjugates

AiĀ =
(
AiA

)∗ = AjBρBĀεji , AiA = −εij ρB̄AAj B̄ . (3.150)

To do so, we note that the matrix

Mi
j ≡ AiAdB̄AAj B̄ , (3.151)

is Hermitian and equal to εikεj�M�
k , i.e. σ2M

T σ 2. Therefore it should be propor-
tional to the unit matrix. Indeed, using (3.70) and (3.145)

Mi
j = 1

2δ
i
jA
kAdB̄AAkB̄ = 1

2δ
i
j kD

2 . (3.152)

Another way in which kD
2 appears is in terms of an inner product of the SU(2)

Killing vectors introduced in (3.69):

kD
2 = 1

3 (D − 2)2kX · kX . (3.153)

It is useful to record the relation between these quantities for arbitrary vectors A
and B:

A · kX B · kX = 1

(D − 2)2
kD

2A · B . (3.154)

3.3.3.3 Moment Maps

The isometries defined in (3.75) can be expressed in terms of moment maps. The
definition of the latter depends on the theory. As we will discuss in Sect. 5.4.1,
isometries for Kähler manifolds can be generically generated from a real moment
map function using the complex structure and the metric. The hypermultiplet
geometry has three complex structures, and as such have a triplet moment map for
any isometry PI . They should satisfy

∂XPI = JXY kIY . (3.155)

Furthermore, they satisfy an ‘equivariance relation’, which is necessary to build
supersymmetric actions with these symmetries:

kI
XJXY kJ Y = fIJ KPK. (3.156)
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With conformal symmetry, the solution of (3.155) is determined to be21

PI = kXkIX = 1

D − 2
kD
Y JY XkIX = 2

(D − 2)2
AiAtIABτ ijA

jB . (3.157)

In this context, it is also convenient to rewrite an expression that appears in the
potential that occurs in these theories

kXI kJX = 4

(D − 2)2
εijA

iAAjBtIACCCDtJBD . (3.158)

3.3.3.4 Action for Hypermultiplets in D = 5

The resulting action is [5]

e−1Lh = − 1
2gXYDaq

XDaqY + ζ̄A /DζA + 4
9DkD

2 + 8
27T

abTabkD
2

+ 16
3 iζ̄AχikD

Xf iAX + 2iζ̄Aγ · T ζA − 1
4WABCDζ̄

AζBζ̄ CζD

− 2
9 ψ̄aγ

aχkD
2 − 1

3 ζ̄Aγ
aγ · T ψaikXf iAX − 1

2 iζ̄Aγ aγ bψaiDbqXf iAX

+ 2
3fa

akD
2 − 1

6 iψ̄aγ abφbkD
2 + ζ̄Aγ aφaikD

Xf iAX

+ 1
12 ψ̄

i
aγ
abcψ

j
bDcq

Y JYX ij kD
X − 1

9 ikD
2ψ̄a

(
ψbTab − 1

2γ
abcdψbTcd

)

+iσ I tIBAζ̄AζB − 2ikXI f
iA
Xζ̄Aψ

I
i − 1

2σ
I kXI f

iA
Xζ̄Aγ

aψai

− 1
2 ψ̄

i
aγ
aψjI PIij + 1

4 iψ̄iaγ
abψ

j

b σ
IPIij + Y IijP ijI − 1

2σ
IσJ kXI kJX ,

(3.159)

with covariant derivatives given in (3.98).

3.3.3.5 Action for Hypermultiplets in D = 4

When we discuss D = 4, we can multiply (3.131) at both sides with a chiral
projection PR . Using the rules (A.63) we should now impose for the action Shyper

δShyper

δζ̄Ā
= 2dĀB�B . (3.160)

21It is a nice exercise to prove that (3.155) is solved by (3.157). You may replace the ∂X by
covariant derivatives and use (3.69), (3.39), (3.68), (3.77) and (3.83).



106 3 Matter Multiplets

We also want the action to generate the field equations for the scalars that we have
seen in (3.95). This leads in rigid supersymmetry to

Lh = − 1
2gXYDμq

XDμqY −
(
ζ̄Ā /∇ζBdĀB + h.c.

)

+ 1
2WABEF d C̄EdD̄F ζ̄C̄ζD̄ζ̄

AζB

+
(

2XI tIABζ̄AζB + 2if iAX kXI ζ̄B̄�
jIεij d

B̄A + h.c.
)

+ 2PI · YI − 2X̄IXJ kIXkJX , (3.161)

with the covariant derivatives in (3.87), which satisfies (3.160), and also

δShyper

δqX
= gXY�Y −

(
2ζ̄Ā�

BωXBCdĀC + h.c.
)
. (3.162)

See [18, Exercises 20.8 and 20.9] for a concrete example.
After gauge covariantization and using the values of the conformal gauge fields as

in (3.122) and the covariant derivatives (3.100), the superconformal hypermultiplet
action with gauged isometries in D = 4 is [18, (20.93)]

e−1Lh = − 1
12kD

2R + 1
4kD

2D − 1
2gXYDμq

XDμqY − 2X̄IXJ kIXkJX + 2PI · YI

+
{

− ζ̄Ā /̂DζBdĀB + 1
12kD

2ψ̄iμγ
μνρDνψ

i
ρ

+ 1
8kD

2ψ̄iaγ
aχi − 2idĀBAiBζ̄Āχi

+ 1
2 iζ̄Āγ

a /DqXψaif
iB
Xd

ĀB − 1
3 idĀBAiBζ̄Āγ μνDμψνi

+
(

1
12 idĀBAiBζ̄Āγaψ

j
b − 1

48kD
2ψ̄iaψ

j
b

)
T +abεij

− 1
8 ζ̄Āγ

abT +
abζB̄C

ĀB̄ + 2iX̄I kXI ζ̄Āγ
aψ

j
a εij d

ĀBf iBX

+ 2XI ζ̄AζBtIAB + 2ikXI f
iA
Xζ̄B̄�

jIεij d
B̄A

+ 1
2 ψ̄aj γ

a�Ii PI
ij + 1

2 X̄
I ψ̄iaγ

abψ
j
b PIij + h.c.

}

+ 1
2 ψ̄

i
aγ
abcψbjDcq

XkX · τ i
j + 4-fermion terms . (3.163)

We can rewrite the kinetic terms for the scalars qX in terms of the sections (3.70)
using the bosonic part of (3.102)

gXYDμq
XDμqY = εijCAB

(
D̂μA

iA
) (
D̂μAjB

)
. (3.164)
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3.3.4 Splitting the Hypermultiplets and Example

In general we did not use the basis (3.35). Sometimes, however, it will be convenient
to use such basis in examples. To do this, we split the index A = 1, . . . , 2nH into
A = (αa), with α = 1, 2 and a = 1, . . . , nH . The index Ā will then have the same
form, but with a in the opposite (up-down) position. We can then write the canonical
basis with (3.35) and (3.140) as

ρAB̄ =εαβδba , dĀB = ηabδαβ , CAB = ηabεαβ . (3.165)

The components of AiA can then be written as Aiαa and (Aiαa)∗ = Ajβbεjiεβα.
Upon this splitting the action (3.163) starts with

e−1Lh = − 1
12kD

2R + 1
4kD

2D − 1
2D̂μA

iαaD̂μAjβbεij εαβηab + · · · ,
kD

2 =AiαaAjβbεij εαβηab = Aiαa
(
Aiβb

)∗
ηab . (3.166)

The conditions on the symmetry matrices tIAB (see (3.144)) are such that they can
be decomposed as

tIαa
βb = tI0a

bδα
β + tIabταβ , tI0a

b, tIab ∈ R ,

tI0a
b = −ηactI0d

cηdb , tIab = ηactIdcηdb . (3.167)

As an example, we may consider

tIαa
βb = iQIa

b(σ3)α
β , QIa

b ∈ R , QIa
b = ηbcQIcdηda . (3.168)

Then from (3.84) and (3.157) we have

kI
X = if Xi(αa)A

iβbQIb
a(σ3)β

α ,

PI = 1
2 iAiαaQIab(A

jβb)∗τ i j (σ3)α
β , (3.169)

withQIab = QIacηcb = QIba .
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27. U. Lindström, M. Roček, New hyperkähler metrics and new supermultiplets. Commun. Math.
Phys. 115, 21 (1988). https://doi.org/10.1007/BF01238851
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Chapter 4
Gauge Fixing of Superconformal
Symmetries

Abstract In this chapter we combine the actions for vector multiplets and hyper-
multiplets, containing also compensating multiplets. We gauge fix the superconfor-
mal symmetries that are not necessary for the super-Poincaré theory, and in such
way obtain matter-coupled Poincaré supergravity theories. We extensively discuss
pure supergravity (using also other compensating multiplets leading to the off-shell
theory) and discuss its reduction to N = 1. Then we discuss appropriate variables
for the gauge fixing of general matter couplings.

4.1 General Considerations

In the previous chapters, we constructed the local superconformal invariant actions
involving vector multiplets and hypermultiplets. The total action is then given by the
sum of the vector multiplet and hypermultiplet actions, given respectively by (3.123)
and (3.163) [1]1

L = Lg + Lh . (4.1)

It remains to break the superfluous symmetries in order to obtain a super-Poincaré
invariant action. This can be done by taking a ‘gauge choice’ for the parts of the
superconformal symmetry that are not in the super-Poincaré algebra: dilatations,
K-symmetries, S-supersymmetry and the R-symmetry. As we illustrated at the end
of Sect. 3.1, classical gauge invariance implies that some degree of freedom in the
set of fields {φi} in fact disappears from the action S[φi ]. More precisely, from the
gauge symmetry requirement one has

0 = δS[φ] = δS[φ]
δφi

δφi , (4.2)

1We concentrate here on 4 dimensions. The principles are the same for D = 5 and for a large part
also for D = 6.
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and if one can redefine the basis of fields such that all δφi = 0 ∀i except, for
example, i = 0, then (4.2) clearly implies that S does not depend on φ0. This
argument immediately shows that, after writing out all covariant derivatives and
dependent gauge fields, bμ should disappear from the action. Indeed, as clear from
Eq, (2.73), from our fundamental fields only bμ transforms underK and therefore

δ(λK)S = δS

δbμ
2λKμ = 0 . (4.3)

Since the action does not depend on bμ in this basis, we can arbitrarily fix a gauge
forK-invariance. Conventionally

K-gauge: bμ = 0. (4.4)

We could repeat a similar procedure for the other gauged symmetries that we want to
fix.2 However, this procedure is often cumbersome (field redefinitions are often non-
local) while the result is just the same as taking a ‘gauge choice’ for this symmetry.
The example presented in Sect. 1.2.2 can illustrate these remarks.

Note that if one imposes a gauge condition, it does not imply that one should
forget about the transformations that are gauge fixed, e.g. the K transformations
after the choice (4.4). The correct conclusion is that now the K transformations are
dependent on the other ones, in such a way that the gauge condition is respected. In
other words, theK transformation must act in such a way on bμ so that it eliminates
all the other transformations that act on it. Only then will (4.4) be a consistent
gauge condition that does maintain the invariance of the action, where the field truly
vanishes. In D = 4, using (2.25) and (2.90) while demanding that δI (εI )bμ = 0,
we obtain a decomposition law:

λaK(λD, ε, η) = − 1
2e
μa

[
∂μλD + 1

2

(
ε̄iφμi − 3

4 ε̄
iγμχi − η̄iψμi + h.c.

)]
.

(4.5)

With the above expression for the parameter of K transformations, (4.4) will be
a consistent condition. The action of a K transformation is now dependent on the
other transformations, via the decomposition law (4.5), e.g. the first term in (4.5) is
a contribution to local dilatations of the action where bμ is omitted.

The present chapter is structured as follows: In Sect. 4.2 we explain the gauge
fixing procedure for pure N = 2 supergravity in D = 4, i.e. where the physical
fields are just the graviton, the doublet gravitino and the so-called graviphoton.
We will discuss 3 different ways of obtaining an off-shell representation using
various sets of compensating multiplets. In Sect. 4.3 we consider the reduction of

2If there is one field that has the same number of degrees of freedom than the gauge symmetry
itself, one can often make redefinitions proportional to that field such that only that one field
transforms.
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the N = 2, D = 4 pure supergravity theory to N = 1. In Sect. 4.4 we will re-
introduce vector multiplets and hypermultiplets (both as matter and compensators).
We derive the equations of motion for the auxiliary fields of these actions in
D = 4, 5 and choose appropriate gauge fixing conditions, focussing mostly on
D = 4 supergravity. Then we will introduce appropriate (projective) coordinates,
which will parameterize the Poincaré theory. In Sect. 4.5 this will be done for the
scalars of the vector multiplets, which will allow us to discuss already the main
properties of special Kähler geometry. In Sect. 4.6 we will in the same way introduce
appropriate coordinates to discuss the quaternionic-Kähler geometry for the scalars
of the hypermultiplets. We end this chapter in Sect. 4.7 with some remarks on the
gauge fixing for D = 5 and D = 6 supergravity, which follows similar patterns as
what we discussed forD = 4.

All these ingredients will be intensively exploited in following chapters on
special geometry and to define the final actions for N = 2 matter-coupled Poincaré
supergravity in Chap. 6.

4.2 Pure N = 2 Supergravity

This section is devoted to the construction of the pure N = 2 supergravity, i.e. there
are no other physical fields than the graviton, the gravitino and the graviphoton.
We will also pay attention to the off-shell structure of the theory, in particular
discussing the auxiliary field structure. Though the principles that we discuss here
are applicable in general, we will concentrate in this section on D = 4.

We start by introducing the so-called minimal field representations. As we will
explain in Sect. 4.2.1, the latter is sufficient to fix the dilatation symmetry, but
it leads to an inconsistent action. In order to overcome this problem we need a
second compensating multiplet, for which there are several known choices: the
hypermultiplet, the so-called nonlinear multiplet [2–4] and the tensor multiplet. In
each case one gets a different set of auxiliary fields for the N = 2 super-Poincaré
theory, with the same number of field components (40 + 40 off-shell degrees of
freedom) [5]. We will discuss these in following subsections.

4.2.1 The Minimal Field Representation

It is natural to perform the gauge fixing of dilatations and of the U(1) part of the
R-symmetry group using the scalars of a vector multiplet. They are rather similar to
the scalars of chiral multiplets in N = 1, which are used in that case to define the so-
called old-minimal sets of auxiliary fields, see [6, 7] and reviewed in [8, Sect. 16.2].
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The starting point is (3.123) for only one vector multiplet with complex scalarX:

F(X) = − 1
4 iX2 → N00 = −1 , N = −XX̄ . (4.6)

The minus sign reflects that X defines a compensating multiplet and not a physical
multiplet, similar to the fact that the action (1.10) has negative kinetic terms for its
scalar. We fix the U(1) gauge by restricting X to be real, and the dilatational gauge
by taking X = κ−1, then we are left with

e−1Lg = 1
6κ

−2 R + κ−2D + · · · . (4.7)

The Weyl multiplet with the 24 + 24 field components in Table 2.3 and a
compensating off-shell vector multiplet with 8 + 8 components as in Table 3.1
forms a ‘minimal field representation’ of N = 2 supergravity. However, when
considering this minimal field representation for building an action, we are faced
with two issues. First, the action (4.7) contains a term linear in the D field, which
would impose XX̄ = κ−2 = 0 as a consequence of the equation of motion for
D, therefore removing the Einstein–Hilbert term. Second, there is still a remaining
gauged SU(2) R-symmetry, because the scalars of the vector multiplets are invariant
under these transformations. The super-Poincaré group does not contain this group,
and thus a matter-coupled N = 2 supergravity does not necessarily have such an
SU(2) gauge symmetry.

Both problems can be solved by introducing a second ‘compensating’ multiplet
in the background of the vector multiplet, involving scalars that do transform under
SU(2) and that can be therefore used to fix the SU(2). In this book we concentrated a
lot on the hypermultiplets, whose scalars indeed transform under SU(2) and whose
action (3.163) contains another term for the auxiliary field and for an Einstein–
Hilbert term. This is indeed one of the possibilities, but in this section we will
present also the other known solutions.

Off-shell fields form a massive representation of supersymmetry, which become
propagating in a super-Weyl gravity [9]. Massive representations contain represen-
tations of USp(4) [10]. Let us recall the relevant massive representations of N = 2
supersymmetry3:

spin 2 multiplet : 24 + 24 : {21, ( 3
2 )

4, 15, 11, ( 1
2 )

4, 01} ,
spin 1 multiplet : 8 + 8 : {11, ( 1

2 )
4, 05} ,

spin 1
2 multiplet : 4 + 4 : {( 1

2 )
2, 04} . (4.8)

3We first write the number of bosonic + fermionic components (2j + 1 components for spin j ),
and then the spin content of the fields with notation (j)#, separating USp(4) representations.
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The fields of the Weyl multiplet represent the components of a massive spin 2
multiplet:

field dof spin 2 spin 3
2 spin 1 spin 1

2 spin 0

eμ
a 5 1

bμ 0
Vμi

j 9 3
Aμ 3 1
T −
ab 6 2
D 1 1
ψμ

i 16 4

χi 8 4

(4.9)

Note that in this and the following tables, the off-shell number of degrees of freedom
(dof) of fields are given, subtracting all the superconformal gauge dof. The following
columns order these according to the massive spin representations. We thus find
indeed the multiplet as written in the first line of (4.8). Similarly, the vector multiplet
of the minimal field representation of N = 2 supergravity represents a spin 1
massive multiplet:

field dof spin 1 spin 1
2 spin 0

X 2 2
Wμ 3 1
Yij 3 3
�i 8 4

(4.10)

We can use some of these fields to fix superconformal symmetries. The first of
these was already mentioned in (4.4). The complex scalarX can be put to a constant
to gauge fix the dilatation and the U(1) R-symmetry. Similar as in the example in
Sect. 1.2.2 we can choose a convenient value to obtain the standard normalization of
the Einstein–Hilbert action. But we will choose this only after we have considered
the full action. Similarly, the fermion�i of the compensating multiplet can be fixed
to a value to remove S-supersymmetry as an independent symmetry (similar to K
in (4.5)). The combination used for pure Poincaré supergravity is thus of the form
(a spacetime index μ indicates that the field is a gauge field, while those with a are
not gauge, and thus have 4 components)

Weyl multiplet: eμa, bμ, ψiμ, Vμi
j , Aμ, Tab, χ

i , D

+
vector multiplet: X, �i, Wμ, Yij
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↓ gauge fixing symmetries Ka, D, U(1), Si

by choosing values for bμ, X, �i

N = 2 super-Poincaré multiplet (32 + 32)

eμ
a (6), Wμ (3), Vμij (9), Aa (4), Tab (6), D (1), Yij (3)

ψiμ (24), χi (8) .

(4.11)

The graviton, gravitino and graviphoton (the latter originating in the vector
multiplet) are the physical fields. On the other hand, Vμij , Tab, χi and D are
auxiliary fields in the Weyl multiplet, while Yij is the SU(2) triplet auxiliary field
originating in the vector multiplet.

We now consider the three possibilities for the second compensating multiplet.

4.2.2 Version with Hypermultiplet Compensator

We can use a hypermultiplet as a second compensating multiplet [11]. We use for
this multiplet constant frame fields f iAX, such that (3.68) is solved by kD

X = qX.
Then (3.70) just defines another parameterization of the 4 physical scalars in the
form AiA. They are thus written as a doublet of the R-symmetry group SU(2) and
A = 1, 2 are indices for a priori another USp(2) = SU(2) group. To define the
metric as in Sect. 3.3.3 we take dĀB = −δAB, where again the negative sign reflects
that this is a compensating multiplet. With this choice, removing a bar from the
index induces a minus sign and this is in accordance with Sect. 3.3.4, where a now
runs only over one value and η11 = −1. Normalizing CAB = −εAB, we thus have
e.g. ρAB̄ = εAB, such that (AiA)∗ = AjBεjiεBA. In this way the action (3.163)
starts with

e−1Lh = − 1
12kD

2R + 1
4kD

2D + 1
2∂μA

iA∂μAjBεij εAB + · · · ,
kD

2 = − AiAAjBεij εAB = −AiA(AiA)∗ . (4.12)

In the case of a single hypermultiplet it is known how to close the supersymmetry
algebra off-shell by including auxiliary fields F iA, appearing in the transformations
of the fermions ζA [1, 12–15]. In particular, one adds to the symmetry group
transformations (3.75) a non-compact generator Z, such that kZXf iAX = F iA.
This generator is then gauged by the vector multiplet in the minimal field repre-
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sentation, leading to central charge transformations. We do not discuss here the full
procedure.4

The off-shell multiplet is then of the form

field dof spin 1
2 spin 0

AiA 4 4
F iA 4 4
ζA 8 4

(4.13)

To gauge fix the SU(2), we restrict the quaternion to be a real number.5 We write

SU(2) gauge: AiA = √
2κ−1εiAeu , → kD

2 = −4κ−2e2u ,

(4.14)

being εiA the Levi-Civita antisymmetric symbol, which breaks the local SU(2) on
the i indices while leaving a global SU(2) group acting now on both indices. Here u
is an auxiliary field, which in the sum of (4.7) and (4.12) appears together with the
auxiliary field D:

e−1L = 1
6κ

−2R
(
1 + 2e2u

)
R + κ−2

(
1 − e2u

)
D + 2κ−2e2u∂μu ∂

μu+ · · · .
(4.15)

On-shell u ≈ 0 and the Einstein–Hilbert term has the canonical normalization.
The scheme that extends (4.11) is thus:

Minimal field representation

+
second compensating multiplet: AiA, ζA, F iA

↓ gauge fixing SU(2) symmetry
by choosing AiA in terms of real u

N = 2 super-Poincaré gravity (40 + 40)

eμ
a (6), Wμ (3), Vaij (12), Aa (4), Tab (6), D (1), Yij (3), u (1), F iA (4)

ψiμ (24), χi (8), ζA (8) . (4.16)

4It is not clear whether such a procedure can also be done when the quaternionic geometry is not
flat.
5This is of course similar to the gauge fixing of U(1), which fixes the phase of the complex X of
the compensating multiplet.
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In the remaining set of fields of the N = 2 super-Poincaré theory, eμa and Wμ are
the physical graviton and the graviphoton, and ψiμ are the gravitini. All the others
are auxiliary fields, and the full set includes 40 + 40 off-shell degrees of freedom.

One denotes by gauged N = 2 supergravity the situation where the gravitinos
transform under a local SU(2) and where this induces then also a cosmological
constant (anti-de Sitter supergravity). As an example, in the present formalism we
can gauge a U(1) ⊂ SU(2) if the scalar of the compensating multiplet transforms
under a U(1) subgroup of the USp(2) group acting on the indicesA. We see from the
first line in (3.163) that such a gauging produces a potential. For example, since gXY
for the compensating multiplet is negative definite, the term 2X̄IXJ kIXgXY kJ Y

produces a negative term in the potential. There will be another negative term
after elimination Y0. Since the involved fields are now constants, this is a negative
cosmological term, whose size is determined by the choice of the Killing vector.
Thus we have anti-de Sitter supergravity. Due to the gauge condition (4.14), the
gauge U(1) is then identified with a subgroup of the SU(2) R-symmetry group.

If more vector multiplets are included, the full automorphism group SU(2) can
be gauged by having the second compensating multiplet transforming under an
SU(2) group. Also in this case, the gauge fixing (4.14) mixes the SU(2) factor of
the superconformal group with the group gauged by vector multiplets. The first
compensating multiplet and two physical vector multiplets can even gauge a non-
compact SO(2, 1) gauge group [16] leading to a massive vector multiplet.

4.2.3 Version with Tensor Multiplet Compensator

The second choice is to use a tensor multiplet as second compensating multi-
plet [16]. The tensor multiplet, shortly discussed in Sect. 3.2.5, contains a triplet
of scalars Lij , a gauge antisymmetric tensor Eμν , a doublet of Majorana spinors ϕi

and a complex scalar G. As massive fields they represent a spin 1 multiplet:

field dof spin 1 spin 1
2 spin 0

Lij 3 3
Eμν 3 1
G 2 2
ϕi 8 4

(4.17)

The scalarsLij form a triplet of the SU(2) part of theR-symmetry group. Therefore,
a gauge choice on this field, e.g.

SU(2)/U(1) gauge: Lij = δij eu (4.18)

breaks this group to a U(1) subgroup. This remaining subgroup is gauged by one
of the components of Vμij : with the choice (4.18) this is proportional to V ′

μ =
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Vμ1
2 − Vμ2

1. On-shell, the latter is identified with the graviphoton Wμ. The other
2 components of Vμij are then no more gauge fields, and indicated below as Vaij

(hence with 2 × 4 dof). The scheme that extends (3.5) is thus:

Minimal field representation

+
second compensating multiplet: Lij , ϕi, G, Eμν

↓ gauge fixing SU(2)/U(1) symmetry
by choosing Lij in terms of real u

N = 2 super-Poincaré gravity (40 + 40)

eμ
a (6), Wμ (3), V ′

μ (3), Vai
j (8), Aa (4), Tab (6), D (1), Yij (3),

Eμν (3), u (1), G (2)
ψiμ (24), χi (8), ϕi (8) .

(4.19)

Again the physical fields are eμa, Wμ, ψiμ and the others are auxiliary. With the
gauge antisymmetric tensor and the remaining U(1) gauge group, this version has
similar properties as the ‘new minimal’ set of auxiliary fields of N = 1 supergravity
[17].

Similarly to the previous case, the gauged N = 2 supergravity can be obtained
by coupling the first compensating multiplet (vector multiplet) to the compensating
tensor multiplet, which will include in the Lagrangian a term εμνρσEμνFρσ (W).

4.2.4 Version with Nonlinear Multiplet Compensator

The third choice (historically, it is the first version [2, 11]) is to use as a second
compensating multiplet a nonlinear tensor multiplet [18], consisting of the fields
 A
i , λi , M

[ij ], Va . The scalar field A
i , A = 1, 2 is a 2 × 2 special unitary matrix,

where the indices A are unrelated to theR-symmetry SU(2) indices i. This multiplet
is called nonlinear because its transformation rules are nonlinear in the fields. The
fields  αi represent 3 degrees of freedom due to the nonlinear constraint. The
linearized version of this multiplet is again the tensor multiplet. The vector field Va
is constrained in the superconformal background due to the following (linearized)
relation:

∂aV
a = D + 1

3R, (4.20)

where R is the Ricci scalar. One may view this equation as eliminating one of the
4 degrees of freedom of the vector in the nonlinear multiplet, which with the two
real components in the complex M [ij ] and  A

i complete the 8 bosonic degrees of
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freedom of this multiplet. However, in the superconformal framework we will use
it to eliminate the auxiliary field D, which was the cause of the first problem of the
minimal field representation mentioned at the start of Sect. 4.2. The multiplet is also
a spin 1 massive multiplet:

field dof spin 1 spin 1
2 spin 0

 A
i 3 3

M [ij ] 2 2
Va 3 1
λi 8 4

(4.21)

To break the local SU(2) invariance one imposes on the 3 components of A
i

SU(2) gauge:  A
i = δAi , (4.22)

such that the distinction between indices A and i, j, . . . is lost. The scheme that
extends (3.5) is thus:

Minimal field representation

+
second compensating multiplet:  αi , λi , Mij , Va

↓ gauge fixing SU(2) symmetry
by choosing A

i and solve for D

N = 2 super-Poincaré gravity (40 + 40)

eμ
a (6), Wμ (3), Vaij (12), Aa (4), Tab (6), Yij (3), Va (4), M[ij ] (2)

ψiμ (24), χi (8), λi (8) .

(4.23)

The theory remains invariant under rigid SU(2), corresponding to the residual group
of (4.22). Finally, a U(1) subgroup of this residual SU(2) (acting on the index A)
can be gauged via the first compensating multiplet. This produces gauged N = 2
supergravity.

4.3 Reduction from N = 2 to N = 1

We now discuss the reduction of the 3 sets of auxiliary fields to N = 1.
This has been first considered in the discussion section of [5]. We will be
more explicit here. For any version of auxiliary fields, we have to start from
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the Weyl multiplet with the vector compensating multiplet. We treat here just
the pure supergravity theory. More general reductions in the Poincaré formula-
tion have been discussed in [19, 20]. A conformal treatment has been given in
[21].

4.3.1 Reduction of the N = 2 Weyl Multiplet

To reduce the D = 4, N = 2 Weyl multiplet, we consider (2.90) and the Majorana
spinors ε = ε1 + ε1, η = η1 + η1, and put ε2 and η2 to zero. We then compare
with the transformations in [8, Chap. 17] for the reduction to N = 1. Obviously this
reduction breaks the SU(2) part of the R-symmetry group of N = 2 to a U(1) part,
i.e. the part where

λ1
1 = −λ2

2 ∈ iR , λ1
2 = λ2

1 = 0 . (4.24)

The frame field transforms to ψμ1 + ψ1
μ, which is thus the N = 1 gravitino. Its

transformation is

δψ1
μ =

(
∂μ + 1

2bμ + 1
4γ
abωμab − 1

2 iAμ − V 1
μ1

)
ε1 − γμη1. (4.25)

This identifies the real combination

A(1)μ = 1
3Aμ − 2

3 iVμ1
1 , (4.26)

as the Aμ field of N = 1, which transforms into

δA(1)μ = − 1
2 iε1φμ1 + 1

8 iε1γμχ1 + 1
2 iη1ψ

1
μ + h.c. (4.27)

The composite field φμ for N = 1 is as in (2.92), but without the χ-term, i.e.

φμ1 = PLφμ(1) + 1
4γμχ1 , φμ

(1) = φμ − 1
4γμχ , (4.28)

so that the (Q-susy part of the) right-hand side of (4.27) is indeed proportional to
φ
(1)
μ .

The transformation of bμ in (2.90), rewritten using (4.28), is

δbμ = 1
2 ε̄

1φμ
(1) − 1

4 ε̄
1γμχ1 − 1

2 η̄
1ψμ1 + h.c. (4.29)
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But bμ transforms also under special conformal transformations, see (2.73). There-
fore we identify the N = 1 supersymmetry as a linear combination of the ε1

supersymmetry with a special conformal transformation:

δ(1)(ε) = δ(ε1)+ δK(λKμ) , λKμ = 1
8 ε̄

1γμχ1 + h.c., (4.30)

which eliminates the terms with χ1 in (4.29). The fields of the N = 1 Weyl

multiplet are thus
{
eμ
a, bμ, ψ

1
μ, , A

(1)
μ

}
. The combination (4.27) implies that the

superconformal U(1) of N = 1 is a diagonal subgroup of the U(1) × SU(2) of
N = 2:

λ
(1)
T = 1

3

(
λT − 2iλ1

1
)
. (4.31)

Similarly, one can check that there is an N = 1 vector multiplet containing6

{
Bμ, i(χ1 − χ1), D

}
, Bμ = − 2

3

(
Aμ + iVμ1

1
)
. (4.32)

The gauge field gauges a combination of λT and iλ1
1, complementary to (4.31)

θ = − 2
3

(
λT + iλ1

1
)
. (4.33)

The remaining fields of the N = 2 Weyl multiplet form a double spin-3/2
multiplet:

N = 2 Weyl Weyl multiplet spin 1 multiplet 2 spin 3
2 multiplets

eμ
a eμ

a

bμ bμ

Aμ, Vμ1
1 A

(1)
μ Bμ

Vμ1
2 Vμ1

2 ∈ C
T −
ab Tab

D D

ψμ
i ψμ

1 ψμ
2

χi χ1 χ2

24 + 24 8 + 8 4 + 4 12 + 12

(4.34)

In conclusion, the 24 + 24 fields, reduce to 8 + 8 Weyl and a 4 + 4 vector multiplet
under the truncation. The remainder are two 6 + 6 spin 3/2 multiplets. However,

6The factors, e.g. i in the second component, are introduced such that the transformations agree
with [8, (17.1)].
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note that the spin 3/2 multiplets cannot be treated separately beyond the linear level,
since the nonlinear transformations involve the frame field and the N = 1 gravitino.

4.3.2 Reduction of the Compensating Vector Multiplet

The superconformal transformations of the vector multiplet are in (3.15). We now
need the abelian version, i.e. we can omit the index I , and fJKI = 0. The complex
scalar X transforms chiral and is thus the basic field of a chiral multiplet:

{
X,

1√
2
�1, Y11

}
. (4.35)

The scalar X transforms under the θ transformation (4.33). Indeed, considering the
U(1) transformations:

δX = iλT X = i
(
λ
(1)
T + θ

)
X . (4.36)

Thus the chiral multiplet transforms under the gauge transformation of the vector
multiplet (4.32). This is also important to understand the following contribution
to the Q-transformation of the auxiliary field Y11. According to (3.19), Dμ�1
contains a term −2Xφμ1, which, after use of (4.28) implies that the transformation
of Y11 contains a term ε̄1χ1X. This term thus depends on the fermion of the gauge
multiplet (4.32). The latter is the transformation term that the auxiliary fields of
chiral multiplets obtain in Wess–Zumino gauge in N = 1 supersymmetry due to
the θ symmetry (4.36). For the normalization, see e.g.[8, (17.3)].

The remaining fields of the N = 2 vector multiplet form the N = 1 vector
multiplet:

{
Wμ, −�2 −�2, 2iY12

}
. (4.37)

Thus the reduction goes as follows:

N = 2 vector spin 1
2 multiplet spin 1 multiplet

X X ∈ C
Wμ Wμ

Yij Y11 ∈ C iY12 ∈ R

�i �1 �2

8 + 8 4 + 4 4 + 4

(4.38)

For clarity, we indicated the reality properties of the Y11 and Y12, see (A.21). The
component Y22 is the complex conjugate of Y11.
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One consistent reduction to N = 1 consists in keeping only the Weyl multiplet
of (4.34) and the chiral multiplet (4.35), which provides then the compensating
fields for dilatation, U(1) and S-supersymmetry. The conformal action of the chiral
multiplet in the background of the Weyl multiplet gives theN = 1 pure supergravity
with the ‘old-minimal’ set of auxiliary fields.

If we keep also the spin-1 multiplet of (4.34) in the background, since
the chiral multiplet transforms under θ , see (4.36), this will induce a Fayet–
Iliopoulos term e X X̄D. However, to describe pure supergravity, there are no
kinetic terms for the spin-1 multiplet. Therefore the field equation for D is
inconsistent with a gauge choice that gives a non-zero value to X. That is
why we need the second compensating multiplet as viewed from the N = 1
perspective.

4.3.3 Reduction of the Second Compensating Multiplet

We comment here on the reduction of the two versions that have linear transforma-
tion laws. When we use the hypermultiplet, there are two N = 1 chiral multiplets:

{
A1A, −√

2iζA, − 1√
2
X̄F 2A

}
. (4.39)

These are chiral multiplets for each value of A. Remember that A2A is dependent
on the complex conjugate of A1A. In the N = 1 reduction we can include one of
these two chiral multiplets, e.g. A = 1. Under the U(1) transformations:

δA1A = A1Aλ1
1 = i

(
λ
(1)
T + 1

2θ
)
A1A . (4.40)

Hence, these multiplets transform also under θ and there is another Fayet–Iliopoulos
term, such that the field equation ofD relatesX to A1A and a consistent dilatational
gauge (and gauge for λ(1)T and θ ) can be chosen.

When we take for the second compensating multiplet of N = 2 the linear
multiplet, we find that the N = 1 reduction leads to a chiral multiplet

{
L11,

√
2ϕ1, −G

}
, (4.41)

and an N = 1 linear multiplet

{
iL12, φ2 + φ2, Eμν

}
. (4.42)

In Sect. 4.2.3 we chose the gauge fixing (4.18). The proportionality with δij was just
an arbitrary choice in SU(2). Here we could choose the same (which meansL11 real,
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but as well iL12 to be the non-zero component.L11 transforms under the remaining
part of the SU(2), (4.24), and hence under the θ of (4.33). On the other hand L12

is invariant under that remaining U(1). Therefore, if we keep the chiral multiplet in
the N = 1 reduction, it performs the same role as one of the multiplets (4.39) to
allow a consistent field equation for the auxiliary D. If we keep the linear multiplet
in the reduction, then there is also a Fayet–Iliopoulos-like coupling of that field
with D, but moreover a local U(1) remains. Hence we find the situation as in new
minimal supergravity, having a preserved local U(1) (and gauge auxiliary tensor
Eμν) coupled to the other matter multiplets of the reduction of the Weyl and first
compensating multiplet.

4.4 Matter-Coupled Supergravity

In this section we consider again the full action (4.1), which includes vector
multiplets and hypermultiplets, as well as the compensating multiplets. In light
of the discussion in Sect. 4.2, the latter is thus the extension of the action with
an hypermultiplet as second compensating multiplet, considered in Sect. 4.2.2. We
choose the hypermultiplet as compensating multiplet such that the couplings of
the physical hypermultiplets can be obtained as a projection from a conformal
hyper-Kähler manifold, similar to the way in which the couplings of the vector
multiplets are obtained as a projection from a conformal special Kähler manifold.
The disadvantage of this choice is that it is not known how to keep the structure
with auxiliary fields F iA mentioned in Sect. 4.2.2 for a non-trivial hyper-Kähler
geometry without introducing an infinite number of fields as in harmonic or
projective superspace. In total we therefore have n+ 1 vector multiplets and nH + 1
hypermultiplets, described by the action (4.1), being Lg , Lh the action for the
vector multiplets and hypermultiplets, respectively. We thus redefine the range of
the indicesX and A for the hypermultiplets to, respectively, 4(n+1) and 2(nH +1)
values.

Though in this section, as in the previous one, we will mostly focus on D = 4
dimensions, some results forD = 5 will also be presented along the way, exploiting
the fact that the treatment is very similar. Full results for D = 5 in the conformal
setting are given in [22–25] and with other methods in [26–28].

In Sect. 4.2 we took gauge choices, keeping the auxiliary fields. In the present
section we first eliminate the auxiliary fields (Sect. 4.4.1) and then we consider the
gauge fixing (Sect. 4.4.2). We conclude with the final formulae for the resulting
action (Sect. 4.4.3) and corresponding transformations (Sect. 4.4.4).
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4.4.1 Elimination of Auxiliary Fields

We now present the equations of motion for the auxiliary fields of the matter-coupled
supergravity in D = 4, 5. It has been expected for a long time, but proven only
recently [29], that equations of motion can always be represented in the form of
covariant equations. This means that gauge fields (in our case mostly the gravitino)
appear only within covariant derivatives.7

4.4.1.1 Case D = 5

The vector multiplet and hypermultiplet actions are given by (3.129) and (3.159).
The theory then contains several auxiliary fields. In particular, the matterD, Tab and
χi , and gauge field V ijμ are inherited from the Weyl multiplet, while the gauge triplet
Y Iij belongs to the vector multiplet. BothD and χi appear as Lagrange multipliers in
the action, leading to the following covariant equations of motion, where the symbol
≈ denotes the ‘on-shell’ relation8:

D : CIJKσ
IσJ σK − 1

3kD
2 ≈ 0 ,

χi : −8i
(
CIJKσ

IσJψiK − 2
3 iAiAζA

)
≈ 0 , (4.43)

where we used AiA as defined by (3.70). The covariant equation of motion for the
SU(2) gauge field V ijμ is

0 ≈ kijXDμqX − 1
2CIJKσ

Kψ̄iI γμψ
jJ . (4.44)

The first term, using (3.98) and (3.154) contains, according to (3.98), − 2
9kD

2 V
ij
μ ,

so that this equation can be read as

2

9
kD

2 V ijμ ≈ kijX∂μqX−WI
μP

ij

I + 2
3 iψ̄(iμ Aj)AζA− 1

2CIJKσ
Kψ̄iI γμψ

jJ , (4.45)

using (3.71) and the moment maps (3.157).

7The proper field equation of a field φi is in general not covariant if the derivative of that field
∂μφ

i appears in the transformation of another field δφj . However, using the field equation of φj

removes the non-covariant terms in the field equation of φi .
8Since the supersymmetry transformation of D contains the spacetime derivative of χ , see (2.98),
the proper field equation of χ contains a non-covariant term, which is however proportional to the
field equation ofD and we have thus omitted here. Similar covariantizations have been done below
and will not be indicated anymore.
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The covariant equations of motion of the other auxiliary fields Y Iij and Tab are
given by

Y ij J CIJKσ
K ≈ − 1

2P
ij
I + 1

4 iCIJKψ̄iJ ψjK ,

64

9
kD

2 Tab ≈ 4σ IσJ F̂KabCI J K + iσ I ψ̄J γabψ
KCIJK + 2iζ̄AγabζA .

(4.46)

4.4.1.2 Case D = 4

The vector multiplet and hypermultiplet actions are given, respectively, by (3.123)
and (3.163). The fields D and χi appear in the total action as Lagrange multipliers.
Therefore, their (covariant) field equations imply the following conditions:

D : −N + 1
4kD

2 ≈ 0,

χi : NIJ X̄I�Ji + idB̄AAiB̄ζ
A ≈ 0 . (4.47)

The covariant equations of motion for the U(1) gauge field Aμ and SU(2) gauge
field Vμij are

0 ≈ 1
2 iNIJ (XIDμX̄J − X̄JDμXI )+ 1

8 iNIJ �̄iI γμ�Ji − 1
2 iζ̄Āγμζ

BdĀB ,

0 ≈ gXYDμqXkY − 1
4NIJ �̄

I
i γμ�

Jjτ j
i , (4.48)

which can be solved in the forms

N Aμ ≈ 1
2 iNIJ (X

I ∂μX̄
J − X̄J ∂μXI )+WI

μP
0
I + 1

4 iNIJ

×
(
X̄I ψ̄iμ�

J
i −XI ψ̄μi�iJ

)
+ 1

8 iNIJ �̄iI γμ�Ji − 1
2 iζ̄Āγμζ

BdĀB ,

− 1
2kD

2 Vμ ≈ gXY ∂μqXkY −WI
μPI + 1

2 iτ i j dĀB
(
AjĀψ̄

i
μζ
A − AiBψ̄μj ζĀ

)

− 1
4NIJ �̄

I
i γμ�

Jjτ j
i , (4.49)

where for the SU(2) part again we used (3.71) and the moment maps (3.157). For
the U(1) part, the moment maps for the Kähler isometries P 0

I appear. They are real
functions, defined9 such that

NIJ δ(θ)X
J = −iθI ∂J̄ P

0
I . (4.50)

9For a general discussion of moment maps in Kähler manifolds, see e.g. [8, Sect. 13.4.1], and also
Sect. 5.4.1 below.
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The condition above is satisfied by

P 0
I = iNJLfKI

JXKX̄L , (4.51)

due to the definition (3.124) and the homogeneity relations (3.108). Inserting
again (3.124) and (3.116) it can be rewritten in various ways:

P 0
I = fIJ K(XJ F̄K + X̄J FK)− 2CI,JKXJ X̄K

= −iNIJ fKLJXKX̄L = iNJLfKI JXKX̄L = −iNJKfLI JXKX̄L (4.52)

and

XIP 0
I = X̄IP 0

I = 0 . (4.53)

The covariant field equations of the other auxiliary fields, Y ij and Tab, are

NIJ Y
J
ij ≈ −PIij − 1

4 iFIJK�̄Ji �
K
j + 1

4 iF̄IJKεikεj��̄kJ��K ,

1
8NIJX

IXJ T +
ab ≈ 1

4NIJX
I F̂+J
ab − 1

32 iF̄IJK�̄iI γab�jJXKεij − 1
8 ζ̄ĀγabζB̄C

ĀB̄ .

(4.54)

4.4.2 Gauge Fixing for Matter-Coupled Supergravity

We now move to the gauge fixing of the total action (4.1). Though the principles
are the same for D = 5 (and for a large part also for D = 6) for simplicity
here we concentrate on 4 dimensions, and comment on D = 5 and D = 6 in
Sect. 4.7.

As mentioned before, the conformal coupling of vector multiplets and hyper-
multiplets, has been chosen such that there is in each sector one multiplet with
negative kinetic energy, used for gauge fixing, and all the others have positive
kinetic energies.10 We recall that (4.1) contains the fields of the Weyl multiplet as
a background. Dependent fields in this Weyl multiplet have already been solved
for in the final actions that we presented. As mentioned in (4.4), the dilatation
gauge field bμ can be eliminated by a gauge choice for the special conformal
transformations K . We will combine the field equation of the auxiliary field
D, (4.47), with a dilatation gauge choice to eliminate the modulus of the scalars
of the compensating multiplets. The U(1) gauge eliminates the phase of the scalar

10The positivity of the kinetic energy is a further constraint on the choices of N(X, X̄) and the
quaternionic metric, which we discuss further in Sect. 4.5.4.
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of the compensating vector multiplet.11 Similarly the quaternionic phases of the
scalars of the compensating hypermultiplet are fixed by gauge choices of the
SU(2).

On the fermionic side the χi field equation will be combined with a gauge for
S-supersymmetry to eliminate the fermions in the compensating multiplets.

The only remaining field of the compensating multiplets is the vector field Wμ,
which becomes the graviphoton in the final super-Poincaré action. The result will
be the coupling of nH hypermultiplets and n vector multiplets to N = 2, D = 4
Poincaré supergravity, see Sect. 4.4.3.

It is important to remark that the fixing of gauge symmetries leads to a change
in the definitions of covariant derivatives. Indeed, the fields that we use in the
Poincaré supergravity are chosen such that they do not transform any more under
the broken symmetries. Moreover, the parameters of the broken symmetries will
be expressed in terms of the independent parameters by the decomposition laws,
similar to (4.5).

We now give the explicit expressions for the gauge fixing of dilatations and
S-supersymmetry. For the dilatations, we have already mentioned in the simple
example (1.11) that our aim is to have a standard kinetic term for gravity. Hence, we
just collect the terms with the scalar curvature and obtain12

D-gauge: − 1
6N − 1

12kD
2 = 1

2κ
−2 . (4.55)

Combining this with the field equation forD, (4.47), we obtain

N = −κ−2 , kD
2 = −4κ−2 . (4.56)

The condition that fixes the dilatation gauge is physically the requirement that the
kinetic terms of the scalars and the spin-2 field are not mixed.

The total action does contain terms of the form γ μν∂μψ
i
ν , multiplied with

fermion fields of the vector and hypermultiplet. These would imply a mixing of
the kinetic terms of spin 3/2 and 1/2. We choose, in analogy to the bosonic sector,
the S-gauge condition such that such a mixing does not occur. Hence, we put to zero
the coefficient of γ μν∂μψiν :

S-gauge: NIJ X̄
I�Ji − 2iAiB̄d

B̄AζA = 0. (4.57)

11Here is the only difference with 5 dimensions. In that case the superconformal algebra does not
contain a U(1), but the scalar of the vector multiplet is also real, such that this step is not necessary,
see Sect. 4.7.
12The dimensionful coupling constant κ in fact appears here for the first time, thus breaking the
dilatation invariance.
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Combining (4.57) with the field equation of the auxiliary field χi , (4.47), leads to

NIJ X̄
I�Ji = 0, AiB̄d

B̄AζA = 0. (4.58)

Importantly, at this point the R-symmetry is still gauged. The gauge fixing of the
latter will have some surprising consequences on the Nature of our N = 2 theories,
leading to the so-called Special geometries. This important passage will be therefore
discussed separately, in Sect. 4.5.

4.4.3 Full Action for D = 4

We now have all the ingredients to write down the full action. Using the gauge
conditions and the definition (3.16), we find

e−1L = κ−2
(

1
2R − ψ̄iμγ μνρDνψiρ

)
−NIJDμXIDμX̄J − 1

2gXYDμq
XDμqY

+
{
− 1

4 iF̄IJ F+I
μν F

+μνJ + 1
16NIJX

IXJ T +
abT

+ab + h.c.
}

−NIJYI · YJ − N−1|IJ P 0
I P

0
J − 2X̄IXJ kI

XkJX

+ 2
3CI,JKe

−1εμνρσWμ
IWν

J
(
∂ρWσ

K + 3
8fLM

KWρ
LWσ

M
)

+ 1
2 ψ̄aiγ

abcψ
j

b

(
δijNIJ X̄

IDcX
J +DcqXkX · τ j i

)

+
{
− 1

4NIJ �̄
iI /̂D�Ji − ζ̄Ā /̂DζBdĀB

+ 1
2NIJ ψ̄ia

/DXIγ a�iJ + iψ̄ia /DqXγ aζĀf
iB
Xd

ĀB

− 1
2NIJ εij

(
�̄iI γμ − X̄I ψ̄iμ

)
ψjν F

−μνJ − 1
16 iFIJK�̄Ii γ

μν�Jj ε
ijF−K

μν

+ 1
2 ψ̄aiγ

a
[
�IjPI

ij +�IjNIJ fKLJXLX̄Kεij − 4iXIkI
Xf iBXCBAζA

]

+ 1
2NIJ �̄

I
i fKL

J�Lj X̄
Kεij + 1

2 X̄
I ψ̄iaγ

abψ
j
b PIij

+ 2XI ζ̄AζBtIAB + 2ikXI f
iB
Xεij d

ĀB ζ̄Ā�
jI + h.c.

}
+ 4-fermion terms.

(4.59)

We have used the field equations to determine the auxiliary fields, which are thus no
longer to be considered as independent fields, but stand for their values in (4.49)–
(4.54). For example, the term that was +NIJYI · YJ+ other Y terms in (3.123)
and (3.163) are now written as −NIJYI ·YJ . The covariant derivatives are (omitting
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contributions that give rise to 4-fermion terms)13

DμX
I = (

∂μ − iAμ
)
XI +WμJXKfJKI ,

Dμq
X = ∂μq

X + 2Vμ · kX −WμIkIX ,
D̂μ�

I
i = Dμ�

I
i + �I JK�KDμXI ,

Dμ�
I
i =

(
∂μ + 1

4ωμ
ab(e)γab − 1

2 iAμ
)
�Ii + Vμij�j I +WJ

μ�
K
i fJK

I ,

D̂μζ
A =

(
∂μ + 1

4ωμ
ab(e)γab + 1

2 iAμ
)
ζA −WI

μtIBAζB + ∂μqXωXBAζB ,

Dμψνi =
(
∂μ + 1

4ωμ
ab(e)γab + 1

2 iAμ
)
ψνi + Vμijψνj , (4.60)

The connection �IJK refers to the completely holomorphic connection in a Kähler
manifold with metric NIJ . See below, (4.73), for more detail. Aμ and Vμij are the
bosonic parts of their expressions in (4.49):

Aμ = Aμ + AF
μ ,

Aμ = − 1
2 iκ2NIJ (X

I ∂̂μX̄
J − X̄J ∂̂μXI )

= A0
μ − κ2WI

μP
0
I ,

A0
μ = − 1

2 iκ2NIJ (X
I ∂μX̄

J − X̄J ∂μXI ) ,
AF
μ = − 1

8 iκ2NIJ �̄
iI γμ�

J
i + 1

2 iκ2ζ̄Āγμζ
BdĀB ,

Vμ = Vμ + VF
μ,

Vμ = 1
2κ

2kX∂̂μqX = 1
2κ

2
(

kX∂μqX −WI
μPI

)
,

VF
μ = 1

8κ
2NIJ �̄

iI γμ�
J
j τ i

j , (4.61)

where we used

∂̂μX
I = ∂μX

I +WμJXKfJKI ,
∂̂μq

X = ∂μq
X −WμIkIX . (4.62)

Another way to split the covariant derivativeDμXI in (4.60) splitting the geometric
and the gauge parts is

13In the previous chapter, the auxiliary fields were considered independent, and appeared as such
in the ‘linear’ part of the covariant derivatives Dμ, see e.g. (3.19) or (3.100). Here we consider e.g.
Aμ as its solution in (4.61), and the linear part written as Dμ contains only Aμ.
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DμX
I = ∇μXI +WK

μ

(
iκ2P 0

KX
I + fKJ IXJ

)
,

∇μXI ≡ ∂μXI − iA0
μX

I . (4.63)

4.4.4 Supersymmetry Transformations

The transformation laws for physical fields can be obtained by plugging into
the superconformal transformations the values for the gauge fixing as well as
the parameters as fixed by the decomposition laws. The superconformal trans-
formations from which we have to start are those of the Weyl multiplet, (see
Sect. 2.6.2), the vector multiplets, (3.15), and the hypermultiplets (3.100). Restrict-
ing ourselves to the physical fields, the Q- and S-supersymmetries are (using
also (3.101))

δeμ
a = 1

2 ε̄
iγ aψμi + h.c. ,

δψiμ =
(
∂μ + 1

4γ
abωμab − 1

2 iAμ
)
εi + Vμij εj − 1

16γ
abT −

abε
ij γμεj − γμηi ,

δXI = 1
2 ε̄
i�Ii ,

δ�Ii = /DXI εi + 1
4γ
abFabI εij εj + Yij I εj +XJ X̄KfJKI εij εj + 2XIηi ,

δWI
μ = 1

2ε
ij ε̄iγμ�j

I + εij ε̄iψμjXI + h.c. ,

δqX = −iε̄iζAf XiA + iεij ρĀB ε̄i ζĀf
X
jB ,

δ̂AiA = −iε̄iζA + iε̄j ζB̄ ε
jiρB̄A ,

δ̂ζA = 1
2 i /̂DAiAεi + iX̄I kI Xf iAXεij εj + iAiAηi , (4.64)

where we use the covariant transformations as defined in (3.52). Covariant
derivatives and covariant gauge field strengths are given in (3.16), (3.19), (3.102).
The relevant bosonic symmetry transformations are the U(1) and SU(2) R-
symmetries and the Yang–Mills gauge symmetries:

δψiμ = 1
2 iλT ψiμ + ψjμλj i ,

δXI = iλT XI + θJXKfKJ I ,
δ�Ii = 1

2 iλT �Ii − λij�Ij + θJ�Ki fKJ I ,
δWI

μ = ∂μθ
I + θJWK

μ fKJ
I ,
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δqX = −2λ · kX + θI kI X ,
δ̂AiA = AjAλj i + AiBθI tIBA ,

δ̂ζA = − 1
2 iλT ζA + θI ζBtIBA . (4.65)

4.4.4.1 Decomposition Laws

The gauge choices from Sect. 4.4.2 imply that the parameters of the gauge fixed
symmetries are functions of the remaining gauge symmetries. The decomposition
law for the K symmetry is given in (4.5). But since none of the fields in (4.64)
transforms under special conformal transformations, we do not need this decompo-
sition law of λμK.

The S gauge (4.57) is the Q-supersymmetry transformed of the D-gauge (4.55).
Therefore, with this choice, the latter is invariant under ordinary supersymme-
try, and the invariance then implies that the dilatation parameter can be put to
zero:

λD = 0 . (4.66)

We also need the decomposition law for the S-supersymmetry. We can calculate
the variation of any of the two equations in (4.58), which should lead to the same
result. These equations are gauge invariant. We use the field equations of Sect. 4.4.1.
When calculating theQ-supersymmetry of the first one, a useful relation due to the
field equation (4.54) is

NIJ X̄
JF−I

ab = − 1
8 iFIJK�̄Ii γab�

J
j X̄

Kεij + 1
2CABζ̄

Aγabζ
B . (4.67)

In both ways we obtain

κ−2ηi(ε) = − 1
2P

ij
I X

I εj + 1
2κ

−2γ aεjV F
aj
i

+ 1
4γaε

i ζ̄Āγ
aζBdĀB + 1

16γabε
ij εjC

ĀB̄ ζ̄Āγ
abζB̄ , (4.68)

where V F
ai
j is the traceless expression in (4.61):

V F
ai
j = − 1

4κ
2
(
�̄Ii γa�

jJ − 1
2δ
j
i �̄

I
kγa�

kJ
)
NIJ . (4.69)

Finally, the gauge fixing of the R-symmetries will be discussed in Sect. 4.5. The
U(1) and SU(2) decomposition laws are presented (6.43) and (4.168), respectively.
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4.5 Vector Multiplet Scalars: Special Kähler Geometry

The constraints (4.56), obtained by combining the dilatational gauge fixing with
the D-field equation, determine a real condition on the manifold spanned by the
scalars {XI } and {qX}. As we will see, the gauge fixings of the U(1) and SU(2) R-
symmetries remove another real degree of freedom of the {XI } and 3 real degrees of
freedom of the {qX}. This procedure defines a complex n-dimensional submanifold
of the manifold spanned by the (n+ 1) variables XI , as well as a quaternionic nH -
dimensional submanifold of the real 4(nH + 1)-dimensional manifold spanned by
the qX. These submanifolds can be identified by choosing an appropriate system
of (projective) coordinates. This identification, for what regards the scalars of the
vector multiplets which defines special Kähler geometry, will be the subject of this
section. Similarly, as we will present in Sect. 4.6, the scalars of the hypermultiplets
define quaternionic-Kähler manifolds.

As a further simplification, in this section we will focus on the geometric part for
the scalars of the vector multiplet, hence reducingDμXI to ∇μXI as in (4.63), and
leaving the connection with the gauge vectors WI

μ to the following chapters. Upon
this reduction, the relevant term of (4.59) are

e−1LX = −gμνNIJ∇μXI∇νX̄J , ∇μXI ≡ ∂μXI − iA0
μX

I , (4.70)

where NIJ is defined in (3.124). Due to the homogeneity of F(X)—see (3.108)
and (3.124)—one also has

NIJ = ∂

∂XI

∂

∂X̄J
N ≡ ∂I ∂̄JN . (4.71)

4.5.1 Rigid Special Kähler Manifold

We first look back to the vector multiplets in rigid supersymmetry with conformal
symmetry. Hence, we just consider ∂μXI in (4.70). We also do not consider the
constraints (4.56) and the fields XI are thus independent. Then (4.70) definesXI as
complex coordinates of a Kähler manifold with Kähler metric14:

GIJ̄ = NIJ , GIJ = GĪJ̄ = 0 , (4.72)

14To apply the general relations of Kähler manifolds we have to distinguish indices I and Ī , which
cannot be done consistently for the relations that follow from the prepotential F , see e.g. (3.124)
or the first of (4.72) where at the right-hand side NIJ is symmetric and at the left-hand side there
is a holomorphic and an anti-holomorphic index. In (4.73) we use the metric connection with all
holomorphic indices, considering just GIJ̄ as metric, ignoring these relations to a prepotential F .
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and Kähler potential N . Because the manifold is Kähler, the affine connection is
given by [8, (13.19)]

�IJK = GIL̄∂JGKL̄ = N−1|IL∂JNKL = −iN−1|ILFJKL . (4.73)

The homogeneity equations also imply

XK∂KNIJ = −iXKFIJK = 0 , XJ�IJK = 0 , (4.74)

and their complex conjugates. Therefore kD
I = XI is a closed homothetic Killing

vector of this metric (look at (1.30) with w = 1).
This Kähler geometry encountered in rigid supersymmetry is in the mathematics

literature also indicated as affine special Kähler geometry [30–33].

4.5.2 Coordinates in the Projective Special Kähler Manifold

We now turn to the supergravity case, where a key ingredient is the gauged U(1)
T -symmetry. First, there is the contribution of the T -gauge field A0 in (4.70).
Furthermore, we will impose the first relation of (4.56), which was related to the
gauge choice for dilatations, and a gauge choice for the T -symmetry.15 We will
see how this projection from the n + 1-dimensional (complex) Kähler manifold
of Sect. 4.5.1 leads to n-dimensional special Kähler geometry [34–36], which is
sometimes also denoted as ‘projective’ special Kähler, and has a non-trivial U(1)
curvature.16

This mechanism for the emergence of projective special Kähler manifolds is
similar to what appears in N = 1 and has as such been reviewed in [8, Sect. 17.3].

To exhibit the projective nature of the manifold, we first consider the on-shell
value of the auxiliary fields as it follows from (4.70):

A0
μ = i

2N

[
XINIJ (∂μX̄

J )− (∂μXI )NIJ X̄J
]

= i

2N

[
(∂μX̄

J )∂̄JN − (∂μXI )∂IN
]
. (4.75)

15Note that such a U(1) symmetry, here included as part of the superconformal algebra, in fact
follows from the presence of a complex structure and the dilatational symmetry, see e.g. [8, Sect.
17.3.2]. Similarly the SU(2) symmetry in the hypermultiplet sector follows from the hypercomplex
structure and the dilatation.
16The reader will find in Chap. 5 a more detailed discussion on special Kähler geometry
independent of this construction procedure.
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One can check that this agrees with (4.61) upon using the gauge condition (4.56).
The value of (4.70) using (4.75) is

e−1LX = −NIJ ∂μXI ∂μX̄J + 1

4N

[
∂μX̄

J ∂̄JN − ∂μXI ∂IN
]2

= −∂μXI ∂μX̄J
[
∂I ∂̄JN − 1

N
(∂IN)(∂̄J N)

]
− 1

4N
∂μN ∂

μN

= −N∂μXI ∂μX̄J ∂I ∂̄J log |N | − 1

4N
∂μN ∂

μN . (4.76)

On the surface defined by (4.56), the last term vanishes. But the first one contains
derivatives NI and NĪ that are non-vanishing. This will lead to another Kähler
manifold as compared to the rigid Kähler geometry.

4.5.2.1 Projective Coordinates

As we anticipated, the proper way to manifest this new structure is to select
appropriate (projective) coordinates, in which we split between the direction
orthogonal to the surface and along the surface. For this to be done, it is useful
to split (n + 1) complex variables {XI } as {y, zα}, α = 1, . . . , n (and their
complex conjugates {ȳ, z̄ᾱ}), where the variables y will serve for defining the
surface and zα for coordinates on the n-dimensional surface. We will therefore
refer to the space spanned by the {XI } as the embedding space, while that
spanned by the {zα} as the projective space. The latter will describe the physical
scalars.

The embedding in the (n + 1) dimensional manifold is given by functions
ZI (z), Z̄I (z̄) defined as follows:

XI = y ZI (z) , X̄I = ȳ Z̄I (z̄) . (4.77)

As we require invariance under reparameterizations zα → z′α(z), the ZI(z) must
be n+ 1 non-degenerate17 arbitrary holomorphic functions of the zα .

We can now assign to y the dilatation and U(1) charges carried byXI (according
to Table 3.1):

δD,T X
I = (λD + iλT )XI → δD,T y = (λD + iλT )y , δD,T z

α = 0 .
(4.78)

The non-uniqueness of the splitting (4.77) will be related to the Kähler transfor-
mations, which will be discussed in Sect. 4.5.6. A practical choice for the functions

17The matrix ∂αZI has to be of rank n and the matrix (ZI , ∂αZI ) has to be of rank n+ 1.
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ZI , which is often used, is called ‘special coordinates’ and corresponds to

Z0(z) = 1 , Zα(z) = zα for α = 1, . . . , n . (4.79)

For these ‘special coordinates’ one can obviously write

zα = Xα

X0 = Zα

Z0 . (4.80)

4.5.2.2 Gauge Fixing of Dilatations and U(1) R-Symmetry

The dilatation gauge fixing amounts in the vector multiplet to the first of the
conditions (4.56). We will rewrite it using (3.124), and use the homogeneity
properties of NIJ (of degree 0 in XI and X̄I ) to define NIJ (z, z̄):

NIJ (X
I , X̄I ) = NIJ (ZI (z), Z̄I (z̄)) = NIJ (z, z̄) . (4.81)

Therefore we can write the effective dilatational gauge condition as

N(X, X̄) = |y|2ZI (z)NIJ (z, z̄)Z̄I (z̄) = −a , a =
{

3κ−2 for N = 1 ,
κ−2 for N = 2 .

(4.82)

We introduce here the arbitrary constant a, such that the treatment is the same for
N = 1 and N = 2 supergravity, but for the purpose of this book a = κ−2. The
condition (4.82) fixes the modulus of y in terms of zα and their complex conjugates.

With these definitions and transformations (4.78) a consistent U(1) gauge choice
is

T -gauge: y = ȳ , (4.83)

which removes the phase of y as an independent variable and fixes completely y
(and ȳ)

y =
[
−a−1ZI (z)NIJ (z, z̄)Z̄

J (z̄)
]−1/2

. (4.84)

As a result of the D, U(1) gauge fixing, we are left with only the zα (and their
complex conjugates) as unconstrained variables, which in turn will be related to the
physical vector multiplet scalars in the Poincaré supergravity.

Before proceeding, we still want to make two remarks on the previous results:

• At least as long as we consider only the bosonic part of the vector multi-
plet (4.70), in practice we will not need to specify a T -gauge choice once in the
projective basis (4.77). Indeed, the phase of y is the only bosonic quantity that



138 4 Gauge Fixing of Superconformal Symmetries

transforms under T and therefore—as shown at the beginning of Chap. 4—gauge
invariance implies that the latter cannot appear in (4.70). As a consequence, we
will not need a T -decomposition law for the bosonic sector. On the other hand,
fermions of the vector multiplet do transform under the T -symmetry.18

• The value (4.84) for y is a function of z and z̄. Therefore the transition from XI

to zα does not respect the holomorphicity. In other words, the complex structure
that is relevant in the submanifold is not the same as the one in the embedding
manifold.

4.5.3 The Kähler Potential

It follows from our derivation that, after the projection, the resulting action for the
scalars zα is the first term of (4.76). We will now explicitly show that this defines
again a Kähler manifold with a Kähler potential:

K(z, z̄) = −a ln
[
−a−1ZI(z)NIJ (z, z̄)Z̄

J (z̄)
]
. (4.85)

To verify that (4.85) is indeed correct, we can use the homogeneity properties of
NIJ to obtain its derivatives. See e.g. (4.74), which implies that ∂α(ZINIJ Z̄J ) =
(∂αZ

I )(NIJ Z̄
J ), and hence we find the useful relations

∂αK = −aNIJ Z̄
J ∂αZ

I

NKLZKZ̄L
,

∂α∂β̄K = a∂αZI ∂β̄Z̄J yȳ
[
−NIJ
N

+ NIKX̄
KXLNLJ

N2

]

= −a∂αZI ∂β̄Z̄J yȳ ∂I ∂̄J lnN . (4.86)

Hence we can write

e−1LX = −∂μzα∂μz̄β̄∂α∂β̄K , (4.87)

confirming that K is the Kähler potential of the projective manifold.

18We will relate these also to Kähler transformations in Sect. 4.5.6, and then this has a consequence
on the global structure of the Kähler manifold, see footnote 24.
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It will also be useful to write the on-shell value of the T -gauge field in terms of
the Kähler potential

A0
μ = 1

2 ia−1
(
∂αK ∂μzα − ∂ᾱK ∂μz̄ᾱ

) − 1
2 i∂μ ln y

ȳ
. (4.88)

Note that we have not implemented yet the gauge condition (4.83), which would
eliminate the last term, which is anyway a pure gauge term. Note also that
the ∂μy, ∂μȳ, ∂μy∂μȳ terms cancel as a consequence of the relations (4.74).
Furthermore, we can now rewrite (4.84) in terms of K

y = ȳ = eK/(2a) , (4.89)

and thus, with (4.77), we have

XI = eK/(2a)ZI (z) , X̄I = eK/(2a)Z̄I (z̄) . (4.90)

In view of the importance of the Kähler potential, we still give an alternative way
to present (4.85). First we remark that due to the homogeneity, FI (X) is first order
in X, and we can thus write

FI (X) = yFI (Z(z)) , F̄I (X̄) = yFI (Z̄(z̄)) , (4.91)

where FI (Z) is the same functional dependence as FI (X) and can thus also be
written as19

FI (z) = ∂

∂ZI
F(Z(z)) , (4.92)

where F(Z) is the same function as F(X). Finally

K(z, z̄) = − κ−2 ln
[
iκ2Z̄I (z̄)FI (z)− iκ2ZI (z) F̄I (z̄)

]
, (4.93)

and thus the Kähler potential is written in terms of derivatives of the holomorphic
function F(Z(z)). Note that the last equations, starting from (4.91), are only valid
for N = 2, and thus we used a = κ−2 in (4.93).

4.5.3.1 Interpretation as Sasakian Cone

There is an alternative interpretation of the metric (4.87), which gives another
geometrical view on the projective manifold.20 Before any gauge fixing we can

19Note that FI is obtained as F̄I (Z̄(z̄)) using for F̄I (Z̄) the same functional dependence as F̄I (X̄).
20This will not be important for what follows, and the reader may thus skip this part.
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write the action (4.70) as follows:

e−1LX = − 1
4N

−1
(
∂μN

)2 −N (
Aμ − A0

μ

)2 + N
a

(
∂β̄∂αK

)
∂μz

α ∂μzβ̄ , (4.94)

where A0
μ is the geometric part of Aμ that we wrote in (4.75).

The obtained metric in (4.94) is a cone [37, 38]. Indeed, starting from the
n + 1 complex variables {XI } we have defined {y, zα}, where we can choose
y = |y|eiθ . As follows from (4.82), the modulus |y| appears in N (in order to
obtain a canonical parameterization of a cone, it is useful to define r2 = −N). The
resulting coordinates are thus:

• a radius r (gauge degree of freedom for dilatations)
• an angle θ (U(1) R- symmetry degree of freedom);
• n complex variables zα .

In terms of (r, θ, zα, z̄ᾱ) the metric (4.94) takes the form

ds2 = dr2 + r2
[
A+ dθ + 1

2 i
(
∂αK(z, z̄) dzα − ∂ᾱK(z, z̄) dz̄ᾱ

)]2

− r2∂α∂ᾱK(z, z̄) dzαdz̄ᾱ , (4.95)

where A is the one-form gauging of the U(1) group, and K(z, z̄) is a function
of the holomorphic prepotential F(X). When U(1) is not gauged (Aμ = 0), the
base of the cone (the manifold with fixed N or r) is a Sasakian manifold with
a U(1) invariance.21 When the U(1) is gauged, the auxiliary field Aμ can be
redefined such that the whole expression in square brackets is the field equation
of Aμ itself, and it drops out on-shell. In that case, with fixed r (gauge fixing
the superfluous dilatations), the remaining manifold is Kähler, with the Kähler
potential K determined by F(X). Therefore in the situation where U(1) is gauged,
the geometry is further constrained to special Kähler, living on a Kähler submanifold
of the (n+ 1)-complex-dimensional manifold defined by a constant value of r . This
is a real condition, but the U(1) invariance implies that the other real variable θ has
disappeared.

4.5.4 Positivity Requirements

A standard requirement for a suitable Lagrangian of a physical system is that its
kinetic terms should define positive kinetic energy. The kinetic terms of the spin
2 particle, the graviton, are included in the Einstein–Hilbert term, the first term

21This has been remarked first in a similar situation with hypermultiplets in N = 2 in [38], and
has been looked at systematically in [37].
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in (4.59). This is positive due to the gauge choices in (4.55), and for the vector
multiplet part this is the choice of the sign in (4.82). In fact, according to (4.82),
this choice requires that the prepotential F(X) and the range of the scalars allow a
domain where

ZINIJ Z̄
J < 0 . (4.96)

Thus NIJ (z, z̄) should have at least one negative eigenvalue for all values of the
scalars in the domain. The positivity of the kinetic energy of the scalars in L0
requires gαβ̄ to be a positive definite matrix. Using (4.86) with N negative, this
implies that NIJ should be a matrix with n positive eigenvalues and 1 negative
one. The negative one has the significance of the direction of the ‘compensating
multiplet’ in the (n + 1)-dimensional embedding space {XI }. The separation of
the positive and negative definite parts will become explicit in the next chapter,
see (5.65). These conditions define a so-called positivity domain for the scalars
{zα}. The requirement that the positivity domain is non-empty, restricts the space
of prepotentials F that can be used. Finally, these two conditions also imply
the positivity of the kinetic terms of the spin-1 part, namely that ImNIJ is a
negative-definite matrix [39]. The mentioned matrix equation (5.65) will make this
property explicit. Since a symmetric matrix with a negative-definite imaginary part
is invertible, these remarks prove that the inverse of NIJ is well defined. Several
theorems on these matrices are collected in [31].

4.5.5 Examples

We give here some examples of functions F(X) and their corresponding target
spaces:

F = −iX0X1 SU(1, 1)

U(1)
(4.97)

F = (X1)3/X0 SU(1, 1)

U(1)
(4.98)

F = −2
√
X0(X1)3

SU(1, 1)

U(1)
(4.99)

F = 1

4
iXIηIJXJ

SU(1, n)

SU(n)⊗ U(1)
(4.100)

F = dABCX
AXBXC

X0
‘very special’ (4.101)

The first three functions give rise to the manifold SU(1, 1)/U(1). However, the first
one is not equivalent to the other two as the manifolds have a different value of the
curvature [40]. The latter two are, however, equivalent by means of a symplectic
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transformation, as we will show in Sect. 5.2.2. In the fourth example η is a constant
non-degenerate real symmetric matrix. In order that the manifold has a non-empty
positivity domain, the signature of this matrix should be (− + · · · +).

The last example, defined by a real symmetric tensor dABC , with A,B,C =
1, . . . n, defines a class of special Kähler manifolds, which are denoted as ‘very
special’ Kähler manifolds. These can be obtained by a dimensional reduction of
D = 5 supergravity–vector multiplet couplings [41] where the tensor dABC is
identified with the tensor CIJK introduced in Sect. 3.3.2. We will say more on these
in Sect. 5.7.

Exercise 4.1 We go through the example (4.100) in some detail. We get easily the
second derivative

FIJ = 1
2 iηIJ , NIJ = ηIJ . (4.102)

We will now specify to the case

ηIJ =
(−1 0

0 1

)
. (4.103)

We thus write the formulae for n = 1, but they can be easily generalized for arbitrary
n by taking the lower-right entry to be a unit n× n matrix. From (4.90) we get

e−κ2K(z,z̄) = Z0(z)Z̄0(z̄)− Z1(z)Z̄1(z̄) . (4.104)

The right-hand side should be positive. A convenient parameterization consists in
using the special coordinates (4.79), i.e. Z0 = 1, Z1 = z. Indeed, then ∂zZI is
of rank 1, while the 2 × 2 matrix (ZI , ∂Iz ) is of rank 2. The domain for z is then
|z|2 < 1.

This leads to

κ2∂zK = z̄

1 − zz̄ , κ2gzz̄ = κ2∂z∂z̄K = 1

(1 − zz̄)2 . (4.105)

You may check that the indefinite signature of (4.103) was necessary to have a
positive metric. �

4.5.6 Kähler Reparameterizations

The careful reader may have noticed that the splitting (4.77) is not unique. The
projected coordinates are defined up to Kähler reparameterizations that leave
invariantX and X̄:

y ′ = y ef (z)/a, Z′I = ZI e−f (z)/a , (4.106)
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where f (z) is an arbitrary holomorphic function.22 The Kähler potential is not
invariant under these reparameterizations. From (4.85) we see that

K′(z, z̄) = K(z, z̄)+ f (z)+ f̄ (z̄) , (4.107)

where we consider f (z) and f̄ (z̄) as independent transformations. If we choose
the U(1) gauge (4.83), then this leaves a combination of the U(1) and the Kähler
transformation. The decomposition law for Kähler transformations is thus23

δ�K [f (z), f̄ (z̄)] = δK [f (z), f̄ (z̄)] + δT [λT = 1
2a

−1(f (z)− f̄ (z̄))] , (4.108)

where δK [f (z), f̄ (z̄)] are the transformations in the conformal setting, i.e. induced
by (4.106) for small f . The remaining Kähler transformation can, e.g., be used
to choose one of the ZI , say Z0, equal to 1. In any case, one can choose the
parameterization of the n physical scalars zα (with α = 1, . . . , n) at random, as
stressed in [42–44].24

4.5.7 The Kähler Covariant Derivatives

Let us consider the U(1)-covariant derivative ∇μXI as defined in (4.63). This object
is of course invariant under Kähler transformations since it was defined before
splitting the variables {XI } as in (4.77). However, after defining y and ZI , we
have to split (4.63) into derivatives of these new variables, which are not invariant
under Kähler transformations. To do so in a Kähler-covariant way, it is convenient
to introduce a connection for the Kähler transformations [8, (17.71)] (see also more
details in [47]) as follows:

∇μy ≡ ∂μy − iA0
μy − a−1ωμy , ∇μZI ≡ ∂μZI + a−1ωμZ

I , (4.109)

where

ωμ = ωα∂μzα , (4.110)

and ωα is a Kähler connection, which means that under small holomorphic Kähler
transformations it should transform as

δωα = ∂αf . (4.111)

22We stress the fact that Kähler reparameterizations are transformations of the target space
functions, like ZI (z). They do not act on the coordinates {z, z̄}.
23The symbol � for Point-carré is used to indicate transformations in the Poincaré theory.
24Note that, as it is clear from Sect. 4.4.4, the fermions transform under the superconformal U(1)
factor, and hence, by (4.108), under the (finite) Kähler transformations. This implies that the Kähler
form should be of even integer cohomology (Kähler–Hodge manifold) [45, 46]. This is similar to
what is needed in N = 1 and has been explained in several steps in Appendix 17.A of [8].
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In this way ∇μy and ∂μZI transform as y and ZI . Since the Kähler potential
transforms as in (4.107), we can identify

ωα = ∂αK . (4.112)

We can then also write

∇μZI = ∇αZI ∂μzα , ∇αZI ≡
(
∂α + a−1ωα

)
ZI . (4.113)

Using the expression of A0
μ in (4.88), the covariant derivative ∇μy is given by

∇μy = 1

2
y∂μ(ln yȳ)− 1

2a
−1y∂μK . (4.114)

So far we have only redefined the fields XI . If we now perform the gauge fixing for
dilatations and T -symmetry: (4.89) we find

∇μy = 0 . (4.115)

We can then also write the value of (4.88) as a pullback of derivatives on the
projective manifold:

A0
μ = Aα∂μzα + Aᾱ∂μz̄ᾱ ,

Aα = i∂α ln y = 1

2a
i∂αK = 1

2a
iωα ,

Aᾱ = −i∂ᾱ ln y = − 1

2a
i∂ᾱK = − 1

2a
iω̄ᾱ . (4.116)

The Kähler covariant derivatives on a scalar quantity G(z, z̄) on the projective
space can be defined in general as

∇μG(z, z̄) = ∇αG ∂μzα + ∇ᾱG∂μz̄ᾱ , (4.117)

with25

∇αG = ∂αG+ a−1ŵ+G(∂αK) , ∇ᾱG = ∂ᾱG+ a−1ŵ−G(∂ᾱK) ,
(4.118)

25From (4.116), Aα and ωα are both related on ∂αK, hence (4.117) should contain only
combinations of weight w± and c.
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and

ŵ+ = w+ + 1
2c , ŵ− = w− − 1

2c , (4.119)

where c is the chiral weight, andw+ andw− are Kähler weights for a transformation
with infinitesimal f (z) and f̄ (z̄), according to

(
δT [λT ] + δK [f, f̄ ])G(z, z̄) =

(
icλT −w+a−1f (z)− w−a−1f̄ (z̄)

)
G(z, z̄) .

(4.120)

In the Poincaré frame, (4.108) leads thus to

δ�K [f, f̄ ]G(z, z̄) = −a−1 (ŵ+f (z)+ ŵ−f̄ (z̄)
)
G(z, z̄) . (4.121)

For example,

G c w+ w− ŵ+ ŵ−
XI , FI 1 0 0 1/2 −1/2

X̄I , F̄I −1 0 0 −1/2 1/2

y 1 −1 0 −1/2 −1/2

ȳ −1 0 −1 −1/2 −1/2

ZI , FI 0 1 0 1 0

Z̄Ī , F Ī 0 0 1 0 1 .

(4.122)

The weights of ∇αG are equal to the weights of G. Furthermore,

[
∇α, ∇β̄

]
G = a−1(ŵ− − ŵ+)gαβ̄G . (4.123)

Note that (4.115) together with (4.117) imply that

∇αy(z, z̄) = ∇ᾱy(z, z̄) = 0 , (4.124)

and hence

∇αXI = y∇αZI ,
∇ᾱX̄I = y∇ᾱZ̄I ,
∇αX̄I = ∇ᾱXI = 0 . (4.125)

The covariant derivative of N = −a, using (4.74), implies

(∇αXI )NIJ X̄J = 0 . (4.126)
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These relations will be very useful when rewriting the conformal theory in
Poincaré language. In particular we will use ‘covariant transformations’ [47] for
all ordinary transformations that are defined on functions of z and z̄ by

δ̂G(z, z̄) =
(
δzα∇α + δz̄ᾱ∇ᾱ

)
G(z, z̄) . (4.127)

See the similarity with (3.52). Note that this differs from the ordinary transfor-
mation in Poincaré frame:

δ�G(z, z̄) =
(
δzα∂α + δz̄ᾱ∂ᾱ

)
G(z, z̄) ,

δ̂G(z, z̄) = δ�G(z, z̄)+ a−1G(z, z̄)
(
ŵ+δzα∂α + ŵ−δz̄ᾱ∂ᾱ

)
K

= δ�G(z, z̄)− δ�K
[
f = δzα∂αK, f̄ = δz̄ᾱ∂ᾱK

]
. (4.128)

Since both terms in the right-hand side are symmetries, also this covariant trans-
formation is a symmetry. Note that (4.124) implies that for whatever symmetry
transformation

δ̂y = 0 . (4.129)

4.6 Coordinates in the Quaternionic-Kähler Manifold

We will now introduce also convenient coordinates for the hypermultiplet side. This
concerns the scalars qX, where the index X runs over 4(nH + 1) values. In this
case, we want to take coordinates that take into account the second parts of (4.56)
and (4.58). We want to project out the four directions defined by the homothetic and
SU(2) Killing vectors in the hyper-Kähler manifold (they are, respectively, kD

X and
kX, see (3.67) and (3.69)).

4.6.1 Projective Coordinates

We denote the direction of the dilatation generator with the coordinate q0 and the
directions of the SU(2) R-symmetry generators with qr (r = 1, 2, 3). On these
coordinates we will apply gauge fixing conditions for, respectively, dilatations and
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the SU(2) transformations (3.69). The remaining 4nH real variables are indicated
as qu. Our new basis for the scalars of the hypermultiplet is therefore

{qX} = {q0, qr, qu} , (4.130)

and

kD
X = {2q0, 0, 0} , kX = {0, kr , 0} . (4.131)

In analogy with the special Kähler manifolds, we will refer to the {qX} as the
coordinates of the embedding space, and to the {qu} as those of the projective space.
Note that we use the index r for the choice of coordinates and the vector sign for the
3 directions of the SU(2) vectors. The vector kr connects these as a 3-bein and can
be a function of qr and qu.

This choice of coordinates leads to equations for the complex structures in
this basis. Using (4.131), from (3.69) it follows that J0

X has only components
in the X = r directions. Similarly, after some algebraic manipulation one
can obtain the following expressions for coordinates of the complex structures
[48]:

J0
0 = 0 , J0

r = (q0)−1kr , J0
u = 0 ,

Jr0 = kr , Jr s = (q0)−1kr × ks , Jr u = 0 ,

Ju0 = ku , Jus = (q0)−1 (ku × ks + Juvkv · ks
)
, (4.132)

where

kr · ks = −q0δrs , (4.133)

and Juv separately satisfy the quaternionic algebra (3.38). Using the constraints of
dilatation invariance and general properties of the quaternionic frame fields, one
can derive relations between the connection coefficients [48]. The quaternionic
metric (3.148) takes the form26

gXY dqXdqY = − (dq
0)2

q0 + huv(q)dqudqv − 1

q0 kX · kY dqXdqY ,

kXdqX = krdqr + kudqu . (4.134)

Note that although kX has only 3 non-zero components according to (4.131), the
vector kX has components in the r- and u-directions. One can now first check

26We normalize here hXY with a factor q0 different from [48].
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from (3.153) that

kD
2 = −4q0 , (4.135)

and (3.154) then implies for arbitrary vectors A and B:

A · kXkX · B = A · krkr · B = −q0A · B . (4.136)

With the present notation we have that ku = gurkr and kr = grsks .
For the fermionic side of the hypermultiplet, we denote by A the coordinates

on the target space enumerating the 2(nH + 1) fermions, and these can be split in
2 + 2nH . This is consistent, since the distinction of q0 and qr splits the structure
group G�(nH + 1,H) to SU(2)× G�(nH ,H). We thus write

{A} = {i, A} , (4.137)

where i = 1, 2 is an SU(2)-index. We will use this split also for distinguishing
compensating and physical fermions in Sect. 6.1.2

{ζA} = {ζ i, ζA} . (4.138)

It has been shown in detail in [48] that the coordinates can be chosen such that some
components of f iAX and fXiA vanish and one obtains, e.g.

f iA0 = f iAr = f uij = f 0
iA = 0 , f r iA = (q0)−1f uiAkr · ku ,

f ij 0 = iεij
√

1

2q0 , f 0
ij = −iεij

√
q0

2
. (4.139)

In these coordinates, the ρAB̄ introduced in (3.33) as well as the CAB and dĀB
from Sect. 3.3.3 are block-diagonal, e.g.

Cij = εij , CiA = 0 , dı̄ j = −δij , dı̄A = 0 ,

ρij̄ = −εij , ρiĀ = 0 . (4.140)

The AiA introduced in (3.70) has only components for A in the doublet range:

Aij = i
√

2q0εij , AiA = 0 , Aij = −i
√

2q0εij , AiA = 0 .

(4.141)
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We can now reduce the fundamental relations of the quaternionic structures in
the embedding space to relations in the projective space, making use of (4.139):

f iAvf
u
iA = δuv , f iAuf

u
jB = δij δAB ,(

f iAu
)∗ = f jBuεjiρBĀ , (f uiA)

∗ = εij ρĀBf ujB,
ρAB̄ρ

B̄C = −δCA , ρĀB = (
ρAB̄

)∗
,

2f iAuf vjA = δvuδij + τ j
i · Juv , Juv = (Juv)∗ = −f iAuf vjAτ i

j ,

dĀB = (dB̄A)∗ = ρĀCdD̄CρBD̄ ,
CAB = −CBA = ρAC̄dC̄B , CĀB̄ = (CAB)∗ = ρĀCdB̄C ,
huv = f iAuεijCABf jBv = (

f iAu
)∗
dĀBf

iB
v .

(4.142)

Using (3.38) and (4.132) the authors of [48] found that the condition (3.39) is
projected to27

∇̃wJuv ≡ ∇wJuv + 2ωw × Juv = ∂wJuv − �zwuJzv + �vwzJuz + 2ωw × Juv = 0 ,
(4.143)

where �wuv = �wvu is the torsionless Levi-Civita connection of the metric huv . There
is a new term, originating in the embedding space from �wrvJvr , containing

ωu ≡ − 1

2q0 ku . (4.144)

The triplet ωu is an SU(2) connection on the projected manifold, characteristic of the
quaternionic-Kähler geometry. Another important projection from (3.39), namely
from the antisymmetric part of ∇[uJv]0 = 0 is28

Ruv ≡ 2∂[uωv] + 2ωu × ωv = − 1
2 (q

0)−1Juwhwv. (4.145)

Thus, the SU(2) curvature becomes proportional to the complex structure. This is
a main property of a quaternionic-Kähler manifold, as will be further discussed in
Sect. 5.6.

27For these projections one needs the Levi-Civita connection of the embedding metric gXY
expressed in the quantities of the projective manifold. They are all given in [48]. We repeat here a
few components useful for the projections:

�00
X = − 1

2 (q
0)−1δX0 , �0r

0 =�0u
0 = 0 , �0r

s = 1
2 (q

0)−1δsr , �0u
v = 1

2 (q
0)−1δvu ,

�uv
0 = 1

2guv , �ur
0 = − 1

2 (q
0)−1ku · kr .

28We write in the right-hand side explicitly Juwhwv since so far all raising and lowering of indices
was done with gXY , e.g. Juv = Jurgrv + Juwgwv = Juwhwv + (q0)−1ku × kv .
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Finally, from (4.142) the condition (3.32) is projected to

∇̃vf iAu ≡ ∂vf iAu − �wvuf iAw + f jAuωvj i + f iBuωvBA = 0 . (4.146)

4.6.2 S-Supersymmetry, Dilatations and SU(2) Gauge Fixing

Having chosen a convenient set of coordinates, it is now easy to proceed with the
gauge fixings to the Poincaré theory. We start from the dilatations: using (4.131)
and (4.134), the second condition in (4.56) becomes

q0 = κ−2 ≡ −ν−1 . (4.147)

The parameter ν will play a role in the characterisation of Quaternionic-Kähler
manifolds, see Sect. 5.6. Similarly, we gauge fix the SU(2) by choosing the phases
of the compensating quaternion in the hypermultiplet to be some constants qr0:

SU(2)-gauge: qr = qr0 . (4.148)

With the above conditions, the bosonic part of Vμ in (4.61) becomes

Vμ = Vμ
∣∣
bos = 1

2κ
2
(

ku∂μqu −WI
μPI

)
= −ωu∂μq

u − 1
2κ

2WI
μPI . (4.149)

Inserting the above expression into the covariant derivatives (4.60) and plugging in
the SU(2)-gauge (4.148) we obtain

Dμq
X = ∇μqX −WI

μ

(
kXI + κ2PI · kX

)
, ∇μqX ≡ ∂μqX − 2(ωu∂μqu) · kX.

(4.150)

Furthermore, due to (4.131), the second term in ∇μqX only contributes for X = r .
The various cases give

∇μq0 = 0 , ∇μqr = −2(∂μqu)ωu · kr , ∇μqu = ∂μqu. (4.151)

If we now restrict to the non-gauge related part in DμqX, upon using the above
relations together with (4.136), the kinetic terms of the qX in (4.59) reduce to

Lq = − 1
2gXY∇μqX ∇μqY = − 1

2∂μq
u∂μq

v
(
guv + κ2ku · kv

)
. (4.152)
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A quick comparison with (4.134) shows therefore that the final metric on the 4nH -
dimensional space is huv , used in (4.134):

huv = guv + 4κ−2ωu · ωv. (4.153)

The S-supersymmetry gauge fixing together with the χi field equation (4.47)
lead to (4.58). Upon using (4.141), the second of these implies the S-gauge

S-gauge: ζ i = 0 . (4.154)

4.6.3 Isometries in the Projective Space

Let us now explain how the isometries of the target space (defined in (3.75)) get
projected onto the spaces of the {qu}. Upon requiring the corresponding Killing
vectors in the target manifold kIX to commute with the closed homothetic Killing
vector (this is the condition (3.83)), one can show that there exists a frame in which
the components of these kIX in the projection are [48]

kI
X(q) = {kI 0 = 0, kI r = kr · rI , kI u} , (4.155)

where rI (q) are arbitrary holomorphic vectors.29 The moment maps in the embed-
ding space satisfy the condition (3.155), which can be rewritten in the projective
space using (4.155) and (4.132) as

∇̃uPI ≡ ∂uPI + 2ωu × PI = JuvhvwkIw . (4.156)

The value of the moment map PI in (3.157) can be written using (4.136) and (4.144)
as

PI = kIXkX = kI rkr + kI uku = −κ−2 (rI + 2kI
uωu

)
. (4.157)

A similar relation for the special Kähler geometry will appear in Sect. 5.4, where
also a r� (or rI for the gauged symmetries) will describe the transformation of
the compensating fields, see (5.89). Using the metric in (4.134) and (4.136), the
relation (4.157) implies

kIr = −κ2kr · PI . (4.158)

29We can make this choice since the kr introduced in (4.133) can be considered as invertible 3 × 3
matrices. The first 0 in (4.155) is then the statement that the isometries commute with dilatations,
which according to (4.131) act only on the 0-component.
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The equivariance relation (3.156) gets also an extra part when we split the index X
and use the metric huv :

kI
uJuwhwvkJ v + κ2PI × PJ = fIJ KPK. (4.159)

This equation admits unique solutions for PI if the quaternionic-Kähler manifold is
non-trivial (nH �= 0):

2nHκ2PI = −Juv∇vkI u. (4.160)

On the other hand, when nH = 0 the first term in (4.159) drops and there are two
possible solutions for the moment maps, which are then called Fayet–Iliopoulos
(FI) terms. First, in the case where the gauge group contains an SU(2) factor, we
can have

PI = eI ξ, (4.161)

for any arbitrary constant ξ , and eI being non-zero constants only for I in the range
of the SU(2) factor and satisfying

κ2ξeI × eJ = fIJ KeK, (4.162)

in order that (4.159) is verified.
The second case are the U(1) FI terms. In that case the only remaining term

in (4.159) tells that PI and PJ should be in the same direction in SU(2) space.
Hence

PI = e ξI , (4.163)

where e is an arbitrary vector in SU(2) space and ξI are constants for the I
corresponding to U(1) factors in the gauge group.

4.6.4 Decomposition Rules

To find the decomposition laws, we start from the complete transformations of the
hypermultiplet scalars in the conformal setting (from (3.91), (3.67), (3.69), and
(3.75)):

δqX = (
δQ[ε] + δD[λD] + δSU(2)[λ] + δG[θ ]) qX

=
[
−iε̄iζAf XiA + h.c.

]
+ λDkD

X − 2λ · kX + θI kXI . (4.164)
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We now consider what remains from (4.164) when we restrict to Poincaré transfor-
mations (denoted as δ�), namely those combinations of (4.164) that preserve the
gauge conditions. As we explained previously, under projection and gauge fixing,
among the qX, the only remaining physical fields are qu. Thus δ� are the transfor-
mations induced by the dependence on qu, times the transformations of the latter.

First, for X = 0, since q0 is a constant in the Poincaré frame and k0 =
ζAfXiA = kI 0 = 0 (see (4.131), (4.139), (4.154), (4.155)), only the dilatation term
remains, and we thus find 0 = δD(λD)q

0, i.e. implying that we should put λD = 0
in order to obtain Poincaré transformations. Also qr is a constant by (4.148), and
thus we get for X = r the decomposition law for the SU(2) symmetry:

0 = δ�qr =
[
−iε̄iζ Af r iA + h.c.

]
− 2λ · kr + θI krI . (4.165)

Using (4.139) and (4.155) all terms are proportional to kr , which is invertible as a
3 × 3 matrix, and we find

λ = −ωu

[
−iε̄iζ Af uiA + h.c.

]
+ 1

2θ
I rI . (4.166)

The last case of (4.164) is

δ�qu = δqu =
[
−iε̄iζAf uiA + h.c.

]
+ θI kuI . (4.167)

Inserting this in (4.166), we obtain

λ = −ωuδq
u − 1

2κ
2θIPI . (4.168)

The second term determines that any gauge symmetry in the Poincaré theory has a
contribution from the SU(2) R-symmetry in the conformal theory.

4.7 D = 5 and D = 6, N = 2 Supergravities

So far we discussed D = 4 theories, but the main procedure is very similar for
D = 5 and D = 6 theories. We review in the present section the main result for
D = 5 andD = 6, N = 2 supergravities.

4.7.1 D = 5

For D = 5 one can again use a vector multiplet and a hypermultiplet as
compensating multiplets.30 The difference from D = 4 is that now the vector

30For an overview of constructions with linear multiplets and other Weyl multiplets, see [49].
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Table 4.1 Multiplets and fields in the superconformal construction for D = 5

multiplet has only a real scalar. This fits remarkably well with the fact that the R-
symmetry group contains only SU(2), and no U(1), which we used in D = 4 to fix
the phase of the scalar field of the vector multiplet. This is schematically represented
in Table 4.1. We already gave the field equations in Sect. 4.4.1. The field equations
in (4.43) constrain a doublet of spinors and a real scalar together with the gauge
fixings of dilatation and S-supersymmetry, similar to how this happens in D = 4,
see Sect. 4.4.2. Vice versa, the field equations of these components of the vector and
hypermultiplet eliminate χi andD. We give here the bosonic gravity sector in more
detail. The Riemann scalar appears in faa = −R/16 + . . . in (2.100), which in its
turn appears in the sum of (3.129) and (3.159)

L = Lg + Lg = − 1

24
e R

(
CIJKσ

IσJ σK + kD
2
)

+ · · · . (4.169)

The dilatational gauge fixing is chosen such that this gives the canonical normaliza-
tion of the Einstein–Hilbert action, i.e. eR/(2κ2). Combining with (4.43) leads to
the analogue of (4.56):

CIJKσ
IσJ σK = −3κ−2 , kD

2 = −9κ−2 . (4.170)

This is used to obtain the Poincaré theory as we will further illustrate in Sect. 6.2.

4.7.2 D = 6

As we discussed in Sect. 2.6, the D = 6 Weyl multiplet contains an antisymmetric
tensor T −

abc, which is anti-self-dual. If one wants to build an action with manifest
Lorentz-invariance, this has to be combined with a self-dual tensor F+

abc, which
sits in a tensor multiplet. The sum of these two can then be considered as the
field strength of a physical antisymmetric tensor Bμν . The added tensor multiplet
acts also as first compensating multiplet. There are constructions with as second
compensating multiplet a hypermultiplet or with a linear multiplet, see e.g. [50–53].

Importantly, the construction of D = 6 minimal supergravity differs slightly
from that for D = 4 and D = 5, since the tensor multiplet involves constraints that
define the field D of the Weyl multiplet in terms of fields of the tensor multiplet.



References 155

This has to be contrasted with the cases of D = 4, 5, in which the field equation
of the field D in (4.47) combines with a dilatation gauge condition (4.55) to give a
condition on a scalar of the first compensating multiplet and another condition on
a scalar of the second multiplet, see (4.56). Indeed, in D = 6, the field D of the
Weyl multiplet is not anymore independent from the tensor multiplet, and we thus
have only one condition, which imply that there remains a physical scalar. The latter
is in the Poincaré theory part of the tensor multiplet. This results matches with the
expectation that, also in the Poincaré theory, we need one tensor multiplet in order
to be able to construct Lorentz-invariant actions.31

Adding an arbitrary number of vector and hypermultiplets, one obtains super-
Poincaré theories which all contain one tensor multiplet.32 Such actions were also
constructed independently in [55, 56]. The general super-Poincaré theory is given in
[57]. It builds on earlier work, e.g. [58–60].

Famously, theories in 4n + 2 dimensions can suffer from gravitational (and
gauge) anomalies. These can be calculated with the methods of Alvarez-Gaumé
and Witten [61]. Anomaly-free theories, using the Green–Schwarz mechanism, have
been identified in [62, 63, 56, 64].
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Chapter 5
Special Geometries

Abstract In this chapter we will discuss the geometric concepts behind the special
geometries. In terms of the supergravity theories, this means that we will restrict to
the bosonic sector of these theories. In the first part of this chapter, we will examine
the scalars of the vector multiplets, and we will see that the special Kähler geometry
for the scalars is very much related to the symplectic transformations defined by
the dualities of the vector fields. We will also discuss the attractor mechanism
for black holes in this context. Then we will study the geometry of quaternionic-
Kähler manifolds, related to the scalars of the hypermultiplets. Finally, we will
present the relations between these manifolds and their versions in the different
dimensions.

The special geometries are defined as the geometries of the scalars in N = 2
supergravities in D = 4, 5, 6. As we will discuss, a very important role in these
geometries is played by the R-symmetry group, namely SU(2) for D = 5, 6, and
SU(2)× U(1) for D = 4. In particular:

• The SU(2) subgroup acts on the scalars of the hypermultiplets, leading to the
three complex structures of the corresponding manifolds. The gauge connection
of SU(2) promotes the hyper-Kähler manifold of hypermultiplets to a quater-
nionic manifold.

• In D = 4, the U(1) factor acts on the complex scalars of the vector multiplet,
whose manifold therefore inherits one complex structure. The gauge connection
of this U(1) will be the Kähler curvature.

There are three types of special manifolds. These are either associated to geometry
of the real scalars of vector multiplets in D = 5, to the complex scalars of D = 4
vector multiplets or to the quaternionic scalars of hypermultiplets.1 However, these
spaces are not completely independent. An additional relation among them, called
c map and r map (see Sect. 5.7), defines a precise correspondence.

1Since there are no scalars in the vector multiplets of D = 6 (see Table 3.1), there is no geometry
in that case.
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Most of this chapter will be concerned with the special Kähler geometry of the
scalars in the D = 4 vector multiplet, which was obtained in the previous chapter.
We will see how properties of this geometry, due to supersymmetry, are inherited
from symplectic transformations acting on the gauge vectors in the multiplet. The
latter generates dualities between D = 4, N = 2 theories [1–4], which can be
thought as generalizations of the well-known electric-magnetic dualities of Maxwell
equations. Afterwards, we will discuss quaternionic-Kähler geometries (Sect. 5.6),
and finally relations between all the manifolds (Sect. 5.7), where we will also
consider special situations when the manifolds are homogeneous or symmetric.

5.1 D = 4, N = 2 Bosonic Action

Before we start, let us rewrite the bosonic part of the action associated to the vector
multiplets. The bosonic part of the matter-coupled supergravity action appears in the
first 4 lines of (4.59). Omitting for now the hypermultiplet sector (qX terms) and the
Chern–Simons term in the fourth line (this will be included in the full action later,
Sect. 6.1) we find

e−1 Lbos = 1
2κ

−2R + L0 + L1 ,

L0 = − gαβ̄∇μzα∇μz̄β − V (z, z̄) , gαβ̄ = ∂α∂β̄K(z, z̄) ,
L1 = 1

2 Im
(
NIJ F+I

μν F
+μν J)

= 1
4 (ImNIJ )F IμνFμνJ − 1

8e
−1(ReNIJ )εμνρσF IμνF Jρσ , (5.1)

with ∇μzα defined in (4.63), and we have used the results of Sect. 4.5 to write the
kinetic terms in L0. This is in fact the general form for a theory with scalar fields zα

in a Kähler manifold, and n+1 non-abelian vector fields labelled by an index I . The
scalar potential V (z, z̄) is very important for physical applications. Here we want
to emphasize that V (z, z̄) is determined by the gauging as in the third line of (4.59)
(see Sect. 6.1.1.2 for more details).

Crucially, the kinetic terms in L1 are controlled by the complex functions NIJ .
The latter are defined by the second line of (4.59), upon using the equation of motion
of Tab (4.54),

NIJ
(
z, z̄

) = F̄IJ + i

(
NINX

N
) (
NJKX

K
)

NLM XLXM
. (5.2)

These functions become the effective (complexified) gauge couplings, whenever
the scalars have a non-zero vacuum expectation value (v.e.v.) on some classical
background. In particular the v.e.v. of ImN gives the effective gauge coupling,
while that of ReN gives the so-called theta angles.
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Exercise 5.1 Consider the model of Exercise 4.1. Check that in this case, the kinetic
terms of the two vectors are determined by the matrix (5.2)

NIJ = 1

2
i

(
1 0
0 −1

)
+ i

z2 − 1

(
1 −z

−z z2

)
= − i

1 − z2

( 1
2 (1 + z2) −z

−z 1
2 (1 + z2)

)
.

(5.3)

The imaginary part is negative definite as it should be for positive kinetic terms of
the vectors. �

5.2 Symplectic Transformations

A prerequisite to understand the structure of special Kähler geometry is a study of
symplectic transformations. As we will explain in this section, the latter first appear
as generalized electric-magnetic dualities in the context of pure D = 4 abelian
gauge theories. We will argue that symplectic transformations and consequent
dualities can be extended to the full N = 2 vector multiplets by means of
supersymmetry.

5.2.1 Electric-Magnetic Dualities of Vector Fields in D = 4

A striking property of pure abelian gauge theories is that their equation of motions
and Bianchi identities are left invariant by a group of symplectic transformations,
which act on the (complexified) gauge couplings. In other words, symplectic
transformations generate dualities of these theories.

Let us recall some key ingredients to understand symplectic transformations,
following the main ideas discussed in [5, Sect. 4.2.4].2 The starting point is to
consider the kinetic terms of the vector fields, L1 in (5.1), which can be written
as

L1 = 1
2 Im

(
NIJ F+I

μν F
+μν J) = 1

2 Im
(
F+I
μν G

μν
+I
)
, (5.4)

with, viewing L1 as function of F+I
μν and F−I

μν ,

G
μν
+I ≡ 2i

∂L1

∂F+I
μν

= NIJ F+J μν , (5.5)

2There the kinetic matrix NIJ is written as NIJ = −if̄IJ .
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and the tensor N defined in (5.2). Importantly, in selecting the kinetic terms of (5.1),
we are setting fIJ K = 0, such that (5.1) becomes effectively a U(1)n+1 gauge
theory. Non-abelian parts will be discussed later, in Sect. 5.4, when the symmetries
of the kinetic terms will be identified and gauged.

The field equations and Bianchi identities are invariant under Sp(2(n + 1),R)
transformations3

(
F̃+
G̃+

)
= S

(
F+
G+

)
, S ∈ Sp(2(n+ 1),R) . (5.6)

Specifically S is a symplectic transformation, namely a real matrix4 satisfying

S =
(
A B

C D

)
, ST �S = �, where � =

(
0 1l

−1l 0

)
. (5.7)

This is equivalent to the requirements

AT C − CTA = 0 , BT D −DT B = 0 , AT D − CT B = 1l . (5.8)

It is not hard to verify that under (5.6) the kinetic matrix N transforms as

Ñ = (C +DN)(A + BN)−1 . (5.9)

Importantly, (5.9) preserves the condition ImN < 0, namely the positivity of the
kinetic terms for L1 (see Sect. 4.5.4). In the language of symplectic geometry, a
2(n + 1)-component column V transforming as Ṽ = SV . The prime example
is (5.6). The invariant inner product of two symplectic vectors V andW is

〈V,W 〉 ≡ V T �W . (5.10)

Finally, observe that if we apply (5.6) to the last of (5.4), the action is invariant
only if B = 0 (see that ImF+I F+J is a total derivative). For this reason the
subgroup of Sp(2(n + 1),R) with B = 0 are sometimes called ‘perturbative
symmetries’. It is possible to construct an action invariant under the more general
transformations with B �= 0, at the price of introducing magnetic duals of the vector
fieldsWI

μ.

3We use here and below the tilde to indicate the transformed fields. We hope that the reader does
not confuse these with the duals, (A.8), which are contained in the (anti)self-dual F±.
4Quantization of electric and magnetic charges breaks Sp(2(n+ 1),R) to Sp(2(n + 1),Z). We do
not discuss quantum effects in this section.
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5.2.2 Symplectic Transformations in N = 2

Let us apply the arguments of the previous section to N = 2 supergravities. Our
starting point is the tensor N , which is determined as a function of F , as explained
in Sect. 5.1. From its definition (5.2) we can immediately derive the following
suggestive relations:

NIJXJ =(F̄IJ + iNIJ )XJ = FIJXJ = FI ,
NIJ∇ᾱX̄J =F̄IJ∇ᾱX̄J = ∇ᾱ F̄I , (5.11)

where in the last line we used also (the complex conjugate of) (4.126) and we
introduced the Kähler covariant derivatives of Sect. 4.5.7)

∇ᾱ F̄I = ∂ᾱF̄I+ 1
2a

−1(∂ᾱK)F̄I , ∇ᾱX̄J = ∂ᾱX̄J+ 1
2a

−1(∂ᾱK)X̄J . (5.12)

The identities (5.11) are of a similar form as (5.5) relating the lower components
of a symplectic vector to its upper components by multiplication with NIJ . Hence
we can identify two 2(n + 1)-component symplectic vectors (and their complex
conjugates)

V =
(
XI

FI

)
, Uα =

(∇αXI
∇αFI

)
, (5.13)

and check that they indeed transform as in (5.6). With this identification in mind,
we can reconsider the kinetic terms of the scalars and note that the Kähler
potential (4.93), and the constraint (4.82) are symplectic invariants. This is the
starting point of the symplectic formulation of the special geometry, which we
will discuss in Sect. 5.3. There we will see that (5.11) can be seen as an alternative
definition of the matrix N .

An immediate consequence of this construction is that a symplectic transforma-
tion on V induces a change of coordinatesXI �→ X̃I such that

X̃I = AIJXJ + BIJFJ (X) , F̃I = CIJXJ +DI JFJ (X) . (5.14)

If the first equation is invertible,5 i.e. defines a relation XI (X̃), then

∂

∂X̃J
F̃I = ∂XK

∂X̃J

∂F̃I

∂XK
. (5.15)

5The full symplectic matrix is always invertible due to (5.7), but this part may not be. In rigid
supersymmetry, the invertibility of this transformation is necessary for the invertibility of N (due
to the positive definiteness of the full metric), but in supergravity we may have that the X̃I do not
form an independent set, and then F̃ cannot be defined. See below.
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The inverse of the first factor and the last factor can be obtained from (5.14) and
then (5.8) implies that (5.15) is symmetric in (IJ ). This is the integrability condition
for the (local) existence of a new prepotential F̃ (X̃), such that

F̃I (X̃) = ∂F̃ (X̃)

∂X̃I
. (5.16)

Invertibility of (5.14) thus guarantees the existence of a new formulation of the
theory, and thus of the target space manifold, in terms of the prepotential F̃ (X̃).

The attentive reader may have noticed that the prepotential has entered automat-
ically our superconformal construction in Sect. 3.3.1. This is not surprising due to
the homogeneity conditions (3.108), also valid for F̃ , which allow one to determine
F̃ from (5.14) as follows:

F̃ (X̃(X)) = 1

2
V T

(
CT A CT B

DT A DT B

)
V . (5.17)

However, as we will show in the following, there are also symplectic transformations
such that the prepotential is not defined in the new symplectic basis, i.e. that the
new F̃I cannot be obtained as a derivative of a function F̃ (X̃). A concrete example
exhibiting this feature will be given in Sect. 5.3. Therefore, one may expect new
formulations without a prepotential to be generically available. We will show in the
following that this is indeed the case.

Let us first consider an example [6], starting from the prepotential (4.98). If we
apply the symplectic transformation

S =
(
A B

C D

)
=

⎛
⎜⎜⎝

1 0 0 0
0 0 0 1/3
0 0 1 0
0 −3 0 0

⎞
⎟⎟⎠ , (5.18)

using (5.17) one arrives at F̃ (X̃(X)) = −2(X1)3X0, which is just (4.99) after the
trivial field redefinition X → X̃. Thus the two theories based on (4.98) and (4.99)
are equivalent. We will call this a pseudo symmetry between the two formulations,
and the transformation is called symplectic reparameterization .

On the other hand consider

S =

⎛
⎜⎜⎝

1 + 3ε μ 0 0
λ 1 + ε 0 2μ/9
0 0 1 − 3ε −λ
0 −6λ −μ 1 − ε

⎞
⎟⎟⎠ , (5.19)
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for infinitesimal ε, μ, λ. Since F is invariant under this transformation, the latter
defines a symmetry of the model. On the scalar field z = X1/X0, the transforma-
tions act as

δz = λ− 2εz− μz2/3 . (5.20)

All in all, the set of transformations (5.19) form an SU(1, 1) isometry group of
the scalar manifold. The domain were the metric is positive definite is Im z > 0,
hence proving the identification of the manifold as the coset space in (4.98), or
equivalently (4.99).

In general, we have to distinguish two situations: [7]

1. The function F̃ (X̃) is different from F(X̃). In that case F̃ provides a dual
description of the classical field theory with prepotential F . The two functions
describe equivalent physics and we have a pseudo symmetry. The transformations
are called symplectic reparameterizations [8]. Hence we may find a variety of
descriptions of the same theory in terms of different functions F .

2. If a symplectic transformation leads to the same function F , then we are dealing
with a proper symmetry. This invariance reflects itself in an isometry of the target
space manifold.

Note that a symplectic transformation with

S =
(

1l 0
C 1l

)
, (5.21)

does not change the XI and gives F̃ = F + 1
2CIJX

IXJ . The matrix C must be
symmetric as required for S to be symplectic. Indeed, the difference between F̃
and F is then of the form (3.111), and the action is invariant. Hence these are
proper symmetries.

The two cases above are called ‘duality symmetries’, as they are generically
accompanied by duality transformations on the field equations and the Bianchi
identities. The question remains whether the duality symmetries comprise all the
isometries of the target space, i.e. whether

Iso(scalar manifold) ⊂ Sp(2(n+ 1),R) . (5.22)

This question was investigated in [9] for the very special Kähler manifolds, and it
was found that in that case one does obtain the complete set of isometries from
the symplectic transformations. For generic special Kähler manifolds no isometries
have been found that are not induced by symplectic transformations, but on the other
hand we do not know a proof that these do not exist.

That the full supersymmetric theory allows such symplectic transformations
can also be seen in another way. We mentioned before that the vector multiplets
are chiral multiplets, with w = 1 that satisfy constraints (3.28). One of these
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constraints is the Bianchi identity for the vector. The functions FI (X) transform
also in a chiral way under supersymmetry, and thus define also chiral multiplets,
with Weyl weight w = 1. Now it turns out that the same constraints on these
chiral multiplets are in fact the field equations. One of these is the field equation
of the vectors. Thus the symplectic vectors V (5.13) are the lowest components of
a symplectic vector of chiral multiplets. If the vector of chiral multiplets satisfies
the mentioned constraints, then these imply as well that the multiplets are vector
multiplets rather than general chiral multiplets, and that the fields of these vector
multiplets satisfy the field equations. This is thus a supersymmetric generalization
of the symplectic set-up of Sect. 5.2.1. For the supergravity case this has been
worked out in [10]. In this way, even the equations for models in a parameterization
without prepotential can be obtained. Such situations will be explained in the next
section.

5.3 Characteristics of a Special Geometry

In Chap. 5 we defined the Special Kähler geometry [11] as a property of the
scalar couplings in N = 2 supergravities. However, one may wonder what is
the definition of special geometry, independent of supersymmetry. A first step in
that direction has been taken by Strominger [12]. He had in mind the moduli
spaces of Calabi–Yau spaces. His definition is already based on the symplectic
structure, which we also have emphasized. However, being already in the context of
Calabi–Yau moduli spaces, his definition of special Kähler geometry omitted some
ingredients that are automatically present in any Calabi–Yau moduli space, but have
to be included as necessary ingredients in a generic definition. Another important
step was made in [13]. Before, special geometry was necessarily connected to
the existence of a holomorphic prepotential F(X) or F (Z(z)): it was recognized
as those Kähler manifolds where the Kähler potential is of the form (4.93)
with (4.92).

However, the authors of [13] found examples of N = 2 supergravities coupled
to Maxwell multiplets where the FI in (4.93) is not a derivative of a prepotential
as in (4.92). Crucially the latter were obtained from a symplectic transformation
of a model admitting a prepotential. This surprising fact raised some natural
questions: are all the models without prepotential symplectic dual to models with
a prepotential? Can one still define special Kähler geometry as always symplectic
dual to a formulation with a prepotential? And, of course, is there a more convenient
definition that does not involve this prepotential? These questions have been
answered in [14], and are reviewed here. A lot of this is based on formalism that
has been developed using other methods in [15–18].
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5.3.1 Symplectic Formulation of the Projective Kähler
Geometry

The scope of this section is to reformulate the special Kähler geometry of Sect. 5.1
using the symplectic formalism. The basic building block is the symplectic vector
V , which transforms as in (5.6),

V =
(
XI

FI

)
. (5.23)

It is important to realize that FI is not necessarily a function of XI , as is the case in
the formulation with the prepotential. The dilatational gauge fixing condition (4.82)
is chosen in order to decouple kinetic terms of the graviton from those of the scalars.
It can be written as a condition on the symplectic inner product (5.10):

〈V, V̄ 〉 = XI F̄I − FI X̄I = ia = iκ−2 . (5.24)

To solve this condition, we define

V = y(z, z̄)v(z) , y(z, z̄) = eκ
2K(z,z̄)/2 , (5.25)

where v(z) is a holomorphic symplectic vector

v(z) =
(
ZI (z)

FI (z)
)
, (5.26)

andK(z, z̄)will be the Kähler potential.ZI (z) andFI (z) are so far 2(n+1) arbitrary
holomorphic functions in the n complex variables zα , reflecting the freedom of
choice of the coordinates zα , up to a non-degeneracy condition that we will soon
discover. In terms of (5.25) the condition (5.24) implies a value for the Kähler
potential in terms of a symplectic invariant:

y−2 = e−κ2K(z,z̄) = −iκ2〈v, v̄〉 . (5.27)

We now act on (5.24) and (5.27) with the following Kähler covariant derivatives
(see Sect. 4.5.7):

∇αv(z) ≡∂αv(z)+ κ2v(z)(∂αK) , ∇αv̄ = 0 ,

∇αV ≡∂αV + 1
2κ

2V (∂αK) , ∇αV̄ = 0 . (5.28)
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This implies

〈∇αv, v̄〉 = 0 , 〈∇αV, V̄ 〉 = 0 . (5.29)

A further derivation implies, using (4.123)

〈∇αV, ∇β̄ V̄ 〉 = −〈∇β̄∇αV, V̄ 〉 = −igαβ̄ . (5.30)

Hence the Kähler metric can be obtained as

gαβ̄ = i〈∇αV,∇β̄ V̄ 〉 . (5.31)

There is an important extra condition on the inner product

〈∇αV, V 〉 = 0 . (5.32)

In most examples6 the matrix (5.41) is invertible and we will prove at the end of
Sect. 5.3.2 that then this condition implies the existence of a prepotential. Here we
can already see that the condition is always satisfied for any FI = ∂IF . Indeed, in
that case, due to the homogeneity of FI

〈∇αV, V 〉 = (∇αXI )FI − (∇αFI )XI = (∇αXI )FI − FIJ (∇αXJ )XI = 0 .
(5.33)

However, in full generality and without requiring a prepotential, we will
impose (5.32) in a definition of special Kähler geometry, see Sect. 5.3.2. The
conditions (5.24), (5.31) and (5.32) can be combined in the (n+ 1)× (n+ 1)matrix
relation

G ≡ i〈
(
V̄

∇αV
)
,
(
V ∇β̄ V̄

)
〉 =

(
κ−2 0

0 gαβ̄

)
. (5.34)

If we further require positivity of G, namely of the kinetic matrices gαβ̄ and

κ−2 > 0,7 this in turn implies that the (n+ 1)× (n+ 1) matrix

(
X̄I ∇αXI

) = y (Z̄I ∇αZI
)
, (5.35)

6It has been proven [14] that there always exist a symplectic frame where this is the case.
7These are thus the positivity requirements of the kinetic terms of the spin 0 and spin 2 fields.
Recall from Sect. 4.5.4 that this in turn implies positivity for the kinetic terms of the spin 1 fields.
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which is the upper part of
(
V̄ ∇αV

)
, is invertible. For clarity: the matrix (5.35) is in

full

⎛
⎜⎜⎝

X̄0 ∇1X
0 . . . ∇nX0

X̄1 ∇1X
1 . . . ∇nX1

· · ·
X̄n ∇1X

n . . . ∇nXn

⎞
⎟⎟⎠ . (5.36)

Such theorems on positivity and invertibility of symplectic matrices are collected
in [14, Appendix B]. To prove the above statement, suppose that (5.35) is not
invertible. Then there is a zero mode aX̄I + bα∇αXI = 0. Also its complex
conjugate is then zero, which leads to

0 = 〈
aV̄ + bα∇αV, āV + b̄α∇αV̄

〉 = (
a bα

) 〈( V̄

∇αV
)
,
(
V ∇β̄ V̄

)〉(
ā

b̄α

)

= (
a bα

)
(−iG)

(
ā

b̄α

)
. (5.37)

This is contradictory to the positivity of G. Invertibility of (5.35) is the non-dege-
neracy condition on the choice of (5.26) that we mentioned below that equation.

In terms of these quantities, and using the invertibility of (5.35), the kinetic
matrix for the vectors is defined by

NIJ = (
FI ∇ᾱ F̄I

) (
XJ ∇ᾱX̄J

)−1
, (5.38)

which is the product of two (n+1)×(n+1)matrices. This agrees with the definition
of NIJ starting from a prepotential, since the latter implied (5.11).

5.3.1.1 Models Without a Prepotential and Examples

In the previous sections, all the requirements listed above were satisfied with FI
defined via a prepotential, i.e. FI = ∂

∂XI
F (X). The conclusion of the current

analysis is that we can get rid completely of this last requirement. We can now
appreciate how a symplectic transformation may relate symplectic vectors of a
special Kähler manifold determined by a prepotential to new symplectic vectors
where F̃I cannot be written as the derivative of a function F̃ (X̃). A famous
example [13] comes from the reduction to N = 2 of two versions of N = 4
supergravity, known, respectively, as the ‘SO(4) formulation’ [19–21] and the
‘SU(4) formulation’ of pure N = 4 supergravity [22].8 In the initial duality frame

8This was revisited in exercises 20.18 and 20.19 in [5].
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the prepotential is

F = −iκ−2X0X1 . (5.39)

After a symplectic transformation, one finds a new model based on the symplectic
vector

v =

⎛
⎜⎜⎝

1
i

−κ−2z

−iκ−2z

⎞
⎟⎟⎠ . (5.40)

After this mapping, z does not appear anymore in (Z̃0, Z̃1), the upper two
components of the symplectic vector. It is then clear that from (5.26) we cannot
define the function F̃ (Z̃0, Z̃1), which would play the role of a prepotential. Another
surprising phenomenon showing up in this model,9 but being in fact very general,
is that the set of perturbative symmetries (those with B = 0) is different before or
after the transformation. In particular in the formulation with a prepotential there
is only one ‘perturbative’ symmetry, while in the formulation without prepotential
there are three.

The existence of a prepotential is intimately related to the invertibility of the
matrix

(
XI ∇αXI

)
. (5.41)

One can easily check that, as opposed to (5.35), the above is not always invertible—
for example in the formulation (5.40). If that matrix is invertible, then a prepotential
exists [14]. This will be proven below, related to (5.49). It turns out that the
following 3 conditions are equivalent:

1. The matrix (5.41) is invertible;
2. Special coordinates are possible; these are coordinates defined in (4.79);
3. A prepotential F(X) exists.

Another important example of the absence of a prepotential occurs when
describing the manifold

SU(1, 1)

U(1)
⊗ SO(r, 2)

SO(r)⊗ SO(2)
. (5.42)

This is the only special Kähler manifold that is a product of two factors [23]. In
physics, these manifold emerge in the classical limit of the compactified heterotic

9This is explicitly worked out for the above example in exercise 20.20 in [5].
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string, where the dilaton does not mix with the scalars of the other vector multiplets
and thus the target space should be a product of two factors. The first formulation
of these spaces used a prepotential F of the form (4.101) [24]. As mentioned in
Sect. 4.5.5 this is therefore an example of a ‘very special Kähler manifold’.10 In this
case

dABCX
AXBXC = X1XaηabX

b , a, b = 2, . . . , r + 1 , (5.43)

with ηab a constant metric of signature (+,−, . . . ,−).
In this description of (5.42) by a prepotential, only part of SO(r, 2) belongs to the

set of perturbative symmetries. In other words, one needsB �= 0 in the duality group
to generate the full SO(2, r). This is somehow unexpected from string theory point
of view, as from the superstring compactification one expects the full SO(2, r;Z) to
be explicitly realized as a perturbative (T -duality) symmetry group. The key point
is that there exists another symplectic frame where the full SO(r, 2) is realized
as a perturbative symmetry [13]. After that symplectic transformation one finds a
symplectic vector (XI , FI ) satisfying

XI ηIJ X
J = 0 ; FI = S ηIJ XJ , (5.44)

where ηIJ is a metric for SO(2, r) and the dilaton S is one of the variables {zα}.
The first constraint comes on top of (5.24), and thus implies that the variables {zα}
cannot be chosen between the XI only. Indeed, S occurs only in FI . Therefore, in
this new formulation, which realizes the full SO(r, 2) as a symmetry of the action,
special coordinates are not possible and we do not have a prepotential.

5.3.2 Definitions

After this extension of the formulation, the reader may wonder what is then really
special Kähler geometry. This question has been addressed in [14] and leads to a
few equivalent formulations of a definition. We will first give a definition using the
prepotential, and then a second one using only the symplectic vectors. We will then
show the equivalence. There is also a more mathematically inspired definition [25],
which was summarized in [5, Appendix 20C] and we will not repeat here.

Definition 1 of (Local) Special Kähler Geometry
A special Kähler manifold is an n-dimensional Kähler–Hodge manifold with on
any chart n + 1 holomorphic functions ZI (z) and a holomorphic function F(Z),
homogeneous of second degree, such that, with (5.26), the Kähler potential is given
by (5.27) and the v(z) are connected by symplectic transformations Sp(2(n+1),R)

10This example will reappear in Sect. 5.7.2: see the third line of Table 5.4.
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and/or Kähler transformations.

v(z) → ef (z)Sv(z) , (5.45)

on overlap of charts. The transition functions should satisfy the cocycle condition
on overlap of regions of three charts.

We mentioned that there are formulations without a prepotential, e.g., the one
based on the symplectic vector (5.40). In this case, the above definition turns out
not to be applicable in an arbitrary symplectic frame. Therefore we will now give a
second definition, and will comment about their equivalence.

Definition 2 of (Local) Special Kähler Geometry
A special Kähler manifold is an n-dimensional Kähler–Hodge manifold, that is the
base manifold of a Sp(2(n+ 1))× U(1) bundle. There should exist a holomorphic
section v(z) such that the Kähler potential can be written as (5.27) and it should
satisfy the condition

〈∇αv,∇βv〉 = 0 . (5.46)

Note that the latter condition guarantees the symmetry of NIJ . This condition
did not appear in [12], where the author had in mind Calabi–Yau manifolds. As we
will see below, in those applications, this condition is automatically fulfilled. For
n > 1 the condition can be replaced by the equivalent condition

〈∇αv, v〉 = 0 . (5.47)

For n = 1, the condition (5.46) is empty, while (5.47) is not. In [10] it has been
shown that models with n = 1 not satisfying (5.47) can be formulated.

Equivalence of the Two Definitions
It is thus legitimate to ask about the equivalence of the two definitions. Indeed, we
saw that in some cases definition 2 is satisfied, but one cannot obtain a prepotential
F . However, that example, as others in [13], was obtained by performing a
symplectic transformation from a formulation where the prepotential does exist.
In [14] it was shown that this is true in general. If definition 2 is applicable, then
there exists a symplectic transformation to a basis such that F(Z) exists. However,
in the way physical problems are handled, the existence of formulations without
prepotentials can play an important role. For example, these formulations were
used to prove that one can break N = 2 supersymmetry partially to N = 1 [26]
and not necessarily to N = 0, as it was thought before. This is an extremely
important property for phenomenological applications. Note that by introducing
magnetic vectors the partial breaking can be obtained in the context of the theory
with a prepotential, since this is just a dual formulation of the same theory. This is
understood well using the embedding tensor formalism [27–31], as clarified in [32].
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Recent investigations of the possibilities of partial breaking have been performed in
[33, 34].11

On page 170, we gave equivalent conditions on the symplectic basis for the
existence of a prepotential. The first and second conditions are clearly equivalent.
Indeed, the invertibility of (5.41) is equivalent with the invertibility of

(
XI ∂αX

I
)
,

i.e. with ordinary derivatives, since the difference is proportional to the first
column. Then one can define the coordinates as in (4.79), which clearly satisfy
the invertibility condition. In these coordinates it can be shown that a prepotential
exists. One first notices that (XI /X0) is independent of z̄. Then also FI /X0 is by the
homogeneity only function of z and one can define holomorphic functions FI (X),
by replacing those zα by their value in (4.79):

FI (X) ≡ X0 FI

X0

(
z

(
Xα

X0

))
. (5.48)

The constraints (5.46) then imply

(
XI

∂αX
I

)
∂[I FJ ]

(
XJ ∂αX

J
) = 0 , (5.49)

and since the first and last factor is invertible, it follows that the middle factor should
vanish, which is the integrability condition that in any patch FJ = ∂

∂XJ
F (X) for

some F(X).

5.3.3 Symplectic Equations and the Curvature Tensor

Let us first summarize the symplectic inner products that we found. They can be
simply written in terms of the 2(n+ 1)× 2(n+ 1) matrix

V = (
V̄ Uα V κ

−2Ūα
)
,

Uα ≡ ∇αV =
[
∂α + 1

2κ
2 (∂αK)

]
V ,

Ūᾱ ≡ ∇ᾱ V̄ =
[
∂ᾱ + 1

2κ
2 (∂ᾱK)

]
V̄ , Ūα = gαβ̄Ūβ̄ , (5.50)

as

VT �V = −iκ−2� , (5.51)

where� is the standard antisymmetric matrix in (5.7).

11Breaking by nonlinear terms has been investigated in [35].
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Thus, the matrix V is also invertible. Covariant derivatives on these equations
lead to new ones, like

〈V,∇αUβ 〉 = 〈V̄ ,∇αUβ〉 = 〈Ūγ̄ ,∇αUβ〉 = 0,

〈∇αUβ,Uγ 〉 + 〈Uβ,∇αUγ 〉 = 0. (5.52)

Note that ∇αUβ contains also Levi-Civita connection.

∇αUβ =
[
∂α + 1

2κ
2 (∂αK)

] [
∂β + 1

2κ
2 (∂βK

)]
V − �γαβUγ . (5.53)

Due to these equations (5.52) and the invertibility of (5.50), ∇αUβ must be
proportional to a Ūγ , defining a third rank tensor Cαβγ :

∇αUβ = Cαβγ Ūγ , Cαβγ ≡ −i〈∇αUβ,Uγ 〉. (5.54)

Since (5.53) is already symmetric in (αβ), (5.52) implies that Cαβγ is completely
symmetric.

Exercise 5.2 Check that if there is a prepotential, then one can write

Cαβγ = iFIJK∇αXI∇βXJ∇γ XK, (5.55)

where the covariant derivatives may be replaced by ordinary derivatives due
to (3.108). �

The curvature of the projective manifold can be obtained from the commutator of
covariant derivatives. The connections contain Levi-Civita and Kähler connections,
see (5.53), so the commutator will lead to a sum of the curvature of the Kähler
manifold as function of the Levi-Civita connection of gαβ̄ and the curvature of the
Kähler connection. The latter is the original U(1) from the superconformal algebra
(on Kähler-invariant quantities) when it is pulled back to the spacetime, see (4.116).

[
∇α,∇β̄

]
V = −iRK

αβ̄
V , RK

αβ̄
= ∂αAβ̄ − ∂β̄Aα = −iκ2gαβ̄ . (5.56)

Hence we have
[
∇α,∇β̄

]
V = −κ2gαβ̄V , → ∇β̄∇αV = ∇β̄Uα = κ2gαβ̄V . (5.57)

On Uγ we get

[
∇α, ∇β̄

]
Uγ = −iRK

αβ̄
Uγ − Rαβ̄δγ Uδ . (5.58)



5.3 Characteristics of a Special Geometry 175

To make the calculation of the left-hand side, one lemma that we still need is that
Cαβγ is covariantly holomorphic. From the definition (5.54)

i∇δ̄Cαβγ = 〈∇δ̄∇αUβ, Uγ 〉 + 〈∇αUβ, ∇δ̄Uγ 〉 = 0. (5.59)

Both terms vanish separately. For the first term, use (5.58) and (5.57) and 〈V,Uα〉 =
0 and 〈Uα,Uβ 〉 = 0 (both part of (5.51)). The second term is by (5.57) and (5.52)
immediately zero.

Now we can calculate the left-hand side of (5.58):

∇α∇β̄Uγ = κ2gγ β̄Uα ,

∇β̄∇αUγ = Cαγ εgεε̄ C̄ε̄β̄δ̄gδ̄δUδ . (5.60)

Subtracting the two and insert the result in (5.58) gives

(
κ2gγ β̄δ

δ
α − Cαγ εgεε̄C̄ε̄β̄δ̄gδ̄δ

)
Uδ =

(
−κ2gαβ̄δ

δ
γ − Rαβ̄δγ

)
Uδ . (5.61)

We can drop the Uδ, e.g., by taking a symplectic product of this relation with Ūφ .
This establishes the form of the curvature tensor [24]

Rαβ̄γ δ̄ = κ2
(
gαβ̄gγ δ̄ + gαδ̄gγ β̄

)
− Cαγ εgεε̄ C̄ε̄β̄δ̄ . (5.62)

Hence, this has a contribution from the gauged Kähler symmetry and one from the
Kähler curvature.

Having all this machinery, we want to derive a few more relations that are often
used in special Kähler geometry. Define the 2(n+ 1)× (n+ 1)matrix U as the left
part of V, (5.50),

U = (
V̄ Uα

) =
(
X̄I ∇αXI
F̄I ∇αFI

)
=
(
xI

fI

)
, (5.63)

where the last equation defines (n+ 1)× (n+ 1) matrices. The matrix xI (columns
as in (5.63) and rows defined by I ) is invertible. With these definitions, the matrix
N in (5.38) is written as

NIJ = f̄I (x̄)−1
J , or U =

(
1
N̄
)
x. (5.64)

The (n+ 1)× (n+ 1) matrix G, introduced in (5.34), can then also be written as

G =
(
κ−2 0

0 gαβ̄

)
= iUT �Ū = −2

(
X̄I

∇αXI
)

ImNIJ
(
XJ ∇β̄ X̄J

)
. (5.65)
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The above relation implies that ImNIJ is negative definite if the metric gαβ̄ is

positive definite. The following consequences are often used12:

− 1
2 (ImN)−1|IJ =∇αXIgαβ̄∇β̄ X̄J + κ2X̄IXJ ,

N−1|IJ = − 1
2 (ImN)−1|IJ − κ2

(
XI X̄J + X̄IXJ

)

=∇αXIgαβ̄∇β̄ X̄J − κ2XI X̄J . (5.66)

Another way to write (5.65) is

ŪG−1UT = κ2V V̄ T + Ūβ̄gβ̄αUTα = −1

2

(
1
N

)
(ImN)−1

(
1 N̄

)
= −1

2
M + 1

2
i�,

(5.67)

in terms of the real matrix M introduced in [16], that is often used for describing
black hole solutions:

M ≡
(

ImN−1 ImN−1 ReN
ReN ImN−1 ImN + ReN ImN−1 ReN

)
. (5.68)

Exercise 5.3 Check from the definition (5.2) and the gauge fixing (4.56) the
following useful relations:

ImNIJ X̄J = − 1

2κ2

NIJX
J

NLM XLXM
,

XI (ImNIJ )XJ = 1

2κ4X̄INIJ X̄J
,

Cαβγ g
γ δ̄∇δ̄ X̄I (ImNIJ )XJ = − iκ−2

2X̄INIJ X̄J
FKLM∇αXK∇βXLX̄M . (5.69)

Check also that (5.65) is consistent with the matrix equation

(
XI

∇αXI
)
NIJ

(
X̄J ∇β̄ X̄J

)
=
(

−κ−2 0
0 gαβ̄

)
. (5.70)

The latter is similar to the one in N = 1 supergravity, and illustrates that NIJ has
to be of indefinite signature. �

12The first is the inverse of (5.65), while for the second, one proves first from the definition (5.2)
that N−1|IJ + κ2(XI X̄J + X̄IXJ ) is the inverse of −2 ImNIJ .
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Finally, we discuss the relation between the curvature in the projective mani-
fold (5.62) and the geometry in the embedding manifold. The embedding manifold
of the XI in the formulation with a prepotential and metric (4.72) has affine
connections (4.73) and therefore (see e.g. [5, (13.22)])

RIJ̄KL̄ = GLL̄∂̄J̄ �LIK = −FIKMN−1|MNF̄N̄J̄ L̄ . (5.71)

With (5.55) and the relation (5.66) for N−1|MN we can relate (5.62) to this
curvature:

Rαβ̄γ δ̄ = κ2
(
gαβ̄gγ δ̄ + gαδ̄gγ β̄

)
+ ∇αXI∇β̄ X̄J∇γ XK∇δ̄ X̄LRIJ̄KL̄ . (5.72)

This relation is also true in Kähler geometry in N = 1 supergravity and can
elegantly be shown when including�IJK connections (4.74) in a covariant derivative
∇̂. First note that

∇̂αXI ≡(∂α + 1
2κ

−2(∂αK))XI + �I JKXK(∂αXJ ) = ∇αXI , (5.73)

since the � term is vanishing due to (4.74). However, we then have

∇̂α∇βXI ≡(∂α + 1
2κ

−2(∂αK))∇βXI − �γαβ∇γ XI + �I JK∇βXK(∂αXJ ) = 0 .

(5.74)

Indeed from (4.73) with (5.66) and the homogeneity relation XIFIJK = 0 we find

�I JK∇βXK ∇αXJ = −∇γ̄ XI gγ γ̄ Cαβγ = −i∇α∇βXI , (5.75)

using (5.54). This vanishing of (5.74) can also be shown directly [36] from applying
a ∇̂α derivative to the second line of (5.70) in the formulation where the last factor
in that equation is invertible (existence of prepotential). Since NIJ = GIJ̄ it is inert
under ∇̂α .

The curvature relation (5.72) can then be obtained by acting with
[
∇̂α, ∇̂β̄

]
on

∇γ XI using the vanishing of (5.74). We summarize below the relevant equations
for ∇̂ on XI :

∇̂αXI = ∇αXI , ∇̂ᾱXI = ∇ᾱXI = 0 ,

∇̂α∇βXI = 0 , ∇̂β̄∇αXI = ∇β̄∇αXI = κ2gαβ̄X
I . (5.76)

However, we will only use ∇̂ on objects where it is clear whether the I index
is holomorphic or anti-holomorphic. The mixing of these two is in fact due to the
constraints in chiral multiplets, in (3.23), which, applied to the gauge multiplet,
connect Y Iij with its complex conjugate, and thus does not preserve a distinction of
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indices I for fields of the chiral multiplets and Ī for those of the antichiral multiplet.
The same holds then also for the gauge field strengths.

5.4 Isometries and Symplectic Geometry

In considering the symmetries of special Kähler manifolds, there are a priori three
different concepts, which we will relate:

• Isometries of the Kähler manifold,
• Symplectic transformations,
• Gauge group of the vector multiplets.

We will show that the group of transformations gauged by the vector multiplet
belongs to the isometry group of the Kähler manifold and can be embedded in
the group of symplectic transformations. On the other hand, not all isometries of
the Kähler manifold are gauged. The gauged isometries can be selected from the
general set of isometries by an embedding tensor formalism. We do not treat this
here, and refer for the embedding tensor approach to [27–29] and to [30, 31] for
reviews.

5.4.1 Isometries of a Kähler Metric

Isometries of a Kähler metric are defined as symmetries that preserve both the
Hermitian metric and the covariantly constant complex structure. In the present
section we will explain how isometries of the embedding manifold, with coordinates
{XI }, descend to isometries of the projective manifold. These steps apply to both
N = 1 and N = 2 supergravity. For the convenience of the reader, we will first
review the main results on isometries of a Kähler metric (more details can be found
in [5, Sect. 13.4.1]).

We start with a generic Kähler metric gαβ̄ = ∂α∂β̄K(z, z̄) parameterized by
scalars zα . Let us consider general (not gauged) isometries labelled by an index �.
Such isometries act on the scalars, defining a Killing vector k�α13:

δ(θ)zα = θ�k�α(z) , (5.77)

and k�α must be holomorphic in z in order to preserve the complex structure. Killing
vectors are generated by a moment map, P�(z, z̄), which is a real function defined

13The ‘embedding tensor’, mentioned above would be a tensor relating the index � to the index
for gauge vectors, electric or magnetic. We will restrict here for gauging to identifying the index
�, or part of its range, to I index of the gauge vectors WI

μ.
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as

k�
α(z) = −igαβ̄∂β̄P�(z, z̄) , (5.78)

and satisfying

∇α∂βP�(z, z̄) = 0 . (5.79)

The isometries (5.77) are not required to be symmetries of the Kähler potential.
The latter can transform with a Kähler transformation depending on a holomorphic
function r�(z):

δ(θ)K(z, z̄) = θ�[r�(z)+ r̄�(z̄)] , (5.80)

since the new potential then leads to the same Kähler metric. Due to this fact, one
can find a general solution of (5.78) as

P�(z, z̄) = i[k�α(z)∂αK(z, z̄)− r�(z)] = −i[k�ᾱ(z̄)∂ᾱK(z, z̄)− r̄�(z)] .
(5.81)

Furthermore, when the isometries are non-abelian, the Killing vectors generate a
Lie algebra

k�
β∂βk"

α − k"β∂βk�α = f�"�k�α . (5.82)

One can restrict the moment maps by a so-called ‘equivariance relation’ [18]

k�
αgαβ̄k"

β̄ − k"αgαβ̄k�β̄ = if�"
�P� . (5.83)

This relation is satisfied by the moment maps that appear in a supersymmetric
Lagrangian.

The properties discussed above are general requirements that isometries for a
general Kähler manifold must fulfill. In particular, they must apply for the isometries
of the embedding manifold, which are further constrained by the conditions that the
dilatational and R-symmetry U(1) structure have to be preserved. We can start with
the general results written above using the following substitutions:

zα −→ XI ,

K −→ N ,

gαβ̄ −→ NIJ ,

r�, r̄� −→ 0 .

(5.84)
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The first three rules follow directly from what was discussed in Sect. 4.5.2. The
last rule in the previous equation follows from the fact that a transformation of the
form (5.80) would now imply

δ(θ)N(X, X̄) = θ�[r�(X)+ r̄�(X̄)] , (5.85)

which would be inconsistent with the (Weyl,chiral) weight (2,0) of the left-hand
side. All together, the isometries of the embedding Kähler manifold act on the
scalars XI as follows:

δ(θ)XI = θ�k�I (X) . (5.86)

The moment map (5.81) then becomes

P�(X, X̄) = ik�INIJ X̄J . (5.87)

The goal is now to interpret these isometries of the embedding manifold as
isometries in the projective manifold. We go to the projective manifold by splitting
the XI :

XI = {y, zα}. (5.88)

In these variables, only y carries the dilatational and U(1) weight. The requirement
to preserve the dilatational and U(1) structure thus implies that y should transform
linear in y and the transformation of zα should not contain y. We write this
as14

δ(θ)y = a−1 y r�(z) θ
� . (5.89)

Note that we have introduced here a new holomorphic function r�(z). This is not
to be confused with the function that is set to zero in (5.84). It will turn out that the
latter r�(z) is the function that describes the non-invariance of the Kähler potential
in the projective manifold. Imposing the commutation relations (5.82) for (5.89)
leads to the condition

k�
α∂αr" − k"α∂αr� = f�"�r� . (5.90)

The gauge fixing, i.e. restriction to the projective manifold, is performed by
selecting the section (4.89). Since y transforms both under (4.78) and (5.89), there
is a decomposition law for the invariance of the condition y = ȳ. This determines a
dependence of λT on the parameters of the isometry θ�. We indicate the remaining

14We keep here the notation a = κ−2 since this part is also valid for N = 1 with a = 3κ−2.
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transformation as δ�(θ):

δ�(θ) =δ(θ)+ δT (λT (θ)) ,

λT (θ) = 1

2a
i θ� (r�(z)− r̄�(z̄)) = 1

a
θ�

(
−P� + 1

2 i
(
k�
α∂αK − k�ᾱ∂ᾱK

))
.

(5.91)

This implies for y

δ�(θ)y = 1

2a
y θ� (r� + r̄�) = 1

2a
y θ�

(
kα�∂αK + kᾱ�∂ᾱK

)
. (5.92)

Note that, together with (4.89), (5.92) implies that K indeed transforms as in (5.80),
by an amount precisely controlled by r�(z).15 Equation (5.91) shows that, for
any field that carries a non-trivial U(1) weight in the embedding manifold, a T
transformation must be included in its effective symmetry transformation in the
projective manifold, δ�(θ). The new terms from λT have no effect on the scalars zα

since they are invariant under T transformations, while fermions do transform. In
other words the scalars zα transform as

δ�(θ)zα = δ(θ)zα = θ�k�α(z) , (5.93)

and the Killing vectors in the projective manifold are related to those in the
embedding manifold via

k�
I = y(k�α∇αZI + ia−1P�ZI

)
, (5.94)

using the Kähler covariant derivative (4.113). The moment map P� is the same
in the embedded and projected manifold. In the former it is written as (5.87).
In the projected manifold an imaginary constant in P� is undetermined from the
transformations of the scalars. We can still define it as in (5.81), satisfying (5.78).
The undetermined constant imaginary parts of r� or real parts of P� are the so-
called Fayet–Iliopoulos terms. For a non-abelian theory these arbitrary constants
are eliminated by the equivariance condition (5.83). The curious reader may have
noticed already the similarity between (5.81), i.e.

k�
α∂αK = r� − iP� , k�

ᾱ∂ᾱK = r̄� + iP� , (5.95)

and (4.157) for the projected quaternionic geometry, keeping in mind the identifica-
tion of ∂αK as ωα in (4.112). Note that the derivative of the first of (5.95) w.r.t. z̄ᾱ

brings us back to the definition of the moment map in (5.78).

15Note that this is consistent with (4.129).
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5.4.2 Isometries in Symplectic Formulation

In this section we will show how the general isometries discussed in Sect. 5.4.1
can be embedded in the symplectic group. It will be useful to adopt the symplectic
formulation (see Sect. 5.3.1) and work with covariant transformations (4.127) under
the isometries:

δ̂(θ)v =θ�k�α∇αv ,
δ̂(θ)V =θ�k�α∇αV = yδ̂(θ)v . (5.96)

Covariant transformations δ̂ are related to the Poincaré transformations δ� (namely
those induced by the dependence on zα and z̄ᾱ) by (4.128)

δ̂(θ)v =δ�(θ)v + κ2θ�(r� − iP�)v ,
δ̂(θ)V =δ�(θ)V + 1

2κ
2θ�(r� − r̄�)V − iκ2θ�P�V , (5.97)

where we used the weights in the first and one but last row in (4.122) and (5.95).
Furthermore, the Poincaré transformations are related to the transformations in the
conformal setting δ by (5.91), and thus

δ̂(θ)v =δ(θ)v + κ2θ�(r� − iP�)v ,
δ̂(θ)V =δ(θ)V − iκ2θ�P�V . (5.98)

The correspondence between the two expressions above agrees with V = yv and
δ̂V = yδ̂v using (5.89). We can re-express the second of (5.98) using (5.96) as

δ(θ)V = θ�
(
k�
α∇αV + iκ2P�V

)
. (5.99)

Therefore, upon contracting with V̄ and using (5.29), the last equation implies
a symplectic expression for the moment map associated to the isometries in the
embedding manifold

θ�P� = −〈δ(θ)V, V̄ 〉 . (5.100)

From the expression above it is clear that δ(θ)V must be part of the sym-
plectic group. Indeed, being δ(θ)V a transformation in the conformal setting, it
must be holomorphic in X and consistent with dilatational symmetry. Moreover,
since (5.100) is symplectic invariant, the only possibility is16

δ(θ)V = −θ�T�V , T� ∈ Sp(2(n+ 1),R) , (5.101)

16We use here the opposite sign convention for T� as in [5, (20.147)].
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where 1l + T� is a symplectic matrix, such that the symplectic inner products
discussed in Sect. 5.3 are preserved. The most general form of T�, according
to (5.8), is then

T� =
(
a�
I
J b�

IJ

c�IJ −a�J I
)
, b�

IJ = b�JI , c�IJ = c�JI . (5.102)

In particular for isometries we require the transformation (5.102) to be a symmetry
of the action, which implies b�IJ = 0, according to the discussion at the end
of 5.2.1. Isometries of the embedding manifold are therefore part of the symplectic
group, as simply dictated by the following identity:

P� = 〈T�V, V̄ 〉 = eκ
2K 〈T�v, v̄〉 . (5.103)

Exercise 5.4 Here is an exercise leading to a formula that will be important in the
context of the potential. First combine equations of this section to

k�
α∇αV = −T�V − iκ2θ�P�V . (5.104)

Then obtain

k�
αgαβ̄k"

β̄ = ik�
α〈∇αV,∇β̄ V̄ 〉k"β̄ = i〈T�V, T"V̄ 〉 + κ2P�P" . (5.105)

�

5.4.3 Gauged Isometries as Symplectic Transformations

The symmetries gauged by the vector multiplet are of course a subgroup of the
generic isometries � considered so far, and as such are expected to be represented
by symplectic transformations. To specify such transformations we fix the index
� to be in the range of I (which label the vector multiplets) as each symmetry is
gauged by a vector. The moment map P� is then identified with the P 0

I , introduced
in (4.51).

The gauge transformations δG(θ) of the scalars in the vector multiplet were
written in (3.15)

δG(θ)X
I = −θKfKJ IXJ , (5.106)

where θK are the parameters. Notice that δG in (5.106) is understood to be a sym-
metry before the gauge fixing to the Poincaré theory. The transformations (5.106) fit
in the general scheme of isometries defined by Killing vectors

kJ
I (X) = XKfKJ I . (5.107)
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The associated moment map, from (5.87), is called the ‘Kähler moment map’ and it
is identified with (4.51). The matrix T� of (5.101) is thus of the form (5.102) and
comparing with (5.106), we write

TKV =
(
fKJ

I 0
2CK,IJ −fKI J

)(
XJ

FJ

)
, (5.108)

where CK,IJ is symmetric in the last two indices according to (5.102). The
transformation (5.101) with this matrix leads to (5.106) and

δG(θ)FI = −2θKCK,IJXJ + θKfKI JFJ . (5.109)

In particular

δG(θ)[XIFI ] = −2θKCK,IJXIXJ . (5.110)

In the tensor calculus, where FI are functions of XI and XIFI = 2F(X),
Eq. (5.110) tells us that the prepotential transforms in a real quadratic function,
which does not contribute to the action. In fact, this corresponds to (3.112).17

Furthermore, the matrices TK should satisfy the algebra of gauge transforma-
tions (5.106):

[TI , TJ ] = fIJ KTK , (5.111)

which imposes again the condition (3.117).
In the more general case without a prepotential, we can proceed from compar-

ing (5.99) and (5.101) replacing the θ� by XJ , leading to

δG(X)X
I =XJ kJ α∇αXI + iκ2P 0

J X
JXI = 0 ,

δG(X)FI =XJ kJ α∇αFI + iκ2P 0
J X

J FI = −2XKCK,IJXJ +XKfKI J FJ .
(5.112)

Multiplying the latter with XI and using the first one gives

−2XIXJCJ,IKXK = XIXJ kαJ∇αFI −XJ kαJ FI∇αXI = −XJ kαJ 〈V,∇αV 〉 = 0 .
(5.113)

We thus re-obtain (3.115) in this more general setting. This is the equation that says
that if all theXI are independent,CI,JK does not have a completely symmetric part.

For the gauged symmetries, we already found other relations for the moment
maps in (4.51)–(4.53). The relation between the embedding and projective gauge

17This is the reason why we put the factor 2 in (5.108).
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transformations (5.94) is now written as

kJ
I = y(kJ α∇αZI + iκ2P 0

J Z
I ) = kJ α∇αXI + iκ2P 0

J X
I = XKfKJ I , (5.114)

where we repeat at the end also the expression (5.107) for easy reference below.

Exercise 5.5 Prove the following interesting relation from the definition (5.78)
and (4.53):

XI kI
α = −igαβ̄XI ∂β̄P

0
I = igαβ̄P 0

I ∇β̄XI . (5.115)

Further, with (5.114) rewrite the gauge terms in the covariant derivative (4.63) as

DμX
I =∇μXI −WK

μ kK
α∇αXI = ∇αXI

(
∂μz

α −WK
μ kK

α
)
. (5.116)

�

5.5 Electric-Magnetic Charges: Attractor Phenomenon

In this section we put all the ingredients of special geometry together to study some
universal property of charged black hole solutions in N = 2 supergravity.18 It
turns out that scalars in the background of charged black holes take fixed values
at the horizon. These values are universally determined by (conserved) electric and
magnetic charges, and independent of the initial configuration of the scalars (i.e.
their value at infinite distance from the black hole). This phenomenon is called
‘attractor mechanism’ in special geometry [38, 39]. Even though we will restrict
here to D = 4 for simplicity, the phenomenon has a D = 5, 6 counterpart in N = 2
theories[40–42].

This section is structured as follows. First, we obtain from the supergravity
action (5.1) an effective action for the extremal black holes. In the usual way to
proceed, at least in the case of static and spherically symmetric black holes, one
eliminates the vectors through their equation of motion and then integrates out the
angular dependence of the supergravity action to obtain an effective theory that
governs the dynamics of the scalars. Crucially, the integration introduces a charge-
dependent black hole potential along the way. For completeness, a Hamiltonian
constraint has to be imposed on the system. Instead, we will employ an alternative
derivation of such an effective action using only Einstein’s equations, together
with the equation of motion for the scalars and those on the vectors [43]. The
Einstein equations that cannot be derived from this effective action, will become
constraints that have to be imposed on the solution. Along the way we will show

18A recent review on black hole solutions in these theories can be found in [37].
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that the black hole potential governing the effective action has a simple expression
in the symplectic language. We will conclude this section by showing the universal
solution corresponding to the attractor mechanism for the scalars.

5.5.1 The Spacetime Ansatz and an Effective Action

Consider a static spacetime metric19:

ds2 = −e2Udtdt + e−2Uγmndxmdxn,

i.e. g00 = −e2U, gmn = e−2Uγmn,
√
g = e−2U√

γ ,

∂tU = ∂tγmn = 0 . (5.117)

We are interested in the theory of a complex scalar z coupled to Maxwell fields
and gravity.20 The relevant action can be recovered from the more general (5.1) and
takes the schematic form

S = SEinstein + S(0) + S(1) ,

SEinstein =
∫

d4x 1
2
√
gR(g) ,

S(0) = −
∫

d4x
√
ggμν∂μz∂νz̄ ,

S(1) =
∫

d4x
[

1
4
√
g(ImNIJ )F IμνFμνJ − 1

8 (ReNIJ )εμνρσF IμνF Jρσ
]
,

(5.118)

where FIμν = 2∂[μWI
ν]. Note that the metric appears in S(1) only in the term with

ImN .
As explained at the beginning of this section, we want to obtain an effective

action starting from the Einstein equations. Let us consider the Einstein tensor:

Gμν = 2(
√
g)−1 δSEinstein

δgμν
= Rμν − 1

2gμνR . (5.119)

19‘Static’ means that it admits a global, nowhere zero, timelike hypersurface orthogonal Killing
vector field. A generalization are the ‘stationary’ spacetimes, which admit a global, nowhere zero
timelike Killing vector field. In that case the components g0m could be non-zero. For simplicity we
look here to the static spacetimes.
20The generalization to non-trivial Kähler manifolds is obvious.
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For the static metric (5.117), one obtains

G00 = e4U
(

1
2R(γ )+ 2Dm∂mU − ∂mU∂mU

)
,

Gmn = (
γmnγ

rs − 2δrmδ
s
n

) (− 1
2Rrs(γ )+ ∂rU∂sU

)
. (5.120)

Here γmn is used to raise and lower indices, and to define the covariant derivative
Dm. For the bosonic sector, the Einstein equations are

Gμν = Tμν , (5.121)

where Tμν is the energy–momentum tensor. We split it in the scalar part and the spin
1 part:

Tμν = T (0)μν + T (1)μν ,

T (0)μν = −2(
√
g)−1 δS

(0)

δgμν
, T (1)μν = −2(

√
g)−1 δS

(1)

δgμν
. (5.122)

The energy–momentum tensor induced from S(0) is

T (0)μν = −gμνgρσ ∂ρz∂σ z̄+ 2∂μz∂νz̄ . (5.123)

For our metric ansatz (5.117), this gives

T
(0)

00 = e4Uγmn∂mz∂nz̄ , T (0)mn =
(
−γmnγ rs + 2δr(mδ

s
n)

)
∂rz∂s z̄ . (5.124)

The energy–momentum tensor induced from S(1) is

T (1)μν = − ImNIJ
(
− 1

4gμνF
I
ρσ F

Jρσ + FIμρFJνσ gρσ
)
. (5.125)

If we now use the spacetime metric (5.117), the non-zero terms are

T
(1)

00 = − ImNIJ
(

1
2 e2UF I0mγ

mnFJ0n + 1
4 e6UF Imnγ

mpγ nqF Jpq

)
,

T (1)mn = − ImNIJ
(

1
2 e−2UγmnF

I
0pγ

pqF J0q − 1
4 e2UγmnF

I
pqγ

pp′
γ qq

′
FJ
p′q ′

−e−2UF I0mF
J
0n + e2UF Impγ

pqF Jnq

)
. (5.126)

We now introduce the magnetic vectors

FIm = 1
2γmn(

√
γ )−1εnpqF Ipq, (5.127)
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such that

FImn = √
γ εmnpγ

pqF Iq ,

F Imnγ
mpγ nqF Jpq = 2FIr γ

rsF Js , F Impγ
pqF Jnq = γmnF Ir γ rsF Js − FIn FJm.

(5.128)

Using these, we can again write the energy–momentum tensor in a similar form as
for the gravity field and for the scalars. We find

T
(1)

00 = e6UγmnVmn , T (1)mn = e2U (γmnγ rs − 2δrmδ
s
n

)
Vrs , (5.129)

where

Vmn = − 1
2 ImNIJ

(
e−4UF I0mF

J
0n + FImFJn

)
. (5.130)

The Einstein equations thus reduce to the following two equations:

− 1
2Rmn(γ )+ ∂mU ∂nU + ∂(mz∂n)z̄ − e2UVmn = 0 , (5.131)

Dm∂
mU − e2UγmnVmn = 0 . (5.132)

We can obtain (5.132) using the following effective action:

Seff =
∫

d3x
√
γ
[
−∂mU γmn∂nU − ∂mz γmn∂nz̄ − e2UγmnVmn

]
. (5.133)

Indeed, the field equation of this action for U is (5.132) if we keep Vmn fixed
during the variation. Of course, as U is never involved in the z-dependent part of
the action, the latter is not determined by this requirement. We will prove that the
field equation for the scalar z can also be derived from this action for a specific
parameterization of Vmn. This will be clarified in Sect. 5.5.2. Only then it will be
clear how to use this effective action. We remark here that γmn should not be seen
as a dynamical variable in this action. Instead of its field equations as following from
this effective action, we impose the extra constraint (5.131), which is not derivable
from (5.133).

5.5.2 Maxwell Equations and the Black Hole Potential

The quantity (5.130) is expressed in components of the field strengths FIμν .
However, we can write it in terms of the symplectic vectors of field strengths and
field equations. To do so, we start from the real form of (5.5), which can be rewritten
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using the Hodge duality relation (A.8) as follows:

GIμν = ReNIJ F Jμν + 1
2 ImNIJ gμμ′gνν ′(

√
g)−1εμ

′ν ′ρσF Jρσ . (5.134)

Then FIμν , GIμν are components of a symplectic vector. Introducing now the three-
dimensional duals as a generalization of (5.127):

FIm = 1
2γmn(

√
γ )−1εnpqF Ipq, GIm = 1

2γmn(
√
γ )−1εnpqGIpq, (5.135)

we obtain from (5.134) with ε0npq = −εnpq (as we use ε0123 = −1, see (A.5))

(
FI0m
GI0m

)
= −e2UM�

(
FJm
GJm

)
, (5.136)

where M was given in (5.68) and � is the symplectic metric (5.7). These matrices
contain indices I and J at appropriate positions automatically for (5.136) to make
sense. Equation (5.130) then becomes

Vmn = 1
2

(
FIm GIm

)
�M�

(
FJn
GJn

)
, (5.137)

where

�M� =
(−I − RI−1R RI−1

I−1R −I−1

)
, R = ReN , I = ImN . (5.138)

Note that U does not appear in this expression for Vmn. This implies that if we
consider Vmn as a function of FIm, GIm and the scalars implicitly present in (5.138)
and we insert it as such in the effective action (5.133) then this action still generates
the field equation (5.132) for U . We now check that in this way it also generates the
same scalar field equations as those obtained from the original action S(0) and S(1),
where the vector fieldsWI

μ were the other independent variables. Hence these field
equations that should be reproduced are

0 = ∂μ√ggμν∂ν z̄+ 1
4
√
g∂z(ImNIJ )F IμνFμνJ − 1

8∂z(ReNIJ )εμνρσF IμνF Jρσ .
(5.139)

Specifying the metric (5.117) and the expressions for the field strengths in terms of
FIm and GIm, this becomes

0 = ∂m√
γ γmn∂nz̄+ 1

2
√
γ e2Uγmn

(
FIm GmI

)
�∂zM�

(
FJn
GnJ

)
, (5.140)



190 5 Special Geometries

where the indices I and J appear again in appropriate positions on the submatrices
of�∂zM�. The latter is indeed the field equation obtained from the effective action

Seff(U, z) =
∫

d3x
√
γ γmn

[
−∂mU ∂nU − ∂mz ∂nz̄

− 1
2 e2U (

FIm GIm
)
�M�

(
FJn
GJn

)]
. (5.141)

The (U, z) in the left-hand side indicates that Seff should be considered as an
effective action for varying with respect to {U, z}, while γmn, FIm and GIm should
be considered as background. We saw already that the field equations of the original
action for γmn lead to the constraint (5.131). We will now check what the field
equations of the vector sector impose.

The field equations from S(1) in (5.118) with independent vectors WI
μ are

equivalent to the field equations and Bianchi identities

εμνρσ ∂ν

(
FIρσ
GIρσ

)
= 0 . (5.142)

Using our preferred variables, this gives

∂m
√
γ γmn

(
FIn
GIn

)
= 0, ∂[me2UM�

(
FIn]
GIn]

)
= 0. (5.143)

One way of solving these equations is to define FIm = ∂mH
I and GIm = ∂mHI ,

such that the first of (5.143) becomes

∂m
√
γγmn∂nH

I = ∂m√
γ γmn∂nHI = 0 . (5.144)

We remain then with Bianchi identities of the form

(
∂[me2UM

)
�∂n]

(
HI

HI

)
= 0 , (5.145)

which can be solved by assuming that all fields (U , the scalars z and the harmonic
HI and HI ) depend only on one coordinate. This ensures that the ∂m and ∂n for
m �= n in the above equation cannot both be nonvanishing. We denote this one
coordinate as τ . Thus U(τ), z(τ ), HI(τ) and HI (τ).

A convenient metric is, e.g., [44]

γmndx
mdxn = c4

sinh4 cτ
dτ 2 + c2

sinh2 cτ
(dθ2 + sin2 θdφ2) . (5.146)
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Details on this parameterization are given in an appendix of [45]. This parame-
terization has the property

√
γ γ ττ = sin θ , which will be useful. In this basis,

condition (5.144) is just H ′′ = 0 (where a prime is now a derivative w.r.t. τ ), so we
can take

H =
(
HI

HI

)
= �τ + h, h =

(
hI

hI

)
, � =

(
pI

qI

)
. (5.147)

We have here introduced the magnetic and electric charges in the symplectic vector
�. We come back to their meaning in Sect. 5.5.3. The effective Lagrangian for the
scalars is obtained upon plugging these solutions into (5.141). Up to a constant we
get

Leff = U ′2 + e2UVBH + z′z̄′, (5.148)

where the ‘black hole potential’ is now

VBH = Vττ = 1
2�
T�M��. (5.149)

The one-dimensional effective Lagrangian (5.148) does not reproduce all the Ein-
stein equations. Indeed the Einstein equations (5.131)–(5.132) lead to 2 independent
equations:

c2 − U ′2 − z′z̄′ + e2UVBH = 0 , −U ′′ + e2UVBH = 0 . (5.150)

The second one is the one that can be obtained from the effective action, while the
first one cannot. It must be considered as an extra constraint.

5.5.3 Field Strengths and Charges

In (5.147) we already wrote pI and qI for the components of �, suggesting that
they are charges. Indeed, when we consider field configurations with electric and/or
magnetic charges in 4 dimensions, this means that there are 2-cycles S2 surrounding
the sources such that

∫

S2
FIμνdx

μ ∧ dxν = 8πpI ,
∫

S2
GIμνdxμ ∧ dxν = 8πqI . (5.151)

Exercise 5.6 Check that the solution that we gave above, leads indeed to the
identification of the charges here and in (5.147). �
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There is also the field strength that occurs in the gravitino transformation, see
e.g. (2.90), which is the value of the auxiliary field Tμν of the Weyl multiplet. When
we restrict to the bosonic part of its value, determined in (4.54), we obtain

T −
μν = 2TIF

−I
μν , (5.152)

TI = NIJ X̄
J

X̄LNLMX̄M
= −2κ2 ImNIJXJ = iκ2

(
FI − N̄IJXJ

)
, X̄I TI = 1,

where use has been made of (5.69).
Assuming that FI andXI are sufficiently constant in the integration region (such

that they can be taken in and out of the integral), the integral of this quantity gives
[46]

Z ≡ i

16πκ2

∫

S2
T −
μνdx

μ ∧ dxν = 1

8π

∫

S2

(
XIG−

Iμν − FIF−I
μν

)
dxμ ∧ dxν

= 1

8π

∫

S2

(
XIGIμν − FIF Iμν

)
dxμ ∧ dxν

=XIqI − FIpI . (5.153)

Between the first and the second line we used that the combination with the self-
dual field strengths vanishes due to FI = NIJXJ . The object Z is called the central
charge, because its value appears in the commutator of two supersymmetries, as can
be seen from (2.96)–(2.97).

When we take the holomorphic covariant derivatives of the final expression, then
we have to use ∇αFI = N̄IJ∇αXJ , and therefore only the self-dual parts remain.
This gives thus

∇αZ = ∇αXIqI − ∇αFIpI

= 1

8π

∫

S2

(
∇αXIG+

Iμν − ∇αFIF+I
μν

)
dxμ ∧ dxν

= 2i

8π

∫

S2
DαXI ImNIJ F+I

μν dxμ ∧ dxν . (5.154)

The latter quantities ∇αZ are the objects that appear also in the transformation laws
of the physical gauginos. Indeed, the fermions of the conformal multiplets transform
according to (3.15) to quantities F−

μν , whose bosonic part is

F −I
μν =

(
δIJ − X̄I TJ

)
F−J
μν . (5.155)

The physical fermions are the ones that satisfy the S-gauge condition (4.58), which
means that they vanish under projection with TI . We find indeed TIF −I

μν = 0.
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Using the vector � of (5.147), we can write in a symplectic notation

Z = 〈V,�〉 = V T�� , ∇αZ = 〈Uα,�〉 , (5.156)

and can derive from (5.67) a simple expression for the ‘black hole potential’ [16,
44, 47]

VBH ≡ ZZ̄ + ∇αZgαβ̄∇β̄Z̄ = 1
2�
T �M�� . (5.157)

Similarly, by using the same identity, one derives

V Z̄ + Ūβ̄gβ̄α∇αZ = − 1
2 (M�+ i1l) � . (5.158)

5.5.4 Attractors

The attractor solution [38, 39, 47] is the solution near the horizon. This is the large τ
behaviour. In that case supersymmetry is preserved, which is expressed as ∇αZ =
0. This extremizes the black hole potential. So it is consistent with constant zα as
solution of the field equation for the scalars. In this case (5.158) simplifies. The
imaginary part is

− 2 Im(V Z̄) = � . (5.159)

These are the attractor equations. The BH potential reduces to

VBH,BPS = |Z|2 , (5.160)

where the indication ‘BPS’ is used because we started from an extremal black hole
solution. Then we determine U by the constraint

U̇2 = e2UVBH,BPS, i.e. U̇ = ±eUVBH,BPS . (5.161)

The VBH,BPS being constant, this automatically implies the other field equation

Ü = e2UV BH,BPS . (5.162)

Finally, the solution is

e−U = ∓|Z|τ + constant . (5.163)
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Since Z is completely determined by the charges via (5.153), the solution above
shows that the near-horizon (τ → ∞) value of the scalars is universal and
independent of the initial conditions.

5.6 Quaternionic-Kähler Manifolds

Quaternionic-Kähler manifolds entered supergravity research first in the seminal
work [48]. In [49] a lot of interesting properties were already discussed. Workshops
on quaternionic geometry have been organized where mathematics and physics
results were brought together [50]. Other important papers that reviewed the
properties of quaternionic manifolds are [51–53].

As a result of Swann [54], every quaternionic manifold can be obtained as a
cone with an SU(2) gauging. The condition that a hyper-Kähler manifold can be
formulated in a conformal way is equivalent to the condition that there is a cone.
Therefore, those hyper-Kähler that satisfy this condition are one-to-one related with
the hyper-Kähler manifolds that can be made quaternionic by an SU(2) gauging.
The result of Swann has been made explicit in [55] by the construction with
the embedding of the manifold in a conformal manifold, as written in Sect. 4.6.
There it has been shown how any quaternionic-Kähler metric can be obtained in
this way. The procedure is the same whether applied for D = 4, D = 5 or
D = 6.

5.6.1 Supersymmetry and Quaternionic Geometry

The quaternionic geometry is a bi-product of the supersymmetry algebra, which
leads to the definition of the almost quaternionic structures JXY , see (3.37).
Furthermore, in order to build an action, we require this manifold to possess an
invariant metric gXY , which was defined in (3.145). If the almost quaternionic
structures are covariantly constant (up to a rotation among them) with the Levi-
Civita connection associated to gXY (see (3.39)), the manifold is promoted to a
hyper-Kähler manifold. The requirement of conformal symmetry further restricts
the manifold. The gauge fixing then leads from a 4(nH+1)-dimensional embedding
manifold to a projection on a 4nH -dimensional submanifold, which turns out
to be quaternionic-Kähler (see Sect. 4.6). The latter is parameterized by scalar
fields qu, while its tangent space contains vectors labelled by indices (i, A).
Using the basis (4.130), a quaternionic-Kähler metric huv(q), is obtained from
the embedding metric in (4.153). Similarly all other geometrical quantities
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are obtained by a projection from the embedding to the quaternionic-Kähler
space.21

Considering the differential equation on the frame fields in the quaternionic-
Kähler space, (4.146), we see that it contains SU(2) connections ωuj i as well as
USp(2nH ) connections22 ωuB

A. The latter is similar to the condition in the embed-
ding manifold, (3.32), but the SU(2) connection was absent in the hyper-Kähler
manifold. This SU(2) connection ωu, promotes the almost quaternionic structure
to a quaternionic structure, such that the resulting manifolds are ‘quaternionic’. If
the SU(2) connection is zero, they are called ‘hypercomplex’, which is the case
before the gauge fixing (and in rigid supersymmetry). Note that the same SU(2)
connection also appears in the differential equation on the hypercomplex structures
in the quaternionic-Kähler manifold, (4.143), while it was absent in that of the
hyper-Kähler structure (3.39). For physics applications we further require a positive
definite energy in the Einstein–Hilbert action, which results in additional constraints
on the geometry.

5.6.2 Quaternionic Manifolds

As mentioned above, a main ingredient is the equation that states the covariant
constancy of the frame fields (4.146), which can be considered in terms of a
connection on the tangent space

�ujB
iA ≡ f vjB

(
∂uf

iA
v − �wuvf iAw

)
= −ωuj iδBA − ωuBAδj i . (5.164)

If this �ujBiA, for each u, would be a general 4nH × 4nH matrix, then we would
say that the holonomy is not restricted (or sits in G�(4nH ,R)). The splitting as in
the right-hand side of this equation implies that the holonomy group is restricted to
SU(2)× G�(nH ,H).

The integrability condition of (4.146) leads to an expression for the curvature of
quaternionic manifolds:

Rwxuv = fwiAf jAxRuvj i + f wiAf iBxRuvBA = −JxwRuv + f wiAf iBxRuvBA ,
(5.165)

21The terminology ‘quaternionic’ and ‘quaternionic-Kähler’ is used in mathematics in this sense:
the first requires a quaternionic structure on the manifold, and the second demands moreover
compatibility with a metric structure.
22We demanded the preservation of the metric gXY (see (3.145)), therefore the G�(nH ,H) is
restricted to USp(2nH ).
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where

Rwxuv ≡2∂[u�wv]x + 2�wy[u�
y
v]x ,

Ruv ≡2∂[uωv] + 2ω[u × ωv] ,

RuvBA ≡2∂[uωv]BA + 2ω[u|C|Aωv]BC . (5.166)

Thus the curvature of the affine connection is split in an SU(2) part and a G�(nH ,H)
part.

5.6.3 Quaternionic-Kähler Manifolds

Quaternionic-Kähler manifolds (which include ‘hyper-Kähler manifolds’ in the
limiting case that the SU(2) curvature vanishes) by definition have a metric, huv .
This corresponds to the requirement in the matter couplings that there is an action.
There is the request that the connections preserve the metric, which restricts the
holonomy group to SU(2)×USp(2nH ). The affine connection�wuv is now the metric
connection, and the first line of (5.166) is the metric curvature, while the last line is
the USp(2nH ) curvature.

For nH > 1 one can prove that these manifolds are Einstein, and that the SU(2)
curvatures are proportional to the complex structures23

Ruv ≡ Rwuwv = 1

4nH
huvR , Ruv = 1

2νJuv , ν = 1

4nH (nH + 2)
R .

(5.167)

For nH = 1 this is part of the definition of quaternionic-Kähler manifolds. Hyper-
Kähler manifolds are those where the SU(2) curvature is zero, and these are thus
also Ricci-flat.

5.6.4 Quaternionic-Kähler Manifolds in Supergravity

In supergravity we find all these constraints from requiring a supersymmetric action.
Moreover, we need for the invariance of the action that the last equation of (5.167)
is satisfied with ν = −κ2, see (4.147). This implies that the scalar curvature is
R = −4nH (nH + 2)κ2. The fact that this is negative excludes, e.g., the compact
symmetric spaces. In Sect. 5.7.2 all the symmetric spaces in this class will be
mentioned, and these are thus all noncompact.

23In the conventions of this book, such proofs are given in [53, Appendix B].
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5.7 Relations Between Special Manifolds

So far we discussed separately the Kähler manifolds (associated to the vector
multiplets) and the quaternionic-Kähler manifolds (hypermultiplets), even though
we paid attention, along the way, to various similarities among these spaces.
Although our discussion has been mostly limited to D = 4, as we pointed out
at the beginning of Chap. 5, there exists an analogous special geometry associated
to the real scalars in the D = 5 vector multiplets. Perhaps not surprisingly, all
these ‘special manifolds’ are related by maps, which are denoted as c map and r
map.

5.7.1 c-Map and r-Map

The c map [8] connects a special Kähler to a quaternionic-Kähler manifold. It is
induced by dimensional reduction of an N = 2 supergravity theory from D = 4
to D = 3, by suppressing the dependence on one of the (spatial) coordinates. The
resultingD = 3 supergravity theory can be written in terms ofD = 3 fields and this
rearranges the original fields such that the number of scalar fields increases from
2n to 4(n + 1). This is shown in Table 5.1. Essential in this map is that D = 4
vectors leave first a scalar component in D = 3, but also the other part, vectors in
D = 3, are dual to scalars. This map is also obtained in string theory context by
changing from the reduction of a type IIA theory to the reduction of the T -dual type
IIB theory or vice versa.

This leads to the notion of ‘special quaternionic manifolds’, which are those
manifolds appearing in the image of the c map. They are a subclass of the
quaternionic manifolds.

The r map [9] is determined by the reduction of vector multiplets in D = 5 to
vector multiplets inD = 4. Starting with n− 1 physical vector multiplets inD = 5,
one ends up with n vector multiplets in D = 4 (2n real scalars) as schematically
shown in Table 5.2. The manifolds defined by coupling (real) scalars to vector
multiplets in 5 dimensions are called ‘very special real manifolds’. They are
determined by the symmetric tensor CIJK in Sect. 3.3.2. The correspondingD = 4

Table 5.1 The c map as
dimensional reduction from
D = 4 toD = 3 supergravity

The number of fields of various spins is indi-
cated
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Table 5.2 The r map
induced by dimensional
reduction from D = 5 to
D = 4 supergravity

The number of fields of integer spins is
indicated

couplings will then also be determined by such a tensor, and one parameterization
is in terms of the prepotential (4.101). As already indicated there, the special Kähler
manifolds that are in the image of this r map are then denoted as ‘very special
Kähler manifolds’ . Their further image under the c◦r map are then called ‘very
special quaternionic manifolds’.

The c map has been studied in superspace in [56, 57] and the mathematical
structure has been clarified in terms of the so-called Swann bundle in [58]. An off-
shell extension has been found [59] in view of applications with higher derivatives.
It is then useful to formulate the hypermultiplets in the form of tensor multiplets
[60].

5.7.2 Homogeneous and Symmetric Spaces

Homogeneous and symmetric spaces are the most known manifolds. These are
spaces of the form G/H , where G is the isometry group and H is its isotropy
subgroup. The groupG is not necessarily a semi-simple group, and thus not all the
homogeneous spaces have a clear name. The symmetric spaces are those for which
the algebra splits as g = h + k and all commutators [k, k] ⊂ h. The homogeneous
special manifolds are classified in [61].

It turns out that homogeneous special manifolds are in one-to-one correspon-
dence to realizations of real Clifford algebras with signature (q + 1, 1) for real,
(q + 2, 2) for Kähler, and (q + 3, 3) for quaternionic manifolds. Thus, the spaces
are identified by giving the number q , which specifies the Clifford algebra, and by
specifying its representation. If q is not a multiple of 4, then these Clifford algebras
have only one irreducible representations, and we thus just have to mention the
multiplicity P of this representation. The spaces are denoted as L(q, P ). If q = 4m
then there are two inequivalent representations, chiral and antichiral, and the spaces
are denoted as L(q, P, Ṗ ). The fact that the chiral and the antichiral representations
are conjugate implies L(4m,P, Ṗ ) = L(4m, Ṗ , P ). A special case is q = 0 for
which L(0, n) = L(n, 0). These manifolds are listed in Table 5.3. If we use n as the
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complex dimension of the special Kähler space, the dimension of these manifolds is
(Ṗ = 0 if q �= 4m)

n = 3 + q + (P + Ṗ )Dq+1 ,

⎧
⎪⎨
⎪⎩

dimR[very special real L(q, P, Ṗ )] = n− 1

dimR[special Kähler L(q, P, Ṗ )] = 2n

dimR[quaternionic-Kähler L(q, P, Ṗ )] = 4(n+ 1).

(5.168)

where Dq+1 is the dimension of the irreducible representation of the Clifford
algebra in q + 1 dimensions with positive signature, i.e.

Dq+1 = 1 for q = −1, 0 , Dq+1 = 2 for q = 1 , Dq+1 = 4 for q = 2 ,

Dq+1 = 8 for q = 3, 4 , Dq+1 = 16 for q = 5, 6, 7, 8 , Dq+8 = 16Dq .
(5.169)

The very special manifolds are defined by coefficients CIJK . For the homogeneous
ones, we can write them as

CIJK hIhJ hK = 3
{
h1 (h2)2 − h1 (hμ)2 − h2 (hi)2 + γμij hμ hi hj

}
.

(5.170)

We decomposed the indices I = 1, . . . , n into I = 1, 2, μ, i, with μ = 1, . . . , q+1
and i = 1, . . . , (P + Ṗ )Dq+1. Here, γμij is the (q + 1, 0) Clifford algebra
representation that we mentioned. Note that these models have predecessors in 6
dimensions, with q + 1 tensor multiplets and (P + Ṗ )Dq+1 vector multiplets. The
gamma matrices are then the corresponding coupling constants between the vector
and tensor multiplets.

Considering further Table 5.3, we find in the quaternionic spaces the homoge-
neous ones that were found in [62], together with those that were discovered in [61]
(the ones with a $ except for the series L(0, P, Ṗ ), which were already in [62], and
denoted there asW(P, Ṗ )). A new overview of the properties of these homogeneous
manifolds can be found in [63], where these (apart from the pure D = 4 and pure
D = 5 theories) are also constructed as double copies of Yang–Mills theories.

Observe that the classification of homogeneous spaces exhibits that the quater-
nionic projective spaces have no predecessor in special geometry, and that the
complex projective spaces have no predecessor in very special real manifolds.
Similarly, only those with q ≥ −1 can be obtained from 6 dimensions. L(−1, 0)
corresponds to pure supergravity in 6 dimensions. In general, the scalars of the
tensor multiplets in D = 6 describe a SO(1, q + 1)/SO(q + 1) manifold.

In the range q ≥ −1, some of these manifolds are in fact symmetric manifolds.
These are collected in Table 5.4. For the symmetric special Kähler spaces, this
reproduces the classification obtained in [64]. A study of the full set of isometries
could be done systematically in these models. All this has been summarized in [65].
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Table 5.3 Homogeneous manifolds

In this table, q, P , Ṗ and m denote positive integers or zero, and q �= 4m. SG denotes an empty
space, which corresponds to supergravity models without scalars. The horizontal lines separate
spaces of different rank. The first non-empty space in each column has rank 1. Going to the right
or down a line increases the rank by 1. The manifolds indicated by a $ did not get a name. The
number n is the complex dimension of the Kähler space as in (5.168), which simplifies in many
cases

Table 5.4 Symmetric very special manifolds

n Real Kähler Quaternionic

L(−1, 0) 2 SO(1, 1)
[

SU(1,1)
U(1)

]2 SO(3,4)
(SU(2))3

L(−1, P ) 2 + P SO(P+1,1)
SO(P+1)

L(0, P ) 3 + P SO(1, 1)⊗ SO(P+1,1)
SO(P+1)

SU(1,1)
U(1) ⊗ SO(P+2,2)

SO(P+2)⊗SO(2)
SO(P+4,4)

SO(P+4)⊗SO(4)

L(1, 1) 6 S�(3,�)
SO(3)

Sp(6)
U(3)

F4
USp(6)⊗SU(2)

L(2, 1) 9 S�(3,C)
SU(3)

SU(3,3)
SU(3)⊗SU(3)⊗U(1)

E6
SU(6)⊗SU(2)

L(4, 1) 15 SU∗(6)
USp(6)

SO∗(12)
SU(6)⊗U(1)

E7
SO(12)⊗SU(2)

L(8, 1) 27 E6
F4

E7
E6⊗U(1)

E8
E7⊗SU(2)

Note that the very special real manifolds L(−1, P ) are symmetric, but not their images under the
r map. The number n is the dimension as in Table 5.3
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57. M. Roček, C. Vafa, S. Vandoren, Hypermultiplets and topological strings. J. High
Energy Phys. 02, 062 (2006). http://dx.doi.org/10.1088/1126-6708/2006/02/062.
arXiv:hep-th/0512206 [hep-th]

58. M. Roček, C. Vafa, S. Vandoren, Quaternion-Kähler Spaces, Hyperkahler Cones, and the c-
Map (2006). arXiv:math/0603048 [math-dg]

59. N. Banerjee, B. de Wit, S. Katmadas, The off-shell c-map. J. High Energy Phys. 01, 156 (2016).
http://dx.doi.org/10.1007/JHEP01(2016)156. arXiv:1512.06686 [hep-th]

60. B. de Wit, F. Saueressig, Off-shell N = 2 tensor supermultiplets. J. High Energy Phys. 9,
062 (2006). http://dx.doi.org/10.1088/1126-6708/2006/09/062. arXiv:hep-th/0606148
[hep-th]

61. B. de Wit, A. Van Proeyen, Special geometry, cubic polynomials and homogeneous
quaternionic spaces. Commun. Math. Phys. 149, 307–334 (1992). http://dx.doi.org/10.1007/
BF02097627. arXiv:hep-th/9112027 [hep-th]

62. D.V. Alekseevsky, Classification of quaternionic spaces with a transitive solvable group of
motions. Math. USSR Izv. 9, 297–339 (1975)

http://dx.doi.org/10.1088/0264-9381/25/3/035010
http://arxiv.org/abs/0708.2829
http://dx.doi.org/10.1016/S0550-3213(97)00324-6
http://arxiv.org/abs/hep-th/9702103
http://dx.doi.org/10.1088/1126-6708/2006/03/060
http://arxiv.org/abs/hep-th/0602005
http://dx.doi.org/10.1088/0264-9381/13/5/007
http://dx.doi.org/10.1088/0264-9381/13/5/007
http://arxiv.org/abs/hep-th/9506075
http://dx.doi.org/10.1103/PhysRevD.54.1514
http://arxiv.org/abs/hep-th/9602136
http://dx.doi.org/10.1016/0550-3213(83)90605-3
http://dx.doi.org/10.1007/BF01210705
http://www.univie.ac.at/EMIS/proceedings/QSMP99/
http://arxiv.org/abs/hep-th/0102114
http://dx.doi.org/10.1088/1126-6708/2001/05/034
http://dx.doi.org/10.1088/1126-6708/2001/05/034
http://arxiv.org/abs/hep-th/0103153
http://dx.doi.org/10.1088/1126-6708/2002/10/045
http://arxiv.org/abs/hep-th/0205230
http://dx.doi.org/10.1007/s00220-005-1475-6
http://arxiv.org/abs/hep-th/0411209
http://dx.doi.org/10.1016/S0550-3213(99)00370-3
http://dx.doi.org/10.1016/S0550-3213(99)00370-3
http://arxiv.org/abs/hep-th/9902211
http://dx.doi.org/10.1088/1126-6708/2006/02/062
http://arxiv.org/abs/hep-th/0512206
http://arxiv.org/abs/math/0603048
http://dx.doi.org/10.1007/JHEP01(2016)156
http://arxiv.org/abs/1512.06686
http://dx.doi.org/10.1088/1126-6708/2006/09/062
http://arxiv.org/abs/hep-th/0606148
http://dx.doi.org/10.1007/BF02097627
http://dx.doi.org/10.1007/BF02097627
http://arxiv.org/abs/hep-th/9112027


204 5 Special Geometries

63. A. Anastasiou, L. Borsten, M. J. Duff, A. Marrani, S. Nagy, M. Zoccali, Are all supergravity
theories Yang–Mills squared? Nucl. Phys. B934, 606–633 (2018). http://dx.doi.org/10.1016/j.
nuclphysb.2018.07.023. arXiv:1707.03234 [hep-th]

64. E. Cremmer, A. Van Proeyen, Classification of Kähler manifolds in N = 2 vector multiplet–
supergravity couplings. Class. Quant. Grav. 2, 445 (1985). http://dx.doi.org/10.1088/0264-
9381/2/4/010

65. B. de Wit, A. Van Proeyen, Isometries of special manifolds, in Proceedings of the Meeting on
Quaternionic Structures in Mathematics and Physics, Trieste, September 1994. Available on
http://www.emis.de/proceedings/QSMP94/. hep-th/9505097

http://dx.doi.org/10.1016/j.nuclphysb.2018.07.023
http://dx.doi.org/10.1016/j.nuclphysb.2018.07.023
http://arxiv.org/abs/1707.03234
http://dx.doi.org/10.1088/0264-9381/2/4/010
http://dx.doi.org/10.1088/0264-9381/2/4/010
http://www.emis.de/proceedings/QSMP94/
http://arxiv.org/abs/hep-th/9505097


Chapter 6
Final Results

Abstract The previous part of this book first considered conformal couplings,
and finally these were projected to a subspace after gauge choices. We saw how
then special and quaternionic-Kähler geometries emerge. In this chapter we obtain
the final action and transformation laws for N = 2, D = 4 (Sect. 6.1) and
D = 5 (Sect. 6.2) Poincaré supergravity coupled to nV vector multiplets and nH
hypermultiplets after elimination of auxiliary fields and in terms of the variables of
Poincaré supergravity. We end with final remarks indicating also future directions.

6.1 Final D = 4 Poincaré Supergravity Results

This chapter repeats all definitions and is readable by itself for what concerns the
final results. For the origin of the equations and more detailed explanations we refer
to the previous chapters. Here we will first collect the already obtained relevant
results for the bosonic sector, and then complete it for the fermionic sector. These
final results could also have been obtained in other ways. In particular a geometric
and rheonomic approach has been used in [1], where the complete results found in
this chapter have also been obtained.

We consider the theory with

• Supergravity including the frame field eaμ, the doublet gravitino ψiμ = PLψ
i
μ

and the graviphoton. The description of the graviphoton is unified with the
description of the vector multiplets.

• n = nV vector multiplets with nV complex scalars zα, nV physical fermions,
described as χαi = PLχ

α
i (and their right-handed components χiᾱ) and nV

vectors. The unified description of these vectors and the graviphoton is in WI
μ,

I = 0, . . . , nV , with the field strengths FIμν

F Iμν = 2∂[μWI
ν] + fJKIWJ

μW
K
ν . (6.1)

The gauge algebra has structure constants fJKI . We will say more about the
definition of the physical fermions in Sect. 6.1.2. Here we concentrate on the
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description of the scalars. The latter are described as independent variables in a
holomorphic 2(nV + 1) component symplectic vector,

v(z) =
(
ZI (z)

FI (z)
)
. (6.2)

This symplectic vector satisfies constraints such that the independent physical
scalars are zα with α = 1, . . . , nV . The constraint is expressed using a symplectic
inner product defined by (5.10):

〈∇αv,∇βv〉 = 2
(
∇[αZI

) (∇β]FI
) = 0, ∇αv ≡ ∂αv + κ2(∂αK)v,

(6.3)

where the Kähler potential K is determined by

e−κ2K(z,z̄) = −iκ2〈v, v̄〉 = −iκ2
(
ZIF I − FI Z̄I

)
. (6.4)

This Kähler potential is related to the metric of the scalar manifold via:

gαβ̄ = ∂α∂β̄K = ieκ
2K 〈∇αv,∇β̄ v̄〉. (6.5)

We require this metric1 to be positive definite in the physical domain of the
scalars z.

The geometric structure of the manifold is most visible in the fundamental
equation (5.34):

i

〈(
V̄ ∇αV

)
,

(
V

∇β̄ V̄

)〉
= G ≡

(
κ−2 0

0 gαβ̄

)
, (6.6)

where we use the symplectic sections

V (z, z̄) = y(z, z̄)v(z) =
(
XI

FI

)
, y = eκ

2K/2 . (6.7)

Demanding positive kinetic terms, the matrix G should be positive definite, and
thus the vector

(
ZI ∇ᾱZ̄I

)
or

(
Z̄I ∇αZI

)
(6.8)

1There are further cohomological restrictions concerning the global structure of the metric, i.e. it
should be Kähler manifolds of restricted type or ‘Hodge manifolds’, but these global restrictions
are not discussed here. See footnote 24 page 143.
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should be invertible (see proof in (5.37)). This then allows to define the kinetic
matrix for the vectors (see the action below in (6.15)):

NIJ = (FI ∇ᾱF I
) (
ZJ ∇ᾱZ̄J

)−1
. (6.9)

The positivity properties of G imply that the imaginary part of NIJ is negative
definite.

The ‘usual case’ is when the (nV + 1)× (nV + 1) matrix

(
ZI ∇αZI

)
(6.10)

is invertible. This can always be obtained by symplectic transformations (but
one might sometimes prefer not to use such a symplectic basis). In this ‘usual
case’ the condition (5.46) implies the existence of a holomorphic function F (Z),
homogeneous of second order in Z, such that

FI (z) = ∂

∂ZI
F (Z(z)). (6.11)

In the basis where a prepotential F (Z) exists, (6.9) can be expressed as in (5.2)

NIJ (z, z̄) = F IJ + i
NINNJK Z

NZK

NLM ZLZM
,

NIJ ≡ 2 ImFIJ = −iFIJ + iF IJ , FIJ = ∂I ∂JF , (6.12)

where ∂I are derivatives w.r.t. ZI . Due to the homogeneity of F(X), we have
FIJ = FIJ , where the latter is the second derivative of F(X) w.r.t. XI .

• nH hypermultiplets with scalars qu, u = 1, . . . , 4nH and spinors ζA = PLζ
A

(their right components are ζĀ) with A, Ā = 1, . . . , 2nH . We introduced the
fermions already in (4.138) and give more details in Sect. 6.1.2. The scalar
manifold has a quaternionic-Kähler property, which has also been obtained from
a projection in (4.153). The main ingredients are the metric huv , the triplet of
hypercomplex structures Juv and a triplet connection ωu(q). They are related
by (4.143), which extends the Levi-Civita covariant derivatives ∇u, defined from
the metric huv , to covariant derivatives ∇̃u that preserve the complex structures:

∇̃wJuv ≡ ∇wJuv + 2 ωw × Juv = 0 . (6.13)

The interactions are determined by the frame fields, f iAu, invertible as 4nH ×
4nH matrices, which satisfy a covariant constancy condition that contains also a
USp(2nH ) connection ωuAB

∇̃vf iAu ≡ ∂vf iAu + f jAuωvj i + f iBuωvBA − �wvuf iAw = 0 . (6.14)
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Table 6.1 Multiplets and fields of the super-Poincaré theories for D = 4

Notice that the connection ωu is written here as a traceless anti-hermitian ωuij .
We often switch between one and the other notation using (A.19). There are also
reality conditions on these objects, for which we refer to (4.142).

Summarizing, Table 6.1 gives the physical fields in the Poincaré theory, multi-
plets in Poincaré language and the corresponding range of indices.

6.1.1 The Bosonic Action

We start by summarizing the results for the bosonic sector. The bosonic action is

e−1Lbos = 1
2κ

−2R − gαβ̄ ∂̂μzα∂̂μz̄β − 1
2huv∂̂μq

u∂̂μqv − V (z, z̄, q)
+ 1

4 (ImNIJ )F IμνFμνJ − 1
8 (ReNIJ )e−1εμνρσ F IμνF

J
ρσ

+ 2
3CI,JKe

−1εμνρσWI
μW

J
ν

(
∂ρW

K
σ + 3

8fLM
KWL

ρ W
M
σ

)
. (6.15)

The first line starts with the Einstein–Hilbert term, which is the kinetic term for
the graviton. It has been normalized to this form by our choice of dilatational
gauge (4.55). Then appear the kinetic terms for the scalars related to the geometric
structure. The main feature visible in these kinetic terms is that the scalar field space
is divided in a special Kähler manifold, parametrized by {zα, z̄α} (and was obtained
in (5.1)) and a quaternionic-Kähler manifold parametrized by {qu}, with a metric
obtained in (4.152). The hats on the kinetic terms are related to the gauging, see
Sect. 6.1.1.1. The potential V (z, z̄, q) will be discussed in Sect. 6.1.1.2, since it is
determined by this gauging. The second line contains the kinetic terms of the vectors
using the matrix (6.9) or (6.12). The last line contains a Chern–Simons term that is
also related to the embedding of the gauge group in the symplectic group.

6.1.1.1 The Gauging

The scalars have covariant kinetic terms for possible gaugings by the gauge vectors
WI
μ, with I = 0, . . . , n:
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∂̂μz
α = ∂μzα −WμIkI α , ∂̂μq

u = ∂μqu −WμIkI u, (6.16)

First note that in these covariant derivatives the U(1), respectively SU(2), connec-
tions are absent, since the physical scalars zα do not transform under the U(1)
transformation and qu do not transform under the SU(2) (see (4.130)).

The covariant derivatives are covariant for the gauge transformations, which are
for the bosons:

δG(θ)W
I
μ = ∂μθI − θJ fJKIWK

μ ,

δG(θ)z
α = θI kI α ,

δG(θ)q
u = θI kI u . (6.17)

The Killing vectors kI α(z) and kI u(q) separately satisfy the algebra with structure
constants fJKI . They are projections of the Killing vectors of the embedding
manifolds, see (5.114) and (4.155). They, respectively, preserve the complex and
quaternionic structures, which can be seen in that they can be related to a real
moment map P 0

I and triplet real moment map PI , see (5.78) and (4.156):

gαβ̄k
β̄
I =i∂αP 0

I ,

huvk
v
I = − 1

3 Juv · ∇̃vPI . (6.18)

The gauge transformations do not necessarily leave the Kähler potential invariant

δG(θ)K(z, z̄) = θI (rI (z)+ r̄I (z̄)) , rI (z) = kαI ∂αK + iP 0
I . (6.19)

Supersymmetry implies that the gauge transformations of the scalars are related to
those of the vectors, and thus related to the structure constants.

This can best be seen in the symplectic formulation, where the vectors V
transform in the conformal setting with a matrix

TI =
(
fIK

J 0
2CI,JK −fIJ K

)
, (6.20)

where CI,JK are real coefficients, symmetric in the last two indices and
ZIZJZKCI,JK = 0. They appear in the last line of (6.15).
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Following Sect. 5.4.2 the gauge transformations in the Poincaré frame and the
covariant transformations are of the form

δ�G(θ)v(z) = θI (−TI − κ2rI )v(z) , δ̂G(θ)v(z) = θI (−TI − κ2P 0
I )v(z) .

(6.21)

The moment map can be written as a symplectic inner product

P 0
I = eκ

2K 〈TI v(z), v̄(z̄)〉 = −eκ
2K 〈v(z), TI v̄(z̄)〉 . (6.22)

Other ways to write P 0
I are given in (4.52).

On the quaternionic side, the moment maps PI are defined from the Killing
vectors in (4.156). We use here huv to raise and lower indices, and thus the main
equations are

∇̃uPI ≡ ∂uPI + 2ωu × PI = JuvkI v ,

kI
uJuvkJ v + κ2PI × PJ = fIJ KPK . (6.23)

As we discussed around (4.160), the solution for PI is unique when nH �= 0, and
for nH = 0 there are two types of FI terms possible: for SU(2) and for U(1) factors.

From the derivatives of the quaternionic Killing vectors, one can define matrices

tIA
B ≡ 1

2f
v
iA∇vkI uf iBu , (6.24)

which satisfy the gauge algebra and are relevant for the gauge transformation of the
fermions of the hypermultiplets.

6.1.1.2 The Potential

The remaining bosonic part of the action (6.15) is the scalar potential. It originates
in the conformal setting from the third line in (4.59). We can use the bosonic part of
the field equations for Y (4.54) to obtain

V = N−1|IJPI · PJ +N−1|IJ P 0
I P

0
J + 2X̄IXJ kIXkJ Y gXY . (6.25)

We rewrite this now in the Poincaré frame. For the first two terms we use (5.66)
and (4.53). For the last term, we use the decomposition of the metric (4.134) and
Killing vector (4.155) with the conditions (4.147), (4.157), (4.136):

kI
XkJ

Y gXY = kI ukJ vhuv − κ2PI · PJ . (6.26)
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We obtain

V = −4κ2XI X̄JPI · PJ − 1
2 (ImN)−1|IJ [PI · PJ + P 0

I P
0
J

]
+ 2X̄I XJ kI

ukJ
vhuv.

(6.27)

Since ImN is negative definite, only the first term gives a negative contribution
to the potential. If there are no physical hypermultiplets (nH = 0), this term can still
be there for constant vectors PI , which are then the ‘Fayet–Iliopoulos terms’.

Since the potential is important for applications, it is worthwhile to give
alternative expressions. Therefore, let us first introduce [1–3]

UIJ ≡ gαβ̄∇αXI∇β̄ X̄J = − 1
2 (ImN)−1|IJ − κ2X

I
XJ (6.28)

and using (4.53), we can write

V = −3κ2X̄IXJPI · PJ + UIJ (PI · PJ + P 0
I P

0
J )+ 2huvkuI k

v
J X̄

IXJ . (6.29)

Only the first term is negative. After we have discussed the supersymmetry
transformations, see (6.88), we will understand the three terms in this expression
as squares of supersymmetry transformations of, respectively, the gravitino, the
gauginos (split in the SU(2) triplet and SU(2) singlet part) and the hyperinos. The
fact that the scalar potential can be written in such a way is a general feature in
supergravity (see, e.g., [4]).

Finally, let us still give alternative expressions for the part

V1 = UIJP 0
I P

0
J = gαβ̄∇αXI∇β̄ X̄J P 0

I P
0
J = gαβ̄kI αkJ β̄ , (6.30)

where for the last expression we used (5.115). Another way uses (5.105) on the last
expression (remember that for gauged symmetries P� is P 0

I ), leading to

V1 = iX̄IXJ 〈TIV, TJ V̄ 〉 . (6.31)

Using the explicit form of the matrices in (5.108) we get

V1 = − iX̄IXJ fIJ KXL
(
fLK

MF̄M + 2CL,KMX̄M
)

+ h.c. (6.32)

Exercise 6.1 As a simple example, consider the special Kähler manifold that we
have discussed in example 4.1, which has n = 1, i.e. 2 vectors. The algebra should
be abelian to leave F invariant. We consider no physical hypermultiplet, i.e. in the
superconformal setup there is just a trivial one that is needed for compensation. Then
the potential can only originate in the gauging of the compensating hypermultiplet,
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which is equivalent to having constant moment maps PI . In the equivariance
condition, second of (6.23), only the second term survives, which says that P1 and
P2 should point in the same direction in SU(2) space. Hence as in (4.163) we take

PI = ξI e , e · e = 1 . (6.33)

To calculate the potential we first obtain UIJ , which can most easily be determined
using ∇zZI . This gives, using (4.105),

∇zZI =∂zZI + κ2ZI∂zK = 1

1 − zz̄
(
z̄

1

)
, ∇zXI = eκ

2K/2∇zZI ,

eκ
2K = 1

1 − zz̄ , gzz̄ = κ2(1 − zz̄)2 ,

UIJ = κ2

1 − zz̄
(
zz̄ z̄

z 1

)
, X̄IXJ = 1

1 − zz̄
(

1 z̄
z zz̄

)
. (6.34)

Thus the potential, originating from the first two terms of (6.29) leads to

V = κ2

1 − zz̄
[
ξ2

0 (zz̄− 3)− 2ξ0ξ1(z+ z̄)+ ξ2
1 (1 − 3zz̄)

]
. (6.35)

Before the gauging the model has an SU(1, 1) rigid symmetry. The properties of
the potential depend on the SU(1, 1)-invariant ξ2

0 − ξ2
1 . There are thus 3 relevant

cases, whether this invariant is positive, negative or zero [5]. In each case, we can
take a standard choice by reparametrization, and we find, respectively, the following
extrema

• Take ξ0 = ξ and ξ1 = 0. There is an extremum at z = 0 with negative V (z = 0),
i.e. anti-de Sitter. ξIUIJ ξJ , which is the contribution from the supersymmetry of
the gaugini, vanishes. Therefore this vacuum preserves supersymmetry.

• ξ0 = ξ1. In this case there is no extremum in the positivity domain |z| < 1.
• ξ0 = 0 and ξ1 = ξ . There is an extremum with positive V , i.e. de Sitter, with

non-vanishing ξIUIJ ξJ , i.e. (spontaneously) broken supersymmetry.

Note that in the first case we can omit the scalars, and this case thus occurs in pure
N = 2 supergravity with possible gauging leading to the anti-de Sitter N = 2
supergravity. �

6.1.2 Physical Fermions

In the bosonic sector we have defined appropriate coordinates for implementing the
conditions (4.56). We saw in the vector multiplet sector that it was often useful
to use the invertible matrix (6.8) to split equations between the compensating part
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and physical part, as is most clear from (6.6). For usual symplectic bases where a
prepotential is defined, we can simplify it to (6.10). We will use such a basis in
this part, since the tensor calculus on which we base ourselves is developed in this
setting.2 For the hypermultiplets we defined an appropriate basis (4.130) where the
first quaternion {q0, qr } is put to a constant using the conformal gauge conditions,
and the physical fields are qu.

Similarly, we will now split the fermions in the parts that are put equal to zero
by (4.58) and the physical fermions of the matter-coupled Poincaré supergravity
theory.

6.1.2.1 Fermions of the N = 2 Vector Multiplets

For the fermions of the conformal vector multiplet we consider the following
splitting in 1 + n doublets:

�Ii = χ0
i X

I + χαi ∇αXI , �iI = χi0X̄I + χiᾱ∇ᾱX̄I . (6.36)

Since the first condition in (4.56) leads to (5.70), the first of (4.58) imposes

χ0
i = 0 , → �Ii = χαi ∇αXI . (6.37)

The inverse can be obtained using (5.70) or (5.65):

χαi = gαβ̄∇β̄ X̄INIJ�Ji = −2gαβ̄∇β̄ X̄I ImNIJ�Ji . (6.38)

Thus χαi will be the n physical spin 1/2 fields, and their conjugates are defined as

�iI = χiᾱ∇̄ᾱX̄I . (6.39)

In the conformal setting the transformations of XI are

δXI = 1
2 ε̄
i�Ii + (λD + iλT )X

I + θKkKI . (6.40)

If we use (6.37) and (5.114) for the gauged isometries, we can write this as

δXI = 1
2 ε̄
iχαi ∇αXI + (λD + iλT )X

I + θK
(
kK
α∇αXI + iκ2P 0

KX
I
)
. (6.41)

In the Poincaré theory, only supersymmetry and the gauge symmetry survive, and
the other parameters λD and λT become functions of ε and θK by the decomposition
laws.

2For a more general formulations where the fermions are also in a symplectic vectors, see [6].
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On the other hand, after these gauge transformations XI is only function of zα

and z̄ᾱ , and thus these transformations should also be obtainable as

δ�XI =δzα∂αXI + δz̄ᾱ∂ᾱXI

=δzα
(
∇α − 1

2κ
2∂αK

)
XI + 1

2κ
2δz̄ᾱ∂ᾱKXI , (6.42)

where we used (4.125) and the definition of the covariant derivatives in that section.
Identifying this with (6.41) we find

δ(ε, θ)zα =1
2 ε̄
iχαi + θKkKα ,

λD(ε, θ) =0 , λT (ε, θ) = 1
2 iκ2(δzα∂αK − δz̄ᾱ∂ᾱK)− κ2θKP 0

K . (6.43)

Thus our parametrization (6.36) is convenient for defining the physical fermions
χαi as supersymmetry partners of the zα .

On the other hand, when we use covariant transformations (4.127), the U(1)
compensation is much simpler. Indeed, the covariant transformation is

δ̂XI = ∇αXI δzα , (6.44)

which is then identified with (6.41) by the same zα transformation and

λD(ε, θ) = 0 , λT (ε, θ) = −κ2θKP 0
K . (6.45)

One can also check that the difference between (6.44) and (6.42) is in agreement
with (4.128).

6.1.2.2 Fermions of the N = 2 Hypermultiplets

For the hypermultiplet we use the coordinates introduced in Sect. 4.6:

{ζA} = {ζ i, ζA} . (6.46)

In these coordinates the second part of (4.58) with (4.141) reduces to

ζ i = 0 , (6.47)

and the physical fermions are ζA. The reduction of (4.64), including (6.17), is

δqu = −iε̄iζ Af uiA + iεij ρĀBε̄iζĀf
u
jB + θI kI u . (6.48)
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The Poincaré supersymmetry transformations have a contribution from the SU(2)
symmetry as in (4.168):

λ(ε, θ) = −ωuδq
u − 1

2κ
2θIPI . (6.49)

One may notice the similarity with (6.43). However, with the coordinate
choice (4.131), these transformations (3.69) do not act on the physical scalars
qu.

For objects that transform under the SU(2), we can define covariant transforma-
tions that contain the geometric part of the gauge field (4.149), which then, similarly
to the case for the T -transformations above, reduces the remaining compensation of
SU(2) transformations to a gauge transformation:

λ(ε, θ) = − 1
2κ

2θIPI , (6.50)

similar to (6.45).

6.1.3 The Fermionic Part of the Poincaré Action

All this allows us to obtain the action for the physical fields. In the language of
conformal fields, this action was given in (4.59). The first four lines gave rise to the
bosonic action (6.15), and the gravitino kinetic term

Lkin,gravitino = −eψ̄iμγ μνρDνψiρ ,
Dμψνi =

(
∂μ + 1

4ωμ
ab(e)γab + 1

2 iAμ
)
ψνi + Vμi

jψνj , . (6.51)

Here and below appear the (bosonic part of the) effective U(1) and SU(2) composite
gauge fields:

Aμ = 1
2κ

2i
[
(∂αK)∂μzα − (∂ᾱK)∂μz̄ᾱ

]
− κ2WI

μP
0
I

= 1
2κ

2i
[
(∂αK)∂̂μzα − (∂ᾱK)∂̂μz̄ᾱ

]
+ 1

2 iWI
μ(rI − r̄I ),

Vμ = − ωu∂μq
u − 1

2κ
2WI

μPI

= − ωu∂̂μq
u + 1

2W
I
μrI , (6.52)

where ωu, which is in the conformal variables − 1
2κ

2ku, is in the Poincaré variables
the connection defined by (6.13).
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Moreover these first four lines of (4.59) contain auxiliary fields, whose expres-
sions in the conformal terminology have been given in (4.54) and (4.61) and contain
also fermionic terms.

To translate to Poincaré language, it is first useful to use the expression ofDμXI

obtained in (5.116)

DμX
I =∇αXI ∂̂μzα , (6.53)

with ∂̂μzα defined in (6.16). It is then convenient to repeatedly use (5.70), which
then e.g. shows that the first term on the fifth line of (4.59) vanishes. For the second
term, we note that the bosonic part of (4.48) isDμqXkX, which thus vanishes when
we use field equations.

The sixth line of (4.59) contains the kinetic terms of the gauginos and hyperinos.
We obtain for the covariant derivatives of the gauginos

D̂μ�
I
i =(D̂μχαi )∇αXI + χαi κ2gαβ̄X

I ∂̂μz̄
β̄ , (6.54)

D̂μχ
α
i =

(
∂μ + 1

4ωμ
ab(e)γab + 1

2 iAμ
)
χαi + Vμi

j χαj −WI
μχ

β
i ∇βkI α

+ �αβγ χγi ∂μzβ . (6.55)

Let us take some time to explain this in more detail, since this is also relevant
to understand the gauge transformations of the χiα in Sect. 6.1.5. The covariant
derivative that is used here is given in (4.60). Then (6.37) should be used. The
chiral weight of �Ii is 1/2. The chiral weight of ∇αXI is the same of that of XI ,
i.e. +1. Thus the chiral weight of χαi is −1/2. We will have to care then also for the
difference between the term − 1

2 iAμ�iI in Dμ�Ii and the one included in the term
with Dμχαi , i.e. this remaining term is

(Dμ�
I
i −Dμχαi )∇αXI = . . .− iAμχαi ∇αXI . (6.56)

For the geometric part, we write

D̂μ�
I
i =D̂μ

(
χαi ∇αXI

)
= (
D̂μχ

α
i

)∇αXI + χαi ∇̂β∇αXI ∂μzβ + χαi ∇̂β̄∇αXI ∂μz̄β̄ ,
(6.57)

and with (5.76) this leads to (6.54) (and the covariant derivative ∇̂β∇αXI takes
into account (6.56) for what concerns the non-gauge part). The remaining question
concerns the gauge part: how it reduces to the WI

μ terms mentioned in (6.55). For
that, we see that the explicitWI

μ terms in (4.60) lead to the terms

D̂μ�
I
i = . . .+ χαi ∇̂α(WJ

μX
KfJK

I ) . (6.58)
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Note that WJ
μ appears here inside the bracket in order that the covariantization

is respected. In this equation we then also treat the index J as holomorphic.
The interpretation is similar to the discussion after (3.46): we treat the WJ

μ as

independent of the zα, but then ∇̂αWJ
μ = �JKLW

L
μ ∂αX

K . Then we insert (5.114)
and obtain

D̂μ�
I
i = . . .− χαi ∇̂α

(
WJ
μ kJ

I
)

= . . .− χαi ∇α
(
WJ
μ kJ

β
)∇βXI − iκ2χαi ∇α(WJ

μP
0
J )X

I − χαi WJ
μP

0
J∇αXI ,

(6.59)

using once more (5.76). Note that in the last line we removed the hats on the
covariant derivatives either because the J index is anyway contracted or the fact that
∇̂αXI = ∇αXI . This then allows to extract theWJ

μ out of the covariant derivative.

In the last term we use that the gauge part of Aμ is −κ2WJ
μP

0
J and this term thus

cancels the gauge part in (6.56). The second term can be identified with the gauge
term included in ∂̂μz̄β̄ in (6.54) using (5.78). This finally leaves the explicit WI

μ

term in (6.55).
Using (5.70), the parts proportional to XI in D̂μ�Ii do not contribute to the

kinetic terms, which reduce to

e−1Lkin, matter ferm = − 1
4gαβ̄χ̄

α
i
/̂Dχiβ̄ − ζ̄Ā /̂DζBdĀB + h.c. , (6.60)

where our task at the hypermultiplets side was simple since the gauge choices just
restrict ζA to ζA. The covariant derivative is

D̂μζ
A =

(
∂μ + 1

4ωμ
ab(e)γab + 1

2 iAμ
)
ζA −WI

μtIB
AζB + ∂μquωuBAζB ,

(6.61)

where ωuBA appears in (6.14). Note that since we now are restricted to the physical
fermions we could replace dĀB by δAB, thus reducing also ζ Ā to ζA. We will keep
here the covariant way of writing.

For the terms bilinear in fermions and derivatives of bosons, which are Noether
terms (seventh line), we use (6.53) for the gaugino part, and for the hyperini the
restriction of ζA to ζA implies that we can use

Dμq
Xf iAX = Dμquf iAu = ∂̂μquf iAu , ∂̂μq

u = ∂μqu −WμIkuI . (6.62)

Therefore, these Noether terms are

e−1L Noether = ψ̄iμ
[

1
2gαβ̄

(̂
/∂zα

)
γ μχiβ̄ + i

(̂
/∂qu

)
γ μf iAuζA

]
+ h.c. (6.63)
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For the coupling of the gauge field strengths to the fermions, we first have to take
into account that the graviphoton field strength (last line of (4.54)) contains also a
fermionic part, which is thus included in the T T term in the second line of (4.59).
We can rewrite the expression for Tab using the special geometry relations (5.69)
and (5.54) as follows:

T −
ab = −κ2 ImNIJXJ

[
4F̂−I
ab + 1

2Cαβγ g
γ δ̄∇δ̄ X̄I χ̄αi γabχβj εij

+2κ2XI ζ̄Aγabζ
BCAB

]
. (6.64)

The square of this expression contains 2-fermion terms, which combine with the
terms on the eighth line in (4.59) to the so called ‘Pauli terms’3

e−1LPauli = F−I
ab ImNIJQab−J + h.c.,

Qab−J ≡ ∇ᾱX̄J
(

1
8g
βᾱCβγ δχ̄

γ

i γ
abχδj ε

ij + χ̄ ᾱiγ aψbj εij
)

+XJ
(
ψ̄ai ψ

b
j ε
ij + 1

2κ
2ζ̄ Aγ abζBCAB

)
. (6.65)

Notice that the above expression contains the coupling between fermions and gauge
field strengths. The precise form of this term is governed by symplectic geometry.
In particular, by similarity with (5.38) we can identify

(
Qab−J

NIJQab−J
)
, (6.66)

as a symplectic vector [7]. The Pauli term is then i/2 times the symplectic inner
product of this with the symplectic vector of F−I

ab andG−
ab I defined in Sect. 5.2.1.

The ninth line in (4.59) are Goldstino terms:

e−1Lgoldstino = −(ψ̄i · γ υi + h.c.) , υi = 1
2Wα

ijχαj + 2NiAζ
A ,

Wα
ij ≡

(
iεijP 0

I − PI ij
)

∇αXI = −εij gαβ̄kI β̄XI − PI ij∇αXI ,
NiA ≡ iXI kI uf iBuCBA , (6.67)

where we used (4.52).
The remaining terms in (4.59) are in the last two lines, and fermionic terms

originating from the auxiliary field term −NIJYI · YJ , using the expression

3In the expression of Qab−J we did not explicitly write that one should take the anti-self-dual
combination in [ab] since anyway this is multiplied by an anti-self-dual field strength in the Pauli
terms.
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in (4.54). The latter we can write using (5.66) and (5.55) as

Y Iij = −N−1|IJ PJ ij − 1
4

[
χ̄αi χ

β
j Cαβγ g

γ γ̄∇γ̄ X̄I + χ̄ iᾱχjβ̄ C̄ᾱβ̄γ̄ gγ γ̄∇γ XI
]
.

(6.68)

These are thus fermion mass terms, which we can parametrize as

Lm = 1
2Sij ψ̄

i
μγ

μνψjν − 1
2m

ij
αβχ̄

α
i χ

β
j −miαAχ̄αi ζA − 1

2mABζ̄
AζB + h.c.

(6.69)

All these expressions are determined by the gauging. We obtain

Sij = PIij X̄
I ,

mij αβ = 1
2P

ij
I Cαβγ g

γ δ̄∇δ̄ X̄I + εij∇αXI kI γ̄ gβγ̄ ,
mĀiᾱ = 2ikuI εij f

jA
u∇ᾱX̄I ,

miαA = −2ikuI f
iB
uCBA∇αXI ,

mAB = −4XI tIAB . (6.70)

For the χχ mass term we used (5.114).

6.1.4 Total Action

We have rewritten the action in Poincaré variables. The result is

L =Lbos (6.15)

+ L kin,gravitino (6.51)

+ L kin, matter ferm (6.60)

+ L Noether (6.63)

+ L Pauli (6.65)

+ L goldstino (6.67)

+ Lm (6.69)

+ 4-fermion terms, (6.71)

where we indicate where these parts can be found.
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6.1.5 Supersymmetry and Gauge Transformations

We still have to obtain the transformation rules under which this action is invariant.
After all the gauge choices, the remaining local symmetries are (apart from the
obvious general coordinate transformations and Lorentz symmetry): supersymmetry
and the gauge transformations parametrized by θI .

In Sect. 6.1.2 we already obtained the transformations of the scalar fields in the
Poincaré theory4:

δ(ε, θ)zα = 1
2 ε̄
iχαi + θKkKα ,

δ(ε, θ)qu = − iε̄i ζ Af uiA + iεij ρĀBε̄iζĀf
u
jB + θI kI u . (6.72)

The other bosonic physical fields are the gravitons and the gauge fields WI
μ, for

which we can immediately obtain from (4.64) and (4.65)

δ(ε, θ)eμ
a = 1

2 ε̄
iγ aψμi + h.c.,

δ(ε, θ)Wμ
I = 1

2ε
ij ε̄iγμχ

α
j ∇αXI + εij ε̄iψμjXI + h.c.+ ∂μθI + θJWK

μ fKJ
I .

(6.73)

We can read off the gauge transformations of the fermions from their covariant
derivatives (6.55) and (6.61). We explained the derivation there in full. The
explanation of the gauge transformations is identical by replacing WI

μ by θI . In
that derivation it was clear that the covariant transformations are a useful tool. The
contributions of (6.45) and (6.50) are identical to the WI

μ parts in the expressions
of the auxiliary fields Aμ and Vμ in (6.52). Thus we get

δ̂(θ)χαi =θIχβi ∇βkI α + 1
2κ

2θI
(

iP 0
I χ

α
i + Pijχαj

)
,

δ̂(θ)ζA =θI tIBAζB + 1
2κ

2θI iP 0
I ζ
A . (6.74)

Due to the compensating U(1) and SU(2) transformations, also the gravitino
transforms under the gauge transformations. The covariant transformation is

δ̂(θ)ψiμ = − 1
2κ

2θI
(

iP 0
I ψ

i
μ + Pj iψjμ

)
. (6.75)

For the supersymmetry transformations of the fermions we need the values of
the auxiliary fields, which we rewrite here in the conformal context. We obtain

4All the transformations in this section are the Poincaré transformations, indicated at some places
in this book with �. We will use this indication only at the end of this section when we make the
connection with the superconformal theory.
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from (4.61)

AF
μ = − 1

8 iκ2gαβ̄ χ̄
iβ̄γμχ

α
i + 1

2 iκ2ζ̄Āγμζ
BdĀB ,

VF
μ = 1

8κ
2gαβ̄ χ̄

iβ̄ γμχ
α
j τ i

j . (6.76)

These appear in the covariant derivatives. The linear part of DμXI in (3.19) was
simplified in (5.116), and we obtain the full result:

DμXI =∇αXI ∂̂μzα − iAF
μX

I − 1
2 ψ̄

i
μ�

I
i

=∇αXI
(̂
∂μz

α − 1
2 ψ̄

i
μχ

α
i

)
+ 1

2κ
2XI

(
− 1

4gαβ̄χ̄
iβ̄ γμχ

α
i + ζ̄ĀγμζBdĀB

)
.

(6.77)

The covariant derivative of the hyperscalars in (3.102) are

D̂μAiA =f iAuDμqu ,
Dμqu =∂̂μqX + iψ̄iμζ

A − iψ̄μj ζB̄ ε
jiρB̄A . (6.78)

With (6.76) we can also rewrite the contribution of S-supersymmetry from (4.68)
as

κ−2ηi(ε) = − 1
2X

IPI
ij εj + 1

8γ
aεjgαβ̄ χ̄

iβ̄γaχ
α
j + 1

16γ
abεij εjC

ĀB̄ ζ̄ĀγabζB̄

+ γ aεi
[

1
16gαβ̄ χ̄

α
j γaχ

jβ̄ + 1
4 ζ̄Āγaζ

BdĀB

]
. (6.79)

The value of the auxiliary field Tab was already given in (6.64). It appears in the
transformation of the gravitino and is therefore called the graviphoton field strength.
Its bosonic part can also be written as

T −
ab

∣∣
bos = −4κ2XI ImNIJ F−J

ab = −2iκ2
(
XIG−

I ab − FIF−I
ab

)
, (6.80)

where GI ab was defined in (5.5). The graviphoton is thus a scalar-field dependent
combination of the field strengths of the (nV + 1) gauge fields. The last expression
in (6.80) is symplectic invariant and can thus also be used in the absence of a
prepotential.

Note that this graviphoton field strength is the ‘projection’ of ImNIJ F−J
ab onXI .

The gaugino field strengths are the projection of these quantities on ∇ᾱX̄I

G−α
ab = gαβ̄∇β̄ X̄I ImNIJ F−J

ab . (6.81)

We are ready to give the supersymmetry transformations of the fermions. The
most relevant part for applications is the bosonic part in the transformations,
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and we will here restrict to these. For the full transformations, again covariant
transformations would be helpful. But the difference between the two is quadratic
in fermions.

For the gravitino, we obtain from (4.64)

δ(ε)ψiμ =
(
∂μ + 1

4ωμ
abγab − 1

2 iAμ
)
εi − Vμ j

iεj − 1
16γ

abT −
abε

ij γμεj

+ 1
2κ

2γμS
ij εj + . . . , (6.82)

where . . . refers to terms of higher order in the fermions; Aμ, Vμ
i
j and T −

ab are
found in (6.52) and (6.80). In (6.79) only the first term is bosonic, and is proportional
to the triplet Sij defined as mass matrix of the gravitini in (6.70).

For the gauginos, we insert the transformation (4.64) in (6.38) and obtain

δ(ε)χαi = gαβ̄∇β̄ X̄INIJ
[
/DXJ εi + 1

4γ
abFabJ εij εj + Yij J εj

+XKX̄LfKLJ εij εj + 2XJηi
]

+ . . .

= /̂∂zαεi − 1
2G

−α
ab γ

abεij ε
j + gαβ̄εjWβ̄ji + . . . (6.83)

The η term does not contribute here due to one of the expressions in (5.70). In fact,
the part of�Ii that transforms under ηi is the orthogonal one to χαi , which has been
gauge-fixed to zero. The first term follows directly from the bosonic part of (6.77).
For the second term, one uses that (6.81) can also be written as

G−α
ab = − 1

2g
αβ̄∇β̄ X̄INIJF −J

ab + fermionic terms , (6.84)

which follows from the definition (3.16), the expression for T − in (6.80) and the
difference between the two formulas in (5.66). For the following terms we use
(6.68) and (4.52), and these combine in the expressionWβ̄ji , the complex conjugate
of the expression in (6.67)

Wᾱij =
(
−iεijP 0

I − PIij
)

∇ᾱX̄I = −εij gβᾱkI βX̄I − PIij∇ᾱX̄I . (6.85)

For the hyperini, we project from (4.64), use (6.78) and the S-supersymmetry
again does not contribute due to (4.141) (again because the physical fermions have
been chosen like this). Also (4.139) implies that only one term contributes from the
Killing vectors (the index X reduces to u) and thus we get

δ(ε)ζA = 1
2 if iAu /̂∂q

uεi + iX̄I kI
Xf iAXεij ε

j + N̄i Āεi + . . . , (6.86)
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with again the complex conjugate of the expressions in (6.67) (using (4.142))

N̄i
Ā = (NiA)∗ = −iεij d

Ā
Bf

jB
ukI

uX̄I . (6.87)

Let us introduce the name ‘fermion shifts’ [8, 4] for the scalar, non-derivative
parts of the supersymmetry transformations of the fermions. Thus these are the
last terms in (6.82), (6.83) and (6.86). The fact that these matrices appear in the
mass terms of the gravitino (6.69) and in the Goldstino (6.67) is a general fact,
or Ward equation of all supergravities.5 They also lead to another interpretation of
the potential. A general formula in supergravity says that the square of the fermion
shifts, using the kinetic matrix of the fermions, obeys

δijV = − 3κ2SikSjk +Wαikgαβ̄Wβ̄jk + 4NiA(d−1)AB̄N̄j
B̄ ,

2V = − 3κ2SikSik +Wαikgαβ̄W β̄ik + 4NiA(d−1)AB̄N̄i
B̄ . (6.88)

To prove this explicitly for the non-diagonal part, one needs the equivariance
relation (4.159). For the diagonal part, inserting the definitions and e.g. (A.22) one
re-obtains the form of the potential as in (6.29).

6.1.5.1 Relation Between Symmetries

A few final remarks are in order for the relation between the supersymmetry and
gauge transformations. Let us first summarize how the symmetries of the Poincaré
theory are related to those of the conformal theory (decomposition law):

δ�[ε, θ ] =δQ[ε] + δG[θ ] + δS[η(ε)] + δT [λT (ε, θ)] + δSU(2)[λ(ε, θ)]
+ δK [λaK(0, ε, η)] . (6.89)

At the right-hand side of this equation are the superconformal transformations. In
the third term appears (6.79). For the T and SU(2) transformations, the parameters
are given by (6.43) and (6.49). When using covariant transformations, they can be
reduced to (6.45) and (6.50). The final term uses (4.5), in which we can now put
λD = 0. This last term is not often important since none of the independent fields
transforms underK-symmetry.

The commutators between symmetries in the Poincaré theories are then obtained
from the conformal commutators (3.18), (2.9), (2.10) combined by (6.89). We

5This can be proven by looking just at the variation of the action linear in matter fermions and with
one spacetime derivative.
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obtain (omitting terms of higher order in fermions)

[δ�(ε1), δ�(ε2)] = δcgct
(
ξa3 (ε1, ε2)

) + δM
(
λab3 (ε1, ε2)

)
+ δ�G

(
θI3 (ε1, ε2)

)
,

ξa3 = 1
2 ε̄
i
2γ
aε1i + h.c. ,

λab3 (ε1, ε2) = 1
4 ε̄
i
1

(
T +abεij + κ2XIγ abPI ij

)
ε
j

2 + h.c. ,

θI3 (ε1, ε2) = εij ε̄2iε1jXI + h.c. , (6.90)

and

[δ�G(θ), δ�Q(ε)] = δQ [ε3(ε, θ)] ,

εi3(ε, θ) = 1
2κ

2θI
(

iP 0
I ε
i + PIj i

)
εj . (6.91)

For example, the second term in λab3 (ε1, ε2) originates from the [Q,S] conformal
commutator where the bosonic part of the parameter (6.79) is used.

One can also see that the appearance of the last term in (6.90) is consistent
with the transformation of the gauge vectors proportional to the gravitino in
(6.73) following general rules as in (2.3). Similarly, the gauge transformation
of the gravitino (6.75) or its supersymmetry transformation proportional to WI

μ

included in (6.82) implies that these gauge transformations do not commute with
the supersymmetry and also lead to (6.91). This non-vanishing is the contribution of
gauge transformations to R-symmetry and is an interpretation of the moment maps.

The result (6.90) is important for interpreting solutions of the field equations. For
example, for solutions with non-vanishing value ofXI and a gauged isometry group
or non-vanishing value of T ab (charged black hole solutions), this implies that there
is a central charge in the preserved algebra.

6.2 Final Results for D = 5 Poincaré Supergravity

As in the previous chapter forD = 4, we will collect here the main results ofD = 5
for general couplings with vector multiplets and hypermultiplets, though we will be
much shorter since the results in our conventions have been collected in [9], for a
large part based on previous work, e.g. [10–12]. Actually, in giving these results, we
will extend the vector multiplets, which we discussed in Chaps. 3 and 4, to vector-
tensor multiplets, where the vector multiplets are off-shell, but the tensor multiplets
are on-shell.

We consider the theory with

• Supergravity, including the frame field eaμ and gravitino ψiμ. The graviphoton is
included in the vector multiplets.



6.2 Final Results for D = 5 Poincaré Supergravity 225

• Vector-tensor multiplets enumerated by Ĩ = 0, . . . , nV + nT where nV is the
number of vector multiplets and nT is the number of tensor multiplets. The index
is further split as Ĩ = (I,M), where I = 0, . . . , nV andM = nV + 1, . . . , nV +
nT . The vector or tensor fields are grouped in

HĨμν ≡
(
FIμν, B̃

M
μν

)
, F Iμν ≡ 2∂[μWI

ν] + fJKIWJ
μW

K
ν , (6.92)

where B̃Mμν are the fundamental tensor fields andWI
μ are the fundamental vector

fields, gauging an algebra with structure constants fJKI . The fermions of these
multiplets are denoted as λxi and the real scalars as φx where x = 1, . . . , nV +
nT . In Sect. 3.3.2, we constructed actions for the vector multiplets based on a
symmetric constant tensor CIJK . For vector-tensor multiplets this is extended to
a tensor CĨ J̃ K̃ . In order to get a standard normalization, we rescale the CĨ J̃ K̃
symbol and the vector multiplet scalars σ Ĩ (generalizations of the σ I introduced
in Sect. 3.2.1) as follows:

σ Ĩ ≡
√

3

2κ2h
Ĩ , CĨ J̃ K̃ ≡ −2

√
2κ2

3
CĨ J̃ K̃ . (6.93)

Furthermore, for the tensor multiplets we need an antisymmetric and invertible
metric �MN and the structure constants fIJ K are extended to transformation
matrices tI J̃

K̃ related by

CMJ̃ K̃ =
√

3

8κ2
t(J̃ K̃)

P�PM, tI [MP�N]P = 0, tI (J̃
M̃CK̃L̃)M̃ = 0,

(tM)J̃
K̃ = 0, (tI )J̃

K̃ =
(
fIJ

K (tI )J
N

0 (tI )M
N

)
. (6.94)

Note that this implies that at least one index of a non-zero CĨ J̃ K̃ should
correspond to a vector multiplet. The above-mentioned physical scalars φx are
a parametrization of the manifold defined as solution of the constraint (4.170),
which is now written as

CĨ J̃ K̃hĨ (φ)hJ̃ (φ)hK̃(φ) = 1. (6.95)

• nH hypermultiplets with scalars qu and spinors ζA, where u = 1, . . . , 4nH and
A = 1, . . . , 2nH . Their interactions are determined by the frame fields, f iAu,
invertible as 4nH × 4nH matrices, identical to what we saw forD = 4.
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Table 6.2 Multiplets and fields of the super-Poincaré theories for D = 5

This leads to the independent physical fields in Table 6.2.
As mentioned, the full results are in [9].6 We repeat the main results. The bosonic

action is

e−1Lbos = 1
2κ2R − 1

4aĨ J̃ H
Ĩ
μνH

J̃μν − 1
2gxyD̂μφ

xD̂μφy − 1
2guvD̂μq

uD̂μqv − V

+ 1

16g
e−1εμνρστ�MNB̃

M
μν

(
∂ρB̃

N
στ + 2gtIJ NWI

ρ F
J
στ + tIP NWI

ρ B̃
P
στ

)

+ κ
12

√
2
3e

−1εμνλρσCIJKWI
μ

[
FJνλF

K
ρσ

+fFGJWF
ν W

G
λ

(
− 1

2F
K
ρσ + 1

10fHL
KWH

ρ W
L
σ

)]

− 1
8e

−1εμνλρσ�MN tIK
MtFG

NWI
μW

F
ν W

G
λ

(
− 1

2F
K
ρσ + 1

10fHL
KWH

ρ W
L
σ

)
.

(6.96)

The metrics for the vectors and the vector–scalars are defined by

aĨ J̃ = −2CĨ J̃ K̃hK̃ + 3hĨhJ̃ , hĨ ≡ CĨ J̃ K̃hJ̃ hK̃ = aĨ J̃ hJ̃ ,

gxy = hĨxh
J̃
y aĨ J̃ , hĨx ≡ −

√
3

2κ2 ∂xh
Ĩ (φ). (6.97)

Many useful relations are given in Appendix C of [9].
The domain of the variables should be limited to hI (φ) �= 0 and the metrics aIJ

and gxy should be positive definite. Similar to (5.70) for D = 4, one can block-
diagonalize the metric aIJ in a singlet corresponding to the compensating multiplet,
and the part corresponding to the physical scalars:

(
hI

hIx

)
aIJ

(
hJ hJy

)
=
(

1 0
0 gxy

)
. (6.98)

6A few changes of notation are mentioned in (C.3).
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The metric for the hyperscalars is the same as discussed forD = 4 in Sect. 6.1.1
with curvature as in (5.167).

All other quantities in (6.96) are related to gauged symmetries. The gauge
symmetry transformations (with parameters θI ) of the bosons are

δGW
I
μ = ∂μθ

I − θJ fJKIWK
μ , δGB̃

M
μν = −θJ tJ K̃MHK̃μν,

δGh
Ĩ (φ) = −θJ tJ K̃ Ĩ hK̃ ,

δGφ
x = θI kI

x, kI
x ≡ 1

κ

√
3

2
tI J̃

K̃hJ̃ hK̃
x,

δGq
u = θI kI

u, (6.99)

where kI u should be isometries of the quaternionic-Kähler metric huv , whose
commutators are determined by the structure constants fIJK :

2k[I v∂vkJ ]u = fIJ KkKu . (6.100)

These transformations determine immediately the covariant derivatives in this
bosonic truncation:

D̂μφ
x = ∂μφx −WI

μkI
x, D̂μq

u = ∂μqu −WI
μkI

u. (6.101)

The gauge transformations are also in one-to-one relation with triplet moment maps.
For example, the moment map is obtained from the Killing vectors in (4.160),
derived in the treatment of D = 4 and also valid here. The potential V will appear
below in (6.104) after discussing the supersymmetry transformations.

The N = 2 supersymmetry rules of the fermionic fields, up to bilinears in the
fermions, are given by7

δ(ε)ψiμ = Dμ(ω)εi + i

4
√

6

[
κhĨH

Ĩνρ
(
γμνρ − 4gμνγρ

)
εi + 2κ−1Pj

iγμε
j
]
,

Dμ(ω)ε
i =

(
∂μ + 1

4ωμ
abγab

)
εi + ∂μquωuj iεj + 1

2κ
2WI

μPIj
iεj ,

δ(ε)λxi = − 1
2 i /̂Dφxεi + 1

4γ ·HĨhx
Ĩ
εi + κ−2Pxj

iεj + 1
2κ

−2Wxεi,

δ(ε)ζA = 1
2 iγ μD̂μquf iAuεi − κ−1N iAεi . (6.102)

7Remember that indices are lowered with the symplectic metrics εij and CAB using the NW-SE
convention as in (A.15), while the index x is lowered with gxy . The translation from triplet to
doublet notation in (A.19) holds for all vectors such as P or Px .
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Here appear quantities with some similarity between the vector and hypermultiplet
sector8

Wx ≡ −
√

6

4
κhI kI

x = −3

4
tJ Ĩ

P̃ hJ hĨ hx
P̃
, N iA ≡ −

√
6

4
κhI kI

uf iAu ,

P ≡ κ2hIPI , Px ≡ κ2hIx . (6.103)

See e.g. that P is the real analogue of Sij in (6.70). As in (6.88) the supersymmetry
transformations determine the potential, which is

V = κ−4
(

P · P − 1
2 Px · Px − 2WxWx − 2N iAεijCABNjB

)
. (6.104)

Let us finally note that the remarks about the gauge transformation of the grav-
itino (6.75) and the non-vanishing commutator between gauge and supersymmetry
transformations (6.91) that we had for D = 4 are also applicable for D = 5 by just
omitting P 0

I , since in D = 5 there is no U(1) factor in the R-symmetry group.
Also here the commutator of two supersymmetries contains a scalar-dependent

gauge transformation

[δ(ε1), δ(ε2)] = . . .+ δG
(
θI = −

√
6

4
iκ−1hI ε̄i2ε1i

)
. (6.105)

6.3 Final Remarks

We reviewed the constructions of the supergravity actions for N = 2 with
vector and hypermultiplets. We restricted ourselves to actions at most quadratic in
spacetime derivatives in the bosonic side, linear for the fermionic parts. We used
the superconformal techniques to obtain these results.9 With the same techniques
also theories with higher derivatives can be obtained. See e.g. the review [13]. See
also [14–16] for various aspects of higher-derivative actions in this context and [17]
for an application to get Killing spinor identities. New possibilities with higher-
derivative terms and supersymmetry breaking (related to nonlinear realizations of
supersymmetry) have also been explored in [18].

8One could even improve the similarity by e.g. definingWxij = 1
2Wxδi

j + Pxij to those in (6.67)
and (6.70).
9There are many other approaches. We gave an overview in the introduction.



References 229

We made several further choices. For the Weyl multiplet, we used the ‘standard
Weyl multiplet’. An alternative would be the dilaton Weyl multiplet [19–22]. As far
as we know, this does not lead to other matter couplings when considering theories
quadratic in spacetime derivatives.

In Sect. 4.2 we discussed already the choices of the second compensating
multiplet for D = 4. A similar choice exists also for D = 5 and D = 6. We
have chosen in the further treatment the hypermultiplet as second compensating
multiplet because this exhibits the structure of quaternionic-Kähler manifolds as
projective manifolds in the same way as special Kähler manifolds are obtained. A
disadvantage is that this multiplet is on-shell from the start. When one uses the
tensor multiplet or the nonlinear multiplet [23, 24], one keeps the theory off-shell.
See e.g. the construction for D = 6 in [25]. In our treatment we have chosen to
eliminate auxiliary fields at an early stage, i.e. before the gauge fixing to the Poincaré
theory. It may be useful to eliminate these fields only at a later stage such that off-
shell Poincaré supergravity is obtained. The techniques explained in the book can
then still be used.

The ideas of localization, considering rigid supersymmetric theories on a curved
background, are often based on off-shell supergravity. For N = 2 this has been
considered in [26]. In view of these ideas, Euclidean versions of supergravity are
studied. Special geometry in Euclidean versions is constructed in [27–30].10 The
off-shell D = 5 Minkowski supergravity treated in this book can also be reduced
over time to an EuclideanD = 4 theory [33].

The main methods that we have explained in this book are still applicable for
all these extensions. We hope that the extensive explanations that we gave here will
be useful for future developments of the theory and for exploring the physics of
solutions to the field equations.11
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Appendix A
Notation

We use the same conventions as in [1]. This implies that the sign factors s1 to s9
in Appendix A of that book, see also (C.1), are equal to +1. In particular, we use
the metric signature (− + . . .+). If you prefer the opposite, insert a minus sign for
every upper index which you see, or for an explicit metric ηab or gμν . The gamma
matrices γa should then be multiplied by an i to implement this change of signature
consistently.

We collect the indices that we use in Table A.1.
(Anti)symmetrization is done with weight one:

A[ab] = 1
2 (Aab − Aba) and A(ab) = 1

2 (Aab + Aba) . (A.1)

The antisymmetric tensors are often contracted with γ matrices as in γ ·T ≡ γ abTab.

A.1 Bosonic Part

For the curvatures and connections, we repeat here the main formula from the
conventions of [1, Appendix A.1] in order to be able to compare with other papers
in the literature.

Rμν
ab(e) = 2∂[μων]ab(e)+ 2ω[μac(e)ων]cb(e) ,

Rμνρσ = Rρσ abeμa eνb = 2∂[ρ�μσ ]ν + 2�μτ [ρ�
τ
σ ]ν ,

Rμν = Rρμbaebρeνa = Rρνρμ , R = gμνRμν ,

Gμν = e−1 δ

δgμν

∫
d4x eR = Rμν − 1

2gμνR . (A.2)
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Table A.1 Use of indices

μ 0, . . . , 3 Local spacetime

a 0, . . . , 3 Tangent spacetime

i 1, 2 SU(2)

In Chaps. 1 and 2

α 1, . . . , 4 Spinor indices

A All the gauge transformations

I All gauge transformations excluding translations

From Chap. 3 onwards

I 0, . . . , n = nV Vector multiplets

X 1, . . . , 4nH Scalars in hypermultiplets

A 1, . . . , 2nH Spinors (or USp(2nH ) vector) in hypermultiplets

V 1, 2, 3 Triplet of SU(2), see Sect. A.2.2

From Chap. 4 onwards, indices I,X,A are split and

α 1, . . . , n = nV Independent coordinates in special Kähler

X 1, . . . , 4(nH + 1) Scalars in hypermultiplets = {0, r, u}
A 1, . . . , 2(nH + 1) Spinors (or USp(2(nH + 1)) vector) in hypermultiplets = {i, A}
r 1, 2, 3 Compensating directions, part of X

u 1, . . . , 4nH Independent coordinates in quaternionic-Kähler, part of X

A 1, . . . , 2nH Spinors (or USp(2(nH )) vector) in hypermultiplets, part of A

The formulations in terms of spin connection ω and in terms of Levi-Civita
connection � are equivalent by demanding

0 = ∇μeνa = ∂μeνa + ωμab(e)eνb − �ρμνeρa , gμν = eμaηabeνb , (A.3)

which leads to

ωμ
ab(e) = 2eν[a∂[μeν]b] − eν[aeb]σ eμc∂νeσ c ,
�ρμν = 1

2g
ρλ

(
2∂(μgν)λ − ∂λgμν

)
, �νμν = 1

2∂ν ln g . (A.4)

Note that the Ricci tensor and scalar curvature are of opposite sign as in several
older papers in this field. The sign is now chosen such that Einstein spaces with
positive scalar curvature are compact.

The anticommuting Levi-Civita tensor is real, and taken to be

ε0123 = 1 , ε0123 = −1 , (A.5)
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the − sign is related to the one timelike direction.1 For convenience, we give below
the formulae for an arbitrary dimensionD and number of timelike directions t . The
contraction identity for these tensors is (p + n = D)

εa1...anb1...bpε
a1...anc1...cp = (−)t p! n! δ[c1[b1

. . . δ
cp]
bp] . (A.6)

For the local case, we can still define constant tensors

εμ1...μD = e−1ea1
μ1
. . . eaDμDεa1...aD , εμ1...μD = eeμ1

a1
. . . eμDaD ε

a1...aD . (A.7)

They are thus not obtained from each other by raising or lowering indices with the
metric. In some papers in the literature a difference is made between εμ1···μD and
εμ1···μD , such that one of the two has the factor e−1 in the definition (A.7) and the
other one has not. We only use the symbol defined by (A.7).

Exercise A.1 Show that the tensors in (A.7) are indeed constants, i.e. that arbitrary
variations of the frame field cancel in the full expression. You can use the so-called
Schouten identities, which means that antisymmetrizing in more indices than the
range of the indices, gives zero. The constancy thus implies that one can have (A.5)
without specifying whether the 0123 are local or flat indices. �

The definition of dual tensor is in 4 and 6 dimensions, respectively,

D = 4 : F̃ ab ≡ − 1
2 iεabcdFcd , D = 6 : F̃ abc ≡ − 1

3!ε
abcdef Fdef . (A.8)

The minus sign in the definition of the dual is convenient for historical reasons.
Indeed, when, as written in footnote 1, this ε is i times the ε in these earlier papers
then this agrees with the operation that was taken there (e.g. in [2]). In 4 dimensions
the dual is an imaginary operation, and the complex conjugate of a self-dual tensor
is its anti-self-dual partner, while in 6 dimensions the (anti-)self-dual part of a real
tensor is real.

The self-dual and anti-self-dual tensors are introduced in even dimensions as

F±
a1...an

≡ 1
2

(
Fa1...an ± F̃a1...an

)
. (A.9)

It is useful to observe relations between (anti)self-dual tensors. In 4 dimensions:

G+abH−
ab = 0 , G±c(aH±b)

c = − 1
4η
abG±cdH±

cd ,

G+
c[aH

−
b]
c = 0 . (A.10)

1Note that in many papers, e.g. [2], one takes in 4 dimensions an imaginary Levi-Civita tensor to
avoid factors of i in definitions of duals (A.8).
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In 6 dimensions:

G±abcH±
abc = 0 , G+cd(aH−b)

cd = 1
6η
abG+cdeH−

cde ,

G±
cd[aH

±
b]cd = 0 , G±

a[bcH
±
cd]
a = 0 . (A.11)

A.2 SU(2) Conventions

We use the Levi-Civita εij for which the important property is that

εij ε
jk = −δik , (A.12)

where in principle εij is the complex conjugate of εij , but we can use (ε = iσ2)

ε12 = ε12 = 1 . (A.13)

A.2.1 Raising and Lowering Indices

There is an important difference on the use of the i, j indices between the formulae
for D = 4 and D = 5, 6. For D = 4 these indices are raised and lowered by
complex (or charge) conjugation (here Ai is used for any doublet)

D = 4 : (Ai)C = Ai , (Ai)
C = Ai . (A.14)

For D = 5, 6, these indices are raised or lowered using εij . We use NorthWest–
SouthEast (NW–SE) convention, which means that this is the direction in which
contracted indices should appear to raise or lower indices: see

D = 5, 6 : Ai = εijAj , Ai = Ajεji . (A.15)

Note that this also implies that for these dimensions, interchanging the position of
contracted indices leads to a minus sign:

AiBi = −AiBi . (A.16)

Another useful relation is that for any antisymmetric tensor in ij

A[ij ] = − 1
2ε
ijAkk . (A.17)
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Exercise A.2 Check that we can consider εij as the tensor δi j with the j index low-
ered. For this it is important to write δij and not δj i . Also εij is the corresponding
tensor with raised indices. �
Implicit summation (in NW–SE direction) is also used for bilinears of fermions, e.g.

λ̄χ ≡ λ̄iχi . (A.18)

A.2.2 Triplets

SU(2)-triplets can be converted into 2 × 2 matrices using the anti-hermitian τ ,
defined as τ i

j = iσ i j , being σ i
j standard Pauli matrices. We define the triplets

as the traceless anti-hermitian matrices

Yi
j ≡ τ i

j · Y, Y = − 1
2τ i

j Yj
i, λi

jYj
i = −2λ · Y. (A.19)

For D = 5, 6 indices can be raised and lowered and thus

D = 5, 6 : τ ij = εikτ kj = τ ji = (iσ3,−1l,−iσ1) = (τ ij )∗. (A.20)

The correspondence between real symmetric matrices and triplets is

Y ij = τ ij · Y = (Yij )∗ = εikεj�(Y k�)∗, Y = 1
2τ ij Yij = 1

2τ ij Y
ij . (A.21)

The auxiliary field Y ij of vector multiplets inD = 4 has the reality property (3.14),
so that this is consistent with the introduction of a real vector Y.

Useful formulae for the symmetric tensors are

τ ij · τ kl = δki δlj + δkj δli ,
AijB

jk = δki A · B + (A × B) · τ i k. (A.22)

This has been written explicitly for the SU(2) generators in (1.52)–(1.55).

A.2.3 Transformations, Parameters and Gauge Fields

As mentioned in (1.52)–(1.55), the generators Uij satisfy the same properties in
D = 4, 5, 6, but in D = 4 the Uij are defined as the complex conjugates, which
implies (1.54), while for D = 5, 6, the property that Uij = Uji after raising and
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lowering of indices implies

D = 4 : Uij = −Uj i , D = 5, 6 : Uij = Uj i . (A.23)

The correspondence with the parameters is different with the two conventions
(see (2.8))

D = 4 : δSU(2) = λijUj i = −2λ · U , D = 5, 6 : δSU(2) = λijUij = 2λ · U .
(A.24)

Using (1.53), this implies

[
δSU(2)(λ1), δSU(2)(λ2)

] = δSU(2)(λ3) , λ3 = ∓2 λ1 × λ2 , (A.25)

where the upper sign is forD = 4 and the lower forD = 5, 6. Despite the difference
in properties in (A.23), which can also be used for the parameters, there is one form
that can be used in general δ = . . .− λj iUj i .

The SU(2) transformation of a doublet, like Ai , can be written in different ways

D = 4 : δAi = Ajλj i = −λijAj , δAi = −λijAj = Ajλj i ,
D = 5, 6 : δAi = λijAj = −λijAj , δAi = −λijAj = Ajλj i . (A.26)

A.3 Gamma Matrices and Spinors

A general treatment of gamma matrices and spinors is given in [3, Sect. 3].
In that review general spacetime signatures are treated. Of course, that material
is not original, and is rather a convenient reformulation of earlier works [4–7].
Another approach to the theory of spinors has been presented in [8]. For Lorentzian
signatures, the conventions that we use are given in [1, Chap. 3].

Coefficients tr = ±1 appear in Majorana flip relations and relations between
spinors and conjugated spinors

λ̄γa1...ar χ = tr χ̄γa1...ar λ ,

χa1...ar = γa1...ar λ → χ̄a1...ar = t0tr λ̄γa1...ar , (A.27)

and they are given by

t0 t1 t2 t3 t4 t5

D = 4 + − − + +
D = 5 + + − − + +
D = 6 − + + − − +

(A.28)
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However, take into account that often the i, j indices are hidden, see (A.18), such
that e.g. in 5 dimensions

D = 5 : λ̄χ ≡ λ̄iχi = χ̄iλi = −χ̄ iλi = −χ̄λ . (A.29)

A.3.1 D = 4

One useful tool, which is explained in [1, Chap. 3], is that complex conjugation can
be performed by using charge conjugation, since for a Lagrangian the two are equal.
The most important rules are as follows2:

• For scalars in spinor space, charge conjugation is equal to complex conjugation.
• For matrices in SU(2) space (and scalars in spinor space), the choice of the

position of the indices is chosen such that (complex and) charge conjugation
changes the height of the index: e.g. (Mij )C = Mij , or (Mi

j )
C =Mij .

• Majorana spinors in a Weyl basis satisfy (χi)C = χi . The position of the i
index indicates the chirality, see Tables 2.3 and 3.1, and thus charge conjugation
changes the chirality.

• For a bispinor built from two spinors and a matrix M in spinor (and possible
SU(2)) space):

(λ̄Mψ)C = λCMCψC , e.g. (λ̄iMijψj )C = λ̄iMi
jψ

j , (A.30)

and (MN)C = MCNC .
• The action in spinor space can be derived from γ Ca = γa , and γ C∗ = −γ∗.
• For the fermions of hypermultiplets, the index A is by charge conjugation raised

or lowered and at the same time replaced by its barred one, Ā, e.g. the charge
conjugate of ζA = PLζA is ζĀ = PRζĀ.

For the frame fields of hypermultiplets in 4 dimensions:

(
f XiA

)C = (
fXiA

)∗ = fXiĀ = εij ρĀBf XjB , fiĀX = (
f iAX

)∗
.

(A.31)

For the USp(2r) connection one has

(
ωXA

B
)C = (

ωXA
B
)∗ = ω̄Ā

B̄ = −ρĀDωXDEρEB̄ . (A.32)

2These properties follow from the definition that the charge conjugate of a spinor χ is χC = iCγ 0χ

and χ̄ = χT C.
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The charge conjugate of the antisymmetric metric CAB is CĀB̄:

(CAB)∗ = CĀB̄ = ρĀCρB̄DCCD . (A.33)

These matrices are also used to raise and lower indices on bosonic quantities with
the NW–SE convention.

A.3.2 D = 5

In odd dimensions the antisymmetric product of all the matrices is proportional to
the unit matrix. We choose the sign as follows:

γ abcde = iεabcde . (A.34)

Exercise A.3 Check that this implies

γ abcd = iεabcdeγe ,

2γ abc = iεabcdeγed ,

3!γ ab = iεabcdeγedc ,

4!γ a = iεabcdeγedcb ,

5! = iεabcdeγedcba ,

iεabcdeγef = 4γ [abcδd]f ,

iεabcdeγefg = 12γ [abδcd]gf . (A.35)

�
The charge conjugation C and Cγa are antisymmetric in D = 5. We include a

multiplication by εij in the definition of charge conjugation3:

(λi)C ≡ −iγ 0C−1(λj )∗εji . (A.36)

The elementary spinors are ‘symplectic Majorana’, which means that they are
invariant under this C operation.

3The choice of sign is motivated by the requirement that the translation parameter in the
supersymmetry commutation relation reduces from D = 5 to D = 4 as in (A.59) below.
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The practical rules are as follows:

• For bosons charge conjugation is equal to complex conjugation. However, a
bispinor λ̄iχi built from symplectic Majorana spinors is pure imaginary.

• For a bosonic matrix in SU(2) space,M , the charge conjugate is defined asMC ≡
σ2M

∗σ2, or explicitly (Mij )C = −εik(Mk�)∗ε�j .
• For a bispinor that is also a scalar in SU(2) space: (λ̄Mψ)C = −λCMCψC ,

whereM can be a matrix in spinor space and/or SU(2) space.
• Symplectic Majorana spinors are invariant under C.
• For matrices in spinor space: γ Ca = −γa .
As an example, see that the expression

λ̄iγ μ∂μλi (A.37)

is real for symplectic Majorana spinors.
For hypermultiplets the reality condition depends on a matrix ρAB̄. The charge

conjugation under which the symplectic Majorana spinors are invariant is then
similar to (A.36):

(
ζA

)C ≡ −iγ 0C−1(ζB)∗ρB̄A = ζA . (A.38)

A.3.3 D = 6

Here there is again chirality, as for every even dimension, but moreover, there are
real self-dual tensors. Similarly, we define

γ∗ = γ0 . . . γ5 = −γ 0 . . . γ 5 , (A.39)

without a factor i. The essential formula is

γabcγ∗ = −γ̃abc , (A.40)

Exercise A.4 Show that γabcPL = γ−
abc as in 4 dimensions where γabPL = γ−

ab. �
Spinors can satisfy the (symplectic) Majorana condition and be chiral at the
same time, and we generally use such ‘symplectic Majorana–Weyl’ spinors. Thus
complex conjugation does not change chirality, and we can raise and lower i indices
as in (A.15).
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We choose the charge conjugation matrix to be symmetric.4 We use the same
definition for charge conjugation as in (A.36), and thus this also applies for
symplectic Majorana spinors.

The rules for charge conjugation are

• For bosons charge conjugation is equal to complex conjugation. Also a bispinor
λ̄iχi built from symplectic Majorana spinors is real.

• For a bosonic matrix in SU(2) space,M , the charge conjugate is defined asMC ≡
σ2M

∗σ2, or explicitly (Mij )C = −εik(Mk�)∗ε�j .
• For a bispinor that is also a scalar in SU(2) space: (λ̄Mψ)C = −λCMCψC ,

whereM can be a matrix in spinor space and/or SU(2) space.
• Symplectic Majorana spinors are invariant under C.
• For matrices in spinor space: γ Ca = γa and γ C∗ = γ∗.

A.3.4 Products of γ Matrices and Fierzing

There are some useful identities for calculations in arbitrary dimensions [9]. For a
product of two antisymmetrized gamma matrices, one can use

γa1...ai γ
b1...bj =

i+j∑
k=|i−j |

i!j !
s!t !u! δ

[b1[ai · · · δbsat+1
γa1...at ]bs+1...bj] , (A.41)

s = 1
2 (i + j − k) , t = 1

2 (i − j + k) , u = 1
2 (−i + j + k) .

The numeric factor can be understood as follows. Between the i indices of the first
gamma factor, we select s = i − t of them for the contraction. That choice is a
factor

(
i
s

)
. The same number of indices s is chosen between the j indices of the

second factor. That is a factor
(
j
s

)
. Finally, we can contract these s indices in s!

ways. In [9] a few extra rules are given and a diagrammatic technique is explained
that is based on the work of Kennedy [10].

For contractions of repeated gamma matrices, one has the formula

γb1...bk γa1...a�γ
b1...bk = ck,�γa1...a�

ck,� = (−)k(k−1)/2k!(−)k�
min(k,�)∑
i=0

(
�

i

)(
D − �
k − i

)
(−)i , (A.42)

4That is a choice in 6 dimensions, as we can also use the antisymmetric charge conjugation matrix
C′ = Cγ∗.
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for which tables were given in [9] in dimensions 4, 10, 11 and 12. Useful examples
in 4 dimensions are

γ aγ bcγa = γ abγcγab = 0, γ abγcdγab = 4γcd . (A.43)

Further, there is the Fierz relation. We know that the gamma matrices are matrices
in dimension� = 2Int D/2, and that a basis of �×� matrices is given by the set

{
1l, γa, γa1a2, . . . , γ

a1...a[D]} where

{ [D] = D for evenD ,
[D] = (D − 1)/2 for oddD ,

(A.44)

of which only the first has non-zero trace. This is the basis of the general Fierz
formula for an arbitrary matrixM in spinor space:

2Int(D/2)Mα
β =

[D]∑
k=0

(−)k(k−1)/2 1
k!
(
γa1...ak

)
α
β Tr (γ a1...akM) . (A.45)

Further Fierz identities can be found in [10].

Exercise A.5 Check that Fierz identities for chiral spinors in 4 dimensions lead to

ψ̄LφL χ̄LλL = − 1
2 ψ̄LλL χ̄LφL + 1

8 ψ̄Lγ
abλL χ̄LγabφL ,

ψ̄LφL χ̄RλR = − 1
2 ψ̄Lγ

aλR χ̄RγaφL . (A.46)

An extra minus sign w.r.t. (A.45) appears here because fermions λ and φ are
interchanged. In 5 dimensions the Fierz equation is

ψ̄iφj χ̄kλ� = − 1
4 ψ̄

iλ�χ̄kφj − 1
4 ψ̄

iγ aλ�χ̄kγaφ
j + 1

2 ψ̄
iγ abλ�χ̄kγabφ

j . (A.47)

In 6 dimensions (ψ̄R = ψ̄PL) one has

ψ̄RφL χ̄LλR = − 1
4 ψ̄Rγ

aλR χ̄LγaφL + 1
48 ψ̄Rγ

abcλR χ̄LγabcφL ,

ψ̄RφL χ̄RλL = − 1
4 ψ̄RλL χ̄RφL + 1

8 ψ̄Rγ
abλL χ̄RγabφL . (A.48)

For those that want to go further, a more complicated identity for doublet spinors in
4 dimensions is

εjkγ abλi λ̄j γabλk = 8εjkλkλ̄iλj . (A.49)

It uses the first equation of (A.46), symmetries of the bilinears and manipulations
between the ε symbols.

�
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A.4 Spinors from 5 to 6 and 4 Dimensions

For some part of this text (especially for hypermultiplets) we started from explicit
formulae for symplectic Majorana spinors in D = 5 and these formulae are
useful also in 4 and 6 dimensions. The spinors have different properties in 4 and
6 dimensions, but we can easily translate the formulae.

Let us temporarily write ζ̃ A for the symplectic Majorana–Weyl spinors in D =
6, which are right-handed. We consider them now as 4-component spinors, and
translate to the spinors ζA of D = 5 by

ζA = iζ̃ A , ζ̄ A = −iζ̃ A . (A.50)

For spinors that are left-handed in 6 dimensions, e.g. the supersymmetry parameter
εi , we have

εi = ε̃i , ε̄i = ε̃i . (A.51)

Finally, the last γ -matrix from 6 dimensions, γ5 gets translated to an imaginary unit:
i on a left-handed spinor, and −i on a right-handed spinor. Combined with the above
factors, we thus have

γ5ε̃
i = iεi , γ5ζ̃

A = −ζA . (A.52)

Reduction from 5 to 4 dimensions is a bit more involved [11]. We give here the
rules and some illustrative examples. Now the tilde indicates quantities for D = 5.

The rules are based on the fact that the γ4 matrix in 5 dimensions is identified with
γ∗ in 4 dimensions, and the charge conjugation matrix of 5 dimensions is C̃ = Cγ∗
in 4 dimensions. An important difference is that in 5 dimensions i, j indices are
raised and lowered as in (A.15), while this is related to charge conjugation and
change of chirality in 4 dimensions, see Sect. A.3.1. The symplectic Majorana
condition of D = 5, (A.36), can be written as

(λ̃i )∗ = iC̃γ 0λ̃j εji . (A.53)

This is now translated in terms of the 4-dimensional charge conjugation as

(λ̃i )C = −γ∗λ̃j εji . (A.54)

Now translation rules depend on the choice in 4 dimensions whether λi is left- or
right-handed:

λi = ±γ∗λi , λi = ∓γ∗λi . (A.55)
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In order to be consistent with (A.54) we can then write

λ̃i = λi ∓ λj εji . (A.56)

This then also implies

λ̃i = (λ̃i)T C =
(
λi ∓ λj εji

)T
Cγ ∗ = ±λ̄i + λ̄j εji . (A.57)

Similar rules apply to the spinors of the hypermultiplets, replacing εij by ρAB̄. We
took in D = 4 the choice ζA = PLζA, hence we have

ζ̃A = ζA − ζB̄ρB̄A , ζ̃
A = ζ̄A + ζ̄B̄ρB̄A . (A.58)

As a first example, let us start from the translation parameter in terms of two
supersymmetries, which are left-handed in D = 4, as in (1.6):

ξ̃ a(ε̃1, ε̃2) = 1
2 ε̃
i

2γ
aε̃
j

1 εji

= 1
2

(
ε̄i2 + ε̄2kεki

)
γ a

(
ε
j

1 − ε1�ε�j
)
εji

= 1
2 ε̄
i
2γ
aε1i + 1

2 ε̄2iγ
aεi1 = ξa , (A.59)

since the other terms disappear by chirality. The right-hand side is the correct
expression in 4 dimensions. The 5-dimensional commutator contains another
component:

ξ̃4(ε̃1, ε̃2) = 1
2 ε̃
i

2γ
4ε̃
j

1 εji

= 1
2

(
ε̄i2 + ε̄2kεki

)
γ∗

(
ε
j
1 − ε1�ε�j

)
εji

= − 1
2 ε̄
i
2ε
j

1 εij + 1
2 ε̄2iε1j ε

ij . (A.60)

As a second example we translate the non-closure relation obtained in (3.62)

[
δ(ε̃1), δ(ε̃2)

]
ζ̃A = ξ̃μ∂μζ̃A + 1

4

[
(ε̃
i

2ε̃
j
1 )− γ ν(ε̃

i

2γνε̃
j
1 )
]
εji i�̃A ,

i�̃A ≡ /∇ ζ̃A + 1
2WBCDAζ̃Bζ̃

C
ζ̃D . (A.61)

We define in 4 dimensions the �A as right-handed, and for convenience redefine the
�A inD = 4 from the rule with the lower sign in (A.56) with a factor i (and thus −i
for the left-handed component in order to define Majorana spinors in D = 4), i.e.

i�̃A = −�A + �B̄ρB̄A , (A.62)
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which leads to

− �A = −PR�A = PRi�̃A , �Ā = PL�Ā = −PLi�̃BρBĀ . (A.63)

We thus obtain the expression �A from projecting to the right-handed part:

− �A = /∇ζA + 1
2WBCDA(−ζĒρĒB)ζ̄CζD , (A.64)

since Fierz identities together with the symmetry of theW tensor annihilate the part
with 3 antichiral fermions. We thus obtain

�A = − /∇ζA + 1
2WBCD̄AζD̄ζ̄

BζC , WBCD̄A ≡ ρD̄EWBCEA . (A.65)

In the same way, the left-handed part of the commutator (A.61) is

[δ(ε1), δ(ε2)] ζA = ξμ∂μζ
A + 1

2ε
ij ε̄2iε1j�B̄ρ

B̄A + 1
4γ
ν�A

(
ε̄i2γνε1i + ε̄2iγνεi1

)
.

(A.66)

Note that the reduction to 4 dimensions implies that the spacetime derivative ∂4
vanishes. However the ν = ∗ part in (A.61) contributes such that the left-handed

parts cancel a similar contribution from ε̃
i

2 ε̃
j
1 .



Appendix B
Superalgebras

Lie superalgebras have been classified in [12]. We cannot go through the full clas-
sification mechanism of course, but will consider the most important superalgebras,
the ‘simple Lie superalgebras’, which have no non-trivial invariant subalgebra.
However, one should know that for superalgebras there are more subtle issues, as
e.g. not any semi-simple superalgebra is the direct sum of simple superalgebras.
A good review is [13]. The fermionic generators of such superalgebras are in
representations of the bosonic part. If that ‘defining representation’ of the bosonic
algebra in the fermionic generators is completely reducible, the algebra is said
to be ‘of classical type’. The others are ‘Cartan type superalgebras’ W(n), S(n),
S̃(n) and H(n), which we will further neglect. For further reference, we give
in Table B.1 the list of the real forms of superalgebras ‘of classical type’ [14–
16]. In this table ‘defining representation’ gives the fermionic generators as a
representation of the bosonic subalgebra. The ‘number of generators’ gives the
numbers of (bosonic,fermionic) generators in the superalgebra. We mention first
the algebra as an algebra over C, and then give different real forms of these
algebras. With this information, you can reconstruct all properties of these algebras,
up to a few exceptions. The names which we use for the real forms is for some
algebras different from those in the mathematical literature [14–16] and chosen
such that it is most suggestive of its bosonic content. There are isomorphisms as
SU(2|1) = OSp(2∗|2, 0), and SU(1, 1|1) = S�(2|1) = OSp(2|2). In the algebra
D(2, 1, α) the three S�(2) factors of the bosonic group in the anticommutator
of the fermionic generators appear with relative weights 1, α and −1 − α. The
real forms contain, respectively, SO(4) = SU(2) × SU(2), SO(3, 1) = S�(2,C)
and SO(2, 2) = S�(2)× S�(2). In the first and last case α should be real, while
α = 1 + ia with real a for p = 1. In the limit α = 1 one has the isomorphisms
Dp(2, 1, 1) = OSp(4 − p,p|2).

For the real forms of SU(m|m), the one-dimensional subalgebra of the bosonic
algebra is not part of the irreducible algebra. In some papers these are called
PSU(m|m), keeping the name SU(m|m) for the algebra including the abelian factor.
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Table B.1 Lie superalgebras of classical type

Note that the superalgebras SU(m|m), which are indicated in this table with bosonic subalgebra
SU(m)⊕SU(m) are often indicated as PSU(m|m), while then SU(m|m) refers to the (non-simple)
algebra including the U(1) factor

Furthermore, in that case there are subalgebras obtained from projections of those
mentioned here with only one factor SU(n), S�(n), SU∗(n) or SU(n − p,p) as
bosonic algebra.



Appendix C
Comparison of Notations

Unfortunately the normalization of F and various other functions vary in the N = 2
literature. A lot of standard notations can be summarized in factors s1, . . . , s9.
The first three of these were already identified in the book of Misner–Thorne–
Wheeler [17]. More explanations are given in [1, Appendix A]. We summarize here
a few relevant formulae

ηab = s1diag(− + ++) ,
Rμν

ρ
σ = s2

(
∂μ�

ρ
νσ − ∂ν�ρμσ + �ρμτ�τνσ − �ρντ�τμσ

)
,

s2s3Rμν = Rρνρμ ,
Dμψ = ∂μ + s2s4 1

4ωμ
abγab , DμV

a = ∂μV a + s2s4ωμabVb ,
ε0123 = s5 , ε0123 = −s5 ,

γμγν + γνγμ = 2s6gμν ,

γ∗ = γ5 = s7iγ0γ1γ2γ3 ,
1
2εabcdγ

cd = −i
s5

s7
iγ∗γab ,

(
ψ̄λ

)∗ = s8(−t0t1)ψ̄λ ,
[δ(ε1), δ(ε2)]φ = s9 1

2 ε̄2γ
με1∂μφ . (C.1)

Note that the factor (−t0t1) = 1 for D = 4 andD = 6, see (A.28).
In Table C.1, we compare notations between this book and some of the original

papers in the development of N = 2 matter-coupled supergravity in D = 4.

Here : means the notation used in this book, and for most part also used in1 [18–20].

1The exception is the Ricci sign (sign of R) that has been chosen negative in these papers.
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Table C.1 Comparison of
notations

Here I II

si = 1

s1,2,3,4,5 = (+1,−1,−1, 1, i) (−1,−1,−2, 1,−1)

s6,7,8,9 = (+1,−1,+1,+4) (+1,+1,+1, 2i)

γμ γμ iγμ

gαβ̄ −gAB̄ gij∗

K −K K
F − i

4F

XI XI L�

ZI ZI X�

FI − i
4FI M�

NIJ −NIJ −N�"
NIJ iNIJ N�"
Cαβγ e−KQABC iCijk

F Iμν F Iμν −2F �μν
fIJ

K −gfIJ K f ��"

PI −P�
ε 2ε

√
2ε

ψμ ψμ
√

2ψμ

�I �I

ηi ηi

φμ
1
2φμ

fμ
a 1

2fμ
a

λK
1
2�K

Vμ
i
j

1
2Vμ

i
j

χi χi

T −
abε

ij T
−ij
ab

I : The second column refers to many of the original papers on D = 4 N = 2
superconformal tensor calculus and special geometry. These are e.g. [21–36].

II : The third column contains the notation of the the matter-coupled
Lagrangians of [37, 38].

A few comments are in order. In the original papers often the Pauli signature
was used, which means that there is an index a = 4 or μ = 4, we translated for
vectors to V4 = iV0 in order to put them under the general scheme. The factor s2s3
determines the normalization of the Ricci scalar R = gμνRμν .
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Note also that in the older papers an antisymmetrization [ab] was (ab − ba)

without the factor as in (A.1). Also one used

σab = 1
2γab . (C.2)

Finally, we want to point out that there are also a few changes in notation between
this book and the notation the papers [39, 40]. To use the latter papers in the present
notation, one has to make the following substitutions:

kI
X ← −kIX , AIμ ← WI

μ , Dμ ← D̂μ ,

tIA
B ← −tIAB, PI ← 1

2 PI , σ i
j ← iτ i j . (C.3)
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