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Abstract. This paper presents the ongoing work on the Midas poly-
store system. The system combines data cataloging features with ad-hoc
query capabilities and is specifically tailored to support agile data science
teams that have to handle large datasets in a heterogeneous data land-
scape. Midas consists of a distributed SQL-based query engine and a web
application for managing and virtualizing datasets. It differs from prior
systems in its ability to provide attribute level lineage using graph-based
virtualization, sophisticated metadata management, and query offload-
ing on virtualized datasets.
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1 Introduction

To provide data consumers, e.g., analysts and data scientists, with the data they
need, enterprises create comprehensive data catalogs. These systems crawl data
sources for metadata, manage access rights and provide search functionality. Such
catalogs are the starting point for almost every analytical task. Once a data scien-
tist has found a potentially interesting dataset in the catalog, he /she has to move to
another tool in order to prepare it for analysis. This is because data catalogs often
cannot interact with their referenced data sources directly. Instead, engineers have
to build ETL pipelines to move and shape data in a way that it is ready for anal-
ysis. This process is time consuming, costly, unscalable, and can even lead to the
insight that the dataset is unsuitable for the intended task because it is hard to
asses the data quality based on raw metadata. Even highly sophisticated systems
like Goods from Google require such processes [6]. Another challenge for data cat-
alogs is tracking the provenance of derived datasets, specifically when the schema
and the location is different from the origin data. In such cases, the datasets need
to be registered manually back to the catalog.

In this paper, we present the ongoing work on the polystore system Midas
that tackles the stated problems by providing a large scale data virtualization
environment that combines ad-hoc analytical query access with sophisticated
metadata management features. Midas is an interactive data catalog designed
for data science teams working in heterogeneous data landscapes. In this context,
we define interactive as the ability for a data scientist to run large scale ad-hoc
queries within the same application that manages the metadata of connected
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data stores. This approach enables data science teams to share schema details,
comments, and other important information in the same place where they access,
prepare and analyze the data.

Midas builds upon the concepts of Google’s Dremel and other in-situ poly-
store systems like Apache Drill and Presto [7,12]. Tt uses a SQL-based query
engine as the backbone to provide uniform ad-hoc access to a heterogeneous
data landscape and implements a novel approach to represent and virtualize
datasets. We are working on graph-based views enriched with arbitrary meta
information to represent virtual datasets. This approach allows global lineage
tracking down to the attribute level. To achieve interactive performance on
large scale datasets and to provide query offloading, we implement an adap-
tive, columnar-oriented cache that partitions entity attributes based on their
occurrence in virtual datasets. Additionally, Midas offers an intuitive web-based
user interface to allow for easy data preparation, curation, and sharing among
data science teams.

The core concepts of Midas are: Virtualized and sharable datasets, sophis-
ticated metadata management, comprehensible data lineage, interactive perfor-
mance through adaptive columnar-oriented caches, and ease-of-use.

2 Differentiation to Existing Systems

In the following, we compare Midas to similar systems we have identified. First,
we compare it with polystore query engines. Second, we compare it to related
data catalog systems.

The publication of the Dremel concept led to several open source imple-
mentations of SQL-based query engines that provide ad-hoc access to large,
distributed datasets for OLAP use cases [10]. Apache Drill and Presto are the
most known open source implementations [7,12]. Both query engines focus on
ad-hoc analytical tasks without providing sophisticated user interfaces or meta-
data management features.

Data catalog systems like Goods from Google [6] or the dataspace concept
by Franklin et al. [5] are very close to the goal of Midas. However, Midas is
provisioning datasets in a way that a user can directly interact with it and
query the actual data without being limited on certain metadata.

The closest system to Midas is Dremio [2]. Dremio is a data management plat-
form based on Apache Drill and Apache Arrow. Similar to Midas, Dremio imple-
ments cataloging and lineage features. However, compared to Midas, Dremio
does not allow global lineage tracing on attribute level. Furthermore, Dremio
does not allow the attachment of arbitrary metadata to attributes.

Extensive research on data lineage has already been done [3,4,13]. Most
approaches use annotations to keep track of data transformations and schema
changes. Midas does not annotate data but maintains an attribute graph for
tracking the lineage.
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3 System Design

We are making design decisions specifically tailored to the requirements of agile
data science teams. The most important metric is fast access to data in a pro-
cessable format. Additionally, it must work together with already established
workflows and tools like Spark, Jupyter Notebooks, and Tableau. The main
components of the Midas system are a query engine that enables users to cre-
ate virtualizations even on massive scale datasets and the user interface as an
interactive data catalog. Figurel depicts the overall architecture of the Midas
system.
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Fig. 1. Midas system architecture

3.1 Query Engine

The primary component of Midas is an extensible, distributed, SQL-based query
engine written in Java that follows a similar architecture as Dremel, Presto, and
Apache Drill [7,10,12]. The Command & Control node takes incoming queries
and creates a logical execution plan which is then distributed to the worker nodes
that materialize the data.
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All three systems are practically proven and show that they can handle
analytical queries even on multiple terabyte large datasets [7,10,12]. Internally,
Midas uses a columnar-oriented data representation based on Apache Arrow that
supports complex data models [1]. The query engine materializes data through an
extensible set of connectors, currently, it supports: MySQL, MongoDB, HBase,
Hive, Amazon S3, MapR-DB, JSON - File, CSV and Parquet.

All of the listed sources can be virtualized, joined, and queried via SQL.

The main reason for choosing SQL as the main language for interacting with
the system is that almost any data scientist knows it and can work with it.
Additionally, with open standards like ODBC, almost any tool and framework
can directly use it.

3.2 Graph-Based Data Virtualization

Managing metadata and tracking data lineage on attribute level is challenging
for polystore systems. Especially when data from multiple stores is combined.
Even sophisticated metadata management systems like Goods from Google track
provenance on a dataset-basis, i.e., upstream and downstream datasets are
tracked as a whole [6]. Combining data from multiple sources makes it complex
to reconstruct the origin of a specific attribute. Another challenge for data cata-
logs is the inheritance of metadata like schema information to derived datasets,
especially when attributes are renamed.

To tackle the stated problems, we are working on a novel approach to rep-
resent and virtualize datasets. In Midas, a virtual dataset is a view on one or
multiple datasets defined by a SQL statement. Technically, Midas implements a
rooted graph-based approach to represent these views.

Each dataset D consists of a name N, a list of arbitrary metadata objects
META and a set of attribute graphs SAG:

D := (N,META, SAG)

The name N is an arbitrary string which is usually a reference to the name
of a table, a file, or a collection. M ETA is a JSON document that contains
arbitrary metadata for a dataset like a description or access rights.

The attribute graph AG € SAG represents the provenance and metadata of
a particular attribute a € D and denotes as follows:

AG = (V,E)

The vertex V consists of a name N, and a list of arbitrary metadata objects
META,:
V= (N, META,)

The edges E denote operations on an attribute.
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Ezample: A data scientist defines a virtual dataset VD by creating a view that
joins the two dataset D; with the attributes a1, and ai,, and Dy with the
attributes aq,, a2,, and ag, together. D; and Dy are combined based on their
common join key a;, and ag,, respectively. The SQL statement looks like the
following:

1 CREATE VIEW VD AS (SELECT (a_1_1+a_1_2) as “sum , a_1_2, a_2_2,
2 a_2_3 FROM D1, D2 WHERE Di.a_1_1 = D2.a_2_1)

Midas takes the incoming query and creates the attribute graphs for VD.
Figure 2 depicts the set of attribute graphs for VD.

[ seecrassum ] [ seecr ] [ seeer ] [ seeer ]
'a =
[
ADDITION +
VD :=¢ ?
=3\ (

| @© cusomen
) -
P
- e
MySQL: customer_data "
. % visits e customer_analytics
;;;;;; k.- . 7 “
MongoDB: analytics
®
GEODATA
OpenData: GeoData
B é income
. oz

OpenData: Inkar

Fig. 3. Full lineage graph of a virtual dataset. The red icons on the left to the dataset
names indicate a physical dataset and the blue icon on customer_analytics a virtual
one. (Color figure online)
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Description j

Supported by Google Jigsaw, the GDELT Project monitors the world's broadcast, print, and web news from nearly every corner of
every country in over 100 languages and identifies the people, locations, organizations, themes, sources, emotions, counts,
quotes, images and events driving our global society every second of every day, creating a free open platform for computing on
the entire world.

General Information

Name
GLOBALEVENTID
Attributes Type
Name Type Semantic ... Definition INT

GLOBALEVENTID. INT Globally unique identifier assigned to each event record that ur Semantic Type

Day INT Date the event took place in YYYYMMDD format. See DATEADDED fic
Definition

Monthvear INT Alternative formatting of the event date, in YYYYMM format. Globally unique identifier assigned to each event record that uniquely identifies it in
the master dataset. NOTE: While these will often be sequential with date, this is NOT
always the case and this field should NOT be used to sort events by date: the date
fields should be used for this. NOTE: There is a large gap in the sequence between
Februarv 18. 2015 and Februarv 19. 2015 with the switchover to GDELT 2.0 - these are/

Year INT Alternative formatting of the event date, in YYYY format.

FractionDate FLOAT Alternative formatting of the event date, computed as YYYY.FFFF, w

Actor1Code VARCHAR CAMEO code for Actorl cla

Actor1Name VARCHAR The actual name of the ActorL. In the case of a political leader or or

Actor1CountryCode VARCHAR The 3-character CAMEO code for the country affiliation of Actor. M

Actor1KnownGrounCode  VARCHAR If ActorL is a known IGO/NGO/rebel oreanization (United Nations. v

Fig. 4. Interface for editing metadata

By traversing the attribute graph using a depth-first search (DFS) algorithm,
we can now visualize the full provenance of an attribute. Additionally, it is
possible to add weights to edges for each operation done on an attribute. Having
a weighted graph could potentially be used to do cost-based query optimization.
However, the determination of the actual costs is tricky since the underlying data
sources could be running on different systems in different locations, which makes
it hard to do proper cost estimations. Figure 3 shows the full lineage graph of a
virtualized dataset in the Midas application.

3.3 Initial Graph Creation and Metadata Management

Midas triggers a discovery process and creates a new graph-based representation
of a dataset whenever a user queries it for the first time. During this discovery
process, the attribute graphs are created based on the dataset’s schema informa-
tion. For self-describing data stores like Parquet or MySQL, the schema is taken
directly from the store. For non-self-describing formats like CSV, the user has
to define where to find the schema manually, e.g., on the first row. The actual
implementation of the discovery method depends on the individual data store
and is defined in the corresponding adapter. For future versions, we are working
on the implementation of a crawler-based approach like Goods from Google to
facilitate the discovery process on massive heterogeneous data landscapes.

The metadata for datasets and attributes is added separately by other appli-
cations via API or manually by users through the Midas catalog interface.
Figure4 shows this catalog interface for data owners and scientists. Currently,
the Midas interface supports arbitrary descriptions and the attachment of a
semantic type which is a reference to a class or an attribute in an ontology.
Creating these links is either done manually by the data owner or automatically
by making a lookup in a pre-defined ontology. For now, this lookup is a simple
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string match on the DBpedia ontology. The long term goal is to enable data sci-
entists to do semantic queries over an enterprise’s data ontology. There has been
extensive research on how to tackle the technical challenge of creating ontologys
on top of data [9]. However, building these ontologies is not only a technical but
also a process challenge. With Midas, we are investigating a human-in-the-loop
approach by using a semi-automated mechanism that makes it easy for users to
contribute in building the ontology.

3.4 Adaptive Caching Layer

Data virtualization and query federation comes with the advantage that a user

always works on a current view of the actual source data. However, achieving

interactive performance on massive datasets in such a federated setup is a chal-

lenging problem. For achieving interactive query performance, Midas implements

an adaptive columnar-oriented cache similar to column caches in Apache Spark.
The implementation is straightforward and the algorithm is as follows:

1. Scan the referenced columns in the logical execution plan.

2. Store the selected columns in a columnar format (Parquet) and add a fresh-
ness indicator.

3. For all upcoming queries, do not query the actual source but use the Parquet
reference files if the freshness is above a certain threshold.

The cache files are not linked to a certain query but rather adapt to selected
columns, i.e., other queries referencing the same columns can use the same cache
reference.

For improving the caching behavior, we are currently working on a more
sophisticated approach based on query predictions. Recent research in informa-
tion retrieval shows how search intents and queries can potentially be predicted
by using pre-search context and user behavior like past search queries [8]. Query-
ing a dataset using SQL is very similar to querying a search engine, both will lead
to a result set of data based on some input parameters. We believe that a simi-
lar approach can potentially lead to better caching behavior by pre-calculating
result sets based on predicted queries. Current observations in our prototype
usage indicate, that more than 75% of all queries contain some aggregate func-
tion on one or more attributes. Specifically, we are working on a query prediction
model based on past queries of a user, queries of the data science team as a whole,
and queries on a certain dataset. The goal of this model is to pre-generate caches
for dataset columns that are most likely to be accessed in a query. This approach
could potentially lead to more responsive queries but also to offload production
systems from analytical workloads in critical times.

3.5 User Experience

The web client is the primary interface for building, managing, and querying
datasets. Figure5 depicts the workspace of a logged-in user where all virtual
and physical datasets he/she has access to are listed.
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Datasets Create Dataset

s My Datasets

< Mybatasets Name - Created

D cleaned and enriched clickstreams. 42 minutes ago
@ Open Data

D companies by country an hour ago
Sources. + D customer_analytics 39 minutes ago
8 analytics D gdelt_last_48h 8 days ago
8 customer_data D gtd_country_profile amonth ago
8 product_data ) gtd_country_profile(2012-2017) amonth ago
9 iot_sensor_streams D gtd_country_profile(by year) 8daysago

D realtime and cleaned sensor stream 44 minutes ago
8 marketing_actions

D segmented customer data an hour ago

D strongest sales locations an hour ago

Fig. 5. Workspace containing 10 virtual datasets, 5 physical data stores, and access to
third party data hub

Studies show that in the majority of data science teams there is no established
process for sharing data [11]. The lack of a clearly defined process often leads to
datasets send via email and shadow analytics environments. Midas tackles this
problem by providing data science teams a shared workspace for discovering and
sharing already integrated data in an analytics-ready format.

Datasets

3 customer_snaytics Now dataset @ bl
SQL Editor Browse Datasets.

1 SELECT DISTINCT 6.1d, d.first_name, last_nane, d.visits, d.KREIS_AGS, d.KRETS NUTSCODE, i.nedianeinkonnen 2012, i.nedianeinkonnen 2015
FROM (
SELECT v.id, v.first_name, v.last_nane, v.strest, v.zip_cade, v.visits, g.KREIS_AGS, 9.KRELS_NUTSCODE
i FROM midas.mydatasets.” custoner_data® v, Opendata.’geo_data’."GermanPlaces’ g
5 VHERE v.2ip_code - g.POSTLELTZAHL

d
EFT J0IN Openbata. inkar . income_2012.2015" 1
5 ON d.KREIS_AGS - i.ags

Jens Klein Boxhagener Str. 9
Matthias Eichmann Stuttgarter Platz 69
Maxinilian Berg Genslerstrage 4
Christina Huench An der Schillingbrucke 29
Felix Strauss Hernannstrasse 85

Jan Biermann Gintzelstrasse 41

Jiirgen Herman Boxhagener Str. 73

Bernd Fuhrmann Rhinstrasse 64

Katja Krueger Budapester Strasse 90

Fig. 6. Interface for running ad-hoc queries and creating new virtual datasets

The main interface for creating a new virtual dataset is shown in Fig.6.
Datasets are created by defining SQL statements which can be saved as a virtual
dataset.

Data Discovery. An efficient process to find and explore data is crucial to enable
data science teams to fulfill their job. In Midas, we are implementing several
approaches to tackle the discovery problem:
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Datasets

Datasets Open data and other third party sources

@ open Data GDELT Events 2.0 GDELT GKG 2.0 German Area Data GDELT Mentions 2.0
GoETV2 GoELT2 destatis coErT2
& Supported by Google Jigsaw, the GDELT Supported by Google Jigsaw, the GDELT Arean g for german counties by AGS from  The Mentions table s a new addition to
€3 Project monitors the world's broadcast, print,  Project monitors the world's broadcast, pint, o1 (GDELT 2.0 and records each mention of the
f o of events inthe Event table, making it possible
B analytics
8 customer_data
" " " "
8 product_data
German Building Permits German Population 2012 German Students 2015 German Population 2015
 fot_sensor_streams destatis destatis destatis Gestatis
Number o buiding permits ssued in 2013, Number of peaple ling in germany gy Number of tudents in 2015 grouped by Number of peaple ling in germany gy
© marketing actions Grouped by AGS gender and region from 2012 degree and region gender and region from 2015
u ® @ u

German Unemployment Rate 2016 Global Terrorism Database (GTD) Government Effectiveness (WGI) German Youth Senior Quotient
destatis unp worldbank destatis

Number of unemployed residents in 2016 The Global Terrorism isan age g peop!
grouped by region g dindividusl relative to the total population grouped by
on from emance over 200 countries region

Fig. 7. Interface for the centrally shared open data hub in Midas

1. Providing a search interface for the dataset and attribute metadata.
2. Mapping ontologies to datasets, which potentially allows semantic queries.
3. Implementing a centrally shared hub for open data as shown in Fig. 7.

For modern data science workloads, solely focusing on internal enterprise data
might not be enough. For example, whenever data is sparse or lacks features to
build proper analytical models. Using open data from the web is a common
practice to enrich internal data with additional features. However, integrating
publicly available datasets using ETL pipelines is costly, time-consuming and
usually requires a search process on the web. Additionally, column names are
often cryptic and hard to understand without further information. For making
open data more accessible to data scientists, we are working on a central data
hub that is shared across teams and organizations. Through the data hub, users
can formulate ad-hoc queries on any integrated dataset and collaboratively fill
missing attribute descriptions. Figure 7 shows the current user interface of the
open data hub.

4 Lessons and Challenges

In this section, we discuss challenges that are occurring while developing Midas
and highlight areas that require future work. One of the biggest challenges that
we are facing in developing Midas is providing interactive query performance on
virtual datasets that are compound of complex queries and span across multiple
and different source systems. Limited and sub-optimal query push-downs to the
source systems lead to expensive materializations and overhead of used computa-
tional resources. Currently available open source implementations of the Dremel
concept like Apache Drill and Presto suffer from the same problem. Even though



Midas: Towards an Interactive Data Catalog 137

data virtualization is not the primary use case for those systems, it is similarly
essential for ad-hoc analytical queries. Using an efficient and optimized caching
structure can help in achieving interactive query performance even on massive
virtualized datasets by simultaneously offloading the underlying sources. Query
predictions may lead to a significantly better cache hit ratio and therefore to a
better overall performance. However, we are currently in the beginning of build-
ing and evaluating such algorithms and propose to explore this area further in
future research. In addition to that, for reaching the next level in data virtualiza-
tion, we see it as important to build query federation layers that can leverage the
core abilities of a high variety of data store technologies and formats. A potential
research direction could be the investigation of learned system components for
pushdowns.

Midas focuses on analytical use cases and does, therefore not support write
federation to the underlying data stores. It follows the “one size does not fit
all” principle, and the expressive power of SQL limits its capability. However,
for future work, the system has the potential to support more languages like a
limited, read-only subset of SPARQL.

5 Conclusion

In this paper, we outlined the current status of the Midas polystore system
tailored to analytical use cases and some challenges for future work. We are
currently evaluating the system together with data science teams in three large
enterprises (>300.000 combined employees). A video demonstrating the current
version of Midas is available at https://demo.midas.science/poly19.
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