
Learning How to Optimize Data
Access in Polystores

Antonio Maccioni1(B) and Riccardo Torlone2

1 Collective[i], New York City, USA
amaccioni@collectivei.com

2 Roma Tre University, Rome, Italy
riccardo.torlone@uniroma3.it

Abstract. Polystores provide a loosely coupled integration of heteroge-
neous data sources based on the direct access, with the local language, to
each storage engine for exploiting its distinctive features. In this frame-
work, given the absence of a global schema, a common set of operators,
and a unified data profile repository, it is hard to design efficient query
optimizers. Recently, we have proposed QUEPA, a polystore system sup-
porting query augmentation, a data access operator based on the auto-
matic enrichment of the answer to a local query with related data in the
rest of the polystore. This operator provides a lightweight mechanism
for data integration and allows the use of the original query languages
avoiding any query translation. However, since in a polystore we usually
do not have access to the parameters used by query optimizers of the
underlying datastores, the definition of an optimal query execution plan
is a hard task, as traditional cost-based methods for query optimization
cannot be used. For this reason, in the effort of building QUEPA, we have
adopted a machine learning technique to optimize the way in which query
augmentation is implemented at run-time. In this paper, after recalling
the main features of QUEPA and of its architecture, we describe our
approach to query optimization and highlight its effectiveness.

1 Introduction

The concept of polyglot persistence, which consists of using different database
technologies to handle different data storage needs [15], is spreading within enter-
prises. Recent research has shown that, on average, each enterprise application
relies on at least two or three different types of database engines [17].

Example 1. Let us consider, as a practical example, the databases of a company
called Polyphony selling music online. As shown in Fig. 1, each department uses a
storage system that best fits its specific business objectives: (i) the sales depart-
ment guarantees ACID properties for its transactions database with a relational
system, (ii) a warehouse department supports search operations with a docu-
ment store catalogue, where each item is represented by a JSON document, and
(iii) a marketing department uses a graph database of similar-items supporting
c© Springer Nature Switzerland AG 2019
V. Gadepally et al. (Eds.): DMAH 2019/Poly 2019, LNCS 11721, pp. 115–127, 2019.
https://doi.org/10.1007/978-3-030-33752-0_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33752-0_8&domain=pdf
https://doi.org/10.1007/978-3-030-33752-0_8


116 A. Maccioni and R. Torlone

recommendations. In addition, there exists a key-value store containing discounts

on products, which is shared among the three departments above.

Fig. 1. A polyglot environment.

In this framework, it is of strategic importance to provide easy-to-use mecha-
nisms for searching through all the available data [4]. The traditional approach
to address this issue is based on a middleware layer involving a unified language,
a common interface, or a universal data model [2,11]. However, this solution adds
computational overhead at runtime and, more importantly, hides the specific fea-
tures that these systems were adopted for. In addition, it is hard to maintain,
having an inherent complexity that increases significantly as new systems take
part to the environment.

Polystore systems (or simply, polystores) have been proposed recently as an
alternative solution for this scenario [16]. The basic idea is to provide a loosely
coupled integration of data sources and allow the direct access, with the local
language, to each specific storage engine to exploit its distinctive features. This
approach meets the “one size does not fit all” philosophy as well as the need
to support business cases where heterogeneous databases have to co-exist. In
polystores, it is common that a user is only aware of a single (or a few) available
database but does not know anything about other databases (neither the content,
nor the way to query them and, sometimes, not even their existence). This clearly
poses new challenges for accessing and integrating data in an effective way. To
recall a relevant discussion about this approach, the issue is that “if I knew what
query to ask, I would ask it, but I don’t” [16].

With the aim of providing a contribution to this problem, we have recently
proposed (data) augmentation [9], a new construct for data manipulation in
polystores that, given an object o taken from a database of a polystore, allows



Learning How to Optimize Data Access in Polystores 117

the automatic retrieval of a set of objects that: (i) are stored elsewhere in the
polystore and (ii) are somehow related with o, according to a simple notion of
probabilistic relationship between objects in different datastores.

The implementation of this operator does not require the addition of an
abstraction layer involving query translation and therefore has a minimal impact
on the applications running on top of the data layer. The goal is to provide
a soft mechanism for data integration in polystores that complements other
approaches, such as those based on cross-db joins [1,3,5,11].

The augmentation construct was implemented in QUEPA [8], a system that
provides an effective method to access the polystore called augmented search.
Augmented search consists of the automatic expansion of the result of a query
over a local database with data that is relevant to the query but which is stored
elsewhere in the polystore. This is very useful in common scenarios where infor-
mation is shared across the organization and the various databases complement
or overlap each other.

Assume for instance that Lucy, an employee of Polyphony working in the
sales department who only knows SQL, needs all the information available on
the album “Wish”. Then, she submits in augmented mode the following query
to the relational database transactions in Fig. 1.

SELECT *
FROM inventory
WHERE name like ’%wish%’

By exploiting augmentation, the result of this query is the augmented object
reported below, revealing details about the product that are not in the database
of the sales department, including the fact that it is currently on a 40% discount.

< a32, Cure, Wish > ⇒ (catalogue:{ title: Wish,
⇓ artist id: a1,

(discounts: 40%) artist: The Cure,
year: 1992,
... } )

In an augmented search, each retrieved element e is associated with the proba-
bility that e is related to an element of the original result. Such probability is
derived off-line from mining techniques and integrity constraints. Colors (as in
the example above) and rankings can be used in practice to represent probability
in a more intuitive way.

As it happens in traditional query optimization, the best performances of
query answering in QUEPA are achieved by properly tuning a series of param-
eters. Some of these parameters depends of the polystore setting and can be
configured by the system administrator once, when she has enough knowledge
on the underlying databases. Other parameters depends on the specific query
workload (e.g., the selectivity of queries) that are more difficult to tune. In
general, traditional cost-based optimizers are hard to implement in a polystore
because we might not have enough knowledge about the parameters affecting
the optimization of each database system in play.



118 A. Maccioni and R. Torlone

We saw this limitation as the opportunity to experiment different optimiza-
tion approaches. To this aim, we equipped the system with a rule-based opti-
mizer to dynamically predict the best configuration according to the query and
the polystore characteristics. It relies on machine learning algorithms that learn
from previous query executions what is the best execution plan given an input
query. The idea of using machine learning within query optimization was then
also explored by Krishnan et al. [7] and Marcus et al. [10]. They adopt deep rein-
forcement learning for optimizing joins. Other relevant work also use machine
learning to improve the indexing of data [6].

In our approach, we train a series of decision trees with the statistics gathered
from previous queries. These trees are then used at query time to determine the
values of the configuration parameters to be used by the query orchestrator. In
this way, neither the user nor the sysadmin need to do any tuning manually. The
experiments have confirmed the effectiveness of the approach.

In the rest of the paper, after a brief overview of our approach and of the
system we have developed (Sect. 2), we illustrate the way in which we have
implemented query augmentation, the main operator of QUEPA, and the adap-
tive technique we have devised for predicting the best query plan for a query
involving augmentation (Sect. 3). We also illustrate some experimental results
supporting the effectiveness of the optimization technique (Sect. 4) and sketch
future directions of research (Sect. 5).

2 Augmented Access to Polystores

2.1 A Data Model for Polystores

We model a polystore as a set of databases stored in a variety of data manage-
ment systems (relational, key-value, graph, etc.). A database consists of a set of
data collections each of which is made of a set of (data) objects. An object is just
a key-value pair. A tuple and a JSON document are examples of data objects in
a relational database and in a document store, respectively. We assume that a
data object in the polystore can be uniquely identified by means of a global key
made of: its key, the data collection C it belongs to, and the database including
C. Basically, this simple model captures any database system satisfying the min-
imum requirement that every stored data object can be identified and accessed
by means of a key.

We also assume that data objects of possibly different databases of a polystore
can be correlated by means of p-relations (for relations in a polystore). A p-
relation on two objects o1 and o2, denoted by o1Rpo2, represents the existence
of a relation R between o1 and o2 with probability p (0 < p ≤ 1), where R can
be one of the following types:

– the identity, denoted by ∼: an equivalence relation representing the fact that
o1 and o2 refer to the same real-world entity;

– the matching, denoted by �: a reflexive and symmetric relation (not neces-
sarily transitive), representing the fact that o1 and o2 share some common
information.



Learning How to Optimize Data Access in Polystores 119

Example 2. Consider the polystore in Fig. 1. By denoting the objects with their
global keys we have for instance that:

– catalogue.albums.d1 ∼0.8 discount.drop.k1:cure:wish,
– catalogue.albums.d1 ∼0.9 transactions.inventory.a32,
– transactions.inventory.a42 ∼0.6 similarItems.ties.n4,
– transactions.inventory.a32�1transactions.sales-details.i4.

Basically, while the identity relation serves to represent multiple occurrences
of the same entity in the polystore, the matching relation models general relation-
ships between data different from the identity (e.g., those typically captured by
foreign keys in relational databases or by links in graph databases). On the prac-
tical side, p-relations are derived from the metadata associated with databases
in the polystore (e.g., from integrity constraints) or are discovered using prob-
abilistic mining techniques. For the latter task, we rely on the state-of-the-art
techniques for probabilistic record linkage [12], that is, algorithms able to score
the likelihood that a pair of objects in different databases match.

2.2 Augmented Search

The augmentation construct takes as input an object o of a polystore and returns
the augmented set αn(o), which iteratively returns data objects in the polystore
that are related to o with a certain probability. This probability is computed by
combining the probabilities of the relationships that connect o with the retrieved
objects.

Formally, the augmentation αn of level n ≥ 0 of a set of objects in a polystore
P is a set o′ of objects op, where o ∈ P and p is the probability of membership
of o to o′, defined as follows (m > 0):

– α0(o) = o ∪ {op | o ∼p o′ ∧ o′ ∈ o}
– αm(o) = αm−1(o) ∪ {op̂ | o �p′ o′ ∧ o′p ∈ o ∧ p̂ = p · p′}
Example 3. Let o be the object in the polystore in Fig. 1 with global-key
catalogue.albums.d1. Then, according to the p-relations in Example 2 we have
α0({o}) = {o, o0.81 , o0.92 } where o1 and o2 are the objects with global-key
discount.drop.k1:cure:wish and transactions.inventory.a32 respectively.

An augmented search consists of the expansion of the result of a query over a
local database with data that are relevant to the query but are stored elsewhere
in the polystore. Formally, the augmentation of level n ≥ 0 of a query Q over a
database D of a polystore (expressed in the query language of the storage system
used for D), denoted by Q(n)(D), consists in the augmentation of level n ≥ 0 of
the result of Q over D ordered according to the probability of its elements.

Example 4. Let Q be an SQL query over the relational database transactions
in Fig. 1 that returns the object o with global-key catalogue.albums.d1. Then
we have Q(0)(transactions) = (o, o0.92 , o0.81 ), where o1 and o2 are the objects
with global-key discount.drop.k1 :cure :wish and transactions.inventory.a32, and
Q(1)(transactions) = (o, o0.92 , o0.93 , o0.94 , o0.81 ), where o3 and o4 are the objects
with global-key transactions.sales−details.i1 and transactions.sales−details.i4.



120 A. Maccioni and R. Torlone

Fig. 2. Architecture of QUEPA.

2.3 Implementation

We have implemented our approach in a system called QUEPA. Its architecture
is reported in Fig. 2 and includes the following main components:

– Augmenter: implements the augmentation operator and orchestrates aug-
mented query answering.

– A+index: stores the p-relations between data objects in the polystore.
– Collector: this component is in charge of discovering, gathering and storing

p-relations in the A+index.
– Connectors: they allow the communication with a specific database system

by sending queries in the local language and returning the result.
– Validator: is used to assess whether a query can be augmented or not. The

validator can also rewrite queries by adding all identifiers of data objects that
are not explicitly mentioned in the query.

– User Interface: receives inputs and shows the results using a Rest interface.

Since QUEPA does not store any data, it is easy to deploy multiple instances
of the system that can answer independent queries in parallel. In this case, each
instance has its own A+index replica and its own augmenter. Now we show
the interactions among the components of QUEPA for answering a query Q in
augmented mode with level n (step ➀ in Fig. 2).

The validator first checks if the query is correct (step ➁) and possibly rewrites
it into Q (step ➂) before its execution over the target database (step ➃). The
local answer a is returned to the augmenter which is now ready to compute
the augmentation (step ➄). It gets from the A+index the global keys of data
objects reachable from a with n applications of the augmentation primitive (step
➅). These global keys are used to retrieve data objects from the polystore with
local queries Qi (step ➆). Finally, the augmented answer is returned to the user
(step ➇).



Learning How to Optimize Data Access in Polystores 121

3 Efficient Implementation of Augmented Search

3.1 Augmenters

The augmentation operator is inherently distributed because it retrieves data
from independent databases. We leverage that and other characteristics of this
operator to make the augmentation more efficient.

Figure 3(a) illustrates the augmentation process done in a sequential fash-
ion: circles stand for data objects and each database is represented by a different
color. The original answer contains four results, i.e. the green circles. Each result
is connected, by means of arrows, to the objects to include in the augmented
answer. The augmentation iterates over the four results and retrieves 11 addi-
tional objects with 11 direct-access queries.

Network-Efficient Augmenter. Polystores are often deployed in a distributed
environment, where network traffic has a significant impact on the overall per-
formance of query answering. Augmentation, in particular, generates a non-
negligible traffic by executing many local queries over the polystore, each one
requesting a single data object. We implemented a batch augmenter that groups
global keys by target database and submits them in one query. Next, batch
arranges returned data objects to produce the answer. This batching mechanism
tends to minimize the number of queries over the polystore, and so it also limits
the burden of communication roundtrip on the overall execution. batch uses
the parameter batch size that holds the maximum number of global keys per
query. In Fig. 3(b) we show the process of the batch augmenter in a graphical
fashion on the same augmented query answering represented in Fig. 3(a). Global
keys are grouped by store, as represented by the dotted internal boxes, and are
retrieved with one query once the corresponding group reaches the batch size
limit or when the process terminates. In the example, we set batch size = 4
and only one query per database is submitted, resulting in six queries less than
the sequential augmentation (i.e. 5 instead of 11).

CPU-Efficient Augmenter. Augmented answers include data objects coming
from different databases and so local queries can be submitted in parallel. We
have designed a few strategies that leverage the multi-core nature of modern
CPUs by assigning independent queries to parallel threads. These strategies are
implemented in different augmenters, all parameterized with threads size, the
maximum number of simultaneous running threads.

Inner Concurrency. This strategy exploits the observation that objects shar-
ing an identity relation can be retrieved in parallel. In Fig. 3(c) we show this
augmentation with threads size = 2 on the example in Fig. 3(a). The main
process iterates over the result of the local query and, for each object in the
result, two threads compute the augmentation. This augmenter is very efficient
for augmented exploration, in which a single result at a time needs to be aug-
mented.



122 A. Maccioni and R. Torlone

(a) sequential (b) batch (c) inner

Fig. 3. Augmenters.

Outer Concurrency. Differently from the previous strategy, the outer aug-
menter parallelizes the computation over the result of the local query. As shown
in Fig. 4(a), the main process of outer iterates over the results in the result
launching a thread for each of them without waiting for their completion. Then,
each thread retrieves all objects related to the result in a sequential way.

Outer-Batch Concurrency. The outer-batch augmenter combines multi-
threading with batching. Differently from batch, the groups of global keys
are processed by several threads. The main advantage here is that the main
process can continue filling these groups while threads are taking care of
query execution. This augmenter is parameterized with both threads size and
batch size. In Fig. 4(b) we show the augmented process of the outer-batch
with batch size = 4 and threads size = 2.

Outer-Inner Concurrency. The outer-inner augmenter tries to benefit from
both “inner” and “outer” concurrency. The number of available threads, i.e.
threads size, are used for the two levels of parallelism. It follows that
threads size

2 threads process the results of the original answer in parallel, and
further threads size

2 threads perform the augmentation for each result. Of course,
this strategy tends to create many threads because of many simultaneous inner
parallelizations. In Fig. 4(c) we show the augmentation process in outer-inner
with threads size = 4.



Learning How to Optimize Data Access in Polystores 123

(a) outer (b) outer-batch (c) outer-inner

Fig. 4. Outer concurrency based augmenters.

Memory-Efficient Strategies. All augmenters rely on a caching mechanism
with a LRU policy that allows the fast access to the last accessed data objects
by means of their global-key. The cache is implemented using Ehcache1 with a
suitable choice of cache size, the maximum number of objects in the cache.
At runtime, we check whether the data object is already in the cache before
asking for it to the polystore. Caching is potentially useful in two cases: (i) with
augmented exploration, where the user accesses objects that were likely retrieved
in previous queries, and (ii) with queries having level > 0, where augmented
results of the same answer can overlap. The level represents the hops of distance
in A+ index between the objects of the original result set and the objects in the
augmented result.

3.2 Adaptive Augmentation: Learning the Access Plans

QUEPA can run with different configurations. A configuration is a combi-
nation of the augmenter in use, cache size and, if needed, batch size and
threads size. As the experiments in Sect. 4 of [9] point out, none of the var-
ious configurations of QUEPA outperform the others in all possible scenarios.

1 http://www.ehcache.org/.

http://www.ehcache.org/


124 A. Maccioni and R. Torlone

For example, some configuration excels on huge queries only, while others excel
in a distributed environment. It follows that an optimizer is needed to choose
the right augmenter and its parameterization in any possible situation.

As we have observed in the Introduction, traditional cost-based optimizers are
difficult to implement in a polystore because we might not have enough knowl-
edge about each database system in play. Therefore, we designed an adaptive,
rule-based optimizer to dynamically predict the best configuration according to
the query and the polystore characteristics. It relies on a machine learning tech-
nique that generates rules able to select a well-performing configuration for the
augmentation. The full process is as follows.

– Phase 1: Logs collection. We keep the logs of the completed augmen-
tation runs. They include QUEPA parameters such as batch size or
threads size, the overall execution time and the characteristics of the query
(i.e. target database, number of original data objects in the result, number
of augmented data objects). All these historical logs form our training set. In
general, the larger is the training set, the higher is the accuracy of the trained
models. When the training set is too small, we run, in background, previously
executed queries with different configurations or we execute random queries
against the polystore.

– Phase 2: Training. We train the following models:
T1: a decision tree to decide the augmenter to use among those available

(e.g., outer, inner, batch, etc.). The tree is trained with the C4.5
algorithm [14];

T2: a regression tree to decide batch size whenever T1 selects outer-batch
or batch. As we use Weka2, this tree is trained with the REPTree algo-
rithm [13];

T3: a regression tree to decide threads size whenever a concurrent aug-
menter is selected by T1. This is also trained with the REPTree algorithm;

T4: a regression tree to decide cache size. This is trained with the REPTree
algorithm.

The training of the models can be done periodically when a fixed number of
run logs are added to the training set.

– Phase 3: Prediction. Given a query, we use our models to predict the param-
eters of QUEPA on how to augment the query. First, we determine with T1

which augmenter we have to use. Then, according to the result, we use T2

and T3 for batch size and threads size. Finally, T4 is used to decide the
cache size. Since the benefits of the cache are spread over all future queries
to run and not only on the next one, it has not much sense to change contin-
uously the cache size. For example, increasing a lot cache size would just
insert many empty cache slots. Rather, we want to determine slight variations
of cache size that adapt to the queries currently being issued by the user.
The variation is calculated in the following way. We consider the

2 http://www.cs.waikato.ac.nz/ml/weka/.

http://www.cs.waikato.ac.nz/ml/weka/


Learning How to Optimize Data Access in Polystores 125

current cache size and the predicted cache size determined by T4.
Then, we use the formula

(predicted cache size − current cache size)
10

where 10 is an arbitrary value set by us experimentally.

Figure 5 shows an example of the decision tree T1. When a new query has to
be executed, we navigate the tree from the root to a leaf according to the charac-
teristics of our setting. The leaves indicate the final decision, i.e. the augmenters
to choose.

Fig. 5. An example of decision tree T1.

4 Summary of Experiments

In this section we show the effectiveness of our learning mechanism only. The
full report of the results is shown in [9].

The adaptive augmented has been trained with the logs of almost 2 million
runs. We compare adaptive against a human optimizer and a random opti-
mizer. The campaign was planned as follows. We have generated 25 queries of a
different kind that were not present in the training set. Each query is run on a
polystore with a different number of databases (4, 7, 10 and 13).

For the human optimizer, we defined the configuration for each run that
could, in our opinion, result to be the most performing. A configuration consists
of thread size, batch size and cache size. Each configuration is executed
for each of the six available augmenters. In addition, we defined a random con-
figuration for each run in order to emulate a random optimizer. Finally, we
have another run whose configuration is determined by adaptive. Note that
the use of cache size in this campaign of experiments work in the same way



126 A. Maccioni and R. Torlone

it is described in Sect. 3.2. For this reason, we first run all the human runs,
followed by random and then adaptive.

For each configuration, we need to select the best performing run out of the
13 (i.e. 1 for adaptive and 6 for both human and random).

Fig. 6. Accuracy of the adaptive augmenter optimization.

In Fig. 6(a) we compare the number of times that an optimizer is the best.
Although the number of candidates for adaptive was six times lower than the
other optimizers, it was the best in most of the cases. In Fig. 6(b) we show the
number of times that the adaptive run was in the top-1, top-2, top-3 and top-5
runs. adaptive is always able to find a good configuration for the query. The
accuracy of adaptive increases as the number of databases increases because
the differences of execution times between configurations increase, thus making
it easier for the decision trees to split the domain of the parameters.

5 Conclusion and Future Work

In this paper we have shown that machine learning can be used to optimize the
access to data in a polystore. Indeed, as the database systems in a polystores
are black boxes, a mechanisms that learns automatically the best way to exploit
them with no knowledge of their internals can be very effective. In particular, we
adopted this solution to optimize the query augmentation mechanism offered by
our polystore system, QUEPA. Augmentation provides an effective tool for infor-
mation discovery in heterogenous environments that, according to the polystore
philosophy, does not require any query translation. A number of experiments
have confirmed feasibility and accuracy of the optimization technique.

As a direction of future work, we would like to extend the optimization algo-
rithms with more evolved techniques of machine learning such as deep learning.



Learning How to Optimize Data Access in Polystores 127

References

1. Apache MetaModel. http://metamodel.apache.org/. Accessed Sept 2017
2. Atzeni, P., Bugiotti, F., Rossi, L.: Uniform access to NoSQL systems. Inf. Syst.

43, 117–133 (2014)
3. Duggan, J., et al.: The BigDAWG polystore system. SIGMOD Record 44(2), 11–16

(2015)
4. Haas, L.M.: The power behind the throne: information integration in the age of

data-driven discovery. In: SIGMOD, p. 661 (2015)
5. Kolev, B., Bondiombouy, C., Valduriez, P., Jiménez-Peris, R., Pau, R., Pereira, J.:

The CloudMdsQL Multistore System. In: SIGMOD, pp. 2113–2116 (2016)
6. Kraska, T., Beutel, A., Chi, E.H., Dean, J., Polyzotis, N.: The case for learned

index structures. In: SIGMOD, pp. 489–504 (2018)
7. Krishnan, S., Yang, Z., Goldberg, K., Hellerstein, J.M., Stoica, I.: Learning to

optimize join queries with deep reinforcement learning. CoRR, abs/1808.03196
(2018)

8. Maccioni, A., Basili, E., Torlone, R.: QUEPA: QUerying and exploring a polystore
by augmentation. In: SIGMOD, pp. 2133–2136 (2016)

9. Maccioni, A., Torlone, R.: Augmented access for querying and exploring a poly-
store. In: ICDE, pp. 77–88 (2018)

10. Marcus, R., Papaemmanouil, O.: Deep reinforcement learning for join order enu-
meration. In: aiDM@SIGMOD 2018 (2018)

11. Ong, K.W., Papakonstantinou, Y., Vernoux, R.: The SQL++ semi-structured data
model and query language: a capabilities survey of SQL-on-Hadoop, NoSQL and
NEWSQL databases. CoRR, abs/1405.3631 (2014)

12. Fellegi, I.P., Sunter, A.B.: A theory for record linkage. J. Am. Stat. Assoc. 64,
1183–1210 (1969)

13. Quinlan, J.R.: Simplifying decision trees. Int. J. Man-Mach. Stud. 27(3), 221–234
(1987)

14. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San
Francisco (1993)

15. Sadalage, P.J., Fowler, M.: NoSQL Distilled: A Brief Guide to the Emerging World
of Polyglot Persistence, 1st edn. Addison-Wesley Professional, Boston (2012)

16. Stonebraker, M.: The case for polystores, July 2015. http://wp.sigmod.org/?
p=1629

17. The DZone Guide To Data Persistence. https://dzone.com/guides/data-
persistence-2. Accessed Sept 2017

http://metamodel.apache.org/
http://wp.sigmod.org/?p=1629
http://wp.sigmod.org/?p=1629
https://dzone.com/guides/data-persistence-2
https://dzone.com/guides/data-persistence-2

	Learning How to Optimize Data Access in Polystores
	1 Introduction
	2 Augmented Access to Polystores
	2.1 A Data Model for Polystores
	2.2 Augmented Search
	2.3 Implementation

	3 Efficient Implementation of Augmented Search
	3.1 Augmenters
	3.2 Adaptive Augmentation: Learning the Access Plans

	4 Summary of Experiments
	5 Conclusion and Future Work
	References




