
Position: GDPR Compliance
by Construction

Malte Schwarzkopf1(B), Eddie Kohler2, M. Frans Kaashoek1,
and Robert Morris1

1 MIT CSAIL, Cambridge, USA
malte@csail.mit.edu

2 Harvard University, Cambridge, USA

Abstract. New laws such as the European Union’s General Data Pro-
tection Regulation (GDPR) grant users unprecedented control over per-
sonal data stored and processed by businesses. Compliance can require
expensive manual labor or retrofitting of existing systems, e.g., to han-
dle data retrieval and removal requests. We argue for treating these new
requirements as an opportunity for new system designs. These designs
should make data ownership a first-class concern and achieve compliance
with privacy legislation by construction. A compliant-by-construction
system could build a shared database, with similar performance as cur-
rent systems, from personal databases that let users contribute, audit,
retrieve, and remove their personal data through easy-to-understand
APIs. Realizing compliant-by-construction systems requires new cross-
cutting abstractions that make data dependencies explicit and that aug-
ment classic data processing pipelines with ownership information.

We suggest what such abstractions might look like, and highlight
existing technologies that we believe make compliant-by-construction
systems feasible today. We believe that progress towards such systems
is at hand, and highlight challenges for researchers to address to make
them a reality.

1 Introduction

Many websites store and process customers’ personal data in server-side systems.
Companies operating these websites must comply with data protection laws and
regulations, such as the EU’s General Data Protection Regulation (GDPR) [9]
and the California Consumer Privacy Act of 2018 [1], that grant individuals
significant control of and powers regarding their own data. For example, the
GDPR makes it mandatory for enterprises to promptly provide users with elec-
tronic copies of their personal data (“right of access”), and for enterprises to
completely remove the user’s personal data from its databases on request (“right
of erasure”). Non-compliance with the GDPR can result in severe fines of up to
4% of annual turnover, and the EU has recently imposed fines of hundreds of
millions of dollars on Mariott [28] and British Airways [27] for negligent handling

c© Springer Nature Switzerland AG 2019
V. Gadepally et al. (Eds.): DMAH 2019/Poly 2019, LNCS 11721, pp. 39–53, 2019.
https://doi.org/10.1007/978-3-030-33752-0_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33752-0_3&domain=pdf
https://doi.org/10.1007/978-3-030-33752-0_3

40 M. Schwarzkopf et al.

of customer data. At one estimate, the cost of GDPR compliance is expected to
exceed $7.8bn for U.S. businesses alone [25].

In this paper, we survey the challenges that GDPR compliance creates for
data storage and processing systems, and argue that the database and systems
research communities ought to treat these challenges as an opportunity for new
system designs. These new designs should broadly treat end-users’ control over
their personal information as a first-class design concern. Our vision is to align
system designs closely with the reality of data ownership and legislative require-
ments such as those imposed by the GDPR. Concretely, systems should achieve
compliance with GDPR-like legislation by construction, with significantly more
help from databases than current systems can offer.

The GDPR differs from prior privacy legislation primarily in its comprehen-
siveness. The GDPR has an expansive interpretation of “personal data” that
covers any information related to an identifiable natural person, the data sub-
ject. The legislation establishes data subjects’ rights over the information that
data controllers (e.g., web services) collect and which data processors (e.g., cloud
providers) store and process.

This has wide-ranging implications, including for the relational backend
databases that support web applications. To comply with the spirit of individ-
ual control over data and to guarantee the data subjects’ rights, such databases
should become dynamic, temporally-changing federations of end-users’ con-
tributed data, rather than one-way data ingestors and long-term storage reposi-
tories that indiscriminately mix different users’ data.

To realize this ideal, a database must:

1. logically separate users’ data, so that the association of ingested, unrefined
“base” records with a data subject remains unambiguous;

2. model the fine-grained dependencies between derived records and the under-
lying base records; and

3. by appropriately adapting derived records, handle the removal of one user’s
data without breaking high-level application semantics.

More ambitious goals may include having the database attest the correctness
of its ownership tracking and data removal procedures, or to synthesize such
procedures from a high-level privacy policy.

Today’s websites and applications rely on much more than databases, how-
ever: blob stores may store artifacts like photos, machine learning models may
train on users’ derived data, and long-term analytics pipelines may update aggre-
gate statistics on dashboards. Consequently, implementing our vision in any sin-
gle system is likely insufficient. Instead, cross-cutting abstractions that generalize
across systems are needed.

We believe that one promising approach is to conceptualize web service
backends—databases, blob stores, analytics pipelines, machine learning (ML)
models, and other systems—as a large dataflow computation. In this model, a
user “subscribes” and contributes her data into an exclusively-owned shard of the
backend. This shard stores all data owned by this user. As data arrives into the

Position: GDPR Compliance by Construction 41

shard, it streams into other systems for processing and storage, but remains asso-
ciated with the contributing user. The user may at any point choose to withdraw
her shard (and thus, her data) from the system. For example, a newly-uploaded
picture will initially be associated with the uploader’s shard (and logically, or
perhaps even physically, stored with it). Subsequently, it may percolate into a
blob store (for storing the binary image data), a database (for tracking the pic-
ture’s metadata), a request log, and a notification service that pushes updates
to the uploader’s friends. Beyond the original, encrypted user shard, the pic-
ture is associated only with a pseudonymous identifier, a model that is GDPR-
compliant by construction. If the uploading user decides to retrieve her data,
the service merely needs to return her shard and all information it contains;
if she demands erasure of her data, the service deletes the shard and streams
revocation messages that remove derived data.

The dataflow architecture we sketched here crucially requires systems to track
data origin, e.g., via explicit labels or well-defined relationships. In addition, all
systems must support both data contribution and data revocation. We believe
that efficient mechanisms for these purposes are within reach, and that develop-
ing mechanisms and systems that achieve compliance by construction constitutes
a fruitful research direction for databases and privacy-aware and distributed dat-
acenter systems.

2 Vision

We envision a compliant-by-construction web service backend that allows users
to seamlessly introduce, retrieve, and remove their personal data without man-
ual labor on the application developer’s part. In the following, we focus how
this vision addresses data subjects’ rights to access, objection, erasure, and data
portability under the GDPR. Existing techniques discussed in Sect. 4 are suf-
ficient to provide data protection and security, and should compose with our
proposal.

For concreteness, we center our discussion around relational databases, which
are central to many web service backends. We first sketch the system design, and
then explain how it facilitates key GDPR rights. Section 3 will discuss how to
extend our design to include other systems, such as blob stores and model serving
infrastructure.

2.1 System Design

Our key idea is for each user to have her own, structured shard of the storage
backend (Fig. 1). This user shard stores all information about this user, such
as profile information, posts, uploaded pictures, records of votes or “likes”, or
other application-specific information. Storing data in a user shard represents an
association of control, or, for many data items, ownership. Therefore, a user shard
never contains information related to other users, or derived information that
combines multiple users’ data. We expect that the data subject owning the user

42 M. Schwarzkopf et al.

Materialized views

Application 1: frontpage Application 2: top contributors

Queries Queries

like
counts

visible
posts friends like

counts profiles

JOIN

FILTER
UNION

UNION

FILTER

Dataflow
computation

SUM

JOIN

posts friends likes profile

Alice’s shard

User shards
Bob’s shard

posts friends likes profile

Fig. 1. Example of our architecture for a web service with two applications. Applica-
tions write new data to user shards (top). The database processes changes through a
dataflow (middle, blue) to update tables in the materialized views, which applications
(bottom) query (Color figure online).

shard is often the primary contributor to it, although other entities—including
data controllers—may also add data to the shard (consider, e.g., doctors adding
to a medical record).

To combine users’ data, as most applications require, the backend builds
materialized views over the user shards. These materialized views are what
applications query, and different applications may define different views that
suit their needs. For example, a microservice application for the personalized
front page of a social application may define a view for the social graph, views
that hold users’ most recent and most-liked posts, and a view for posts with
associated images.

We envision a highly dynamic user shard set. Users will continuously update
their shards as they interact with the web service; new users will add shards,
while other users remove their shards or withdraw parts of their data. Moreover,
we would like a system based on dynamic user shards to enjoy the same per-
formance as today’s applications do with an optimized schema. Such optimized
schemas often combine multiple users’ data in tables that make sense for applica-
tion semantics, such as a table containing all posts. This requires a system with
support for a large number of materialized views (tens or hundreds of thousands

Position: GDPR Compliance by Construction 43

with many users), with efficient dynamic view creation and destruction, and with
excellent read and incremental update performance.

We believe that a key enabling technology for making this design effi-
cient already exists. The partially-stateful dataflow model supports high-
performance, dynamic, partially materialized, and incrementally-updated views
over input data [11]. Using this model, we can build a streaming dataflow com-
putation over the user shards, linking each user shard to the materialized views
that changes to the shard will affect. Every write to a user shard then becomes
a streamed update that flows through this dataflow to update the material-
ized views; the addition of new user shards becomes a set of batched updates
introducing a large collection of new records; and the removal of a user shard
becomes a set of batched updates that revoke previously-sent updates. The back-
end becomes a long-running, streaming dataflow computation with its ground-
truth state federated over the user shards. The partially-stateful nature of the
dataflow allows the system to proactively update some materialized views (or
parts thereof), while reactively computing information in others by querying
“backwards” through the dataflow.

Partially-stateful dataflow is a convenient abstraction for materialized views
over federated user data for several reasons:

1. the dataflow implicitly represents dependencies between records, such as a
post and the likes associated with it via a foreign key;

2. dataflow models (e.g., differential dataflow [17]) allow processing additions,
updates, and removals of user shards as incremental computations;

3. dataflow computations can be sharded, parallelized, and scaled with relative
ease, making the architecture suitable for scaling to large web services; and

4. partially-stateful dataflow can selectively materialize only parts of down-
stream views, which keeps the space footprint manageable and allows appli-
cations to implement their own caching policies, such as keeping data only
for active users, or only for the most popular entities.

The challenges in realizing our design lie in achieving high performance while
still providing intuitive consistency semantics for complex applications. Specif-
ically, the user shard structure will yield dataflows over thousands or millions
of individual user shards. These dataflows will have extremely “wide” depen-
dencies (i.e., many incoming edges) at points where the computation combines
data across users. Query evaluation of partially-stateful dataflow is likely to
be slow for such dependencies, since an upwards query through the dataflow
must contact many shards. But eager, forward update processing has no such
limitation. Semantics of the dataflow execution also matter: in a distributed,
streaming dataflow with many servers processing updates in parallel, updates
derived from a particular change to a user shard may reach some materialized
views before others. An application that writes to a user shard may expect to
see its write reflected in subsequent reads, as it would when interacting with
a classic database. But providing even this read-your-writes consistency over a
large-scale dataflow will result in expensive and unscalable coordination if done
naively. Finally, if the dataflow combined data from many user shards, several

44 M. Schwarzkopf et al.

users may share ownership of derived records in the materialized views. The
withdrawal of a user shard may affect these derived results, and the semantics
of handling revocation of records that impacted such co-owned derived results
need to be clear.

We believe that if it works, our dataflow design will yield a framework for
building complex applications while granting users unprecedented control over
their data.

2.2 Right to Access

Supplying a user with a copy of all her data stored and processed in the system,
as required by the GDPR’s “right to access” for data subjects (Article 15), is
straightforward in a compliant-by-construction design like ours. To serve a data
subject’s access request, the system simply sends the data subject a copy of her
user shard. This simplicity contrasts with post-hoc approaches that extract data
using complex, manually-crafted queries or custom crawlers that identify data
related to a subject for extraction and manual verification [8]. Achieving this sim-
ple compliance-by-construction with user shards imposes only two requirements:
first, that the schema of the user shard is free of proprietary information—such
as, e.g., the data controller’s or processor’s backend architecture—and second,
that the data subject is permitted see all data in her user shard. We there-
fore believe that compliance-by-construction systems should assume that a user
shard and its structure are visible to the data subject in their entirety.

In addition to access to the raw data, the GDPR right of access also requires
that the user be provided with information regarding “the purposes of pro-
cessing” and “the existence of automated decision-making [. . . and] the logic
involved” [9, Art. 15]. Compliance with these requirements is trickier to ensure
by construction, since processing purpose and decision making happen—at least
partly—in the application code. It might be possible, however, to analyze the
dataflow below user shards and generate a description of all materialized views
and applications that a given user’s data can reach and thereby might affect.
Such an analysis would provide an automated means of extracting the informa-
tion required, and might also facilitate compliance with the GDPR’s right to
objection, which allows data subjects to reject certain types of processing (see
Sect. 2.5).

2.3 Right to Erasure

The GDPR’s Article 17 requires that users must be able to request erasure of
their data “without undue delay”. In a compliant-by-construction design, this
involves removing a user shard from the system. Withdrawing a user shard effec-
tively erases all data contained in it, and then remove or transform dependent
downstream information in the dataflow and materialized views.

In principle, removing dependent downstream data is easy as long as the
dataflow’s operators understand revocations as well as insertions. For example,
revoking a vote record for a post from a counting operator involves reducing the

Position: GDPR Compliance by Construction 45

count by one, processing a revocation through a join produces revocations for all
joining keys, etc. By sending a revocation update for all information contained in
the withdrawn shard, the system ensures that all derived downstream informa-
tion is removed. And since all materialized views queried by applications depend
on the dataflow, which itself is a fault-tolerant, distributed computation, we can
be assured that all derived information will indeed (eventually) be removed.

All common relational operators have complements compatible with this
model, but more complex application semantics may require deeper system sup-
port for data removal. For example, consider Alice removing her account from
a news aggregator website such as HackerNews or Lobste.rs1: removing the user
shard in question will remove Alice’s posts and votes. More insidiously, the revo-
cation also covers information like invitations to the site that Alice issued, mod-
eration decisions she made (if she’s a moderator), and personal messages she
sent to other users. Some of this information may need to persist—perhaps in
anonymized form—even though Alice originally contributed it!

We believe that dataflow will work even in the presence of these complex
application semantics, provided the application developer can express a policy
for how each dataflow operator or materialized view handles record revocation.
Instead of simply inverting the effect of the original record, the operators may
e.g., re-attribute, anonymize, or otherwise transform the derived information.2

However, the invariants of partially-stateful dataflow require that any material-
ized result must also be obtainable by executing a query over the base data. The
dataflow system may meet this requirement by creating records that support
the transformed derived data, and storing these records in a special shard for
deleted users.

2.4 Right to Data Portability

Compliance with the right to data portability (GDPR Article 20) follows from
the combination of the rights to access and erasure. To move data her data
from one data controller to another, a user can simply retrieve her user shard
from the current controller, withdraw it, and then introduce the retrieved shard
to the new controller. All derived information at both controllers will update
appropriately, assuming that there is a common data description standard for
user shard schemas, or that the controllers know how to transform user shards to
and from their respective schemas. This is admittedly a big assumption, but we
believe that standardized formats or conversion tools will become available once
user data is widely available in the “structured, commonly used and machine-
readable format” [9, Art. 20] that the GDPR requires.

1 https://lobste.rs.
2 However, general-purpose “undoing” of computation that extends beyond relational

operators can be hard [5,6]. Imagine, for example, a dataflow operator that trains
an ML model on Alice’s data: it is unclear how to “invert” the training and revoke
Alice’s information from the trained model. Section 3 describes ideas for how we
might handle this situation.

https://lobste.rs

46 M. Schwarzkopf et al.

2.5 Right to Objection

The GDPR also grants users the right to object “any time to processing of
personal data concerning him or her” [9, Art. 21] for specific purposes (such as
marketing), with some exceptions. With our design, exercising this right involves
preventing the flow of data from a user shard into subgraphs of the dataflow that
apply specific kinds of processing or which lead to materialized views for specific
applications.

We believe that adding appropriate “guard” operators to the dataflow can
make it feasible to enforce this right. These operators would check whether a user
has objected to the use of her data for e.g., marketing, and prevent any data
from an objecting user’s shard from affecting views used in marketing work-
flows. We envision that achieving compliance this way requires applications to
augment their materialized view specifications with a declarative specification
of each view’s purpose, or a reason for overriding the right to objection and
processing data without consent (as per GDPR Article 6). We believe that such
a declarative specification is far simpler, easier to audit, and more likely to be
enforced correctly than adding explicit checks for user objection in application
code.

3 Challenges and Opportunities

Realizing our vision raises interesting research questions and its success requires
overcoming several challenges.

Classes of Personal Data. The data associated with a data subject can be con-
tributed directly by that subject into her user shard, but may also originate
with other entities. For example, data controllers sometimes create data about
a user: a government agency may create a birth certificate or tax information,
a hospital may create and add to a medical record, or a network operators may
collect metadata statistics about the user’s network use. The GDPR grants that
user the rights of a data subject for this content, requiring the system to store
such content in the relevant user shard. This will require intuitive interfaces
that allow applications to address the correct user shard on each database write,
ideally without requiring intrusive application changes.

Even if the data subject contributed content directly, it may be subject to
different policies. For example, a user may both browse and contribute articles
to a news site. Browsing data is personal, unshared, and typically subject to
strong GDPR protections; meanwhile, a contributed article may be subject to a
contract giving the site permission to host the article indefinitely. Furthermore,
in some cases, such as shared data, a user’s withdrawal from a site might require
application-specific anonymization rather than outright data removal. The pres-
ence of multiple classes of data in the same user shard could complicate some
compliance mechanisms; however, user shards are inherently flexible, allowing
such designs as multiple shards per user, one per data class.

Position: GDPR Compliance by Construction 47

Shared Data. Not all data is clearly owned by a single user. Should a private
message on Facebook be associated with one user or both? If my friend deletes
her copy of the message from Facebook’s database, is my side of our conversation
removed entirely, or should a possibly-anonymized ghost message persist in my
user shard?

Access Control. Even though a user shard contains data associated with a partic-
ular data subject, this association may not imply unlimited control. For example,
although you may be the data subject of tax records indicating what you owe,
you certainly cannot change or remove them! This suggests that controls over
the management of data in a user shard need to exist: some information will be
immutable to the data subject, but mutable by data controllers; other informa-
tion may need to persist even when the user removes her shard from the system.
To realize the right to portability by retrieving a user shard (as per Sect. 2.4),
we may need a form of trusted transfer between data controllers, or an assur-
ance mechanism for immutable data if the data subject is part of the transfer.
Perhaps the controllers could exchange hashes or signatures of the immutable
content, and use these to validate the ported user shard after import.

Schemas. User shards will have a well-defined schema, but this schema may
differ significantly from the schemas desired by applications, which often perform
queries across groups of user data. The dataflow transformations that combine
user shards into views convenient for application access may be complicated;
their performance may benefit from insights from literature on partitioned in-
memory databases [26].

Changing the user shard schema presents challenges and opportunities, as
there will be as many user shards as there are users, or more. On the one hand,
user shards represent natural boundaries for gradual schema change deployment;
but on the other hand, completing a schema change may require migrating mil-
lions of logically- and physically-distinct databases.

Consistency. Current partially-stateful dataflow implementations provide only
eventual consistency. This may suffice for some applications, or for many parts
of some applications, but strong consistency is important for some parts of
all applications. We see this as an opportunity to develop high-performance
partially-stateful dataflow implementations that support stronger consistency,
e.g., through pervasive multiversioning.

Cross-system Abstractions. Our exposition in Sect. 2 focused on an RDBMS,
but web services rely on many backend systems for storage and data process-
ing. If user shards are the unified ground truth storage of all contributed data,
the dataflow over them must feed not merely tabular materialized views, but
also diverse endpoints like blob stores, MapReduce jobs, ML training and infer-
ence, and others. This creates an opportunity to define cross-cutting abstractions
for dataflow between backend systems that augment current datacenter system

48 M. Schwarzkopf et al.

APIs. It also raises challenges: e.g., how do we revoke training data from an
already-trained ML model?

We envisage partially-stateful dataflows that feed data from user shards into
consumer systems subject to policies over the interfaces. For example, a policy
governing MapReduce jobs may require recording which user shards contributed
to the job result, and have withdrawal of any such shard trigger re-execution.
Systems might also specify a threshold on shard withdrawals below which the
derived effects of data revocation are minimal or provably untraceable (i.e., a
notion of differential privacy is guaranteed). This might help, e.g., with ML
models trained on a data subject’s information: if it is impossible to tell whether
an inference came from a model trained with this data or from one trained
without it, it is safe to avoid retraining when the subject withdraws her data.

Trust Model. In an ideal world, an end-user would never need to trust a data
controller or data processor. A strong threat model provides hard guarantees, but
often yields systems heavily rely on cryptography and have restrict functionality.
Alternatively, we might presume that companies follow the law and faithfully
implement laws like the GDPR, and that out-of-band enforcement mechanisms
(such as fines) take care of exceptions.

In technical terms, this model shifts the focus from making it impossible to
violate privacy laws to easing compliance with them. This can result in low-
overhead systems that maintain the functionality users demand, but offers no
absolute guarantees.

Specifying Privacy Policies. The GDPR codifies general responsibilities of a data
processor, but leaves it to the data processor to provide specifics in a privacy pol-
icy. Privacy policy languages designed for computers rather than human lawyers
could be a fruitful research direction to ease automated policy enforcement. For
example, our proposed system would benefit from machine-parseable privacy
policies that specify what dataflows to restrict, how to handle data erasure on
shard withdrawal, and what views specific applications are permitted to define.

4 Related Work

The desire to give users control over their personal data has been the motivation
for considerable existing research. This research addresses a wide variety of use
cases, adversary models, and presupposes different standards and ideals for user
data protection. The GDPR and similar comprehensive privacy legislation, by
contrast, for the first time defined concrete standards that real-world companies
must comply with.

Researchers have observed that retrofitting compliance with such wide-
ranging regulation onto existing systems and processes is challenging: business
models rely on combining data across services, modern machine learning (ML)
algorithms violate rights to explanation of automated decisions, and pervasive
caching and replication complicate data removal [24]. Minimally-invasive changes

Position: GDPR Compliance by Construction 49

that make existing system compliant can substantially degrade their perfor-
mance [23]. We believe that this inability to retrofit compliance motivates new
system designs and new abstractions for inevitable interaction between systems.

4.1 Malicious or Negligent Data Controllers and Data Processors

Some prior work seeks to protect users against a malicious data processor, using
sandboxes [12], by relying on decentralized storage with churn to effect self-
destruction of data unless refreshed [10], or by using cryptographic constructs for
oblivious computation [29,31] or computation over encrypted data [21,22]. These
systems have seen limited uptake in practice, perhaps due to the high cost—in
terms of overhead and restricted functionality—that strong, often cryptographic,
guarantees impose.

Information flow control (IFC) can protect against data breaches by statically
or dynamically verifying that it is impossible for specific system components or
code to access private user data [7,14,34]; programming language techniques
similarly ensure that applications handle user data in accordance with a privacy
policy [20,32,33]. To the same end, multiverse databases [16] compute individ-
ualized materialized views for each end-user. These approaches help meet the
GDPR’s data security requirements, but they do not address other aspects, such
as users’ rights to access, object, erasure, or data portability, which our proposed
design addresses by construction.

4.2 User Control over Data

Riverbed [30] allows end-users to define policies for their data and enforces them
over entire web service stacks: using containers, Riverbed forks a complete stack
for every new set of policies. This grants users control over their data, but pro-
hibits and sharing across users with disjoint policy sets, which severely restricts
functionality. W5 [13], by contrast, proposes to combine user data in a single
platform and has users explicitly authorize access by applications running on
this platform, relying IFC to enforce isolation. This achieves good performance,
but requires laborious effort on users’ part, and is incompatible with web services
that may wish to avoid exposing their internal application structure.

Perhaps most similar to our dataflow design are the ideas of “standing
queries” over distributed data in Amber [2] and Oort [3]. Structured as a publish-
subscribe network, the their focus is to allow cloud applications to access data
stored with multiple storage providers, and users are responsible for setting per-
missions on their data. This is akin to making our user shards held globally
queryable; our design instead focuses on enforcing GDPR compliance over data
stored within a single web service backend.

BStore [4] and DIY hosting [19] suggest to store users’ data lives on cloud
storage services (such as Amazon S3), which web applications access through a
filesystem interface or serverless functions. Solid [15] and Databox [18] go one
step further and have users run personal, physical or virtual, servers that host
all data and execute all server-side application logic, combining user data on

50 M. Schwarzkopf et al.

different “pods” or databoxes via well-defined APIs. These interfaces achieve
user control over data, but lack support for the long-running, stateful services
at the backbone of today’s web services, which rely on computing and caching
derived data. Our user shards are instead held on a web service’s servers (e.g.,
Google’s), allowing for efficient stateful services, but we envisage APIs for the
creation and withdrawal of user shards.

4.3 Data Revocation

Removing user data from server-side systems, and revoking its effects on derived
information, is a challenging problem. Some prior systems, such as Vanish [10],
seek to give users the ability to revoke data even if processed, cached, and stored
online and on machines beyond their control. In Vanish, data “self-destructs”
after some time unless it is actively refreshed, but revocation is all-or-nothing—
i.e., it is impossible to revoke only one of many records that impacted a piece
of data stored in Vanish—and Vanish relies on cryptography and a peer-to-peer
distributed hash table, making it hard to fit into today’s established web service
stacks. Undo computing [5,6], on the other hand, seeks to provide a general-
purpose mechanism to undo only specific frontend requests and their derived
side-effects. The use case is to undo malicious requests that exploited bugs in
a web application, and any secondary effects or subsequent data modifications
these requests applied, restoring a “clean” web service backend.

In a compliant-by-construction database, we trust the system (and the data
processor who runs it) to faithfully execute shard revocation requests, and
expect that fines under the GDPR are sufficient to discourage foul play. In
our dataflow design, determinism simplifies undoing requests, as the dataflow’s
inherent dependency structure and known operator semantics capture much of
the information that undo computing (which covers non-determinism) has to
extract from logs.

5 Conclusions

In this position paper, we argued that recent privacy legislation such as the
GDPR constitutes an exogenous change that necessitates new system designs,
much like changing applications or hardware have in the past.

We proposed a new web service backend architecture that puts users in con-
trol of their data, and which aims to be GDPR-compliant by construction.
Applied to an RDBMS, our design requires changes to classic schema design
and query processing, but leaves the application development model unchanged.

While we believe our ideas indicate a promising direction, and efficient and
generalizable implementation requires addressing several research challenges that
span databases, distributed systems, programming languages, and security. We
are excited to work on these challenges ourselves, and we encourage the commu-
nity to take them up, as there is plenty of work to do.

Position: GDPR Compliance by Construction 51

Acknowledgments. We thank Jon Gjengset and the anonymous reviewers for helpful
comments that substantially improved this paper. This work was funded through NSF
awards CNS-1704172 and CNS-1704376.

References

1. California Legislature. The California Consumer Privacy Act of 2018, June
2018. https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill id=201720
180AB375

2. Chajed, T., et al.: Amber: decoupling user data from web applications. In: Proceed-
ings of the 15th Workshop on Hot Topics in Operating Systems (HotOS). Kartause
Ittingen, Switzerland, May 2015

3. Chajed, T., Gjengset, J., Frans Kaashoek, M., Mickens, J., Morris, R., Zeldovich,
N.: Oort: user-centric cloud storage with global queries. Technical report MIT-
CSAIL-TR-2016-015. MIT Computer Science and Artificial Intelligence Labo-
ratory, December 2016. https://dspace.mit.edu/bitstream/handle/1721.1/105802/
MIT-CSAIL-TR-2016-015.pdf?sequence=1

4. Chandra, R., Gupta, P., Zeldovich, N.: Separating web applications from user data
storage with BSTORE. In: Proceedings of the 2010 USENIX Conference on Web
Application Development (WebApps), Boston, Massachusetts, USA, p. 1 (2010).
http://dl.acm.org/citation.cfm?id=1863166.1863167

5. Chandra, R., Kim, T., Shah, M., Narula, N., Zeldovich, N.: Intrusion recovery for
database-backed web applications. In: Proceedings of the 23rd ACM Symposium
on Operating Systems Principles (SOSP), Cascais, Portugal, October 2011

6. Chen, H., Kim, T., Wang, X., Zeldovich, N., Kaashoek, M.F.: Identifying infor-
mation disclosure in web applications with retroactive auditing. In: Proceedings of
the 11th USENIX Symposium on Operating Systems Design and Implementation
(OSDI), Broomfield, Colorado, USA, October 2014

7. Chlipala, A.: Static checking of dynamically-varying security policies in database-
backed applications. In: Proceedings of the 9th USENIX Symposium on Operat-
ing Systems Design and Implementation (OSDI), Vancouver, British Columbia,
Canada, October 2010. http://adam.chlipala.net/papers/UrFlowOSDI10/

8. Cresse, P.: The GDPR: Where Do You Begin? CloverDX Blog, August 2017.
https://blog.cloverdx.com/gdpr-where-do-you-begin. Accessed July 17 2019

9. Regulation (EU) 2016/679 of the European Parliament and of the Council of 27
April 2016 on the protection of natural persons with regard to the processing of
personal data and on the free movement of such data, and repealing Directive
95/46/EC (General Data Protection Regulation). In: Official Journal of the Euro-
pean Union L119, pp. 1–88, May 2016. http://eur-lex.europa.eu/legal-content/
EN/TXT/?uri=OJ:L:2016:119:TOC

10. Geambasu, R., Kohno, T., Levy, A.A., Levy, H.M.: Vanish: increasing data pri-
vacy with self-destructing data. In: Proceedings of the 18th USENIX Security
Symposium. Montreal, Canada, pp. 299–316 (2009). http://dl.acm.org/citation.
cfm?id=1855768.1855787

11. Gjengset, J., Schwarzkopf, M., Behrens, J., et al.: Noria: dynamic, partially-stateful
data-flow for high-performance web applications. In: Proceedings of the 13th
USENIX Symposium on Operating Systems Design and Implementation (OSDI),
Carlsbad, California, USA, pp. 213–231, October 2018

https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201720180AB375
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201720180AB375
https://dspace.mit.edu/bitstream/handle/1721.1/105802/MIT-CSAIL-TR-2016-015.pdf?sequence=1
https://dspace.mit.edu/bitstream/handle/1721.1/105802/MIT-CSAIL-TR-2016-015.pdf?sequence=1
http://dl.acm.org/citation.cfm?id=1863166.1863167
http://adam.chlipala.net/papers/UrFlowOSDI10/
https://blog.cloverdx.com/gdpr-where-do-you-begin
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2016:119:TOC
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2016:119:TOC
http://dl.acm.org/citation.cfm?id=1855768.1855787
http://dl.acm.org/citation.cfm?id=1855768.1855787

52 M. Schwarzkopf et al.

12. Hunt, T., Zhu, Z., Xu, Y., Peter, S., Witchel, E.: Ryoan: a distributed sandbox
for untrusted computation on secret data. In: Proceedings of the 12th USENIX
Conference on Operating Systems Design and Implementation (OSDI), Savannah,
Georgia, USA, pp. 533–549 (2016). http://dl.acm.org/citation.cfm?id=3026877.
3026919

13. Krohn, M., Yip, A., Brodsky, M., Morris, R., Walfish, M.: A world wide web
without walls. In: Proceedings of the 6th Workshop on Hot Topics in Networks
(HotNets), Atlanta, Georgia, USA, November 2007

14. Krohn, M., et al.: Information flow control for standard OS abstractions. In: Pro-
ceedings of the 21st ACM SIGOPS Symposium on Operating Systems Principles
(SOSP), Stevenson, Washington, USA, pp. 321–334 (2007). https://doi.acm.org/
10.1145/1294261.1294293

15. Mansour, E., Sambra, A.V., Hawke, S., et al.: A demonstration of the solid platform
for social web applications. In: Proceedings of the 25th International Conference
Companion on World Wide Web (WWW), Montréal, Québec, Canada, pp. 223–226
(2016). https://doi.org/10.1145/2872518.2890529

16. Marzoev, A., Araújo, L.T., Schwarzkopf, M., et al.: Towards multiverse databases.
In: Proceedings of the 17th Workshop on Hot Topics in Operating Systems
(HotOS), Bertinoro, Italy, pp. 88–95 (2019). https://doi.acm.org/10.1145/3317550.
3321425

17. McSherry, F., Murray, D.G., Isaacs, R., Isard, M.: Differential dataflow. In: Pro-
ceedings of the 6th Biennial Conference on Innovative Data Systems Research
(CIDR), Asilomar, California, USA, Janaury 2013

18. Mortier, R., Zhao, J., Crowcroft, J., et al.: Personal data management with the
databox: what’s inside the box? In: Proceedings of the 2016 ACM Workshop on
Cloud-Assisted Networking (CAN), Irvine, California, USA, pp. 49–54 (2016).
https://doi.acm.org/10.1145/3010079.3010082

19. Palkar, S., Zaharia, M.: DIY hosting for online privacy. In: Proceedings of the 16th
ACM Workshop on Hot Topics in Networks (HotNets), Palo Alto, California, USA,
pp. 1–7 (2017). https://doi.acm.org/10.1145/3152434.3152459

20. Polikarpova, N., Yang, J., Itzhaky, S., Solar-Lezama, A.: Type-driven repair for
information flow security. CoRR abs/1607.03445 (2016). arXiv: 1607.03445

21. Popa, R.A., Redfield, C.M.S., Zeldovich, N., Balakrishnan, H.: CryptDB: protect-
ing confidentiality with encrypted query processing. In: Proceedings of the 23rd
ACM Symposium on Operating Systems Principles (SOSP), Cascais, Portugal, pp.
85–100 (2011). https://doi.acm.org/10.1145/2043556.2043566

22. Popa, R.A., et al.: Building web applications on top of encrypted data using mylar.
In: Proceedings of the 11th USENIX Conference on Networked Systems Design and
Implementation (NSDI), Seattle, Washington, USA, pp. 157–172 (2014). http://
dl.acm.org/citation.cfm?id=2616448.2616464

23. Shah, A., Banakar, V., Shastri, S., Wasserman, M., Chidambaram, V.: Analyzing
the impact of GDPR on storage systems. In: Proceedings of the 11th USENIX
Workshop on Hot Topics in Storage and File Systems (HotStorage), July 2019

24. Shastri, S., Wasserman, M., Chidambaram, V.: How design, architecture, and oper-
ation of modern systems conflict with GDPR. In: Proceedings of the 11th USENIX
Workshop on Hot Topics in Cloud Computing (Hot-Cloud), July 2019

25. Smith, O.: The GDPR racket: who’s making money from this $9bn busi-
ness shakedown, May 2018. https://www.forbes.com/sites/oliversmith/2018/05/
02/the-gdpr-racket-whos-making-money-from-this-9bn-business-shakedown/

http://dl.acm.org/citation.cfm?id=3026877.3026919
http://dl.acm.org/citation.cfm?id=3026877.3026919
https://doi.acm.org/10.1145/1294261.1294293
https://doi.acm.org/10.1145/1294261.1294293
https://doi.org/10.1145/2872518.2890529
https://doi.acm.org/10.1145/3317550.3321425
https://doi.acm.org/10.1145/3317550.3321425
https://doi.acm.org/10.1145/3010079.3010082
https://doi.acm.org/10.1145/3152434.3152459
http://arxiv.org/abs/1607.03445
https://doi.acm.org/10.1145/2043556.2043566
http://dl.acm.org/citation.cfm?id=2616448.2616464
http://dl.acm.org/citation.cfm?id=2616448.2616464
https://www.forbes.com/sites/oliversmith/2018/05/02/the-gdpr-racket-whos-making-money-from-this-9bn-business-shakedown/
https://www.forbes.com/sites/oliversmith/2018/05/02/the-gdpr-racket-whos-making-money-from-this-9bn-business-shakedown/

Position: GDPR Compliance by Construction 53

26. Stonebraker, M., Abadi, D.J., Batkin, A., et al.: C-store: a column oriented DBMS.
In: Proceedings of the 31st International Conference on Very Large Data Bases
(VLDB). VLDB Endowment, Trondheim, Norway, pp. 553–564 (2005). http://dl.
acm.org/citation.cfm?id=1083592.1083658

27. Sweney, M.: BA faces £183m fine over passenger data breach. The
Guardian, July 2019. https://www.theguardian.com/business/2019/jul/08/ba-
fine-customer-data-breach-british-airways. Accessed July 17 2019

28. Sweney, M.: Marriott to be fined nearly £100m over GDPR breach. The Guardian,
July 2019. https://www.theguardian.com/business/2019/jul/09/marriott-fined-
over-gdpr-breach-ico. Accessed July 17 2019

29. Volgushev, N., Schwarzkopf, M., Getchell, B., Varia, M., Lapets, A., Bestavros, A.:
Conclave: secure multi-party computation on big data. In: Proceedings of the 14th
ACM EuroSys Conference on Computer Systems (EuroSys), Dresden, Germany,
pp. 3:1–3:18, March 2019. https://doi.acm.org/10.1145/3302424.3303982

30. Wang, F., Ko, R., Mickens, J.: Riverbed: enforcing user-defined privacy constraints
in distributed web services. In: Proceedings of the 16th USENIX Symposium on
Networked Systems Design and Implementation (NSDI), Boston, Massachusetts,
USA, pp. 615–630, February 2019. https://www.usenix.org/conference/nsdi19/
presentation/wang-frank

31. Wang, F., Yun, C., Goldwasser, S., Vaikuntanathan, V., Zaharia, M.: Splinter:
practical private queries on public data. In: Proceedings of the 14th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI), Boston, Mas-
sachusetts, USA, pp. 299–313 (2017). http://www.usenix.org/conference/nsdi17/
technical-sessions/presentation/wang-frank

32. Yang, J., Hance, T., Austin, T.H., Solar-Lezama, A., Flanagan, C., Chong, S.: Pre-
cise, dynamic information flow for database backed applications. In: Proceedings
of the 37th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), Santa Barbara, California, USA, pp. 631–647, June 2016.
https://doi.acm.org/10.1145/2908080.2908098

33. Yang, J., Yessenov, K., Solar-Lezama, A.: A language for automatically enforc-
ing privacy policies. In: Proceedings of the 39th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL), Philadelphia, Penn-
sylvania, USA, pp. 85–96, January 2012. https://doi.acm.org/10.1145/2103656.
2103669

34. Yip, A., Wang, X., Zeldovich, N., Frans Kaashoek, M.: Improving application secu-
rity with data flow assertions. In: Proceedings of the ACM SIGOPS 22nd Sym-
posium on Operating Systems Principles (OSDI), Big Sky, Montana, USA, pp.
291–304 (2009). https://doi.acm.org/10.1145/1629575.1629604

http://dl.acm.org/citation.cfm?id=1083592.1083658
http://dl.acm.org/citation.cfm?id=1083592.1083658
https://www.theguardian.com/business/2019/jul/08/ba-fine-customer-data-breach-british-airways
https://www.theguardian.com/business/2019/jul/08/ba-fine-customer-data-breach-british-airways
https://www.theguardian.com/business/2019/jul/09/marriott-fined-over-gdpr-breach-ico
https://www.theguardian.com/business/2019/jul/09/marriott-fined-over-gdpr-breach-ico
https://doi.acm.org/10.1145/3302424.3303982
https://www.usenix.org/conference/nsdi19/presentation/wang-frank
https://www.usenix.org/conference/nsdi19/presentation/wang-frank
http://www.usenix.org/conference/nsdi17/technical-sessions/presentation/wang-frank
http://www.usenix.org/conference/nsdi17/technical-sessions/presentation/wang-frank
https://doi.acm.org/10.1145/2908080.2908098
https://doi.acm.org/10.1145/2103656.2103669
https://doi.acm.org/10.1145/2103656.2103669
https://doi.acm.org/10.1145/1629575.1629604

	Position: GDPR Compliance by Construction
	1 Introduction
	2 Vision
	2.1 System Design
	2.2 Right to Access
	2.3 Right to Erasure
	2.4 Right to Data Portability
	2.5 Right to Objection

	3 Challenges and Opportunities
	4 Related Work
	4.1 Malicious or Negligent Data Controllers and Data Processors
	4.2 User Control over Data
	4.3 Data Revocation

	5 Conclusions
	References

