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Abstract. In this paper, we propose a monocular vision-based system
that uses a MobileNet-SSD CNN for obstacle detection and collision
avoidance in GPS-denied outdoor environments. This framework consists
of two processes carried out simultaneously in a frame-to-frame basis:
(1) an obstacle detector and classifier using a lightweight convolutional
neural network with a UAV monocular onboard camera for real-time
mobile systems; (2) a collision avoidance algorithm with a proportional
controller responsible for the autonomous flight in GPS-denied outdoor
environments. However, because object detection and classification are
computationally intensive tasks, the processing is carried out off-board
on a ground control station that receives online imagery and data of the
UAV during the autonomous flight. The novel aspects in this work are
related to the capacity of the system to detect and avoid obstacles in real-
time with computationally low range hardware without GPU. We exploit
public datasets meant for other purposes and carefully selected images to
build a new lightweight dataset to train the CNN. Further, the output
imagery data is used by a proportional controller that communicates
back to the vehicle to evaluate a possible obstacle avoidance trajectory
and execute it if necessary. We carried out evaluations and flights in real
scenarios with multiple obstacles such as vehicles, people, bicycles, and
trees for autonomous flights in GPS-denied outdoor environments with
promising results.
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1 Introduction

Unmanned Aerial Vehicles (UAVs), have had a peak since last decade for com-
mercial and scientific use, driving the reduction of costs and miniaturization,
thus achieving to increase the number of applications for which they are cur-
rently used. Some of the applications range from recreational use, manipulation
of objects, transport of lightweight loads to deployment in outdoor areas of dif-
ficult access for exploration missions and rescues and victims identification in
natural disasters.

The effort to create and improve drone trajectory planning and control strate-
gies has become a scientific and research trend. As well as using drones integrated
onboard cameras for applications beyond photography, such as real-time image
processing and object detection. As a result of the integration of these, the UAVs
began to be used to carry out different tasks autonomously.

Nowadays, drones used for autonomous navigation make use of programmed
trajectories, relying entirely on sensors such as GPS and ultrasound to avoid
collisions, which have a high consumption of current and memory, reducing flight
time and processing speed and thus resulting in low performance for assigned
tasks. Another main issue to be addressed is that of drone localization given the
partial or total loss of GPS signal.

Motivated by the above, in this work, we address the problem of autonomous
flight in outdoor environments with limited or denied GPS signal by using a low-
end development UAV and base control station in an efficient way. As well as
a monocular onboard camera to process the environment to classify, detect and
locate objects such as trees, people, bicycles and vehicles in real-time and process
the information for a posterior collision avoidance without any other positioning
technique or technology. Besides, we are motivated by the idea of achieving
autonomous flight outdoors by using the least set of sensors, this is, a monocular
camera and an altimeter, which is attractive in terms of energy consumption
efficiency, an incentive for the development of micro aerial unmanned vehicles.

The above calls for a method that enables the drone to autonomously decide
whether a detected object is far or close depending on the class and the obstacle-
image relation is shown in Fig. 1. Thus we propose a two-step methodology for
the autonomous flight where only a monocular onboard camera is used to carry
out the detection. The process involves two steps carried out on a frame-to-frame
basis. First, the image captured is processed by a Convolutional Neural Network
(MobileNet-SSD CNN) [7], whose output will be one of the four classes: People,
Bicycle, Tree, Vehicle; and coordinates of each object in the image. A second
step will determine whether the object is considered as a proximate collision
and avoid it using a reactive control algorithm.

To achieve the above, the CNN architecture [11] has been trained with a mod-
ified PASCAL VOC 2007 dataset and a hand made dataset, using only pertinent
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classes for training the CNN. All the images came from real environments, yet
the network is capable of generalizing the characteristics for classification and
detection for simulated obstacles resulting in promising results in simulated out-
door environments as well.

Fig. 1. We present a methodology to achieve autonomous flight outdoors with a drone
equipped with a monocular camera. We use a deep learning approach [6] to obtain the
class and coordinates of the image and thus the proximity and location on a frame-
to-frame basis. All this by passing the UAV camera image through a MobileNet-SSD
Convolutional Neural Network.

The rest of this paper is organized as follows: Sect. 2 describes relevant related
work; Sect. 3 describes our proposed methodology; Sect. 4 describes our experi-
mental framework; finally, our conclusions are discussed in Sect. 5.

2 Related Work

Currently, most of the work in the area is related to autonomous flights using
GPS for greater accuracy, which results in higher battery consumption. For this
reason, more efficient alternatives are sought that do not involve the use of GPS.
When looking for other options in the literature, we found work focused on the
use of LSD-SLAM for autonomous navigation [12], as well as Visual SLAM [1],
without using GPS in uncontrolled environments [8]. One of the disadvantages
presented in [12] is that the mapping cannot be done in real-time, since the
need to pause to map the environment and the visual field, being limited by the
number of points the system can map, and repeating this process periodically as
you go along the environment being mapped. This method is useful for indoor
environments with large objects density, as shown in Fig. 2.

Another precise method, but more useful in controlled environments is the
VICON system [9], which locates the vehicle with millimetric precision in a
3D space, making use of markers avoiding GPS usage. This system is efficient
and robust for evaluating control algorithms and drone specific behaviors, by
investigating its effect when moving close to surfaces, as well as to check the
stability of air vehicles in general. By being able to map with great precision,
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this system has an elevated cost in comparison to the vehicle used for the work.
This technique requires several infrared cameras for 3D movement detection,
and for the measurement to be precise, it is necessary to place markers on the
UAV.

Fig. 2. Semidense reconstruction and 3D map of indoor environment mapped with
LSD-SLAM [12]

Finally, all of the methods above explained need high processing capacity to
function correctly in a real-time autonomous flight [10]. Because of these, we
proposed a technique handled with low-cost equipment and processing units,
without the need for dedicated GPUs or stereo cameras. We are using only
an integrated monocular camera with a low-resolution image processing and
without GPS sensor usage, all of the above with a deep learning approach [6].
We employ a MobileNet-SSD Convolutional Neural Network to classify [3], detect
and locate possible collision targets and avoid them if necessary using a simple
linear feedback reactive control [5].

3 Methodology

Our approach is based on three main components: (1) MobileNet-SSD CNN
architecture as an object detector for a monocular onboard camera system;
(2) proximity estimation in a single image using bounding box coordinates and
aspect ratio; (3) and a Proportional controller.

In this work, we use a quadrotor vehicle with a monocular camera onboard.
However, the RGB image acquired with the onboard camera is passed to the
Convolutional Neural Network escalade to 320× 180 pixels, thus generating an
output of the object class and bounding box coordinates of the above, thus
obtaining a proximity estimate and an object-image ratio, information that is
used by the controller to generate a frame-to-frame basis flight plan. We imple-
mented a P controller to control roll, pitch, yaw, and altitude velocity and thus
to achieve drones motion control for an efficient autonomous flight with collision
avoidance capabilities without using GPS or other techniques.

The controller error depends exclusively on each speed coordinate. Pitch
error depends on the proximity of an object to the UAV, roll velocity error
depends on the desired time to avoid the obstacle; yaw error depends on drone
deviation angle from taking off position, and altitude velocity error depends on
the difference between a desired fixed Z coordinate and actual altitude.
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3.1 Simulated and Real Outdoor Environments

The classification and detection of a determined object in images are addressed
using a methodology that exploits visual information by processing image pixels
from publicly available datasets imagery. For our purpose, we processed images
from the Pascal VOC 2007 dataset and a handmade dataset to extract these
characteristics maps from both RGB images and bounding box ground truth.
The idea behind this approach is to take advantage of the ground truth data
available in the dataset imagery, extracting enough characteristics to train the
CNN.

The simulated environment aims to establish the MobileNet-SSD capacity
of generalization when training with a purely realistic images dataset of people,
trees, bicycles, and vehicles, see Fig. 3.

Fig. 3. Simulated outdoor environment for evaluation of our approach in Gazebo 7.

Motivated on the success of the approach above, we modified the algorithms
and the communication system to make autonomous flight trials with real UAV
and outdoor scenarios. For this, we modified all experimental parameters used
for proximity sensing and obstacle avoidance since image- object ratios change
drastically compared to simulated scenarios.

3.2 MobileNet-SSD

The MobileNet-SSD network aims to classify, detect and locate objects in an
image for a moving robot without the necessity to stop moving to process the
environment, hence his lightweight architecture is capable of extracting the nec-
essary data with only one pass through the network. To reduce training time
we use Transfer Learning technique [2], this CNN has a pre-trained base net [4]
(MobileNet) which characteristics map is used by the SSD (Single Shot Multibox
Detector) to improve learning and generalization and determine best adjustable
bounding boxes for each object detected.
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4 Experiments and Results

In this section, we describe the evaluation results, as well as the experiments
realized in the Gazebo simulation world and the tests, accomplished in outdoor
environments with one and multiple obstacles. Finally, we compare both tests
to demonstrate the effectiveness of the system. To evaluate the performance of
our detection capability, we used a dataset containing 6600 images of the four
above mentioned classes with a 1-1 proportion for each one. The training dataset
contains all the information about ground truth boxes and classes of the objects
in each image. We compared the evaluation results of our simulated outdoor
environment detector with the real outdoor environment results, carrying out
several dozens of flights for each class in both simulation and real environments.

4.1 Simulation Outdoor Environment

For the first one with only an obstacle, the autonomous flight detector achieved
75% for people detection and avoidance, 80% for trees and 100% effectiveness
for vehicles. These results reaffirm the capability of the MobileNet-SSD CNN of
characteristics generalization due to the network only trained with real environ-
ment imagery, see Figs. 4 and 5.

Fig. 4. Tree detection, and collision avoidance during autonomous flight.

Fig. 5. People detection, and collision avoidance during autonomous flight.
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4.2 Real Outdoor Environment

The second experiment was developed in a real outdoor rural environment where
flights were done in various scenarios with different obstacles. Tree class was used
for multiple obstacle autonomous flight tests to ensure the system capability to
avoid obstacles in a continuous way, see Figs. 6 and 7.

Fig. 6. Tree and people detection and collision avoidance in a real environment with
one obstacle during autonomous flight

Fig. 7. Vehicle detection and collision avoidance in a real environment with one obstacle
during autonomous flight
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Fig. 8. Multiple tree detection and collision avoidance in a real environment with one
obstacle during autonomous flight

The results when carrying out real environment autonomous flights had an
improvement of 15% for people and tree classes and a decretion of 5% for vehi-
cles. This improvement is due to the CNN training with real imagery datasets.
And the decretion in detection for vehicle class is due to wind and illumination
condition in real environments causing the system to collide with the obstacles.

Finally, to demonstrate the capability of the system to carry out autonomous
flights with more than one obstacle to evade, as shown in Fig. 8, we made several
flights with 2, 3 and 5 objects and the percentage of success went down to 90%
for two obstacles and 85% for five obstacles.

5 Conclusions

This paper presents an autonomous flight system for a UAV in environments
in GPS-denied areas, using only a monocular RGB camera, an integrated ultra-
sound sensor, and low-end equipment. A deep learning approach was used, explic-
itly applying convolutional neural networks for classification and detection of the
environment in real time. Not only was it possible to evaluate the feasibility of
a reactive autonomous flight policy as initially proposed, but also carry it out in
a real system by obtaining optimal results.

The system approach is to use the MobileNet-SSD CNN, which processes the
input image, i.e., the classification, detection, and location of the object in the
image. For this the network is trained with four classes: vehicles, people, trees
and bicycles, which are common in areas with limited or no access to GPS, such
as rural areas.

The results presented demonstrate that the proposed method of autonomous
navigation provides optimal results; the UAV can effectively execute its flight
plan through the different objects offered with rates rounding 90% success of
flights performed.
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