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Abstract. Research on damage detection of road surfaces has been an active
area of research, but most studies have focused so far on the detection of the
presence of damages. However, in real-world scenarios, road managers need to
clearly understand the type of damage and its extent in order to take effective
action in advance or to allocate the necessary resources. Moreover, currently
there are few uniform and openly available road damage datasets, leading to a
lack of a common benchmark for road damage detection. Such dataset could be
used in a great variety of applications; herein, it is intended to serve as the
acquisition component of a physical asset management tool which can aid
governments agencies for planning purposes, or by infrastructure maintenance
companies. In this paper, we make two contributions to address these issues.
First, we present a large-scale road damage dataset, which includes a more
balanced and representative set of damages. This dataset is composed of 18,034
road damage images captured with a smartphone, with 45,435 instances road
surface damages. Second, we trained different types of object detection methods,
both traditional (an LBP-cascaded classifier) and deep learning-based, specifi-
cally, MobileNet and RetinaNet, which are amenable for embedded and mobile
and We compare the accuracy and inference time of all these models with others
in the state of the art.

Keywords: Road damage � Deep learning � DNNs � Generic Object Detection

1 Introduction

Research on damage detection of road surfaces using image processing and machine
learning techniques has been an active area of research in both developed and in-
development countries [1–4]. This is an important issue, as roads are one of the most
important civil infrastructures in every country and contribute directly and indirectly to
the countries’ economies and more importantly, to the well-being and safeness of their
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citizens. Thus, road maintenance is of paramount importance and many countries have
implemented inspection mechanisms and standards to carry out this process.

Nonetheless, both the inspection and journaling processes of road damages remain
daunting problems, as government agencies still struggle to maintain accurate and up-
to-date databases of such structural damages, making it hard to allocate resources for
repair works in an informed manner. The problem is exacerbated as the number of
experts that can assess such structural damages is limited, and furthermore, methods
typically used to collect data from the field are time-consuming, cost-intensive, require
a non-trivial level of expertise, and are highly-subjective and prone to errors. Therefore,
both academic endeavors and commercial initiatives have been conducted to facilitate
this process, making use of a combination of sophisticated technologies [5]. Most of
these approaches combine various sensors (i.e. inertial profilers, scanners), but also
imaging techniques, which have demonstrated to be particularly fit for the task. The
information gathered by these sensors and cameras can be fed to machine learning
algorithms and combined with mobile acquisition systems and cloud computing
approaches to automate the process or to create end-to-end solutions.

Such endeavors have demonstrated promising results [6], but many of them have
been limited to specific types of road damage classes (cracks, patches, potholes) and
relatively small and not sufficiently comprehensive datasets. Furthermore, traditional
“AI” systems for road damage classification do not to scale well and are not versatile
enough to work in the dire situations usually found by road inspection experts. This has
dramatically changed with the advent of the computer vision approaches based on deep
learning architectures, which have demonstrated tremendous strides in several com-
puter vision tasks and have slowly made their way into road inspection systems.

Such computer vision-based road detection and classification systems are signifi-
cantly cheaper than competing technologies and if trained appropriately, they can lead
to the implementation of sophisticated and cost-effective acquisition systems. These
solutions could be further enhanced if they are implemented on mobile devices for road
damage acquisition and stored on cloud computing technologies for further processing
and big data analyses. Such an approach could lead to the creation of geo-localized
databases containing the current state of the roads and other civil engineering infras-
tructures, which can be updated and used for forecasting and planning purposes. This is
perfectly aligned with the industry 4.0 and digital transformation paradigms and can be
easily implemented as business model that can be easily replicated. For instance, the
UK has launched the Digital Roads Challenge to attain this goal1.

In this paper, we present an initial approach for a digital asset management tool,
geared towards road and street management. Compared to previous works, which
concentrated their efforts to specific types damages (potholes [1], cracks [2] and pat-
ches [3], to cite a few), our proposal builds upon previous work in this domain, by
proposing a large dataset of various types of asphalt damages which is, to the best our
knowledge, one of the most comprehensive in the literature. Some of the structural
damages typically encountered in the field are depicted on Fig. 1; these images rep-
resent structural damages and not blemishes on other infrastructure such as signs and
markings.

The proposed road damage dataset has been used to train various machine learning
based “object detectors”, in which the objects of interest are the structural damages in

4 A. Angulo et al.



the dataset. As will be described in more depth in the following section, such systems
need to run in real-time to be useful, and therefore, we validated the dataset on
lightweight detectors such as LPB cascaded classifiers, and in more recent, deep
learning-based Single Shot Detectors (SSD) such as MobileNet and RetinaNet. The
two latter were developed so they can run efficiently on mobile devices (i.e. smart-
phones) in real-time, while achieving high mean average precisions (mAP).

The rest of this paper is organized as follows: in Sect. 2 we further motivate the
need for digital asset management systems, specifically for roads and streets. Then, in
Sect. 3 we discuss the state of the art in road damage detection using various imaging
modalities to provide some context, but we focus our attention to those techniques
based on computer vision and modern machine learning approaches. In Sect. 4 we
introduce the proposed dataset and an initial approach for road digital asset manage-
ment, as well as the tools and methods used for validating the proposal. Afterwards, in
Sect. 5, we discuss these results with regards with the state of the art and we describe
future avenues of research, concluding the article.

2 Motivation

The maintenance of roads and street infrastructure is a major concern, especially in
tropical countries where the asphalt and other civil facilities are more prone to suffer
structural damages. Nevertheless, this problem is not exclusive of these regions, and
the issue is becoming pervasive in developed countries due to the aging of their
infrastructure. Thus, in order to cope with these problems, governmental agencies in
these countries have developed specific procedures and standards to aid experts in
assessing the damage on asphalt and other materials such as concrete.

In the field, the experts have traditionally carried inspections based on these
standards following two main approaches: either by direct observations by humans or

Fig. 1. Examples of structural damages typically found in the literature: (a–b) linear cracks,
(c) peeling, (d) alligator cracks, (e) patches and (f) potholes

Road Damage Detection Acquisition System Based on DNNs 5



by quantitative analysis using remote sensing approaches. The visual inspection
approach requires experienced road managers, which makes it time-consuming,
expensive and prone to errors. Moreover, traditional methods tend to be inconsistent
and limited to point observations, making it difficult to scale to large cities or geo-
graphical areas, and further, to build and maintain digital corpuses with the acquired
data.

The problem is exacerbated as the acquisitions made by traditional inspections are
oftentimes not digitally stored, and thus government bodies cannot leverage the power
of the digital revolution (i.e. big data analytics) to address these challenges in a more
informed and efficient manner. In contrast, more recent quantitative systems, based on
large-scale inspection systems using the so-called Mobile Measurement Systems
(MMS) or laser-scanning methods have been proposed and deployed in some countries
[5]. An MMS can obtain highly accurate geospatial road information using a mobile
vehicle; this system is comprised of a GPS unit, an IMU, digital cameras, laser scanners
and LIDAR modules. Although these systems are highly accurate, they are consider-
ably more expensive and complex to operate, as well as more difficult to acquire,
manage, and maintain by small municipalities lacking the required resources.

In order to alleviate the above-mentioned problems, a great deal of research efforts
have been carried out to facilitate and automate the manual inspection process
described above. For instance, the civil engineering domain has a long history of using
non-destructive sensing and surveying techniques, typically based on computer vision,
such as 3D imaging [6] and remote sensing approaches [7] for a variety of applications.
The former approach has several advantages over the traditional inspection methods, as
well as to other approaches which use solely conventional imagining techniques, as
they cope better with changes in illumination and weather conditions.

Although such tools provide an opportunity for frequent, comprehensive, and
quantitative surveys of transportation infrastructures, they are costly and difficult to
implement and maintain, as such systems typically rely on heavily instrumented
vehicles, as depicted on Fig. 2. Therefore, such solutions are is simply not affordable
by many countries and even less so for individual municipalities. Thus, researches have
sought other methods to reduce the complexity and costs associated with surveying and
inspecting road infrastructures, well documented in the literature [7, 8].

As we will see in the next section, such efforts have mainly revolved around image
processing and computer vision techniques, as the main information used by inspectors

Fig. 2. Example of MMS system, designed by PaveMetrics, analyzed in [5]
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can be obtained from conventional imaging when dealing only with classification
problems (and not properly surveying), which have made major strides in this domain
due to the combination of efficient and lightweight deep learning-based generic object
detectors and mobile computing technologies for inference purposes.

3 Related Works

The automation of road damage inspection generally requires robust computer vision
algorithms with a high degree of intelligence, which can be easy to use and run in real-
time. However, most the systems in this vein were initially conceived as means for
aiding the experts in the field and were limited by the capabilities of the ML algorithms
of the time, which were not very reliable and robust, and which were difficult to
implement in portable systems. For a thorough state of the art of the various imaging
modalities the reader is directed to excellent surveys in 3D imaging [7], remote sensing
[8] and computer vision and image processing in general [9, 10].

The biggest challenge for automated road damage detection systems is to consis-
tently achieve high performance, in terms of accuracy, under various complex envi-
ronments (due to changes in illumination, weather conditions, among other challenges).
Despite these problems, several systems for detecting individual structural damages
have been proposed in the literature, as described in Sect. 1. However, most of these
works have not been able to tackle more challenging scenarios in the development of
their machine learning and AI systems, due to the absence of commonly accepted and
publicly available datasets. The Kitti dataset [4] could be exploited for such purposes;
however, its main purpose is for autonomous driving and using it for road damage
detection might prove itself a difficult and ultimately futile endeavor.

Therefore, it was widely recognized by the academic community that there was a
need for an extensive dataset specifically designed for road damage assessment, for two
main purposes. First, in order to test and perform benchmarks among competing
solutions, helping to boost the R&D in the area. Second, to homogenize the data
collection process, as such datasets are essential for creating reliable and robust
machine learning-based solutions for road and asphalt detection and inspection. This
problem has been partially addressed, with some datasets having made available, but
much work needs to be done, as roads vary dramatically among countries.

Despite these issues, the available datasets have been exploited over the years to
implement machine-learning based solutions, using computer vision-based features and
classification algorithms such as SVM for the detection of cracks [11] and potholes
[12]. As datasets have become larger, there has been a growing interest in deploying
deep learning-based (DL) approaches to the problem of road and asphalt damage
detection. It is well known that DL algorithms have demonstrated impressive results in
a variety of computer vision-related fields and are behind the autonomous driving
revolution. In this sense, several efforts have been conducted to leverage these capa-
bilities in the problem we are tackling, with some very impressive results for certain
classes of asphalt damages such as cracks [13].

One advantage of deep learning methods over traditional approaches is that cheaper
or less sophisticated imaging devices (i.e. smartphones) can be used for acquiring the
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training samples, instead of the much more expensive MMS platforms described in the
previous section. Approaches based on mobile devices had been explored before, using
more traditional CV detectors such as LBP-cascade classifiers [14], but the authors did
not compare their results to more recent detectors based on DL. Furthermore, although
the results were commendable, they made use of custom datasets and were limited to
more “static” analyses. Figure 3 shows a couple of examples of our structural damage
detection using the LPB-based approach, using our dataset.

On the other hand, recent advances in Generic Object Detection algorithms [15]
have now made possible to implement very sophisticated and resource efficient algo-
rithms in constrained devices, such as mobile phones, and some of the recent imple-
mentations have started to emerge in various areas and in particular in the field of road
inspection and assessment. In this sense, it is also possible now to carry out the
deployment phase (acquisition and detection of structural damages) in real time using
inexpensive mobile devices as well [17–19], either for individual inspections in situ or
mounted on a car, making it an attractive alternative to the expensive MMS platforms.

These advances have been possible due to the development of two-stage detectors
such as Fast R-CNN and subsequently single stage detectors like YOLO (for a detailed
discussion the reader is directed to an excellent survey [15]). The former category can
achieve high accuracies (mean average precision or mAP) but are usually inefficient, as
they cannot be deployed in resource constrained devices [16]. The latter category of
generic object detectors has steadily improved over time, with new architectures based
on Feature Pyramid Networks (i.e. RetinaNet and MobileNet) achieving satisfactory
accuracies for challenging problems whilst requiring relatively small footprints, leading
to implementations in mobile phones for detecting road damages and collecting geo-
referenced information [17–19], as depicted on Fig. 4(a) and (b).

These progresses have also been possible due to the introduction of large-scale
datasets required by the data hungry DL algorithms, especially for domain specific
problems such as road damages, as the dataset introduced by the University of Tokyo
[19]. This dataset contains several types of structural damages (cracks, patches, etc.),
but it is still limited, as it presents unbalanced classes, a problem we mitigate in our

Fig. 3. Detection of alligator cracks and potholes using the most basic ML algorithm explore in
this work: an LPB-cascade classifier, note the high number of false positives
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dataset. In the following sections we will describe the dataset, the initial experiments
performed with various algorithms and we will discuss how they compared with the
state of the art described above, outlining as well future avenues of research.

4 Proposed Solution

Considering the progresses made in the domain, the integration of the technologies
described above into “smart cities” paradigms such as physical asset management
systems was only question of time, and some government and private service com-
panies have started to make use of the information collected into road damage data-
bases in various ways. The main idea is to leverage the progresses made in various
domains (AI, IoT, mobile and cloud computing) for creating systems that can ease the
labor of road inspectors on the one hand, but which can also be used to implement end-
to-end solutions for creating a large database of structural damages from individual
roads, to streets in medium to large cities, leading to the so-called “digital twins”.

These systems could aid in improving the work of the municipalities or govern-
ments at the federal level, helping them in managing their assets. Examples of plat-
forms with these capabilities have been deployed in the US (RoadBotics [20]).

4.1 Utilized Dataset

As mentioned previously, the research on road damage detection suffered from a lack
of unified datasets. This problem has been partially addressed by the community, with
several datasets of various sizes and characteristics; for instance, researchers at the
Universita di Roma Tre introduced a dataset [14] with three major structural damage
classes (linear and alligator cracks and potholes) and used it for implementing an
acquisition system using a mobile phone. More recent efforts have sought to include a
broader category of classes, such as the dataset of University of Tokyo [19], which
includes 8 types of damages (images of 600 � 600 pixels), as depicted on Table 1.

The codes in Table 1 are used by the Japanese Government to classify road
damages and it was employed by the authors to categorize structural damages in their
work. This dataset is the largest currently available and has been extensively used to
implement road inspection systems using deep learning architectures, such as SSD like

Fig. 4. Examples of road damage detection systems running on a smartphone. (a) System by the
University of Tokio [19] and (b) Solution by RoadBotics [20]
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RetinaNet [17] and MobileNet [18]. Although this dataset is relatively large, some
classes or damage instances are poorly represented, such as the potholes class.

However, potholes at various stages of deterioration are one of the most important
structural damages that need to me tracked by governmental bodies, and as such, one of
the contributions of our work is to include more instances to the classes in the dataset
introduced by the authors in [19] to have a more balanced representation, as it can be
observed in Table 2. We included more instances of the D00, D10 and D11 classes
(longitudinal cracks of various types) and for the D40 (potholes), for which several
hundred examples have been added, as shown on the third row of Table 2.

Using this extended or modified dataset, we have carried out a comparative analysis
with previous works in the literature, in order to evaluate if any gains in performance
could be achieved, which in most instances was the case. In the next section, we will
discuss how the dataset was used for training a set of “generic object detectors”, which
are the backbone for our acquisition and MMS system. It must be noted that most of the
images are taken from “above the road” using mobile devices.

The choice of acquisition system was justified in Sect. 2 from the “technical”
perspective, but it should be stressed that in many countries, installing a camera outside
the car constitutes a violation of the law [19]. Thus, a great number of solutions are
based on inexpensive mobile phone cameras have been proposed and, as mentioned in
Sect. 3, they require small footprints and real-time performances, whilst attaining high
detection and classification accuracies.

Table 1. Road damage types in the dataset proposed in [19] and their definitions

Damage type Description Class name

Crack Linear crack Wheel mark part D00
Construction joint part D01
Equal interval D10
Construction joint part D11

Alligator crack Partial, overall pavement D20
Other corruption Rutting, bump, pothole D40

White line blur D43
Cross walk blur D44

Table 2. Number of damage instances in each class for the original dataset presented in [19] and
the one used in this work. Note that the potholes and cracks classes are better represented.

Dataset/Class D00 D01 D10 D11 D20 D40 D43 D44

Maeda [19] 2,678 3,789 742 636 2,541 409 817 3,733
Modified 2,978 3,789 1042 1036 3,341 1,609 817 3733
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4.2 Training

For the sake of completeness, we have implemented three types of object detectors,
concentrating on those amenable for implementation on mobile and embedded plat-
forms: an LBP-cascade classifier (as in [14]) as well more recent, DL-based generic
object detectors, specifically MobileNet (as in [17]) and RetinaNet (as in [18]). The
latter model can be trained with different backbone DNNs for the feature extraction
phase (RestNet or VGG in its various configurations), trading accuracy versus infer-
ence time, obtaining in general better results than other popular Single Shot Detectors
(SSD) such as YOLO, whilst yielding models amenable for embedded or mobile
implementations. For instance, RetinaNet with VGG19 as backbone requires
115.7 MB and can achieve inference times of 0.5 s, fast enough for our purposes.

The labeled dataset is randomly shuffled and separated into training set and vali-
dation set, 30% of the images of each class was used for training, taking care that the
model did not overfit; for this purpose we have made use of dropout and data aug-
mentation over the original dataset (using various image transformations such as
cropping, warping, rotation, among other). Data augmentation is a method for “syn-
thetically” generating more training data from the existing training examples, by
submitting the latter to a variety of random transformations that yield believable
looking images, which has helped us to move from 18,000 images to over 100,000.

The DNNs description as well as the training phase were implemented with Keras
and Tensorflow running on Google Colab with a Tesla K80 GPUs; the models were
trained with batch size of 24 and number steps per epoch of 300, using Adam as
optimizer, adapting the learning rate as discussed in [19]. As we will see in the next
section, the proposed approach obtained improvements over previous works, especially
for then underrepresented classes in the original road damages dataset.

5 Results and Discussion

In our experiments, both the training and testing phases were carried out using Google
Colab, which enables us to have access to high performance computing (a Tesla
K80 GPU and other resources) and to host our dataset (images and videos) on the
Google Cloud, all while avoiding any computational burden. In the evaluation phase,
we also made use of this tool, importing the trained models and images not seen
previously by the models. Furthermore, we carried out experiments on real-time video
to test the capabilities of the proposed models in a variety of scenarios, using an open
source software for estimating metrics such as IoU (Intersection over Union) and the
mAP2.

Table 3 shows the obtained results for the three “generic object detectors” tested in
our experiments. As mentioned before, we decided to implement an LBP-cascaded
based classifier to contrast our results with those reported in [14], as we made use of a
part of their dataset.
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We also report the results for the deep learning approaches reported in the literature,
which make use of the MobileNet [17] and RetinaNet [18]. The proposed models
achieved consistently better results than those reported in the literature using the same
methods ([15, 17, 19], respectively), while achieving higher accuracies and lower
inference times, as we will discuss later in this section.

In Table 3, we have decided to show the results only for 4 of the most reported
classes (longitudinal and lateral cracks, alligator cracks and potholes), as they are the
most prevalent and it makes the comparisons with previous work easier. It should be
noted that other works discussed in the state of the art in Sect. 3 have obtained good
results for individual road damage classes (even with pixel-level accuracies) but they
were not amenable to mobile or embedded vision implementations.

In order to assess the improvements obtained by our extended dataset, we show a
comparative analysis between the MobileNet-based classification and detection method
[19] and the best of our models, which is shown on Table 4. The SSD detector and
classifier performed well, with both high precision and recall, especially compared with
the D11 and D40 classes (lateral cracks and potholes, respectively).

This can be attributed to the larger number of training instances in our dataset, a
problem reported by the authors in [19]. The authors mentioned the class D43 (white
line blurs) as a counter example, as the number of examples is limited, but we believe
that this class is relatively easier to detect, which might explain the results.

Table 3. Number of damage instances in each class for the original dataset presented in [19] and
the one used in this work. Note that the potholes and cracks classes are better represented.

Metric/Class D01 (Long crack) D11 (Lat. crack) D20 (Alligator) D40 (Pothole)

LPB-cascade 0.7080 0.7182 0.7625 0.7476
MobileNet 0.8124 0.9032 0.9234 0.9675
RetinaNet 0.9148 0.9511 0.9522 0.9823

Table 4. Number of damage instances in each class for the original dataset presented in [19] and
the one used in this work. Note that the potholes and cracks classes are better represented.

Metric Road damage class
D00 D01 D10 D11 D20 D40 D43 D44

Maeda et al. [19]
Recall 0.40 0.89 0.20 0.05 0.68 0.02 0.71 0.85
Precision 0.73 0.64 0.99 0.95 0.68 0.99 0.85 0.66
Accuracy 0.81 0.77 0.92 0.94 0.83 0.95 0.95 0.81
Best model (ours)
Recall 0.60 0.90 0.40 0.40 0.76 0.70 0.80 0.70
Precision 0.87 0.70 0.89 0.92 0.92 0.88 0.87 0.82
Accuracy 0.91 0.81 0.92 0.95 0.95 0.98 0.95 0.84

12 A. Angulo et al.



The accuracies obtained by our RetinaNet-based model in which, as in the case of
the authors in [18], we have used VGG19 as the backbone network. However, the
authors in this paper the authors make use of a single metric (a mAP of 0.8279) for
reporting their result, without performing a per-class comparison.

In Table 5, we report some of the features of the resultant RetinaNet-based model,
compared with other two state of the art models. First, the model size is relatively
compact (125.5 MB), while achieving a low inference time (0.5 s) and a higher mean
average precision (mAP), making our proposal one of the more.

6 Conclusions and Future Work

In this study, we have presented the first block for a physical asset management tool, a
generic object detector trained to identify and classify road damages from still images
or real-time video with high accuracy and low inference time. We have tested different
models and approaches to solve this problem, based on traditional computer approa-
ches and on more recent deep learning architectures.

For the training of our models we deployed the relatively large dataset originally
introduced by the University of Tokyo, augmenting it with images from Mexican and
Italian roads, in order to compensate the disbalance present for some road damages
such as potholes. The obtained results clearly show that RetinaNet can outperform
other state of the art road damage detectors and it is amenable for a mobile or
embedded implementation (i.e. for ADAS applications) while running at acceptable
rates (0.5 s in our current implementation), which has been demonstrated to be more
than enough for a vehicle with a speed of 40 km/s to avoid information leakage.

As future work, we plan to integrate the model running on a mobile device to a full-
fledged Digital Asset Management Asset platform running on Amazon Web Services.
The main idea is to leverage the capabilities of the cloud computing system for creating
and maintaining a digital twin of the roads of a region or the streets of the city
described in Sect. 2. This geo-localized database could be used for monitoring and
prognosis purposes, if coupled with a predictive model, leading to a more informed
process in the allocation of resources for maintenance, as well as the required
periodicity.

Acknowledgements. We thank Prof. Benedetto from University de Roma Tre (Italy) for kindly
providing some of the images used to complement the dataset from the University of Tokyo
(Japan), along other images obtained by our group in Guadalajara, Mexico. We also thank the
people of Vidrona LTD (Edinburgh, UK) for helping us to delimit the problem addressed in this
paper, especially to Shailendra and Ashutosh Natraj.

Table 5. Metrics comparison for our best model against the state of the art

Metric/Model Model size Inference time Best mAP Type of device

RetinaNet [17] 115.7 MB 0.5 s 0.8279 Mobile
MobileNet [18] N/A 1.5 s N/A Mobile
RetinaNet (ours) 125.5 MB 0.5 s 0.91522 Mobile
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