
API Management Challenges
in Ecosystems

Sebastien Andreo1(B) and Jan Bosch2

1 Siemens AG Corporate Technology, Erlangen, Germany
sebastien.andreo@siemens.com

2 Department of Computer Science and Engineering,
Chalmers University of Technology, Göteborg, Sweden

jan.bosch@chalmers.se

Abstract. The API has become a cornerstone of software ecosystems,
providing ways to drive innovation inside and outside the organization.
Because of this criticality, we should manage APIs. The purpose of this
study is to identify and classify the challenges that organizations evolv-
ing into internal ecosystems are facing as they have to deal with APIs.
We performed a qualitative research study on three Siemens internal
ecosystems with different sizes, technologies, and age. The results reveal
that even if we are talking about the API economy, organizations are
struggling with different aspects of API management related to Busi-
ness, Architecture, Process, and Organization. The challenges identified
in this paper provide a basis for future research.

Keywords: API · API management · Case study

1 Introduction

Not a day goes by that a company, or a governmental organization argues for
or presents a plan to accelerate its digitalization and digital transformation. A
cornerstone of those transformations is to make the digital services available to
customers, and this is mostly realized using application programming interfaces
(APIs). The development of APIs is not new and has been widely used since
its inception in 1972 [1], but nowadays the monetization of API usage and the
requirement to deliver software continuously to customers puts additional pres-
sure on the development and the maintenance of APIs. As APIs are critical [2],
any organization has to find measures to mitigate the risks of failure.

An API presents two sides. The first is a technical side and as a first definition
we can use: an API is a technical answer to a business problem. The second is
a business side because an API is a business enabler. In the simplest terms,
we can define APIs as a set of requirements that govern how applications can
interact and exchange data and how we want to deliver value to the customers.
Because of the critical aspect of the APIs a form of management is required to
mitigate the risks of failure. In this paper we consider the term API management
c© Springer Nature Switzerland AG 2019
S. Hyrynsalmi et al. (Eds.): ICSOB 2019, LNBIP 370, pp. 86–93, 2019.
https://doi.org/10.1007/978-3-030-33742-1_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33742-1_8&domain=pdf
https://doi.org/10.1007/978-3-030-33742-1_8

API Management Challenges in Ecosystems 87

as described by Jan Stafford in [3] where he compares, the API management
to application life-cycle management: observing and controlling an API from
creation to retirement.

In this paper, we highlight the challenges regarding API management in
internal software ecosystems (ISECOs). To define an internal ecosystem, we
used the definition proposed by [4]: an internal ecosystem is characterized by
self-contained profit centers with their own business objectives, organizationally
independent with their own product management, and have to a wide extent
autonomous processes and software-engineering life cycles. To this end, we inves-
tigate the following research question to support our study: What are the major
challenges for API management in internal ecosystems?

The challenges in this paper are based on the analysis of three internal ecosys-
tems inside Siemens. The ecosystems present different aspects regarding the way
they are integrating the different partners, the technologies involved, and also
the size of the project itself.

The contribution of this paper is to provide evidence that even if the API
economy has become a key driver of digital businesses, organizations evolving in
internal ecosystems still face business and technical challenges to take advantages
of this transformation.

The paper is organized as follows. The next section defines the research
methodology we used to collect the challenges and presents the internal cases
studied, while Sect. 3 describes the challenges we identified about API manage-
ment. We used the BAPO model [5] to cluster the challenges in order to reflect
the impact of API management often considered as a technical challenge in all
other product development concerns. Section 4 summarizes and orders the chal-
lenges. Then in Sect. 5, we discuss threats to validity as well as implications for
practitioners and researchers. In Sect. 6, we provide an overview of related work.
Finally, we conclude the paper in Sect. 7.

2 Research Methodology

This section describes the research settings of the three ISECOs we investigated
and outlines our research method.

2.1 Case Study Systems

The cases in this paper are based on the study of large ISECOs at Siemens.
All case study systems, ISECO-A ISECO-B, and ISECO-C present a similar
ecosystem structure, comprising a keystone which is a member of the software
ecosystem that owns, operates and evolves a platform and multiple clients that
build applications upon it. The ISECOs have established products in industrial
and healthcare domains. However the ISECOs present distinctions in term of age,
development size, technology and deployment, and finally in term of marketing:
the keystone name is the market identifier, or the apps on top of the keystone
are the identifiers. We summarized the characteristics in Table 1.

88 S. Andreo and J. Bosch

Table 1. ISECOs key data

Ecosystems ISECO-A ISECO-B ISECO-C

years of development 16 12 5

deployment Client server Desktop Web

of keystone devs 200 300 50–100

of internal partners 6–8 6–8 5–10

of external partners 2–5 5–10 5–10

of apps 40–50 10–20 5–10

2.2 Research Method

A participant observer approach and well-established case-study methods have
been applied [6,7]. The case data were collected directly from people working in
different organizations. Principally two modes of collaboration were in place:

– Assessment: our role was to provide an external opinion and recommendations
about the API management practices in place within the organization. To
this end, we performed semi-structured interviews with relevant stakeholders:
software architects responsible for the definition and evolution of the APIs
and developers or key developers responsible for the implementation and the
maintenance of the APIs. The interviews followed a guideline to guarantee
that we collect the same areas of information from each interviewee, but also
we leave space for a conversational approach to facilitate the interaction and
to allow the interviewee to bring new topics to the discussion. If a new topic
presented a high relevance for our assessment, we re-interviewed the previous
stakeholders especially on that topic.

– Joint development: In this case, we worked closely with the organizations to
develop tools and strategies to improve the API management in their existing
software development landscape.

3 Challenges

In this section, we present our findings resulting from the study. We have chosen
to cluster them according to the Business, Architecture, Process, and Organi-
zation (BAPO) perspectives [5] to reflect the impact of API management often
considered as a technical challenge in all other product development concerns.

3.1 Business Challenges

As described in BAPO, the ‘B’ stands for Business, how do we generate revenue
and profits.

API Management Challenges in Ecosystems 89

Finding the Optimal Innovation Speed for All Partners. In our internal
ecosystem cases, the platform is the principal provider of new technologies, and
consequently, one of the innovation enablers. Its role is to provide an optimum
speed to provide innovations to the partners without becoming a development
bottleneck. To innovate means add, evolve, and change existing functionalities to
create new customer added value. Unfortunately, each change has a cost: devel-
opment cost for the provider and potentially a migration cost for the consumer.
In the three cases we studied, we observed different strategies by the customers
regarding the integration of the new platform’s functionalities. From one side
the innovators, who move as fast as possible behind the platform’s intermediate
releases. At the other end, the laggards who would postpone the migration as
long as they can because they do not want it, do not have the resource to pay
the migration or have other priorities. This heterogeneity comes from a diver-
gence in the business model and the business goal as well as the staffing of the
partners even if the domains are identical. From a business unit point of view,
the platform can not favor one or the other partner type and has to compromise
to satisfy both of them. The consequences are a slowing down the innovator
partners and taking the risk they do not feel comfortable with “new” innovation
speed and increasing the cost of development of the platform.

Finding B: Organizations suffer difficulties to provide an optimal innovation
speed between all the ecosystem’s partners by taking into account the hetero-
geneity of their business goals.

3.2 Architecture Challenges

As described in BAPO, the ‘A’ stands for Architecture and relates to technologies
and structure to build the system.

Managing API Dependencies. Knowing which partner is using which API
of the platform and how the partners are using these APIs is beneficial for
the platform provider. It gives insight about the usage, the popularity and the
criticality. Thereby, this data can help to get better decisions about the platform
evolution direction.

In all cases, we encountered a similar pattern: a keystone provides a platform,
and multiple clients build applications upon it. To separate the responsibilities
and to encapsulate certain functionalities, architects have structured different
layers of APIs and created public, internal, and in some cases, partner-specific
APIs. If the platform is a kind of centralized application (like facebook.com)
and the keystone provider controls it, it makes it easy to track the API depen-
dencies between the platform and applications. However, if the platform is a
shipping application, delivered as a set of binaries or if the development pro-
cesses and release cycles are somewhat independent, the detection of undesired
dependencies to the API surface becomes difficult or even impossible.

http://facebook.com

90 S. Andreo and J. Bosch

Finding A: In an internal ecosystem, maintaining an overview of the partners
API usage gives the organization advantages to optimize its speed and customer
added value.

3.3 Process Challenges

As described in BAPO, the ‘P’ stands for Process and relates to activities and
way of working.

Handling of Deprecation Process. As we indicate in the introduction, the
API has a birth, a life, and a death: a life-cycle. If birth and life are unproblem-
atic, the death implemented by a deprecation creates more struggles for organi-
zations. We have noticed that finding the “good” date for a deprecation tends to
be impossible and even more the date to altogether remove the API. Again the
structure of the software ecosystem reveals several conflicting forces. From one
side, we want to follow the ecosystem strategy to be able to create new business
models and embrace the change and gain in speed. On the other side, we want
to keep the current API stable, even if in our case not removing the API will
cause additional costs for the maintenance of the software as well as potentially
increase the complexity of the code and architecture. Which information and
tools are missing to enable the customer to accept the deprecation? In [8] a
beginning of an answer is provided: specifying the severity of change and the
deadline or version of the deprecation. This, offers more transparency for the
ISECO partners but, from the customer point of view, the effort of migration
will still stay the same.

Finding P: A deprecation process is mandatory for the financial and techni-
cal health of the platform. When implementing it, it is difficult because of
contradictory forces in internal ecosystems.

3.4 Organisation Challenges

Finally, the ‘O’ of BAPO, which stands for Organization, relates to teams and
responsibilities.

Lack of Education of the Developers. In the three projects at Siemens, we
observed that these involve several technologies. This heterogeneity and multi-
plicity of technologies drastically increase the challenges for all the developers to
understand those technologies and to master the subtleties. Another aspect of
this lack of education is not related to the technology itself, but the awareness
that manipulating APIs requires additional activities. At Siemens, we conducted
worldwide dozens of internal training focused on API evolution, and the signif-
icant finding was that the ability to design and code an API is not depending
on the seniority. Regarding the quality in term of usability and evolvability, the

API Management Challenges in Ecosystems 91

seniority has advantages, but we observed that a trivial aspect like controlling the
visibility of the API was often forgotten. Even if the developer is experienced,
the trap is laid, API design and evolution need another mindset and another
process.

Finding O: API design and evolution need a different mindset, awareness and
continuous education of development teams to achieve better API quality

4 Relating Findings to the Cases

In this section, we will present the relevance of the finding for each case. We
performed interviews with team architects and system architects for each project
(3 to 4 per case) to characterize the importance of the identified challenges. After
the presentation of a finding, the interviewees had to rank the relevance of the
finding for their own case between 1 not relevant and 10, highly relevant. The
average for each finding, and each case is presented in Table 2.

Table 2. Findings relevance for each case

ISECO-A ISECO-B ISECO-C Average Std. deviation

B 7.5 8.7 7.0 7.7 0.9

A 7.0 8.7 8.3 8.0 0.9

P 9.0 8.7 6.0 7.9 1.7

O 9.5 7.3 8.3 8.4 1.1

As depicted in Table 2, for the three ISECOs, the relevance of the challenges
are almost equivalent with a value around 8.0 of 10.0. The major difference
observed is related to Sect. 3.3, when ISECO-A and ISECO-B indicate high
relevance, ISECO-C tends to a medium relevance. ISECO-A and ISECO-B are
comparable in term of development size and also in term of API Surface. Both
have a wide API surface and different technology stacks to express APIs. Unlike
ISECO-C, which has a narrow API surface and a single technology as API. The
other explanation can be the age of the projects. ISECO-A and ISECO-B are
older than ISECO-C.

5 Discussion

In the following section, we discuss construct, internal, and external validity
threats.

92 S. Andreo and J. Bosch

Threats to Construct Validity is related to the relation between theory and
observation. As we performed interviews, we relied on a potentially subjective
statement of the participants. To reduce the effect, we listed only findings that
have been mentioned several times. We also performed a two paths validation:
collecting the challenges in each organization, reformulating the challenge inde-
pendently from the organization and requiring an evaluation of the relevance on
the reformulated findings.

Threats to Internal Validity is related to a co-factors that may affect our
results. In our case, interviewees might have given answers that do not fully
reflect reality or have been exaggerated due to the current project stress situation
regarding API Management. We worked for the three ecosystems for an extended
period: two to three years, with different roles, assessor and co-worker, which gave
us an overall measure and reduced the risk of an isolated measure. Furthermore,
we anonymized and reformulated the challenges and proceeded to individual
validation by the software architects and system architects.

Threats to External Validity is related to the generalization of our results.
In our case, the main thread is the representativeness of our cases. We investi-
gated three Siemens ISECOs. The results can be specific to them. However, the
collection of data was performed independently on several organizations.

6 Related Work

The problem of API management is not a new topic, but it has become more
prominent in recent years. Study has already been performed [9] to evaluate
the reaction of API evolution and to a deprecation. The need for continuous
API Management is generally described in [10]. The authors propose several
guidelines to balance the desire for agility and speed with the need for robust
and scalable operations. Specifically to software ecosystems, Hammouda et al.
[11] point out the necessity of a regular re-assessment of API architectural and
design decisions to be able to balance the tradeoff between offering a current
and modern API with offering a stable and backward compatible API.

Several tools and frameworks have also been developed to help the organi-
zations to check/design their APIs. Lindman et al. [12] proposed a framework
to help managers, designers, and developers to discuss API management. On a
source code point of view, Brito et al. [13] proposed an APIdiff tool to detect
syntactic breaking changes.

7 Conclusion

In this paper, we have given an empirical overview of the challenges, organiza-
tions implementing internal ecosystems are facing to realize effective API strate-
gies. The empirical study was performed on three Siemens internal ecosystems.

API Management Challenges in Ecosystems 93

Even if in a first sense, an API can easily be viewed as something technical, we
realized that many interconnections exist with other concerns of software devel-
opment. We found 4 challenges, and we clustered around the BAPO model. The
main focus of the paper does not provide solutions, but rather highlights areas
of improvements and open topics for further research.

The API economy is there, but to enable all organizations to benefit in a sus-
tainable way from this possibility to innovate, further research and development
is needed to increase the impact of APIs.

References

1. Parnas, D.L.: On the criteria to be used in decomposing systems into modules.
Commun. ACM 15(12), 1053–1058 (1972). https://doi.org/10.1145/361598.361623

2. Bloch, J.: How to design a good API and why it matters. In: Companion to the
21st ACM SIGPLAN Conference on Object-Oriented Programming Systems, Lan-
guages, and Applications - OOPSLA 06 (2006)

3. Why use new lifecycle tools in API management platforms? https://
searchmicroservices.techtarget.com/feature/Why-use-new-lifecycle-tools-in-
API-management-platforms

4. Schultis, K.-B., Elsner, C., Lohmann, D.: Architecture challenges for internal soft-
ware ecosystems: a large-scale industry case study. In: Proceedings of the 22Nd
ACM SIGSOFT International Symposium on Foundations of Software Engineer-
ing, FSE 2014, pp. 542–552. ACM, New York (2014). http://doi.acm.org/10.1145/
2635868.2635876

5. van der Linden, F.J., Schmid, K., Rommes, E.: Software Product Lines in Action:
The Best Industrial Practice in Product Line Engineering. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-71437-8

6. Eisenhardt, K.M.: Building theories from case study research. Acad. Manag. Rev.
14(4), 532 (1989)

7. Walsham, G.: Interpretive case studies in is research: nature and method. Eur. J.
Inf. Syst. 4(2), 74–81 (1995). https://doi.org/10.1057/ejis.1995.9

8. Sawant, A.A., Aniche, M., van Deursen, A., Bacchelli, A.: Understanding devel-
opers’ needs on deprecation as a language feature. In: Proceedings of the 40th
International Conference on Software Engineering, ICSE 2018, pp. 561–571. ACM,
New York (2018). http://doi.acm.org/10.1145/3180155.3180170

9. Hora, A., Robbes, R., Valente, M.T., Anquetil, N., Etien, A., Ducasse, S.: How do
developers react to API evolution? A large-scale empirical study. Softw. Qual. J.
26(1), 161–191 (2018). https://doi.org/10.1007/s11219-016-9344-4

10. Medjaoui, M., Wilde, E., Mitra, R., Amundsen, M.: Continuous API Management:
Making the Right Decisions in An Evolving Landscape. OReilly, Sebastopol (2018)

11. Hammouda, I., Knauss, E., Costantini, L.: Continuous API design for software
ecosystems. In: 2015 IEEE/ACM 2nd International Workshop on Rapid Continu-
ous Software Engineering, pp. 30–33, May 2015

12. Lindman, J., Horkoff, J., Hammouda, I., Knauss, E.: Emerging perspectives of API
strategy. IEEE Softw., 1 (2018)

13. Brito, A., Xavier, L., Hora, A., Valente, M.T.: APIDiff: detecting API breaking
changes. In: 2018 IEEE 25th International Conference on Software Analysis, Evo-
lution and Reengineering (SANER), pp. 507–511, March 2018

https://doi.org/10.1145/361598.361623
https://searchmicroservices.techtarget.com/feature/Why-use-new-lifecycle-tools-in-API-management-platforms
https://searchmicroservices.techtarget.com/feature/Why-use-new-lifecycle-tools-in-API-management-platforms
https://searchmicroservices.techtarget.com/feature/Why-use-new-lifecycle-tools-in-API-management-platforms
http://doi.acm.org/10.1145/2635868.2635876
http://doi.acm.org/10.1145/2635868.2635876
https://doi.org/10.1007/978-3-540-71437-8
https://doi.org/10.1057/ejis.1995.9
http://doi.acm.org/10.1145/3180155.3180170
https://doi.org/10.1007/s11219-016-9344-4

	API Management Challenges in Ecosystems
	1 Introduction
	2 Research Methodology
	2.1 Case Study Systems
	2.2 Research Method

	3 Challenges
	3.1 Business Challenges
	3.2 Architecture Challenges
	3.3 Process Challenges
	3.4 Organisation Challenges

	4 Relating Findings to the Cases
	5 Discussion
	6 Related Work
	7 Conclusion
	References

