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Abstract. Human Action Recognition (HAR) is a computer vision
task that attempts to monitor, understand, and characterize humans in
videos. Here, we introduce an extension to the conventional Fisher Vector
encoding technique to support this task. The methodology, based on the
Infinite Gaussian Mixture Model (IGMM) seeks to reveal a set of discrim-
inant local spatio-temporal features for enabling the precise codification
of visual information. Specifically, it is much simpler to handle the infinite
limit from the IGMM, than working with traditional Gaussian Mixture
Models (GMMs) with unknown sizes, that will require extensive cross-
validation. Under this premise, we developed a fully automatic encoding
methodology that avoids heuristically specifying the number of compo-
nents in the mixture model. This parameter is known to greatly affect
the recognition performance, and its inference with conventional meth-
ods implies a high computational burden. Moreover, the Markov Chain
Monte Carlo implementation of the hierarchical IGMM effectively avoids
local minima, which tend to plague mixtures trained by optimization-
based methods. Attained results on the UCF50 and HMDB51 databases
demonstrate that our proposal outperforms state of the art encoding
approaches concerning the trade-off between recognition performance
and computational complexity, as it drastically reduces both number
of operations and memory requirements.

Keywords: Human Action Recognition · Infinite Gaussian Mixture
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1 Introduction

Human action recognition (HAR) is a computer vision task that seeks to moni-
tor, understand, and characterize humans in videos [7]. This task has a wide pool
of applications that include automatic surveillance, video indexing and retrieval,
and virtual reality [5]. The conventional pipeline for action recognition can be
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divided into three stages: (i) feature extraction from raw videos, (ii) data repre-
sentation, (iii) and classification into predefined categories [20].

In regard to feature extraction, the literature exhibits two trends, hand-
crafted and Convolutional Neural Networks (CNNs) features. Both intend to
describe the local space, codify the motion information, and then combine these
sources for allowing the proper transcription of human activity [15]. To the
date, Two-stream CNNs is the most effective framework for action recognition,
employing two deep networks and fusion techniques to take advantage of both
appearance and motion clues [13]. However, CNN-based methods hamper in-
depth action analysis and understanding as there is not visual interpretabil-
ity [22]. Moreover, deep learning requires large amounts of training data, which
in many applications is not available [1]. On the contrary, The most popular
hand-crafted feature estimation technique is known as Improved Dense Trajec-
tories (iDT) [20]. The method, describes the local space of trajectories generated
by tracking a dense grid of points. Employing descriptors such as Histograms
of Oriented Gradients (HOG) for codifying appearance through color gradients,
Histograms of Optical Flow (HOF) for describing movement, and Motion Bound-
ary Histograms (MBH) for codifying changes in motion [3].

For data representation, authors proposed feature encoding and relevance
analysis for highlighting salient patterns and enabling codification of visual infor-
mation [12]. Super-vector based methods such as Fisher Vector (FV) and Vector
of Locally Aggregated Descriptors (VLAD) are presented as the most well-known
approaches for feature encoding in action recognition tasks [19]. On the other
hand, non-linear relevance analysis using kernel methods have shown promis-
ing results in recent research [7]. Nevertheless, their kernel evaluation requires
computing and storing large distance matrices, while also tuning parameters
which increases computational complexity [7]. Lastly, it is convention to employ
Support Vector Machines (SVM) for classification [17].

Both FV and VLAD methods are supported by the Gaussian Mixture Model
(GMM) to generate a codebook of visual words [21]. These methods quantify
the similarity between a video sample and previously computed codebook for
encoding visual information through calculating Gaussian responsibilities [6].
However, GMMs trained by optimization-based methods, e.g. Expectation Max-
imization (EM), require extensive cross-validation for selecting the number of
visual words in the codebook [8]. Moreover, the initialization required by these
training methods makes models fall into local minima [2]. Therefore, using con-
ventional GMM implies large number of operations and memory requirements,
which increases the computational burden of conventional recognition systems.

In this paper, we introduce a novel data encoding framework using Bayesian
inference and Dirichlet processes to support video-based HAR. Our approach
is fully automatic, allowing every parameter in the model to be updated hier-
archically through the Markov Chain Monte Carlo (MCMC) algorithm Gibbs
sampling. Specifically, our approach includes a Infinite Gaussian Mixture model
(IGMM) for revealing a set of discriminant visual words, trained through a
MCMC-based optimization that evades local minima. In Fact, the infinite limit
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on the number components avoids estimating this parameter through exten-
sive cross-validation. Attained results on both UCF50 and HMDB51 databases
demonstrate that our proposal obtained promising recognition performance and
computational savings, favoring HAR tasks.

The rest of the paper is organized as follows: Sect. 2 presents the main theoret-
ical background. Section 3 describes the experimental setup. Section 4 introduces
results and discussions. Finally, Sect. 5 presents conclusions and future work.

2 Infinite Gaussian Model for Fisher Vector Encoding

Let {Zn∈RTn×D, yn∈N}N
n=1 be an input-output pair set holding N human action

videos. Each sample Zn, is represented by Tn observations. The local space of
every observation is characterized by a D-dimensional descriptor, as in [20]. The
output label yn denotes the specific human action of video n. From Z∈RT×D,
where T =

∑N
n=1 Tn, we aim to train a generative model using IGMM. The

procedure is as follows [4]:
The likelihood from observation zt∈RD to a GMM with krep components is:

p(zt|{μj ,Sj , πj}k
j=1) =

krep∑

j=1

πjN (μj ,S
−1
j ) (1)

where μj∈RD are mean vectors, Sj∈RD×D are precision matrices, and πj are the
mixing proportions. Variable krep denotes the number of Gaussian components
that have associated data, named represented classes [14].

2.1 Component Parameters

The component means μj and precisions Sj are given by Gaussian and Wishart
priors, respectively:

p(μj |λ,R) ∼ N (λ,R−1) p(Sj |β,W ) ∼ W(β,W −1) (2)

where λ∈RD is a mean vector, R∈RD×D and W∈RD×D are precision matrices,
and β is the degrees of freedom. These hyper-parameters are common to all
components. The conditional posterior on μj is obtained by conjugating its
prior:

p(μj |λ,R,{zt : ct,j =1},Sj) ∝
∏

t:c t,j=1

p(zt|μj ,Sj) × p(μj |λ,R)

∼ N (
(Tj zj Sj + λR)(Tj Sj + R)−1, (Tj Sj + R)−1

)
(3)

ct∈Rk is a latent variable, with notation 1 of k, where k include both represented
and unrepresented classes. Unrepresented classes are virtually infinite [18]. Tj is
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the number of observations belonging to class j. likewise, zj is the average vector
of these observations.

zj =
1
Tj

∑

t:c t,j=1

zt, Tj =
T∑

t=1

c t,j (4)

The conditional posterior on Sj is obtained by conjugating its prior:

p(Sj |β,W , {zt : ct,j =1},μj) ∝
∏

t:c t,j=1

p(zt|μj ,Sj) × p(Sj |β,W )

∼ W(β + Tj , [
1

β + Tj
(β W +

∑

t:c t,j=1

(zt − μj)�(zt − μj))]−1) (5)

2.2 Hyper-parameters

For hyper-parameters λ,R, and W the priors are defined as follows:

p(λ) ∼ N (μZ , covZ) p(R) ∼ W(1, cov−1
Z ) p(W ) ∼ W(1, covZ) (6)

variables μZ∈RD and covZ∈RD×D, are respectively the mean and covariance of
Z. Following the procedure exposed in Sect. 2.1, the posterior distributions on
hyper-parameters are obtained straight forward using the mean and precision
priors, Eq. 2, as likelihoods in each case:

p(λ|{μj}krep
j=1 ,R) ∝

krep∏

j=1

p(μj |λ,R) × p(λ)

∼ N
⎛

⎝(μZcov−1
Z + R

krep∑

j=1

μj)(cov−1
Z + krepR)−1, (cov−1

Z + krepR)−1

⎞

⎠ (7)

p(R|{μj}krep
j=1 ,λ) ∝

krep∏

j=1

p(μj |λ,R) × p(R)

∼ W
⎛

⎝krep + 1,

[
covZ +

∑krep
j=1(μj − λ)�(μj − λ)

krep + 1

]−1
⎞

⎠ (8)

p(W |{Sj}krep
j=1 , β) ∝

krep∏

j=1

p(Sj |β,W ) × p(W )

∼ W
⎛

⎝krepβ + 1,

[
cov−1

Z +
∑krep

j=1 Sj

krepβ + 1

]−1
⎞

⎠ (9)
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Parameter β remains scalar after conjugacy. According to Rasmussen [16], it has
gamma prior of the form:

g = β − D + 1 (10)

p(g−1) ∼ G(1,
1
D

) → p(g) ∝ g− 3
2 exp{− D

2 g
} (11)

For this parameter the posterior distribution takes the following form:

p(g|{Sj}krep
j=1 ,W ) ∝

krep∏

j=1

p(Sj |β,W ) × p(g)

∝ (
β

2
)

krep β D

2 g− 3
2 ΓD(

β

2
)−krep exp{− D

2 g
}

krep∏

j=1

|W Sj |
β
2 exp{−1

2
β tr(WSj)}

(12)

The later density is not standard form. However, p(log(g)|{Sj}krep
j=1 ,W ) is log-

concave, so we may generate independent samples using the Adaptive Rejection
Sampling technique (ARS), and transform these samples to get values of β.

2.3 Mixing Proportions and Latent Variables

In this section k is not limited to represented classes. For the mixing proportions
πj , the prior is a symmetric Dirichlet distribution with concentration α/k.

p({πj}k
j=1|α) ∼ Dir({α/k}k

j=1) =
Γ(α)

Γ(α/k)k

k∏

j=1

π
α/k−1
j , (13)

where Γ(·) is the gamma function. Likewise, the joint distribution for the latent
variable ct has the following form:

p({c t,j}k
j=1|{π}k

j=1) =
k∏

j=1

π
c t,j

j , {∀t :
k∏

j=1

π
Tj

j }, (14)

Using the Dirichlet integral type I, the prior is directly written in terms of the
latent variable:

p({cj}k
j=1|α) =

∫

p({cj}k
j=1|{πj}k

j=1) p({πj}k
j=1)dπ1 · · · dπk

=
Γ(α)

Γ(α/k)k

k∏

j=1

Γ(Tj + α/k)
Γ(α/k)

. (15)

For estimating variable ct, it is required the prior for a single indicator given all
others. This is obtained from Eq. 15, keeping all but a single indicator fixed:

p(ct,j =1|c−t, α) =
T−t,j + α/k

T − 1 + α
. (16)
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where the subscript −t indicates all the indexes except t and T−t,j is the number
of observations, excluding zt, that are associated with component j.
Lastly, an inverse Gamma prior is chosen for parameter α:

p(α−1) ∼ G(1, 1) → p(α) ∝ α−3/2 exp{−1/2α}. (17)

The likelihood for α is derived from Eq. 15, its posterior distribution takes the
following form:

p(α|{Tj}k
j=1, k) = p({Tj}k

j=1|α) × p(α)

∝ αk−3/2 exp{−1/2α}Γ(α)
Γ(T + α)

(18)

Sampling from the later density requires employing ARS. In the limit where
k → ∞, the conditional prior for c t, Eq. 16, becomes:

Components where T−t,j > 0 : p(c t,j = 1|c−i, α) =
T−i,j

T − 1 + α
,

else: p(c t �= c t′ , {∀t �= t′}|c−t, α) =
α

T − 1 + α
. (19)

The posterior is obtained by multiplying the complete likelihood, Eq. 1, and the
latent variables prior, Eq. 19:

Components where T−t,j > 0 : p(c t,j = 1|c−i,μj ,Sj , α)

∝ T−i,j

T − 1 + α
|Sj | 1

2 exp{−1
2
(zt − μj)S (zt − μj)�},

(20)

else: p(c t �= c t′ ,{∀t �= t′}|c−t,λ,R, β,W , α)

∝ α

T − 1 + α

∫

p(zt|μj ,Sj) p(μj ,Sj |λ,R, β,W ) dμj dSj .

(21)

The likelihood for components with observations other than zt is Gaussian with
parameters μj and Sj . On the other hand, for unrepresented classes the likeli-
hood parameters are obtained by sampling from the components priors, as the
marginalization of existing parameters is not analytically tractable [16]. When an
unrepresented class is chosen, a new class is introduced to the model. Likewise,
when a class becomes empty, the class is removed from the model.

3 Experimental Setup

Database. To test our Infinite Gaussian Fisher Vector encoding approach
(IGFV), we employ both the UCF50 [17] and HMDB51 [11] databases. The
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UCF50 database contains realistic videos taken from Youtube, with substan-
tial variation in-camera motion, object appearance, and illumination changes.
For concrete testing, we use N = 5967 videos concerning 46 human action
categories. Following the standard procedure, we perform a leave-one-group-
out cross-validation scheme and report the average accuracy over 25 predefined
groups [17]. On the other hand, the HMDB51 database is collected from a variety
of sources. For the sake of simplicity, we use N =6510 video sequences concern-
ing 51 action categories. Following the proposed protocol, we perform 3-fold
cross-validation and report the average accuracy over three predefined train-test
splits [11].

Settings. For each video sample, we employ the hand-crafted Improved Dense
Trajectory feature estimation technique (iDT), with the code provided by the
authors in [20]. Using the default settings, we extract the following trajec-
tory aligned descriptors: Histogram of Oriented Gradients (HOG), Histogram
of Optical Flow (HOF), and Motion Boundary Histogram (MBHx, and MBHy).
All descriptors are extracted along all valid trajectories and the resulting dimen-
sionality D is 96 for HOG, MBHx, and MBHy, and 108 for HOF.

In practice, using the standard Wishart distribution for sampling model pre-
cisions Sj , R, and W may generate matrices that are not symmetric positive
semidefinite (SPD). To avoid this inconvenient, we employ the Frobenius norm
positive approximation from [10], that is: For an arbitrary matrix A∈R

N × N ,
its nearest SPD Frobenius approximation is set to be ÂF =(B + H)/2, where
H is the symmetric polar factor of B=(A + A�)/2.

We use the ARS algorithm for sampling scalar parameters β and α. In brief,
the algorithm employs piecewise exponential functions for approximating any
univariate log-concave density h(x) through an envelope (upper hull) and squeez-
ing function (lower hull). Both touch the density function at m sampled points,
known as abscissae (x1, . . . , xm). Conventionally, the starting point x1 is chosen
such that h′(x1) > 0, and the final point xm is chosen such that h′(xm) < 0,
where h′(x)=h(x)/dx. Even though the method is adaptive and approximated
curves will converge to the density function. An erroneous initialization gener-
ates ill-posed samples that hamper the proper operation of the algorithm. We
solve this issue through a trial-and-error iterative solution. Finally, the samples
are obtained as stated in [9].

Training. Initially, we randomly select a subsample of 5000 trajectories per
category from the training set. Then, using PCA we select the most relevant
attributes until 90% of input variability is preserved. Later, we employ the
spatio-temporal pyramid technique for distributing the training partition into
cells. For each spatio-temporal cell, we estimate an IGMM codebook using the
procedure exposed in Sect. 2. The model starts with a single component, then
1000 iterations of Gibbs sampling are performed for updating all parameters and
hyper-parameters iteratively from their posterior distribution, with 800 “burn
in iterations”. From the remaining 200 repetitions, we use Bayesian Informa-
tion Criterion (BIC) for choosing the best available mixture model. Afterward,
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the conventional FV encoding technique is employed for representing locally
described samples as super-vectors [7]. In short, the method quantifies the sim-
ilarity between a video sample and trained IGMM model, named codebook. To
the resulting super-vector, we apply a Power Normalization (PN) followed by the
L2-Normalization. The above procedure is performed per descriptor. Ultimately,
all four IGFV representations are concatenated together.

For the classification step, we use a one-vs-all Linear SVM with regularization
parameter equal to 100. Figure 1 summarizes the IGFV training pipeline. It
is worth noting that the feature extraction was performed in C++ and the
remaining experiments in MATLAB.

4 Results and Discussions

ARS Correction. Figure 2 shows the proposed correction for ARS initialization,
when sampling parameter α. In Fig. 2a, we see that abscissae x1 and x3 are
chosen according to the conventional criteria (i.e., h′(x1) > 0 and h′(x3) < 0).
Though x3 = 2.38 satisfy the restriction, m3 = −0.002. This value creates wide
upper hull that may generate ill-posed samples. In this case, α̂=3019 when the
abscissae range (most probable values) is around [1.5, 2.4]. To solve this problem,
we iteratively increase x3 by 50% until the upper hull is relatively constrained.
Figure 2b is obtained through this procedure. Here, x3 = 3.6, m3 = −2.18, and
the sampled parameter is α̂=2.05.

Fig. 1. Sketch of the proposed IGFV data encoding technique.

Confusion Matrices. Figure 3 shows the obtained confusion matrices using lin-
ear SVM for both employed databases. The proposal achieves 88.5 ± 4.07%
and 57.6 ± 1.93 of mean accuracy, within the cross-validation scheme for each
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(a) Conventional initialization (α̂=3019) (b) Corrected initialization (α̂=2.0546)

Fig. 2. Adaptive Rejection Sampling with initialization correction. —concave log-
density, -·- lower hull, and · · · upper hull. Circular points indicate the initial three
abscissae (x1, x2, x3).

database. From a visual inspection on Fig. 3a, the system demonstrates the abil-
ity to discriminate among human actions, with slight errors in a few categories.
On the other hand, the visual inspection on Fig. 3b shows how difficult it is
for the system to classify actions from the HMDB51 dataset. When reviewed
in detail, the provided bounding boxes from some videos do not correspond,
partially or entirely, to the reported activity. Thus, the bad performance of the
system may be explained by this issue, considering the importance of an effective
human detection within iDT feature estimation.

Comparison with the State of the Art. In turn, Table 1 presents a comparative
study among similar feature encoding approaches for human action recognition.
In this study, we are analyzing properties and comparing characteristics among
encoding methodologies. Thus, for feature extraction and classification we stan-
dard methods for the sake of comparison. Employed benchmarks have in com-
mon the following considerations: (i) are tested in both UCF50 and HMDB51
databases, (ii) employ the iDT feature estimation technique, (iii) perform clas-
sification through linear SVM. In particular, ST-VLAD [5] and SFV-STP [20],
follow all requirements. However, they require extensive cross-validation for esti-
mating the number of components k in their codebook. Moreover, ST-VLAD
also needs searching the number of Spatio-temporal groups, which for both SFV-
STP [20] and our IGFV are fixed to 8 cells, one division for each spatial and
temporal axis.

Our main contribution is the automation of a methodology that convention-
ally requires extensive cross-validation. Thus, the slight drop in accuracy from
our method, when compared to benchmarks, is compensated with computational
savings, because it both reduces number of operations and memory requirements.
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(a) UCF50 (b) HMDB51

Fig. 3. Confusion matrices from Human Action Recognition in UCF50 and HMDB51
databases.

In particular, conventional GMM codebooks perform maximum likelihood esti-
mation, through EM, of model parameters. Such optimization, performs a large
number of iterations (in our case 500), and its convergence depends on initializa-
tion. Furthermore, this method needs fixing the number of components k before
optimizing all other parameters (means, precision, and priors). Authors in [20],
proposed searching k in a set comprising 10 different values and then selecting
the best value according to classification performance. This approach requires
cross-validating k in an operation that increases the number of iterations by 10
times the number of folds in the cross-validation. In terms of memory require-
ments, it requires storing all parameters 10 times, until the best k is chosen.

The drop in accuracy from our method could be attributed to the precisions
sampled by the IGMM. In our case, IGMM samples complete precision matrices
that are considering the correlation between attributes. For us, this is a disadvan-
tage as the IGMM codebook suffers from low resolution, i.e., complete Gaussians
can explain massive data clusters. Meanwhile, benchmarks approaches constrain
covariances to diagonal or spherical matrices. Thus, the estimated number of
components from IGMM is in the order of tens, whereas the exhaustive search
from benchmarks converges to hundreds of components. This is an interesting
result that demonstrates the quality of IGMM estimated codebooks, as fewer
components allows the codification of discriminant visual information.

Table 1. Comparison with similar approaches on UCF50 and HMDB51 datasets.

Methods Components UCF50 [%] HMDB51 [%]

ST-VLAD [5] k=256 (exhaustive search) 90.7 59.0

SFV+STP [20] k=256 (exhaustive search) 91.7 60.1

IGFV (proposal) Automatic 88.5 57.6
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5 Conclusions

We introduced a novel Infinite Gaussian Fisher Vector feature encoding frame-
work to support video-based Human Action Recognition (IGFV). Our approach
is fully automatic, allowing every parameter in the model to be updated hier-
archically through the MCMC algorithm Gibbs sampling. The IGFV encod-
ing allows revealing a set of discriminant local spatio-temporal features for
enabling the precise codification of visual information, with competitive recog-
nition results and computational savings. In particular, the infinite limit on
the number of Gaussian components evades estimating this parameter through
extensive cross-validation, which drastically reduces the number of operations
and memory requirements for performing HAR. Attained results on both UCF50
and HMDB51 database showed that our proposal correctly classified 88.5% and
57.6% of human actions under the specific cross-validation of each dataset. Our
IGFV obtained promising results that are comparable with state-of-art encoding
approaches. Furthermore, it outperforms those approaches considering the trade-
off between accuracy and computational complexity, as our proposal reduces
both number of operations and memory requirements.

As future work, authors will evaluate alternatives for enhancing the resolution
from IGMM codebooks, such as placing diagonal or spherical constrains to the
sampled precision. We are convinced that all the already mentioned benefits from
Bayesian inference and Dirichlet processes, combined with an enhanced model
resolution, will yield better performance in human action recognition tasks.
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