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Abstract. Centerline is a frequently applied 1D representation of 3D
tubular and tree-like objects. This paper proposes a new curve skele-
tonization algorithm, which is computationally efficient, guarantees 1-
point wide centerlines, and does not generate ‘spurious’ branches. The
reported method is specifically targeting segmented intrathoracic airway
trees but it is applicable to many other tasks. Our algorithm is based
on iterative shrinking combined with branch-end detection and preser-
vation.
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1 Introduction

Skeletonization provides region-based shape descriptors, which represent the
topology and the general shape of objects [16]. 3D skeleton-like shape features
(i.e., medial surface, centerlines, and topological kernel) play important role in
various applications in image processing, pattern recognition, and visualization
[14].

Surface skeletonization methods produce medial surfaces (i.e., union of 1D
and 2D structures), curve skeletonization algorithms are used to extract cen-
terlines (i.e., descriptors containing only 1D structures), and kernel skeletoniza-
tion provides topological kernels (i.e., minimal sets of points that are topologi-
cally equivalent [7] to the original objects). Medial surfaces are usually extracted
from general shapes, while tubular and tree-like objects can be represented by
their centerlines, and topological kernels are useful in topological description
[10,14,17,18].

Thinning is a frequently used approach to produce medial surfaces and cen-
terlines in a topology-preserving way: the outmost layer of an object is deleted,
and the entire process is repeated until stability is reached [7,14,17]. Topological
kernels are generally produced by (reductive) shrinking [5]. Shrinking is similar
to thinning: it is also an iterative object reduction, but geometric constraints
are not taken into consideration. Parallel thinning and shrinking algorithms can
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delete a set of object points simultaneously, while sequential algorithms scan the
picture, and focus on the actually visited single point for possible deletion [5].

Tubular and tree-like structures (e.g., arterial and venous systems, intratho-
racic airways, and gastrointestinal tract) are frequently found in living organ-
isms, thus centerlines (as 1D structures) can serve as viewpoint trajectory for
navigation purposes in virtual angioscopy, bronchoscopy, or colonoscopy, and
help us to generate formal structures for the forthcoming analysis and measure-
ments [9,14,19,20].

In this study, our attention is focussed on the centerline extraction from 3D
tree-like objects. Some recent reviews on curve skeletonization are available in
[6,13,17,18]. Note that most of the existing centerline extraction methods are
rather sensitive to coarse object boundaries, and may produce several spurious
side branches. In order to overcome this problem, the false segments included by
the produced centerlines are removed by a pruning process (i.e., a post-processing
step) [15]. We should note that some existing algorithms are time consuming,
and cannot produce 1-point wide centerlines for all possible objects.

This paper proposes a new curve skeletonization algorithm. It guarantees
1-point wide centerlines, preserves the topology, and it is computationally effi-
cient. In addition, its centerlines are free from ‘spurious’ branches, hence no
post-pruning is required. Our algorithm is based on shrinking combined with
branch-end detection and preservation. The new method is compared with two
existing curve skeletonization algorithms. The two older algorithms also have
computationally efficient implementations and they can produce 1-point wide
centerlines, too. It is illustrated that the new algorithm is as fast as the two
existing algorithms under comparison, but it produces ‘more reliable’ results.

2 Basic Notions and Results

In this work, we apply the fundamental concepts of digital topology as reviewed
by Kong and Rosenfeld [7].

Let p be a point in the 3D digital space Z
3. Let us denote Nj(p) (for

j = 6, 18, 26) the set of points that are j-adjacent to point p and let N∗
j (p) =

Nj(p)\{p}, see Fig. 1.
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Fig. 1. Frequently used adjacencies in Z
3. The set N6(p) contains point p and the six

points marked U, D, N, E, S, and W. The set N18(p) contains N6(p) and the twelve
points marked ‘�’. The set N26(p) contains N18(p) and the eight points marked ‘�’
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The sequence of distinct points 〈x0, x1, . . . , xn〉 is called a j-path (for j =
6, 18, 26) of length n from point x0 to point xn in a non-empty set of points
X if each point of the sequence is in X and xi is j-adjacent to xi−1 for each
i = 1, . . . , n. (Note that a single point is a j-path of length 0.) Two points are
said to be j-connected in the set X if there is a j-path in X between them. A
set of points X is j-connected in the set of points Y ⊇ X if any two points in
X are j-connected in Y . A j-component of a set of points X is a maximal (with
respect to inclusion) j-connected subset of X.

A (26, 6) 3D binary digital picture on is a quadruple (Z3, 26, 6, B), where
B ⊆ Z

3 is the set of black points (consequently, Z
3 \ B is the set of white

points), 26-adjacency and 6-adjacency are used for B and Z
3 \ B, respectively.

For practical purposes, we assume that all pictures are finite (i.e. they contain
finitely many black points).

A black component or object is a 26-component of B, while a white component
is a 6-component of Z3 \ B. In a finite picture there is a unique infinite white
component, which is called the background . A finite white component is said to
be a cavity .

A black point is called a border point in a (26, 6) picture if it is 6-adjacent
to at least one white point. A border point is said to be a U-border point if the
point marked U in Fig. 1 is white. We can define D-, N-, E-, S-, and W-border
points in the same way. A black point is called an interior point if it is not a
border point.

A reduction transforms a binary picture only by changing some black points
to white ones (which is referred to as the deletion of black points). A reduction
is not topology-preserving [7] if any object in the input picture is split (into
several ones) or is completely deleted, any cavity in the input picture is merged
with the background or another cavity, or a cavity is created where there was
none in the input picture. There is an additional concept called tunnel (which
donuts have) in 3D pictures [7]. Topology preservation implies that eliminating
or creating any tunnel is not allowed.

A black point is simple if and only if its deletion is a topology-preserving
reduction [7]. The following theorem states a characterization of simple points
in (26, 6) pictures:

Theorem 1. [8,12] A black point p is simple in picture (Z3, 26, 6, B) if and only
if all of the following conditions hold:

1. The set N∗
26(p) ∩ B contains exactly one 26–component.

2. The set N6(p) \ B is not empty (i.e., p is a border point).
3. Any two points in N6(p) \ B are 6–connected in the set N18(p) \ B.

Based on Theorem 1, the simplicity of a point p can be decided by examining
the set N∗

26(p) (i.e., it is a local property).
3D curve-thinning algorithms generally preserve curve-end points:

Definition 1. A (simple) black point p in picture (Z3, 26, 6, B) is a curve-end
point of type if the set N∗

26(p)∩B contains exactly one point (i.e., p is 26-adjacent
to exactly one further black point).
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Bertrand and Couprie proposed an alternative approach for curve-thinning
by accumulating some curve interior points that are called isthmuses [2].

Definition 2. A border point p in a picture (Z3, 26, 6, B) is a curve-isthmus if
the set N∗

26(p) ∩ B contains more than one 26–component.

All curve-isthmuses are not simple points since Condition 1 of Theorem 1
is violated. Note that the characterization of curve-isthmuses examines the set
N∗

26(p) for a point p in question.
Figure 2 presents examples of simple, curve-end, and curve-isthmus points.

(a)

• ◦ ◦
◦ • ◦
◦ ◦ ◦

◦ ◦ ◦
◦ p ◦
• • •

◦ ◦ ◦
◦ ◦ ◦
◦ • ◦

(b)

• ◦ ◦
◦ ◦ ◦
◦ ◦ ◦

◦ ◦ ◦
◦ p ◦
◦ ◦ ◦

◦ ◦ ◦
◦ ◦ ◦
◦ ◦ ◦

(c)

• ◦ ◦
◦ ◦ ◦
◦ ◦ ◦

◦ ◦ ◦
◦ p ◦
• • •

◦ ◦ ◦
◦ ◦ ◦
◦ • ◦

Fig. 2. Configuration in which the central black point p is a simple point (a), a curve-
end point (b), and a curve-isthmus point (c). Black and white points are marked ‘•’
and ‘◦’, respectively

3 Curve Skeletonization Based on Shrinking

In this section the curve skeletonization algorithm 3D-CS-APS is presented.
The reported method is specifically targeting segmented intrathoracic airway
trees but it is applicable to many other tasks. The input of our algorithm is a
3D (26, 6) picture representing a segmented volumetric tree object. The method
consists of the following four steps:

1. identification of the tree root as an anchor point (see Fig. 3a),
2. the first k iterations of anchor-preserving shrinking (see Fig. 3b),
3. detection of curve-end points as further anchor points (see Fig. 3c), and
4. anchor-preserving shrinking until stability is reached (see Fig. 3d).

These steps are now described in more detail.

Step 1: Root Detection
The root detection is not a critical phase of the process. Since we deal with
intrathoracic airway trees segmented from volumetric CT (or MR) image data,
a priori knowledge of the data set can be used to identify the tree root. In [9], the
center of the topmost nonzero 2D slice in direction z (detected by 2D shrinking)
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(a) identification of the root (b) k = 2 iterations of shrinking

(c) detection of curve-end points (d) produced centerline

Fig. 3. The four steps of algorithm 3D-CS-APS for a human airway tree. The detected
anchor points (a,c) and the resulted structures (b,d) are superimposed on the input
tree

defines the root of the tree. (Note that the identified root point belongs to the
trachea.) In other applications, different root identification approaches may be
needed.

The detected root point (see Fig. 3a) acts as an anchor point in the remaining
steps of the process (i.e., it cannot be deleted further on).

Step 2: Anchor Preserving Interrupted Shrinking
We make use of the fact that the trachea of a human airway tree is the thick-
est branch, and the terminating branches are the thinnest ones. Hence a given
number of shrinking iterations produce 1-point wide terminating branches that
end with curve-end points, and no further curve-end points are generated in the
‘thicker’ branches (see Fig. 3b).
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Many researchers proposed 3D parallel shrinking algorithms [1,10]. Here we
present a new 6-subiteration sequential anchor-preserving shrinking algorithm
capable of producing 1-point wide structures. Hence, centerlines produced by
algorithm 3D-CS-APS contain only non-simple points and (simple) curve-end
points.

One iteration step of our anchor-preserving shrinking is outlined by
Algorithm 1.

Algorithm 1: One Iteration Step of the Anchor-Preserving Shrinking
Input: picture (Z3, 26, 6, X) and set of anchor points Anchors ⊆ X
Output: picture (Z3, 26, 6, Y )
Y ← X
foreach direction d ∈ {U,N,E,S,W,D} do

// Subiteration according to the deletion direction d
// Collecting potentially deletable points

Z ← ∅
foreach point p ∈ (Y \Anchors) do

if p is a d-border and simple point in (Z3, 26, 6, Y ) then
Z ← Z ∪ {p}

// Deletion

foreach point p ∈ Z do
if p is a simple point in (Z3, 26, 6, Y ) then

Y ← Y \ {p}

Algorithm 1 (i.e., one iteration step of our anchor-preserving shrinking algo-
rithm) is decomposed into six successive subiterations according to the six main
directions in 3D, and each subiteration consists of two phases. First, black points
that are not anchor points are traversed. If the given point is a border point of
the actual type and simple point (in the input picture), it is marked as a poten-
tially deletable point. In the second phase, a marked point is deleted if it remains
simple after the deletion of the previously visited marked points.

Depending on the ‘thickness’ of the terminating branches of the segmented
tree, we apply k iterations of shrinking (and the iterative peeling is interrupted).
In this step, the set of anchor points is singleton in each iteration, it contains
only the root point (detected in the first step of the process).

Step 3: Detection of Curve-End Points
This step is fairly straightforward: all curve-end points (see Definition 1) in the
structure produced by the second step of the process are to be identified (see
Fig. 3c). These points and the root point form the set of anchor points for the
last step.
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Step 4: Anchor Preserving Final Shrinking
The proposed process is completed by anchor preserving shrinking until stability
is reached. This step forms 1-point wide centerlines of airway trees by connecting
the root point and the ends of terminating branches (see Fig. 3d).

Since the proposed sequential shrinking algorithm may delete just one simple
point at a time, the entire process preserves the topology.

4 Computationally Efficient Implementation

One may think that the proposed curve skeletonization algorithm (see Sect. 3)
is time-consuming, and it is rather difficult to implement it. That is why Algo-
rithm 2 presents a computationally efficient implementation of the proposed algo-
rithm 3D-CS-APS. Note that similar implementation schemes were proposed
by Palágyi et al. [9,10] for arbitrary sequential and parallel thinning algorithms.

The input of Algorithm 2 is array A which stores the (26, 6) picture with the
tree-like object to be represented. In input array A, the value ‘1’ corresponds
to black points and the value ‘0’ is assigned to white ones. According to the
proposed scheme, the input and the output pictures can be stored in the same
array, hence array A will contain the produced centerline.

We use two lists to speed up the process: border list stores the border points
in the current picture (hence the repeated scans of the entire array A are
avoided), and potentially deletable list is to collect all potentially deletable points
in the current subiteration of the anchor preserving shrinking. (Note that poten-
tially deletable list is a sublist of border list.) In order to avoid storing more
than one copy of a border point in border list, and examining anchor points for
possible deletion, array A represents a four-color picture:

– the value of ‘0’ corresponds to white points,
– the value of ‘1’ is assigned to (black) interior points,
– the value of ‘2’ corresponds to (black) border points in the actual picture (i.e.,

elements of border list), and
– the value of ‘3’ is assigned to the detected (black) anchor points.

First, the root point (i.e., the initial anchor point) is identified by the function
‘ROOT DETECTION’. Then the input picture is scanned, and all the border
points in it are inserted into the list border list. We should note that it is the
only time-consuming scan in the entire process.

The next step is the first k iterations of anchor-preserving shrinking. We use
a pre–calculated look-up-table to encode simple points. Simple points in (26, 6)
pictures can be locally characterized; this property for a point p can be decided
by examining the set N∗

26(p) that contains 26 points (see Theorem 1). Hence the
pre-calculated look-up-table has 226 entries of 1 bit in size. It is clear that our
look-up-table requires just 8 megabytes of storage space in memory.
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Algorithm 2: Efficient Implementation of Algorithm 3D-CS-APS
Input: array A storing the segmented tree and number of iterations k
Output: array A containing the picture with the produced centerline
// Step 1 - identification of the tree root

(x, y, z) ← ROOT DETECTION (A); A[x, y, z] ← 3;
// Collect border points

border list ← <empty list>;
foreach p = (x, y, z) in array A do

if A[x, y, z] = 1 and p is a border point then
border list ← border list + <p>; A[x, y, z] ← 2;

// Step 2 - the first k iterations of anchor-preserving shrinking

for i ← 1 to k do
foreach direction d ∈ {U,N,E,S,W,D} do

potentially deletable list ← <empty list>;
foreach point p in border list do

if p is a d-border and simple point then
potentially deletable list ← potentially deletable list + <p>;

foreach point p = (x, y, z) in potentially deletable list do
if p is a simple point then

A[x, y, z] ← 0; border list ← border list − <p>;
foreach point q = (x′, y′, z′) that is 6-adjacent to p do

if A[x′, y′, z′] = 1 then
A[x′, y′, z′] ← 2; border list ← border list + <q>;

// Step 3 - detection of curve-end points

foreach point p = (x, y, z) in border list do
if p is a curve-end point then

A[x, y, z] ← 3; border list = border list − <p>;

// Step 4 - anchor-preserving shrinking

repeat
number of deleted points = 0;
foreach direction d ∈ {U,N,E,S,W,D} do

potentially deletable list ← <empty list>;
foreach point p in border list do

if p is a d-border and simple point then
potentially deletable list ← potentially deletable list + <p>;

foreach point p = (x, y, z) in potentially deletable list do
if p is a simple point then

A[x, y, z] ← 0; border list = border list − <p>;
number of deleted points = number of deleted points +1;
foreach point q = (x′, y′, z′) that is 6-adjacent to p do

if A[x′, y′, z′] = 1 then
A[x′, y′, z′] ← 2; border list ← border list + <q>;

until number of deleted points = 0;
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Each subiteration of the anchor preserving shrinking is a 2-phase process:
First, simple border points of the actual type that are added to the poten-
tially deletable list. In the second phase, a point in the potentially deletable list
is deleted if it remains simple after the deletion of the previously visited and
deleted points. If a border point is deleted, all interior points that are 6-adjacent
to it become border points. These brand new border points of the resulted pic-
ture are added to the border list.

The third step of algorithm 3D-CS-APS is fairly simple. Since all curve-end
points are border points, only points in the border list are to be examined. The
detected curve-end points are removed from the border list and the value of ‘3’
is assigned to these new anchor points.

The last step of algorithm 3D-CS-APS is the ultimate anchor preserving
shrinking. The number of deleted points within an iteration step is stored in
the variable number of deleted points. The algorithm terminates when stability
is reached (i.e., number of deleted points = 0). Then all points having a nonzero
value belong to the produced centerline.

5 Experiments

In experiments, the proposed algorithm 3D-CS-APS is compared with two
existing curve skeletonization algorithms:

– Palágyi et al. [9] suggested a 6-subiteration sequential curve thinning algo-
rithm named PTHS 2006. It uses endpoint-rechecking: a curve-end point
(see Definition 1) can be deleted if at least t points of its 6-neighbors have
been deleted during the actual subiteration. According to the experiences,
setting t = 1 is suggested for human airway trees.

– In [11], Palágyi proposed an isthmus-based 6-subiteration sequential curve
thinning algorithm named P 2014. This algorithm accumulates and pre-
serves curve-isthmus points (see Definition 2), while non-accumulated curve-
end points are deleted.

We selected these two existing algorithms, since they also have computa-
tionally efficient implementations. In addition, the selected algorithms can also
produce 1-point wide centerlines for all possible 3D objects.

The three curve skeletonization algorithms (i.e., PTHS 2006, P 2014, and
3D-CS-APS) were tested on various segmented intrathoracic airway trees. Due
to the lack of space, here we can present just two illustrative examples, see Figs. 4
and 5. We can state that the existing algorithms PTHS 2006 and P 2014 gen-
erate some unwanted side branches due to the coarse object boundary. Thanks
to the anchor-preserving shrinking, centerlines produced by the proposed algo-
rithm 3D-CS-APS are free from ‘spurious’ branches. Hence, our method do
not require post-pruning. We should note that algorithm 3D-CS-APS slightly
trims the terminating branches.
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PTHS 2006 P 2014 3D-CS-APS

Fig. 4. Centerlines produced by the three curve skeletonization algorithms superim-
posed on a 512 × 512 × 509 image of a segmented human airway tree (with ‘noisy’
boundary)

PTHS 2006 P 2014 3D-CS-APS

Fig. 5. Centerlines produced by the three curve skeletonization algorithms superim-
posed on a 512 × 512 × 490 image of a segmented human airway tree (with ‘noisy’
boundary)

Table 1 illustrates the efficiency of the proposed algorithm 3D-CS-APS on
12 human airway trees, and validates quantitatively its superiority over the two
examined two methods. The examined algorithms were run on a usual PC under
Linux (Fedora 27 - 64 bit), using a 3.30 GHz 4x Intel Core i5-2500 CPU. (Note,
that just the centerline extraction process itself is considered here; reading the
input volume and writing the output image are not taken into account.) We can
state that the computational complexity of the selected three curve skeletoniza-
tion algorithms are extremely low, they are much faster than the concurrent
methods [3,4,6,19,20].
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Table 1. Computation time (in sec.) by the three algorithms on 12 human airway
trees (with ‘noisy’ boundaries). The image size (512 × 512 × dim z) and the number
of branches (#branch) in the produced centerlines and are also given. Parameter set-
tings: t = 1 for PTHS 2006, and k = 1 for 3D-CS-APS. Note that the proposed
algorithm 3D-CS-APS does not produce visible unwanted side branches, and do not
miss visually obvious branches.

Test object Size (dim z) PTHS 2006 P 2014 3D-CS-APS

Time #branch Time #branch Time #branch

Tree 1 436 0.31 120 0.30 93 0.29 75

Tree 2 537 0.36 111 0.35 90 0.35 74

Tree 3 557 0.34 37 0.34 32 0.33 27

Tree 4 490 0.30 44 0.30 38 0.29 31

Tree 5 490 0.33 135 0.32 116 0.32 93

Tree 6 459 0.29 57 0.29 49 0.28 42

Tree 7 387 0.24 26 0.23 22 0.23 19

Tree 8 349 0.22 45 0.22 31 0.21 23

Tree 9 389 0.25 53 0.24 37 0.24 32

Tree 10 509 0.34 83 0.33 72 0.32 61

Tree 11 509 0.40 124 0.38 100 0.39 82

Tree 12 556 0.34 63 0.33 47 0.32 41

6 Conclusions

In this paper, a new algorithm is proposed for producing centerlines from binary
3D tree-like objects. It is based on interrupted anchor-preserving shrinking,
hence the produced centerlines do not contain ‘spurious’ branches. Our method
is usable for tree-like objects in which each ‘important’ terminating branch ends
with a curve-end points after a given number of shrinking iterations. The pro-
posed algorithm is computationally efficient and preserves the topology. Quan-
titative experiments on intrathoracic airway trees have demonstrated that the
new method outperforms two existing curve skeletonization algorithms.
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