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Abstract. Visual interactive tools are of great importance for monitor-
ing and analysis of geographical data, and, in particular, traffic data.
Substantial research effort goes into visualization techniques of various
kinds of geography-bound traffic data. Unfortunately, such techniques are
very domain-specific and often lack useful features. We propose an inter-
active visualization system for monitoring and analyzing traffic data on a
3D globe. Our system is general and can be transparently used in differ-
ent domains, which we examplify by two simulated demonstrations of use
cases: Logistic Service and Data Communication. Using these examples,
we show that our approach is more general than the current state of the
art, and that there are significant similarities between several domains in
need of interactive visualization, which are mostly treated as completely
separate.

Keywords: Geovisualization · Transport visualization · Network
visualization · Visual analysis

1 Introduction

The concept of traffic appears in many areas and performing analysis and moni-
toring of traffic-related data and processes is often an absolute necessity. Visual-
ization is an invaluable tool for analysis and monitoring tasks with visualization
of movement data being a research topic of high interest [3].

There are several domains in need of visualization which deal with traffic data
that can be naturally mapped onto the globe. These domains include transporta-
tion of goods, vehicles, people, data, money, etc. with each such domain requiring
visualization tools. While much research in visualization of such domains is per-
formed, it is mostly very domain specific.

In this work, we present a generic visualization system based on primitives
that we believe can be applied to many different domains of traffic visualization.
Our system visualizes traffic as an interactive animation on a 3D globe where
the user can both navigate the globe, interact with various visualization prim-
itives, and control movement on the time scale as well. More importantly, the
user can query the data using the provided API, causing the visual primitives
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to be filtered, highlighted, and/or selected, and/or causing the camera to move
towards the primitives representing the resulting data. The primitives include
sites (static locations), pipes (fixed routes between sites), and packages (dynamic
items representing whatever is being transported), all of which are organized
into a spatial hierarchy. In this work, we demonstrate that these primitives can
describe use cases from various, potentially hierarchical, domains. We thus fur-
ther demonstrate that our system is well-suited for visualizing use cases from
various, potentially hierarchical, domains, as it is based on the aforementioned
primitives.

This work is structured as follows. In Sect. 2, we give an overview of related
work. In Sect. 3, we describe the system architecture. We present two examples
of use cases of the system, in Sect. 4, and then conclude and discuss future work,
in Sect. 5.

2 Related Work

The need in geographical traffic visualization is similar to a need that arises in
various fields. The research, however, is often focused on a specific domain. In
this section, we discuss works that are relevant to our system, separated into
two main domains, namely, vehicle traffic and traffic in computer networks.

2.1 Vehicle Traffic Visualization

With geo-positioning data for transport vehicles becoming increasingly avail-
able (with the notable example of GTFS1), so are visualization, monitoring, and
analysis tools for such data. [8] presents a visual interactive tool for analyz-
ing taxi trips using queries optimized for spatio-temporal data. [10] proposes a
technique for optimizing visualization by detecting and utilizing spatial patterns
when working with origin-destination type data. [13] provides a visual system
for analysis of transportation data aimed at helping municipalities and transport
companies. A recent survey of such systems and techniques can be found in [2].

However, all of the above approaches work with aggregated data, while our
goal is to provide a system capable of real-time monitoring. Various local public
transport information systems, such as [7], provide real-time information about
current bus locations to the end users. TRAVIC2, which is an implementation of
[4], is a system that allows monitoring public transport around the world (data
provided through GTFS) in real time with playback capabilities. These systems
are, however, still heavily domain-specific.

2.2 Visualization of Traffic in Computer Networks

Another domain of geographical traffic visualization is visualization of traffic
in computer networks. The benefits of geographical visualization of networking
1 https://developers.google.com/transit/gtfs/.
2 https://tracker.geops.ch/.
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data as well as a prototype implementation of a network monitoring system are
discussed in [11]. [1] visualizes geo-referenced networks (not necessarily computer
networks) on a 3D globe while using surface deformation to reduce data clutter.
This approach is expanded by [6], which also adds a method of ‘peeling’ slices
of the Earth surface to show occluded regions. [12] unifies the ideas of [11] and
[1] in a single system that provides analytical tool for geo-referenced computer
networks. Neither of these systems, however, combines the capabilities of real-
time monitoring, 3D visualization, and domain-independence.

3 System Architecture

In this section, we discuss our system from the technical standpoint. First, we
give a brief overview of the architecture in Sect. 3.1. Then we describe what
kind of input data the visualizer uses in Sects. 3.2 to 3.4. We mention how the
visualizer and the data provider communicate in Sect. 3.5. Finally we discuss the
capabilities of the visualizer in Sect. 3.6.

3.1 Architecture Overview

In this subsection, we describe the overall architecture of the system, which is
shown in Fig. 1. We discuss each subsystem in detail in the next subsection.

The main part of the system is the visualizer, which is a client-side object
responsible for taking the data from the data provider (described next) and
generating an interactive 3D visual representation of the data inside the browser.
The visualizer in our system is implemented using the Cesium library [5], which
gives the end user the ability to navigate on the globe, navigate though the
timeline (seeking, playback forward or backward at a given speed), explore the
data, etc. The visualizer also provides a client-side API to allow integration with
higher level management and analytics systems, which in turn allows operations
such as filtering and highlighting the data that meets user-specified criteria.

The visualizer gets the data to visualize from the data provider (Fig. 1(b)).
From the point of view of the visualizer, the data provider is also a client-side
object, but in real world scenarios this object will be a simple proxy to a remote
server that sends the data using a network transfer protocol, like HTTP.

The data is largely separated into a static and a dynamic part. The static
data is provided directly as is and does not change over time. The dynamic
data, on the other hand, can change over time and is thus provided in the form
of events. Each event has a timestamp and information about a piece of dynamic
data being created, modified, or deleted. This allows the system to be used for
both retrospective analysis and real-time monitoring.

3.2 Static Data

We start our in-depth description of the system with the static data. As stated in
the overview, the static data does not change over time. While it can be loaded
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Fig. 1. Architecture overview (Color figure online)

partially on-demand, and its visual representation can change (e.g., collapse
or expand, based on the viewing distance), the underlying data is considered
unchanged and is provided directly.

Spatial Nodes. All the static data is defined within a hierarchy of what we
denote as “spatial nodes”, defined as follows.

Definition 1. A spatial node is a named position and orientation in 3D space
that represents a certain location or region. Together, spatial nodes form a tree
structure denoted as spatial node tree. The root spatial node is the Earth itself.
Each non-root spatial node can either be defined as an absolute position and
orientation (i.e., as latitude, longitude, altitude, heading, pitch, and roll) or using
position and orientation relative to its parent spatial node.

An example of such a hierarchy is Earth, continents, countries, regions, cities,
neighborhoods, buildings, floors, and rooms. All the other static data (and most
of the dynamic data) is defined over the spatial node hierarchy.

In addition, each spatial node can specify a view distance such that when
the camera is further from the node than that distance, the node is consid-
ered ‘collapsed’ and has a different visual representation (we discuss how visual
representations are specified in Sect. 3.4). When a spatial node is collapsed, its
descendants are not shown at all. This is necessary to reduce visual clutter when
looking at complex node trees from afar.
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Sites and Pipes. To further help structure the data and thus provide a stream-
lined API for placing dynamic data, we introduce two additional static data
types, defined below.

Definition 2. A site is a special spatial node that can be used as a storage for
dynamic data.

Examples are airports which can hold airplanes, servers which can hold pieces
of data, etc. A site also has a user-visible name and a description in the form of
HTML. Each spatial node can either be a site or not.

Definition 3. A pipe is a bi-directional connection between two sites.

The pipes serve two main purposes. First, a pipe can be used as a relative
position for a piece of dynamic data thus removing the burden of always dealing
with absolute positions (see Sect. 3.3). Second, the pipe is visible to the user,
which helps to understand at a glance the origin and the destination of dynamic
data moving along the pipe. Pipes can be specified in three forms: as geodesic
lines, geodesic arcs (i.e., with the middle part elevated), and as explicit sequences
of points in space, interpolated with a given degree of continuity. Together, sites
and pipes effectively form a graph.

3.3 Dynamic Data

Every piece of dynamic data in our system is represented as a ‘package’, defined
as follows:

Definition 4. A package is a piece of data that has a name, description, posi-
tion and orientation in space, visual representation (discussed in Sect. 3.4), and
any kind of custom properties. All of these properties can change over time.

The most important dynamic property of a package is its position in space.
It can be set in several forms:

– Absolute position on the Earth.
– Absolute position relative to a spatial node.
– In a pipe with a given relative position (interpolation amount between the

beginning and the end of the pipe).
– On a site.
– Inside another package (obviously, prohibiting circular nesting).

The last option allows us to dynamically nest packages inside each other and
thus enable such use cases as people inside airplanes flying between airports
(representing both people and planes with packages) and pieces of data inside
data transfers between data centers (again, pieces of data and transfers are
represented with packages), etc.

Since the properties of packages may change over time, the data about pack-
ages is provided to the visualizer in the form of events. Each event has a times-
tamp, a package ID, and what happened to that package at that timestamp,
i.e., being created, deleted, or having some of its properties changed. This also
enables real-time visualization by sending events as they happen in real life.
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3.4 Visual Elements

Spatial nodes and packages can have visual representations in the form of lists
of visual elements.

Definition 5. A visual element is an atomic piece of visual representation of
an object (site, package, etc.).

We heavily base our visualizer on the Cesium library [5], and thus, visual
elements are identical to the visual properties of entities in Cesium. The visual
element types include:

– Billboard: a screen-space image with a given pixel size and Z offset (for depth
ordering).

– Model: a 3D model (in glTF format3) with support for dynamic scaling in
the form of minimum pixel size and maximum scale.

– Polygon: a flat shape specified by its border points.
– Wall: a wall-like shape specified as vertical extrusion of a given polyline by a

given height.
– Box: an embedded cube model.

All the above visual element types can be colored and textured. 3D models
can also be animated.

3.5 Data Provider

As the name implies, the role of the data provider is to provide the relevant data
(discussed in the previous sections) to the visualizer.

Definition 6. The data provider is the part of the system that provides the
data (spatial nodes, sites, packages, etc.) as shown in Fig. 1(b).

From the point of view of the visualizer, the data provider is simply a client-
side object that provides the capabilities described in the rest of this section.

Providing Metadata. To be able to request from the data provider the actual
data to visualize (e.g., sites and packages), the visualizer first has to know some
global information about the data. We denote this global information as ‘meta-
data’.

Definition 7. Metadata is the global information, describing the actual data
that the data provider provides. The metadata includes the overall timespan of
the process being visualized, the ID of the root spatial node, a textual description
of the process the data represents, and custom properties to cover the use cases
we have not foreseen.

3 https://www.khronos.org/gltf/.

https://www.khronos.org/gltf/
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Providing Static Data. As discussed in Sect. 3.2, all the static data is bound to
the spatial node tree, and thus acquiring the static data simply means acquiring
the spatial node tree itself. However, there may be cases when the whole tree
contains much more information than what the end user actually needs or can
interact with in real time. For example, a spatial node tree might contain detailed
information about buildings in 100 different cities, but the end user is going to
zoom-in on only one or two of those cities. In such cases, it is useful to support
on-demand loading of spatial node subtrees.

Acquiring static data is thus implemented as a method that returns a sub-
tree of a spatial node tree starting at a node with a given ID. When returning
descendants of this subtree root, the data provider may decide to mark some of
them as ‘details-on-demand’ instead of returning them completely. The visual-
izer then may request them separately or ignore those that the user never gets
too close to.

We have also considered an option of letting the visualizer decide the needed
level of detail, but decided to let the data provider decide, since it has much
more information about the data. It is theoretically possible to let the visualizer
provide an abstract “level of detail” numeric value, which the data provider
would consider to decide which nodes to mark as details-on-demand, but we
leave it for the future work.

Providing Dynamic Data. As discussed in Sect. 3.3, in our system, dynamic
data is represented as packages and is provided in the form of events. To enable
provision of events in real-time, the event provision is implemented via subscrip-
tion. The visualizer subscribes to events by giving the data provider a callback
function that is called for every event received.

API. The described capabilities of the data provider are exposed as the following
narrow API. This API is used to provide the data to the visualizer, as shown in
Fig. 1(b).

– getMeta(): returns the metadata (asynchronously).
– getSpatialSubtree(subtreeRootId): returns (asynchronously) a spatial node

subtree starting at the node with ID subtreeRootId.
– subscribe(eventCallback): subscribes to dynamic data events.
– unsubscribe(eventCallback): unsubscribes from dynamic data events.

As discussed in Sect. 3.1, in real life scenarios, this client-side object is likely
to be a simple proxy to a remote server that exposes these same capabilities as
a web API.

3.6 The Visualizer

Definition 8. The visualizer is the client-side component responsible for visu-
alizing the data and responding to user input. (Green rectangle in Fig. 1.)

The visualizer provides two ways of interaction: the 3D globe, with which
the user can directly interact, and the client-side API.
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Interactive 3D Globe. The main goal of our system is presenting the data to
the user in a visual and interactive form, which is one of the responsibilities of
the visualizer. We employ the Cesium library to render various data on top of
the 3D globe, in a browser. The visualizer is thus responsible for converting the
data it received from the data provider to Cesium entities and Cesium primitives
that are actually rendered. This is true for both static and dynamic data.

An important feature of the visualizer that is offered directly to the end user
is the ability to smoothly navigate through time in the form of playback controls,
whereas the user controls the direction and speed of animation. The visualizer
is thus also responsible for correctly placing packages in both space and time,
and also correctly handling cases of package nesting.

Client-Side API. The necessary capabilities are, however, not limited to what
can be done by directly interacting with the 3D globe. (Note that hereafter, we
sometimes refer to spatial nodes, sites, pipes, and packages as ‘objects’ when
discussing capabilities not unique to one type only.) There is an obvious need
for capabilities such as filtering, highlighting, and tracking objects that satisfy
certain criteria. By ‘filtering’ and ‘highlighting’ we mean the following.

Definition 9. Filtering is hiding and showing objects based on a given crite-
rion (filter), usually supplied as a function that takes an object and returns a
boolean value indicating whether that object should be visible or not.

Definition 10. Highlighting is temporarily modifying visual properties of
some objects to make them visually distinguishable. The exact visual change is
defined by custom functions.

These capabilities are provided through the client-side API of the visualizer,
which is shown below. This API is meant to be used by arbitrary external GUI,
as shown in Fig. 1(a).

– spatialNodes: a filterable collection of spatial nodes.
– sites: a filterable collection of sites.
– pipes: a filterable collection of pipes.
– packages: a filterable collection of packages.
– defineHighlighting(highlight, unhighlight): sets the functions that would be

used to highlight objects.
– registerCustomVisual(name, visual): registers a visual representation to

use for a visual element named name, effectively extending the list of visual
elements (Sect. 3.4) that can be provided by the data provider.

– highlight(objects): highlights a given set of objects using the highlighting
method defined with defineHighlighting.

– select(object): selects the given object.
– navigateTo(objects): navigates the camera to show the given set of objects.

Each of the filterable collections of objects serves as a sub-API with the
following methods:
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– visibilityFilters: a modifiable collection of filters that determine visibility
of objects within the 3D view. A filter is a function that takes an object and
returns a boolean value indicating whether the object should be visible.

– queryVisible(filter): returns all visible objects that satisfy the given filter.
– query(filter): returns all objects (including invisible ones) that satisfy the

given filter.

The client-side API also allows the system to be used as an embedded visu-
alizer for higher level data analysis systems such as Elastic Search [9].

4 Examples

In this section, we present two example use cases for our system. First is a
logistic service that governs delivery of parcels (Sect. 4.1), and the second is
communication between data centers (Sect. 4.2). Note that the only difference
between the examples is the data returned by the data provider (spatial nodes,
sites, pipes, and packages). Everything else stays the same, which makes our
system quite universal.

4.1 Logistic Service

Fig. 2. The Logistic Service use case example. On the top right, you can see the contents
of the selected airplane, i.e., the parcel packages bound to that airplane package.

The first example that we present is the Logistic Service (Fig. 2). It demonstrates
how our system can be used in monitoring and analyzing parcel delivery around
the globe. In this example, the sites are storage and sorting centers (including
ones in airports) and there are two types of packages: parcels and transportation
means for those parcels (e.g., airplanes).
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Fig. 3. A package that follows the path
specified with absolute coordinates, rep-
resenting a delivery mini-truck with GPS
tracking.

First, we establish the spatial node
tree in the form of countries, cities, and
sorting facilities within cities. Then,
demand in various places on the globe
for various goods and items from other
places on the globe is generated. For
each instance of such demand, a par-
cel which is delivered through the var-
ious means of transportation (mainly
flights) is created. We also added a
case of door-to-door delivery, which, in
addition to generated transport, also
uses explicit coordinates to simulate
GPS tracking of a delivery mini-truck
(Fig. 3).

Each parcel is a package and each plane or truck that carries it is also a
package since both of these data types are dynamic. Our ability to place pack-
ages within other packages allows us to directly model the concept of placing
parcels inside airplanes and mini-trucks. This, in turn, allows an intuitive way
of executing Client API commands such as “highlight all parcels carrying elec-
tronics from Taiwan”, which will visually highlight all planes, trucks, and sites
that contain such parcels, as well as the parcels themselves.

4.2 Data Center Communication

Fig. 4. The Data Center Communication use case example. Different shapes and colors
of the items represent different categories of data transfers and network events.

The second example is communication between data centers (Fig. 4). Here, we
have a network of data centers which constantly exchange various kinds of data.
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In this case, the data centers are sites, direct connections between them are pipes,
and the data transfers (possibly consolidated) between them are packages.

Another thing represented as a package in this simulation is the data itself,
and an interesting type of such data is cache data for load balancing. Consider a
simulated scenario where each data center is supposed to serve data to the closest
customers, but the data requested may be stored in another data center. The
data centers therefore exchange the data and store it as a cache, thus allowing
several instances of the same data to exist.

Fig. 5. Zooming in on a building to moni-
tor the communication inside.

For monitoring and analyzing the
performance of the data centers and
of load balancing, we believe it is use-
ful to be able to track data instances
and transfers that contain them. For-
tunately, it is straightforward to do
this within our system. Furthermore,
the request to show all the sites and
network transfers that contain specific
data is conceptually no different from
a request to show all the sorting cen-
ters and transport vehicles containing
parcels with a certain type of product, which was discussed in the previous
section.

This example also demonstrates the benefit of 3D and the hierarchical struc-
ture by allowing the visualization of some buildings from the inside as 3D prim-
itives and models (Fig. 5). This allows to monitor and investigate what is hap-
pening on the building level in the most intuitive way.

5 Conclusions and Future Work

We have presented a generic visualization system that allows monitoring and
data analysis for geographical traffic data of various domains on a 3D globe with
the ability to navigate in both space and time in a continuous (and thus visually
coherent) way. Our infrastructure manages all static and dynamic hierarchical
data, and exploits the Cesium library for rendering 3D geometry on a 3D globe,
time controls, mouse-based spatial navigation, and basic GUI.

We have presented two simulated examples from two completely different
domains (a logistic service and a data center communication) implemented in
a very similar way based on the same set of abstractions. We, thus, demon-
strate that there are significant similarities between these, and potentially more,
domains in need of interactive visualization that are mostly treated as unique.

Needless to say, there is a lot of room for improvement. First and foremost,
there is a potential for more use cases for traffic visualization. Examples include
visualization of traffic of money, electricity, natural resources (e.g., oil), etc.

We define pipes as static data that connects sites. However, one can easily
envision scenarios where allowing pipes to have dynamic properties is desirable,
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such as showing current availability, throughput, or other properties of a pipe.
Having unidirectional pipes is also a possible future extension.

Another aspect that can be improved is additional GUI. We provide the
default GUI supported by Cesium for spatio-temporal navigation and viewing
properties. We also support a client-side API of the visualizer to attach any
additional GUI the specific use case requires. Nevertheless, the burden of creating
additional GUI can be lifted if one designs and implements a large enough set
of universal GUI widgets that can be used with our system.
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