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Abstract. We propose DeepGRU, a novel end-to-end deep network model
informed by recent developments in deep learning for gesture and action recog-
nition, that is streamlined and device-agnostic. DeepGRU, which uses only raw
skeleton, pose or vector data is quickly understood, implemented, and trained,
and yet achieves state-of-the-art results on challenging datasets. At the heart of
our method lies a set of stacked gated recurrent units (GRU), two fully-connected
layers and a novel global attention model. We evaluate our method on seven pub-
licly available datasets, containing various number of samples and spanning over
a broad range of interactions (full-body, multi-actor, hand gestures, etc.). In all but
one case we outperform the state-of-the-art pose-based methods. For instance, we
achieve a recognition accuracy of 84.9% and 92.3% on cross-subject and cross-
view tests of the NTU RGB+D dataset respectively, and also 100% recognition
accuracy on the UT-Kinect dataset. We show that even in the absence of powerful
hardware, or a large amount of training data, and with as little as four samples per
class, DeepGRU can be trained in under 10min while beating traditional meth-
ods specifically designed for small training sets, making it an enticing choice for
rapid application prototyping and development.
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1 Introduction

With the advent of various input devices, gesture recognition has become increasingly
relevant in human-computer interaction. As these input devices get more capable and
precise, the complexity of the interactions that they can capture also increases which,
in turn, ignites the need for recognition methods that can leverage these capabilities.
From a practitioner’s point of view, a gesture recognizer would need to possess a set
of traits in order to gain adoption: it should capture the fine differences among gestures
and distinguish one gesture from another with a high degree of confidence, while being
able to work with a vast number of input devices and gesture modalities. Concurrently,
a recognition method should enable system designers to integrate the method into their
workflow with the least amount of effort. These goals are often at odds: the recognition
power of a recognizer usually comes at the cost of increased complexity and decreased
flexibility of working across different input devices and modalities.
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Fig. 1. Our proposed model for gesture recognition which consists of an encoder network of
stacked gated recurrent units (GRU), the attention module and the classification layers. The input
x = (x0, x1, ..., x(L−1)) is a sequence of vector data of arbitrary length and the output is the
predicted class label ŷ. See Sect. 3 for a thorough description.

With these contradicting goals in mind, we introduce DeepGRU: an end-to-end
deep network-based gesture recognition utility1 (see Fig. 1). DeepGRU works directly
with raw 3D skeleton, pose or other vector features (e.g. acceleration, angular velocity,
etc.) produced by noisy commodity hardware, thus requiring minimal domain-specific
knowledge to use. With roughly 4 million trainable parameters, DeepGRU is a rather
small network by modern standards and is budget-aware when computational power is
constrained. Yet, we achieve state-of-the-art results on various datasets.

Contributions. Our main contributions are devising a novel network model that works
with raw vector data and is: (1) intuitive to understand and easy to implement, (2) easy
to use, works out-of-the-box on noisy data, and is easy to train, without requiring power-
ful hardware (3) achieves state-of-the-art results in various use-cases, even with limited
amount of training data. We believe (1) and (2)make DeepGRU enticing for application
developers while (3) appeals to seasoned practitioners. To our knowledge, no prior work
specifically focuses on model simplicity, accessibility for the masses, small training sets
or CPU-only training which we think makes DeepGRU unique among its peers.

2 Related Work

Recognition with Hand-Crafted Features. Despite the success of end-to-end meth-
ods, classical methods that use hand-crafted features to perform recognition have been
used with great success [18,21,49–51]. As Cheema et al. [9] showed, these methods
can achieve excellent recognition results. They compared the performance of five algo-
rithms (AdaBoost, SVM, decision trees etc.) on Wii controller gestures and concluded
that, in some cases, the seemingly simple linear classifier can recognize a set of 25

1 Reference implementation is available at: https://github.com/Maghoumi/DeepGRU.

https://github.com/Maghoumi/DeepGRU
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gestures with 99% accuracy. Weng et al. [51] leveraged the spatio-temporal relations in
action sequences with naı̈ve-Bayes nearest-neighbor classifiers [6] to recognize actions.
Xia et al. [53] used hidden Markov models (HMM) and the histogram of 3D joint
locations to recognize gestures. Vemulapalli et al. [49] represented skeletal gestures
as curves in a Lie group and used a combination of classifiers to recognize the ges-
tures. Our approach differs from all of these methods in that we use the raw data of
noisy input devices and do not hand-craft any features. Rather, our encoder network
(Sect. 3.2) learns suitable feature representations during end-to-end training.

Recurrent Architectures. The literature contains a large body of work that use
recurrent neural networks (RNN) for action and gesture recognition [10,14,16,23,24,
29,33,43,48,52]. Shahroudy et al. [38] showed the power of recurrent architectures
and long-short term memory (LSTM) units [20] for large-scale gesture recognition.
Zhang et al. [55] proposed a view-adaptive scheme to achieve view-invariant action
recognition. Their model consisted of LSTM units that would learn the most suitable
transformation of samples to achieve consistent viewpoints. Avola et al. [2] used a
LSTM architecture in conjunction with hand-crafted angular features of hand joints to
recognize hand gestures. Contrary to these methods, we only use gated recurrent units
(GRU) [12] as the building block of our model. We show that GRUs are faster to train
and produce better results. Also, our method is designed to be general and not specific
to a particular device, gesture modality or feature representation. Lastly, we leverage
the attention mechanism to capture the most important parts of each input sequence.

AttentionMechanism. When using recurrent architectures, the sub-parts of a temporal
sequence may not all be equally important: some subsequences may be more pertinent
to the task at hand than others. Thus, it is beneficial to learn a representation that can
identify these important sub-parts to aid recognition, which is the key intuition behind
the attention model [3,31]. Even though the attention model was originally proposed
for sequence to sequence models and neural machine translation, it has been adapted to
the task of gesture and action recognition [5,28,41]. Liu et al. [28] proposed a global
context-aware attention LSTM network for 3D action recognition. Using a global con-
text, their method selectively focuses on the most informative joints when performing
recognition. Song et al. [41] used the attention mechanism with LSTM units to selec-
tively focus on discriminative skeleton joints at each gesture frame. Baradel et al. [5]
leveraged the visual attention model to recognize human activities purely using image
data. They used GRUs as the building block of their recurrent architecture.

Contrary to some of this work, DeepGRU only requires pose and vector-based data.
Our novel attention model differs from prior work in how the context vector is computed
and consumed. GCA-LSTM [28] has a multi-pass attention subnetwork which requires
multiple initialize/refine iterations to compute attention vectors. Ours is single-pass and
not iterative. Our attention model also differs from STA-LSTM [41] which has two sep-
arate temporal and spatial components, whereas ours has only one component for both
domains. VA-LSTM [55] has a view-adaptation subnetwork that learns transformations
to consistent view-points. This imposes the assumption that input data are spatial or
view-point dependent, which may prohibit applications on non-spatial data (e.g. acous-
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tic gestures [36]). Our model does not make any such assumptions. As we show later,
our single-pass, non-iterative, spatio-temporal combined attention, and device-agnostic
architecture result in less complexity, fewer parameters, and shorter training time, while
achieving state-of-the-art results, which we believe sets us apart from prior work.

3 DeepGRU

In this section we provide an in-depth discussion of DeepGRU’s architecture. In our
architecture, we take inspiration from VGG-16 [39], and the attention [3,31] and
sequence to sequence models [42]. Our model, depicted in Fig. 1, is comprised of three
main components: an encoder network, the attention module, and two fully-connected
(FC) layers fed to softmax producing the probability distribution of the class labels. We
provide an ablation study to give insight into our design choices in Sect. 5.

3.1 Input Data

The input to DeepGRU is raw input device samples represented as a temporal sequence
of the underlying gesture data (e.g. 3D joint positions, accelerometer or velocity mea-
surements, 2D Cartesian coordinates of pen/touch interactions, etc.). At time step t, the
input data is the column vector xt ∈ R

N , where N is the dimensionality of the feature
vector. Thus, the input data of the entire temporal sequence of a single gesture sample is
the matrix x ∈ R

N×L, where L is the length of the sequence in time steps. Each input
example sequences could have different number of time steps. We use the entire tempo-
ral sequence as-is without subsampling or clipping. When training on mini-batches, we
represent the ith mini-batch as the tensor Xi ∈ R

B×N×˜L, where B is the mini-batch
size and ˜L is the length of the longest sequence in the ith mini-batch. Sequences that
are shorter than ˜L are zero-padded.

3.2 Encoder Network

The encoder network in DeepGRU is fed with data from training samples and serves as
the feature extractor. Our encoder network consists of a total of five stacked unidirec-
tional GRUs. We prefer GRU units over LSTM units [20] as they have a smaller number
of parameters and thus are faster to train and less prone to overfitting. At time step t,
given an input vector xt and the hidden state vector of the previous time step h(t−1), a
GRU computes ht, the hidden output at time step t, as ht = Γ

(

xt, h(t−1)

)

using the
following transition equations:
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where σ is the sigmoid function, ◦ denotes the Hadamard product, rt, ut and ct are
reset, update and candidate gates respectively and W q

p and bq
p are the trainable weights

and biases. In our encoder network, h0 of all the GRUs are initialized to zero.
Given a gesture example x ∈ R

N×L, the encoder network uses Eq. 1 to output
h̄ ∈ R

128×L, where h̄ is the result of the concatenation h̄ =
[

h0; h1; ... ; h(L−1)

]

.
This compact encoding of the input matrix x, is then fed to the attention module.

3.3 Attention Module

The output of the encoder network, can provide a reasonable set of features for perform-
ing classification. We further refine this set of features by extracting the most informa-
tive parts of the sequence using the attention model. We propose a novel adaptation of
the global attention model [31] which is suitable for our recognition task.

Given all the hidden states h̄ of the encoder network, our attention module computes
the attentional context vector c ∈ R

128 using the trainable parameters Wc as:

c =

⎛

⎜

⎝

exp
(

hᵀ
(L−1)Wch̄

)

∑L−1
t=0 exp

(

hᵀ
(L−1)Wcht

)

⎞

⎟

⎠
h̄ (2)

As evident in Eq. 2, we solely use the hidden states of the encoder network to com-
pute the attentional context vector. The hidden state of the last time step h(L−1) of the
encoder network (the yellow arrow in Fig. 1) is the main component of our context
computation and attentional output. This is because h(L−1) can potentially capture a
lot of information from the entire gesture sample sequence. However, since the inputs
to DeepGRU can be of arbitrary lengths, the amount of information that is captured by
h(L−1) could differ among short sequences and long sequences. This could make the
model susceptible to variations in sequence lengths. To mitigate this, we jointly learn
a set of parameters that given the context and the hidden state of the encoder network
would decide whether to use the hidden state directly, or have it undergo further trans-
formation while accounting for the context. This decision logic can be mapped to the
transition equations of a GRU (see Eq. 1). Thus, after computing the context c, we addi-
tionally compute the auxiliary context c′ and produce the attention module’s output oattn
as follows, where Γattn is the attentional GRU of the our model:

c′ = Γattn
(

c, h(L−1)

)

oattn =
[

c ; c′] (3)

We believe that the novelty of our attention model is threefold. First, it only relies
on the hidden state of the last time step h(L−1), which reduces complexity. Second, we
compute the auxiliary context vector to mitigate the effects of sequence length varia-
tions. Lastly, our attention module is invariant to zero-padded sequences and thus can
be trivially vectorized for training on mini-batches of sequences with different lengths.
As we show in Sect. 5, our attention model works very well in practice.
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3.4 Classification

The final layers of our model are comprised of two FC layers (F1 and F2) with ReLU
activations that take the attention module’s output and produce the probability distribu-
tion of the class labels using a softmax classifier:

ŷ = softmax

(

F2
(

ReLU
(

F1(oattn)
)

)

)

(4)

We use batch normalization [22] followed by dropout [19] on the input of both
F1 and F2 in Eq. 4. During training, we minimize the cross-entropy loss to reduce the
difference between predicted class labels ŷ and the ground truth labels y.

4 Evaluation

We evaluate our proposed method on five datasets: UT-Kinect [53], NTU RGB+D [38],
SYSU-3D [21], DHG 14/28 [13,15] and SBU Kinect Interactions [54]. We believe
these datasets cover a wide range of gesture interactions, number of actors, view-point
variations and input devices. We additionally performed experiments on two small-scale
datasets (Wii Remote [9] and Acoustic [36]) in order to demonstrate the suitability of
DeepGRU for scenarios where only a very limited amount of training data is available.
We compute the recognition accuracies on each dataset and report them as a percentage.

Implementation Details. We implemented DeepGRU using the PyTorch [35] frame-
work. The input data to the network are z-score normalized using the training set. We
use the Adam solver [25] (β1 = 0.9, β2 = 0.999) and the initial learning rate of 10−3

to train our model. The mini-batch size for all experiments is 128, except for those on
NTU RGB+D, for which the size is 256. Training is done on a machine equipped with
two NVIDIA GeForce GTX 1080 GPUs, Intel Core-i7 6850K processor and 32 GB
RAM. Unless stated otherwise, both GPUs were used for training.

Regularization. We use dropout (0.5) and data augmentation to avoid overfitting. All
regularization parameters were determined via cross-validation on a subset of the train-
ing data. Across all experiments we use three types of data augmentation: (1) random
scaling with a factor2 of ±0.3, (2) random translation with a factor of ±1, (3) synthetic
sequence generation with gesture path stochastic resampling (GPSR) [45]. For GPSR
we randomly select the resample count n and remove count r. We use n with a factor
of (±0.1 × ˜L) and r with a factor of (±0.05 × ˜L). We additionally use a weight decay
value of 10−4, as well as random rotation with a factor of ±π

4 on NTU RGB+D dataset.
This was necessary due to the multiview nature of the dataset.

2 A factor of ±0.3 indicates that samples are randomly and non-uniformly (e.g. ) scaled along
all axes to [0.7, 1.3] of their original size.
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4.1 UT-Kinect

This dataset [53] is comprised of ten gestures performed by ten participants two times
(200 sequences in total). The data of each participant is recorded and labeled in one
continuous session. What makes this dataset challenging is that the participants move
around the scene and perform the gestures consecutively. Thus, samples have different
starting position and/or orientations. We use the leave-one-out-sequence cross valida-
tion protocol of [53]. Our approach achieves state-of-the-art results with the perfect
classification accuracy of 100% as shown in Table 1.

4.2 NTU RGB+D

To our knowledge, this is the largest dataset of actions collected from Kinect (v2) [38].
It comprises about 56,000 samples of 60 action classes performed by 40 subjects. Each
subject’s skeleton has 25 joints. The challenging aspect of this dataset stems from the
availability of various viewpoints for each action, as well as the multi-person nature
of some action classes. We follow the cross-subject (CS) and cross-view (CV) evalu-
ation protocols of [38]. In the CS protocol, 20 subjects are used for training and the
remaining 20 subjects are used for testing. In the CV protocol, two viewpoints are used
for training and the remaining one viewpoint is used for testing. We create our feature
vectors similar to [38]. Also, note that according to the dataset authors, 302 samples in
this dataset are corrupted which were omitted in our tests.

Our results are presented in Table 2. Although DeepGRU only uses the raw skeleton
positions of the samples, we present the results of other recognition methods that use
other types of gesture data. To the best of our knowledge, DeepGRU achieves state-of-
the-art performance among all methods that only use raw skeleton pose data.

Table 1. Results on UT-Kinect [53] dataset.

Method Accuracy Method Accuracy

Histogram of 3D joints [53] 90.9 GCA-LSTM (direct) [28] 98.5

LARP + mfPCA [1] 94.8 CNN + Feature maps [47] 98.9

ST LSTM + Trust gates [29] 97.0 GCA-LSTM (stepwise) [28] 99.0

Lie group [49] 97.1 CNN + LSTM [33] 99.0

ST-NBNN [51] 98.0 KRP FS [11] 99.0

DPRL + GCNN [43] 98.5 DeepGRU 100.0
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Table 2. Results on NTU RGB+D [38] dataset.

Modality Method Accuracy Modality Method Accuracy

CS CV CS CV

Image Multitask DL [32] 84.6 – Pose STA model
[41]

73.2 81.2

Glimpse clouds [5] 86.6 93.2 CNN + Kernel
feature maps
[47]

75.3 –

Pose + Image DSSCA - SSLM [37] 74.9 – SkeletonNet
[23]

75.9 81.2

STA model (Hands) [4] 82.5 88.6 GCA-LSTM
(direct) [28]

74.3 82.8

Multitask DL [32] 85.5 – GCA-LSTM
(stepwise) [28]

76.1 84.0

Pose Lie group [49] 50.1 52.8 DPTC [52] 76.8 84.9

HBRNN [17] 59.1 64.0 VA-LSTM
[55]

79.4 87.6

Dynamic Skeletons [21] 60.2 65.2 Clips + CNN
+ MTLN [24]

79.6 84.8

Deep LSTM [38] 60.7 67.3 View-invariant
[30]

80.0 87.2

Part-aware LSTM [38] 62.9 70.3 DPRL +
GCNN [43]

83.5 89.8

ST LSTM + Trust Gates [29] 69.2 77.7 DeepGRU 84.9 92.3

4.3 SYSU-3D

This Kienct-based dataset [21] contains 12 gestures performed by 40 participants total-
ing 480 samples. The widely-adopted evaluation protocol [21] of this dataset is to ran-
domly select 20 subjects for training and the use remaining 20 subjects for testing. This
process is repeated 30 times and the results are averaged and presented in Table 3.

4.4 DHG 14/28

This dataset [13] contains 14 hand gestures of 28 participants collected by a near-view
Intel RealSense depth camera. Each gesture is performed in two different ways: using
the whole hand, or just one finger. Also, each example gesture is repeated between one

Table 3. Results on SYSU-3D [21].

Method Accuracy Method Accuracy

Dynamic skeletons [21] 75.5 VA-LSTM [55] 77.5

ST LSTM + Trust gates [29] 76.5 GCA-LSTM (stepwise) [28] 78.6

DPRL + GCNN [43] 76.9 DeepGRU 80.3
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Table 4. Results on DHG 14/28 [13] with two evaluation protocols.

Protocol Method Accuracy Protocol Method Accuracy

C = 14 C = 28 C = 14 C = 28

Leave–one–out Chen et al. [10] 84.6 80.3 SHREC’17 [15] HOG2 [15,34] 78.5 74.0

De Smedt et al. [14] 82.5 68.1 HIF3D [7] 90.4 80.4

CNN+LSTM [33] 85.6 81.1 De Smedt
et al. [15,40]

88.2 81.9

DPTC [52] 85.8 80.2 DLSTM [2] 97.6 91.4

DeepGRU 92.0 87.8 DeepGRU 94.5 91.4

to ten times yielding 2800 sequences. The training and testing data on this dataset are
predefined and evaluation can be performed in two ways: classify 14 gestures or clas-
sify 28 gestures. The former is insensitive to how an action is performed, while the latter
discriminates the examples performed with one finger from the ones performed with the
whole hand. The standard evaluation protocol of this dataset is a leave-one-out cross-
validation protocol. However, SHREC 2017 [15] challenge introduces a secondary pro-
tocol in which training and testing sets are pre-split. Table 4 depicts our results using
both protocols and both number of gesture classes.

4.5 SBU Kinect Interactions

This dataset [54] contains 8 two-person interactions of seven participants. We utilize the
5-fold cross-validation protocol of [54] in our experiments. Contrary to other datasets,
which express joint coordinates in the world coordinate system, this dataset has opted to
normalize the joint values instead. Despite using a Kinect (v1) sensor, the participants
in the dataset have only 15 joints.

We treat action frames that contain multiple skeletons similarly to what we
described above for the NTU RGB+D dataset, with the exception of transforming the
joint coordinates. Also, using the equations provided in the datasets, we covert the joint
values them to metric coordinates in the depth camera coordinate frame. This is neces-
sary to make the representation consistent with other datasets that we experiment on.
Table 5 summarizes our results.

4.6 Small Training Set Evaluation

The amount of training data for some gesture-based applications may be limited. This
is especially the case during application prototyping stages, where developers tend to
rapidly iterate through design and evaluation cycles. Throughout the years, various
methods have been proposed in the literature aiming to specifically address the need
for recognizers that are easy to implement, fast to train and work well with small train-
ing sets [26,27,44,46]. Here, we show that our model performs well with small training
sets and can be trained only on the CPU. We pit DeepGRU against Protractor3D [27],
$3 [26] and Jackknife [46] which to our knowledge produce high recognition accuracies
with a small number of training examples [46].
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Table 5. Results on SBU Kinect Interactions [54].

Method Accuracy Method Accuracy

HBRNN [17] 80.4 Clips + CNN + MTLN [24] 93.5

Deep LSTM [38] 86.0 GCA-LSTM (direct) [28] 94.1

Co-occurance deep LSTM [56] 90.4 CNN + Kernel Feature Maps [47] 94.3

STA Model [41] 91.5 GCA-LSTM (stepwise) [28] 94.9

ST LSTM + Trust gates [29] 93.3 VA-LSTM [55] 97.2

SkeletonNet [23] 93.5 DeepGRU 95.7

Table 6. Rapid prototyping evaluation results with T training samples per gesture class.

Dataset Method Accuracy Dataset Method Accuracy

τ = 2 τ = 4 τ = 2 τ = 4

Acoustic [36] Jackknife [46] 91.0 94.0 Wii Remote [9] Protractor3D [27] 73.0 79.6

DeepGRU 89.0 97.4 $3 [26] 79.0 86.1

Jackknife [46] 96.0 98.0

DeepGRU 92.4 98.3

We examine two datasets. The first dataset contains acoustic over-the-air hand ges-
tures via Doppler shifted soundwaves [36]. This dataset contains 18 hand gestures col-
lected from 22 participants via five speakers and one microphone. The soundwave-
based interaction modality is prone to high amounts of noise. The second dataset con-
tains gestures performed via a Wii Remote controller [9] and contains 15625 gestures
of 25 gesture classes collected from 25 participants. These datasets are vastly different
from other datasets examined thus far in that samples of [36] are frequency binned spec-
trograms (165D) while samples of [9] are linear acceleration data and angular velocity
readings (6D), neither of which resemble typical skeletal nor positional features.

For each experiment we use the user-dependent protocol of [9,46]. Given a partic-
ular participant, τ random samples from that participant are selected for training and
the remaining samples are selected for testing. This procedure is repeated per partici-
pant and the results are averaged across all of them. We evaluate the performance of
all the recognizers using τ = 2 and τ = 4 training samples per gesture class to exam-
ine a setup with limited training data. Even though deep networks are not commonly
used with very small training sets, DeepGRU demonstrates very competitive accuracy
in these tests (Table 6). We see that with τ = 4 training samples per gesture class, Deep-
GRU outperforms other recognizers on both datasets.

5 Discussion

Comparison with the State-of-the-Art.3 Experiment results show that DeepGRU
generally tends to outperform the state-of-the-art results, sometimes with a large

3 Refer to our supplementary material for more details: https://arxiv.org/abs/1810.12514.

https://arxiv.org/abs/1810.12514
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Table 7. Ablation study on DHG 14/28 dataset (14 class, SHREC’17 protocol). We examine
(respectively) the effects of the usage of the attention model, the recurrent layer choice (LSTM
vs. GRU), the number of stacked recurrent layers (3 vs. 5) and the number of FC layers (1 vs. 2).
Training times (seconds) are reported for every model. Experiments use the same random seed.
DeepGRU’s model is boldfaced.

Attn. Rec. Unit # Stacked # FC Time (sec) Accuracy Attn. Rec. Unit # Stacked # FC Time (sec) Accuracy

- LSTM 3 1 162.21 91.78 � LSTM 3 1 188.29 92.74

- LSTM 3 2 164.07 91.07 � LSTM 3 2 192.12 92.02

- LSTM 5 1 246.47 91.90 � LSTM 5 1 277.32 92.38

- LSTM 5 2 251.67 89.52 � LSTM 5 2 283.35 92.26

- GRU 3 1 143.87 93.45 � GRU 3 1 170.48 94.12

- GRU 3 2 148.08 93.33 � GRU 3 2 174.00 93.81

- GRU 5 1 210.83 93.69 � GRU 5 1 243.10 93.93

- GRU 5 2 212.99 93.81 � GRU 5 2 248.66 94.52

Table 8. DeepGRU training times (in minutes) on various datasets.DeepGRU training times (in
minutes) on various datasets.

Device Configuration Dataset Time Device Configuration Dataset Time

CPU 12 threads Acoustic [36] (τ = 4) 1.7 GPU 2 × GTX 1080 SHREC 2017 [15] 5.5

Wii Remote [9] (τ = 4) 6.9 NTU RGB+D [38] 129.6

1 × GTX 1080 SHREC 2017 [15] 6.2

SYSU-3D [21] 9.0

NTU RGB+D [38] 198.5

margin. On the NTU-RGB+D [38], we observe that in some cases DeepGRU out-
performs image-based or hybrid methods. Although the same superiority is observed
on the SBU dataset [54], our method achieves slightly lower accuracy compared to
VA-LSTM [55]. One possible intuition for this observation could be that the SBU
dataset [54] provides only a subset of skeleton joints that a Kinect (v1) device can
produce (15 compared to the full set of 20 joints). Further, note that VA-LSTM’s view-
adaptation subnetwork assumes that the gesture data are 3D positions and viewpoint-
dependent. In contrast, DeepGRU does not make any such assumptions.

As shown in Table 4, classifying 14 gestures of the DHG 14/28 dataset [13] with
DLSTM [2] yields higher recognition accuracy compared to DeepGRU. As previously
mentioned, DLSTM [2] uses hand-crafted angular features extracted from hand joints
and these features are used as the input to the recurrent network while DeepGRU uses
raw input, which relieves the user of the burden of computing domain-specific features.
Classifying 28 classes, however, yields similar results with either of the recognizers.

Generality. Our experiments demonstrate the versatility of DeepGRU for various ges-
ture or action modalities and input data: from full-body multi-actor actions to hand
gestures, collected from various commodity hardware such as depth sensors or game
controllers with various data representations (e.g. pose, acceleration and velocity or
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frequency spectrograms) as well as other differences such as the number of actors,
gesture lengths, number of samples and number of viewpoints. Regardless of these dif-
ferences, DeepGRU can still produce high accuracy results.

Ease of Use. Our method uses raw device data, thus requiring fairly little domain
knowledge. Our model is straightforward to implement and as we discuss shortly, train-
ing is fast. We believe these traits make DeepGRU an enticing option for practitioners.

Ablation Study. To provide insight into our network design, we present an ablation
study in Table 7. We note depth alone is not sufficient to achieve state-of-the-art results.
Further, accuracy increases in all cases when we use GRUs instead of LSTMs. GRUs
were on average 12% faster to train and the worst GRU variant achieved higher accuracy
than the best LSTM one. In our early experiments we noted LSTM networks overfitted
frequently which necessitated a lot more parameter tuning, motivating our preference
for GRUs. However, we later observed underfitting when training GRU variants on
larger datasets, arising the need to reduce regularization and tune parameters again. To
alleviate this, we added the second FC layer which later showed to improve results
across all datasets while still faster than LSTMs to train. We observe increased accu-
racy in all experiments with attention, which suggests the attention model is necessary.
Lastly, in our experiments we observed an improvement of roughly 0.5%–1% when the
auxiliary context vector is used (Sect. 3.3). In short, we see improved results with the
attention model on GRU variants with five stacked layers and two FC layers.

Timings. We measured the amount of time it takes to train DeepGRU to convergence
with different configurations in Table 8. The reported times include dataset loading,
preprocessing and data augmentation time. Training our model to convergence tends to
be fast: GPU training of medium-sized datasets or CPU-only training of small datasets
can be done in under 10min. We also measured DeepGRU’s average inference time per
sample both on GPU and on CPU inmicroseconds. On a single GPU, our methods takes
349.1 µs to classify one gesture example while it takes 3136.3 µs on the CPU.

Limitations. Our method has some limitations which we plan to address in the future.
The input needs to be segmented, nonetheless adding support for unsegmented data is
straightforward and requires some changes in the training protocol as demonstrated
in [8]. In our experiments we observed that DeepGRU performs better with high-
dimensional data, thus application on low-dimensional data may require further effort
from developers. Although we used a similar set of hyperparameters for all experiments,
other datasets may require some tuning.

6 Conclusion

We discussed DeepGRU, a deep network-based gesture and action recognizer which
directly works with raw pose and vector data. We demonstrated that our architecture,
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which uses stacked GRU units and a global attention mechanism along with two fully-
connected layers, was able to achieve state-of-the-art recognition results on various
datasets, regardless of the dataset size and interaction modality. We further examined
our approach for application in scenarios where training data is limited and compu-
tational power is constrained. Our results indicate that with as little as four training
samples per gesture class, DeepGRU can still achieve competitive accuracy. We also
showed that training times are short and CPU-only training is possible.
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