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Abstract. In recent years, researchers around the world have been
researching and improving the technique of 1D calibration of cameras.
The previous work has been primarily focused on reducing the motion
constraints of one-dimensional calibration objects, however the accuracy
of the existing methods still needs to be improved when random noise
is introduces. In order to improve the accuracy of the one-dimensional
calibration of the camera, in this paper, we propose a new calibration
method by combining a weighted similar invariant linear algorithm and
an improved nonlinear optimization algorithm. Specifically, we use the
weighted similar invariant linear algorithm to obtain the camera param-
eters as the initial calibration parameters, and then optimize the param-
eters by using improved nonlinear algorithm. Finally, in the case of intro-
ducing random noise, the results of computer simulations and laboratory
experiments show that when the noise level reaches 2 pixels, the param-
eter error of this method is mostly reduced to 0.2% compared with other
methods, which verifies the feasibility of our proposed method.

Keywords: Camera calibration · Linear algorithm · Nonlinear
optimization · 1D calibration objects

1 Introduction

Camera calibration is an essential step to extract metric information from 2D
images in the fields of computer vision. According to the dimension of the calibra-
tion object, the existing camera calibration techniques are roughly classified into
four categories: three-dimensional reference object based calibration (3D) [1–3],
two-dimensional plane based calibration (2D) [4–6], one-dimensional line based
calibration (1D) [7–10] and zero-dimensional calibration (0D) [11,12]. In partic-
ular, the techniques of 1D calibration are mainly applied to calibrate the relative
geometric relationships between multiple cameras and the internal parameters
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of each individual camera. The techniques of 0D calibration require the multi-
ple parameter estimations and hence involve many complicated mathematical
problems. Therefore, considering the Euclidean information of collinearity and
distance between the markers on the calibration object, the techniques of 1D
calibration are superior to the 0D calibration in the terms of algorithm complex-
ity, stability and accuracy. Compared to the 2D and 3D calibration methods, the
1D calibration method makes it easier to construct the calibration because the
geometry required for the 1D calibration object has been reduced to a 1D object
with at least three points. Moreover, the 1D calibration object does not have
its own occlusion and can be simultaneously observed by all the cameras in a
multi-camera system for calibration, and hence the cumbersome and cumulative
errors caused by the occlusion in 2D and 3D calibration process can be avoided.

Generally, the 1D calibration algorithm includes two steps: to calculate the
closed-form solution of calibration parameters and to optimize the parameter
nonlinearly (see the Levenberg–Marquardt (LM) nonlinear nonlinear algorithm
in [13,14]). As a typical solution of 1D calibration, Zhang’s 1D calibration algo-
rithm [7] is sensitive to the inherent noise on image point and the 1D calibration
result is not precise enough. Therefore, the camera parameters initially obtained
by the Zhang’s 1D calibration algorithm often possess large errors. Franca et
al. [15] used the Hartley’s normalization algorithm to suppress noise and hence
improve the 1D calibration accuracy. In fact, the elements of the 1D calibration
measurement matrix are the product of the measurement data, so that each ele-
ment contains different noise. However, the normalization method does not fully
consider the characteristics of each measurement data, so it can only partially
attenuate the effects of noise. Kunfeng et al. [16] proposed a similarity-invariant
linear based 1D calibration algorithm, which does not require the normaliza-
tion of image points and has higher precision than the normalized linear algo-
rithm. Moreover, a weighted similarity-invariant linear algorithm (WSILA) is
also given in their work, which can improve the calibration accuracy to certain
extent. Liang et al. [17] proposed a 1D calibration method for cameras based on
Heteroscedastic Error-in-Variables (HEIV) model. In their work, not only the
camera parameters but also the image coordinates of the measuring points are
optimized. Although the parameter error is further reduced, the computational
complexity is high. The above methods have greatly improve the precision of
1D camera calibration when the noise level is low, however when the noise level
is increased the calibration precision is decreased dramatically. That is because
the rotation angle of the 1D calibration is regarded as a constant value during
the nonlinear optimization step, which limits the calibration precision.

In this work, we propose an improved accurate 1D camera calibration based
on the WSILA algorithm, which updates the rotation angle of 1D calibration
object during the nonlinear optimization step. In this way, the accuracy can be
greatly improved. The structure of this paper is organized as follows. The camera
model and the 1D calibration object is given in Sect. 2. In Sect. 3, we introduce
the principle of the 1D calibration algorithm. In Sect. 4, an improved 1D cali-
bration algorithm is introduced, which combines weighted similar-invariant lin-
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ear algorithm and an improved nonlinear optimization procedure. Experimental
results of both simulation and practical experiments are given in Sect. 5. Finally,
conclusions are given in Sect. 6.

2 Preliminaries

2.1 Camera Model

The coordinates of the 3D space point are expressed as M = [X Y Z]T .
The coordinates of the 2D plane point are expressed as m = [u v]T . The
corresponding homogeneous vector are denoted as M̃ = [X Y Z 1]T and
m̃ = [u v 1]T , respectively. According to the standard pinhole imaging model,
the relationship between point in 3D space and its planar image point can be
described as:

sm̃ = K [R t] M̃ K =

⎡
⎣

α γ u0

0 β v0
0 0 1

⎤
⎦ (1)

where s is the scale factor, R and t are the rotation matrix and the translation
vector, respectively, which are used to describe the relationship between the
world coordinate system and the camera coordinate system. Without loss of
generality, assuming that the camera coordinate system coincides with the world
coordinate system, then R = I3 and t = 01×3, where I3 is 3 × 3 the unit matrix.
K is the internal parameter matrix of the camera, with α and β are the scale
factors in the image u and v axes. γ is the parameter describing the skew of the
two image axes, and [u0 v0] is the coordinates of the principal point. Therefore,
Eq. 1 can be expressed as:

sm̃ = KM̃ (2)

2.2 1D Calibration Object

Fig. 1. Illustration of 1D calibration objects.
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As shown in Fig. 1, it is assumed that the 1D calibration is composed of three
points A, B and C, which satisfies ||C − A|| = L1, ||B − A|| = L. The marker
point A is a fixed point, the 1D calibration object rotates around it N times. A,
B and C are the coordinates of the 1D calibration at the initial position, and
Bi and Ci are the coordinates of points B and C when they are rotated at i-th
times. The corresponding image coordinates are ai, bi and ci.

3 The Principle of 1D Calibration

In this section, a variety of calibration algorithms that obtain the camera param-
eters from multiple observations of an 1D object are detailed.

3.1 Zhang’s 1D Calibration Algorithm (ZLA)

According to Fig. 1, since the relative positions of the marker points are known,
the collinearity of the three marker points A, B and C can be derived:

C = (1 − λ)A + λB (3)

where λ = L1/L, for the convenience of calculation, λ = 0.5 is usually set. Sup-
pose the projection points of A, B and C are a, b and c, and their Z coordinates
are zA, zB and zC , respectively. From Eq. 2, we have:

A = zAK−1ã

B = zBK−1b̃

C = zCK−1c̃

(4)

Substituting the Eq. 4 into the Eq. 3, and simultaneously multiplying on both
sides, there is:

zB = −zA
(1 − λ)(ã × b̃)(b̃ × c̃)

(b̃ × c̃)(b̃ × c̃)
(5)

The Euclidean distance between endpoints A and B can be expressed as:

L = ||B − A|| = ||zBK−1b̃ − zAK−1ã|| (6)

Substituting them into Eq. 5 yields:

zA

∥∥∥∥K−1

(
(1−λ)(ã×b̃)(b̃×c̃)

(b̃×c̃)(b̃×c̃)

)
+ ã

∥∥∥∥ = L (7)

It is equivalent to:

z2AhT K−T K−1K−T = L2 (8)

h = ã +
(1 − λ)(ã × b̃)(b̃ × c̃)

(b̃ × c̃)(b̃ × c̃)
+ b̃
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Let

ω = K−T K−1 =

⎡
⎣

ω11 ω12 ω13

ω12 ω22 ω23

ω13 ω23 ω33

⎤
⎦

=

⎡
⎢⎢⎢⎢⎢⎣

1
α2 − γ

α2β
v0γ−u0β

α2β

− γ
α2β

γ2

α2β2 + 1
β2 −γ(v0γ−u0β)

α2β2 − v0
β2

v0γ−u0β
α2β −γ(v0γ−u0β)

α2β2 − v0
β2 − (v0γ−u0β)2

α2β2 + v2
0

β2 + 1

⎤
⎥⎥⎥⎥⎥⎦

(9)

The matrix is a symmetric matrix, which is defined as

� = [ω11 ω12 ω22 ω13 ω23 ω33]
T (10)

and x = z2A. Let v =
[
h2
1 2h1h2 h2

2 2h1h3 2h2h3 h2
3

]T , therefore, Eq. 8 is
rewritten as:

vT x = L2 (11)

When observing N images of a 1D object, we get Eq. 12 by stacking n such
Eq. 11:

VT x = L21 (12)

where V = [v1, · · · , vn]T and 1 = [1, · · · , 1]T . Then x can be solved according
to Eq. 13:

x = L2(VTV)−1VT1 (13)

According to x, the symmetric matrix can be acquired. After a simple matrix
operation, the parameter K can be finally obtained to realize the camera 1D
calibration.

3.2 Franca et al.’s Normalized Linear Algorithm (FNLA)

To reduce the impact of image noise on Zhang’s linear algorithm, Franca et al.
calibrate the camera using normalized image points. The normalization steps are
operated as follows:

(1) Translating the 2D coordinate point so that its centroid is at the origin;
(2) Scale the points so that their average distance to the origin is equal to

√
2;

(3) The above transformation is performed independently for each image.

In this work, the image normalization matrix is denoted as T that is applied to
transform the image point m̃ for obtaining the normalized image points ˜̂m = Tm̃.
In this way, Eq. 2 can be written as s ˜̂m = TKM̃ . Let K̂ = TK, which represents
the intrinsic parameters of camera corresponding to the projection m̂. Once the
internal parameter K̂ is estimated in the coordinate system defined by T, the
internal parameter k can be obtained by K = T−1K̂.
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3.3 Nonlinear Optimization

The linear solution of the camera parameters is inaccurate, therefore a non-
linearly optimization of the parameters are required. As a classical nonlinear
optimization algorithm, the LM algorithm combines the advantages of the steep-
est descent method and the Gauss-Newton method, and therefore can converge
quickly. In 1D calibration, the optimization criterion is normally defined involv-
ing the projection of points in the calibration:

N∑
i=1

(||ai − a′
i(K,Ai)||2 + ||bi − b′

i(K,Bi)||2 + ||ci − c′
i(K,Ci)||2) (14)

where N is the number of captured pattern images. Firstly, as the camera param-
eters are solved by linear equation written in Eq. 13, the 3D coordinates of the
marker points can be recovered according to Eq. 4. Secondly, the rotation angle
which is denoted by (θi, φi) can be calculated, which is regarded as a constant
that is used to update the 3D coordinates of Bi and Ci based on K and the
3D coordinates of A after each nonlinear optimization iteration. Thirdly, LM
algorithm is used to optimize the K and the coordinates of point A in order to
minimize the loss written in Eq. 14. In this way, the optimized camera parameters
are obtained.

4 Improve Accurate 1D Calibration Algorithm Based on
WSILA

4.1 Weighted Similarity-Invariant Linear Algorithm (WSILA)

According to the literature [16], the reciprocal of the standard deviation of the
estimated relative depth from different images is used as the weight on the
constraint equations in the similar invariant linear calibration algorithm, and a
weighted similarity-invariant linear calibration algorithm with higher precision
is proposed. According to Eq. 3, we have:

Lzcc̃ = (L − L1)zAã + L1zB b̃ (15)

Equation 16 gives three linear equations of zA, zB and zC and dividing both
sides of the equal sign by zA, the equation is equivalent to:

L(c̃ − b̃)η = (L − L1)(ã − c̃) (16)

where

η =
L1(L − L1)(ã − c̃)T (c̃ − b̃)

L2
1||c̃ − b̃||2 (17)

Therefore, the weight ρ of the constraint equation is:

ρ =
1

std(η)
≈ ||ã − b̃||

η2
(18)
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Equation 13 is equivalent to:
ρVx = ρL21 (19)

The solution is then given by:

x = ρL2(ρV(ρV)T )−1(ρV)T (20)

According to the obtained x, the symmetric matrix �̂ is represented. After a
simple matrix operation, the parameter K can be finally obtained to realize the
camera 1D calibration.

4.2 The Improved Nonlinear Optimization Procedure (INOP)

According to Zhang’s 1D calibration algorithm, one can reconstruct the 3D coor-
dinates of Bi after the linear step:

Bi = Ai + L [sin θi cos φi sin θi sin φi cos θi]
T (21)

And then θi and φi can be calculated as written in Eq. 20:

θi = arccos(
zBi

− zAi

L
), φi = arccos(

xBi
− xAi

L sin θi
) (22)

In the previous algorithm, the 1D calibration object rotation angles θi and φi

is considered as a constant during the nonlinear optimization procedure that
is calculated according to Eq. 14. Instead, the constant θi and φi are used to
update the Bi and Ci according to Eq. 21 that are used to calculated the loss
according to Eq. 14. That is inaccurate since the zBi

, zAi
, xBi

, xAi
used in

Eq. 22 are inaccurate. Consequently, the accuracy of the nonlinear optimization
procedure is limited. To address this limitation, the work propose an improved
nonlinear optimization procedure that update the 1D calibration object rotation
angle θi and φi by the camera parameters and the coordinates of the rotation
point coordinates should after each iteration, as is shown in Algorithm 1. And
the objective function at this time is:

N∑

i=1

(||ai − a′
i(K, Ai, θi, φi||2 + ||bi − b′

i(K, Bi, θi, φi)||2 + ||ci − c′
i(K, Ci, θi, φi)||2

)

(23)

In the actual process, the 1D calibration object rotation angles θi and φi directly
affect the 3D coordinates of the endpoints A and Bi, and the 3D coordinates are
determined by the camera parameters and the image coordinates, wherein the
image coordinates do not change, so when the camera parameters are updated, θi

and φi also changes. Therefore, the improved nonlinear optimization procedure
used in this paper: 1D calibration object rotation angle θi and φi should be
updating by the camera parameters and the coordinates of the rotation point
coordinates (show in Algorithm 1). And the objective function at this time is:
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Algorithm 1. The improved nonlinear optimization procedure.
Input:

2D coordinates of the marker points m̃mat, 1D calibration object lenth L (L =
||Bi − Ai||), λ (λ = L1/L, L1 = ||Ci − Ai||, Ai,Bi and Ci are the 3D coordinates
of the marker points);

Output:
the camera parameter K

1: {Procedure. lsqnonlin(m̃mat, L, λ)}
2: while flag is equal to 1 do
3: [K, zA, η] = WSILA(m̃mat, L, λ), ηi = −zBi/zA, zBi is the depth of the free

endpoint Bi, zA to the depth of the fixed endpoint A and ηi is the relative
depth,which is the ratio of zBi to zA;

4: Ai = zAiK
−1ãi, ãi is the 2D image ponit of Ai;

5: Amean = mean(Ai); zA = Amean(3); zBi = −zA ∗ ηi;
6: Bi = zBiK

−1b̃i, b̃i is the 2D image point of Bi;

7: θi = arccos(
zBi − zA

L
), φi = arccos(

xBi − xA

L ∗ sinθi
), θi,φi are rotation angle of 1D

calibration objects;
8: m̃cal = 3Dto2D(A, B), according to the standard pinhole imaging model, m̃cal

is the updated 2D coordinates of the marker points;
9: Set the objective function F to

∑N
i=1

(||ai − a′
i(K, Ai, θi, φi)||2 + ||bi − b′

i(K, Bi, θi, φi)||2 + ||ci − c′
i(K, Ci, θi, φi)||2

)
;

10: Optimizing camera parameters K and the 3D coordinates of the fixed endpoint
A using least squares, and update θi,φi;

11: if F reach the minimum value using the least squares then
12: output(K);
13: flag = 0;
14: else
15: m̃mat = m̃cal;
16: flag = 1;
17: end if
18: end while

5 Experimental Results

In this section, both simulation and laboratory experiments are conducted to
test the performance of improved nonlinear optimization procedure. In detail,
the 1D calibration accuracy of six algorithms are tested, including (a) Zhang’s
linear algorithm that is referred as ZLA; (b) Zhang’s linear algorithm com-
bined with the improved nonlinear optimization procedure that is referred as
ZLA+INOP; (c) Franca et al.’s normalized linear algorithm that is referred
as FNLA; (d) Franca et al.’s normalized linear algorithm combined with the
improved nonlinear optimization procedure that referred as FNLA+INOP; (e)
Weighted similarity-invariant linear algorithm that is referred as WSILA; (f)
Weighted similarity-invariant linear algorithm combined with the improved non-
linear optimization procedure that is referred as WSILA+INOP.
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5.1 Simulations

The pinhole camera model and the 1D camera calibration process are simulated
in Matlab. The parameters of the simulated camera are set as follows: α = 1000,
β = 1000, γ = 0, u0 = 320 and v0 = 240. The image resolution is 640 × 80
pixels. A stick with a length of 70 cm is simulated, in which the 3D coordinates
of the fixed point A is [0 40 150]T , the other endpoint of the stick is B,
while C is located in the middle of A and B. This experiment generates sticks
with multiple random directions by sampling θi = [π/6, 5π/6], φi = [π/6, 5π/6]
according to uniform distribution. The corresponding image coordinates ai, bi,
ci can be acquired through projecting Ai, Bi and Ci onto the image via pinhole
camera model. Gaussian noise with a mean of 0 and different standard deviations
(noise level) is added to the projected image points a, b and c, based on which
the camera parameters are estimated using the six camera calibration algorithms
separately. Then the relative errors of calibrated parameters are calculated, as

Fig. 2. Comparison of the relative errors of the six algorithms under the noise level
from 0 to 2 pixels: (a) ZLA, (b) ZLA+INOP, (c) FNLA, (d) FNLA+INOP, (e) WSILA,
and (f) WSILA+INOP.
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shown in Fig. 2. In the experiment, the noise level was increased from 0 pixels to
2 pixels in a step of 0.2 pixels. For each noise level, 150 independent experiments
were performed, and the average of each parameter was calculated.

As shown in Fig. 2, compared to ZLA (Fig. 2(a)), both FNLA (Fig. 2(c)) and
WSILA (Fig. 2(e)) can greatly reduce the relative errors of calibrated param-
eters. Since it is taken into consideration of the different levels of importance
of the constraint equations constructed from different poses, WSILA can pro-
vide better performance than FNLA. However, since the rotation angles θi and
φi are not updated, the accuracy of WSILA is still limited, which is improved
by the proposed nonlinear optimization procedure. When comparing the results
of three combinations of (a) and (b), (c) and (d), (e) and (f), it is clear that
the proposed nonlinear optimization procedure can greatly reduce the relative
errors. For example, when the noise level is 2 pixels, the relative errors of cam-
era parameters obtained by the combination of WSILA and the proposed non-
linear optimization procedure are smaller than 1.2%, while most of them are
smaller than 0.2%. And the optimization process takes an average of 0.0078s
to converge. Compared with the original WSILA, the average time calculated
by WSILA+INOP algorithm increases from 1.0039s to 0.9941s. Therefore, the
proposed nonlinear optimization procedure can greatly improve the camera cal-
ibration accuracy.

5.2 Laboratory Experiments

Fig. 3. Sample images of a 1D object used for camera calibration.

To verify the performance of proposed nonlinear optimization procedure, labo-
ratory experiments are conducted. Three table tennis balls were fixed on a stick.
The distance between adjacent balls are 133 cm (that is, L = 266 cm). One of the
endpoints is fixed and the stick rotated 150 times around the fix endpoint, some
of which are shown in Fig. 3. Then, the table tennis balls are detected through
Hough circle detection algorithm, and the image coordinates of the marker points
are measured accordingly. Then, the camera calibration is performed using the
six algorithms. In order to evaluate the performance of the algorithms, the cam-
era parameters are calibrated by Zhang’s 2D camera calibration as a baseline,
as is shown in Fig. 4. The experimental results are shown in Table 1.
From Table 1, the results of the WSILA combined with the nonlinear optimiza-
tion algorithm (the proposed nonlinear optimization procedure) are closer to
the Zhang’s 2D calibration results compared to the other five methods. That is
consistent with the simulation results.
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Fig. 4. Sample image of the planar pattern used for camera calibration.

Table 1. 1D calibration results of cameras with different algorithms.

Solution α β γ u0 v0

ZLA 1230 1213 27.4 915 517

FNLA 1714 1717 22.5 1008 683

WSILA 1230 1213 27.4 915 517

ZLA+INOP 1339 1238 19.0 1002 544

FNLA+INOP 1750 1749 16.3 1004 689

WSILA+INOP 1747 1745 9.8 999 692

Zhang’s 2D Camera Calibration 1742 1739 5.0 1005 754

6 Conclusion

Despite the flexibility of the Zhang’s 1D calibration algorithm, the calibration
results have large errors. To solve this problem, several solutions including simple
data normalization and weighted similar invariant linear algorithms have been
proposed to improve the calibration results. In this work, an improved nonlinear
optimization procedure is proposed to further reduces the relative error of the
camera parameters calibration results.

Through simulation experiments and laboratory experiments, the perfor-
mance of the six 1D camera algorithms are studied. The results show that the
method combining the weighted similarity invariant linear algorithm and the
improved nonlinear optimization procedure has the best performance, which is
better than the combination of the Zhang’s linear algorithm and the improved
nonlinear optimization procedure. It is also superior to the combination of the
normalized and the improved nonlinear optimization procedure. According to
the simulation results, when the noise level is 2 pixels, the relative errors of
camera parameters obtained by the combination of WSILA and the improved
nonlinear optimization procedure are smaller than 1.2%, while most of them are
smaller than 0.2%. Through laboratory experiments, the parameters calibrated
through the combination of WSILA and the improved nonlinear optimization
procedure is the closest ones to the results from Zhang’s 2D camera calibration.
Therefore, the proposed nonlinear optimization procedure can greatly improve
the camera calibration accuracy.
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