q

Check for
updates

Effect of Feature Selection in Software
Fault Detection

Shamse Tasnim Cynthia, Md. Golam Rasul, and Shamim Ripon™)

Department of Computer Science and Engineering, East West University,
Dhaka, Bangladesh
cnth999@gmail.com, grpranto@gmail.com, dshr@ewubd.edu

Abstract. The quality of software is enormously affected by the faults
associated with it. Detection of faults at a proper stage in software devel-
opment is a challenging task and plays a vital role in the quality of the
software. Machine learning is, now a days, a commonly used technique
for fault detection and prediction. However, the effectiveness of the fault
detection mechanism is impacted by the number of attributes in the
publicly available datasets. Feature selection is the process of selecting
a subset of all the features that are most influential to the classifica-
tion and it is a challenging task. This paper thoroughly investigates the
effect of various feature selection techniques on software fault classifica-
tion by using NASA’s some benchmark publicly available datasets. Var-
ious metrics are used to analyze the performance of the feature selection
techniques. The experiment discovers that the most important and rele-
vant features can be selected by the adopted feature selection techniques
without sacrificing the performance of fault detection.

Keywords: Fault detection - Feature selection - Feature classification

1 Introduction

Nowadays the role of software has gained much more importance in every known
field. This makes the software system more complex than before and some of the
software systems have to be delivered with the least or non-negligible number
of faults possible. Faults are basically the errors in the code that prevents the
software system to work as expected [6]. Faults are often generated for misunder-
standing, lacking knowledge in the working area or even for the deadlines. Some
of the software faults can be detected at the early stage of developing a software
but when fault is detected in the later stage, not only it takes a lot of time to fix
the faults but also the quality of software is compromised. Several studies reveal
that almost 80% of the software faults occur from 20% of the modules and defect
free portion covers the rest half of the module [29]. Software faults demand the
rework process that has negative impact on for Software Quality Assurance [10].
Ability in detecting software faults mostly assist software developers in the test-
ing phase about maintaining software standards [8]. So predicting software faults
© Springer Nature Switzerland AG 2019

R. Chamchong and K. W. Wong (Eds.): MIWAI 2019, LNAI 11909, pp. 52-63, 2019.
https://doi.org/10.1007/978-3-030-33709-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33709-4_5&domain=pdf
https://doi.org/10.1007/978-3-030-33709-4_5

Effect of Feature Selection in Software Fault Detection 53

at the early stage of software development can support the development of more
efficient and reliable software within the stipulated limited time and cost [18].

Feature selection is one of the most significant techniques for kind of any
data analysis. Features are mainly referred as the attributes which are given in
a dataset and have strong correlation with the class attributes [4]. The main
aim of feature selection in a dataset is to select the essential features which will
help to improve the fruitfulness of a model. The feature selection techniques not
only increases the accuracy and efficiency of a classifier but also decreases the
chance of overfitting, reduces the dimensionality and eliminates noise [11,21]. In
addition, it can seek out useful information deliberately and lessens the effect of
variance in the result. Proper selection of features can help researchers looking
for the exact fault in the model. Again when the most essential features are
selected, the reduced dimensionality of a dataset boosts the performance of some
algorithms, delivers more accurate results in the less amount of time. Most of
the feature selection techniques extract features that ranges from sub-optimal to
near optimal solutions [26]. By ranking the features with different scores, feature
selection techniques reach to near optimal solutions.

Considering the significance of feature selection in predicting and classify-
ing software faults, this work aims at investigating the effect of various feature
selection techniques upon the performance of various classification algorithms.
In particular, several feature selection techniques are applied to some used fault
prediction datasets and then apply classification and predictive techniques on
the datasets having only those features selected earlier.

DataSet Feature Selection Techniques

Chi Information
Square Gain
All Features |
Chi Square with Feature
Independence Importanc

< Reduced Feature Set

()
N

Apply
Classifiers

e

Result Analysis
n Fault Detection
Comparative
Analysis Performance
% Analysis

Fig. 1. Proposed model

The schematic view of the proposed framework is illustrated in Fig. 1. Five
feature selection techniques along with five datasets are considered in the frame-
work for experimental purpose. For each dataset, all the feature selection tech-
niques are applied and relevant features are selected for each type of technique.

54 S. Tasnim Cynthia et al.

Classification algorithms are then applied to the selected features obtained from
each feature selection technique. Several classification algorithms are applied in
the experiments. Various metrics are used to analyze the performance of each
classification algorithm for each type of feature selection technique and for each
type of dataset. For comparative analysis, experiment has also been conducted
considering all the features in the dataset and then compare the result with that
of the selected features.

The rest of the paper is organized as follows. A brief overview of the dataset
used in the paper is shown in Sect.3. After briefly demonstrated the adopted
feature selection techniques in Sect. 4, the following section shows the effect of
feature selection on the applied classification algorithms for various datasets. A
thorough analysis of the obtained result is presented in Sect.6. A brief review
of similar works are described in Sect. 2. Finally, Sect. 7 concludes the paper by
summarizing the paper and outlining our future plan.

2 Related Work

A framework model has been proposed by Oinbao Song et al. [25] to follow-up
the MGF on defect prediction using Scheme evaluation and defect prediction
for feature selection. Naive Base, J4.8 and OneR were used for comparing the
performance. Jiang et al. [13] used ROCUS for software defect prediction. They
proposed a disagreement-based semi-supervised learning method to exploit the
abundant unlabeled data but higher misclassification rate is the limitation for
this technique.

Kakkar et al. [14] tried to build a framework by selecting important attributes
using five classifiers: IBK, KStar, LWL, Random Tree and Random Forest. The
values of accuracy and ROC was used in evaluating the performance of these
classifiers. Attributes selection was done through CfxSubsetEval evaluator where
ChiSquaredAttributeEval and CorrelationAttributeEval ranked the attributes
based on their individual evaluation. A hybrid feature selection approach has
been introduced by Jia [12] where different feature selection techniques have
been combined. Those techniques are Chi Square, Information Gain and Pearson
Correlation Coeflicient techniques. Finally, random forest classifier has been used
to build the model.

To measure the correlation among the attributes Qiao et al. [30] introduced
a feature selection approach on the basis of similarity measurement for software
defect prediction. By updating the feature weights and by sorting them according
to their rankings feature list is created in descending order. Finally, K-nearest
model classifier is applied on the selected dataset for the detection of faults. Xu
et al. [28] proposed a feature selection framework named MICHAC which stands
for Maximal Information Coefficient with Hierarchical Agglomerative Clustering.
To remove irrelevant features, this framework extracts one feature from each
feature subset groups. Three different classifiers and four performance metrics
were used to evaluate the performance of the model built with selected featured
datasets.

Effect of Feature Selection in Software Fault Detection 55

Ibrahim et al. [10] in their work, used Bat-Based Search Algorithm for the
feature selection purpose. Similarly, Wahono et al. in their research [26] on soft-
ware defect prediction gave priority on imbalance nature of the NASA dataset
and for feature selection, Genetic Algorithm has been used only. Anbu et al. in
their research [2] used Firefly algorithm for feature selection and classifiers like
Support Vector Machine, Naive Bayes and K- nearest neighbor to predict the
defects.

In comparison to the existing works, in this paper five feature selection tech-
niques have been applied to NASA MDP’s five datasets and five search-based clas-
sifiers are applied for analysis of classification performance. Combination of all
these three factors results in a large number experiments. Such experiment can give
better intuition regarding the effectiveness of the feature selection techniques.

3 DataSet Overview

NASA MDP dataset [26] has been used in this paper. This dataset contains
96 datasets, but among them only 13 datasets are provided by NASA [22].
For experimental purpose we have taken only five of them. These datasets are
collected from several projects (satellite instrumentation, ground control sys-
tems, attitude control system etc.) in USA for several years. Each dataset is
the representative of NASA software system/subsystem containing metrics of
static code and fault data for each comprising module. These datasets have been
used very widely for detecting software fault. The fault prediction dataset has
McCabe, Halstead and line of code metrics [3]. The attributes of these datasets
are mostly of numeric types except the class attribute which consists polynomial
data. Table1 shows the total instances of the selected datasets and their class
percentages.

Table 1. Dataset Overview

Dataset | Total sample | Defective | Not defective | Number of | Programming
attributes | language

CM1 344 42 (12.2%) | 302 (88%) 37 C

KC3 200 36 (18%) | 164 (82%) 39 Java

PC4 1399 178 (13%) | 1221 (87%) |37 C

PC2 1585 16 (1%) 1569 (99%) |37 C

MW1 264 27 (10%) | 237 (90%) 37 C

4 Feature Selection Techniques

The Chi-Square test is introduced by Karl Pearson is a statistical hypothesis
test that determines the goodness of fit between a set of observed and expected
values [5]. It is a nonparametric test that is used for testing the hypothesis

56 S. Tasnim Cynthia et al.

of no association between two or more groups, population or criteria and to
test how well the observed distribution of data fits with the distribution that is
expected [23]. The formula of Chi-square is shown in Eq. 1

=3 O <1>

where, ¢ is degree of freedom, O is observed value and E is expected value

The Chi-square test of independence is used to detect if there is a signifi-
cant relationship between two nominal (categorical) variables. Each category’s
frequency for one nominal variable is compared with the categories of another
nominal variable. Each row of the data in a contingency table represents a cat-
egory for one variable and each column represents a category for other vari-
able [16]. The corresponding formula is show in Eq. 2,

¢=yy et)

i=1 j=1

where, r is number of rows, ¢ is number of rows, O is observed value and F is
expected value.

Information Gain is a measure of the change of entropy which reduces the
uncertainty of the result. Entropy gives the measure of impurity of the classes.
The value of the entropy should be less for getting the best output. When a node
in a decision tree is used for partitioning the training instances into smaller sub-
sets, the value of the entropy changes. Information gain specifies the importance
of an attribute and decides the ordering of the attributes in the nodes of a
Decision Tree.

Gain(T,x) = Entropy(T) — Entropy(T, x) (3)

Relief is a feature selection algorithm which uses a statistical method and
avoids heuristic research. The algorithm inspired by instance-based learning. It
needs linear time for the number of given features and the number of training
instances regardless of the target concept to be learned.

From given training data, sample size, and a threshold of relevancy, Relief
finds those features that are statistically relevant to the target concept. Relief
collects the total number of triplets of an instance, its Near-hit instance and
Near-miss instance. Euclidian distance is used for selecting Near-hit and Near-
miss. A routine is also called by Relief to update feature weight vector for every
triplet and finds the average feature weight vector Relevance (of all the features
to the target concept) and those features whose average weight is above the given
threshold are selected by Relief [15].

Feature Importance returns a score for each feature and based on that score,
the features which have higher score get more privilege towards the output vari-
able. It uses ensembles of decision trees which computes the relative importance
of each attribute.

Effect of Feature Selection in Software Fault Detection 57

5 Effect of Feature Selection

We have evaluated the performance of our five feature selection processes using
the True Positive Rate, True Negative Rate, Precision and Accuracy. These
metrics help us to examine whether the methods can correctly and efficiently
recognize the optimized features and show us the effects of feature selection
in the classification [1]. The experimental result shown here are obtained by
considering 20 features selected by applying the feature selection techniques
mentioned here.

In the experiment of feature selection techniques with classification algo-
rithms, various matrices are used to measure the performance, namely TPR
and TN R and accuracy. Four important information is obtained from confusion
matrix to calculate these matrices: True Positive (TP), True Negative (TN),
False Positive (FP) and False Negative (FN). True positive rate or Sensitivity is
the result where the positive class is correctly predicted by the model.

TP
- 4
TP+ FN)
Similarly, true negative rate or Specificity is the result where the negative
class is correctly predicted by the model.
TN
= NP ()
TN+ FP
Classification accuracy is the fraction of prediction to see whether the model
works right.

TPR

TNR

TP+ TN 6
TP+TN+FP+FN (6)

True positive rate, true negative rate and accuracy these three metrics need
to be higher for better prediction. We have calculated all these three metrics
on the five datasets using some selected classifiers to see their performances.
All these experiments have been conducted considering not only the selected
feature but also for all the features. While choosing the classifiers, only search-
based classifiers as mentioned in [24] are selected for experimental purpose. The
classifiers used here are: Decision Tree [20], Random Forest [7], Naive Bayes [27],
Logistic Regression [19] and Artificial Neural Network [17].

Table 2 illustrates True Positive Rate (TPR), True Negative Rate (TNR)
and Accuracy of the the classifiers over the datasets after choosing the features
by using Relief test. Table 3, on the other hand illustrates the TPR, TNR and
Accuracy values of different datasets where features are selected through Chi
Square test. Tables 4, 5, and 6 shows the same for Information gain, Chi Square
Test of Independence and Feature Importance respectively. For this experiment,
20 relevant features have been selected from each dataset by using the feature
selection techniques. We have also conducted a similar experiment by considering
10 most relevant features. The F-measure and precision are also calculated for
all the datasets considering all the algorithms and feature selection techniques.
The comparative analysis of performance between 10 features and 20 features is
illustrated in Sect. 6.

Accuracy =

58 S. Tasnim Cynthia et al.
Table 2. Performance with relief test
Dataset Decision Tree Random Forest Naive Bayes Logistic Regression ANN
TPR|TNR|Accuracy | TPR|TNR|Accuracy| TPR|TNR|Accuracy | TPR|TNR|Accuracy| TPR|TNR|Accuracy
CM1 [0.00(1.00| 88% [0.38[1.00] 92% [0.29(0.90| 83% [0.26{0.98| 89% [0.10/0.99| 88%
KC3 |0.56 | 1.00 83% 0.61 | 1.00 93% 0.39] 0.89 81% 0.36 | 0.96 36% 0.14 1 0.98 83%
PC2 |0.38[1.00 99% |0.88[1.00| 99% [0.31]0.96| 95% |0.13{1.00| 99% |0.00|1.00| 99%
PC4 |0.35[0.99 91% 0.23 | 1.00 91% 0.56 | 0.86 82% 0.38] 0.98 90% 0.480.98 92%
MW1 |0.00 | 1.00 90% 0.63 | 1.00 96% 0.56 | 0.85 82% 0.40 | 0.98 91% 0.30 | 0.98 91%
Table 3. Performance with Chi-Square
Dataset Decision Tree Random Forest Naive Bayes Logistic Regression ANN
TPR|TNR|Accuracy | TPR|TNR|Accuracy | TPR|TNR|Accuracy| TPR|TNR|Accuracy | TPR|TNR |Accuracy
CM1 |0.43[0.99| 92% |0.33[1.00| 92% |0.29[0.90| 83% |0.24{0.97| 87% |0.09(0.99| 88%
KC3 [0.06/1.00] 83% [0.67|1.00] 94% [0.36/0.91| 81% [0.31/0.96| 84% [0.11/0.98| 83%
PC2]0.25|1.00 99% 0.88 | 1.00 99% 0.19|0.97 96% 0.19 1 0.99 99% 0.00 | 1.00 99%
PC4 10.29]0.99| 91% [0.25{1.00| 90% |0.26]0.94| 85% [0.39{0.98| 91% |0.41]{0.98| 91%
MW1 [0.11[1.00| 91% [0.67|1.00| 97% [0.56|0.85| 82% [0.33/0.99| 92% [0.44|0.99| 93%
Table 4. Performance of information gain
Dataset Decision Tree Random Forest Naive Bayes Logistic Regression ANN
TPR|TNR|Accuracy | TPR|TNR|Accuracy | TPR|TNR|Accuracy| TPR|TNR|Accuracy | TPR|TNR|Accuracy
CM1 |0.38]0.99 92% 0.36 | 1.00 92% 0.36 | 0.90 84% 0.26 | 0.99 90% 0.1710.99 90%
KC3 [0.50(0.99] 90% [0.64|0.99| 93% [0.34|0.91| 82% [0.44|0.97| 88% [0.31|1.00| 87%
PC2 |0.25(1.00 99% |0.69]1.00| 99% |0.19]0.97| 96% |0.19{1.00| 99% |0.00|1.00| 99%
PC4 10.30[0.99| 90% |0.26|1.00| 90% |0.54]0.92| 88% |0.43[{0.99| 91% |0.51[0.98| 92%
MW1 [0.11[1.00| 91% [0.59|1.00| 96% [0.59|0.86| 83% [0.33/0.99| 93% [0.44]|0.99| 94%
Table 5. Performance of Chi Square test of independence
Dataset Decision Tree Random Forest Naive Bayes Logistic Regression ANN
TPR|TNR|Accuracy | TPR|TNR|Accuracy| TPR|TNR |Accuracy | TPR|TNR|Accuracy| TPR|TNR|Accuracy
CM1 |0.43[0.99| 92% |0.33{1.00| 92% [0.29[0.90| 83% |0.24{0.97| 89% |0.09[0.99| 88%
KC3 [0.06[1.00] 83% [0.67[1.00] 94% [0.36/0.91| 81% [0.31/0.96| 84% [0.11]/0.98| 82%
PC2 |025[1.00] 99% [0.88{1.00| 99% [0.19/0.97| 96% [0.19/0.99| 99% 0 1 99%
PC4 029(0.99] 91% [0.25[1.00] 90% [0.26|0.94] 85% [0.39[0.98| 91% [0.41/0.98| 91%
MW1 |0.11 | 1.00 91% 0.63 | 1.00 96% 0.51|0.99 83% 0.52(0.87 93% 0.4410.98 93%
Table 6. Performance of feature importance
Dataset Decision Tree Random Forest Naive Logistic Regression ANN
TPR|TNR|Accuracy | TPR|TNR|Accuracy | TPR|TNR|Accuracy| TPR|TNR|Accuracy | TPR|TNR |Accuracy
CM1 |0.43[0.99| 92% |0.38[1.00| 92%]0.38]0.89| 83% |0.26{0.98| 90% |0.14]{0.98| 88%
KC3 [0.06/1.00| 83% [0.67|1.00| 94% [0.36/0.91| 82% [0.42/0.96| 87% [0.22]/0.98| 85%
PC2]0.31|1.00 99% 0.88 | 1.00 99% 0.19|0.97 96% 0.25 | 0.99 99% 0.00 | 1.00 99%
PC4 10.30{0.99| 91% [0.30|{1.00| 91% [0.30]{0.94| 85% |0.40{0.98| 91% |0.43[0.98| 91%
MW1 [0.11[1.00| 92% [0.67|1.00| 97% [0.56|0.86| 83% [0.33/0.99| 92% [0.41|0.98| 93%

Effect of Feature Selection in Software Fault Detection 59

6 Result Analysis

The aim of feature selection is to find the features which are more important
and relevant to the target class and discard those which are less important or
the correlation between them and the target class is not enough to be considered
during classification. NSA dataset consisting 13 datasets, each of them has a large
numbers of attributes. If it is possible to select only the important features, the
computational time can be reduced, the utilization of resources can be improved
and the classification efficiency can be increased. In this paper, five (5) feature
selection processes are applied to select features from the datasets and only 20
most important features are selected for the classification process.

Our experiment reveals that when Decision Tree classifier is applied on CM1
dataset considering all the feature, DT can only predict N values (not defective
class) and failed to predict any Y value (defective class). The Not defective class
only has the class precision value. But when the same experiment is conducted
by selecting features using Chi-Square Test, DT can then predict both N and
Y value. The same experiment is conducted for all the five feature selection
techniques for all the classifiers. The experimental result from DT is shown in
Table 7. From the table it can be shown that among the five processes Relief
could not predict the Defective class like the other classes.

Table 7. Class detection comparison after feature selection

TP | TN
Chi-Square 300 | 18
Information gain 299 16
Feature importance 299 | 18
Chi-Square test of independence | 300 | 18
Relief 302 |00

On the other hand, in KC3 dataset, the feature selection process has less
effect compared to the result that was calculated considering all the features.
The TP and TN values found usually the same or a little different from the
main dataset calculation. For the PC2 dataset, the total number of defective
class is very less, so the algorithms could not work better in the classification.
The Nalve Bayes and Logistic Regression algorithms perform better in detect-
ing defective classes. The datasets with all features and the datasets with the
selected features show almost the same result in both cases. In the PC4 dataset,
the features selected by Relief process worked better for Naive Bayes and Deci-
sion Tree algorithms and Chi Square test of independence performed better for
Random Forest algorithm compared to the result computed when all the fea-
tures were present. For example, the TP and TN values calculated with all the
features are 69 and 1158 respectively, but with 20 selected features via Relief,

60 S. Tasnim Cynthia et al.

the TP and TN values become 100 and 1049 respectively. Lastly, for the MW1
dataset, all the algorithms with all the features and with the selected features
performed almost the same.

In Fig.2 the accuracies of the different dataset are shown for the Decision
tree classifier. Each dataset is tested with all the features and also with the
selected features. Average values of the accuracies are taken here for comparison
due to multidimensional result. Similar results are obtained for other classifiers,
however due to limited scope they are omitted from here.

It is mentioned earlier that experiments have been conducted also by select-
ing ten (10) most relevant features in the same way as of 20 features. Figure 3
illustrates the accuracy comparison between 10 features’ average accuracy and
20 features’ average accuracy when random forest classifier is applied for the pre-
diction. Here we can see that for dataset MW1, PC4, and PC2, the accuracies
in both subsets of the datasets are almost same. Whereas, for KC3 the classi-
fier gives better result 20 features and for CM1 the classifier gives better result
for 10 features. For other classifiers, it has been observed that some classifiers
worked better for 10 features’ and some are better for 20 features’ subsets but
the differences are negligible.

The experiments conducted so far do not consider cross validation of the
datasets. We conduct a similar experiment considering 10-fold cross validation
on all the datasets by applying all five feature selection techniques using all
the already chosen classifiers. As the result is multi-dimensional it cannot be
presented in a single table or diagram. Figure 4 illustrates the accuracies of var-
ious classifiers on the five datasets after applying Chi-Square feature selection
technique. The result shows that feature selection improves the classification
accuracies for most of the datasets. This experiment has also been conducted for
all the feature selection techniques to observe their performances. The resultant
tables can be found in Appendix for reviewing purpose only.

Decision Tree
— 91%
R o6

91%
POl T Y
.. e

PC2

99%
A Y 99

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

M Selected Features' Average Accuracy N All features Accuracy

Fig. 2. Accuracy of different datasets before and after applying feature selection

Effect of Feature Selection in Software Fault Detection 61

Random Forest

9
M ——— 6%
. \\ N ST N 96%

w

90%
P o

PC2 L L 29%
A e

92%
K3 N 3%
cvi1 - T L 2%
NN R N \\\\ NIt RN N\ 92%
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
M Top 10 Features' Average Accuracy M Top 20 Features' Average Accuracy

Fig. 3. Classification accuracy of random forest after applying 10 and 20 features in
the datasets

Chi Square Test

- | [| - -] | [||

|91% | 89% 89% (87% | | 89% | 89% 91%
|89% | 81% 83% | (87%

- | —
'88%| |90%] 88% 89% (26% 85%| [90% |91%) 88% | 91%
)

i = = = § & & = = =
|98% |99% | 99% 99% 95% 96% | |98% |99% 98% | 99%

N
@
X
®
]
&
~
N
X
®
S
X
<
@
X
<
)
5
N
*
X
o
=
i
N
*
S
®
S
X

|87% | 86% | 87% 87% 83% 83% |84% | |87% | 87% | 87%
All features All Fea lected All Featu | d Al ur All Fea
Features Features Features Features Features
Decision tree Random Forest Naive Bayes Logisitic Regression ANN

ECM1 mKC3 mPC2 =PC4 mMW1

Fig. 4. Comparison of classification accuracies for all classifiers using Chi-square fea-
ture selection and 10-fold cross validation

7 Conclusion

Proper selection of relevant features in a large dataset can immensely improve
the performance of classifiers and significantly reduces the training time. Among
the various feature techniques, this paper shows the effect of feature selection
of only five approaches. Five search-based classifiers are applied here for our
experiments. The experimental results reveal that after feature selection the
performance of the classifiers are almost similar to that of without feature selec-
tion. Experiments have been conducted by considering both 10 and 20 features

62 S. Tasnim Cynthia et al.

from the datasets. The variation among the obtained results are not significant.
Such result implies that feature selection approaches do not compromise the
performance of the classifiers while taking less time and resource during the
experiments.

It is mentioned earlier that only a subset of feature selection techniques
have been considered in this work. For a better comprehension of the proposed
approach, our future plan is to consider both filter and wrapper based feature
selection techniques in our experiment. Another major concern for our future
work is that NASA MDP datasets that we used in our experiment requires some
important preprocessing because these datasets are imbalance. The preprocess-
ing can be done using several methods [9] like eliminating module identifier,
extra error data attributes and also by replacing missing data.

References

1. Agarwal, S., Tomar, D.: A feature selection based model for software defect pre-
diction. Int. J. Adv. Sci. Technol. 65, 39-58 (2014)

2. Anbu, M., Anandha Mala, G.S.: Feature selection using firefly algorithm in software
defect prediction. Cluster Comput., 1-10 (2017)

3. Arasteh, B.: Software fault-prediction using combination of neural network and
Naive Bayes algorithm. J. Netw. Technol. 9(3), 94 (2018)

4. Chen, X., Shen, Y., Cui, Z., Ju, X.: Applying feature selection to software defect
prediction using multi-objective optimization. In 2017 IEEE 41st Annual Computer
Software and Applications Conference (COMPSAC), pp. 54-59. IEEE, July 2017

5. Crack, T.F.: A note on Karl Pearson’s 1900 Chi-squared test: two derivations of
the asymptotic distribution, and uses in goodness of fit and contingency tests of
independence, and a comparison with the exact sample variance chi-square result.
SSRN Electron. J. (2018)

6. Akalya Devi, C., Surendiran, B., Kannammal, K.E.: A study of feature selection
methods for software fault prediction model. In: Proceedings of the International
Conference on Network, Intelligence and Computing Technologies (ICNICT 2011),
Tamil Nadu, India, pp. 1-5 (2011)

7. Fawagreh, K., Gaber, M.M., Elyan, E.: Random forests: from early developments
to recent advancements. Syst. Sci. Control Eng. 2(1), 602-609 (2014)

8. Felix, E.A., Lee, S.P.: Integrated approach to software defect prediction. IEEE
Access 5, 21524-21547 (2017)

9. Gray, D., Bowes, D., Davey, N., Sun, Y., Christianson, B.: The misuse of the NASA
metrics data program data sets for automated software defect prediction. In: 15th
Annual Conference on Evaluation & Assessment in Software Engineering (EASE
2011), pp. 96-103. IET (2011)

10. Ibrahim, D.R., Ghnemat, R., Hudaib, A.: Software defect prediction using feature
selection and random forest algorithm. In: 2017 International Conference on New
Trends in Computing Sciences (ICTCS), pp. 252-257. IEEE, October 2017

11. Jakhar, A.K., Rajnish, K.: Software fault prediction with data mining techniques
by using feature selection based models. Int. J. Electr. Eng. Inf. 10(3), 447-465
(2018)

12. Jia, L.: A hybrid feature selection method for software defect prediction. IOP Conf.
Ser. Mater. Sci. Eng. 394(3), 032035 (2018)

13.

14.

15.

16.

17.

18.

19.
20.
21.
22.
23.
24.
25.

26.

27.

28.

29.

30.

Effect of Feature Selection in Software Fault Detection 63

Jiang, Y., Li, M., Zhou, Z.-H.: Software defect detection with ROCUS. J. Comput.
Sci. Technol. 26(2), 328-342 (2011)

Kakkar, M., Jain, S.: Feature selection in software defect prediction: a compar-
ative study. In 2016 6th International Conference - Cloud System and Big Data
Engineering (Confluence), pp. 658-663. IEEE, January 2016

Kira, K., Rendell, L.A.: A practical approach to feature selection. In: Proceedings
of the Ninth International Workshop on Machine Learning, pp. 249-256 (1992)
McHugh, M.L.: The Chi-square test of independence. Biochemia Medica, 143-149
(2013)

Mishra, M., Srivastava, M.: A view of artificial neural network. In: 2014 Interna-
tional Conference on Advances in Engineering & Technology Research (ICAETR
- 2014), pp. 1-3. IEEE, August 2014

Nugroho, A., Chaudron, M.R.V., Arisholm, E.: Assessing UML design metrics
for predicting fault-prone classes in a Java system. In: 2010 7th IEEE Working
Conference on Mining Software Repositories (MSR 2010), pp. 21-30. IEEE, May
2010

Joanne Peng, C.-Y., Lee, K.L., Ingersoll, G.M.: An introduction to logistic regres-
sion analysis and reporting. J. Educ. Res. 96(1), 3-14 (2002)

Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1), 81-106 (1986)
Rokach, L.: Ensemble-based classifiers. Artif. Intell. Rev. 33(1-2), 1-39 (2010)
Shepperd, M., Song, Q., Sun, Z., Mair, C.: Data quality: some comments on the
NASA software defect data sets. 2010(9), 1-13 (2013)

Singhal, R., Rana, R.: Chi-square test and its application in hypothesis testing. J.
Pract. Cardiovasc. Sci. 1(1), 69 (2015)

Son, L.H., et al.: Empirical study of software defect prediction: a systematic map-
ping. Symmetry 11(2) (2019)

Song, Q., Jia, Z., Shepperd, M., Ying, S., Liu, J.: A general software defect-
proneness prediction framework. IEEE Trans. Software Eng. 37(3), 356-370 (2011)
Wahono, R.S., Herman, N.S.: Genetic feature selection for software defect predic-
tion. Adv. Sci. Lett. 20(1), 239-244 (2014)

Webb, G.I., Keogh, E., Miikkulainen, R., Sebag, M.: Naive Bayes. In: Sammut,
C., Webb, G.I. (eds.) Encyclopedia of Machine Learning, pp. 713-714. Springer,
Boston (2011). https://doi.org/10.1007/978-0-387-30164-8_576

Xu, Z., Xuan, J., Liu, J., Cui, X.: MICHAC: defect prediction via feature selection
based on maximal information coefficient with hierarchical agglomerative cluster-
ing. In: 2016 IEEE 23rd International Conference on Software Analysis, Evolution,
and Reengineering (SANER), pp. 370-381. IEEE, March 2016

Yousef, A.H.: Extracting software static defect models using data mining. Ain
Shams Eng. J. 6(1), 133-144 (2015)

Qiao, Y., Jiang, S., Wang, R., Wang, H.: A feature selection approach based on
a similarity measure for software defect prediction. Front. Inf. Technol. Electron.
Eng. 18(11), 1744-1753 (2017)

https://doi.org/10.1007/978-0-387-30164-8_576

	Effect of Feature Selection in Software Fault Detection
	1 Introduction
	2 Related Work
	3 DataSet Overview
	4 Feature Selection Techniques
	5 Effect of Feature Selection
	6 Result Analysis
	7 Conclusion
	References

