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Abstract. Internet of Things (IoT) services can provide a comprehen-
sive competitive edge compared to traditional services by leveraging the
physical devices’ capabilities through a demand-driven approach to pro-
vide a near real-time state of the world. Service provision in such a
dynamic and large-scale environment needs to cope with intermittent
availability of service providers, and may require negotiation to agree
on Quality of Service (QoS) of a particular service. Existing negotia-
tion approaches for IoT require a centralised perspective of the envi-
ronment, which may not be practical given the scale and autonomy of
service providers that rely on sensors deployed various environments to
deliver their services. We propose a negotiation mechanism that uses
distributed service brokers to dynamically negotiate with multiple IoT
service providers on behalf of service consumers. The framework uses
a hierarchical architecture to cluster service information and to man-
age the message flows during the negotiation process. Simulation results
demonstrate the feasibility and efficiency of our proposal.

Keywords: Internet of Things · Distributed SLA negotiation ·
Negotiation protocol

1 Introduction

The IoT envisions that a large number of physical, potentially mobile devices,
connected over the Internet, may provide a near real-time state of the world.
The capabilities of each device can be abstracted through a well-defined interface
and provided as a service [24]. Compared to traditional (cloud-based) services,
service provisioning in such a dynamic and large-scale environment needs to cope
with the intermittent availability of service providers, and may have flexible
service quality demands and pricing options [8]. For example, compared to a
weather forecasting application, a fire detection application has more stringent
QoS demands on a smoke detection service and a temperature service. If a pay-
as-you-go model is used, the same services can be delivered to different users
with different service properties or QoS, by reconfiguring the services [5,14].

Mission-critical applications in transportation, health care, and emergency
response services, require certain QoS guarantees to be provided to successfully
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deliver their services to stakeholders [23]. Traditionally, such applications have
relied on a Service Level Agreement (SLA), which is a contract-like concept
that formalizes the obligations and the guarantees of involved parties in the
context of a particular service provisioning [13]. To tailor a service based on
user’s demand, and resolve possible conflicts between a service provider and
consumer, a dynamic negotiation process is required where both parties express
their own demands and preferences to arrive at a consensus before the actual
service delivery. The output of this process is used to generate an SLA [21].

Compared to traditional (cloud-based) services, research on SLA negotiation
in the IoT is still in the preliminary stage [17,19]. Because of the scale and
the intermittent availability of geographically distributed service providers, the
existing proposals do not address the negotiation problems that emerge because
of frequent disconnections between service providers and insufficient awareness
of local context such as service location [16]. The IoT is dynamic nature in
terms of service providers’ availability and mobility, unpredictable device status,
and unstable wireless network conditions. Also, the data transmissions between
devices and cloud, and the spontaneous interactions amongst devices may pro-
duce an enormous number of messages or events, which may further cause net-
work congestion and reduce event processing capability. A lightweight negotia-
tion protocol that considers the communication problems in a dynamic environ-
ment is needed for run-time IoT service negotiation. In our previous work, we
assume a middleware is deployed on a set of edge devices, which uses a decen-
tralized negotiation protocol to negotiate with candidate service providers on
behalf of consumers [11]. The services are registered in the gateways that receive
the registration requests, and the negotiation requests are forwarded by gate-
ways to their neighbours until the request can be solved, or the maximum hop
is reached. The simulation result shows that the purely decentralized architec-
ture is not efficient enough to address large-scale and dynamic issues. Also, this
experiment does not consider users’ spatial requirements.

In this paper, we propose IoT-Negotiate, a negotiation model that enables
distributed service brokers connected through an overlay network to manage the
service information and control message flows during the negotiation process.
The model uses a hierarchical topology to address the communication challenges
in the environment, performs location-based data distribution and replication to
enable an efficient message forwarding, and conducts distributed SLA negotiation
with candidate service providers.

The remainder of this paper is organised as follows. Section 2 summarises
the related work. Section 3 introduces the IoT-Negotiate mechanism. Section 4
describes the hierarchical overlay network of IoT-Negotiate and introduces the
overlay network creation algorithm. Section 5 presents the service distribu-
tion mechanism. Section 6 illustrates the distributed SLA negotiation process.
Section 7 details the experimental setup and evaluation results and Sect. 8 con-
cludes the paper with a discussion about future research directions.
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2 Related Work

Existing literature on SLA negotiation is limited, especially for dynamic, large-
scale environments such as IoT. As one of the key area of building a negotiation
component [26], the negotiation protocol has been discussed in different cloud
projects. For instance, a set of messages were designed for QoS negotiation when
delivering composite services [23]. However, this proposal moved the burden of
negotiation from the end user to each atomic service. Karl Czajkowski et. al. [4]
presented the Service Negotiation and Acquisition Protocol (SNAP) for nego-
tiating access to different resources in a distributed system. However, it is too
heavyweight and not flexible enough for automatic negotiation. Nabila et. al. [9]
illustrated the generic alternating offers protocol proposed by Rubinstein, for
bargaining between agents. Based on that, a set of extensions has been pro-
posed to address different negotiation issues such as multilateral negotiation [2],
or semantic-based approach [18]. FIPA Contract Net Interaction Protocol [6]
(CNP) is another commonly-used negotiation protocol, which supports recur-
sive negotiation to find a compromise [28]. Smith [22] described the semantics
of exchanged information among the nodes in a distributed system under the
assumption that each node can communicate with every other node. Misura
et al. [16] proposed a cloud-based mediator platform where automatic negotia-
tion is performed to find the conditions of data provision that are acceptable to
application providers. Gaillard et al. [7] outlined a centralized SLA management
component in WSN to guarantee the QoS parameters. However, this framework
relies on human intervention to finish the negotiation process. Mingozzi et al.
presented an SLA negotiation framework for M2M application [15]. However, the
paper does not specify the detail of the negotiation mechanism, and the single
request-reply interaction is insufficient for multi-round negotiation.

3 System Model

Consider a smart city environment where service providers deploy their services
on resource-constrained, potentially mobile devices to capture data from the
surrounding physical environment. Such service providers can provide a compre-
hensive competitive edge compared to traditional service provisioning techniques
by leveraging the available services through a demand-driven approach to enable
new applications for citizens such as real-time monitoring applications (e.g., traf-
fic and real-time public transport services monitoring, particle concentration or
noise pollution detection). Such services are generally developed using various
approaches and technologies, and provide various QoS levels. SLA negotiation
procedures may be required to achieve certain guarantees about the QoS of
the application. Also, given the scale the environment, an automated procedure
may be required as a manual approach may not be practical. To automate SLA
negotiation for an urban-scale environment, we propose IoT-Negotiate, which is
a distributed negotiation framework deployed on a set of devices deployed at
the edge of the network. These devices can be mobile such a mobile handset or
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Fig. 1. IoT-negotiate ontology

fixed such as a workstation connected through WiFi or Ethernet. We refer to
the devices as gateways. The negotiation procedure is performed by the fixed
gateways because they are likely to have more stable and reliable network con-
nections, whilst the mobile gateways are only used for forwarding messages.

To enable the demand-driven service provisioning vision, the service providers
are required to provide the service properties with default values in SLA tem-
plates and publish the templates to the market. An SLA template is defined
as SLAT = 〈Atid, Ac, Att, Ni, T, C〉, consisting of template id Atid, agreement
context Ac, template temporality Att, negotiation information Ni, terms T
(e.g., location, QoS, price, etc.) and constraints C, which can be regarded as a
blueprint to create a valid negotiation offer based on user-specific demands [10].
Figure 1 shows the ontology of our proposed IoT-Negotiate model.

The IoT-Negotiate model composed of three stages: pre-negotiation, nego-
tiation, and post-negotiation. Seven types of messages are designed to support
different phases in the three stages:

Definition 1. Ping message, which is defined as: Ping=<Sid, Rid, “hello”>,
consisting of the sender identifier Sid, receiver identifier Rid and a “hello” string.

Definition 2. Configuration message, which is defined as: Cfmsg =<Op,
Sid, Rid,m, ttl, Route>, consisting of an operation code Op, sender identifier Sid,
receiver identifier Rid, message content m, the maximum number of hops ttl, and
a routing table Route.

Definition 3. Template registration message, which is defined as:
Trmsg =<Op, SPid, St>, consisting of an operation code Op, service provider
identifier SPid, and a template St.
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Definition 4. Negotiation customize message, which is defined as:
Ncmsg =<Niid, Nrid, cnt, St>, consisting of the negotiation initiator identifier
Niid, negotiation responder identifier Nrid, negotiation context cnt (e.g., nego-
tiation protocol, SLA schema, deadline, etc.), and the referred template St.

Definition 5. Negotiate message, which is defined as: Ngmsg =<Sid, Rid, O,
Op,m>, consisting of the sender identifier Sid, receiver identifier Rid, negotia-
tion offers O, operation code Op and message content m.

Definition 6. Signing request message, which is defined as: Srmsg =<Gid,
SCid, Oa, Route>, consisting of the gateway identifier Gid, the consumer iden-
tifier SCid, a list of acceptable offers Oa, and a routing table Route.

Definition 7. Mobile entity locating message, which is defined as:
Mlmsg =
<Sid, Rid, Eid,m,Op>, consisting of the sender identifier Sid, the receiver iden-
tifier Rid, the entity identifier Eid, message content m, and operation code Op.

Definition 8. SLA creation message, which is defined as: Scmsg =<Aiid,
Nrid, Oa>, consisting of the agreement initiator identifier Aiid, agreement
responder identifier Arid, and an offer signed by the service user Oa. The
response should contain the reference of new pending SLA instance.

In the pre-negotiation stage, a logic hierarchical negotiation overlay net-
work (HNON) is dynamically created by exchanging ping and configuration mes-
sages (Phase 1.1, Sect. 4). The HNON manages SLA templates and controls the
message flow during the negotiation process. The SLATs submitted by service
providers are distributed in HNON according to service locations using template
registration messages. The location-based message forwarding mechanism (Phase
1.2, Sect. 5) is designed based on the assumption that service providers are more
likely to appear or move around the areas that are close to the advertised ser-
vice location. If a gateway detects a local stored SLAT has the potential to meet
QoS requirements, the gateway has a bigger chance to directly connected to the
service provider (i.e. candidate service provider) to start a bilateral negotiation.

The negotiation stage begins when a user submits the request through
a negotiation message. The message contains an offer expected by the user,
which specifies the requested service location, QoS requirements and negotiation
constraints. The message is forwarded to the gateways that are close to the
requested location over the HNON. The gateways compare the request with
local stored SLATs according to a unified SLA ontology (e.g., the WIoT-SLA
ontology [10]) to search for candidate services (Phase 2.1). Once a candidate
service is detected, a negotiation customization message (Phase 2.2) is sent to
the service provider to initialize the negotiation instance before the bilateral
negotiation (Phase 2.3). After the negotiation, the entity locating message may
be used to locate mobile consumers if they cannot be contacted at the moment
(Sect. 6).

In the post-negotiation stage, the negotiation results from different bro-
kers are aggregated and the most optimized solution is selected and sent to the
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Fig. 2. Hierarchical negotiation overlay network

user through a signing request message (Phase 3.1). Once the negotiation result
is approved by the user (i.e., the message is digitally signed), an SLA creation
message is sent to the corresponding service provider to create a pending SLA
(Phase 3.2).

4 Hierarchical Negotiation Overlay Network (HNON)

The HNON is a logistic negotiation overlay built upon the actual network topol-
ogy. Figure 2 shows the three-layered structure of the proposed HNON. Each
static gateway distributed in the environment is assigned to at least one of the
following roles: follower, controller or coordinator. Each follower has a controller
and each controller is associated with a coordinator. Followers compose the bot-
tom layer of the overlay, which only work as brokers under the control of their
controllers. Controllers compose the middle layer, which divides the environment
into a set of sub-areas. Each controller can be regarded as a small data centre in
the sub-area. It collects its followers’ information and replicates local registered
templates. The sub-area is referred to as the controller’s range, which is roughly
estimated by the maximum distance between the controller and its followers. The
top layer is comprised of coordinators, which are directly connected with each
other through the internet. A coordinator can be regarded as the access point of
its controllers. In this hierarchical architecture, the follower layer guarantees a
timely bilateral negotiation with service providers, the controller layer allocates
negotiation tasks and improves the efficiency of template match-making process.
The coordinator layer propagates messages over different sub-areas.

To create the HNON, the key requirement is to automatically assign different
roles to gateways based on the network topology. To maximize the communi-
cation efficiency, we enforce that in each sub-area, the gateways which have
the maximum number of wireless connections are assigned as controllers. Since
the network topology is unknown for each gateway initially, the static gateways
first broadcast ping messages through WiFi to identify their neighbouring gate-
ways. Based on the number of replies, each gateway acquires the connection
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information and exchange this information with neighbours. As can be seen in
Algorithm 1, each gateway initially caches itself as the controller and sends the
controller’s information through a configuration message (Op is set to CIM) to
search for a gateway that has the maximum number of connections in the nearby
area (Line 1–6 in Algorithm 1(a)). Then, it waits for messages from other gate-
ways and updates the cache if the controller specified in the received message
has more connections than the cached one, or a shorter route has been detected
for the same controller. If the cache is updated and the TTL message has not
been reached, the controller’s information is further propagated to neighbours
(Line 2–17 in Algorithm 1(b)). Here the message’s TTL controls the message
propagation range, which is also the range of each sub-area. When the message
propagation time is due, it sends a verification to the controller through a Cfmsg

whose Op is set to CVM (Line 7–10 in Algorithm 1(a)). The controller saves the
follower’s information and updates its range (Line 18–21 in Algorithm1(b)). If
the controller can not access to the Internet, it multicasts a Cfmsg (Op is set to
RIM ) to neighbours to search for an internet-connected gateway in the sub-area,
and sends a verification to it when the time is due (Line 13–22 in Algorithm1(a)).
Once a gateway is allocated as a new coordinator, it saves controllers’ informa-
tion and collects other coordinators’ information by broadcasting a Cfmsg (Op

is set to FRM ) through the Internet (Line 23–26 in Algorithm1(a), Line 22–35
in Algorithm 1(b)).

5 Location-Based Template Distribution

As we mentioned in Sect. 3, the location-based template distribution mechanism
is performed when a service provider advertises its service by sending the SLA
template to a nearby gateway through a Trmsg (Op is set to ADV ). The template
is forwarded over the HNON and stored in the gateways that are within or
close to the service location. Figure 3 shows the template distribution process,
the message is first forwarded to a coordinator. The coordinator computes the
distance between the service location and its controllers’ locations, and forwards
the message to controllers whose range is within the service coverage (Op is set
to CREG). Controllers compute the distance between service location and their
followers’ locations, cache the follower that has minimum distance and reply the
distance to its coordinator. The coordinator caches the controller that has the
minimum distance, adds the distance (df ) to the message content and sends
the message to other coordinators (Op is set to TRG). If the coordinator does
not have any controllers whose range is within the service coverage, the df is
set as the minimum distance between the service location and its controllers’
locations. Other coordinators perform the same process and reply the minimum
distance if it is not greater than the df specified in the received message. When
time is due, the originating coordinator forwards the template to the cached
controller if there is no reply (Op is set to FREG), or forwards the template
to the coordinator that replies minimum df (Op is set to RREG). Then the
template is further forwarded to the cached follower so that it can be saved in the
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Algorithm 1: HNON Creation Algorithm (a) - Message Sender
1 Cache itself as controller;
2 Create Cfmsg (Cfmsg.m ←cached controller info, Cfmsg.Op←CIM);
3 Set Timer T;
4 Send Cfmsg to neighbours;
5 /* Waiting for responses */
6 if receives a reply: Check if the cached controller needs to be updated;
7 if T expires and the cached controller is not itself:
8 Create Cfmsg (Cfmsg.m ←self info, Cfmsg.Op ←CVM);
9 Mark itself as a follower, send Cfmsg to cached controller;

10 if receives the ACK: Save controller’s identifier and routing info;
11 if T expires and the cached controller is itself:
12 Mark itself as a controller;
13 if current gateway is a controller and no Internet connection:
14 Create Cfmsg (Cfmsg.m ←self info, Cfmsg.Op ←RIM);
15 Set Timer T;
16 Send Cfmsg to neighbours;
17 /* Waiting for responses */
18 if receives a reply: Check if the cached coordinator needs to be updated;
19 if T expires:
20 Create Cfmsg (Cfmsg.m ←self info, Cfmsg.Op ←RVM);
21 Send Cfmsg to cached coordinator;
22 if receives the ACK: Save coordinator’s identifier and routing info;
23 if current gateway is a controller and have Internet connection:
24 Create Cfmsg (Cfmsg.m ←self info, Cfmsg.Op ←FRM);
25 Mark itself as a coordinator, broadcast Cfmsg;
26 if receives a reply: Add the responder to coordinator list;

gateway that closest to the service location (Op is set to REG). All the registered
templates are also replicated in corresponding controllers. If a service provider
is mobile and specifies a flexible service location, the SLA template is stored
in the gateway that receives the request. The provider re-submits the request
when moving more than a pre-defined distance. All the registered templates are
periodically checked by gateways to remove the ones that are out of date or
the providers are unreachable. Also, a provider can change their offerings after
registration by submitting a new template with the same identifier but different
creation timestamp. The updated template is submitted to a nearby gateway
through a Trmsg (Op is set to UPD). Similarly, this message is forwarded to a
coordinator and multicasted to all coordinators. Each coordinator forwards the
message to its controllers to detect if the originating template is stored in their
local areas and update it if so. If the service location is changed in the updated
template, the same template distribution process will be performed to search for
the closest gateway, and the old template will be deleted.
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Algorithm 2: HNON Creation Algorithm (b) - Message Receiver
1 /* listening configuration messages */
2 if Cfmsg.Op =CIM:
3 resvCon ← Cfmsg.getMessageContent().getControllerConnections();
4 resvRoute ← Cfmsg.getRoute();
5 if resvCon > cached controller’s connections:
6 Update cache with received controller’s info;
7 Set state into active;
8 else if Cfmsg specifies a shorter route for a same controller:
9 Update cache with resvRoute;

10 Set state into active;
11 else: Set state into inactive;
12 if state is active and TTL is not reached :
13 Add self identifier to resvRoute;
14 Create Cfmsg (Cfmsg.m ←cached controller info, Cfmsg.Op←CIM,

resvRoute);
15 Send Cfmsg to neighbours;
16 Set state into inactive;
17 else: Set state into inactive;
18 if Cfmsg.Op =CVM:
19 Mark itself as a controller, update range;
20 Mark sender as a follower, save follower’s identifier, location and route;
21 Send back ACK;
22 if Cfmsg.Op =RIM:
23 if current gateway has internet connection:
24 Reply with self identifier and routing info;
25 else if TTL is not reached:
26 add self identifier to message’s routing table;
27 forward the message to neighbours;
28 if Cfmsg.Op =RVM:
29 Mark itself as a coordinator, mark sender as a controller ;
30 Save controller’s identifier, location, range and route;
31 Send back ACK;
32 if Cfmsg.Op =FRM:
33 if current gateway is a coordinator:
34 Save sender’s identifier;
35 Reply with self identifier;

6 Distributed SLA Negotiation

The SLA negotiation process is mainly composed of three phases: (i) request
forwarding and template match-making; (ii) negotiation customization with the
candidate service providers; (iii) distributed bilateral negotiation and mobile
consumer locating.
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Fig. 3. Processing of template registration messages

Fig. 4. Processing of negotiation messages

6.1 Negotiation Request Forwarding

Figure 4 shows the location-based request forwarding mechanism: a user sub-
mits a request through a negotiation message (Op is set to REQ). The message
is first forwarded to the coordinator layer (Op is set to TREQ), then propa-
gated to the controllers whose range covers the requested location (Op is set to
CREQ). Controllers match the request with local backup templates to search
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for the candidate services that have the potential to satisfy all the QoS require-
ments and forward the providers’ information to the followers that actually store
the templates (Op is set to INS ) to initialize the negotiation instance. Based
on the negotiation information provided in the template, the follower sends a
customization message to the provider’s negotiation interface to test provider’s
availability and customize the negotiation context (i.e. negotiation protocol, SLA
schema, template). Then the follower generates an initial offer according to the
constraints specified in the request and the template. The bilateral negotiation
phase starts when the follower sends the offer to the service provider through a
negotiation message (Op is set to NEG). During the phase, follower negotiates
with the service provider by exchanging offers in an orderly way [25]. Each time
a new offer is proposed by the service provider, the follower makes decisions
(i.e., accept/reject the received offer, or propose a new offer) according to a pre-
defined negotiation strategy1. The bilateral negotiation stops when the deadline
is reached, or an offer is accepted. During the negotiation customization or con-
sumer approval phase, it is possible that the WiFi-connected mobile negotiating
parties (i.e., service providers or users) move to another place and lose the orig-
inal network connection. The mobile entity locating message is created and sent
to the local controller to detect the negotiation parties (Op is set to INQ). The
local controller propagates the message to its followers (Op is set to FINQ) and
each follower sends a ping message to the entity to test the connection. If any
follower receives an ACK, it forwards the message content to the entity. Oth-
erwise, the local controller forwards the message to its coordinator(Op is set to
RINQ), the coordinator propagates the message to its other controllers (Op is set
to CINQ) to detect the entity in different managed sub-areas. If the consumer
cannot be connected in any sub-area, the coordinator forwards the message to
other coordinators (Op is set to NINQ) to start an exhaustive searching over the
whole network. This design guarantees that the entity locating process is firstly
performed in the local sub-area, then the nearby sub-areas, and then the whole
network.

7 Evaluation

To test the performance of IoT-Negotiate model, we implemented it using Simon-
strator [20], which is a peer to peer simulator for distributed mobile applications.
The environment is configured as Dublin city center where a set of static gate-
ways are randomly distributed and connected through WiFi. 50% gateways have
Internet connections. Service providers (mobile or static) and consumers (mobile)
are initialized randomly in the environment. The consumers and autonomous ser-
vice providers are connected to the network by WiFi while web service providers
connect with the Ethernet. Based on an existing OWLS-SLR dataset [1] and
the IoT services examples proposed in related literature [3,27], we create 436
1 The discussion of negotiation strategy is out of this paper’s scope, more details about

the evaluation of received offers and the corresponding decision-making model can
be found in [12].
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service prototypes which specify the service name, domain information, func-
tional and non-functional properties (i.e., location and QoS parameters). Based
on the prototypes, we generated different SLA templates for each provider by
randomly assigning values to negotiable QoS parameters based on a predefined
variation range. The variation range guarantees that the conflict between the
service provider and a consumer is resolvable. In other words, it guarantees a
successful negotiation if the services provider receives the request. In this exper-
iment, the maximum hop of messages is set to 8 and the negotiation timeout
is set to 2 min. Considering the possible network congestion, gateways use the
UDP send-and-reply mode to send messages, the maximum time to wait for the
reply is 2 s. Since the autonomous service providers are likely to be online and
offline at any time, the Churn model provided by Simonstrator to model the
connectivity of peers is adopted to simulate the availability of hosts, and the
mobile entities follow a random movement pattern with a pre-defined moving
speed varying from 16.7 m/s to 27.8 m/s (i.e., car speed).

Figure 5(a) shows the simulation results when the number of static gate-
ways increases from 50 to 250 while the number of service providers is set to
150 (i.e., 50 mobile service providers and 100 static service providers). 100 con-
sumers periodically submit requests to nearby gateways within 100 min. The
negotiation result is evaluated using three metrics: template registration accu-
racy, percentage of successful negotiation, and the percentage of signing request
messages received by the user. The template registration accuracy measures if
the template has been correctly registered into the proper gateways. If the dis-
tance between the service location and the registering gateway is within 500 m,
we regard it as a correct registration. The percentage of successful negotiations
measures the ability to achieve a successful negotiation when potential solutions
are existing in the environment. Since we adopt a negotiation strategy that guar-
antees a successful negotiation when consumers and providers have overlapped
negotiation space, this metric measures if a candidate service provider can be
successfully detected and contacted with. The percentage of signing request mes-
sages received by the user measures the efficiency of the mobile entity locating
mechanism when returning the negotiation result back to the user.

The simulation result shows that the registration accuracy is around 75%
when there are only 50 gateways deployed in the environment. The incorrect
registrations are mainly caused by two reasons: (i) some controllers cannot find
any coordinators to propagate messages. When we increase the percentage of
internet-connected gateway from 50% to 90%, the registration accuracy increases
to 97.2%. This is also approved by the result that the registration accuracy
improves as the number of deployed gateways increasing. (ii) the SLA templates
are more likely to be forwarded to the controllers that have large ranges, but
the gateway finally registers the template may not be the closest gateway. This
implies that the SLA templates may be stored in incorrect places if the gate-
ways are not evenly distributed. The success rate is not as high as we expected:
the percentage of successful negotiations is only about 31.7% when there are
150 gateways deployed in the environment. The main reason that causes the
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(a) Negotiation Performance (b) The number of dropped links

Fig. 5. Simulation result

negotiation failures is negotiation timeout, which includes following situations:
(i) mobile entities can not connect to any gateway during the negotiation pro-
cess, or the area they are moving around does not have any internet-connected
gateway;(ii) the candidate service is not registered in the right place since the
controller which receives the registration request can not find a coordinator to
propagate the request. When we increase the percentage of internet-connected
gateway from 50% to 90%, the success rate increases from 31.7% to 72%. If we
assume a majority of gateways are internet-connected, this result is acceptable.
However, if most of the gateways are WiFi-connected, increasing the number of
gateways can reduce the type of failures to some extent but can not eliminate
the negative impact because the mobile entity locating mechanism highly relies
on the interactions between gateways of different layers. Any lost response may
cause a large number of simultaneous interactions when the number of gateways
is large, which further increases the risk of losing packages. Figure 5(b) shows
the comparison of the number of dropped links with and without mobile entity
locating process (MEL). This result implies that the current mobile entity locat-
ing mechanism is not lightweight enough to locate entities that move fast in
the environment. A mechanism that can trace and manage mobile negotiating
entities may be more efficient to address the communication problem.

However, compared to our previous work, by adopting the hierarchical nego-
tiation overlay network, we have decreased the maximum negotiation time from
10 min to 2 min, and the users’ spatial requirements are considered as well.

8 Conclusion and Future Work

In the IoT environment, there is potential for a range of different types of
devices to provide their functionalities as services and tailor the services’ prop-
erties based on user-specific requirements. However, the demand-driven IoT ser-
vice provisioning requires an SLA negotiation between consumers and service
providers. In a distributed large-scale environment like the IoT, a middleware
that can automatically negotiate with candidate service providers on behalf of
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users is needed. This paper proposes a distributed SLA negotiation model in
the IoT environment, which uses a hierarchical negotiation overlay network to
cluster service information and to manage the message flows during the nego-
tiation process. Although the simulation results demonstrate the feasibility and
efficiency of the negotiation model, it still shows some limitation in term of
addressing mobility problems. In future work, we plan to optimize the negotia-
tion model by designing a more lightweight mobile entity locating mechanism.
This might be improving the hierarchical negotiation overlay network so that
it can trace and predict the location of mobile negotiation parties in real-time
without introducing much wireless communication.
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