
Towards Automated Microservices
Extraction Using Muti-objective

Evolutionary Search

Islem Saidani1, Ali Ouni1(B), Mohamed Wiem Mkaouer2, and Aymen Saied3

1 ETS Montreal, University of Quebec, Montreal, QC, Canada
islem.saidani@ens.etsmtl.ca, ali.ouni@etsmtl.ca

2 Rochester Institute of Technology (RIT), Rochester, NY, USA
mwm@se.rit.edu

3 Concordia University, Montreal, QC, Canada
m saied@encs.concordia.ca

Abstract. We introduce in this paper a novel approach, named MSEx-
tractor, that formulate the microservices identification problem as a
multi-objective combinatorial optimization problem to decompose a
legacy application into a set of cohesive, loosely-coupled and coarse-
grained services. We employ the non-dominated sorting genetic algorithm
(NSGA-II) to drive a search process towards optimal microservices iden-
tification while considering structural dependencies in the source code.
We conduct an empirical evaluation on a benchmark of two open-source
legacy software systems to assess the efficiency of our approach. Results
show that MSExtractor is able to find relevant microservice candidates
and outperforms recent three state-of-the-art approaches.

Keywords: Microservices · Search-based software engineering ·
Legacy decomposition · Microservices architecture

1 Introduction

In this paper, we introduce a novel approach namely MSExtractor, that formulate
the microservices extraction problem as a multi-objective combinatorial opti-
mization problem to decompose an OO legacy application into a set of cohesive,
loosely-coupled microservices. We employ the Non-dominated Sorting Genetic
Algorithm II (NSGA-II) [1], as search method to drive the decomposition pro-
cess and find the near-optimal trade-off between two objectives: (1) minimize
coupling (inter-service dependencies), and (2) maximize cohesion (intra-services
dependencies) while leveraging the structural information embodied in the source
code. MSExtractor aims at supporting software developers and architects by pro-
viding a decision-making support in their design decisions for their microservices
migration.

We conduct an empirical study to evaluate our approach on a benchmark of
two open source Java legacy applications. Results show that MSExtractor is able
c© Springer Nature Switzerland AG 2019
S. Yangui et al. (Eds.): ICSOC 2019, LNCS 11895, pp. 58–63, 2019.
https://doi.org/10.1007/978-3-030-33702-5_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33702-5_5&domain=pdf
https://doi.org/10.1007/978-3-030-33702-5_5


Towards Automated Microservices Extraction 59

to extract cohesive and loosely coupled microservices with higher performance
than three recent state-of-the-art approaches.

2 Approach

We formulate the automated extraction of microservices from a legacy appli-
cation as a combinatorial optimization problem, in which a search algorithm
explores alternative combinations of classes from an input legacy system. Given
legacy system composed of a set of classes to be decomposed into microservices,
there are many ways in which the microservice boundaries can be drawn lead-
ing to different possible class combinations. The problem is a graph partitioning
problem, which is known to be NP-hard and therefore seems suited to a meta-
heuristic search-based techniques [2].

To identify such instances of candidate microservices, MSExtractor proceeds
to (i) create a set of new empty microservices, and (ii) assign each class to
a unique microservice. The process should assign each class to exactly one
microservice, and have no empty microservices. Then, MSExtractor uses NSGA-
II [1] in order to find the optimal solutions that provide the best trade-off between
our two objective functions.

Figure 1 shows a simple microservices decomposition example. A simple solu-
tion X = {1, 1, 2, 3, 1, 1, 2}, for example, denotes a decomposition of seven classes
into three microservices. The classes InitF ilter, IPBanFilter and User are in
the microservice m1, Product, CarItem and Category are in m2, and finally,
Order and Catalog are in m3. Moreover, different class dependencies exist in
order to implement the required functionalities by the microservice. An appro-
priate decomposition should maximize the cohesion within a microservice while
minimizing coupling between the extracted microservices.

Fig. 1. An example of a microservice decomposition solution (snippet) from JPetstore.

Source code dependencies are widely used in software engineering to measure
how strongly related are the elements of a software system, i.e., methods, classes,
packages, etc. [3]. MSExtractor is based on a combination of structural measures
to detect the dependencies among classes. In a nutshell, structural dependency
for two given classes represents the shared method calls between them. We use
two popular structural measurements to define our fitness objectives.

Objective Functions. To evaluate the quality (i.e.,the fitness) of a candidate
microservices decomposition solution, we define a fitness function that evaluates
multiple objective and constraint dimensions. Each objective dimension refers



60 I. Saidani et al.

to a specific value that should be either minimized or maximized for a solution
to be considered “better” than another solution. In our approach, we optimize
the three following objectives:

1. Cohesion: The cohesion objective function is a measure of the overall cohe-
sion of a candidate microservices decomposition. The cohesion of a candidate
microservice m is denoted by Coh(m) and defined as the complement of the
average of all pairs of classes belonging to the microservice m. Then, the
cohesion objective function corresponds to the average cohesion value of all
microservice candidates in a decomposition. This objective function should
be maximized to ensure that each candidate microservice contains strongly
related classes and does not contain classes that are not part of its function-
ality.

2. Coupling: The coupling objective function measures the overall coupling
among the microservice in a decomposition M. We define the coupling
between two microservices m1 and m2 as the average similarity between all
possible pairs of classes from m1 and m2. The coupling objective function
corresponds to the average coupling measures between all possible pairs of
microservices in the decomposition. This objective function is to be mini-
mized. The lower the coupling value between all candidate microservices, the
better is the decomposition quality.

3 Empirical Evaluation

In this section, we present the results of our evaluation for the proposed app-
roach, MSExtractor. The goal of this evaluation is to assess the efficiency of our
approach in identifying appropriate microservices and compare it with available
state-of-the-art approaches. This study aims at answering the following research
question:

– RQ1. To what extent can MSExtractor identify relevant microservices?

Empirical Setup. To evaluate our approach, we conduct an experimental study
on a benchmark of two legacy web applications namely JPetstore1, and Spring-
blog2. To answer RQ1, we employ four evaluation metrics to assess the quality of
the identified microservices based on measuring their functional independence.
This measure assesses the extent to which microservices exhibit a bounded con-
text and present their own functionalities with low coupling to other microser-
vices. In particular, four metrics were commonly used in recent studies [4–6] to
assess the quality of Web service interfaces.

– CHM (CoHesion at Message level): CHM is inspired by LoCmsg, a widely
used metric to measure the cohesion of a service at the message level [4–6].

1 https://github.com/mybatis/jpetstore-6.
2 https://github.com/Raysmond/SpringBlog.

https://github.com/mybatis/jpetstore-6
https://github.com/Raysmond/SpringBlog


Towards Automated Microservices Extraction 61

– CHD (CoHesion at Domain level): CHD is inspired by LoC dom, a widely
used metric to measure the cohesion of a service at the domain level [4,5].

– OPN (OPeration Number): OPN computes the average number of public
operations [4,7] exposed by an extracted microservice to other candidate
microservices. The smaller OPN is, the better.

– IRN (InteRaction Number): IRN represents the number of method calls
among all pairs of extracted microservices [4,8]. The smaller is IRN, the
better is the quality of candidate microservices as it reflects loose coupling.

State-of-the-Art Comparison. We evaluate the performance of our approach,
we compare it against three recent state-of-the-art approaches, namely FoME [4],
MEM [9], and LIMBO [10]. We selected these three state-of-the-art methods as
they use different decomposition techniques, and have been selected in recent
comparative studies [4].

Table 1. The results achieved by MSExtractor, FoME, MEM, and LIMBO.

System Metric MSExtractor FoME MEM LIMBO

Jpetstore CHM 0.5–0.6 0.7–0.8 0.5–0.6 0.5–0.6

CHD 0.6–0.7 0.6–0.7 0.6–0.7 0.6–0.7

OPN 28 22 39 68

IRN 33 35 48 329

SpringBlog CHM 0.5–0.6 0.7–0.8 0.6–0.7 0.6–0.7

CHD 0.6–0.7 0.8–0.9 0.8–0.9 0.7–0.8

OPN 10 7 21 147

IRN 21 26 30 238

3.1 Results

Table 1 presents the achieved results by each of the approaches, MSExtractor,
and the compared approaches, FoME [4], MEM [9], and LIMBO [10]. The met-
rics CHM and CHD reflect the cohesion of the identified microservices, while
the metrics OPN and IRN reflect the coupling. Higher cohesion metrics values
indicate better performance while lower coupling metrics values indicate bet-
ter performance. The cohesion results are provided in the form of an interval,
e.g., [0.5–0.6], instead of specific values since slight differences between CHM or
CHD values are not significant. We observe from the table that our approach,
MSExtractor, outperforms the three competing approaches in the two studied
systems, in the majority of metrics. In particular, for smaller systems such as
JPetStore (24 classes), the achieved results on the four metrics are comparable.
Indeed, this system represents a relatively smaller search space where determinis-
tic approaches may achieve high performance. For larger systems, such as Roller



62 I. Saidani et al.

and JForum (340 and 534, respectively), there is a clear superiority achieved by
MSExtractor compared to the three compared approaches in terms of both CHM
and CHD, as well as IRN.

We can also observe from Table 1 that FoME tends to provide better results
in terms of OPN in three out of the two systems. This superiority is justified by
the fact that FoME excludes a relatively important number of classes that are
not covered by the dynamic analysis scenarios. These excluded classes will be,
in turn, excluded from the candidate microservices. Obviously, ignoring a num-
ber of classes may improve coupling, but would provide functionally incomplete
microservice candidates. These classes are generally related to exceptions, e.g.,
the classes MailingException, FilePathException, BootstrapException from the
project Roller, or to other third-party or no-behavior classes, e.g., YoutubeLink-
Transformer, MessageHelper, and SecurityConfig from the project Springblog.
Such exclusion of classes from microservices would result in an incomplete archi-
tecture and would require a manual inspection by developers performing the
migration.

4 Conclusions and Future Work

In this paper, we proposed MSExtractor, a novel approach that tackles the
microservices extraction problem and formulates it as a multi-objective com-
binatorial optimization problem. Specifically, MSExtractor employs the non-
dominated sorting genetic algorithm (NSGA-II) to drive a search process towards
an optimal decomposition of a given legacy application while considering struc-
tural dependencies in the source code. Our evaluation demonstrates that MSEx-
tractor is able to extract cohesive and loosely coupled services with higher per-
formance than three recent state-of-the-art approaches.

As we only focused on the identification of microservices boundaries, we
plan in our future work to investigate the other steps of the migration process
towards containerization and pre-deployment configuration of our microservices
candidates. We also plan to evaluate our approach form developers and software
architects perspective on more systems. We also plan to consider non-functional
criteria that are essential in the context of microservices architecture, including
the scalability and availability of the system. We further plan on challenging the
effectiveness of NSGA-II, being the main search algorithm used in MSExtractor,
by performing a comparative study with other popular search algorithms, namely
the Non-dominated Sorting Genetic Algorithm II (NSGA-II) [1], and Strength
Pareto Evolutionary Algorithm 2 (SPEA2) [11].

References

1. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

2. Mkaouer, W., et al.: Many-objective software remodularization using NSGA-III.
ACM Trans. Softw. Eng. Methodol. (TOSEM) 24(3), 17 (2015)



Towards Automated Microservices Extraction 63

3. Chidamber, S.R., Kemerer, C.F.: A metrics suite for object oriented design. IEEE
Trans. Softw. Eng. 20(6), 476–493 (1994)

4. Jin, W., Liu, T., Zheng, Q., Cui, D., Cai, Y.: Functionality-oriented microservice
extraction based on execution trace clustering. In: 2018 IEEE International Con-
ference on Web Services (ICWS), pp. 211–218. IEEE (2018)

5. Athanasopoulos, D., Zarras, A.V., Miskos, G., Issarny, V., Vassiliadis, P.: Cohesion-
driven decomposition of service interfaces without access to source code. IEEE
Trans. Serv. Comput. 8(4), 550–562 (2015)

6. Ouni, A., Wang, H., Kessentini, M., Bouktif, S., Inoue, K.: A hybrid approach
for improving the design quality of web service interfaces. ACM Trans. Internet
Technol. (TOIT) 19(1), 4 (2018)

7. Adjoyan, S., Seriai, A.-D., Shatnawi, A.: Service identification based on quality
metrics object-oriented legacy system migration towards SOA. In: SEKE: Software
Engineering and Knowledge Engineering (2014)

8. Newman, S.: Building Microservices: Designing Fine-grained Systems. O’Reilly
Media, Sebastopol (2015)

9. Mazlami, G., Cito, J., Leitner, P.: Extraction of microservices from monolithic
software architectures. In: 2017 IEEE International Conference on Web Services
(ICWS) (2017)

10. Andritsos, P., Tzerpos, V.: Information-theoretic software clustering. IEEE Trans.
Softw. Eng. 31(2), 150–165 (2005)

11. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: improving the strength Pareto evo-
lutionary algorithm, TIK-report, vol. 103 (2001)


	Towards Automated Microservices Extraction Using Muti-objective Evolutionary Search
	1 Introduction
	2 Approach
	3 Empirical Evaluation
	3.1 Results

	4 Conclusions and Future Work
	References




