
Re-deploying Microservices in Edge and
Cloud Environment for the Optimization

of User-Perceived Service Quality

Xiang He(B), Zhiying Tu(B), Xiaofei Xu(B), and Zhongjie Wang(B)

School of Computer Science and Technology, Harbin Institute of Technology,
Harbin, China

september hx@outlook.com,

{tzy hit,xiaofei,rainy}@hit.edu.cn

Abstract. Deploying microservices in edge computing environment
shortens the distance between users and services, and consequently,
improves user-perceived service quality. Because of resource constraints
of edge servers, the number and Service Level Agreement (SLA) of
microservices that could be deployed on one edge server are limited.
This paper considers user mobility, i.e., location changes of massive users
might significantly result in deterioration of user-perceived service qual-
ity. We propose a method of looking for an optimized microservice re-
deployment solution by means of add, remove, adjust, and switch, to
make sure service quality that massive users perceive always conforms to
their expectations. Three algorithms are adopted for this purpose, and
an experiment in real-world edge-cloud environment is also conducted
based on Kubernetes to re-deploy microservice systems automatically.

Keywords: Microservices · Edge and cloud environment · Service
system re-deployment · Service quality · User mobility

1 Introduction

Recently, lots of research have been conducted on Cloud - Edge - Mobile devices
architecture in Edge Computing. In such architecture, the distance between users
and services can be shortened by deploying services on edge servers. Microser-
vices architecture and container technology have been adopted so that the ser-
vices can be easily deployed, and services can be migrated to a cloud-native
architecture [1], which makes the system adapt to the user demand changes.

User demands cannot remain unchanged all the time. User mobility, func-
tional requirement changes, and quality expectation changes are typical changes
in user demands. Deployment of microservices in cloud and edge environment
should make changes accordingly to keep users satisfied. In this paper, we con-
sider user mobility as the trigger of microservice system re-deployment.

In this paper, the following factors are considered: (1) Multi-services: A ser-
vice system is composed of many services with different functionalities and SLAs,
c© Springer Nature Switzerland AG 2019
S. Yangui et al. (Eds.): ICSOC 2019, LNCS 11895, pp. 555–560, 2019.
https://doi.org/10.1007/978-3-030-33702-5_42

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33702-5_42&domain=pdf
https://doi.org/10.1007/978-3-030-33702-5_42


556 X. He et al.

and a user might need to request two or more services to satisfy his needs; (2)
Multi-SLAs: Each microservice in the system might offer different SLAs; at a
certain time, its SLA is deterministic, but it would switch to another SLA after
re-deployment; (3) Multi-users: Massive users are simultaneously requesting ser-
vices, and it is necessary to keep the quality of service that a service system offers
always above their expectations; (4) Resource constraints: Computing resources
offered by each edge server is different and limited.

Our work is to look for an optimized re-deployment solution, and the main
contributions of the paper are listed below:

– We define the optimization problem of microservice system evolution which
takes multi-services, multi-SLA, and multi-users into consideration. This
extends traditional placement research to make it more fit for real world.

– We use Genetic algorithm (GA), heuristic algorithm (HA) and Artificial Bee
Colony algorithm (ABC) to look for an optimized re-deployment solution.
A set of experiments are conducted under four representative user mobility
scenarios and the results have validated algorithm performance.

– We develop a tool based on docker and Kubernetes to execute a re-deployment
solution in real-world edge-cloud computing environment, which empowers a
service system the capacity of automatic and continuous re-deployment.

The remainder of this paper is organized as follows. Section 2 introduces
definitions. Section 3 describes algorithms. Section 4 details the experimental and
protosystem. Section 5 reviews related work. Section 6 concludes the paper.

2 Problem Formulation

Definition 1 (Service). The set of services are describes as S. A service s is
described as a set of triple {(lsla, r, n)}, and for each s ∈ S: id is the unique
id which is used to distinguish different instances of the same service with the
same SLA on one server; r is how much computing resources s needs to offer the
quality level lsla; n is the maximum number of users that one instance of s with
lsla can serve concurrently.

Definition 2 (Cloud/Edge Server Node). E stands for a set of server nodes,
and a node is described as e = (type, r, loc): type ∈ {EDGE,CLOUD} is the
type of e (might be an edge server or a cloud server); r is the total computing
resources e can be provided for service instances; loc is the geographic location of
e (latitude and longitude). It is important to notice the difference between cloud
and edge nodes: computing resources in a cloud node is much more sufficient
than an edge node.

Definition 3 (Re-deployment operations on microservice instances).
OI = {adjust, add, remove, retain} is used to describe four types of re-deploy-
ment operations on a microservice instance: adjust means adjusting the quality
level of an instance; add means creating a new instance; remove means deleting
an instance; retain means keeping unchanged.



Re-deploying Microservices in Edge and Cloud Environment 557

Definition 4 (Re-deployment operations on users). OU = {switch, keep}:
switch stands for switching a user’s request on a service to another; keep means
keeping a user on the same instance before and after.

Problem Definition. A service system evolves from time t to t + δ by a set of
operations on users OU = {oU |oU ∈ OU} and a set of operations on microservice
instances OI = {oI |oI ∈ OI}. The δ means that the service system doesn’t keep
evolving all the time, only be triggered when most of the user demands are not
satisfied. The optimization problem is described below:

minCe = min(
∑

oI∈OI

cost(oI) +
∑

oU∈OU

cost(oU ))

s.t.

⎧
⎨

⎩

f(ui, euij) ∗ sla(euij) >= sla(ui, sj), ∀sj ∈ S,∀ui ∈ U(t + δ)∑
inst on ek

r(inst) <= rdesign(ek), ∀ek ∈ E(t + δ)
1 ≤ ns(inst) ≤ nsdesign(inst), ∀inst ∈ Inst(t + δ)

(1)

where Inst denotes the set of instances, euij is an instance of service sj and a
user ui’s request on sj is to be satisfied by euij . f() is a function for attenua-
tion coefficient of quality level w.r.t. the distance between a user and a service
instance. r() get the amount of computing resources that inst requires, and ns()
gets the actual number of users that inst is serving, while nsmax() gets the
maximal number of users that inst can serve concurrently.

The first constraint assures that the quality level that each user could be sat-
isfied. The second constraint assures that the total resources do not exceed the
maximal resource offering by the node. The number of users that each instance
serves cannot exceed the maximal number that the instance can serve concur-
rently, which is assured by the last constraint.

3 Algorithms

In ABC, to initialize the population, one server node is picked up randomly from
the candidate list for every service that each user requests. An instance with the
lowest cost to accept the user will be chosen, and the result is treated as the
nectar. In the employed bees phrase, a non-empty service instance will be chosen,
and all users it serves will be dispatched to other instances. In the onlooker bees
phrase, some nectar will be picked randomly and dispatched to other instances
on nodes randomly. The abandoned food sources will be replaced by solutions
randomly generated in the scout bees phrase.

In GA, the initialization process is the same as ABC. The gens represent the
instances that are chosen for the user demand for every service. Some of the
genes will be randomly chosen, and they will be adapted to other instances on
the nodes which are in their candidate lists, and exchanging parts of the gens
between two solutions is treated as the crossover.

The heuristics algorithm is based on the following heuristic rules: (1) Assign
each user to the server node that is the most closest to him; (2) Existing instances



558 X. He et al.

will be considered first. Or the cost of add and adjust is compared, and the
operation with the lower cost will be chosen; (3) User demands that cannot
satisfied by the closest server node will be assigned to the next closest node;
(4) When there are no enough computing resources, existing instances will be
merged, and instances that have no user will be removed.

4 Experiments and Prototype

4.1 Experiments Setup

In the experiments, the cellular layout is used to place edge servers. The costs of
all operations come from the average time (seconds * 10) of necessary Kubernetes
operations. It is noteworthy that Kubernetes doesn’t support dynamic resource
allocation for pods, the adjust operation has to be split into one remove and
one add. The cost of switch operation is calculated by the time that 1 MB data
needed to transfer with 100 Mbps. The costs for add, remove, adjust, retain,
switch, and keep used here are 68, 25, 94, 0, 0.8, and 0.

There are three main scenarios: (1) Group to Group: Users are gathered in
some specific locations (i.e., they are in the form of groups;) and after their
moves, they are in re-grouped; (2) Random to Group: Users are distributed
randomly, and after their moves, they are gathered in groups; (3) Group to
Random: Users are gathered in groups, and then they disperse all over the area.

4.2 Scenario 1: Group to Group

In this experiment, we evaluate our algorithms with the scenario 1. We generate
three basic scenes: Scene 1, Scene 2 and Scene 3. They are three different sit-
uations that users gather together. Three experiments were conducted: moving
from Scene 1 to 2, from Scene 2 to 3, and from Scene 3 to 1. The results are
shown in Fig. 1. The x-axis stands for the number of users in the experiment,
and the y-axis is the cost of the evolution plan that algorithm generated.

As shown in Fig. 1, the cost of evolution is linearly and positively correlated
with the number of users. As the number of users grows, more user connections
should be switched from the old server node to the new one, and more service
instances must be deployed on server nodes. It shows that our ABC algorithm
performs better than the GA and HA in all three situations. Both HA and ABC
have a huge improvement compared to GA.

4.3 Scenario 2 and 3: Random to Group and Group to Random,
and Continuous Evolution

In this experiment, we explore the situations of moving from random to group
and from group to random with 10000 users and the number of server nodes that
the users are grouped by differs from 1 to 7. The performance of the algorithms
in the situation of continuous evolution is also explored.



Re-deploying Microservices in Edge and Cloud Environment 559

(a) From Scene 1 to 2 (b) From Scene 2 to 3 (c) From Scene 3 to 1

Fig. 1: Re-deployment cost w.r.t. number of users in scenario 1

(a) Random to Groups (b) Groups to Random (c) Continuous Evolution

Fig. 2: Re-deployment cost in scenarios 2&3 and continuous evolution

The results in Fig. 2(a) and (b) show the ABC still performs better than GA
and HA in these two situations. The x-axis is the number of cluster nodes and
the y-axis is the cost of evolution plan generated by the algorithms.

For continuous evolution, we execute the re-deployment algorithm three
times: Scene 1 to 2, then 2 to 3, and back to 1. And the cost in total is the
sum of the cost. Figure 2(c) shows that ABC performs better than GA and HA.
It means ABC does not overlook the global cost of the continuous evolution
while trying to find the best solution to part of the problem, and the stability
of the algorithm and the deployment of the service system are guaranteed.

4.4 Prototype

The prototype system is built with Docker and Kubernetes. Because the user
location awareness is beyond our work, it will not detailed here.

As listed in Sect. 3, there are four types of operations that we need to imple-
ment, i.e., add, remove, adjust and switch. It’s easy to implement the switch
operation by proxy and gateway on each node, so we only illustrate how to do
add, remove and adjust operations in K8s with the command tools kubectl. We
assume that all the configuration files required by K8s are prepared in advance.

For add operation, the configuration file that related to the desired service
will be used by kubectl with node-selector attribute. What to mention is we
should label the pod with the instance that is generated by the algorithm. For
remove operation, the pod id, which is associated with the instance id label,
is passed to the command tool. Unfortunately, K8s doesn’t support dynamic



560 X. He et al.

resource allocation now, thereby the adjust operation is the combination of add
operation and remove operation.

5 Related Work

Zhang et al. [2] designed a framework for dynamic service placement based on
control and game theoretic models, aiming at optimizing hosting cost dynami-
cally in Geographically Distributed Clouds. Selimi et al. [3] studied service place-
ment in Community networks to improve the quality of experience. Mahmud
et al. [4] proposed a QoE-aware application placement policy. Wang et al. [5]
proposed an ITEM algorithm to solve the service placement of Virtual Reality
applications with consideration about the QoS and the economic operations.

To sum up, in existing works there are no enough attentions having been
paid to the changing demands of multi-users in a multi-service system that
offers multi-SLAs. Being a very common scenario in real world and objective of
our work in this paper, it is a significant extension to current research.

6 Conclusions

This paper considers user mobility to re-deploying microservices in edge and
cloud environment, which can improve user-perceived service quality. Consid-
ering the challenges of multi-services, multi-users and multi-SLAs, and by six
types of basic operations and three strategies, our methods could identify an
optimized re-deployment solution effectively. And a prototype tool has been
developed. Other types of user demand changes will be considered in future
work.

Acknowledgment. Research in this paper is partially supported by the National Key
Research and Development Program of China (No. 2017YFB1400604), the National
Science Foundation of China (61802089, 61772155, 61832004, 61832014).

References

1. Balalaie, A., Heydarnoori, A., Jamshidi, P.: Microservices architecture enables
DevOps: migration to a cloud-native architecture. IEEE Softw. 33(3), 42–52 (2016)

2. Zhang, Q., Zhu, Q., Zhani, M.F., Boutaba, R., Hellerstein, J.L.: Dynamic service
placement in geographically distributed clouds. IEEE J. Sel. Areas Commun. 31(12),
762–772 (2013)

3. Selimi, M., Cerdà-Alabern, L., Sánchez-Artigas, M., Freitag, F., Veiga, L.: Practical
service placement approach for microservices architecture. In: 2017 17th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (CCGRID),
Madrid, pp. 401–410 (2017)

4. Mahmud, R., Srirama, S.N., Ramamohanarao, K., Buyya, R.: Quality of Experience
(QoE)-aware placement of applications in Fog computing environments. J. Parallel
Distrib. Comput. (2018)

5. Wang, L., Jiao, L., He, T., Li, J., Mühlhäuser, M.: Service entity placement for
social virtual reality applications in edge computing. In: IEEE INFOCOM 2018 -
IEEE Conference on Computer Communications, Honolulu, HI, pp. 468–476 (2018)


	Re-deploying Microservices in Edge and Cloud Environment for the Optimization of User-Perceived Service Quality
	1 Introduction
	2 Problem Formulation
	3 Algorithms
	4 Experiments and Prototype
	4.1 Experiments Setup
	4.2 Scenario 1: Group to Group
	4.3 Scenario 2 and 3: Random to Group and Group to Random, and Continuous Evolution
	4.4 Prototype

	5 Related Work
	6 Conclusions
	References




