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Abstract. The emergence of latency-sensitive and data-intensive appli-
cations requires that computational resources be moved closer to users
on computing nodes at the edge of the network (edge computing). Since
these nodes have limited resources, the collaboration among them is crit-
ical for the robustness, performance, and scalability of the system. One
must allocate and provision computational resources to the different com-
ponents, and these components must be placed on the nodes by consider-
ing both network latency and resource availability. Since centralized solu-
tions could be impracticable for large-scale systems, this paper presents
PAPS (Partitioning, Allocation, Placement, and Scaling), a framework
that tackles the complexity of edge infrastructures by means of decen-
tralized self-management and serverless computing. First, the large-scale
edge topology is dynamically partitioned into delay-aware communities.
Community leaders then provide a reference allocation of resources and
tackle the intricate placement of the containers that host serverless func-
tions. Finally, control theory is used at the node level to scale resources
timely and effectively. The assessment shows both the feasibility of the
approach and its ability to tackle the placement and allocation problem
for large-scale edge topologies with up to 100 serverless functions and
intense and unpredictable workload variations.

Keywords: Edge computing · Serverless computing · Resource
management · Service placement · Geo-distributed infrastructures

1 Introduction

The advent of mobile computing and the Internet of Things (IoT) is paving
the ground to new types of applications. For most real-time, interactive appli-
cations, the latency from devices to cloud data centers can be prohibitive, and
the transport and analysis of exponentially larger volumes of data may result in
bottlenecks and consequently low throughput. Edge computing aims to fill this
gap by means of densely-distributed computing nodes. Locality and decentral-
ization mitigate network latency and helps reduce the amount of data that is
transported to and processed by centralized servers.

The management of these geo-distributed infrastructures poses significant
challenges. One must provision and allocate computational resources to the var-
ious components, but these components must be placed on edge nodes by taking
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into account both latency and resource availability. The analysis of current work-
load, availability of resources, and performance of application components is key
for the efficient placement of components and the allocation of resources, but it
must be carried out in a timely manner for the entire topology. Network latency
and time-consuming decisions, typical of centralized approaches, may jeopardize
the overall effectiveness, especially with highly volatile workloads—a likely-to-
happen scenario with densely distributed edge nodes that serve the needs of
mobile/IoT devices.

On a parallel thread, serverless computing [2,11] is emerging as a novel cloud
computing execution model that allows developers to focus more on their appli-
cations and less on the infrastructure. The user must only submit the application
logic (stateless functions) to be executed. In turn, the provider offers dedicated
containers for its execution and is in charge of resource allocation, capacity plan-
ning, and function deployment.

This paper proposes PAPS (Partitioning, Allocation, Placement, and Scal-
ing), a framework for tackling the automated, effective, and scalable manage-
ment of large-scale edge topologies through decentralized self-management and
serverless computing. The approach partitions the large-scale edge topology into
delay-aware network communities. Community leaders then tackle the joint allo-
cation of resources and the placement of serverless functions—w.r.t both SLAs
and the aggregate demand for each function. Finally, edge nodes exploit control
theory to scale required containers timely while also giving valuable feedback to
community leaders.

A prototype implementation of PAPS allowed us to assess the proposal on
a set of experiments. Obtained results witness the feasibility of the approach
and its ability to tackle the placement and allocation problem for large-scale
edge topologies with up to 100 distinct functions and intense and unpredictable
fluctuations of the workload. To the best of our knowledge, this is the first work
that tackles the orchestration of such a high number of geo-distributed nodes
and application components.

The rest of the paper is organized as follows. Section 2 presentes the con-
text and introduces PAPS. Sections 3, 4, and 5 describe the self-management
capabilities provided by PAPS at system, community, and node levels. Section 6
discusses the evaluation, Sect. 7 surveys related approaches, and Sect. 8 concludes
the paper.

2 Context and PAPS

This paper focuses on a MEC topology [7,12] composed of a finite set of geo-
distributed nodes N . Figure 1 presents such a topology, where mobile and IoT
devices access the system through cellular base stations. Each station is con-
nected to a MEC node i ∈ N through the fronthaul network. MEC nodes
in N are interconnected through the backhaul network. The total propagation
delay Di,j between an end-user device that accesses the system through the base
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station co-located with the MEC node i ∈ N and that is served by the MEC
node j ∈ N is defined as:

Di,j =

{
γi + δi,j , if i ! = j

γi, if i = j
(1)

where γi and δi,j are respectively the fronthaul and backhaul propagation delays.

Fig. 1. Example topology of geo-distributed MEC nodes.

Our framework targets the dynamic allocation and placement of the contain-
ers required for the execution of serverless functions [2]. Even if the allocation
model of different serverless vendors can vary [6], typically functions are given
access to a fixed CPU share proportional to their memory requirement. In addi-
tion, we assume a deployment descriptor for each function that provides the
memory required by the container in charge of executing the function and the
SLA between the MEC operator and the application provider, that is, the owner
of the function to execute.

The SLA associated with each function is specified through: a Response Time
(RTSLA), which states the upper limit for the round trip time between the
arrival of a request to execute a function, its execution, and the returned value
(if the invocation is synchronous), and a Maximum Execution Time (EMAX),
which limits its execution time. The latter is a common attribute in cloud-based
serverless computing platforms, and it is key for us to guide the decision on the
joint allocation and placement of the function.

In this context, for a given topology N and a set of admitted functions F ,
the adaptation problem is twofold: one must decide how many containers are
needed for each function and where (onto which nodes) should each container be
placed. Each allocated container works as a server for a specific function f ∈ F .
Most vendors of serverless solutions try to use existing containers, if possible,
and allocate new ones as soon as they are needed. In contrast, if one queued
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requests for a short period Q, resources (containers) may become available, and
thus the number of used resources may decrease. The perceived response time is
then defined as:

RT = D + Q + E (2)

where D represents the total propagation delay (see Eq. 1), Q the queuing time,
and E the execution time. MEC operators must scale the number of containers
allocated to each function f ∈ F and place them onto MEC nodes in N to
minimize the difference between RT and RTSLA. The goal is twofold: (i) to
maximize the efficient use of resources, and thus the number of functions and
users that can be admitted into the system; (ii) to prevent SLA violations.

This paper introduces PAPS, a framework to manage the allocation and
placement problems in large-scale edge systems. Figure 2 shows that the self-
management capabilities provided by PAPS work at three different levels: sys-
tem, community, and node level. The next three sections describe how each level
works in detail.

Monitored workload from co-located base stations

Community Member

Serverless Platform
Workload 

Control System

Community Leader
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allocation  & placement
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MEC
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Fig. 2. PAPS in a nutshell.

3 System-Level Self-management

Self-management at system level aims to tackle the complexity of managing the
large scale decentralized infrastructure by partitioning it into delay-aware net-
work communities. In complex networks, a network is said to have a community
structure if its nodes can be (easily) grouped into (potentially overlapping) sets
of nodes such that each set is densely connected internally [14]. PAPS extends
this definition and considers a set of logically interconnected MEC nodes, whose
propagation delay from one another is below a threshold, as a delay-aware net-
work community.
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These communities provide a reduced space in which a solution to the place-
ment and allocation problem can be computed. Furthermore, they allow for the
decentralization of resource management (w.r.t. a single orchestrator) and its
localization within distinct geographical areas.

The definition of these communities may follow different approaches. PAPS
assumes the availability of a supervisor that has a global view of the MEC topol-
ogy and uses a dedicated search algorithm to create communities. This algorithm
takes the maximum inter-node delay (DMAX) and the maximum community size
(MCS) as parameters. The former is used to produce a sub-graph (GDA). Each
of its vertices maps to a node in the MEC topology, and an edge exists between
two vertices if the network delay between their respective MEC nodes is lower
than DMAX . The second parameter limits the number of MEC nodes that can
belong to a community, and it is useful to limit the complexity of community-
level self-management.

The produced sub-graph GDA in then used to feed the algorithm in charge of
creating the communities. In particular, we adopt the SLPA method [14], whose
complexity is O(t ∗ n), where t is a predefined maximum number of iterations
(e.g. t ≤ 20) and n is the number of nodes. Since the complexity is linear, the
solution can also be used for very large topologies. Xie et al. [14] suggest a
modest value (t = 20) for the maximum number of iterations needed to find
good quality communities.

MEC nodes are co-located with fixed infrastructures. We assume that nodes
and inter-node delays are expected to remain stable. However, topological
changes caused by catastrophic failures, system upgrades, and other eventuali-
ties may require the adaptation of the community structure. The primary goal
of the supervisor is, therefore, to ensure that communities remain consistent
in their size and membership. While defining the best approach to tackle the
adaptation of community structures, we took into account the amount of infor-
mation that needs to be monitored, as well as the complexity of the community
search procedure. The presence and health of the MEC nodes across the topol-
ogy can be obtained through light-weight heartbeat messages sent by each node
to the supervisor. This approach is commonly adopted in distributed systems of
different scales and does not prejudice the scalability of the proposed solution.

The supervisor harnesses its global system view to tackle the adaptation of
the community structure. We model the system-level adaptation as a master-
slave MAPE loop [13] in which: Monitoring is performed by all nodes through
heartbeat messages that contain the inter-node delay to all other nodes; the
supervisor performs Analysis and Planning by deciding when and how to adapt
the community structure in the advent of topological changes; Execution means
that each affected node adapts by updating its community membership.

4 Community-Level Self-management

Self-management at community-level aims to ensure that the MEC nodes in the
community operate under feasible conditions, that is, it aims to minimize the
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likelihood of SLA violations to occur and, if they occur, to react to bring the
community back to its equilibrium.

Inter-community Allocation. A first challenge that emerges when the MEC sys-
tem is partitioned into communities refers to resource allocation to shared com-
munity members. This is to say that one must decide the share of resources
that each overlapping community gets from its common members. One trivial,
but possibly inefficient, solution is to privilege one community and give it all
the “shared” resources: disadvantaged communities might need more resources
while the common members might be underutilized by the privileged community.
Since changes to the workload are expected to happen frequently, and without
any warning, resources from common nodes must flow from one overlapping
community to the other to prevent SLA violations.

PAPS tackles this problem by weighting the aggregate demand and capacity
of each overlapping community. The aggregate demand refers to the number of
containers needed to cope with the aggregate workload. The latter refers to the
rate of requests that come from the base stations co-located with MEC nodes
whose network latency w.r.t. the common node is below the inter-node delay
threshold (DMAX), plus a proportional demand share from the base station(s)
co-located with the common node itself. The aggregate capacity, in turn, refers to
the sum of the resources from the previous nodes, excluding the common node.
A share of the capacity of the common node is then allocated to each overlapping
community proportionally to their aggregate demand-capacity ratio.

Algorithm 1 details our inter-community allocation approach. This procedure
is greedily performed for all MEC nodes in the topology that belong to two or
more overlapping communities.

Algorithm 1. CapacityDemandRatio(community, node,DMAX)

1: neighborsInRange ← getNeighbors(community, node, DMAX)
2: aggDemand ← 0, aggCapacity ← 0
3: for all n ∈ neighborsInRange do
4: aggDemand ← getAggregateDemand(n)
5: aggregateCapacity ← getAggregateCapacity(n)
6: end for
7: ovCount ← getOverlappingCount(node)
8: demandShare ← getDemand(node) / ovCount
9: aggDemand ← aggDemand + demandShare

10: return aggDemand / aggCapacity

Intra-community Allocation and Placement. The intra-community allocation
aims to distribute resources among member nodes given the aggregate demand
and capacity within the community. Each community has a leader responsible
for solving the joint allocation and placement problem introduced in Sect. 2.
Such a centralization within decentralization (i) allows the placement problem
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to be solved in a single step for the whole community, and (ii) eliminates the need
for a more complex coordination protocol. More importantly, the leader-based
approach allows the placement problem to be solved by well-known centralized
optimization techniques.

The complexity of the container placement problem implies high-resolution
time and prevents communities to promptly adapt to workload fluctuations.
Before a solution is computed, the workload may have significantly changed,
and limit the efficiency and efficacy of the solution. Pro-active adaptation could
be used to mitigate this problem. For example, if the workload is character-
ized by a well-known probabilistic distribution (e.g., a Poisson distribution), the
allocation problem might then benefit from techniques such as queueing theory
to predict the number of containers that are needed to keep the response time
below a threshold. Unfortunately, the decentralized infrastructure model makes
the previous assumption less realistic. Not only users can freely enter and exit
different areas, but the aggregate workload to be served by each MEC node is
limited compared to typical cloud data centers and thus may vary more abruptly.
Because of this, PAPS favors a reactive adaptation approach for solving the joint
allocation and placement problem.

Our solution draws inspiration from the Ultra-Stable system architecture [10].
The community-level self-management acts as the second control loop in the
Ultra-Stable system. When workload fluctuations are significant enough to
impact or to throw the node-level self-management out of its limits, the
community-level self-management provides the community with a new allocation
and placement solution. In turn, the node-level self-management works as the
primary feedback loop in the Ultra-Stable system. Through its sensors, the MEC
node monitors subtle changes in the environment (i.e., in the actual workload for
each function). It accordingly responds, through its actuators by changing the
actual number of containers hosted for each function. Hence, the community-
level placement does not target a single solution, but a solution space in which
the scaling of containers at node-level ultimately takes place.

The community-level self-management consists of an instance of the regional
planner MAPE loop [13]. Each community member takes advantage of its priv-
ileged position within the MEC topology to monitor and analyze the workload
coming from adjacent base stations (see Fig. 1). The number of containers needed
to cope with a given workload while satisfying the SLA is determined at the node
level by using a feedback loop with a short control period—compatible with
the container start-up time (i.e., up to a few seconds). In turn, the community
leader extrapolates this information to plan for the number of containers needed
to satisfy the SLA given the aggregate workload over a longer control period—
compatible with the time needed to compute the optimal placement (i.e., up to
a few minutes).

Informed load balancers composing the community infrastructure use the
computed optimal allocation and placement to route the workload coming
from different base stations to their respective destinations (i.e., MEC nodes).
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Each affected node in the community executes the plan with the update of the
target allocation. Depending on how the new placement solution diverges, com-
munity members may have to remove/add function(s).

Our decentralized solution provides each MEC node with the freedom to
decide the actual number of containers it hosts for each placed function based
on monitored workload, SLA, and available computing resources. As the work-
load fluctuates, the response time deviates from its target value, and the node-
level controller takes care of the timely creation and termination of containers
to optimize resource usage while preventing SLA violations. The community-
level solution is enforced by members in case of resource contention until a new
optimal allocation and placement solution is enacted by the community leader.

Optimal Container Placement. PAPS is agnostic about the formulation of the
optimal allocation and placement problem. In this paper, we formulate it as a
mixed integer programming (MIP) problem as follows:

min
x

∑

i∈N

∑

j∈N

∑

f∈F
di,j ∗ xf,i,j (3a)

subject to di,j ∗ xf,i,j ≤ xf,i,j ∗ Df ∀i ∈ N , ∀j ∈ N , ∀f ∈ F (3b)
∑

i∈N

∑

f∈F
cf,i ∗ mf ∗ xf,i,j ≤ Mj ∀j ∈ N (3c)

∑

j∈N
cf,i ∗ xf,i,j = cf,i ∀i ∈ N , ∀f ∈ F (3d)

where the decision variable 0 ≤ xf,i,j ≤ 1 denotes the fraction of the demand for
containers cf,i, from any base station co-located with node i ∈ N , for function
f ∈ F , hosted on node j ∈ N . The objective function (Eq. 3a) minimizes the
overall network delay that results from placing containers. The first constraint
(Eq. 3b) limits the propagation delay. Specifically, Df is calculated by using the
following equation:

Df = β ∗ (RTSLA,f − EMAX,f ) (4)

where 0 < β ≤ 1 defines the fraction of the marginal response time RTSLA,f −
EMAX,f for function f ∈ F that can be used for networking. Conversely, the
complement 1 − β defines the fraction of the marginal response time used for
queuing requests for function f hosted on node j:

Qf,j = (1 − β) ∗ (RTSLA,f − Ef,j) (5)

where Ef,j is the monitored execution time for function f hosted on node j. The
queue component Qf,j is particularly important for the control-theoretic solution
for scaling containers (see Sect. 5) since it provides an additional margin for the
control actuation and thus mitigates the likelihood of overshooting.

The second constraint (Eq. 3c) ensures that the number of containers placed
at a node j does not violate its memory capacity Mj . An additional constraint
(Eq. 3d) ensures that the required containers for all f ∈ F are properly placed.
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5 Node-Level Self-management

Self-management at node-level aims to efficiently and effectively scale the con-
tainers needed to satisfy the SLA (response time) of each admitted function
given the fluctuations in the workload and the target allocation defined by the
community leader. With a static allocation of resources, the response time of a
function can change due to various reasons: for example, variations in the work-
load, changes in the execution time (e.g., due to input variation), and distur-
bances in the execution environment (e.g., at the operating system or hardware
level). While some factors are harder to quantify and account for, others can be
monitored and taken into account while determining the number of containers
needed to prevent SLA violations. Our framework leverages a control-theoretic
approach [3] to scale containers at node-level.

The control system is responsible for the deployment of containers onto the
pool of virtual machines running on the MEC node. We consider a dedicated
controller for each admitted function f ∈ F . Considering a discrete time, for
each function, we define λ(k) as the function of the measured arrival rate of
requests at each control time k, while λ̄(k) is the corresponding vector for all
admitted functions.

At time k, the function is executed in a c(k) number of containers, while
c̄(k) is the vector for all f ∈ F . The disturbances are defined as d̄ and cannot be
directly controlled and measured. Finally, τ̄ is the system output and corresponds
to the response time vector that comprises all functions, whereas τ̄◦ corresponds
to the vector of the desired response time for each function (or control set-point).

In our current set-up, function τ̄◦(k) does not vary over time, that is, we tar-
get a constant response time for each function. These values should be less than
the agreed SLA to avoid violations. For example, a reasonable target response
time for non-critical functions is 0.8 ∗ SLA, while a lower value like 0.4 ∗ SLA
implies a more conservative allocation and can be used for safety-critical appli-
cations. Moreover, since a response time cannot be measured instantaneously,
but by aggregating it over a predefined time window, many aggregation tech-
niques could be used without any change to the model and controller. In our
framework, we compute the average of the response time values in τ̄ within each
control period, but stricter aggregation functions, such as the 99th percentile,
could be used given the needs of the service provider.

We also use a characteristic function to model the system with enough details
to govern its dynamics. We assume that this function needs not be linear but
regular enough to be linearizable in the domain space of interest. Moreover, we
consider this function be dependent on the ratio between the number of allocated
containers c and the request rate λ. The characteristic function monotonically
decreases towards a possible lower horizontal asymptote, as we can assume that
once available containers are enough to allow a function to reach the foreseen
degree of parallelism, the addition of further containers would provide no benefits
in terms of response time. We found that a practically acceptable function is:
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f

(
c(k)
λ(k)

)
= ũ(k) = c1 +

c2

1 + c3
c(k)
λ(k)

(6)

where parameters c1, c2, and c3 were obtained through profiling of each function.
As control technique, we rely on PI controllers because they are able to effec-

tively control systems dominated by a first-order dynamic [1] (i.e., representable
with first-order differential equations) such as the studied ones. Algorithmically,
for each admitted function:

e := τ◦
r − τr;

xR := xRp + (1 − p) ∗ ep;

c := λ ∗ finv((α − 1)/(p − 1) ∗ (xR + e));

c := max(min(Kmax, c), Kmin);

xRp := (p − 1)/(α − 1) ∗ f(c/λ) − e;

ep := e;

where e is the error, the p subscript denotes “previous” values, that is, those
that correspond to the previous step, f and finv correspond to the characteristic
function and its inverse, respectively, α ∈ [0, 1) and p ∈ [0, 1) are the single pole
of the controller and the system respectively, and xR is the state of the controller.
The higher the value of α is, the faster the error converges—ideally to zero—at
the expense of a more fluctuating allocation.

At each control step, the function controllers run independently (i.e., without
synchronization) to compute the next number of containers for the correspond-
ing function, which is added to vector ĉ. The number of containers in ĉ is not
immediately actuated since the sum of required containers could be greater than
the entire capacity of the resource pool. Instead, ĉ is passed to a contention man-
ager. This component outputs a vector c̄, which contains the actual number of
containers per function, defined as:

c̄(k) =

{
ĉ(k), if no resource contention
solveContention(ĉ(k)), otherwise

(7)

where function solveContention scales the values in ĉ according to the thresholds
defined by the placement solution provided by the community leader (see Sect. 3).
The contention manager also updates the state of each controller (variable xRp

)
to make it become consistent with the actual allocation.

6 Experimental Evaluation

We created a prototype implementation of the PAPS framework1 based on Peer-
Sim2. The implementation was used to evaluate the allocation, placement, and
scaling mechanisms of PAPS, given different partitioning of the MEC topology.
A node in the topology was implemented as a dynamic pool of threads, where

1 Source code available at: https://github.com/deib-polimi/PAPS.
2 http://peersim.sourceforge.net/.

https://github.com/deib-polimi/PAPS
http://peersim.sourceforge.net/
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Fig. 3. Communities found in a
large scale topology with 250
nodes.

Table 1. Results.

RT

Test Conf V μ σ 95th

OPT 10/50 6.4% 84.9 13.9 111.9

CT 10/50 0.6% 74.4 4.9 81.2

OPT 10/75 7.1% 89.6 15.1 113.4

CT 10/75 0.7% 75.6 7.8 81.8

OPT 10/100 8.9% 92.7 18.7 146.8

CT 10/100 0.9% 76.3 8.1 86.0

OPT 25/50 6.8% 92.6 16.7 176.0

CT 25/50 0.9% 75.6 10.7 85.8

OPT 25/75 10.5% 95.1 19.9 210.7

CT 25/75 1.8% 88.1 12.0 101.6

OPT 25/100 11.7% 101.6 23.0 221.3

CT 25/100 2.0% 85.8 20.0 107.3

OPT 50/50 7.4% 114.9 23.6 243.6

CT 50/50 1.4% 77.7 9.9 89.8

OPT 50/75 12.4% 118.9 27.6 260.6

CT 50/75 1.6% 78.7 15.6 91.6

OPT 50/100 14.0% 125.9 29.6 270.6

CT 50/100 2.2% 90.6 17.3 114.7

one container is a thread that executes the incoming requests. All the experi-
ments were run using two servers running Ubuntu 16.04 and equipped with an
Intel Xeon CPU E5-2430 processor for a total of 24 cores and 328 GB of memory.

The maximum number of containers that can be allocated onto a node
depends on its memory capacity and the memory requirements of the functions
that are to be deployed: 96 GB and 128 MB, respectively, in our experiments.

First, we assumed a large-scale edge topology of 250 nodes and normally dis-
tributed node-to-node latencies. We used the SLPA algorithm to partition the
topology in communities of 10, 25, and 50 nodes (parameter MCS) with mem-
bership probability r = 0.35. Figure 3 shows the partitioning when MCS was
set 25. Colored squares represent edge nodes within a single community; those
that belong to overlapping communities are rendered with multi-color circles.

Then, we run two types of experiments to evaluate (i) the feasibility, perfor-
mance, and scalability of the approach and (ii) the benefit of having a multi-
layered self-management solution. The first experiment, called testOPT, tested the
behavior of communities under an extremely fluctuating workload by only using
community-level allocation and placement. Each node kept the target resources
allocated to each running function constant between two community-level deci-
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sions. The second experiment, called testCT, used both community-level and
node-level adaptations to provide more refined and dynamic resource allocation
for the incoming random workload.

For each of the three community sizes, we tested the system with an increas-
ing number of types of functions: 50, 75, 100. Each execution lasted 10 min and
tested one of the nine combinations of community sizes and number of functions.
For each configuration we executed 5 runs of testOPT and 5 runs of testCT for
a total of 90 experiments.

The control periods of the community-level and node-level self-management
were set to 1 min and 5 s, respectively. If no feasible optimal solution is found at
the community level, PAPS solves a constraint-relaxed version of the optimiza-
tion problem of Sect. 4, and the next placement starts after 1 min. Moreover, we
set the fraction of the marginal response time β to 0.5 and the value of the pole
of the node-level controller (see Sect. 5) to 0.9.

The workloads were generated by using normal distributions for both function
execution times (Ek), while inter-arrival rates were generated by using three
different scenarios (low, regular, high) that were chosen randomly every 15 s to
simulate an extremely fluctuating traffic. Within each scenario, the time between
two requests was computed by using an exponential distribution. Finally, the
RTSLA of all the functions was set to 120 ms, and ETMAX was set to 90 ms.

Table 1 shows obtained results, where Test can be either testOPT or testCT,
Conf shows used configuration (e.g., 10/50 means each community had 10 nodes,
and there were 50 different function types), V shows the percentage of control
periods in which the average response time violated the SLA, while columns μ,
σ and 95th show, respectively, the overall average, the standard deviation, and
the 95th percentile of the response time of the system aggregated over the five
repetitions. If we focus independently on testOPT and testCT, we can observe
that even by increasing the number of nodes and functions the percentage of
failures is kept under 14.0% and 2.2%, respectively. These are reasonable values
if we consider we used extremely variable workloads (changes every 15 s). Note
that the control period used for the community-level decision is four times longer
than the time between two scenarios. Instead, if we compare the results of both
tests, we can easily notice the benefit of the node-level self-management. The
control-theoretical planners reduce the number of violations by one order of
magnitude: for example, from 6.4% to 0.6% in configuration 10/50, from 10.5%
to 1.8% in configuration 25/75, and from 14% to 2.2% in configuration 50/100.
Moreover, on average, the standard deviation and the 95th percentile of the
response time are significantly lower in all testCT experiments.

The charts of Fig. 4 help better visualize obtained results. Figure 4(a) and
(b) show the average response time for testOPT and testCT with configuration
10/50, where the horizontal line at 120 ms is the SLA. The first chart shows
some violations, while the second chart only shows one violation close to 500 s
and the response time is more constant (lower standard deviation) given the
faster actuation of the node-level manager. Figure 4(c) and (d) show the number
of requests (lighter line) and the allocation (darker line) during the execution of
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Fig. 4. Experiment results.

a function on a single node for the two types of experiments (same configuration
as before). testOPT exploits a longer control period given the complexity of the
optimization problem. Therefore, the allocation is often sub-optimal and quite
approximated w.r.t. the actual user needs (workload). On the other hand, the
faster adaption used in testCT allowed the system to fulfill user needs better
and follow the actual workload more closely.

7 Related Work

A few works combine the benefits of serverless and edge computing. Baresi
et al. [4] propose a serverless architecture for Multi-Access Edge Computing
(MEC). The authors also propose a framework [5] for the opportunistic deploy-
ment of serverless functions onto heterogeneous platforms, but they do not tackle
the allocation and placement problem across nodes.

The platform proposed by Nastic et al. [9] extends the notion of serverless
computing to the edge via a reference architecture to enable the uniform devel-
opment and operation of data analysis functions. An orchestrator receives the
information on how to con the application as high-level objectives and decides
how to orchestrate the underlying resources. The implementation of the orches-
tration is left open.

Nardelli et al. [8] propose a model for the deployment of containerized appli-
cations. The number of required containers is defined by the user, the solution
acquires and releases virtual machines and places containers onto these machines.
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A possibly-new deployment configuration is defined in each adaptation cycle.
In contrast, PAPS is in charge of both the target number of containers—to cope
with agreed SLAs—and their placement onto MEC nodes. While PAPS works at
the level of both nodes and communities, the multi-level formulation proposed
in [8] could only be adopted in the latter case.

Zanzi et al. [16] propose a multi-tenant resource orchestration for MEC sys-
tems. The authors introduce a MEC broker that is responsible for procuring
slices of the resources available in the MEC system to the various tenants based
on their privilege level. At each optimization cycle, the broker decides on plac-
ing single-component applications onto the MEC node of choice (gold users), or
onto any feasible node according to resource availability and network delay. We
have instantiated our framework with a similar MEC topology, but our solution
tackles the placement of a dynamic number of instances of various serverless
functions onto stateless containers. We take into account the response time as
SLA and a varying workload from different sources in the topology.

Yu et al. [15] propose a fully polynomial-time approximated solution for tack-
ling the joint QoS-aware application placement and data routing problem in an
edge system. Their formulation also admits multiple workload sources across
the topology. Differently from PAPS, they focus on the placement of single-
instance, single-component applications. While their solution tackles the alloca-
tion of bandwidth and the routing of data, it does not consider the allocation of
computational resources, which is a crucial requirement in edge-centric systems.

A number of other works tackle the placement of applications onto geo-
distributed infrastructures. Due to their combinatorial nature, tackled problems
are usually NP-Hard [15], and many of the existing solutions are based on heuris-
tics and approximations. These solutions are demonstrated for a limited number
of nodes and applications or do not consider abrupt workload variations. PAPS
targets different objectives, where scalability and unpredictable workload are
first-class requirements. It tackles the optimal resource allocation and compo-
nent placement by scaling containers at the node level through control theory.

8 Conclusions and Future Work

This paper presents PAPS, a comprehensive framework for the effective and scal-
able self-management of large edge topologies that works at different levels. It
partitions the edge topology into smaller communities. Each community elects
a leader that is in charge of placing and allocating containers for the incoming
workload. Each node exploits control theory to scale containers properly and
timely. The evaluation demonstrates the feasibility of the approach, its perfor-
mance under extremely fluctuating workloads, and highlights the benefit of the
multi-level solution.

As for future work, we plan to integrate PAPS into a real-world serverless
framework and to extend our community-level allocation and placement algo-
rithm to consider also the cost of migrating containers.
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