
On Observability and Monitoring
of Distributed Systems – An Industry

Interview Study

Sina Niedermaier1, Falko Koetter2(B), Andreas Freymann2,
and Stefan Wagner1

1 Institute of Software Technology, University of Stuttgart, Stuttgart, Germany
{sina.niedermaier,stefan.wagner}@iste.uni-stuttgart.de

2 Fraunhofer Institute for Industrial Engineering IAO, Fraunhofer IAO,
Stuttgart, Germany

{falko.koetter,andreas.freymann}@iao.fraunhofer.de

Abstract. Business success of companies heavily depends on the avail-
ability and performance of their client applications. Due to modern
development paradigms such as DevOps and microservice architectural
styles, applications are decoupled into services with complex interactions
and dependencies. Although these paradigms enable individual develop-
ment cycles with reduced delivery times, they cause several challenges
to manage the services in distributed systems. One major challenge is
to observe and monitor such distributed systems. This paper provides
a qualitative study to understand the challenges and good practices
in the field of observability and monitoring of distributed systems. In
28 semi-structured interviews with software professionals we discovered
increasing complexity and dynamics in that field. Especially observabil-
ity becomes an essential prerequisite to ensure stable services and further
development of client applications. However, the participants mentioned
a discrepancy in the awareness regarding the importance of the topic,
both from the management as well as from the developer perspective.
Besides technical challenges, we identified a strong need for an organiza-
tional concept including strategy, roles and responsibilities. Our results
support practitioners in developing and implementing systematic observ-
ability and monitoring for distributed systems.

Keywords: Monitoring · Observability · Distributed systems ·
Cloud · Industry

1 Introduction

In recent years, many IT departments have successfully migrated their services
to cloud computing [21]. Still, challenges for cloud adoption remain regarding the
operation and holistic monitoring of such services [16]. While conventional IT
infrastructure can be monitored with conventional monitoring solutions, cloud
environments are more dynamic and complex [1], resulting in a gap [12] between
the complexity of distributed systems and the capability of monitoring tools to
manage that complexity.
c© Springer Nature Switzerland AG 2019
S. Yangui et al. (Eds.): ICSOC 2019, LNCS 11895, pp. 36–52, 2019.
https://doi.org/10.1007/978-3-030-33702-5_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33702-5_3&domain=pdf
https://doi.org/10.1007/978-3-030-33702-5_3

On Observability and Monitoring of Distributed Systems 37

Emerging trends like Internet of Things (IoT) and microservices further
increase the complexity, making monitoring a significant barrier for adoption
of these technologies [13].

While newly emerged software tools try to bridge this complexity gap, the
way forward for many companies is unclear. We found that there is no research
matching new solutions and technologies to different application areas, problems
and challenges. While a plethora of new technologies and approaches exists,
companies need to be able to relate these technologies to the challenges they
face. Processes and good practices are necessary to incorporate new solutions
into existing enterprise architectures as well as emerging cloud architectures.

To address this need, we conducted an industry interview study among dif-
ferent stakeholders involved in monitoring, including service managers, DevOps
engineers, software providers, and consultants. From the semi-structured inter-
views, we extracted contemporary challenges, requirements, and solutions.

2 Related Work

To provide context to the survey described in this work, the related work inves-
tigates (1) current approaches to bridging the gap between distributed system
complexity and monitoring capability as well as (2) preceding surveys regarding
monitoring and observability (see Fig. 1).

IEEE defines monitoring as the supervising, recording, analyzing or verifying
the operation of a system or component [10].

The term Observability originates in control system theory and measures the
degree to which a system’s internal state can be determined from its output
[7]. In cloud environments, observability indicates to what degree infrastructure
and applications and their interactions can be monitored. Outputs used are for
example logs, metrics and traces [18].

Yang et al. [24] investigate the capturing of service execution paths in dis-
tributed systems. While capturing the execution path is challenging, as each
request may cross many components of several servers, they introduce a generic
end-to-end methodology to capture the entire request. During our interviews
we found a need for transparency of execution paths as well as more generally
interdependencies between services.

The current trend towards more flexible and modular distributed systems
is characterized by using independent services, such as micro- or web services.
While systems consisting of web services provide better observability than mono-
lithic systems, services have the potential to enhance their observability and
monitoring by giving relevant information about their internal behaviour. Sun
et al. [23] deal with the challenge that web service definitions do not have any
information about their behaviour. They extend the web service definition by
adding a behaviour logic description based on a constraint-based model-driven
testing approach. During our interviews we identified that the behaviour espe-
cially of third-party services needs to be more clearly communicated to assess
the impact on service levels and to detect and diagnose faults.

Besides monitoring individual service calls, it is important to predict the
runtime performance of distributed systems. Johng et al. [11] show that two

38 S. Niedermaier et al.

techniques, benchmarking and simulation, have shortcomings if they are used
separately and introduce and validate a complementary approach. Their app-
roach presents a process which maps benchmark ontologies of simulations. This
prove to be inexpensive, fast and reliable. Similarly, Lin et al. [14] propose a
novel way of root cause detection in microservice architectures utilizing causal
graphs. In our interviews we found that performance is often only known when
a system goes live, as the interdependencies between different services and their
individual performance are not assessed beforehand.

Gupta et al. [8] addresses runtime monitoring on continuous deployment
in software development as a crucial task, especially in rapidly changing soft-
ware solutions. While current runtime monitoring approaches of previous and
newly deployed versions lack in capturing and monitoring differences at runtime,
they present an approach which automatically discovers an execution behaviour
model by mining execution logs. Approaches like this that gather information
automatically instead of necessitating manual definition are crucial with growing
complexity and dynamics of distributed systems.

These works show that for research on closing the complexity gap between
cloud environments and their monitoring is ongoing. However, these solutions are
not yet widely adopted in practice. When adopting new technology to industry
application, non-functional requirements such as usability, configurability and
adaptability increase in importance.

In the following preceding surveys in the context of monitoring and observ-
ability (2) are described.

Hasselbring

Preceding surveys (2)

Monitoring Observability

Sun et al.

Johng et al.

Current approaches to bridging the gap (1)

Distributed system complexity monitoring capability

Gupta et al. Alhamazani et al.

Sfondrin et al. Natu et al.Yang et al. Lin et al.

Gamez-Diaz et al.

Heger et al.

Fig. 1. Overview on the related work

Aceto et al. [1] conducted a comprehensive cloud monitoring survey in 2013,
detailing motivations, then-current tool support and open challenges. They iden-
tified the need for scalability, robustness and flexibility. The survey correctly pre-
dicted the rise in complexity and dynamics of cloud architectures and propose
actions to handle these such as root-cause-detection, filtering/summarizing of
data, and cross-layer/cross-platform monitoring. Similarly, another early survey
of cloud monitoring tools by Fatema et al. [5] identifies capabilities such as scal-
ability, robustness, interoperability and customizability to find a gap between
necessary capabilities and existing tools.

On Observability and Monitoring of Distributed Systems 39

Sfondrin et al. [21] conducted a survey of 62 multinational companies on
public cloud adoption. While use of public cloud infrastructure is on the rise,
barriers like security, regulatory compliance, and monitoring remain. Regarding
monitoring, the survey has shown that half of the companies rely solely on their
cloud providers’ monitoring dashboard. Participants noted a crucial need for
quality of service monitoring integrated with their monitoring tool.

Similarly, Knoche and Hasselbring [13] conducted a survey of German experts
on microservice adoption. Drivers for microservice adoption are scalability, main-
tainability and development speed. On the other hand, barriers to adoption are
mainly operational in nature. Operations department resist microservices due to
the change in their tasks. On the technical level, running distributed applications
prone to partial failures and monitoring them is a significant challenge.

Gamez-Diaz et al. [6] performed an analysis of RestFUL APIs of cloud
providers, identifying requirements for API governance and noting a lack of
standardization.

While not an empirical study, Natu et al. [16] show monitoring challenges of
holistic cloud applications. Scale and complexity of applications is identified as
a main challenge. Related to observability, incomplete and inaccurate views of
the total system as well as fault localization are other identified challenges.

Heger et al. [9] give an overview of the state-of-the-art in application per-
formance monitoring (APM), describing typical capabilities and available APM
software. They found APM to be a solution to monitoring and analyzing cloud
environments, but note future challenges in root cause detection, setup effort and
interoperability. APM cannot be understood as a purely technical topic anymore
but needs to incorporate business and organizational aspects as well.

Alhamazani et al. [2] give an insight into commercial cloud monitoring tools,
showing state-of-the-art features, identifying shortcomings and, connected with
that, future areas of research. Information aggregation across different layers
of abstraction, a broad range of measurable metrics and extensibility are seen
as critical success factors. Tools were found to be lacking in standardization
regarding monitoring processes and metrics.

Comparing preceding surveys regarding monitoring and observability (2) to
our work, these surveys focus either on drivers and challenges or on available
solutions (in science and commercial tools). In comparison, our study takes a
holistic approach. We provide empirical industry-focused research with in-depth
interviews, where we combine different perspectives in order to find out which
emerging solutions and strategies are used by companies and to what degree
they overcome the existing challenges. This is necessary to gauge the adoption
of new technologies in practice. Moreover, it comprises which challenges these
technologies address and which challenges emerge in adoption or are unsolved.

3 Scope and Research Method

Study Design: To structure our research, we applied the five-step case study
research process as described by Runeson and Hoest [19]. Our research objective

40 S. Niedermaier et al.

can be defined as follows: Analysis of the contemporary challenges of monitor-
ing and operating distributed systems for the purpose of deducting requirements
and mapping existing solutions and strategies from the viewpoint of different
stakeholders of monitoring systems and tool providers. Table 1 summarizes the
research questions:

Table 1. Overview of the research questions

RQ1 Which contemporary challenges exist in monitoring distributed systems?

RQ2 Which requirements do stakeholders have for a monitoring and
observability concept for distributed systems?

RQ3 What are technical and organizational strategies and solutions in
companies?

To answer our research questions, we applied the qualitative method of semi-
structured interviews. They allow us to explore the individual challenges stated
by the participants and to analyze the underlying relations by providing a basic
agenda. At the same time, interviews enable dynamic interaction based on the
background of our experts and their responses [22].

In total, we conducted 28 semi-structured interviews of 45 min on average.
The interviews were completed between February and April 2019. To achieve a
balanced distribution of interviewees, first, we considered users using monitoring
solutions and tool providers offering monitoring solutions (see Table 2). Second,
we ensured that solution providers and users are related to different domains
and focus to get diverse perspectives of monitoring solutions. Apart from the
tool providers, we covered further domains such as software and IT service, IoT,
telecommunication, insurance, and IT consulting. The users have been selected
from different points of view in the application stack and different roles like
DevOps and support engineers along with product owners and managers. The
recruiting of participants was achieved by personal industry contacts as well as
by acquisition on developer conferences.

Preparation for Data Collection: To conduct the semi-structured interviews,
we created an interview guide [17]. The guide is structured in different thematic
blocks to group the individual questions. The interviewees were pre-informed
about scope and procedure of the interviews. Besides the information to treat
their transcripts as confidential, we asked to record the interviews to create
transcripts if permitted. Moreover we informed them about the possibility to
review their transcript to assent to the information given in the interview.

Data Collection: From the 28 interviews, 15 were conducted ‘face to face’ and
13 via remote communication. The interviews were held in German, except for
two interviews in English. While 21 interviews have been audio recorded, for
the remaining interviews two researchers created protocols to reduce researcher
bias. During the interviews, we loosely followed the interview guide accordingly

On Observability and Monitoring of Distributed Systems 41

Table 2. Overview about participants and companies

CID Domain Staff EID Expert role Focus

C1 IoT >100T E1 Product Owner APM Solution

E2 Lead Architect Cloud Infrastructure

E3 Product Owner Connectivity Backend

E4 Service Manager Support and Operation of
IoT Solution

E5 Cloud Architect IoT Backend

C2 IoT 100-1T E6 IoT Consultant/Architect Consulting of IoT Projects

E7 Open Source Developer Cloud Service

E8 DevOps Engineer Cloud Service

E9 DevOps Architect Cloud Service

E10 Product Owner Cloud Service

E11 Project Lead IoT Project

C3 IoT 10T-100T E12 Manager IoT Platform

C4 IoT 10T-100T E13 IoT Solution Owner Cloud Service

C5 Telecom 10T-100T E14 Product Owner Monitoring Platform

C6 Software and
IT Services

>100T E15 Former Chief Technology
Officer

Software Development and
Operations Tool

E16 Technical Lead
IT-Operations

Operation Solution and
Event Management

C7 Applied
Research

100-1T E17 DevOps Engineer Insurance Service

E18 Developer Front- and Backend of
Fleet Management

C8 Tool Provider 1T-10T E19 Sales Engineer APM Solution

C9 Tool Provider 10T-100T E20 Strategic Officer Infrastructure Monitoring
Tool

E21 Support Infrastructure Monitoring
Tool

C10 Tool Provider 100-1T E22 Developer and Architect Infrastructure Monitoring
Tool

C11 Tool Provider 100-1T E23 Developer Monitoring Tool

C12 IT Service
Insurance

1T-10T E24 Divisional Director
Monitoring

Performance-Monitoring

C13 IT Consulting 1-25 E25 Developer and Architect IT Consulting Monitoring

C14 IT Consulting 100-1T E26 Chief Executive Officer Business Process
Monitoring

C15 Software and
IT Services

10T-100T E27 Solution Architect Open Source Technology
Provider

C16 Software and
IT Services

10T-100T E28 Developer Cross-Stack
Instrumentation for
Monitoring and Debugging

*CID = Company ID, *EID = Expert ID

42 S. Niedermaier et al.

to the answers and to the participants’ focuses. After manually transcribing the
interviews, we sent the transcripts to the participants for review, where they had
the possibility to correct unintended statements or remove sensitive data.

Data Analysis: For the analysis of the individual transcripts, we encoded the
material to extract important categories regarding our research goal. For this
purpose, we followed Mayring’s approach of qualitative content analysis [15].
We openly encoded the transcripts by applying inductive category develop-
ment, where we analyzed the transcripts on sentence level. Usually, one code
was assigned to different sentences in a transcript and furthermore one sentence
could be assigned to more than one code. During analysis we formed hierarchies
of codes and sub-codes. In several iterations, the codes were revised, split or
merged.

4 Results and Discussion

This section presents the aggregated findings from the interview analysis with
the focus on our research questions defined in Sect. 3. We created a hierarchy
of categories as an abstraction of the codes defined during the analysis of the
transcripts. This paper presents the top-level hierarchy of the identified chal-
lenges, requirements, and solutions. In the following, we describe the different
codes generated according to the research questions and illustrate the answers
given for the codes with some exemplary statements from the experts (see EID
Table 2).

4.1 Challenges

The first research question (RQ1) aims to understand the challenges our partic-
ipants deal with in the field of distributed systems and which implications are
further related with these challenges. We identified a set of nine challenges (Cx)
and their corresponding implications which are described in the following.

Increasing dynamics and complexity (C1): The emerging trend of microser-
vice architectures, cloud deployments, and DevOps increase the complex-
ity of distributed systems. While the individual complexity of a microser-
vice is reduced, the complexity of the interdependencies of microservices and
the dynamic components within a distributed system cause more operational
effort. This dynamic environment is not manageable manually and traditional
approaches such as Configuration Management Database (CMDB) [4] are not
sufficient anymore: “CMDB are often based on polling and get the state of the
system once a week. In one week, a lot has happened in the cloud system, which
a CMDB can not cover.” (E16). This issue does not only include cloud native
microservice architectures but also historically grown systems, where an overview
of service the dependencies is missing. In addition, some participants stated an
underestimation of the dynamic complexity of their systems. This caused that

On Observability and Monitoring of Distributed Systems 43

in case of a problem (especially for the diagnosis of context dependent or non-
permanent faults) the average duration for detection and recovery took too long.

Heterogeneity (C2): Todays distributed systems consist of several layers: from
application to infrastructure technologies like containers, VMs or even server-
less environments. These layers are developed and operated by heterogeneous
teams. Moreover, as stated by our participants, systems often contain legacy
and modern service technology in parallel, where additional tooling is neces-
sary to integrate legacy components. With regard to multi-tenant systems, some
participants experienced a noisy-neighbour-effect, where one tenant monopolizes
resources and negatively affect other tenants on the same infrastructure. How-
ever, in this case the participants were not able to separate views among different
tenants. In terms of technological heterogeneity and speed of innovation, the par-
ticipants had divisive opinions. For distributed systems developer can choose the
most suitable technology on the one hand, but on the other hand, the techno-
logical heterogeneity complicates the consistent application of monitoring tools.
Furthermore, other participants have criticized the speed of innovation and some
require a slow-down of technology hypes by defining regulations. The heterogene-
ity in these different areas is leading to a missing overview of the overall system,
it’s individual components and the requests processed.

Company culture and mindset (C3): Most of the participants believe that
culture and mindset aspects referring to monitoring are essential. Several even
stated that this aspect is more challenging than technical aspects. Furthermore,
some interviewees also mentioned that a holistic transparency to apply monitor-
ing is often not intended. This gives for instance rise to danger of being blamed
in retrospect for a failure. Often, the participants described that teams do not
have an overview outside of their own area, for example of the business context
of their service. This caused isolated monitoring and operation concepts without
context to customer solutions and related requirements. Overall, collaboration
and communication between teams and the perspective from which they develop
and operate their services are often weakly pronounced. This illustrates the fol-
lowing statement (E22): “It is usually not the ignorance or the inability of people
in the company, but the wrong point of view. Often the developers are so buried
in their problem environment, so engrossed in their daily tasks that they can no
longer afford to change themselves.”

Lack of central point of view (C4): Participants stated limited possibilities
in terms of visibility and dependencies to other services and teams. This results
in turn in a missing system-wide overview. E6 describes for instance such situa-
tion: “If it comes to problems such that there are many user complains because
the system is not working properly, everyone went for troubleshooting. Due to
the lack of an overview, it was difficult to diagnose the faults. It took several
escalation rounds and teleconferences to discuss where the fault is located.” At
the same time, we identified a lack of a responsible persons in charge to gener-
ate overall views and thus to enable individual teams to collaborate. Another
point mentioned is the missing transparency about the impact on availability and

44 S. Niedermaier et al.

performance of integrated components from 3rd parties which are often part of a
distributed system. Due to the fact that for such components service parameters
are usually not accessible, blind spots remain and prevent an overall monitoring.

Flood of data (C5): Participants mentioned the overwhelming flood of data
coming from the distributed system, which is constantly in change. The identi-
fied challenge is to create meaningful conclusions from customer alerts and how
to prioritize them. This shows the following statement (E17):“The volume and
amount of alerts are currently challenging, we are not able to prioritize the cus-
tomer impacting ones.” Moreover, for problems, where one request has to be
handled by multiple components that are developed by independent teams, it is
very complex to identify the location of faults, including the responsibilities to
fix it. In more detail, many participants described the complexity in correlation
of metrics and timestamped logs from multiple services which is often accompa-
nied by insufficient metadata. In addition, participants stated an absence of a
comprehensible dashboard that enables navigable views through the data.

Dependency on experts (C6): The process of fault detection and diagnosis,
which are often manually performed, seems to be highly dependent on knowledge
of individual experts about design and behaviour of the systems. As the following
statement from E11 illustrates, these experts appear as a ‘source to debug’:
“This form of troubleshooting depends highly on the expert knowledge of the
team members [...]. Mostly, the knowledge about the structure of the service is
currently more crucial than a monitoring which specifically indicates ‘search at
this point’.” This challenge again outlines the missing systematic development
of monitoring systems in supporting humans in fault detection and diagnosis.

Lack of experience, time and resources (C7): Many participants described
the challenge of mastering microservice technologies and the DevOps paradigm,
which require additional effort for operation, but at the same time, skilled
DevOps engineers are missing. Especially, the short time to market results in
a prioritization of features and in a disregard of non-functional requirements like
availability or performance. Most participants mentioned the limited time as
reason for an iterative, often reactive development of system observability and
monitoring.

Unclear non-functional requirements (C8): According to the interviewees,
non-functional requirements like availability and performance, also referred to
as Quality of Service (QoS) or Service Levels (SL), are often not or insufficiently
defined and controlled. In addition, some participants commented that teams
are often not aware of their major QoSs as well as of their importance in the
context of what needs to be measured and monitored. The related reasons for
that is due to missing or unprecise customer requirements or due to the lack
of awareness regarding the importance of non-functional requirements (E6): “It
is very important to think about service levels or KPls and to define them in a
certain way. This is often underestimated. In many projects it can be determined
that the project managers only have a purely technical view of the system without
being aware of the availability and performance that is needed.” Another reason

On Observability and Monitoring of Distributed Systems 45

we identified is the complexity to define overall availability and performance
goals, which then have to be converted into goals for component services. This
is further intensified by time constraints that lead to reactive implementations
as stated in the following statement (E6):“Many development teams are under
pressure to bring the service to market as quickly as possible. So the teams usually
start developing without specific customer requirements and end up in produc-
tion without any systematically derived requirements.” The lack of requirement
definitions leads in turn to missing feedback loops (E4): “ [...] where the quality
control in the service provision is missing”.

Reactive implementation (C9): As stated in several interviews, the unclear
requirements and the lack of sufficient indication and control often leads to fail-
ure. In these cases, the development of monitoring was triggered by an failure
in production, where the teams recognized a lack of observability to diagnose
customer failure or even to detect them. In fact, customers often received inad-
equate service levels. In several examples, the teams were occupied only with
troubleshooting, which in turn resulted into ad-hoc solutions, instead of creating
systematically derived monitoring solutions. Moreover, we identified that teams
run into same problems, where labor-intensive development of monitoring for
individual services are created and synergy effects of sharing knowledge, exper-
tise and good practices are not used. A further reason for reactive implementa-
tion is that during development, the developers did not have enough knowledge
about the complex interactions in production and therefore blind spots remained
until operation.

4.2 Requirements and Solutions

Regarding RQ 2 and RQ 3, the following requirements (Rx) and possible solu-
tions (Sx) are listed. Rx and Sx have been extracted from the interviews. The
mapping of the previous described challenges, the corresponding requirements
as well as the solutions are shown in Fig. 2.

Holistic approach (R1): Along with C4, the interview participants stated that
they characterize monitoring “ [...] as holistic problem and try to come up with
a holistic approach to ensure observability [...]” (E28). Therefore, it is necessary
to enable collaboration and communication along different system layers and
teams. We worked out that a common and central view is required which assists
the implementation of a system-wide diagnosis and fault detection. One solu-
tion stated by interviewees is an event management system (S1), also referred
as ‘manager of managers’, that enables an overall view of the system state. This
allows to correlate events for event reduction. Other solutions mentioned are
topology managers and architecture discovery modeling (S2). These enable to
dynamically map transactions to underlying infrastructure components. More-
over, distributed tracing (S3) was emphasized as solution, which records the
execution path of a request at runtime by propagating request IDs [20]. This
solution enables to capture causal relationship among events on the execution
path. It allows to create a “ [...] bird’s eye view, to find out what is going on with

46 S. Niedermaier et al.

C1 C2 C3 C4 C5 C6 C7 C8 C9

Dynamics and
complexity Heterogeneity Culture and

mindset
Lack of central
point of view Flood of data Dependency

on experts

Lack in
experience,

me and
resources

Unclear non-
func onal

requirements

Reac ve
implementa on

R1 Holis c approach

R2 Management from business
& user experience view

R3 Context propaga on

R4 Defini on of core metrics
from customer centric view

R5 Governance

R6 Collabora on model

R7 Monitoring pla orm

R8 Monitoring mindset

R9 New quality of operator

R10 Detec on of normal and
abnormal pa

R11 Automa za on

R12 Monitoring from the start

R13 All-in-one solu on

R14 Tool capability

Synthe c probing (S5),
APM (S6)

SLO, SLI (S8)

SRE (S4)

SR
E

(S
4)

SL
O

, S
LI

 (S
8)

Central group
of experts (S9)SL

O
, S

LI

(S
8)

SLO (S8),
excep on policies

Metadata
(S7)

Adaptors (S13) Out of the box
(S12)

SLO, SLI (S8) SLO, SLI (S8)

SRE (S4)

Event management (S1),
AI (14)

Bots (S15), agents (S16),
AI (S14) Bots (S15), agents (S16), AI (S14)

SLO, SLI (S8) SLO, SLI (S8)

Distributed
tracing (S3)

Distributed tracing
(S3), AI (14)

Distributed tracing (S3),
metadata (S7)

Event management (S1), topology
manager (S2), distributed tracing (S3)

SRE (S4)

SLO, SLI (S8)

SRE=Site Reliability Engineering; SLO=Service Level Objec ve; SLI=Service Level Indicator;
AI=Ar ficial Intelligence; APM=Applica on Performance Management

Available solu on(s) No solu on(s) needed

Fig. 2. Overview of challenges, requirements and solutions

a user request [...]” (E28). Distributed tracing can also be applied for diagnosis
of 3rd party components where source code is not available. Hence, the par-
ticipants mentioned that the instrumentation in order to propagate trace IDs
through individual services, developed by different teams, is at the moment not
consistently assured.

Management from business and user experience view (R2): Several
participants described the trend moving from isolated monitoring of individual
services to a context dependent view from the perspective of a customer or
business application. In addition, some stated to apply Google’s approach of Site
Reliability Engineering (SRE) (S4) (E28): “With our SRE approach in mind, we
care about the user experience and these are the golden paths we want to improve.
I do not necessarily care about what is going on underneath, as soon as the user
is not experiencing any errors, latency or unlikely indicators.” SRE [3] takes
aspects of software engineering and applies them to infrastructure and operations
problems with a focus on customer experience. Moreover, several interviewees
stated to perform synthetic probing. This is known as end-to-end monitoring
(S5) that enables emulation of real user behaviour to measure and compare its
availability and performance. In general, many participants referred to apply
Application Performance Management (APM) (S6) which comprises methods,
techniques, and tools to continuously monitor the state of a system from an
application-centric view. The APM allows diagnosing and resolving especially
performance-related problems.

On Observability and Monitoring of Distributed Systems 47

Context propagation (R3): To provide a holistic approach and to be able
to detect customer impacting events context propagation is needed. The system
propagates relevant context in form of metadata, such as IDs or tags along the
execution flow of a request through services. Alongside with distributed tracing
(S3), adding metadata (S7) to metrics and logs are further examples. This helps
to localize the underlying fault in the flood of data generated by the systems
by providing contextual information (E28):“With context propagation, you can
easily point to the root cause of the issues. For example, there is some additional
latency and you can see that this other particular database call is causing the
additional latency. You can automatically inspect and ping the right time and
component [...]”.

Definition of core metrics from customer centric view (R4): A way to
systematically define metrics for individual services is the concept of establishing
service level metrics. Some participants apply Service Level Objectives (SLO)
and Service Level Indicators (SLI) (S8) as part of a SRE approach. While SLOs
describe business objectives by defining the acceptable downtime of a service
from a user perspective, the SLI in turn enables to tie back metrics to the business
objectives. The interviewees express an essential need for a systematic definition
of these metrics, but at the same time they struggle with their implementation
(E28): “It is a lot of work to figure out the right SLO, which is a very long process.
Not everybody is interested in this. [...] It is hard to introduce this concept at a
later time. This is creating tension in teams, because they are saying: “This is not
what you have promised us”. But the problem is, if nobody actually formulated
what the promise was.”

Governance (R5): To foster the previous requirements, several participants
outlined the need for a governance that defines a strategy including roles,
responsibilities, processes and technologies for monitoring and observability. This
should comprise clear formulations of a minimal set of indicators that have to
be monitored from every service. A further requirement is to claim observabil-
ity of a service as an acceptance criteria for development and operation. The
participants mentioned that developing and applying governance needs several
iterations and has to be continuously adapted in terms of the company strat-
egy. Especially for services running in the cloud, guidelines have to be defined
because “Cloud is standardization” (E16). Concurrently some participants crit-
icized the introduction of tooling standards and a slow-down of development by
oversized governance regulations. Some companies already have an own depart-
ment and group of specialists with the central responsibility of monitoring (S9).
To provide a strategy, participants mentioned to align their governance to SRE
principles and guidelines (S4), which in some examples already evolved into a
self-regulating system. A commonly mentioned issue addresses the creation of
community of a practice (S10) to share good practices and lessons learned.

Collaboration model (R6): Some participants described a collaboration
model as an essential base for communication and efficient diagnosis processes
along different teams. As part of that, exception policies and taxonomies for

48 S. Niedermaier et al.

anomalies (S11) need to be defined. To efficiently work together during diag-
nosis metadata (S7), capturing the causal relationships and providing context
are needed. Moreover, some participants stated that a (E28): “ [...] common lan-
guage, called SLO and SLI” (S8) is base for their team collaboration.

Monitoring platform (R7): Several interviewees required a unified monitoring
platform to increase operational efficiency. This includes out of the box (S12) and
standardized components which can be used modularly and are customizable to
specific needs of the individual services. Monitoring and its default setup also
needs to enable the “democratization of data” (E19), for example to offer a
standard API to deploy adaptors (S13) for different technologies. This default
can therefore “ [...] create a kind of governance that is not strict.”(E20).

Monitoring mindset (R8): The prerequisite is to increase the importance
of observability and monitoring of distributed systems. Without an increasing
awareness, isolated ad-hoc solutions will remain, which do not enable sufficient
service provisioning and diagnostics. One mentioned solution to increase the
importance of non-functional attributes, like availability and performance, can
be reached by setting and controlling SLOs (S8). Thereby, stability and feature
development can be controlled from management perspective. Further, the par-
ticipants outlined a need to equalize functional and non-functional requirements.

New quality of operator (R9): Many participants mentioned a lack of aca-
demic education of the operators. Accordingly, operators need to increase their
skills especially of being able to cope with automation tasks. Achieving this, the
company has to increase the awareness of monitoring and to promote proper
responsible operators. Some participants highlighted the need for Site Reliabil-
ity Engineers (SRE) (S4), who are able to work on operation and infrastructure
tasks as well as software engineering aspects.

Detection of normal and abnormal patterns (R10): Nearly all intervie-
wees spoke about anomaly detection as an important task for monitoring to
differ between what is normal and abnormal behaviour. Different solutions are
mentioned, such as event management (S1), to correlate events from different
parts of the system. For correlating events, predictive analytics and artificial
intelligence (AI) (S14) are in use. Some participants discussed the problem of
differentiating normal behaviour of a service. In this context, some participants
considered distributed tracing (S3) to indicate performance measures and iter-
atively develop guarantees for their services by setting service levels. The most
advanced method for anomaly detection is AI (S14). Almost all participants
appreciated its enormous potential to master the complexity and the flood of
data generated by distributed systems. However, many interviewees pointed out
that sufficient preconditions for the use of AI are still missing in practice. Primar-
ily, the right data has to be collected, the quality of data has to be ensured, the
context needs to be propagated and data has to be stored centrally. Concerns in
terms of the cost value ratio of AI approaches and their reliability remain (E28):
“I don’t know if we will ever have a solution that we can rely on confidently”.

On Observability and Monitoring of Distributed Systems 49

Automation (R11): The increasing dynamics and complexity within dis-
tributed systems, caused by the upcoming microservice architecture and shorter
lifecycles of components, is not manually controllable as a whole any more.
Therefore, automation is indispensable to observe and monitor a distributed
system. Especially recurring problems can be automatically solved and basic
monitoring techniques can be automatically implemented. Bots (S15) and agents
(S16) can realize automation, as they act by themselves. In combination with
AI (S14), bots and agents can be more efficient and more precise in their tasks
such as collection and analysis of traffic data.

Monitoring from the start (R12): Monitoring is a prerequisite for any devel-
opment and operation. Many interviewees indicated to consider monitoring from
the start. It should be the part of any design. Some participants quote to inte-
grate SLOs and SLIs (S8) “ [...] in the design time. As soon as there is a new
service you have a section in the design doc., where you can see these are the
promises, they may change over time to reduce toil. We start the conversation
very early on.” (E28). This might enhances the awareness for monitoring and
can change the company culture towards a monitoring mindset. While IT depart-
ments should see monitoring as an integrated part, the management needs to be
the key driver to implement such a mindset.

All-in-one solution (R13): Solutions covering all monitoring functionalities in
one solution were mentioned in the interviews. However, the reality shows that
such solutions do not exist. In the best case, the market offers solutions which
provide basic functionalities for monitoring such as performance measurement
or logging. In more detail, they often provide the capability to easily expand the
solutions, for instance by combining and integrating other software solutions.
This can also comprise new standards, technologies and other already existing
solutions. Hence, all-in-one solutions represent in this context a combination of
several solutions and technologies. Nevertheless, to realize such an encompassing
solution, it needs to avoid or substitute isolated solutions with standard monitor-
ing software, open standards and modern technologies to reach an encompassing
solution in the future.

Tool Capabilities (R14): In this paragraph, we summarized different tool
capabilities, mainly non-functional requirements, mentioned by the participants.
An often stated requirement is real-time monitoring, where changes and impacts
are being directly monitored without delay. Therefore, the necessary information
can be provided for appropriate response (e.g. real-time alerts to reduce reac-
tion time). A further requirement addresses the use of open standards (e.g. JSON
or standard monitoring functionalities), which is motivated by being adaptable
and flexible due to new technologies and standards. This also fosters the main-
tainability and portability of monitoring solutions by being easily transferable
to other distributed systems. Associated with that, scalability is of a particu-
lar importance to cope with large and dynamic distributed systems. While the
management of the dynamics within a distributed system needs to be addressed,
reliability and availability of the monitoring is highly demanded. For example,

50 S. Niedermaier et al.

health functionalities, such as the current status of the system, needs to be avail-
able all the time. Moreover, tools need to support multi-tenant management.
This requirement specifically addresses the ability of tenant specific views and
individual permission management. A further mentioned aspect is the impor-
tance of the security of the monitoring tools itself. The more agents are used
and the higher the integration depth is, the more ‘backdoors’ might be open and
the higher the possible negative impact could be. Thus, security aspects such as
prevention actions need to be realized. A minimally invasive approach needs to
be followed, where the changes in an existing system are limited. This might be
opening just a minimum of relevant ports. In addition, a careless deployment and
configuration of monitoring agents have been mentioned as potential problems
which might causes instability and an increasing network load.

5 Threats to Validity

For internal validity, there is a risk that the participants did not state the true
situation or their opinion. However, this risk is rather small, because we were
ensuring the anonymity of the interviews and the participants seemed not to be
worried to talk about negative aspects of their product or company. Another
threat to internal validity are potentially misunderstood concepts used within
the questions. Therefore, we provided additional explanations for important con-
cepts. Otherwise, we asked questions to clarify terms used by the participants
that could have a domain or company specific meaning. To reduce researcher
bias and therefore to increase the interpretation validity, every transcript was
reviewed by at least one additional researcher. Furthermore, our participants
had the chance (and took it) to adjust statements in their transcript that were
incorrect, indistinct or contained sensitive data.

To increase external validity, we asked participants not exclusively based
in Germany but also participants coming form international companies with
diversity in terms of domain and size. Additionally, with our participants we are
covering different roles, coming from different layers of the application stack as
well as including providers of monitoring solutions and consultants advising com-
panies and teams in integrating monitoring solutions. Therefore, it was possible
to generate an overall view of the complex relations in terms of technical and
organizational aspects leading to challenges as well as requirements and solu-
tions. Still, as we performed qualitative research, we do not claim our results to
be generalizable.

6 Conclusion

Our research objective was to explore challenges, requirements and contemporary
good practices as well as solutions in terms of monitoring and observability of
distributed systems. Therefore, we conducted interviews with 28 software profes-
sionals from 16 organizations. We identified that monitoring and the observabil-
ity of distributed systems is not purely a technical issue anymore but becomes

On Observability and Monitoring of Distributed Systems 51

a more cross-cutting and strategic topic, critical to the success of a company
which offers services. Development and deployment paradigms of microservices,
DevOps and cloud are creating maximal independence and specialization result-
ing in isolated monitoring and observability solutions, not allowing to manage a
service from a customer or business centric view. Most companies have already
solutions and good practices in place, but in many cases they remain isolated
approaches due to siloed company structures. With reference to the findings of
the contemporary state of practice, we see a need for further work on good prac-
tices and real world-examples for aligning business goals with technical metrics to
break down silos and enable efficient development and operation. Furthermore,
researchers can take these results into account for designing industry-focused
methods.

References

1. Aceto, G., Botta, A., de Donato, W., Pescapè, A.: Cloud monitoring: a survey.
Comput. Netw. 57(9), 2093–2115 (2013)

2. Alhamazani, K., et al.: An overview of the commercial cloud monitoring tools:
research dimensions, design issues, and state-of-the-art. Computing 97(4), 357–
377 (2015)

3. Beyer, B., Jones, C., Petoff, J., Murphy, N.R.: Site Reliability Engineering: How
Google Runs Production Systems. O’Reilly Media Inc., Sebastopol (2016)

4. Colville, R.J.: CMDB or configuration database: know the difference (2006)
5. Fatema, K., Emeakaroha, V.C., Healy, P.D., Morrison, J.P., Lynn, T.: A survey of

cloud monitoring tools: taxonomy, capabilities and objectives. J. Parallel Distrib.
Comput. 74(10), 2918–2933 (2014)

6. Gamez-Diaz, A., Fernandez, P., Ruiz-Cortes, A.: An analysis of RESTful APIs
offerings in the industry. In: Maximilien, M., Vallecillo, A., Wang, J., Oriol,
M. (eds.) ICSOC 2017. LNCS, vol. 10601, pp. 589–604. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-69035-3 43

7. Gopal, M.: Modern Control System Theory, 2nd edn. Halsted Press, New York
(1993)

8. Gupta, M., Mandal, A., Dasgupta, G., Serebrenik, A.: Runtime monitoring in
continuous deployment by differencing execution behavior model. In: Pahl, C.,
Vukovic, M., Yin, J., Yu, Q. (eds.) ICSOC 2018. LNCS, vol. 11236, pp. 812–827.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03596-9 58

9. Heger, C., van Hoorn, A., Mann, M., Okanovic, D.: Application performance man-
agement: state of the art and challenges for the future. In: Proceedings of the 8th
ACM/SPEC International Conference on Performance Engineering (ICPE 2017).
ACM (2017)

10. IEEE: IEEE Standard Glossary of Software Engineering Terminology (1990).
https://ieeexplore.ieee.org/document/159342

11. Johng, H., Kim, D., Hill, T., Chung, L.: Estimating the performance of cloud-based
systems using benchmarking and simulation in a complementary manner. In: Pahl,
C., Vukovic, M., Yin, J., Yu, Q. (eds.) ICSOC 2018. LNCS, vol. 11236, pp. 576–591.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03596-9 42

https://doi.org/10.1007/978-3-319-69035-3_43
https://doi.org/10.1007/978-3-030-03596-9_58
https://ieeexplore.ieee.org/document/159342
https://doi.org/10.1007/978-3-030-03596-9_42

52 S. Niedermaier et al.

12. Kinsella, J.: The cloud complexity gap: making software more intelligent to
address complex infrastructure. https://www.cloudcomputing-news.net/news/
2015/jun/17/cloud-complexity-gap-making-software-more-intelligent-address-
complex-infrastructure/

13. Knoche, H., Hasselbring, W.: Drivers and barriers for microservice adoption–
a survey among professionals in Germany. Enterp. Model. Inf. Syst. Architect.
(EMISAJ)–Int. J. Conceptual Model. 14(1), 1–35 (2019)

14. Lin, J., Chen, P., Zheng, Z.: Microscope: pinpoint performance issues with causal
graphs in micro-service environments. In: Pahl, C., Vukovic, M., Yin, J., Yu, Q.
(eds.) ICSOC 2018. LNCS, vol. 11236, pp. 3–20. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-03596-9 1

15. Mayring, P.: Qualitative Content Analysis: Theoretical Foundation, Basic Proce-
dures and Software Solution (2014)

16. Natu, M., Ghosh, R.K., Shyamsundar, R.K., Ranjan, R.: Holistic performance
monitoring of hybrid clouds: complexities and future directions. IEEE Cloud Com-
put. 3(1), 72–81 (2016)

17. Niedermaier, S., Koetter, F., Freymann, A., Wagner, S.: Interview guideline on
observability and monitoring of distributed systems (2019). https://doi.org/10.
5281/zenodo.3346579

18. Picoreti, R., Pereira do Carmo, A., Mendonça de Queiroz, F., Salles Garcia, A.,
Frizera Vassallo, R., Simeonidou, D.: Multilevel observability in cloud orchestra-
tion. In: 2018 IEEE 16th International Conference on DASC/PiCom/DataCom/
CyberSciTech, pp. 776–784, August 2018

19. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research
in software engineering. Empirical Softw. Eng. 14(2), 131 (2008)

20. Sambasivan, R.R., Shafer, I., Mace, J., Sigelman, B.H., Fonseca, R., Ganger, G.R.:
Principled workflow-centric tracing of distributed systems. In: Proceedings of the
Seventh ACM Symposium on Cloud Computing, pp. 401–414. ACM (2016)

21. Sfondrini, N., Motta, G., Longo, A.: Public cloud adoption in multinational com-
panies: a survey. In: 2018 IEEE International Conference on Services Computing
(SCC), pp. 177–184, July 2018

22. Singer, J., Sim, S.E., Lethbridge, T.C.: Software engineering data collection for
field studies. In: Shull, F., Singer, J., Sjøberg, D.I.K. (eds.) Guide to Advanced
Empirical Software Engineering, pp. 9–34. Springer, London (2008). https://doi.
org/10.1007/978-1-84800-044-5 1

23. Sun, C., Li, M., Jia, J., Han, J.: Constraint-based model-driven testing of web
services for behavior conformance. In: Pahl, C., Vukovic, M., Yin, J., Yu, Q. (eds.)
ICSOC 2018. LNCS, vol. 11236, pp. 543–559. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-03596-9 40

24. Yang, Y., Wang, L., Gu, J., Li, Y.: Transparently capturing execution path of
service/job request processing. In: Pahl, C., Vukovic, M., Yin, J., Yu, Q. (eds.)
ICSOC 2018. LNCS, vol. 11236, pp. 879–887. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-03596-9 63

https://www.cloudcomputing-news.net/news/2015/jun/17/cloud-complexity-gap-making-software-more-intelligent-address-complex-infrastructure/
https://www.cloudcomputing-news.net/news/2015/jun/17/cloud-complexity-gap-making-software-more-intelligent-address-complex-infrastructure/
https://www.cloudcomputing-news.net/news/2015/jun/17/cloud-complexity-gap-making-software-more-intelligent-address-complex-infrastructure/
https://doi.org/10.1007/978-3-030-03596-9_1
https://doi.org/10.1007/978-3-030-03596-9_1
https://doi.org/10.5281/zenodo.3346579
https://doi.org/10.5281/zenodo.3346579
https://doi.org/10.1007/978-1-84800-044-5_1
https://doi.org/10.1007/978-1-84800-044-5_1
https://doi.org/10.1007/978-3-030-03596-9_40
https://doi.org/10.1007/978-3-030-03596-9_40
https://doi.org/10.1007/978-3-030-03596-9_63
https://doi.org/10.1007/978-3-030-03596-9_63

	On Observability and Monitoring of Distributed Systems – An Industry Interview Study
	1 Introduction
	2 Related Work
	3 Scope and Research Method
	4 Results and Discussion
	4.1 Challenges
	4.2 Requirements and Solutions

	5 Threats to Validity
	6 Conclusion
	References

