
Automating SLA-Driven API
Development with SLA4OAI

Antonio Gamez-Diaz(B), Pablo Fernandez, and Antonio Ruiz-Cortes

Universidad de Sevilla, Seville, Spain
{antoniogamez,pablofm,aruiz}@us.es

Abstract. The OpenAPI Specification (OAS) is the de facto standard
to describe RESTful APIs from a functional perspective. OAS has been
a success due to its simple model and the wide ecosystem of tools sup-
porting the SLA-Driven API development lifecycle. Unfortunately, the
current OAS scope ignores crucial information for an API such as its
Service Level Agreement (SLA). Therefore, in terms of description and
management of non-functional information, the disadvantages of not hav-
ing a standard include the vendor lock-in and prevent the ecosystem to
grow and handle extra functional aspects.

In this paper, we present SLA4OAI, pioneering in extending OAS not
only allowing the specification of SLAs, but also supporting some stages
of the SLA-Driven API lifecycle with an open-source ecosystem. Finally,
we validate our proposal having modeled 5488 limitations in 148 plans
of 35 real-world APIs and show an initial interest from the industry with
600 and 1900 downloads and installs of the SLA Instrumentation Library
and the SLA Engine.

1 Introduction

In the last decade, RESTful APIs are becoming a clear trend as composable
elements that can be used to build and integrate software [7,18]. One of the
key benefits this paradigm offers is a systematic approach to information mod-
eling leveraged by a growing set of standardized tooling stack from both the
perspective of the API consumer and the API provider.

Specifically, during the last years, the OpenAPI Specification1 (OAS), for-
merly known as Swagger specification, has become the de facto standard to
describe RESTful APIs from a functional perspective providing an ecosystem

1 https://github.com/OAI/OpenAPI-Specification.

This work is partially supported by the European Commission (FEDER), the Span-
ish Government under projects BELI (TIN2015-70560-R) and HORATIO (RTI2018-
101204-B-C21), and the FPU scholarship program, granted by the Spanish Ministry of
Education, Culture and Sports (FPU15/02980).
c© Springer Nature Switzerland AG 2019
S. Yangui et al. (Eds.): ICSOC 2019, LNCS 11895, pp. 20–35, 2019.
https://doi.org/10.1007/978-3-030-33702-5_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33702-5_2&domain=pdf
https://github.com/OAI/OpenAPI-Specification
https://doi.org/10.1007/978-3-030-33702-5_2


Automating SLA-Driven API Development with SLA4OAI 21

that helps the developer in several aspects of the API development lifecycle2.
As an example, from the API provider perspective, there are tools that aim to
automate the server scaffolding, an interactive documentation portal creation or
the generation of unit test cases; from the perspective of the consumer, there are
tools to automate the creation of API clients, the security configuration or the
endpoints discovery and usage [1,15,16].

However, as APIs are deployed and used in real settings, the need for non-
functional aspects is becoming crucial. In particular, the adoption of Service
Level Agreements (SLAs) [13] could be highly valuable to address significant
challenges that the industry is facing, as they provide an explicit placeholder to
state the guarantees and limitations that a provider offers to its consumers. For
example, these limitations (such as quotas or rates) are present in most common
industrial APIs [3] and both API providers and consumers need to handle how
they monitor, enforce or respect them with the consequent impact in the API
deployment/consumption.

In this paper, we address the challenge of SLA modeling and management in
APIs by providing the following contributions:

– SLA4OAI, an open SLA specification that is integrated with the OpenAPI
Specification joint with a Basic SLA Management Service (i.e., a minimum
definition of endpoints required for the SLA enforcing in the APIs) that can
be used to promote the vendor independence.

– A set of tools to support the different activities of the API development
lifecycle when it becomes aware of the existence of an SLA.

– An initial validation over 5488 limitations in 35 of real-world APIs show-
ing the expressiveness coverage and the potential evolution roadmap for the
specification.

The rest of the paper is structured as follows: in Sect. 2, we describe the
related work and motivate the need for our proposal. In Sect. 3 we describe in
brief words the OpenAPI Specification focusing on its extension’s capabilities. In
Sect. 4 we describe our SLA4OAI model proposal. In Sect. 5 we show the ecosys-
tem of tools that have been built around our proposal. In Sect. 6 we validate
our proposal by modeling 5488 limitations in 35 of real-world APIs. Finally, in
Sect. 7 we show some remarks and conclusions.

2 Motivation and Related Work

The software industry has embraced integration as a key challenge that should
be addressed in multiple scenarios. In such a context, the proliferation of APIs is
a reality that has been formally analyzed: in [14], authors performed an analysis
of more than 500 publicly-available APIs to identify the different trends in the
current industrial landscape. Specifically, regarding the documentation, there is
a clear trend with respect to the functional description of the service: during

2 https://openapi.tools.

https://openapi.tools


22 A. Gamez-Diaz et al.

the last years, the OpenAPI Specification has consolidated as a de-facto stan-
dard to define the different functional properties an API provides. For instance,
in [12], authors study on the presence of dependency constraints among input
parameters in web APIs in industry.

With such a consolidated market of APIs, non-functional aspects are also
becoming a key element in the current landscape. In [3], authors analyze a set
of the 69 real APIs in the industry to characterize the variability in its offerings,
obtaining a number of valuable conclusions about real-world APIs, such as: (i)
Most APIs provide different capabilities depending on the tier or plan of the API
consumer is willing to pay. (ii) Usage limitations are a common aspect all APIs
describe in their offerings. (iii) Limitations over API requests are the most com-
mon including quotas over static periods of times (e.g., 1.000 request each natural
day) and rates for dynamic periods of times (3 request per second). (iv) Offerings
can include a wide number of metrics over other aspects of the API that can be
domain-independent (such as the number of returned results or the size in bytes
of the request) or domain-dependent (such as the CPU/RAM consumption during
the request processing or the number of different resource types). Based on these
conclusions, we identify the need for non-functional support in the API develop-
ment life-cycle and the high level of expressiveness present in the API offerings.

From the perspective of the API development life-cycle, the lack of a standard
spec for non-functional aspects integrated with existing standards OpenAPI, pre-
vents the tooling ecosystem to grow and provide support advanced issues: as an
example, to support the API consumer, it could be possible to develop tools to
automate the generation of SLA-aware API clients able to self-adapt the request
rate to the API limitations; to support the API provider, it could be possible to cre-
ate of SLA-aware API testers enriching the habitual tests with information about
limitations in order to analyze the actual performance capabilities to decide the
maximum number of API consumers to be allowed with a certain SLA that explic-
itly states the limitations in their usage. We have analyzed the most prominent
academic and industrial proposals that aim to the definition of SLAs in both tra-
ditional web services and cloud scenarios in order to outline their scope and limita-
tions. Specifically, in Table 1, we have considered 7 aspects to analyze in each SLA
proposal, namely: F1 determines the format in which the document is written;
F2 shows whether the target domain is web services; F3 indicates if it can model
more than one offering (i.e., different operations of a web service); F4 determines
if it allows modeling hierarchical models or overriding properties and metrics; F5
shows whether temporal concerns can be model (e.g., in metrics); F6 indicates if
there exists a tool for assisting users to model using this proposal; F7 determines
if there exists a tool/framework for enacting the SLA.

Based on this comparison of the different SLA models, we highlight the follow-
ing conclusions: (i) None of the specifications provides any support or alignment
with the OpenAPI Specification; (ii) Most of the approaches provide a concrete
syntax on XML, RDF (some of them they even lack concrete syntax) and there is
no explicit support to YAML or JSON serializations. (iii) An important number
of proposals are complete, but others leave some parts open to being implemented
by practitioners. (iv) Besides the fact that a number of proposals are that aims to
model web services, they are focused on traditional SOAP web services rather than



Automating SLA-Driven API Development with SLA4OAI 23

Table 1. Analysis of SLA models

Name F1 F2 F3 F4 F5 F6 F7

SLAC [19] DSL ✓ ✓

CSLA [9] XML ✓ ✓

L-USDL Ag. [6] RDF ✓ ✓ ✝ ✓

rSLA [17] Ruby ✓ ✓ ✓ ✓

SLAng [10] XML ✓

WSLA [11] XML ✓ ✓ ✓

SLA* [8] XML ✓ ✓ ✓

WS-Ag. [2] XML ✓ ✓ ✓ ✝

✝ Supported with minor enhancements or modifica-
tions.

RESTful APIs. In this context, they do not address the modeling standardization
of the RESTful approach: i.e., the concept of a resource is well unified (a URL), and
the amount of operations is limited (to the HTTP methods, such as GET, POST,
PUT and DELETE). This lack of support of the RESTful modeling prevents the
approaches to have a concise and compact binding between functional and non-
functional aspects. (v) They do not have enough expressiveness to model limita-
tions such as quotas and rates, for each resource and method and with complete
management of temporally (static/sliding time windows and periodicity) present
in the typical industrial API SLAs. (vi) Most proposals are designed to model a
single offering and they mostly lack support to modeling hierarchical models or
overriding properties and metrics (F4); in such a context, they cannot model a set
of tiers or plans that yield a complex offering thatmaintains the coherence bymodel
and instead they rely on a manual process that is typically error-prone. (vii) finally,
the ecosystem of tools proposed in each approach (in the case of its existence) is
extremely limited and that aims to be solely as a prototype; moreover, they appar-
ently are not integrated into a developer community nor there is evidence of this
usage by practitioners in the industry.

In order to overcome the limitations of existing approaches, the main goals
of this paper can be summarized as follows: (i) An interoperable model fully-
integrated with leading API description language (OAS) to express the API
limitations. (ii) an initial ecosystem of tools to provide support to different parts
of the SLA-Driven API development lifecycle. (iii) validation of this model in
real-world scenarios to assess its expressiveness.

3 OAS in a Nutshell

In this section, we briefly present the OpenAPI Specification (OAS), consid-
ering its goals, structure and extension capabilities. OAS, formerly known as
Swagger, is a vendor-neutral, portable and open specification for the functional
deception of APIs. It is promoted by the OpenAPI Initiative (OAI), an open
source consortium hosted by The Linux Foundation and supported by a grow-
ing number of leading industry stakeholders, such as Google, IBM, Microsoft or



24 A. Gamez-Diaz et al.

Oracle, amongst others. Both API clients and vendors are able to benefit from
the formal definition using the OAS: from the clients’ point of view, they can use
any tool from the extensive ecosystem created around the OAI; conversely, from
the vendors’ point of view, they can generate interactive documentation portals,
create auto-generated prototypes and perform automatic API monitoring and
testing. Specifically, as a minimum content, an OAS document should describe a
set of aspects including API general information (such as title, description and
version), a list of Resources, Paths and Methods allowed, and set of Schemas
(following the JSON-schema specification) to identify the structure of the data
to be exchanged with the API (e.g., a resource structure). In order to have a
more concise description, it is possible to reuse definitions of schemes by means
of the $ref constructor as proposed in the JSON-schema standard. Comple-
mentary, API provider can include optional elements such as the different API
endpoints, where the API can be accessed. This is especially useful in scenarios
with different endpoints for development and production stages.

� �

1 openapi: 3.0.0
2 info:
3 title: Simple petstore API
4 description: ...
5 version: ...
6 x-sla: ./pets -plans.yaml
7 servers:
8 - url: ....
9 paths:

10 /pets:
11 get:
12 description: ...
13 parameters: ..
14 responses:
15 200:
16 description: pet response
17 content:
18 application/json:
19 schema:
20 $ref: "#/ components/schemas/pet"
21 post:
22 ...
23 components:
24 schemas:
25 pet:
26 title: pet model
27 ...

� �

Listing 1.1. RESTful API in OAS

� �

1 context:
2 id: plans
3 sla: ‘1.0’
4 type: plans
5 ...
6 infrastructure: ...
7 metrics:
8 requests:
9 type: integer

10 format: int64
11 description: #requests
12 resolution: consumption
13 ...
14 plans:
15 free:
16 pricing:
17 cost: 0
18 currency: USD
19 billing: monthly
20 quotas:
21 /pets:
22 post:
23 requests:
24 - max: 100
25 period: daily
26 rates:
27 /pets:
28 get:
29 requests:
30 - max: 2
31 period: secondly
32 scope: tenant
33 pro:
34 ...

� �

Listing 1.2. SLA written in
SLA4OAI

As an example, Listing 1.1 shows an OAS fragment from a basic RESTful
API that corresponds with a single endpoint (/pets) and two methods. Lines
9–22 describe the definition of the pet resource including the GET and POST
methods for retrieving and creating resources; specifically, line 11 starts modeling



Automating SLA-Driven API Development with SLA4OAI 25

the GET method with a description and the parameters that the request might
be able to handle and responses section (lines 14–20) describe the model of
a successful HTTP response (i.e., status code 200 ) returning a pet resource
conforming with the appropriate schema reference (line 20). Finally, in lines 24–
27, the data model (schema) of the pet object is being defined. A key feature
of the OAS is the capability of being extended with the definition of custom
properties starting with x-, paving the way for customizing or adding additional
features according to specific business needs. As an example, line 6 shows the
use of the x- extension point to include a reference to the SLA description of the
API following our proposal (c.f., Sect. 4).

4 Our Proposal

4.1 SLA4OAI Language

SLA4OAI3 is a language which provides a model for describing SLA in APIs in a
vendor-neutral way by means of extending the main specification. This proposal
is open for evolution based on the discussion with the community and other
partners of the OpenAPI Initiative, hosted by the Linux Foundation. For the
sake of completeness, always refer to the online version so as to have a complete
reference of the language.

The figure available online4 depicts an abstract syntax of an SLA4OAI
description. Starting with the top-level placeholder (denoted as SLA4OAI Doc-
ument in the figure) we can describe basic information about the context, the
infrastructure endpoints that implement the Basic SLA Management Service,
the metrics and a default value for quotas, rates, guarantees and pricing.

Context contains general information, such as the id, the version, the URL
pointing to the api OAS document, the type and the validity of the document;
in this context, the type field can be either plans or instance and it indicates
whether the document corresponds with the general plan offering or it corre-
spond with a specific SLA agreed with a given customer. The Metrics enables
the definition of custom metrics which will be used to define the limitations,
such as the number of requests, or the bandwidth used per request. For each
metric, the type, format, unit, description, and resolution should be defined.
The Plan configuration (configuration parameters for the service tailored for
the plan), availability (availability of the service for this plan expressed via time
slots using the ISO 8601 time intervals format), and the rest of the elements that
will override the default with plan-specific values: quotas, rates and guarantees,
pricing. In this context, it is important to highlight that the Plan section maps
the structure in the OAS document to attach the specific limitations (quotas or
rates) for each path and method. Specifically, after defining the configuration,
the availability, pricing, guarantees, the limitations quotas and rates can be mod-
eled; particularly, the limitations are described in the Limit with a max value

3 https://sla4oai.specs.governify.io.
4 https://isa-group.github.io/2019-05-sla4oai/files/sla4oai_diagram.png.

https://sla4oai.specs.governify.io
https://isa-group.github.io/2019-05-sla4oai/files/sla4oai_diagram.png


26 A. Gamez-Diaz et al.

that can be accepted, a period (i.e., secondly, minutely, hourly, daily, monthly
or yearly) and the scope where they should be enforced; as an extensible scope
model, we propose two possible initial values (tenant or account as default) cor-
responding with a two-level structure: a limitation or guarantee with a tenant
scope will be applicable to the whole organization while an account scope would
be applicable to each specific user or account (typically with a different API key)
in the organization.

Considering the features of the existing SLA proposals previously analyzed
and available in the online appendix, SLA4OAI is a proposal serialized using the
YAML/JSON syntax (F1) specifically designed for web services (F2), concretely,
RESTful APIs. It is able to model one or more offerings (F3) in a hierarchical
model (F4) since plans can override the default values for the limitations. Fur-
thermore, our proposal takes into account the temporality (F5), since each limi-
tation is scoped to a precise period of time and each plan has its own availability
information. Finally, as stated in following sections, SLA4OAI has a set of tools
for assisting users to write the model (F6) and an initial ecosystem of tools to
support parts of the development lifecycle (F7).

Let us consider the aforementioned example (as modeled in Listing 1.1) to be
extended with a basic SLA: as a provider, it would be useful to limit, on the one
hand, the number of requests a consumer is allowed to make in a static window
(quota) of 1 day depending on the plan purchased and, on the other hand, the
requests allowed to be made in a sliding window (rate), differing from GET and
POST methods to avoid the API saturation derived from abusive customers.
Specifically, Listing 1.2 illustrates the model in SLA4OAI of the limitations of
this example API: in lines 14–34 the free and pro plans are being modeled.
Focusing on the first, line 15 define a specific plan by its limitations quotas (lines
20–25) and rates (lines 26–32). For instance, a quota of 100 POST requests over
the resource /pets in a static window of 1 day is defined in lines 23–25. Conversely,
a rate of 2 requests per second is defined for /pets GET requests (lines 29–32).
Finally, note that line 4 indicates that this document is for describing plans.
Whenever a client accepts a specific plan, type field would become an instance
one. It is interesting to highlight the scope: tenant (line 32) in the rates for
the GET request represents a limitation for the whole consumer organization
affecting all the accounts of the organization, while the rest of the quotas and
rates are enforced on a default per-account basis.

4.2 SLA-Driven API Development Lifecycle

In spite of the fact that each organization could address the API development
lifecycle with slightly different approaches, a minimal set of activities can be
identified: a first activity corresponds with the actual Functional Development of
the API implementing and testing the logic; next a Deployment activity where
the developed artifact is configured to be executed in a given infrastructure;
finally, once the API is up and running, an Operation activity starts where the
requests from consumers can be accepted. This process is a simplification that
can be evolved to add intermediate steps (such as testing) or to include an



Automating SLA-Driven API Development with SLA4OAI 27

evolutive cycle where different versions are deployed progressively. In order to
incorporate SLAs in this process, we expand this basic lifecycle where both API
Provider and API Consumer can interact (as depicted in Fig. 1).

Developer Product
manager

Product
operator

API
provider

Functional
development

SLA
modeling

Operation

SLA
enactment

Deployment

SLA registry

Offer
analysis

Offer
selection Consumption

SLA instance

SLA
instrumentation

P
ro

vi
de

r

S
LA

-D
riv

en
 A

P
I D

ev
el

op
m

en
t L

ife
cy

cl
e

C
on

su
m

er

API
consumer

Consumer

Fig. 1. SLA-Driven API development lifecycle

Specifically, from the provider’s perspective, the Functional Development can
be developed in parallel with a SLA modelling where the actual SLA offer-
ing (type plans) is written and stored in a given SLA Registry. Once both the
functional development and the SLA modeling has concluded, the SLA instru-
mentation must be carried out, where the tools and/or developed artifacts are
parameterized so they can adjust their behavior depending on a concrete SLA
and provide the appropriate metrics to analyze the SLA status. Next, while the
deployment of the API takes place, a parallel activity of SLA enactment is devel-
oped where the deployment infrastructure should be configured in order to be
able to enforce the SLA before the API reaches the operation activity.

Complementary, from consumer’s perspective, once the provider has pub-
lished the SLA offering (i.e., Plans) in the SLA Registry, it starts the offer
analysis to select the most appropriate option (offer selection activity) and to
create and register its actual SLA (type instance); finally, the API Consumption
is carried out as long as the API is the Operation activity and its regulated based
on the terms (such as quotas or rates) defined in the SLA.

In order to implement this lifecycle, it is important to highlight that the SLA
instrumentation, SLA enactment and Operation activities should be supported
by an SLA enforcement protocol that aims to define the interactions for checking
if the consumption of the API for a given consumer is allowed (e.g., it meets the
limitations specified in its SLA) and to gather the actual values of the metrics
from the different deployed artifacts that implement the API.



28 A. Gamez-Diaz et al.

4.3 Basic SLA Management Service

TheBasicSLAManagementService (BSMS) is abasicnon-normativeAPIdescrip-
tion to provide basic support for the SLA enforcing protocol as motivated in the
SLA-Driven API development lifecycle (c.f., Sect. 4.2) and addresses the following
features: (i) Checking the current state of a given SLA (SLA Check). (ii) Reporting
metrics to calculate the current state of a given SLA (SLA Metrics). To this end,
thisBSMSproposal represents a descriptive interface that could be implemented in
different technologies and acts as a decoupling mechanism to the underlying infras-
tructure that actually provides support to the development lifecycle.

Moreover, the definition of a BSMS paves the way to define multiple SLA
enforcing architectures that could be selected depending on the performance or
technological constraints of a given scenario. Specifically, Figs. 2 and 3 represent
an overview of two different SLA enforcing architectures: on the one hand, the
Standalone enforcing define an SLA instrumentation as part of the API with a
direct communication with the SLA management infrastructure; on the other
hand, a Gateway enforcing relays on the front load balancer to connect with
the SLA management infrastructure so a potential set of API instances do only
provide the functional logic.

SLA Check SLA Metrics

Request
workload

API

1

2

3

4 5

6

Fig. 2. Standalone SLA enforcing arch.

SLA Check SLA Metrics

Request
workload API

API Gateway

APIAPI

1

2

3

4 5

6

Fig. 3. Gateway SLA enforcing arch.

In order to illustrate the interactions and behavior of each component imple-
menting (or interacting with) the BSMS, we will focus on the Gateway enforcing
architecture (See Fig. 3) as it is a more complete scenario:

1. Requests will pass through the API Gateway until they are directed to the
node that will serve it (step 1).

2. The API Gateway query the SLA Check component to determine if the
request is authorized to develop the actual operation based on the appropri-
ate SLA (step 2).

(a) If it is authorized, the actual API is invoked and the response is returned
(step 3).

(b) If it is not authorized, a status code and a summary of the reason (as
generated by the SLA check component) is returned (step 3).

3. After the consumption ends (step 4), the metrics are sent to the SLA Metrics
component (step 5). This component is in charge of updating the status of the
agreement with the new metrics introduced (step 6). This new information



Automating SLA-Driven API Development with SLA4OAI 29

could be processed to determine the SLA state that should be taken into
account in further requests.

In the following subsections, we overview the interface and the expected
behavior of the SLA Check and SLA Monitor components; a complete description
of the proposed API is available online5.

SLA Check. This component should support the verification process to decide
whether an API request can be satisfied based on the current state of its SLA.
In particular, it should provide two different endpoints:

– A query (GET ) operation over the /tenants path in order to locate the SLA
scope and the SLA id that should regulate the consumption based on a given
token (typically an API key sent by the consumer as a query or header
parameter). The SLA scope should determine the actual tenant (the con-
sumer organization that has signed the SLA) and the account (that belongs
to the consumer organization).

– A verification (POST ) operation over the /check path in order verify whether
a specific request can be done; specifically, it will respond true or false to notify
the provider if it is: (i) Acceptable to fulfill the request (positive case), or on
the contrary; (ii) Not acceptable and then, the request should be denied (neg-
ative case); in such a case, it could include optional information describing the
reason for the SLA violation. Concerning the HTTP status code, in a general
case, a negative response should correspond with standard 403 Forbidden;
if the denial reason is rate/quota limit enforcement, then the recommenda-
tion is to use 429 Too Many Requests and include rate limit information as
metadata into the consumer response to explain the denial of service: as an
example it could include the actual metric computation, the limit or a future
timestamp when the rate/quota will be reset for the given consumer.

It is important to note that, while a complete interaction with the SLA Check
component involves the invocation to both endpoints, in demanding scenarios,
a local API key cache can be introduced in order to avoid the first query over
the/tenants path.

SLA Metrics. This component should implement a mechanism for metric gath-
ering in order to support the analysis of SLA fulfillment. In particular, it should
provide a storage (POST ) operation over the /metric path in order to register
a certain metric. In addition to the actual metric value, as mandatory elements,
it should also include information about the metric context including the SLA
Scope, the SLA Id and the sender (i.e., the specific API instance or API Gateway
generating the metric).

The metrics can correspond with a standard set of well-defined domain-
independent metrics such as request count or response time, or domain-dependent
metrics such as a certain payload attribute (e.g., the size of a specific parameter).
5 https://sla4oai.specs.governify.io/operationalServices.html.

https://sla4oai.specs.governify.io/operationalServices.html


30 A. Gamez-Diaz et al.

Since metrics flow could be dense in the same scenarios a buffering can be
introduced; to this respect, the SLA Metric component should allow reception
of multiple metrics values in a single operation. Consequently, metrics can be
grouped in batches or sent one by one to fine-tune performance versus real-time
SLA tracking in each scenario.

5 Tool Support

The SLA-Driven API development lifecycle, depicted in Fig. 1 and explained in
Sect. 4.2, should be assisted by a set of tools during certain activities. Since we
seek to provide a fully-fledged language, we provide an initial working implemen-
tation of these tools [4]. Specifically, for the SLA modeling activity we present
the SLA Editor for hiding the complexity of the language to the end user. The
concrete implementation of the SLA instrumentation activity is provided in the
SLA Engine, an implementation of the Basic SLA Management Service, defining
the /metrics and /check endpoints. On the one hand, for the Standalone SLA
enforcing architecture, we support the SLA instrumentation and SLA enact-
ment activities with the SLA Instrumentation Library in a Node.js module; on
the other hand, for the Gateway SLA enforcing architecture, a complete SLA-
Driven API Gateway is provided as a service.

SLA Editor. In modeling tasks, supporting tools are commonly provided to the
users. In this scenario, we provide the SLA editor6, for the SLA modeling activ-
ity in the SLA-Driven API development lifecycle. SLA editor is a user-friendly
and web-based text editor specifically developed for assisting the user during
the modeling tasks, including auto-completion, syntax checking, and automatic
binding. It is possible to create plans (e.g., free and pro) with quotas and rates.
Clicking on the + sign, the user is able to select the path and method (previously
defined in the OAS document) for entering the value of the limitation. Note that
custom metrics can also be defined at the bottom, however, the calculation logic
is left open for a specific implementation.

SLA Engine. Whereas the BSMS (c.f., Sect. 4.3 defines the interaction flows
and the endpoints /check and /metric, a reference implementation should be
provided in order to properly carry out the SLA instrumentation activity in
the SLA-Driven API development lifecycle. The SLA Engine, thus, provides a
concrete implementation which also includes a particular way to handle SLA sav-
ing/retrieving tasks. Specifically, Monitor7 is an implementation of the Metrics
BSMS service and Supervisor8, of the Check service.

The Monitor service exposes a POST operation in the route /metrics for
gathering the metrics collected from other different services. It can collect a
6 https://designer.governify.io.
7 http://monitor.oai.governify.io/api/v1/docs.
8 http://supervisor.oai.governify.io/api/v1/docs.

https://designer.governify.io
http://monitor.oai.governify.io/api/v1/docs
http://supervisor.oai.governify.io/api/v1/docs


Automating SLA-Driven API Development with SLA4OAI 31

set of basic metrics and send them to a data store for aggregation and later
consumption. The metrics can be grouped in batches or sent one by one to
fine-tune performance versus real-time SLA tracking.

The Supervisor service has a POST /check endpoint for the verification of
the current state of the SLA for a given operation in a certain scope. For each
request, this service will evaluate the state of the SLA and will respond with
a positive or negative response depending on whether a limitation has been
overcome. In addition, this service also implements (outside the scope of the
BSMS) these additional endpoints: GET/POST /tenants, GET/POST /slas and
PUT/DELETE slas/<id> for managing both users (tenants and accounts) and
SLA4OAI documents themselves.

SLA Instrumentation Library. Despite the fact that the BSMS defines the
interaction flows between the endpoints, the concrete implementation of these
interactions is left open for the activities of SLA instrumentation and SLA enact-
ment of the SLA-Driven API development lifecycle. The tool that we present aims
to cover this lack in the Standalone SLA enforcing architectures. Specifically, we
present an SLA Instrumentation Library for Node.js9, which is a middleware (i.e.,
a filter that intercepts the HTTP requests and perform transformation if neces-
sary) written for Express, the most used Node.js web application framework. This
middleware intercepts all the inbound/outbound traffic to perform the BSMS flow.

Specifically, Monitor is an implementation of the Metrics BSMS service and
Supervisor, of the Check service, as explained in the SLA Engine section.

Once the API uses the SLA Instrumentation Library, a new endpoint /plans
is added. It creates a provisioning portal for clients to purchase a plan. Once
the customer purchases (or simply selects, in case of the free ones) a plan, this
customer will get an API-key, acting as a bearer token for HTTP authentication.

SLA-Driven API Gateway. A more transparent way to implement the inter-
action flows defined is the BSMS is achieved by using an SLA-Driven API Gate-
way10. We provide an open-source implementation for deploying SLA-Driven
API Gateways using any SLA Engine and supporting the SLA instrumentation
and SLA enactment activities of the SLA-Driven API development lifecycle in
a Gateway SLA enforcing architecture.

Particularly, we provide as a service, an online preconfigured instance (using
the aforementioned SLA Instrumentation Library) of an SLA-Driven API Gate-
way. API providers are only required to enter: (i) The real endpoint of their API;
(ii) A URL pointing to the SLA4OAI document. Once an API is registered, the
SLA-Driven API Gateway exposes a public and SLA-regulated endpoint, as well
as the /plans endpoint for the provisioning portal. Clients who have selected
a plan will get an API-key from the portal that will be as a bearer token to
consume the SLA-regulated API.

9 https://www.npmjs.com/package/sla4oai-tools.
10 https://gateway.oai.governify.io.

https://www.npmjs.com/package/sla4oai-tools
https://gateway.oai.governify.io


32 A. Gamez-Diaz et al.

6 Validation

In this section, we describe how we have evaluated our proposal. In particular,
the goal of the evaluation was to answer the following research questions:

RQ1: How expressive is our SLA4OAI model in comparison to real-world APIs’
SLAs We want to know whether the SLA4OAI model that we use is expres-
sive enough to model a wide variety of real-world SLAs and which are the
characteristics of the SLAs that we are not able to express.

RQ2: Which difficulties appear when modeling SLAs defined are expressed in nat-
ural language? All real-world APIs’ SLAs are expressed in natural language.
Therefore, before checking their limitations, it is necessary to formalize them.
With this question, we examine the problems that may appear in this step.

RQ3: What is the reception of our SLA4OAI model and tools in the community?
Besides this proposal has not been officially published, it is publicly available
in our code and artifact repositories (such as NPM). We wonder whether our
proposal is being used by a set of external users and how large this set is.

RQ1: Expressiveness of SLA4OAI. To evaluate the expressiveness of the
SLA4OAI proposal, we have modeled the limitations of a set of APIs. For select-
ing this set we considered the work of [3], where the authors analyzed a set of
69 APIs from two of the largest API directories, Mashape (now integrated into
RapidAPI) and ProgrammableWeb, studying 27 and 41 respectively.

For our evaluation, we have manually selected a subset of these APIs, giving, as
a result, a number of 35 APIs whose modeling using SLA4OAI is challenging (i.e.,
the 27 ones from RapidAPI have the same expressiveness, as the authors noted).
Specifically, have modeled 5488 limitations (quotas/rates) over 7055 combinations
of metrics (e.g., number of requests) and periods (e.g., secondly, monthly) in 148
plans of 35 real-world APIs. We provide a workspace11 with the 35 modeled APIs
and the statistical analysis that we have performed. Focusing on these limitations,
the quotas use to be defined over custom metrics based on their business logic
(e.g., credits spent by request, the number of returned results or the storage con-
sumed).On the other hand, rates aremostly defined over the number of requests. In
both cases, APIs usually define their limitations over one or two different metrics.
Finally, regarding the periods, both limitations are usually over just one period:
monthly for quotas, and secondly for rates.

RQ2: Modeling Issues. During the modeling process we have noticed a few
issues, namely: (i) When an overage exists (i.e., one can overcome the limita-
tion value by paying an extra amount of money per request), the quotas are
soft, that is, the service is still accessible, but this situation should be taken
into account. (ii) Sometimes plans in real APIs are the result of an aggregation
of other plans. For instance, one can buy a base plan with N requests/s, but,
purchasing an upgrade, it is possible to reach the N+1 requests/s. (iii) Using
11 https://isa-group.github.io/2019-05-sla4oai.

https://isa-group.github.io/2019-05-sla4oai


Automating SLA-Driven API Development with SLA4OAI 33

more than one period for limitations. For instance, (1000 requests/month and
100 requests/week). Despite the fact that it is supported in SLA4OAI, it is not
present in the current reference implementation. (iv) Some limitations use a cus-
tom period by means of defining the amount and unit, for example, every 5min,
every 2.5months, etc. (v) In a few APIs, especially for trial plans, forever periods
are often used.

RQ3: SLA4OAI Interest in the Community. Despite the SLA4OAI exten-
sion and tools have not been widely announced nor promoted, we have dis-
closed the tooling ecosystem into the main public NodeJS artifact repository
(i.e., NPM) and this platform provides a set of analytics, refering to individ-
ual installations12, of the usage since it was published. Specifically, based on its
data, it is observed that the SLA Instrumentation Library has been downloaded
and installed more than 600 times13 while the SLA Engine was downloaded
more installed than 1900 times. Furthermore, several industry members of the
Open API Initiative (including Google or PayPal) have expressed their interest
in this proposal and to promote a working group for evolving and extending the
SLA4OAI proposal [5].

7 Conclusions

The current de facto standard for modeling functional aspects of RESTful APIs,
the OpenAPI Specification, ignore crucial non-functional information for an API
such as its Service Level Agreement (SLA). This lack of a standard to define
the non-functional aspects leads to vendor lock-in and it prevents the open tool
ecosystem to grow and handle extra functional aspects. In this paper, we pioneer
in extending OAS to define a specific model for SLAs description and we provide
an initial set of open-source tools that leverage the pre-existing OAI ecosystem
in order to automate some stages of the SLA-Driven API lifecycle. Our proposal
has been validated in terms of expressivity in 35 real-world APIs and, in spite of
the lack of promotion, the initial metrics of usage of the tools proof an interest
from the industry.

As future work, the modeling issues identified in Sect. 6 spot the potential
improvements of SLA4OAI specification and the ecosystem of tools, namely: (i)
Incorporate the concept of hard/soft limitation types. (ii) Add the definition of
custom periods, rather than limiting them to a fixed set of values. (iii) Design
a process for creating composite plans on the top of simpler ones. (iv) Improve
the reference implementation of the tools to support more than one period in
each limitation. From a community perspective, based on the interest received
in the industry, we are in the process of creating an official working group for the
industrial members in OAI to incorporate more feedback from the industry and

12 Details about how this calculation is being made is available at http://bit.ly/npm-
calculation.

13 https://npm-stat.com/charts.html?package=sla4oai-tools.

http://bit.ly/npm-calculation
http://bit.ly/npm-calculation
https://npm-stat.com/charts.html?package=sla4oai-tools


34 A. Gamez-Diaz et al.

define a coordinated mechanism of evolution for future versions of the current
SLA4OAI proposal.

References

1. Acharya, M., Xie, T., Pei, J., Xu, J.: Mining API patterns as partial orders from
source code. In: ESEC-FSE 2007, p. 25. ACM Press, New York (2007)

2. Andrieux, A., et al.: Web Services Agreement Specification (WS-Agreement) (2004)
3. Gamez-Diaz, A., Fernandez, P., Ruiz-Cortes, A.: An analysis of RESTful APIs

offerings in the industry. In: Maximilien, M., Vallecillo, A., Wang, J., Oriol,
M. (eds.) ICSOC 2017. LNCS, vol. 10601, pp. 589–604. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-69035-3_43

4. Gamez-Diaz, A., Fernandez, P., Ruiz-Cortes, A.: Governify for APIs: SLA-Driven
ecosystem for API governance. In: ESEC-FSE 2019. ESEC/FSE 2019, Tallin, Esto-
nia. ACM (2019)

5. Gamez-Diaz, A., et al.: The role of limitations and SLAs in the API industry. In:
ESEC-FSE 2019. ESEC/FSE 2019, Tallin, Estonia. ACM (2019)

6. Garcia, J.M., Fernandez, P., Pedrinaci, C., Resinas, M., Cardoso, J., Ruiz-Cortes,
A.: Modeling service level agreements with linked USDL agreement. IEEE TSC
10(1), 52–65 (2017)

7. Harms, H., Rogowski, C., Lo Iacono, L.: Guidelines for adopting frontend archi-
tectures and patterns in microservices-based systems. In: Proceedings of the 2017
11th Joint Meeting on Foundations of Software Engineering, pp. 902–907 (2017)

8. Kearney, K.T., Torelli, F., Kotsokalis, C.: SLA*: an abstract syntax for service
level agreements. In: GRID, pp. 217–224. IEEE, October 2010

9. Kouki, Y., Alvares de Oliveira, F., Dupont, S., Ledoux, T.: A language support for
cloud elasticity management. In: CCGrid 2014, pp. 206–215. IEEE, May 2014

10. Lamanna, D.D., Skene, J., Emmerich, W.: SLAng: a language for defining service
level agreements. In: FTDCS, pp. 100–106, January 2003

11. Ludwig, H., Keller, A., Dan, A., King, R.: A service level agreement language
for dynamic electronic services. In: WECWIS 2002, pp. 25–32. IEEE Computer
Society (2002)

12. Martin-Lopez, A., Segura, S., Ruiz-Cortes, A.: A catalogue of inter-parameter
dependencies in restful web APIs. In: Yangui, S., et al. (eds.) ICSOC 2019. LNCS,
vol. 11895, pp. 399–414. Springer, Cham (2019)

13. Muller, C., Gutierrez Fernandez, A.M., Fernandez, P., Martin-Diaz, O., Resinas,
M., Ruiz-Cortes, A.: Automated validation of compensable SLAs. IEEE TSC, 1
(2018)

14. Neumann, A., Laranjeiro, N., Bernardino, J.: An analysis of public REST web
service APIs. IEEE TSC, 1 (2018)

15. Nguyen, T.N., et al.: Complementing global and local contexts in representing
API descriptions to improve API retrieval tasks. In: ESEC/FSE 2018, pp. 551–
562. ACM Press, New York (2018)

16. Reinhardt, A., Zhang, T., Mathur, M., Kim, M.: Augmenting stack overflow with
API usage patterns mined from GitHub. In: ESEC/FSE 2018, pp. 880–883 (2018)

17. Tata, S., Mohamed, M., Sakairi, T., Mandagere, N., Anya, O., Ludwiga, H.: RSLA:
a service level agreement language for cloud services. In: CLOUD, pp. 415–422,
June 2017

https://doi.org/10.1007/978-3-319-69035-3_43


Automating SLA-Driven API Development with SLA4OAI 35

18. Thomas Fielding, R.: Architectural styles and the design of network-based software
architectures. Ph.D. thesis, University of California, Irvine (2000)

19. Uriarte, R.B., Tiezzi, F., De Nicola, R.: SLAC: a formal service-level-agreement
language for cloud computing. In: UCC, pp. 419–426. IEEE, December 2014


	Automating SLA-Driven API Development with SLA4OAI
	1 Introduction
	2 Motivation and Related Work
	3 OAS in a Nutshell
	4 Our Proposal
	4.1 SLA4OAI Language
	4.2 SLA-Driven API Development Lifecycle
	4.3 Basic SLA Management Service

	5 Tool Support
	6 Validation
	7 Conclusions
	References




