
FAME: An Influencer Model
for Service-Oriented Environments

Faisal Binzagr1, Hamza Labbaci2, and Brahim Medjahed1(B)

1 Department of Computer and Information Science,
University of Michigan - Dearborn, Dearborn, USA

{faisalb,brahim}@umich.edu
2 Department of Computer Science, University of Tours, Tours, France

hemza.labbaci@univ-tours.fr

Abstract. We propose FAME (inFluencer Apis in developer coMmuni-
tiEs), a multi-dimensional influencer model for APIs in service-oriented
environments. We define influence as the extent to which an API is
likely to be adopted in mashups and service-oriented applications. The
proposed model helps providers increase the visibility of their APIs
and developers select the best-in-class APIs. We extract more than
eighteen textual and non-textual API features from various program-
ming communities such as GitHub, StackOverflow, HackerNews, and
ProgrammableWeb. We perform sentiment analysis to quantify developers’
opinions towards using APIs. We introduce a cumulative API influence
score to measure the influence of APIs across communities and categorize
APIs into tiers based on their influence. We introduce a linear regression
technique to predict the evolution of influence scores and correlate API
features to those scores. We conduct experiments on large and real-world
data-sets extracted from the above mentioned programming communities
to illustrate the viability of our approach.

Keywords: API · Service-orientation · Mashup · Social content ·
Influencer · Developer community

1 Introduction

Service-oriented computing allows companies to break down capabilities and
business functionalities into individual, autonomous services [5]. The last decade
has seen a surge of services in the form of Web APIs (simply APIs) in a vari-
ety of domains [15]. The API economy is growing rapidly and companies are
making APIs an integral part of their software development strategies. For
instance, the ProgrammableWeb directory lists more than 22,200 APIs (as of
August 2019). APIs enable developers to access hardware and software resources
via Internet and Web-specific protocols. Using APIs accelerates the develop-
ment of value-added applications (e.g., mashups) by providing reusable func-
tionalities out-of-the-box. However, integrating multiple APIs created by diverse
third parties requires a wide array of technical skills such as Web (e.g., REST),
data management (e.g., JSON), programming (e.g., SDKs), and security (e.g.,
authentication) [12,15]. To overcome these challenges, developers often turn to
c© Springer Nature Switzerland AG 2019
S. Yangui et al. (Eds.): ICSOC 2019, LNCS 11895, pp. 216–230, 2019.
https://doi.org/10.1007/978-3-030-33702-5_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33702-5_16&domain=pdf
https://doi.org/10.1007/978-3-030-33702-5_16

FAME: An Influencer Model for Service-Oriented Environments 217

programming communities (e.g. GitHub) to share practices, knowledge, experi-
ence, and brainpower in solving intricate problems. For instance, GitHub reports
(as of May 2019) having over 37 million users and 100 million repositories. Gath-
ering and analyzing content about API usage and activities in existing commu-
nities (e.g., number of bugs, developer feedback, number of mashups) provides
opportunities to better understand developers’ interactions with APIs and detect
relationships between APIs and mashups [5,13].

Combining social network analysis with service-oriented computing could
bring novel insights to service selection, recommendation, and composition [4,5].
One particular research area that received significant attention in social comput-
ing is social influence [9]. Influencers have the power to impact the way others in
the entire network behave or think [7]. Considerable work has been conducted to
model influence or identify influencers in social media [6,7,11,16]. The research
proposed in this paper approaches the concept of influencers from an API per-
spective. We define an API as influential if it is widely adopted in mashup and
service-oriented application development. The more influence an API has, the
more interest that API sparks to developers. We perceive API developers (both
consumers and providers) in programming communities as social actors. API
consumers use existing APIs to build mashups and service-oriented applications.
They share experiences, feedback, and opinions about APIs in various ways such
as participating in discussion forums, reporting bugs, and following APIs. API
Providers are the developers that created the APIs available in the community.
They publish important information about their APIs such as tutorials, articles,
SDKs, libraries, new releases, and source code.

Analyzing social content to identify influencer APIs has several advantages.
First, API consumers will be able to integrate the best-in-class APIs. For
instance, the ProgrammableWeb directory lists more than fifty mapping APIs.
Selecting the right API is time-consuming and may have an impact on future
mashup maintenance and development [5]. Second, consumers may have differ-
ent views on what makes an API relevant. Some consumers may value APIs with
the least number of reported bugs. Others may consider the opinions expressed
by peers toward the API as significant. Measuring influence based on various
API features assists consumers in selecting APIs that are most suitable to their
development style, needs, and requirements. Third, identifying influencer APIs
enables providers to increase the visibility of their APIs and set up a strategy
to reach out a larger audience of developers. Providers will be able to compare
their API’s influence with the influence of a competitor’s API and pinpoint a
plan of actions to promote their APIs. Some providers may, for example, decide
to enhance their involvement in discussion forums, while others may choose to
increase the number of articles and tutorials published about their APIs.

Developing an influencer model for service-oriented environments poses sev-
eral research challenges. First, social data are scattered across multiple indepen-
dent platforms and cannot be accurately obtained from one single source. For
instance, the number of applications that use a given API is determined by look-
ing at mashups listed in ProgrammableWeb and repositories hosted in GitHub.
Besides, current platforms return API-related data in heterogeneous formats.

218 F. Binzagr et al.

For example, posts in StackOverflow and commit comments in GitHub are
textual and require natural language processing techniques. News articles in
HackerNews and bug reports in Bugzilla are presented in proprietary for-
mats. Other data such as the number of issues in GitHub, number of posts
in StackOverflow, and number of followers on ProgrammableWeb are returned
as atomic values on different scales. Second, the social content collected from
existing communities deals with various aspects of the APIs. It covers both
technical (e.g., number of SDKs) and non-technical (e.g., number of API follow-
ers) information. This includes information about the API itself (e.g., number of
change logs representing the API’s evolution), API consumption (e.g., number of
projects that use the API), and API social activities (e.g., number of posts and
articles related the API). A multi-dimensional influencer model that captures
various API features is needed. Once API features are gathered and cleaned,
it is important to determine the extent to which an API is influential and the
features that have or do not have an impact on the API influence and, if so,
to what degree. Third, newly developed APIs lack the social content necessary
to assess their overall influence. Therefore, recommender systems based on API
influence scores may omit to return such APIs. This may lead to the starvation
of newly deployed APIs as they lack the required social presence. The proposed
influencer model should allow bootstrapping the influence score of newly created
APIs, hence overcoming the traditional cold start problem.

The identification of influential nodes in social networks has been the subject
of many research efforts [6,7,11,16]. Existing research devoted to influencers in
software ecosystems emphasizes on developers as influencers not APIs [3,10]. In
this paper, we propose FAME (inFluencer Apis in developer coMmunitiEs), an
influencer model for APIs in service-oriented environments. To the best of our
knowledge, FAME is the first approach to consider APIs (instead of developers)
as influencers in building mashups and service-oriented applications. The main
contributions of this paper are summarized below:

– We propose an influencer model that extracts more than eighteen API fea-
tures from multiple programming communities. The extracted features cap-
ture non-technical and technical information about APIs in various formats
such as text, atomic values, and other proprietary structures. We perform
sentiment analysis to quantify developers’ opinions towards using APIs. We
introduce a cumulative API Influence Score (AIS) to assess the influence of
APIs in mashups and service-oriented applications. We also categorize APIs
into tiers based on their influence scores.

– We predict the evolution of the influence scores of newly deployed and existing
APIs using Non Negative Least Square (NLS) linear regression technique. We
conduct an analytical study to determine the degree to which each extracted
API feature impacts the influence score.

– We conduct experiments on four real-world programming platforms: GitHub,
StackOverflow, HackerNews, and ProgrammableWeb. We categorize the
extracted social content in five data-sets depending on the deployment dates

FAME: An Influencer Model for Service-Oriented Environments 219

of the corresponding APIs (between 2005 and 2019). We compute the recall
and precision of each data-set. Experiments reveal that the proposed app-
roach can predict up to 87% influencer APIs with 71% precision.

The rest of this paper is organized as follows. Section 2 gives an overview of
the proposed approach. Section 3 presents the FAME model for identifying and
predicting influencer APIs. We describe experiments to evaluate our approach
in Sect. 4. In Sect. 5, we overview related work. We conclude in Sect. 6.

2 The FAME Approach: An Overview

In this section, we give an overview of the proposed approach. We first introduce
two scenarios to motivate our approach. Then, we describe FAME architecture
for identifying and predicting influencer APIs.

2.1 Motivation

We describe two scenarios that illustrate the benefits and challenges of API
influencer identification for consumers and providers. In both scenarios, we refer
to two weather APIs: Aeris Weather (APIAW) and World Weather Online
(APIWWO).

Scenario 1 (API Consumers) - Let us consider a developer, Mary, looking
for a weather API to use in a mashup. A search on ProgrammableWeb returns
APIAW and APIWWO. Since Mary has no prior experience programming with
those APIs, she turns to developers in various programming communities to
help her select the right one. Mary first looks at the features of APIAW and
APIWWO on ProgrammableWeb (Table 1). Below is a summary of her findings.
APIAW has more SDKs than APIWWO. The two APIs have approximately the
same number of articles published on the platform. APIWWO has much more
followers than APIAW . Because Mary is interested in mashup development. She
learns that APIWWO is used in more mashups than APIAW . However, she finds
only 2 and 11 mashups for APIAW and APIWWO, respectively. Mary then looks
at the number of projects on GitHub that are relevant to the APIs. She noticed a
much larger number of repositories related to APIWWO than APIAW (39 vs. 6).
Similarly, APIWWO outperforms APIAW in terms of number of Wikis (428 vs.
3). However, less issues are reported by developers about APIAW than APIWWO

(29 vs. 310). Mary is overwhelmed by the number of API features published on
each platform. She is confused about the features to consider in order to decide
about the API to use. She becomes even more frustrated when she parses the
long texts posted under the reported issues and commit comments on GitHub
to get a better idea about her peers’ opinions about the APIs.

220 F. Binzagr et al.

Table 1. Motivating scenarios

Scenario 2 (API Providers) - The provider of APIAW , John, performs a
Google search on APIAW and a competitor’s API, namely APIWWO. A search
by API endpoints returns more than 500,000 additional results for APIWWO.
A second search by API names returned more than 42 million additional hits
for APIWWO. John is concerned about the significant lack of popularity of his
API compared to APIWWO. To increase the visibility of APIAW and promote
its adoption, he looks at some of the features of APIAW and APIWWO on
ProgrammableWeb, GitHub, and StackOverflow (Table 1). The aim is to come
up with an action plan to increase the adoption of APIAW by developers. The
following questions need to be answered as part of John’s action plan: how does
he measure the influence of his API? which features are likely to have a higher
impact on developers across programming communities to adopt APIAW ? how
are the different API features related to each other? which features does he need
to improve in order to enhance APIAW influence?

2.2 Architecture

The FAME architecture is composed of three modules (Fig. 1): Unstructured
Data Extractor (UDE), Structured Data Extractor (SDE), and the FAME Model.
UDE extracts and analyzes unstructured (i.e., textual) API features from devel-
oper communities. Such features include commit comments in GitHub, posts
in StackOverflow, and articles in ProgrammableWeb. UDE conducts sentiment
analysis to quantify textual features as positive, neutral, or negative sentiment
scores. Since the extraction and analysis of textual features is time consum-
ing, UDE tasks are executed periodically and offline. SDE collects quantitative
API features (e.g., number of repositories) from ProgrammableWeb, GitHub, and
HackerNews. These features are extracted online (i.e., on demand) during the

FAME: An Influencer Model for Service-Oriented Environments 221

execution of an API influencer identification or prediction request. Since SDE-
extracted features are measured on different scales, data normalization tech-
niques are applied to adjust those features to a common scale. Once all features
are extracted, cleaned, and normalized, the FAME model aggregates those fea-
tures to determine the API Influence Score (AIS) of each API. The calculated
scores are used to cluster APIs into tiers: nano (least influential), micro, mid-tier,
mega, and celebrity (most influential). The FAME model also uses non-negative-
least-square regression to figure out significant features and associate weights to
those features. Such weights are used to predict the evolution of AIS scores and
tweak API features in order to enhance API influence across communities.

Fig. 1. FAME architecture

3 Influencer Identification and Prediction in FAME

In this section, we give details about the FAME approach for identifying and pre-
dicting influencer APIs. We first introduce the methods to extract both unstruc-
tured (i.e., textual) and structured features from programming community plat-
forms (Sects. 3.1 and 3.2). Then, we describe the techniques for calculating API
Influence Scores (AIS) and organizing APIs into influencer tiers based on AIS
scores (Sect. 3.3). Finally, we present a linear regression-based model for predict-
ing AIS scores (Sect. 3.4).

3.1 Unstructured Data Extractor (UDE)

UDE evaluates developers’ sentiments toward APIs. It analyzes developers’ feed-
back and computes scores of interest in APIs. UDE performs three major tasks:

222 F. Binzagr et al.

data collection, data pre-processing, and sentiment analysis. The data collection
task crawls and collects developers’ textual data from GitHub (commit com-
ments), StackOverflow (posts), and ProgrammableWeb (articles). As each one
of these platforms exports large volumes of data, we define data extraction pat-
terns based on API names, endpoints, and topics to sort out API-related content
and speed-up data collection. The data pre-processing task cleans textual data
from irrelevant information such as code snippets and hyperlinks.

Sentiment analysis is the main UDE task. It evaluates developers’ opinions
toward APIs. We use the Stanford NLP (Natural Language Processing) Parser1.
The parser adopts recursive neural nets, a deep learning technique, to figure out
text polarity (positive, neutral, negative). It returns a sentiment score, sscore ∈
[−1, 1], along with text polarity. An sscore closer to −1 denotes a negative
sentiment. The sentiment is considered as positive if sscore is closer to 1. An
sscore closer to 0 represents a neutral sentiment.

Some textual features may have higher user views than others. For instance,
the sentiment of a post on an API with a large number of views should be given
more importance than the sentiment of another post (on the same API) with a
smaller number of views. Therefore, we associate a weight wi for each textual
feature fi. Each weight value wi correlates to the number of views on fi. We
normalize weights according to the following formula, where viewsnumberi and
Max(viewsnumber) represent the number of fi views and maximum number of
views in all features:

wi =
viewsnumberi

Max(viewsnumber)

Using the weight wi and sentiment score sscorei of a feature fi, we define
the weighted sentiment as follows:

WeightedSentimenti = wi ∗ sscorei

Finally, we define the overall sentiment for a given APIj as the sum of the
weighted sentiment of each extracted feature fi divided by the total number of
such features:

sentiment(APIj) =
∑

WeightedSentimenti
TotalNumberOfExtractedFeatures

3.2 Structured Data Extractor (SDE)

SDE collects structured API features from four programming community plat-
forms: ProgrammableWeb, GitHub, StackOverflow, and HackerNews. By struc-
tured, we mean that the features are well formatted in the platforms and ready to
extract/use. We rely on Selenium WebDriver2, a framework that automates Web
data extraction. The framework allows feature extraction using predefined pars-
ing rules. A rule contains the URLs to load data from and keywords describing
1 https://nlp.stanford.edu/.
2 https://www.seleniumhq.org/projects/webdriver/.

https://nlp.stanford.edu/
https://www.seleniumhq.org/projects/webdriver/

FAME: An Influencer Model for Service-Oriented Environments 223

APIs to filter data with. Data is parsed to extract features using DOM (Docu-
ment Object Model)3. Table 2 summarizes all API features extracted by UDE
and SDE.

Table 2. API features in developer communities

Another important factor that helps assess the influence of an API is its
spread over the internet. A well distributed/spread API is usually indexed on
many search engines, which increases its visibility and eases its access. For exam-
ple, Twitter API is accessible via multiple resources such as tutorials, documen-
tations, and videos. This makes the API more likely to attract developers. We
run two kind of queries on Google search engine to measure the level of spread
of an API. The first query counts the number of entries in the index that contain
a given API name; the second query counts the number of entries containing a
given API endpoint (Table 2).

The features retrieved by SDE are returned on different scales. For example,
the number of issues reported for an API on GitHub may reach several hundreds;
the number of SDKs available for an API on ProgrammableWeb is typically a one
or two-digit value; the number of users interested in an API on GitHub may go
beyond thousands. To normalize features on a common scale, we use the following
formula:

x̂ =
(xmax − xmin) ∗ (rmax − rmin)

(xmax − xmin)
+ rmin

3 https://www.w3.org/TR/WD-DOM/.

https://www.w3.org/TR/WD-DOM/

224 F. Binzagr et al.

Where: x̂ refers to the normalized value; xmax and xmin refer to the fea-
ture maximum and minimum values, respectively; rmax and rmin refer to the
maximum and minimum new range values, 1 and 0 for our case.

3.3 API Influencer Score (AIS)

We define a metric, called API Influence Score (AIS), to model the degree to
which community members use an API to develop mashups and service-oriented
applications. For that purpose, we use the number of mashups and repositories
that adopt the API on ProgrammableWeb and GitHub, respectively. However,
some developers may display negative experiences using an API. To capture
developers’ opinions, the AIS score includes the average weighted sentiment. As
shown in the formula given below, the AIS score is calculated using three of
the API features extracted from community platforms (Table 2). The remaining
extracted features are used to predict the AIS score as shown in Sect. 3.4. The
AIS score is formally defined as follows:

AIS(i) =
∑

#Mi + #Ri + Sentiment(APIi)

Where: #Mi is the number of mashups that use APIi on ProgrammableWeb;
#Ri is the number of repositories that use APIi on GitHub; Sentiment(APIi) is
the overall sentiment on APIi as defined in Sect. 3.1.

Using the computed AIS scores, we define influencer tiers to categorize APIs
according to their influence level. Figure 2b shows the five tiers: Nano, Micro,
Mid-Tier, Mega, and Celebrity. Figure 2a depicts the distribution of all APIs
across the five influence tiers. The Nano tier regroups the least influential APIs.
APIs in this tier have a score below 0.015. This category has the highest pro-
portion of APIs, with about 600 identified APIs. Examples of Nano APIs are
Blinksale, Plunker and MyWot. The Micro tier contains APIs with a score
between 0.015 and 0.15. Hoiio Voice, Kiva and Songkick are examples of APIs
in this category. Mid-Tier refers to APIs with a score in the [0.15, 0.5[range such

Fig. 2. Influencer tiers

FAME: An Influencer Model for Service-Oriented Environments 225

as LinkedIn, Zillow and Evernote. Mega regroups APIs with a significant influ-
ence score (AIS ∈ [0.5, 1.5[), such as Flickr, Last.fm, and Reddit. Celebrity
represents APIs with the highest influence (AIS > 1.5). Celebrities appear in the
highest number of mashups and repositories. They also subject to positive sen-
timents among developers. Examples of celebrities are Google Maps, Twitter
and YouTube. Figure 2a shows that this tier has the lowest proportion of APIs,
with about 20 identified APIs.

3.4 Influence Score Prediction

We compute the AIS score of an API using three features: number of mashups,
number of repositories, and overall developers’ sentiment. However, it is difficult
for API providers to have direct control on those features to improve the adoption
of their APIs by developers. To help API providers enhance the influence of
their APIs, we conduct a statistical study to identify the most relevant API
features that correlate the most to AIS scores. Once API providers understand
which of the remaining features (other than number of mashups, repositories, and
sentiment) impact the AIS score, they can come-up with a strategy to boost-up
the influence of their APIs.

We use Non-Negative Least Squares (NNLS) regression [8] to learn a weight
value for each API feature. NNLS assigns weights to features according to their
correlation degree to AIS scores. The most relevant features are given high coef-
ficients, while non relevant ones are given negative coefficients. NNLS replaces
negative coefficients by 0. This will automatically get rid of non relevant fea-
tures from the model. Figure 3 summarizes the coefficients assigned to each API
feature. Features with the biggest coefficient values have the highest impact on
AIS scores. For instance, the number of articles in ProgrammableWeb is strongly
related to the AIS score. This shows that more articles published in the developer
community may increase API influence. Figure 3 also states that StackOverflow
features have little impact on AIS scores.

The next step is to define AIS prediction models. These models are useful to
assign initial influence scores for newly deployed APIs, hence dealing with the
traditional cold start problem. They also assist API providers in predicting the
evolution of their API scores. We introduce three prediction models (Table 3). To
evaluate and compare the models, we calculate the adjusted R-squared [14] and
Akaike Information Criterion (AIC) [1]. The adjusted R-squared estimates the
variance between predicted and real scores. AIC measures the goodness of the
fit for the model. The model with the smallest AIC value and highest adjusted
R-square is selected as the best-fitting model.

Table 3 summarizes our three prediction models. Model 1 uses all extracted
features to predict the AIS score. It has a low adjusted R-squared value: 0.5788.
Hence the model does not fit the trend perfectly. This is because AIS scores
depend on developers’ sentiments, which are hard to predict. To deal with this
issue, we introduce the adjusted AIS score (AISadjusted). AISadjusted is a variant
of the original AIS score that eliminates developers’ sentiments. The following
formula computes APIi’s adjusted AIS score.

226 F. Binzagr et al.

Fig. 3. Impact of API features on the AIS score

AISadjusted(i) =
∑

#Mi + #Ri

The second and third models predict the AIS adjusted scores. Model 3 uses
all extracted features. Model 2 omits the features extracted from StackOverflow
since our study shows that StackOverflow has little impact on API adoption
across communities (Fig. 3). Both models display high adjusted R-squared: 0.77
for Model 2 and 0.78 for Model 3. The models also have low AIC values: 1346.347
for Model 1 and 1323.208 for Model 2. This makes both models suitable for
predicting the adjusted AIS score, with a slight advantage to Model 3 as it uses
more API features than Model 2.

4 Experiments

The goal of our experiments is to assess FAME’s ability to accurately predict
influencer APIs. We evaluate the second and third prediction models (Table 3)
using five independent data-sets. The data-sets regroup APIs deployed during
five different periods between 2005 to 2019. For each API, we compute the
adjusted AIS score and use the models (2 and 3) to predict that score. We
then compute the recall and precision for each data-set using both models.

The recall refers to the fraction of influencer APIs that are correctly iden-
tified within each data-set. It is the number of influencers that are successfully
predicted divided by the number of all APIs that are identified as influencers. It
can be also seen as the percentage of influencer APIs that are successfully pre-
dicted. Figure 4a shows that up to 86% and 88% of influencers are successfully
recalled (i.e., predicted) by Model 2 and Model 3, respectively. Both models have
a stable recall, but leveraging more features in Model 3 allows a better prediction
than Model 2.

FAME: An Influencer Model for Service-Oriented Environments 227

Table 3. Prediction models

The precision checks the accuracy with which scores are predicted for APIs.
It is the number of precisely predicted influencer APIs divided by all recalled
APIs. It can be seen as the percentage of precisely recalled influencers. If the
weight difference is less than a threshold value, the influencer is assumed to be
precisely identified. We used 0.03 as a threshold; this value represents the average
of the difference between the predicted and computed scores. Figure 4b shows
that both models identify influencer APIs with up to 71% precision.

Fig. 4. Recall and precision

5 Related Work

The identification of influential nodes in distributed environments such as social
networks and forums has been the subject of many research efforts [6,7,11,16].
Few research proposals [3,10] study influencers in software development. How-
ever, existing research considers developers as influencers not APIs. [11] proposes

228 F. Binzagr et al.

a methodology to identify influencer nodes that are likely to affect other nodes
in social networks. It computes the centrality degree of nodes and analyzes node
activities. [11] focuses on the position of nodes in the network. Our approach
instead leverages both structured (e.g., number of mashups, number of articles)
and unstructured (e.g., user feedback) across multiple developer platforms to
identify influencers. We also show that influencer identification precision gets
better as we leverage a larger number of features. [16] presents a study for find-
ing influential authors on Twitter forums. It combines both user profile infor-
mation and user interaction features with decision tree to identify influencer
authors. Our approach identifies APIs as influencers not users. Moreover, we
use a multi-objective function that combines multiple attributes collected from
various sources. [7] proposes a study to understand influencers who lead develop-
ment and dictate how projects evolve. It shows that analyzing influencer behav-
iors allows understanding the evolution of software ecosystem and even predict
future evolution. The main focus of our approach is to identify influencer APIs
and the attributes that contribute to their emergence, rather than assuming the
existence of those influencers and studying their behavior. [2] shows that influ-
ence score depends on engagement, sentiment, and growth. [6] shows that orig-
inality and uniqueness of user content are crucial factors to identify influencers
in Instagram. [2] and [6] rely mainly on social metrics to determine influencers.
Our approach extends the analysis to encompass attributes from various sources.
Besides, it considers APIs as influencers in programming platforms instead of
users in social networks. [17] computes influence score for users across several
social networks. It evaluates the quantity and quality of reactions a user action
prompted to assess the extent to which the user is influential. [3] and [10] iden-
tify the most influential developers, repositories, technologies and programming
languages in GitHub. [3] shows that the analysis of social networks, particularly
the relations among developers, developers and repositories, and developers and
followers helps identify developers’ influencer index. [10] proposes an approach
to measure user influence in Github. It analyzes relationships between users, as
well as between users and projects. In contrast to our approach, [10] and [3] are
restricted to GitHub and stackOverflow data. In our approach, we show that
using a multi-objective function that combine both structured and unstructured
features from diverse platforms substantially enhances the precision of the influ-
encer identification process. We also introduce models to predict the evolution
of influencer scores for newly developers and existing APIs.

6 Conclusion

We propose FAME (inFluencer Apis in developer coMmunitiEs), a novel app-
roach for the identification and prediction of influencer APIs in service-oriented
environments. To the best of our knowledge, FAME is the first influencer model
that treats APIs as first-class citizens. We define influence as the degree to which
an API is used in mashups and service-oriented applications. We extract and
analyze several structured and unstructured features from various programming
communities. We use the Stanford NLP parser to perform sentiment analysis and

FAME: An Influencer Model for Service-Oriented Environments 229

evaluate developers’ opinions towards using APIs. Such opinions are expressed
through posts in StackOverflow, commit comments in GitHub, and articles in
ProgrammableWeb. We aggregate API features to compute influence scores and
cluster APIs into influencer tiers according to those scores. We use Non-Negative
Least Square (NNLS) regression to identify to most significant API features
and predict the evolution of influence scores for newly deployed and existing
APIs. Finally, we conduct extensive experiments on real-world and large data-
sets extracted from multiple programming community platforms. Experiments
reveal that the proposed approach predicts up to 87% influencer APIs.

References

1. Akaike, H.: A new look at the statistical model identification. In: Parzen, E.,
Tanabe, K., Kitagawa, G. (eds.) Selected Papers of Hirotugu Akaike. Springer
Series in Statistics (Perspectives in Statistics), pp. 215–222. Springer, New York
(1974). https://doi.org/10.1007/978-1-4612-1694-0 16

2. Arora, A., Bansal, S., Kandpal, C., Aswani, R., Dwivedi, Y.: Measuring social
media influencer index-insights from facebook, twitter and instagram. J. Retail.
Consum. Serv. 49, 86–101 (2019)

3. Bana, R., Arora, A.: Influence indexing of developers, repositories, technologies
and programming languages on social coding community github. In: 2018 Eleventh
International Conference on Contemporary Computing (IC3), pp. 1–6 (2018)

4. Binzagr, F., Medjahed, B.: Crowdmashup: recommending crowdsourcing teams for
mashup development. In: Pahl, C., Vukovic, M., Yin, J., Yu, Q. (eds.) ICSOC 2018.
LNCS, vol. 11236, pp. 679–693. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-03596-9 49

5. Bouguettaya, A., et al.: A service computing manifesto: the next 10 years. Com-
mun. ACM 60(4), 64–72 (2017)

6. Casaló, L.V., Flavián, C., Ibáñez-Sánchez, S.: Influencers on instagram: antecedents
and consequences of opinion leadership. J. Bus. Res. (2018)

7. Farias, V., Wiese, I., dos Santos, R.P.: What characterizes an influencer in software
ecosystems? IEEE Softw. 36(1), 42–47 (2019)

8. Flammarion, N.: Stochastic approximation and least-squares regression, with appli-
cations to machine learning. PhD thesis, École Normale Supérieure, Paris, France
(2017)

9. Gao, L., Yue, W., Xiong, X., Tang, J.: Discriminating topical influencers based on
the user relative emotion. IEEE Access 7, 100120–100130 (2019)

10. Hu, Y., Wang, S., Ren, Y., Choo, K.-K.R.: User influence analysis for github devel-
oper social networks. Expert Syst. Appl. 108, 108–118 (2018)

11. Kim, E.S., Han, S.S.: An analytical way to find influencers on social networks
and validate their effects in disseminating social games. In: 2009 International
Conference on Advances in Social Network Analysis and Mining, ASONAM 2009,
Athens, Greece, 20–22 July 2009, pp. 41–46 (2009)

12. Labbaci, H., Medjahed, B., Aklouf, Y., Malik, Z.: Follow the leader: a social network
approach for service communities. In: Sheng, Q.Z., Stroulia, E., Tata, S., Bhiri, S.
(eds.) ICSOC 2016. LNCS, vol. 9936, pp. 705–712. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-46295-0 50

https://doi.org/10.1007/978-1-4612-1694-0_16
https://doi.org/10.1007/978-3-030-03596-9_49
https://doi.org/10.1007/978-3-030-03596-9_49
https://doi.org/10.1007/978-3-319-46295-0_50
https://doi.org/10.1007/978-3-319-46295-0_50

230 F. Binzagr et al.

13. Liu, X., Kale, A., Wasani, J., (Cherie) Ding, C., Yu, Q.: Extracting, ranking, and
evaluating quality features of web services through user review sentiment analysis.
In: 2015 IEEE International Conference on Web Services, ICWS 2015, New York,
NY, USA, 27 June–2 July 2015, pp. 153–160 (2015)

14. Miles, J.: R squared, adjusted R squared. Wiley StatsRef: Statistics Reference
Online (2014)

15. Noor, T.H., Sheng, Q.Z., Ngu, A.H.H., Dustdar, S.: Analysis of web-scale cloud
services. IEEE Internet Comput. 18(4), 55–61 (2014)

16. Purohit, H., Ajmera, J., Joshi, S., Verma, A., Sheth, A.: Finding influential authors
in brand-page communities. In: Sixth International AAAI Conference on Weblogs
and Social Media (2012)

17. Rao, A., Spasojevic, N., Li, Z., Dsouza, T.: Klout score: measuring influence across
multiple social networks. In: 2015 IEEE International Conference on Big Data (Big
Data), pp. 2282–2289. IEEE (2015)

	FAME: An Influencer Model for Service-Oriented Environments
	1 Introduction
	2 The FAME Approach: An Overview
	2.1 Motivation
	2.2 Architecture

	3 Influencer Identification and Prediction in FAME
	3.1 Unstructured Data Extractor (UDE)
	3.2 Structured Data Extractor (SDE)
	3.3 API Influencer Score (AIS)
	3.4 Influence Score Prediction

	4 Experiments
	5 Related Work
	6 Conclusion
	References

